xref: /openbmc/linux/drivers/spi/spi.c (revision 9429ec96)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/export.h>
35 #include <linux/sched.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 
39 static void spidev_release(struct device *dev)
40 {
41 	struct spi_device	*spi = to_spi_device(dev);
42 
43 	/* spi masters may cleanup for released devices */
44 	if (spi->master->cleanup)
45 		spi->master->cleanup(spi);
46 
47 	spi_master_put(spi->master);
48 	kfree(spi);
49 }
50 
51 static ssize_t
52 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
53 {
54 	const struct spi_device	*spi = to_spi_device(dev);
55 
56 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
57 }
58 
59 static struct device_attribute spi_dev_attrs[] = {
60 	__ATTR_RO(modalias),
61 	__ATTR_NULL,
62 };
63 
64 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
65  * and the sysfs version makes coldplug work too.
66  */
67 
68 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
69 						const struct spi_device *sdev)
70 {
71 	while (id->name[0]) {
72 		if (!strcmp(sdev->modalias, id->name))
73 			return id;
74 		id++;
75 	}
76 	return NULL;
77 }
78 
79 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
80 {
81 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
82 
83 	return spi_match_id(sdrv->id_table, sdev);
84 }
85 EXPORT_SYMBOL_GPL(spi_get_device_id);
86 
87 static int spi_match_device(struct device *dev, struct device_driver *drv)
88 {
89 	const struct spi_device	*spi = to_spi_device(dev);
90 	const struct spi_driver	*sdrv = to_spi_driver(drv);
91 
92 	/* Attempt an OF style match */
93 	if (of_driver_match_device(dev, drv))
94 		return 1;
95 
96 	if (sdrv->id_table)
97 		return !!spi_match_id(sdrv->id_table, spi);
98 
99 	return strcmp(spi->modalias, drv->name) == 0;
100 }
101 
102 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
103 {
104 	const struct spi_device		*spi = to_spi_device(dev);
105 
106 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
107 	return 0;
108 }
109 
110 #ifdef CONFIG_PM_SLEEP
111 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
112 {
113 	int			value = 0;
114 	struct spi_driver	*drv = to_spi_driver(dev->driver);
115 
116 	/* suspend will stop irqs and dma; no more i/o */
117 	if (drv) {
118 		if (drv->suspend)
119 			value = drv->suspend(to_spi_device(dev), message);
120 		else
121 			dev_dbg(dev, "... can't suspend\n");
122 	}
123 	return value;
124 }
125 
126 static int spi_legacy_resume(struct device *dev)
127 {
128 	int			value = 0;
129 	struct spi_driver	*drv = to_spi_driver(dev->driver);
130 
131 	/* resume may restart the i/o queue */
132 	if (drv) {
133 		if (drv->resume)
134 			value = drv->resume(to_spi_device(dev));
135 		else
136 			dev_dbg(dev, "... can't resume\n");
137 	}
138 	return value;
139 }
140 
141 static int spi_pm_suspend(struct device *dev)
142 {
143 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
144 
145 	if (pm)
146 		return pm_generic_suspend(dev);
147 	else
148 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
149 }
150 
151 static int spi_pm_resume(struct device *dev)
152 {
153 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
154 
155 	if (pm)
156 		return pm_generic_resume(dev);
157 	else
158 		return spi_legacy_resume(dev);
159 }
160 
161 static int spi_pm_freeze(struct device *dev)
162 {
163 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
164 
165 	if (pm)
166 		return pm_generic_freeze(dev);
167 	else
168 		return spi_legacy_suspend(dev, PMSG_FREEZE);
169 }
170 
171 static int spi_pm_thaw(struct device *dev)
172 {
173 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
174 
175 	if (pm)
176 		return pm_generic_thaw(dev);
177 	else
178 		return spi_legacy_resume(dev);
179 }
180 
181 static int spi_pm_poweroff(struct device *dev)
182 {
183 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
184 
185 	if (pm)
186 		return pm_generic_poweroff(dev);
187 	else
188 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
189 }
190 
191 static int spi_pm_restore(struct device *dev)
192 {
193 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
194 
195 	if (pm)
196 		return pm_generic_restore(dev);
197 	else
198 		return spi_legacy_resume(dev);
199 }
200 #else
201 #define spi_pm_suspend	NULL
202 #define spi_pm_resume	NULL
203 #define spi_pm_freeze	NULL
204 #define spi_pm_thaw	NULL
205 #define spi_pm_poweroff	NULL
206 #define spi_pm_restore	NULL
207 #endif
208 
209 static const struct dev_pm_ops spi_pm = {
210 	.suspend = spi_pm_suspend,
211 	.resume = spi_pm_resume,
212 	.freeze = spi_pm_freeze,
213 	.thaw = spi_pm_thaw,
214 	.poweroff = spi_pm_poweroff,
215 	.restore = spi_pm_restore,
216 	SET_RUNTIME_PM_OPS(
217 		pm_generic_runtime_suspend,
218 		pm_generic_runtime_resume,
219 		pm_generic_runtime_idle
220 	)
221 };
222 
223 struct bus_type spi_bus_type = {
224 	.name		= "spi",
225 	.dev_attrs	= spi_dev_attrs,
226 	.match		= spi_match_device,
227 	.uevent		= spi_uevent,
228 	.pm		= &spi_pm,
229 };
230 EXPORT_SYMBOL_GPL(spi_bus_type);
231 
232 
233 static int spi_drv_probe(struct device *dev)
234 {
235 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
236 
237 	return sdrv->probe(to_spi_device(dev));
238 }
239 
240 static int spi_drv_remove(struct device *dev)
241 {
242 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
243 
244 	return sdrv->remove(to_spi_device(dev));
245 }
246 
247 static void spi_drv_shutdown(struct device *dev)
248 {
249 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
250 
251 	sdrv->shutdown(to_spi_device(dev));
252 }
253 
254 /**
255  * spi_register_driver - register a SPI driver
256  * @sdrv: the driver to register
257  * Context: can sleep
258  */
259 int spi_register_driver(struct spi_driver *sdrv)
260 {
261 	sdrv->driver.bus = &spi_bus_type;
262 	if (sdrv->probe)
263 		sdrv->driver.probe = spi_drv_probe;
264 	if (sdrv->remove)
265 		sdrv->driver.remove = spi_drv_remove;
266 	if (sdrv->shutdown)
267 		sdrv->driver.shutdown = spi_drv_shutdown;
268 	return driver_register(&sdrv->driver);
269 }
270 EXPORT_SYMBOL_GPL(spi_register_driver);
271 
272 /*-------------------------------------------------------------------------*/
273 
274 /* SPI devices should normally not be created by SPI device drivers; that
275  * would make them board-specific.  Similarly with SPI master drivers.
276  * Device registration normally goes into like arch/.../mach.../board-YYY.c
277  * with other readonly (flashable) information about mainboard devices.
278  */
279 
280 struct boardinfo {
281 	struct list_head	list;
282 	struct spi_board_info	board_info;
283 };
284 
285 static LIST_HEAD(board_list);
286 static LIST_HEAD(spi_master_list);
287 
288 /*
289  * Used to protect add/del opertion for board_info list and
290  * spi_master list, and their matching process
291  */
292 static DEFINE_MUTEX(board_lock);
293 
294 /**
295  * spi_alloc_device - Allocate a new SPI device
296  * @master: Controller to which device is connected
297  * Context: can sleep
298  *
299  * Allows a driver to allocate and initialize a spi_device without
300  * registering it immediately.  This allows a driver to directly
301  * fill the spi_device with device parameters before calling
302  * spi_add_device() on it.
303  *
304  * Caller is responsible to call spi_add_device() on the returned
305  * spi_device structure to add it to the SPI master.  If the caller
306  * needs to discard the spi_device without adding it, then it should
307  * call spi_dev_put() on it.
308  *
309  * Returns a pointer to the new device, or NULL.
310  */
311 struct spi_device *spi_alloc_device(struct spi_master *master)
312 {
313 	struct spi_device	*spi;
314 	struct device		*dev = master->dev.parent;
315 
316 	if (!spi_master_get(master))
317 		return NULL;
318 
319 	spi = kzalloc(sizeof *spi, GFP_KERNEL);
320 	if (!spi) {
321 		dev_err(dev, "cannot alloc spi_device\n");
322 		spi_master_put(master);
323 		return NULL;
324 	}
325 
326 	spi->master = master;
327 	spi->dev.parent = &master->dev;
328 	spi->dev.bus = &spi_bus_type;
329 	spi->dev.release = spidev_release;
330 	device_initialize(&spi->dev);
331 	return spi;
332 }
333 EXPORT_SYMBOL_GPL(spi_alloc_device);
334 
335 /**
336  * spi_add_device - Add spi_device allocated with spi_alloc_device
337  * @spi: spi_device to register
338  *
339  * Companion function to spi_alloc_device.  Devices allocated with
340  * spi_alloc_device can be added onto the spi bus with this function.
341  *
342  * Returns 0 on success; negative errno on failure
343  */
344 int spi_add_device(struct spi_device *spi)
345 {
346 	static DEFINE_MUTEX(spi_add_lock);
347 	struct device *dev = spi->master->dev.parent;
348 	struct device *d;
349 	int status;
350 
351 	/* Chipselects are numbered 0..max; validate. */
352 	if (spi->chip_select >= spi->master->num_chipselect) {
353 		dev_err(dev, "cs%d >= max %d\n",
354 			spi->chip_select,
355 			spi->master->num_chipselect);
356 		return -EINVAL;
357 	}
358 
359 	/* Set the bus ID string */
360 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
361 			spi->chip_select);
362 
363 
364 	/* We need to make sure there's no other device with this
365 	 * chipselect **BEFORE** we call setup(), else we'll trash
366 	 * its configuration.  Lock against concurrent add() calls.
367 	 */
368 	mutex_lock(&spi_add_lock);
369 
370 	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
371 	if (d != NULL) {
372 		dev_err(dev, "chipselect %d already in use\n",
373 				spi->chip_select);
374 		put_device(d);
375 		status = -EBUSY;
376 		goto done;
377 	}
378 
379 	/* Drivers may modify this initial i/o setup, but will
380 	 * normally rely on the device being setup.  Devices
381 	 * using SPI_CS_HIGH can't coexist well otherwise...
382 	 */
383 	status = spi_setup(spi);
384 	if (status < 0) {
385 		dev_err(dev, "can't setup %s, status %d\n",
386 				dev_name(&spi->dev), status);
387 		goto done;
388 	}
389 
390 	/* Device may be bound to an active driver when this returns */
391 	status = device_add(&spi->dev);
392 	if (status < 0)
393 		dev_err(dev, "can't add %s, status %d\n",
394 				dev_name(&spi->dev), status);
395 	else
396 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
397 
398 done:
399 	mutex_unlock(&spi_add_lock);
400 	return status;
401 }
402 EXPORT_SYMBOL_GPL(spi_add_device);
403 
404 /**
405  * spi_new_device - instantiate one new SPI device
406  * @master: Controller to which device is connected
407  * @chip: Describes the SPI device
408  * Context: can sleep
409  *
410  * On typical mainboards, this is purely internal; and it's not needed
411  * after board init creates the hard-wired devices.  Some development
412  * platforms may not be able to use spi_register_board_info though, and
413  * this is exported so that for example a USB or parport based adapter
414  * driver could add devices (which it would learn about out-of-band).
415  *
416  * Returns the new device, or NULL.
417  */
418 struct spi_device *spi_new_device(struct spi_master *master,
419 				  struct spi_board_info *chip)
420 {
421 	struct spi_device	*proxy;
422 	int			status;
423 
424 	/* NOTE:  caller did any chip->bus_num checks necessary.
425 	 *
426 	 * Also, unless we change the return value convention to use
427 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
428 	 * suggests syslogged diagnostics are best here (ugh).
429 	 */
430 
431 	proxy = spi_alloc_device(master);
432 	if (!proxy)
433 		return NULL;
434 
435 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
436 
437 	proxy->chip_select = chip->chip_select;
438 	proxy->max_speed_hz = chip->max_speed_hz;
439 	proxy->mode = chip->mode;
440 	proxy->irq = chip->irq;
441 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
442 	proxy->dev.platform_data = (void *) chip->platform_data;
443 	proxy->controller_data = chip->controller_data;
444 	proxy->controller_state = NULL;
445 
446 	status = spi_add_device(proxy);
447 	if (status < 0) {
448 		spi_dev_put(proxy);
449 		return NULL;
450 	}
451 
452 	return proxy;
453 }
454 EXPORT_SYMBOL_GPL(spi_new_device);
455 
456 static void spi_match_master_to_boardinfo(struct spi_master *master,
457 				struct spi_board_info *bi)
458 {
459 	struct spi_device *dev;
460 
461 	if (master->bus_num != bi->bus_num)
462 		return;
463 
464 	dev = spi_new_device(master, bi);
465 	if (!dev)
466 		dev_err(master->dev.parent, "can't create new device for %s\n",
467 			bi->modalias);
468 }
469 
470 /**
471  * spi_register_board_info - register SPI devices for a given board
472  * @info: array of chip descriptors
473  * @n: how many descriptors are provided
474  * Context: can sleep
475  *
476  * Board-specific early init code calls this (probably during arch_initcall)
477  * with segments of the SPI device table.  Any device nodes are created later,
478  * after the relevant parent SPI controller (bus_num) is defined.  We keep
479  * this table of devices forever, so that reloading a controller driver will
480  * not make Linux forget about these hard-wired devices.
481  *
482  * Other code can also call this, e.g. a particular add-on board might provide
483  * SPI devices through its expansion connector, so code initializing that board
484  * would naturally declare its SPI devices.
485  *
486  * The board info passed can safely be __initdata ... but be careful of
487  * any embedded pointers (platform_data, etc), they're copied as-is.
488  */
489 int __devinit
490 spi_register_board_info(struct spi_board_info const *info, unsigned n)
491 {
492 	struct boardinfo *bi;
493 	int i;
494 
495 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
496 	if (!bi)
497 		return -ENOMEM;
498 
499 	for (i = 0; i < n; i++, bi++, info++) {
500 		struct spi_master *master;
501 
502 		memcpy(&bi->board_info, info, sizeof(*info));
503 		mutex_lock(&board_lock);
504 		list_add_tail(&bi->list, &board_list);
505 		list_for_each_entry(master, &spi_master_list, list)
506 			spi_match_master_to_boardinfo(master, &bi->board_info);
507 		mutex_unlock(&board_lock);
508 	}
509 
510 	return 0;
511 }
512 
513 /*-------------------------------------------------------------------------*/
514 
515 /**
516  * spi_pump_messages - kthread work function which processes spi message queue
517  * @work: pointer to kthread work struct contained in the master struct
518  *
519  * This function checks if there is any spi message in the queue that
520  * needs processing and if so call out to the driver to initialize hardware
521  * and transfer each message.
522  *
523  */
524 static void spi_pump_messages(struct kthread_work *work)
525 {
526 	struct spi_master *master =
527 		container_of(work, struct spi_master, pump_messages);
528 	unsigned long flags;
529 	bool was_busy = false;
530 	int ret;
531 
532 	/* Lock queue and check for queue work */
533 	spin_lock_irqsave(&master->queue_lock, flags);
534 	if (list_empty(&master->queue) || !master->running) {
535 		if (master->busy && master->unprepare_transfer_hardware) {
536 			ret = master->unprepare_transfer_hardware(master);
537 			if (ret) {
538 				spin_unlock_irqrestore(&master->queue_lock, flags);
539 				dev_err(&master->dev,
540 					"failed to unprepare transfer hardware\n");
541 				return;
542 			}
543 		}
544 		master->busy = false;
545 		spin_unlock_irqrestore(&master->queue_lock, flags);
546 		return;
547 	}
548 
549 	/* Make sure we are not already running a message */
550 	if (master->cur_msg) {
551 		spin_unlock_irqrestore(&master->queue_lock, flags);
552 		return;
553 	}
554 	/* Extract head of queue */
555 	master->cur_msg =
556 	    list_entry(master->queue.next, struct spi_message, queue);
557 
558 	list_del_init(&master->cur_msg->queue);
559 	if (master->busy)
560 		was_busy = true;
561 	else
562 		master->busy = true;
563 	spin_unlock_irqrestore(&master->queue_lock, flags);
564 
565 	if (!was_busy && master->prepare_transfer_hardware) {
566 		ret = master->prepare_transfer_hardware(master);
567 		if (ret) {
568 			dev_err(&master->dev,
569 				"failed to prepare transfer hardware\n");
570 			return;
571 		}
572 	}
573 
574 	ret = master->transfer_one_message(master, master->cur_msg);
575 	if (ret) {
576 		dev_err(&master->dev,
577 			"failed to transfer one message from queue\n");
578 		return;
579 	}
580 }
581 
582 static int spi_init_queue(struct spi_master *master)
583 {
584 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
585 
586 	INIT_LIST_HEAD(&master->queue);
587 	spin_lock_init(&master->queue_lock);
588 
589 	master->running = false;
590 	master->busy = false;
591 
592 	init_kthread_worker(&master->kworker);
593 	master->kworker_task = kthread_run(kthread_worker_fn,
594 					   &master->kworker,
595 					   dev_name(&master->dev));
596 	if (IS_ERR(master->kworker_task)) {
597 		dev_err(&master->dev, "failed to create message pump task\n");
598 		return -ENOMEM;
599 	}
600 	init_kthread_work(&master->pump_messages, spi_pump_messages);
601 
602 	/*
603 	 * Master config will indicate if this controller should run the
604 	 * message pump with high (realtime) priority to reduce the transfer
605 	 * latency on the bus by minimising the delay between a transfer
606 	 * request and the scheduling of the message pump thread. Without this
607 	 * setting the message pump thread will remain at default priority.
608 	 */
609 	if (master->rt) {
610 		dev_info(&master->dev,
611 			"will run message pump with realtime priority\n");
612 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
613 	}
614 
615 	return 0;
616 }
617 
618 /**
619  * spi_get_next_queued_message() - called by driver to check for queued
620  * messages
621  * @master: the master to check for queued messages
622  *
623  * If there are more messages in the queue, the next message is returned from
624  * this call.
625  */
626 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
627 {
628 	struct spi_message *next;
629 	unsigned long flags;
630 
631 	/* get a pointer to the next message, if any */
632 	spin_lock_irqsave(&master->queue_lock, flags);
633 	if (list_empty(&master->queue))
634 		next = NULL;
635 	else
636 		next = list_entry(master->queue.next,
637 				  struct spi_message, queue);
638 	spin_unlock_irqrestore(&master->queue_lock, flags);
639 
640 	return next;
641 }
642 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
643 
644 /**
645  * spi_finalize_current_message() - the current message is complete
646  * @master: the master to return the message to
647  *
648  * Called by the driver to notify the core that the message in the front of the
649  * queue is complete and can be removed from the queue.
650  */
651 void spi_finalize_current_message(struct spi_master *master)
652 {
653 	struct spi_message *mesg;
654 	unsigned long flags;
655 
656 	spin_lock_irqsave(&master->queue_lock, flags);
657 	mesg = master->cur_msg;
658 	master->cur_msg = NULL;
659 
660 	queue_kthread_work(&master->kworker, &master->pump_messages);
661 	spin_unlock_irqrestore(&master->queue_lock, flags);
662 
663 	mesg->state = NULL;
664 	if (mesg->complete)
665 		mesg->complete(mesg->context);
666 }
667 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
668 
669 static int spi_start_queue(struct spi_master *master)
670 {
671 	unsigned long flags;
672 
673 	spin_lock_irqsave(&master->queue_lock, flags);
674 
675 	if (master->running || master->busy) {
676 		spin_unlock_irqrestore(&master->queue_lock, flags);
677 		return -EBUSY;
678 	}
679 
680 	master->running = true;
681 	master->cur_msg = NULL;
682 	spin_unlock_irqrestore(&master->queue_lock, flags);
683 
684 	queue_kthread_work(&master->kworker, &master->pump_messages);
685 
686 	return 0;
687 }
688 
689 static int spi_stop_queue(struct spi_master *master)
690 {
691 	unsigned long flags;
692 	unsigned limit = 500;
693 	int ret = 0;
694 
695 	spin_lock_irqsave(&master->queue_lock, flags);
696 
697 	/*
698 	 * This is a bit lame, but is optimized for the common execution path.
699 	 * A wait_queue on the master->busy could be used, but then the common
700 	 * execution path (pump_messages) would be required to call wake_up or
701 	 * friends on every SPI message. Do this instead.
702 	 */
703 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
704 		spin_unlock_irqrestore(&master->queue_lock, flags);
705 		msleep(10);
706 		spin_lock_irqsave(&master->queue_lock, flags);
707 	}
708 
709 	if (!list_empty(&master->queue) || master->busy)
710 		ret = -EBUSY;
711 	else
712 		master->running = false;
713 
714 	spin_unlock_irqrestore(&master->queue_lock, flags);
715 
716 	if (ret) {
717 		dev_warn(&master->dev,
718 			 "could not stop message queue\n");
719 		return ret;
720 	}
721 	return ret;
722 }
723 
724 static int spi_destroy_queue(struct spi_master *master)
725 {
726 	int ret;
727 
728 	ret = spi_stop_queue(master);
729 
730 	/*
731 	 * flush_kthread_worker will block until all work is done.
732 	 * If the reason that stop_queue timed out is that the work will never
733 	 * finish, then it does no good to call flush/stop thread, so
734 	 * return anyway.
735 	 */
736 	if (ret) {
737 		dev_err(&master->dev, "problem destroying queue\n");
738 		return ret;
739 	}
740 
741 	flush_kthread_worker(&master->kworker);
742 	kthread_stop(master->kworker_task);
743 
744 	return 0;
745 }
746 
747 /**
748  * spi_queued_transfer - transfer function for queued transfers
749  * @spi: spi device which is requesting transfer
750  * @msg: spi message which is to handled is queued to driver queue
751  */
752 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
753 {
754 	struct spi_master *master = spi->master;
755 	unsigned long flags;
756 
757 	spin_lock_irqsave(&master->queue_lock, flags);
758 
759 	if (!master->running) {
760 		spin_unlock_irqrestore(&master->queue_lock, flags);
761 		return -ESHUTDOWN;
762 	}
763 	msg->actual_length = 0;
764 	msg->status = -EINPROGRESS;
765 
766 	list_add_tail(&msg->queue, &master->queue);
767 	if (master->running && !master->busy)
768 		queue_kthread_work(&master->kworker, &master->pump_messages);
769 
770 	spin_unlock_irqrestore(&master->queue_lock, flags);
771 	return 0;
772 }
773 
774 static int spi_master_initialize_queue(struct spi_master *master)
775 {
776 	int ret;
777 
778 	master->queued = true;
779 	master->transfer = spi_queued_transfer;
780 
781 	/* Initialize and start queue */
782 	ret = spi_init_queue(master);
783 	if (ret) {
784 		dev_err(&master->dev, "problem initializing queue\n");
785 		goto err_init_queue;
786 	}
787 	ret = spi_start_queue(master);
788 	if (ret) {
789 		dev_err(&master->dev, "problem starting queue\n");
790 		goto err_start_queue;
791 	}
792 
793 	return 0;
794 
795 err_start_queue:
796 err_init_queue:
797 	spi_destroy_queue(master);
798 	return ret;
799 }
800 
801 /*-------------------------------------------------------------------------*/
802 
803 #if defined(CONFIG_OF) && !defined(CONFIG_SPARC)
804 /**
805  * of_register_spi_devices() - Register child devices onto the SPI bus
806  * @master:	Pointer to spi_master device
807  *
808  * Registers an spi_device for each child node of master node which has a 'reg'
809  * property.
810  */
811 static void of_register_spi_devices(struct spi_master *master)
812 {
813 	struct spi_device *spi;
814 	struct device_node *nc;
815 	const __be32 *prop;
816 	int rc;
817 	int len;
818 
819 	if (!master->dev.of_node)
820 		return;
821 
822 	for_each_child_of_node(master->dev.of_node, nc) {
823 		/* Alloc an spi_device */
824 		spi = spi_alloc_device(master);
825 		if (!spi) {
826 			dev_err(&master->dev, "spi_device alloc error for %s\n",
827 				nc->full_name);
828 			spi_dev_put(spi);
829 			continue;
830 		}
831 
832 		/* Select device driver */
833 		if (of_modalias_node(nc, spi->modalias,
834 				     sizeof(spi->modalias)) < 0) {
835 			dev_err(&master->dev, "cannot find modalias for %s\n",
836 				nc->full_name);
837 			spi_dev_put(spi);
838 			continue;
839 		}
840 
841 		/* Device address */
842 		prop = of_get_property(nc, "reg", &len);
843 		if (!prop || len < sizeof(*prop)) {
844 			dev_err(&master->dev, "%s has no 'reg' property\n",
845 				nc->full_name);
846 			spi_dev_put(spi);
847 			continue;
848 		}
849 		spi->chip_select = be32_to_cpup(prop);
850 
851 		/* Mode (clock phase/polarity/etc.) */
852 		if (of_find_property(nc, "spi-cpha", NULL))
853 			spi->mode |= SPI_CPHA;
854 		if (of_find_property(nc, "spi-cpol", NULL))
855 			spi->mode |= SPI_CPOL;
856 		if (of_find_property(nc, "spi-cs-high", NULL))
857 			spi->mode |= SPI_CS_HIGH;
858 
859 		/* Device speed */
860 		prop = of_get_property(nc, "spi-max-frequency", &len);
861 		if (!prop || len < sizeof(*prop)) {
862 			dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
863 				nc->full_name);
864 			spi_dev_put(spi);
865 			continue;
866 		}
867 		spi->max_speed_hz = be32_to_cpup(prop);
868 
869 		/* IRQ */
870 		spi->irq = irq_of_parse_and_map(nc, 0);
871 
872 		/* Store a pointer to the node in the device structure */
873 		of_node_get(nc);
874 		spi->dev.of_node = nc;
875 
876 		/* Register the new device */
877 		request_module(spi->modalias);
878 		rc = spi_add_device(spi);
879 		if (rc) {
880 			dev_err(&master->dev, "spi_device register error %s\n",
881 				nc->full_name);
882 			spi_dev_put(spi);
883 		}
884 
885 	}
886 }
887 #else
888 static void of_register_spi_devices(struct spi_master *master) { }
889 #endif
890 
891 static void spi_master_release(struct device *dev)
892 {
893 	struct spi_master *master;
894 
895 	master = container_of(dev, struct spi_master, dev);
896 	kfree(master);
897 }
898 
899 static struct class spi_master_class = {
900 	.name		= "spi_master",
901 	.owner		= THIS_MODULE,
902 	.dev_release	= spi_master_release,
903 };
904 
905 
906 
907 /**
908  * spi_alloc_master - allocate SPI master controller
909  * @dev: the controller, possibly using the platform_bus
910  * @size: how much zeroed driver-private data to allocate; the pointer to this
911  *	memory is in the driver_data field of the returned device,
912  *	accessible with spi_master_get_devdata().
913  * Context: can sleep
914  *
915  * This call is used only by SPI master controller drivers, which are the
916  * only ones directly touching chip registers.  It's how they allocate
917  * an spi_master structure, prior to calling spi_register_master().
918  *
919  * This must be called from context that can sleep.  It returns the SPI
920  * master structure on success, else NULL.
921  *
922  * The caller is responsible for assigning the bus number and initializing
923  * the master's methods before calling spi_register_master(); and (after errors
924  * adding the device) calling spi_master_put() and kfree() to prevent a memory
925  * leak.
926  */
927 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
928 {
929 	struct spi_master	*master;
930 
931 	if (!dev)
932 		return NULL;
933 
934 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
935 	if (!master)
936 		return NULL;
937 
938 	device_initialize(&master->dev);
939 	master->bus_num = -1;
940 	master->num_chipselect = 1;
941 	master->dev.class = &spi_master_class;
942 	master->dev.parent = get_device(dev);
943 	spi_master_set_devdata(master, &master[1]);
944 
945 	return master;
946 }
947 EXPORT_SYMBOL_GPL(spi_alloc_master);
948 
949 /**
950  * spi_register_master - register SPI master controller
951  * @master: initialized master, originally from spi_alloc_master()
952  * Context: can sleep
953  *
954  * SPI master controllers connect to their drivers using some non-SPI bus,
955  * such as the platform bus.  The final stage of probe() in that code
956  * includes calling spi_register_master() to hook up to this SPI bus glue.
957  *
958  * SPI controllers use board specific (often SOC specific) bus numbers,
959  * and board-specific addressing for SPI devices combines those numbers
960  * with chip select numbers.  Since SPI does not directly support dynamic
961  * device identification, boards need configuration tables telling which
962  * chip is at which address.
963  *
964  * This must be called from context that can sleep.  It returns zero on
965  * success, else a negative error code (dropping the master's refcount).
966  * After a successful return, the caller is responsible for calling
967  * spi_unregister_master().
968  */
969 int spi_register_master(struct spi_master *master)
970 {
971 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
972 	struct device		*dev = master->dev.parent;
973 	struct boardinfo	*bi;
974 	int			status = -ENODEV;
975 	int			dynamic = 0;
976 
977 	if (!dev)
978 		return -ENODEV;
979 
980 	/* even if it's just one always-selected device, there must
981 	 * be at least one chipselect
982 	 */
983 	if (master->num_chipselect == 0)
984 		return -EINVAL;
985 
986 	/* convention:  dynamically assigned bus IDs count down from the max */
987 	if (master->bus_num < 0) {
988 		/* FIXME switch to an IDR based scheme, something like
989 		 * I2C now uses, so we can't run out of "dynamic" IDs
990 		 */
991 		master->bus_num = atomic_dec_return(&dyn_bus_id);
992 		dynamic = 1;
993 	}
994 
995 	spin_lock_init(&master->bus_lock_spinlock);
996 	mutex_init(&master->bus_lock_mutex);
997 	master->bus_lock_flag = 0;
998 
999 	/* register the device, then userspace will see it.
1000 	 * registration fails if the bus ID is in use.
1001 	 */
1002 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1003 	status = device_add(&master->dev);
1004 	if (status < 0)
1005 		goto done;
1006 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1007 			dynamic ? " (dynamic)" : "");
1008 
1009 	/* If we're using a queued driver, start the queue */
1010 	if (master->transfer)
1011 		dev_info(dev, "master is unqueued, this is deprecated\n");
1012 	else {
1013 		status = spi_master_initialize_queue(master);
1014 		if (status) {
1015 			device_unregister(&master->dev);
1016 			goto done;
1017 		}
1018 	}
1019 
1020 	mutex_lock(&board_lock);
1021 	list_add_tail(&master->list, &spi_master_list);
1022 	list_for_each_entry(bi, &board_list, list)
1023 		spi_match_master_to_boardinfo(master, &bi->board_info);
1024 	mutex_unlock(&board_lock);
1025 
1026 	/* Register devices from the device tree */
1027 	of_register_spi_devices(master);
1028 done:
1029 	return status;
1030 }
1031 EXPORT_SYMBOL_GPL(spi_register_master);
1032 
1033 static int __unregister(struct device *dev, void *null)
1034 {
1035 	spi_unregister_device(to_spi_device(dev));
1036 	return 0;
1037 }
1038 
1039 /**
1040  * spi_unregister_master - unregister SPI master controller
1041  * @master: the master being unregistered
1042  * Context: can sleep
1043  *
1044  * This call is used only by SPI master controller drivers, which are the
1045  * only ones directly touching chip registers.
1046  *
1047  * This must be called from context that can sleep.
1048  */
1049 void spi_unregister_master(struct spi_master *master)
1050 {
1051 	int dummy;
1052 
1053 	if (master->queued) {
1054 		if (spi_destroy_queue(master))
1055 			dev_err(&master->dev, "queue remove failed\n");
1056 	}
1057 
1058 	mutex_lock(&board_lock);
1059 	list_del(&master->list);
1060 	mutex_unlock(&board_lock);
1061 
1062 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1063 	device_unregister(&master->dev);
1064 }
1065 EXPORT_SYMBOL_GPL(spi_unregister_master);
1066 
1067 int spi_master_suspend(struct spi_master *master)
1068 {
1069 	int ret;
1070 
1071 	/* Basically no-ops for non-queued masters */
1072 	if (!master->queued)
1073 		return 0;
1074 
1075 	ret = spi_stop_queue(master);
1076 	if (ret)
1077 		dev_err(&master->dev, "queue stop failed\n");
1078 
1079 	return ret;
1080 }
1081 EXPORT_SYMBOL_GPL(spi_master_suspend);
1082 
1083 int spi_master_resume(struct spi_master *master)
1084 {
1085 	int ret;
1086 
1087 	if (!master->queued)
1088 		return 0;
1089 
1090 	ret = spi_start_queue(master);
1091 	if (ret)
1092 		dev_err(&master->dev, "queue restart failed\n");
1093 
1094 	return ret;
1095 }
1096 EXPORT_SYMBOL_GPL(spi_master_resume);
1097 
1098 static int __spi_master_match(struct device *dev, void *data)
1099 {
1100 	struct spi_master *m;
1101 	u16 *bus_num = data;
1102 
1103 	m = container_of(dev, struct spi_master, dev);
1104 	return m->bus_num == *bus_num;
1105 }
1106 
1107 /**
1108  * spi_busnum_to_master - look up master associated with bus_num
1109  * @bus_num: the master's bus number
1110  * Context: can sleep
1111  *
1112  * This call may be used with devices that are registered after
1113  * arch init time.  It returns a refcounted pointer to the relevant
1114  * spi_master (which the caller must release), or NULL if there is
1115  * no such master registered.
1116  */
1117 struct spi_master *spi_busnum_to_master(u16 bus_num)
1118 {
1119 	struct device		*dev;
1120 	struct spi_master	*master = NULL;
1121 
1122 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1123 				__spi_master_match);
1124 	if (dev)
1125 		master = container_of(dev, struct spi_master, dev);
1126 	/* reference got in class_find_device */
1127 	return master;
1128 }
1129 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1130 
1131 
1132 /*-------------------------------------------------------------------------*/
1133 
1134 /* Core methods for SPI master protocol drivers.  Some of the
1135  * other core methods are currently defined as inline functions.
1136  */
1137 
1138 /**
1139  * spi_setup - setup SPI mode and clock rate
1140  * @spi: the device whose settings are being modified
1141  * Context: can sleep, and no requests are queued to the device
1142  *
1143  * SPI protocol drivers may need to update the transfer mode if the
1144  * device doesn't work with its default.  They may likewise need
1145  * to update clock rates or word sizes from initial values.  This function
1146  * changes those settings, and must be called from a context that can sleep.
1147  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1148  * effect the next time the device is selected and data is transferred to
1149  * or from it.  When this function returns, the spi device is deselected.
1150  *
1151  * Note that this call will fail if the protocol driver specifies an option
1152  * that the underlying controller or its driver does not support.  For
1153  * example, not all hardware supports wire transfers using nine bit words,
1154  * LSB-first wire encoding, or active-high chipselects.
1155  */
1156 int spi_setup(struct spi_device *spi)
1157 {
1158 	unsigned	bad_bits;
1159 	int		status;
1160 
1161 	/* help drivers fail *cleanly* when they need options
1162 	 * that aren't supported with their current master
1163 	 */
1164 	bad_bits = spi->mode & ~spi->master->mode_bits;
1165 	if (bad_bits) {
1166 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1167 			bad_bits);
1168 		return -EINVAL;
1169 	}
1170 
1171 	if (!spi->bits_per_word)
1172 		spi->bits_per_word = 8;
1173 
1174 	status = spi->master->setup(spi);
1175 
1176 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1177 				"%u bits/w, %u Hz max --> %d\n",
1178 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1179 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1180 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1181 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1182 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1183 			spi->bits_per_word, spi->max_speed_hz,
1184 			status);
1185 
1186 	return status;
1187 }
1188 EXPORT_SYMBOL_GPL(spi_setup);
1189 
1190 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1191 {
1192 	struct spi_master *master = spi->master;
1193 
1194 	/* Half-duplex links include original MicroWire, and ones with
1195 	 * only one data pin like SPI_3WIRE (switches direction) or where
1196 	 * either MOSI or MISO is missing.  They can also be caused by
1197 	 * software limitations.
1198 	 */
1199 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1200 			|| (spi->mode & SPI_3WIRE)) {
1201 		struct spi_transfer *xfer;
1202 		unsigned flags = master->flags;
1203 
1204 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1205 			if (xfer->rx_buf && xfer->tx_buf)
1206 				return -EINVAL;
1207 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1208 				return -EINVAL;
1209 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1210 				return -EINVAL;
1211 		}
1212 	}
1213 
1214 	message->spi = spi;
1215 	message->status = -EINPROGRESS;
1216 	return master->transfer(spi, message);
1217 }
1218 
1219 /**
1220  * spi_async - asynchronous SPI transfer
1221  * @spi: device with which data will be exchanged
1222  * @message: describes the data transfers, including completion callback
1223  * Context: any (irqs may be blocked, etc)
1224  *
1225  * This call may be used in_irq and other contexts which can't sleep,
1226  * as well as from task contexts which can sleep.
1227  *
1228  * The completion callback is invoked in a context which can't sleep.
1229  * Before that invocation, the value of message->status is undefined.
1230  * When the callback is issued, message->status holds either zero (to
1231  * indicate complete success) or a negative error code.  After that
1232  * callback returns, the driver which issued the transfer request may
1233  * deallocate the associated memory; it's no longer in use by any SPI
1234  * core or controller driver code.
1235  *
1236  * Note that although all messages to a spi_device are handled in
1237  * FIFO order, messages may go to different devices in other orders.
1238  * Some device might be higher priority, or have various "hard" access
1239  * time requirements, for example.
1240  *
1241  * On detection of any fault during the transfer, processing of
1242  * the entire message is aborted, and the device is deselected.
1243  * Until returning from the associated message completion callback,
1244  * no other spi_message queued to that device will be processed.
1245  * (This rule applies equally to all the synchronous transfer calls,
1246  * which are wrappers around this core asynchronous primitive.)
1247  */
1248 int spi_async(struct spi_device *spi, struct spi_message *message)
1249 {
1250 	struct spi_master *master = spi->master;
1251 	int ret;
1252 	unsigned long flags;
1253 
1254 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1255 
1256 	if (master->bus_lock_flag)
1257 		ret = -EBUSY;
1258 	else
1259 		ret = __spi_async(spi, message);
1260 
1261 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1262 
1263 	return ret;
1264 }
1265 EXPORT_SYMBOL_GPL(spi_async);
1266 
1267 /**
1268  * spi_async_locked - version of spi_async with exclusive bus usage
1269  * @spi: device with which data will be exchanged
1270  * @message: describes the data transfers, including completion callback
1271  * Context: any (irqs may be blocked, etc)
1272  *
1273  * This call may be used in_irq and other contexts which can't sleep,
1274  * as well as from task contexts which can sleep.
1275  *
1276  * The completion callback is invoked in a context which can't sleep.
1277  * Before that invocation, the value of message->status is undefined.
1278  * When the callback is issued, message->status holds either zero (to
1279  * indicate complete success) or a negative error code.  After that
1280  * callback returns, the driver which issued the transfer request may
1281  * deallocate the associated memory; it's no longer in use by any SPI
1282  * core or controller driver code.
1283  *
1284  * Note that although all messages to a spi_device are handled in
1285  * FIFO order, messages may go to different devices in other orders.
1286  * Some device might be higher priority, or have various "hard" access
1287  * time requirements, for example.
1288  *
1289  * On detection of any fault during the transfer, processing of
1290  * the entire message is aborted, and the device is deselected.
1291  * Until returning from the associated message completion callback,
1292  * no other spi_message queued to that device will be processed.
1293  * (This rule applies equally to all the synchronous transfer calls,
1294  * which are wrappers around this core asynchronous primitive.)
1295  */
1296 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1297 {
1298 	struct spi_master *master = spi->master;
1299 	int ret;
1300 	unsigned long flags;
1301 
1302 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1303 
1304 	ret = __spi_async(spi, message);
1305 
1306 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1307 
1308 	return ret;
1309 
1310 }
1311 EXPORT_SYMBOL_GPL(spi_async_locked);
1312 
1313 
1314 /*-------------------------------------------------------------------------*/
1315 
1316 /* Utility methods for SPI master protocol drivers, layered on
1317  * top of the core.  Some other utility methods are defined as
1318  * inline functions.
1319  */
1320 
1321 static void spi_complete(void *arg)
1322 {
1323 	complete(arg);
1324 }
1325 
1326 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1327 		      int bus_locked)
1328 {
1329 	DECLARE_COMPLETION_ONSTACK(done);
1330 	int status;
1331 	struct spi_master *master = spi->master;
1332 
1333 	message->complete = spi_complete;
1334 	message->context = &done;
1335 
1336 	if (!bus_locked)
1337 		mutex_lock(&master->bus_lock_mutex);
1338 
1339 	status = spi_async_locked(spi, message);
1340 
1341 	if (!bus_locked)
1342 		mutex_unlock(&master->bus_lock_mutex);
1343 
1344 	if (status == 0) {
1345 		wait_for_completion(&done);
1346 		status = message->status;
1347 	}
1348 	message->context = NULL;
1349 	return status;
1350 }
1351 
1352 /**
1353  * spi_sync - blocking/synchronous SPI data transfers
1354  * @spi: device with which data will be exchanged
1355  * @message: describes the data transfers
1356  * Context: can sleep
1357  *
1358  * This call may only be used from a context that may sleep.  The sleep
1359  * is non-interruptible, and has no timeout.  Low-overhead controller
1360  * drivers may DMA directly into and out of the message buffers.
1361  *
1362  * Note that the SPI device's chip select is active during the message,
1363  * and then is normally disabled between messages.  Drivers for some
1364  * frequently-used devices may want to minimize costs of selecting a chip,
1365  * by leaving it selected in anticipation that the next message will go
1366  * to the same chip.  (That may increase power usage.)
1367  *
1368  * Also, the caller is guaranteeing that the memory associated with the
1369  * message will not be freed before this call returns.
1370  *
1371  * It returns zero on success, else a negative error code.
1372  */
1373 int spi_sync(struct spi_device *spi, struct spi_message *message)
1374 {
1375 	return __spi_sync(spi, message, 0);
1376 }
1377 EXPORT_SYMBOL_GPL(spi_sync);
1378 
1379 /**
1380  * spi_sync_locked - version of spi_sync with exclusive bus usage
1381  * @spi: device with which data will be exchanged
1382  * @message: describes the data transfers
1383  * Context: can sleep
1384  *
1385  * This call may only be used from a context that may sleep.  The sleep
1386  * is non-interruptible, and has no timeout.  Low-overhead controller
1387  * drivers may DMA directly into and out of the message buffers.
1388  *
1389  * This call should be used by drivers that require exclusive access to the
1390  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1391  * be released by a spi_bus_unlock call when the exclusive access is over.
1392  *
1393  * It returns zero on success, else a negative error code.
1394  */
1395 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1396 {
1397 	return __spi_sync(spi, message, 1);
1398 }
1399 EXPORT_SYMBOL_GPL(spi_sync_locked);
1400 
1401 /**
1402  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1403  * @master: SPI bus master that should be locked for exclusive bus access
1404  * Context: can sleep
1405  *
1406  * This call may only be used from a context that may sleep.  The sleep
1407  * is non-interruptible, and has no timeout.
1408  *
1409  * This call should be used by drivers that require exclusive access to the
1410  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1411  * exclusive access is over. Data transfer must be done by spi_sync_locked
1412  * and spi_async_locked calls when the SPI bus lock is held.
1413  *
1414  * It returns zero on success, else a negative error code.
1415  */
1416 int spi_bus_lock(struct spi_master *master)
1417 {
1418 	unsigned long flags;
1419 
1420 	mutex_lock(&master->bus_lock_mutex);
1421 
1422 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1423 	master->bus_lock_flag = 1;
1424 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1425 
1426 	/* mutex remains locked until spi_bus_unlock is called */
1427 
1428 	return 0;
1429 }
1430 EXPORT_SYMBOL_GPL(spi_bus_lock);
1431 
1432 /**
1433  * spi_bus_unlock - release the lock for exclusive SPI bus usage
1434  * @master: SPI bus master that was locked for exclusive bus access
1435  * Context: can sleep
1436  *
1437  * This call may only be used from a context that may sleep.  The sleep
1438  * is non-interruptible, and has no timeout.
1439  *
1440  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1441  * call.
1442  *
1443  * It returns zero on success, else a negative error code.
1444  */
1445 int spi_bus_unlock(struct spi_master *master)
1446 {
1447 	master->bus_lock_flag = 0;
1448 
1449 	mutex_unlock(&master->bus_lock_mutex);
1450 
1451 	return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1454 
1455 /* portable code must never pass more than 32 bytes */
1456 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1457 
1458 static u8	*buf;
1459 
1460 /**
1461  * spi_write_then_read - SPI synchronous write followed by read
1462  * @spi: device with which data will be exchanged
1463  * @txbuf: data to be written (need not be dma-safe)
1464  * @n_tx: size of txbuf, in bytes
1465  * @rxbuf: buffer into which data will be read (need not be dma-safe)
1466  * @n_rx: size of rxbuf, in bytes
1467  * Context: can sleep
1468  *
1469  * This performs a half duplex MicroWire style transaction with the
1470  * device, sending txbuf and then reading rxbuf.  The return value
1471  * is zero for success, else a negative errno status code.
1472  * This call may only be used from a context that may sleep.
1473  *
1474  * Parameters to this routine are always copied using a small buffer;
1475  * portable code should never use this for more than 32 bytes.
1476  * Performance-sensitive or bulk transfer code should instead use
1477  * spi_{async,sync}() calls with dma-safe buffers.
1478  */
1479 int spi_write_then_read(struct spi_device *spi,
1480 		const void *txbuf, unsigned n_tx,
1481 		void *rxbuf, unsigned n_rx)
1482 {
1483 	static DEFINE_MUTEX(lock);
1484 
1485 	int			status;
1486 	struct spi_message	message;
1487 	struct spi_transfer	x[2];
1488 	u8			*local_buf;
1489 
1490 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
1491 	 * (as a pure convenience thing), but we can keep heap costs
1492 	 * out of the hot path ...
1493 	 */
1494 	if ((n_tx + n_rx) > SPI_BUFSIZ)
1495 		return -EINVAL;
1496 
1497 	spi_message_init(&message);
1498 	memset(x, 0, sizeof x);
1499 	if (n_tx) {
1500 		x[0].len = n_tx;
1501 		spi_message_add_tail(&x[0], &message);
1502 	}
1503 	if (n_rx) {
1504 		x[1].len = n_rx;
1505 		spi_message_add_tail(&x[1], &message);
1506 	}
1507 
1508 	/* ... unless someone else is using the pre-allocated buffer */
1509 	if (!mutex_trylock(&lock)) {
1510 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1511 		if (!local_buf)
1512 			return -ENOMEM;
1513 	} else
1514 		local_buf = buf;
1515 
1516 	memcpy(local_buf, txbuf, n_tx);
1517 	x[0].tx_buf = local_buf;
1518 	x[1].rx_buf = local_buf + n_tx;
1519 
1520 	/* do the i/o */
1521 	status = spi_sync(spi, &message);
1522 	if (status == 0)
1523 		memcpy(rxbuf, x[1].rx_buf, n_rx);
1524 
1525 	if (x[0].tx_buf == buf)
1526 		mutex_unlock(&lock);
1527 	else
1528 		kfree(local_buf);
1529 
1530 	return status;
1531 }
1532 EXPORT_SYMBOL_GPL(spi_write_then_read);
1533 
1534 /*-------------------------------------------------------------------------*/
1535 
1536 static int __init spi_init(void)
1537 {
1538 	int	status;
1539 
1540 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1541 	if (!buf) {
1542 		status = -ENOMEM;
1543 		goto err0;
1544 	}
1545 
1546 	status = bus_register(&spi_bus_type);
1547 	if (status < 0)
1548 		goto err1;
1549 
1550 	status = class_register(&spi_master_class);
1551 	if (status < 0)
1552 		goto err2;
1553 	return 0;
1554 
1555 err2:
1556 	bus_unregister(&spi_bus_type);
1557 err1:
1558 	kfree(buf);
1559 	buf = NULL;
1560 err0:
1561 	return status;
1562 }
1563 
1564 /* board_info is normally registered in arch_initcall(),
1565  * but even essential drivers wait till later
1566  *
1567  * REVISIT only boardinfo really needs static linking. the rest (device and
1568  * driver registration) _could_ be dynamically linked (modular) ... costs
1569  * include needing to have boardinfo data structures be much more public.
1570  */
1571 postcore_initcall(spi_init);
1572 
1573