xref: /openbmc/linux/drivers/spi/spi.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43 #include <linux/idr.h>
44 #include <linux/platform_data/x86/apple.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/spi.h>
48 
49 static DEFINE_IDR(spi_master_idr);
50 
51 static void spidev_release(struct device *dev)
52 {
53 	struct spi_device	*spi = to_spi_device(dev);
54 
55 	/* spi controllers may cleanup for released devices */
56 	if (spi->controller->cleanup)
57 		spi->controller->cleanup(spi);
58 
59 	spi_controller_put(spi->controller);
60 	kfree(spi);
61 }
62 
63 static ssize_t
64 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
65 {
66 	const struct spi_device	*spi = to_spi_device(dev);
67 	int len;
68 
69 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
70 	if (len != -ENODEV)
71 		return len;
72 
73 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
74 }
75 static DEVICE_ATTR_RO(modalias);
76 
77 #define SPI_STATISTICS_ATTRS(field, file)				\
78 static ssize_t spi_controller_##field##_show(struct device *dev,	\
79 					     struct device_attribute *attr, \
80 					     char *buf)			\
81 {									\
82 	struct spi_controller *ctlr = container_of(dev,			\
83 					 struct spi_controller, dev);	\
84 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
85 }									\
86 static struct device_attribute dev_attr_spi_controller_##field = {	\
87 	.attr = { .name = file, .mode = 0444 },				\
88 	.show = spi_controller_##field##_show,				\
89 };									\
90 static ssize_t spi_device_##field##_show(struct device *dev,		\
91 					 struct device_attribute *attr,	\
92 					char *buf)			\
93 {									\
94 	struct spi_device *spi = to_spi_device(dev);			\
95 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
96 }									\
97 static struct device_attribute dev_attr_spi_device_##field = {		\
98 	.attr = { .name = file, .mode = 0444 },				\
99 	.show = spi_device_##field##_show,				\
100 }
101 
102 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
103 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
104 					    char *buf)			\
105 {									\
106 	unsigned long flags;						\
107 	ssize_t len;							\
108 	spin_lock_irqsave(&stat->lock, flags);				\
109 	len = sprintf(buf, format_string, stat->field);			\
110 	spin_unlock_irqrestore(&stat->lock, flags);			\
111 	return len;							\
112 }									\
113 SPI_STATISTICS_ATTRS(name, file)
114 
115 #define SPI_STATISTICS_SHOW(field, format_string)			\
116 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
117 				 field, format_string)
118 
119 SPI_STATISTICS_SHOW(messages, "%lu");
120 SPI_STATISTICS_SHOW(transfers, "%lu");
121 SPI_STATISTICS_SHOW(errors, "%lu");
122 SPI_STATISTICS_SHOW(timedout, "%lu");
123 
124 SPI_STATISTICS_SHOW(spi_sync, "%lu");
125 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
126 SPI_STATISTICS_SHOW(spi_async, "%lu");
127 
128 SPI_STATISTICS_SHOW(bytes, "%llu");
129 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
130 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
131 
132 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
133 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
134 				 "transfer_bytes_histo_" number,	\
135 				 transfer_bytes_histo[index],  "%lu")
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
153 
154 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
155 
156 static struct attribute *spi_dev_attrs[] = {
157 	&dev_attr_modalias.attr,
158 	NULL,
159 };
160 
161 static const struct attribute_group spi_dev_group = {
162 	.attrs  = spi_dev_attrs,
163 };
164 
165 static struct attribute *spi_device_statistics_attrs[] = {
166 	&dev_attr_spi_device_messages.attr,
167 	&dev_attr_spi_device_transfers.attr,
168 	&dev_attr_spi_device_errors.attr,
169 	&dev_attr_spi_device_timedout.attr,
170 	&dev_attr_spi_device_spi_sync.attr,
171 	&dev_attr_spi_device_spi_sync_immediate.attr,
172 	&dev_attr_spi_device_spi_async.attr,
173 	&dev_attr_spi_device_bytes.attr,
174 	&dev_attr_spi_device_bytes_rx.attr,
175 	&dev_attr_spi_device_bytes_tx.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
186 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
187 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
188 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
189 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
190 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
191 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
192 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
193 	&dev_attr_spi_device_transfers_split_maxsize.attr,
194 	NULL,
195 };
196 
197 static const struct attribute_group spi_device_statistics_group = {
198 	.name  = "statistics",
199 	.attrs  = spi_device_statistics_attrs,
200 };
201 
202 static const struct attribute_group *spi_dev_groups[] = {
203 	&spi_dev_group,
204 	&spi_device_statistics_group,
205 	NULL,
206 };
207 
208 static struct attribute *spi_controller_statistics_attrs[] = {
209 	&dev_attr_spi_controller_messages.attr,
210 	&dev_attr_spi_controller_transfers.attr,
211 	&dev_attr_spi_controller_errors.attr,
212 	&dev_attr_spi_controller_timedout.attr,
213 	&dev_attr_spi_controller_spi_sync.attr,
214 	&dev_attr_spi_controller_spi_sync_immediate.attr,
215 	&dev_attr_spi_controller_spi_async.attr,
216 	&dev_attr_spi_controller_bytes.attr,
217 	&dev_attr_spi_controller_bytes_rx.attr,
218 	&dev_attr_spi_controller_bytes_tx.attr,
219 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
220 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
221 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
222 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
223 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
224 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
225 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
226 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
227 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
228 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
229 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
230 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
231 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
232 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
233 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
234 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
235 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
236 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
237 	NULL,
238 };
239 
240 static const struct attribute_group spi_controller_statistics_group = {
241 	.name  = "statistics",
242 	.attrs  = spi_controller_statistics_attrs,
243 };
244 
245 static const struct attribute_group *spi_master_groups[] = {
246 	&spi_controller_statistics_group,
247 	NULL,
248 };
249 
250 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
251 				       struct spi_transfer *xfer,
252 				       struct spi_controller *ctlr)
253 {
254 	unsigned long flags;
255 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
256 
257 	if (l2len < 0)
258 		l2len = 0;
259 
260 	spin_lock_irqsave(&stats->lock, flags);
261 
262 	stats->transfers++;
263 	stats->transfer_bytes_histo[l2len]++;
264 
265 	stats->bytes += xfer->len;
266 	if ((xfer->tx_buf) &&
267 	    (xfer->tx_buf != ctlr->dummy_tx))
268 		stats->bytes_tx += xfer->len;
269 	if ((xfer->rx_buf) &&
270 	    (xfer->rx_buf != ctlr->dummy_rx))
271 		stats->bytes_rx += xfer->len;
272 
273 	spin_unlock_irqrestore(&stats->lock, flags);
274 }
275 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
276 
277 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
278  * and the sysfs version makes coldplug work too.
279  */
280 
281 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
282 						const struct spi_device *sdev)
283 {
284 	while (id->name[0]) {
285 		if (!strcmp(sdev->modalias, id->name))
286 			return id;
287 		id++;
288 	}
289 	return NULL;
290 }
291 
292 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
293 {
294 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
295 
296 	return spi_match_id(sdrv->id_table, sdev);
297 }
298 EXPORT_SYMBOL_GPL(spi_get_device_id);
299 
300 static int spi_match_device(struct device *dev, struct device_driver *drv)
301 {
302 	const struct spi_device	*spi = to_spi_device(dev);
303 	const struct spi_driver	*sdrv = to_spi_driver(drv);
304 
305 	/* Attempt an OF style match */
306 	if (of_driver_match_device(dev, drv))
307 		return 1;
308 
309 	/* Then try ACPI */
310 	if (acpi_driver_match_device(dev, drv))
311 		return 1;
312 
313 	if (sdrv->id_table)
314 		return !!spi_match_id(sdrv->id_table, spi);
315 
316 	return strcmp(spi->modalias, drv->name) == 0;
317 }
318 
319 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
320 {
321 	const struct spi_device		*spi = to_spi_device(dev);
322 	int rc;
323 
324 	rc = acpi_device_uevent_modalias(dev, env);
325 	if (rc != -ENODEV)
326 		return rc;
327 
328 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
329 }
330 
331 struct bus_type spi_bus_type = {
332 	.name		= "spi",
333 	.dev_groups	= spi_dev_groups,
334 	.match		= spi_match_device,
335 	.uevent		= spi_uevent,
336 };
337 EXPORT_SYMBOL_GPL(spi_bus_type);
338 
339 
340 static int spi_drv_probe(struct device *dev)
341 {
342 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
343 	struct spi_device		*spi = to_spi_device(dev);
344 	int ret;
345 
346 	ret = of_clk_set_defaults(dev->of_node, false);
347 	if (ret)
348 		return ret;
349 
350 	if (dev->of_node) {
351 		spi->irq = of_irq_get(dev->of_node, 0);
352 		if (spi->irq == -EPROBE_DEFER)
353 			return -EPROBE_DEFER;
354 		if (spi->irq < 0)
355 			spi->irq = 0;
356 	}
357 
358 	ret = dev_pm_domain_attach(dev, true);
359 	if (ret != -EPROBE_DEFER) {
360 		ret = sdrv->probe(spi);
361 		if (ret)
362 			dev_pm_domain_detach(dev, true);
363 	}
364 
365 	return ret;
366 }
367 
368 static int spi_drv_remove(struct device *dev)
369 {
370 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
371 	int ret;
372 
373 	ret = sdrv->remove(to_spi_device(dev));
374 	dev_pm_domain_detach(dev, true);
375 
376 	return ret;
377 }
378 
379 static void spi_drv_shutdown(struct device *dev)
380 {
381 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
382 
383 	sdrv->shutdown(to_spi_device(dev));
384 }
385 
386 /**
387  * __spi_register_driver - register a SPI driver
388  * @owner: owner module of the driver to register
389  * @sdrv: the driver to register
390  * Context: can sleep
391  *
392  * Return: zero on success, else a negative error code.
393  */
394 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
395 {
396 	sdrv->driver.owner = owner;
397 	sdrv->driver.bus = &spi_bus_type;
398 	if (sdrv->probe)
399 		sdrv->driver.probe = spi_drv_probe;
400 	if (sdrv->remove)
401 		sdrv->driver.remove = spi_drv_remove;
402 	if (sdrv->shutdown)
403 		sdrv->driver.shutdown = spi_drv_shutdown;
404 	return driver_register(&sdrv->driver);
405 }
406 EXPORT_SYMBOL_GPL(__spi_register_driver);
407 
408 /*-------------------------------------------------------------------------*/
409 
410 /* SPI devices should normally not be created by SPI device drivers; that
411  * would make them board-specific.  Similarly with SPI controller drivers.
412  * Device registration normally goes into like arch/.../mach.../board-YYY.c
413  * with other readonly (flashable) information about mainboard devices.
414  */
415 
416 struct boardinfo {
417 	struct list_head	list;
418 	struct spi_board_info	board_info;
419 };
420 
421 static LIST_HEAD(board_list);
422 static LIST_HEAD(spi_controller_list);
423 
424 /*
425  * Used to protect add/del opertion for board_info list and
426  * spi_controller list, and their matching process
427  * also used to protect object of type struct idr
428  */
429 static DEFINE_MUTEX(board_lock);
430 
431 /**
432  * spi_alloc_device - Allocate a new SPI device
433  * @ctlr: Controller to which device is connected
434  * Context: can sleep
435  *
436  * Allows a driver to allocate and initialize a spi_device without
437  * registering it immediately.  This allows a driver to directly
438  * fill the spi_device with device parameters before calling
439  * spi_add_device() on it.
440  *
441  * Caller is responsible to call spi_add_device() on the returned
442  * spi_device structure to add it to the SPI controller.  If the caller
443  * needs to discard the spi_device without adding it, then it should
444  * call spi_dev_put() on it.
445  *
446  * Return: a pointer to the new device, or NULL.
447  */
448 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
449 {
450 	struct spi_device	*spi;
451 
452 	if (!spi_controller_get(ctlr))
453 		return NULL;
454 
455 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
456 	if (!spi) {
457 		spi_controller_put(ctlr);
458 		return NULL;
459 	}
460 
461 	spi->master = spi->controller = ctlr;
462 	spi->dev.parent = &ctlr->dev;
463 	spi->dev.bus = &spi_bus_type;
464 	spi->dev.release = spidev_release;
465 	spi->cs_gpio = -ENOENT;
466 
467 	spin_lock_init(&spi->statistics.lock);
468 
469 	device_initialize(&spi->dev);
470 	return spi;
471 }
472 EXPORT_SYMBOL_GPL(spi_alloc_device);
473 
474 static void spi_dev_set_name(struct spi_device *spi)
475 {
476 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
477 
478 	if (adev) {
479 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
480 		return;
481 	}
482 
483 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
484 		     spi->chip_select);
485 }
486 
487 static int spi_dev_check(struct device *dev, void *data)
488 {
489 	struct spi_device *spi = to_spi_device(dev);
490 	struct spi_device *new_spi = data;
491 
492 	if (spi->controller == new_spi->controller &&
493 	    spi->chip_select == new_spi->chip_select)
494 		return -EBUSY;
495 	return 0;
496 }
497 
498 /**
499  * spi_add_device - Add spi_device allocated with spi_alloc_device
500  * @spi: spi_device to register
501  *
502  * Companion function to spi_alloc_device.  Devices allocated with
503  * spi_alloc_device can be added onto the spi bus with this function.
504  *
505  * Return: 0 on success; negative errno on failure
506  */
507 int spi_add_device(struct spi_device *spi)
508 {
509 	static DEFINE_MUTEX(spi_add_lock);
510 	struct spi_controller *ctlr = spi->controller;
511 	struct device *dev = ctlr->dev.parent;
512 	int status;
513 
514 	/* Chipselects are numbered 0..max; validate. */
515 	if (spi->chip_select >= ctlr->num_chipselect) {
516 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
517 			ctlr->num_chipselect);
518 		return -EINVAL;
519 	}
520 
521 	/* Set the bus ID string */
522 	spi_dev_set_name(spi);
523 
524 	/* We need to make sure there's no other device with this
525 	 * chipselect **BEFORE** we call setup(), else we'll trash
526 	 * its configuration.  Lock against concurrent add() calls.
527 	 */
528 	mutex_lock(&spi_add_lock);
529 
530 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
531 	if (status) {
532 		dev_err(dev, "chipselect %d already in use\n",
533 				spi->chip_select);
534 		goto done;
535 	}
536 
537 	if (ctlr->cs_gpios)
538 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
539 
540 	/* Drivers may modify this initial i/o setup, but will
541 	 * normally rely on the device being setup.  Devices
542 	 * using SPI_CS_HIGH can't coexist well otherwise...
543 	 */
544 	status = spi_setup(spi);
545 	if (status < 0) {
546 		dev_err(dev, "can't setup %s, status %d\n",
547 				dev_name(&spi->dev), status);
548 		goto done;
549 	}
550 
551 	/* Device may be bound to an active driver when this returns */
552 	status = device_add(&spi->dev);
553 	if (status < 0)
554 		dev_err(dev, "can't add %s, status %d\n",
555 				dev_name(&spi->dev), status);
556 	else
557 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
558 
559 done:
560 	mutex_unlock(&spi_add_lock);
561 	return status;
562 }
563 EXPORT_SYMBOL_GPL(spi_add_device);
564 
565 /**
566  * spi_new_device - instantiate one new SPI device
567  * @ctlr: Controller to which device is connected
568  * @chip: Describes the SPI device
569  * Context: can sleep
570  *
571  * On typical mainboards, this is purely internal; and it's not needed
572  * after board init creates the hard-wired devices.  Some development
573  * platforms may not be able to use spi_register_board_info though, and
574  * this is exported so that for example a USB or parport based adapter
575  * driver could add devices (which it would learn about out-of-band).
576  *
577  * Return: the new device, or NULL.
578  */
579 struct spi_device *spi_new_device(struct spi_controller *ctlr,
580 				  struct spi_board_info *chip)
581 {
582 	struct spi_device	*proxy;
583 	int			status;
584 
585 	/* NOTE:  caller did any chip->bus_num checks necessary.
586 	 *
587 	 * Also, unless we change the return value convention to use
588 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
589 	 * suggests syslogged diagnostics are best here (ugh).
590 	 */
591 
592 	proxy = spi_alloc_device(ctlr);
593 	if (!proxy)
594 		return NULL;
595 
596 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
597 
598 	proxy->chip_select = chip->chip_select;
599 	proxy->max_speed_hz = chip->max_speed_hz;
600 	proxy->mode = chip->mode;
601 	proxy->irq = chip->irq;
602 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
603 	proxy->dev.platform_data = (void *) chip->platform_data;
604 	proxy->controller_data = chip->controller_data;
605 	proxy->controller_state = NULL;
606 
607 	if (chip->properties) {
608 		status = device_add_properties(&proxy->dev, chip->properties);
609 		if (status) {
610 			dev_err(&ctlr->dev,
611 				"failed to add properties to '%s': %d\n",
612 				chip->modalias, status);
613 			goto err_dev_put;
614 		}
615 	}
616 
617 	status = spi_add_device(proxy);
618 	if (status < 0)
619 		goto err_remove_props;
620 
621 	return proxy;
622 
623 err_remove_props:
624 	if (chip->properties)
625 		device_remove_properties(&proxy->dev);
626 err_dev_put:
627 	spi_dev_put(proxy);
628 	return NULL;
629 }
630 EXPORT_SYMBOL_GPL(spi_new_device);
631 
632 /**
633  * spi_unregister_device - unregister a single SPI device
634  * @spi: spi_device to unregister
635  *
636  * Start making the passed SPI device vanish. Normally this would be handled
637  * by spi_unregister_controller().
638  */
639 void spi_unregister_device(struct spi_device *spi)
640 {
641 	if (!spi)
642 		return;
643 
644 	if (spi->dev.of_node) {
645 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
646 		of_node_put(spi->dev.of_node);
647 	}
648 	if (ACPI_COMPANION(&spi->dev))
649 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
650 	device_unregister(&spi->dev);
651 }
652 EXPORT_SYMBOL_GPL(spi_unregister_device);
653 
654 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
655 					      struct spi_board_info *bi)
656 {
657 	struct spi_device *dev;
658 
659 	if (ctlr->bus_num != bi->bus_num)
660 		return;
661 
662 	dev = spi_new_device(ctlr, bi);
663 	if (!dev)
664 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
665 			bi->modalias);
666 }
667 
668 /**
669  * spi_register_board_info - register SPI devices for a given board
670  * @info: array of chip descriptors
671  * @n: how many descriptors are provided
672  * Context: can sleep
673  *
674  * Board-specific early init code calls this (probably during arch_initcall)
675  * with segments of the SPI device table.  Any device nodes are created later,
676  * after the relevant parent SPI controller (bus_num) is defined.  We keep
677  * this table of devices forever, so that reloading a controller driver will
678  * not make Linux forget about these hard-wired devices.
679  *
680  * Other code can also call this, e.g. a particular add-on board might provide
681  * SPI devices through its expansion connector, so code initializing that board
682  * would naturally declare its SPI devices.
683  *
684  * The board info passed can safely be __initdata ... but be careful of
685  * any embedded pointers (platform_data, etc), they're copied as-is.
686  * Device properties are deep-copied though.
687  *
688  * Return: zero on success, else a negative error code.
689  */
690 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
691 {
692 	struct boardinfo *bi;
693 	int i;
694 
695 	if (!n)
696 		return 0;
697 
698 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
699 	if (!bi)
700 		return -ENOMEM;
701 
702 	for (i = 0; i < n; i++, bi++, info++) {
703 		struct spi_controller *ctlr;
704 
705 		memcpy(&bi->board_info, info, sizeof(*info));
706 		if (info->properties) {
707 			bi->board_info.properties =
708 					property_entries_dup(info->properties);
709 			if (IS_ERR(bi->board_info.properties))
710 				return PTR_ERR(bi->board_info.properties);
711 		}
712 
713 		mutex_lock(&board_lock);
714 		list_add_tail(&bi->list, &board_list);
715 		list_for_each_entry(ctlr, &spi_controller_list, list)
716 			spi_match_controller_to_boardinfo(ctlr,
717 							  &bi->board_info);
718 		mutex_unlock(&board_lock);
719 	}
720 
721 	return 0;
722 }
723 
724 /*-------------------------------------------------------------------------*/
725 
726 static void spi_set_cs(struct spi_device *spi, bool enable)
727 {
728 	if (spi->mode & SPI_CS_HIGH)
729 		enable = !enable;
730 
731 	if (gpio_is_valid(spi->cs_gpio)) {
732 		gpio_set_value(spi->cs_gpio, !enable);
733 		/* Some SPI masters need both GPIO CS & slave_select */
734 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
735 		    spi->controller->set_cs)
736 			spi->controller->set_cs(spi, !enable);
737 	} else if (spi->controller->set_cs) {
738 		spi->controller->set_cs(spi, !enable);
739 	}
740 }
741 
742 #ifdef CONFIG_HAS_DMA
743 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
744 		       struct sg_table *sgt, void *buf, size_t len,
745 		       enum dma_data_direction dir)
746 {
747 	const bool vmalloced_buf = is_vmalloc_addr(buf);
748 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
749 #ifdef CONFIG_HIGHMEM
750 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
751 				(unsigned long)buf < (PKMAP_BASE +
752 					(LAST_PKMAP * PAGE_SIZE)));
753 #else
754 	const bool kmap_buf = false;
755 #endif
756 	int desc_len;
757 	int sgs;
758 	struct page *vm_page;
759 	struct scatterlist *sg;
760 	void *sg_buf;
761 	size_t min;
762 	int i, ret;
763 
764 	if (vmalloced_buf || kmap_buf) {
765 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
766 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
767 	} else if (virt_addr_valid(buf)) {
768 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
769 		sgs = DIV_ROUND_UP(len, desc_len);
770 	} else {
771 		return -EINVAL;
772 	}
773 
774 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
775 	if (ret != 0)
776 		return ret;
777 
778 	sg = &sgt->sgl[0];
779 	for (i = 0; i < sgs; i++) {
780 
781 		if (vmalloced_buf || kmap_buf) {
782 			min = min_t(size_t,
783 				    len, desc_len - offset_in_page(buf));
784 			if (vmalloced_buf)
785 				vm_page = vmalloc_to_page(buf);
786 			else
787 				vm_page = kmap_to_page(buf);
788 			if (!vm_page) {
789 				sg_free_table(sgt);
790 				return -ENOMEM;
791 			}
792 			sg_set_page(sg, vm_page,
793 				    min, offset_in_page(buf));
794 		} else {
795 			min = min_t(size_t, len, desc_len);
796 			sg_buf = buf;
797 			sg_set_buf(sg, sg_buf, min);
798 		}
799 
800 		buf += min;
801 		len -= min;
802 		sg = sg_next(sg);
803 	}
804 
805 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
806 	if (!ret)
807 		ret = -ENOMEM;
808 	if (ret < 0) {
809 		sg_free_table(sgt);
810 		return ret;
811 	}
812 
813 	sgt->nents = ret;
814 
815 	return 0;
816 }
817 
818 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
819 			  struct sg_table *sgt, enum dma_data_direction dir)
820 {
821 	if (sgt->orig_nents) {
822 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
823 		sg_free_table(sgt);
824 	}
825 }
826 
827 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
828 {
829 	struct device *tx_dev, *rx_dev;
830 	struct spi_transfer *xfer;
831 	int ret;
832 
833 	if (!ctlr->can_dma)
834 		return 0;
835 
836 	if (ctlr->dma_tx)
837 		tx_dev = ctlr->dma_tx->device->dev;
838 	else
839 		tx_dev = ctlr->dev.parent;
840 
841 	if (ctlr->dma_rx)
842 		rx_dev = ctlr->dma_rx->device->dev;
843 	else
844 		rx_dev = ctlr->dev.parent;
845 
846 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
847 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
848 			continue;
849 
850 		if (xfer->tx_buf != NULL) {
851 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
852 					  (void *)xfer->tx_buf, xfer->len,
853 					  DMA_TO_DEVICE);
854 			if (ret != 0)
855 				return ret;
856 		}
857 
858 		if (xfer->rx_buf != NULL) {
859 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
860 					  xfer->rx_buf, xfer->len,
861 					  DMA_FROM_DEVICE);
862 			if (ret != 0) {
863 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
864 					      DMA_TO_DEVICE);
865 				return ret;
866 			}
867 		}
868 	}
869 
870 	ctlr->cur_msg_mapped = true;
871 
872 	return 0;
873 }
874 
875 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
876 {
877 	struct spi_transfer *xfer;
878 	struct device *tx_dev, *rx_dev;
879 
880 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
881 		return 0;
882 
883 	if (ctlr->dma_tx)
884 		tx_dev = ctlr->dma_tx->device->dev;
885 	else
886 		tx_dev = ctlr->dev.parent;
887 
888 	if (ctlr->dma_rx)
889 		rx_dev = ctlr->dma_rx->device->dev;
890 	else
891 		rx_dev = ctlr->dev.parent;
892 
893 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
894 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
895 			continue;
896 
897 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
898 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
899 	}
900 
901 	return 0;
902 }
903 #else /* !CONFIG_HAS_DMA */
904 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
905 			      struct sg_table *sgt, void *buf, size_t len,
906 			      enum dma_data_direction dir)
907 {
908 	return -EINVAL;
909 }
910 
911 static inline void spi_unmap_buf(struct spi_controller *ctlr,
912 				 struct device *dev, struct sg_table *sgt,
913 				 enum dma_data_direction dir)
914 {
915 }
916 
917 static inline int __spi_map_msg(struct spi_controller *ctlr,
918 				struct spi_message *msg)
919 {
920 	return 0;
921 }
922 
923 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
924 				  struct spi_message *msg)
925 {
926 	return 0;
927 }
928 #endif /* !CONFIG_HAS_DMA */
929 
930 static inline int spi_unmap_msg(struct spi_controller *ctlr,
931 				struct spi_message *msg)
932 {
933 	struct spi_transfer *xfer;
934 
935 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
936 		/*
937 		 * Restore the original value of tx_buf or rx_buf if they are
938 		 * NULL.
939 		 */
940 		if (xfer->tx_buf == ctlr->dummy_tx)
941 			xfer->tx_buf = NULL;
942 		if (xfer->rx_buf == ctlr->dummy_rx)
943 			xfer->rx_buf = NULL;
944 	}
945 
946 	return __spi_unmap_msg(ctlr, msg);
947 }
948 
949 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
950 {
951 	struct spi_transfer *xfer;
952 	void *tmp;
953 	unsigned int max_tx, max_rx;
954 
955 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
956 		max_tx = 0;
957 		max_rx = 0;
958 
959 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
960 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
961 			    !xfer->tx_buf)
962 				max_tx = max(xfer->len, max_tx);
963 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
964 			    !xfer->rx_buf)
965 				max_rx = max(xfer->len, max_rx);
966 		}
967 
968 		if (max_tx) {
969 			tmp = krealloc(ctlr->dummy_tx, max_tx,
970 				       GFP_KERNEL | GFP_DMA);
971 			if (!tmp)
972 				return -ENOMEM;
973 			ctlr->dummy_tx = tmp;
974 			memset(tmp, 0, max_tx);
975 		}
976 
977 		if (max_rx) {
978 			tmp = krealloc(ctlr->dummy_rx, max_rx,
979 				       GFP_KERNEL | GFP_DMA);
980 			if (!tmp)
981 				return -ENOMEM;
982 			ctlr->dummy_rx = tmp;
983 		}
984 
985 		if (max_tx || max_rx) {
986 			list_for_each_entry(xfer, &msg->transfers,
987 					    transfer_list) {
988 				if (!xfer->tx_buf)
989 					xfer->tx_buf = ctlr->dummy_tx;
990 				if (!xfer->rx_buf)
991 					xfer->rx_buf = ctlr->dummy_rx;
992 			}
993 		}
994 	}
995 
996 	return __spi_map_msg(ctlr, msg);
997 }
998 
999 /*
1000  * spi_transfer_one_message - Default implementation of transfer_one_message()
1001  *
1002  * This is a standard implementation of transfer_one_message() for
1003  * drivers which implement a transfer_one() operation.  It provides
1004  * standard handling of delays and chip select management.
1005  */
1006 static int spi_transfer_one_message(struct spi_controller *ctlr,
1007 				    struct spi_message *msg)
1008 {
1009 	struct spi_transfer *xfer;
1010 	bool keep_cs = false;
1011 	int ret = 0;
1012 	unsigned long long ms = 1;
1013 	struct spi_statistics *statm = &ctlr->statistics;
1014 	struct spi_statistics *stats = &msg->spi->statistics;
1015 
1016 	spi_set_cs(msg->spi, true);
1017 
1018 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1019 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1020 
1021 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1022 		trace_spi_transfer_start(msg, xfer);
1023 
1024 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1025 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1026 
1027 		if (xfer->tx_buf || xfer->rx_buf) {
1028 			reinit_completion(&ctlr->xfer_completion);
1029 
1030 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1031 			if (ret < 0) {
1032 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1033 							       errors);
1034 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1035 							       errors);
1036 				dev_err(&msg->spi->dev,
1037 					"SPI transfer failed: %d\n", ret);
1038 				goto out;
1039 			}
1040 
1041 			if (ret > 0) {
1042 				ret = 0;
1043 				ms = 8LL * 1000LL * xfer->len;
1044 				do_div(ms, xfer->speed_hz);
1045 				ms += ms + 200; /* some tolerance */
1046 
1047 				if (ms > UINT_MAX)
1048 					ms = UINT_MAX;
1049 
1050 				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1051 								 msecs_to_jiffies(ms));
1052 			}
1053 
1054 			if (ms == 0) {
1055 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1056 							       timedout);
1057 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1058 							       timedout);
1059 				dev_err(&msg->spi->dev,
1060 					"SPI transfer timed out\n");
1061 				msg->status = -ETIMEDOUT;
1062 			}
1063 		} else {
1064 			if (xfer->len)
1065 				dev_err(&msg->spi->dev,
1066 					"Bufferless transfer has length %u\n",
1067 					xfer->len);
1068 		}
1069 
1070 		trace_spi_transfer_stop(msg, xfer);
1071 
1072 		if (msg->status != -EINPROGRESS)
1073 			goto out;
1074 
1075 		if (xfer->delay_usecs) {
1076 			u16 us = xfer->delay_usecs;
1077 
1078 			if (us <= 10)
1079 				udelay(us);
1080 			else
1081 				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1082 		}
1083 
1084 		if (xfer->cs_change) {
1085 			if (list_is_last(&xfer->transfer_list,
1086 					 &msg->transfers)) {
1087 				keep_cs = true;
1088 			} else {
1089 				spi_set_cs(msg->spi, false);
1090 				udelay(10);
1091 				spi_set_cs(msg->spi, true);
1092 			}
1093 		}
1094 
1095 		msg->actual_length += xfer->len;
1096 	}
1097 
1098 out:
1099 	if (ret != 0 || !keep_cs)
1100 		spi_set_cs(msg->spi, false);
1101 
1102 	if (msg->status == -EINPROGRESS)
1103 		msg->status = ret;
1104 
1105 	if (msg->status && ctlr->handle_err)
1106 		ctlr->handle_err(ctlr, msg);
1107 
1108 	spi_res_release(ctlr, msg);
1109 
1110 	spi_finalize_current_message(ctlr);
1111 
1112 	return ret;
1113 }
1114 
1115 /**
1116  * spi_finalize_current_transfer - report completion of a transfer
1117  * @ctlr: the controller reporting completion
1118  *
1119  * Called by SPI drivers using the core transfer_one_message()
1120  * implementation to notify it that the current interrupt driven
1121  * transfer has finished and the next one may be scheduled.
1122  */
1123 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1124 {
1125 	complete(&ctlr->xfer_completion);
1126 }
1127 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1128 
1129 /**
1130  * __spi_pump_messages - function which processes spi message queue
1131  * @ctlr: controller to process queue for
1132  * @in_kthread: true if we are in the context of the message pump thread
1133  *
1134  * This function checks if there is any spi message in the queue that
1135  * needs processing and if so call out to the driver to initialize hardware
1136  * and transfer each message.
1137  *
1138  * Note that it is called both from the kthread itself and also from
1139  * inside spi_sync(); the queue extraction handling at the top of the
1140  * function should deal with this safely.
1141  */
1142 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1143 {
1144 	unsigned long flags;
1145 	bool was_busy = false;
1146 	int ret;
1147 
1148 	/* Lock queue */
1149 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1150 
1151 	/* Make sure we are not already running a message */
1152 	if (ctlr->cur_msg) {
1153 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1154 		return;
1155 	}
1156 
1157 	/* If another context is idling the device then defer */
1158 	if (ctlr->idling) {
1159 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1160 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1161 		return;
1162 	}
1163 
1164 	/* Check if the queue is idle */
1165 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1166 		if (!ctlr->busy) {
1167 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1168 			return;
1169 		}
1170 
1171 		/* Only do teardown in the thread */
1172 		if (!in_kthread) {
1173 			kthread_queue_work(&ctlr->kworker,
1174 					   &ctlr->pump_messages);
1175 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1176 			return;
1177 		}
1178 
1179 		ctlr->busy = false;
1180 		ctlr->idling = true;
1181 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182 
1183 		kfree(ctlr->dummy_rx);
1184 		ctlr->dummy_rx = NULL;
1185 		kfree(ctlr->dummy_tx);
1186 		ctlr->dummy_tx = NULL;
1187 		if (ctlr->unprepare_transfer_hardware &&
1188 		    ctlr->unprepare_transfer_hardware(ctlr))
1189 			dev_err(&ctlr->dev,
1190 				"failed to unprepare transfer hardware\n");
1191 		if (ctlr->auto_runtime_pm) {
1192 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1193 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1194 		}
1195 		trace_spi_controller_idle(ctlr);
1196 
1197 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1198 		ctlr->idling = false;
1199 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1200 		return;
1201 	}
1202 
1203 	/* Extract head of queue */
1204 	ctlr->cur_msg =
1205 		list_first_entry(&ctlr->queue, struct spi_message, queue);
1206 
1207 	list_del_init(&ctlr->cur_msg->queue);
1208 	if (ctlr->busy)
1209 		was_busy = true;
1210 	else
1211 		ctlr->busy = true;
1212 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1213 
1214 	mutex_lock(&ctlr->io_mutex);
1215 
1216 	if (!was_busy && ctlr->auto_runtime_pm) {
1217 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1218 		if (ret < 0) {
1219 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1220 				ret);
1221 			mutex_unlock(&ctlr->io_mutex);
1222 			return;
1223 		}
1224 	}
1225 
1226 	if (!was_busy)
1227 		trace_spi_controller_busy(ctlr);
1228 
1229 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1230 		ret = ctlr->prepare_transfer_hardware(ctlr);
1231 		if (ret) {
1232 			dev_err(&ctlr->dev,
1233 				"failed to prepare transfer hardware\n");
1234 
1235 			if (ctlr->auto_runtime_pm)
1236 				pm_runtime_put(ctlr->dev.parent);
1237 			mutex_unlock(&ctlr->io_mutex);
1238 			return;
1239 		}
1240 	}
1241 
1242 	trace_spi_message_start(ctlr->cur_msg);
1243 
1244 	if (ctlr->prepare_message) {
1245 		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1246 		if (ret) {
1247 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1248 				ret);
1249 			ctlr->cur_msg->status = ret;
1250 			spi_finalize_current_message(ctlr);
1251 			goto out;
1252 		}
1253 		ctlr->cur_msg_prepared = true;
1254 	}
1255 
1256 	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1257 	if (ret) {
1258 		ctlr->cur_msg->status = ret;
1259 		spi_finalize_current_message(ctlr);
1260 		goto out;
1261 	}
1262 
1263 	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1264 	if (ret) {
1265 		dev_err(&ctlr->dev,
1266 			"failed to transfer one message from queue\n");
1267 		goto out;
1268 	}
1269 
1270 out:
1271 	mutex_unlock(&ctlr->io_mutex);
1272 
1273 	/* Prod the scheduler in case transfer_one() was busy waiting */
1274 	if (!ret)
1275 		cond_resched();
1276 }
1277 
1278 /**
1279  * spi_pump_messages - kthread work function which processes spi message queue
1280  * @work: pointer to kthread work struct contained in the controller struct
1281  */
1282 static void spi_pump_messages(struct kthread_work *work)
1283 {
1284 	struct spi_controller *ctlr =
1285 		container_of(work, struct spi_controller, pump_messages);
1286 
1287 	__spi_pump_messages(ctlr, true);
1288 }
1289 
1290 static int spi_init_queue(struct spi_controller *ctlr)
1291 {
1292 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1293 
1294 	ctlr->running = false;
1295 	ctlr->busy = false;
1296 
1297 	kthread_init_worker(&ctlr->kworker);
1298 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1299 					 "%s", dev_name(&ctlr->dev));
1300 	if (IS_ERR(ctlr->kworker_task)) {
1301 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1302 		return PTR_ERR(ctlr->kworker_task);
1303 	}
1304 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1305 
1306 	/*
1307 	 * Controller config will indicate if this controller should run the
1308 	 * message pump with high (realtime) priority to reduce the transfer
1309 	 * latency on the bus by minimising the delay between a transfer
1310 	 * request and the scheduling of the message pump thread. Without this
1311 	 * setting the message pump thread will remain at default priority.
1312 	 */
1313 	if (ctlr->rt) {
1314 		dev_info(&ctlr->dev,
1315 			"will run message pump with realtime priority\n");
1316 		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 /**
1323  * spi_get_next_queued_message() - called by driver to check for queued
1324  * messages
1325  * @ctlr: the controller to check for queued messages
1326  *
1327  * If there are more messages in the queue, the next message is returned from
1328  * this call.
1329  *
1330  * Return: the next message in the queue, else NULL if the queue is empty.
1331  */
1332 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1333 {
1334 	struct spi_message *next;
1335 	unsigned long flags;
1336 
1337 	/* get a pointer to the next message, if any */
1338 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1339 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1340 					queue);
1341 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1342 
1343 	return next;
1344 }
1345 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1346 
1347 /**
1348  * spi_finalize_current_message() - the current message is complete
1349  * @ctlr: the controller to return the message to
1350  *
1351  * Called by the driver to notify the core that the message in the front of the
1352  * queue is complete and can be removed from the queue.
1353  */
1354 void spi_finalize_current_message(struct spi_controller *ctlr)
1355 {
1356 	struct spi_message *mesg;
1357 	unsigned long flags;
1358 	int ret;
1359 
1360 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1361 	mesg = ctlr->cur_msg;
1362 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1363 
1364 	spi_unmap_msg(ctlr, mesg);
1365 
1366 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1367 		ret = ctlr->unprepare_message(ctlr, mesg);
1368 		if (ret) {
1369 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1370 				ret);
1371 		}
1372 	}
1373 
1374 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1375 	ctlr->cur_msg = NULL;
1376 	ctlr->cur_msg_prepared = false;
1377 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1378 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1379 
1380 	trace_spi_message_done(mesg);
1381 
1382 	mesg->state = NULL;
1383 	if (mesg->complete)
1384 		mesg->complete(mesg->context);
1385 }
1386 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1387 
1388 static int spi_start_queue(struct spi_controller *ctlr)
1389 {
1390 	unsigned long flags;
1391 
1392 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1393 
1394 	if (ctlr->running || ctlr->busy) {
1395 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1396 		return -EBUSY;
1397 	}
1398 
1399 	ctlr->running = true;
1400 	ctlr->cur_msg = NULL;
1401 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402 
1403 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1404 
1405 	return 0;
1406 }
1407 
1408 static int spi_stop_queue(struct spi_controller *ctlr)
1409 {
1410 	unsigned long flags;
1411 	unsigned limit = 500;
1412 	int ret = 0;
1413 
1414 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1415 
1416 	/*
1417 	 * This is a bit lame, but is optimized for the common execution path.
1418 	 * A wait_queue on the ctlr->busy could be used, but then the common
1419 	 * execution path (pump_messages) would be required to call wake_up or
1420 	 * friends on every SPI message. Do this instead.
1421 	 */
1422 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1423 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424 		usleep_range(10000, 11000);
1425 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1426 	}
1427 
1428 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1429 		ret = -EBUSY;
1430 	else
1431 		ctlr->running = false;
1432 
1433 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1434 
1435 	if (ret) {
1436 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1437 		return ret;
1438 	}
1439 	return ret;
1440 }
1441 
1442 static int spi_destroy_queue(struct spi_controller *ctlr)
1443 {
1444 	int ret;
1445 
1446 	ret = spi_stop_queue(ctlr);
1447 
1448 	/*
1449 	 * kthread_flush_worker will block until all work is done.
1450 	 * If the reason that stop_queue timed out is that the work will never
1451 	 * finish, then it does no good to call flush/stop thread, so
1452 	 * return anyway.
1453 	 */
1454 	if (ret) {
1455 		dev_err(&ctlr->dev, "problem destroying queue\n");
1456 		return ret;
1457 	}
1458 
1459 	kthread_flush_worker(&ctlr->kworker);
1460 	kthread_stop(ctlr->kworker_task);
1461 
1462 	return 0;
1463 }
1464 
1465 static int __spi_queued_transfer(struct spi_device *spi,
1466 				 struct spi_message *msg,
1467 				 bool need_pump)
1468 {
1469 	struct spi_controller *ctlr = spi->controller;
1470 	unsigned long flags;
1471 
1472 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1473 
1474 	if (!ctlr->running) {
1475 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1476 		return -ESHUTDOWN;
1477 	}
1478 	msg->actual_length = 0;
1479 	msg->status = -EINPROGRESS;
1480 
1481 	list_add_tail(&msg->queue, &ctlr->queue);
1482 	if (!ctlr->busy && need_pump)
1483 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1484 
1485 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1486 	return 0;
1487 }
1488 
1489 /**
1490  * spi_queued_transfer - transfer function for queued transfers
1491  * @spi: spi device which is requesting transfer
1492  * @msg: spi message which is to handled is queued to driver queue
1493  *
1494  * Return: zero on success, else a negative error code.
1495  */
1496 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1497 {
1498 	return __spi_queued_transfer(spi, msg, true);
1499 }
1500 
1501 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1502 {
1503 	int ret;
1504 
1505 	ctlr->transfer = spi_queued_transfer;
1506 	if (!ctlr->transfer_one_message)
1507 		ctlr->transfer_one_message = spi_transfer_one_message;
1508 
1509 	/* Initialize and start queue */
1510 	ret = spi_init_queue(ctlr);
1511 	if (ret) {
1512 		dev_err(&ctlr->dev, "problem initializing queue\n");
1513 		goto err_init_queue;
1514 	}
1515 	ctlr->queued = true;
1516 	ret = spi_start_queue(ctlr);
1517 	if (ret) {
1518 		dev_err(&ctlr->dev, "problem starting queue\n");
1519 		goto err_start_queue;
1520 	}
1521 
1522 	return 0;
1523 
1524 err_start_queue:
1525 	spi_destroy_queue(ctlr);
1526 err_init_queue:
1527 	return ret;
1528 }
1529 
1530 /*-------------------------------------------------------------------------*/
1531 
1532 #if defined(CONFIG_OF)
1533 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1534 			   struct device_node *nc)
1535 {
1536 	u32 value;
1537 	int rc;
1538 
1539 	/* Mode (clock phase/polarity/etc.) */
1540 	if (of_property_read_bool(nc, "spi-cpha"))
1541 		spi->mode |= SPI_CPHA;
1542 	if (of_property_read_bool(nc, "spi-cpol"))
1543 		spi->mode |= SPI_CPOL;
1544 	if (of_property_read_bool(nc, "spi-cs-high"))
1545 		spi->mode |= SPI_CS_HIGH;
1546 	if (of_property_read_bool(nc, "spi-3wire"))
1547 		spi->mode |= SPI_3WIRE;
1548 	if (of_property_read_bool(nc, "spi-lsb-first"))
1549 		spi->mode |= SPI_LSB_FIRST;
1550 
1551 	/* Device DUAL/QUAD mode */
1552 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1553 		switch (value) {
1554 		case 1:
1555 			break;
1556 		case 2:
1557 			spi->mode |= SPI_TX_DUAL;
1558 			break;
1559 		case 4:
1560 			spi->mode |= SPI_TX_QUAD;
1561 			break;
1562 		default:
1563 			dev_warn(&ctlr->dev,
1564 				"spi-tx-bus-width %d not supported\n",
1565 				value);
1566 			break;
1567 		}
1568 	}
1569 
1570 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1571 		switch (value) {
1572 		case 1:
1573 			break;
1574 		case 2:
1575 			spi->mode |= SPI_RX_DUAL;
1576 			break;
1577 		case 4:
1578 			spi->mode |= SPI_RX_QUAD;
1579 			break;
1580 		default:
1581 			dev_warn(&ctlr->dev,
1582 				"spi-rx-bus-width %d not supported\n",
1583 				value);
1584 			break;
1585 		}
1586 	}
1587 
1588 	if (spi_controller_is_slave(ctlr)) {
1589 		if (strcmp(nc->name, "slave")) {
1590 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1591 				nc);
1592 			return -EINVAL;
1593 		}
1594 		return 0;
1595 	}
1596 
1597 	/* Device address */
1598 	rc = of_property_read_u32(nc, "reg", &value);
1599 	if (rc) {
1600 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1601 			nc, rc);
1602 		return rc;
1603 	}
1604 	spi->chip_select = value;
1605 
1606 	/* Device speed */
1607 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1608 	if (rc) {
1609 		dev_err(&ctlr->dev,
1610 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1611 		return rc;
1612 	}
1613 	spi->max_speed_hz = value;
1614 
1615 	return 0;
1616 }
1617 
1618 static struct spi_device *
1619 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1620 {
1621 	struct spi_device *spi;
1622 	int rc;
1623 
1624 	/* Alloc an spi_device */
1625 	spi = spi_alloc_device(ctlr);
1626 	if (!spi) {
1627 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1628 		rc = -ENOMEM;
1629 		goto err_out;
1630 	}
1631 
1632 	/* Select device driver */
1633 	rc = of_modalias_node(nc, spi->modalias,
1634 				sizeof(spi->modalias));
1635 	if (rc < 0) {
1636 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1637 		goto err_out;
1638 	}
1639 
1640 	rc = of_spi_parse_dt(ctlr, spi, nc);
1641 	if (rc)
1642 		goto err_out;
1643 
1644 	/* Store a pointer to the node in the device structure */
1645 	of_node_get(nc);
1646 	spi->dev.of_node = nc;
1647 
1648 	/* Register the new device */
1649 	rc = spi_add_device(spi);
1650 	if (rc) {
1651 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1652 		goto err_of_node_put;
1653 	}
1654 
1655 	return spi;
1656 
1657 err_of_node_put:
1658 	of_node_put(nc);
1659 err_out:
1660 	spi_dev_put(spi);
1661 	return ERR_PTR(rc);
1662 }
1663 
1664 /**
1665  * of_register_spi_devices() - Register child devices onto the SPI bus
1666  * @ctlr:	Pointer to spi_controller device
1667  *
1668  * Registers an spi_device for each child node of controller node which
1669  * represents a valid SPI slave.
1670  */
1671 static void of_register_spi_devices(struct spi_controller *ctlr)
1672 {
1673 	struct spi_device *spi;
1674 	struct device_node *nc;
1675 
1676 	if (!ctlr->dev.of_node)
1677 		return;
1678 
1679 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1680 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1681 			continue;
1682 		spi = of_register_spi_device(ctlr, nc);
1683 		if (IS_ERR(spi)) {
1684 			dev_warn(&ctlr->dev,
1685 				 "Failed to create SPI device for %pOF\n", nc);
1686 			of_node_clear_flag(nc, OF_POPULATED);
1687 		}
1688 	}
1689 }
1690 #else
1691 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1692 #endif
1693 
1694 #ifdef CONFIG_ACPI
1695 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1696 {
1697 	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1698 	const union acpi_object *obj;
1699 
1700 	if (!x86_apple_machine)
1701 		return;
1702 
1703 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1704 	    && obj->buffer.length >= 4)
1705 		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1706 
1707 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1708 	    && obj->buffer.length == 8)
1709 		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1710 
1711 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1712 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1713 		spi->mode |= SPI_LSB_FIRST;
1714 
1715 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1716 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1717 		spi->mode |= SPI_CPOL;
1718 
1719 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1720 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1721 		spi->mode |= SPI_CPHA;
1722 }
1723 
1724 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1725 {
1726 	struct spi_device *spi = data;
1727 	struct spi_controller *ctlr = spi->controller;
1728 
1729 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1730 		struct acpi_resource_spi_serialbus *sb;
1731 
1732 		sb = &ares->data.spi_serial_bus;
1733 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1734 			/*
1735 			 * ACPI DeviceSelection numbering is handled by the
1736 			 * host controller driver in Windows and can vary
1737 			 * from driver to driver. In Linux we always expect
1738 			 * 0 .. max - 1 so we need to ask the driver to
1739 			 * translate between the two schemes.
1740 			 */
1741 			if (ctlr->fw_translate_cs) {
1742 				int cs = ctlr->fw_translate_cs(ctlr,
1743 						sb->device_selection);
1744 				if (cs < 0)
1745 					return cs;
1746 				spi->chip_select = cs;
1747 			} else {
1748 				spi->chip_select = sb->device_selection;
1749 			}
1750 
1751 			spi->max_speed_hz = sb->connection_speed;
1752 
1753 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1754 				spi->mode |= SPI_CPHA;
1755 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1756 				spi->mode |= SPI_CPOL;
1757 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1758 				spi->mode |= SPI_CS_HIGH;
1759 		}
1760 	} else if (spi->irq < 0) {
1761 		struct resource r;
1762 
1763 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1764 			spi->irq = r.start;
1765 	}
1766 
1767 	/* Always tell the ACPI core to skip this resource */
1768 	return 1;
1769 }
1770 
1771 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1772 					    struct acpi_device *adev)
1773 {
1774 	struct list_head resource_list;
1775 	struct spi_device *spi;
1776 	int ret;
1777 
1778 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1779 	    acpi_device_enumerated(adev))
1780 		return AE_OK;
1781 
1782 	spi = spi_alloc_device(ctlr);
1783 	if (!spi) {
1784 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1785 			dev_name(&adev->dev));
1786 		return AE_NO_MEMORY;
1787 	}
1788 
1789 	ACPI_COMPANION_SET(&spi->dev, adev);
1790 	spi->irq = -1;
1791 
1792 	INIT_LIST_HEAD(&resource_list);
1793 	ret = acpi_dev_get_resources(adev, &resource_list,
1794 				     acpi_spi_add_resource, spi);
1795 	acpi_dev_free_resource_list(&resource_list);
1796 
1797 	acpi_spi_parse_apple_properties(spi);
1798 
1799 	if (ret < 0 || !spi->max_speed_hz) {
1800 		spi_dev_put(spi);
1801 		return AE_OK;
1802 	}
1803 
1804 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1805 			  sizeof(spi->modalias));
1806 
1807 	if (spi->irq < 0)
1808 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1809 
1810 	acpi_device_set_enumerated(adev);
1811 
1812 	adev->power.flags.ignore_parent = true;
1813 	if (spi_add_device(spi)) {
1814 		adev->power.flags.ignore_parent = false;
1815 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1816 			dev_name(&adev->dev));
1817 		spi_dev_put(spi);
1818 	}
1819 
1820 	return AE_OK;
1821 }
1822 
1823 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1824 				       void *data, void **return_value)
1825 {
1826 	struct spi_controller *ctlr = data;
1827 	struct acpi_device *adev;
1828 
1829 	if (acpi_bus_get_device(handle, &adev))
1830 		return AE_OK;
1831 
1832 	return acpi_register_spi_device(ctlr, adev);
1833 }
1834 
1835 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1836 {
1837 	acpi_status status;
1838 	acpi_handle handle;
1839 
1840 	handle = ACPI_HANDLE(ctlr->dev.parent);
1841 	if (!handle)
1842 		return;
1843 
1844 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1845 				     acpi_spi_add_device, NULL, ctlr, NULL);
1846 	if (ACPI_FAILURE(status))
1847 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1848 }
1849 #else
1850 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1851 #endif /* CONFIG_ACPI */
1852 
1853 static void spi_controller_release(struct device *dev)
1854 {
1855 	struct spi_controller *ctlr;
1856 
1857 	ctlr = container_of(dev, struct spi_controller, dev);
1858 	kfree(ctlr);
1859 }
1860 
1861 static struct class spi_master_class = {
1862 	.name		= "spi_master",
1863 	.owner		= THIS_MODULE,
1864 	.dev_release	= spi_controller_release,
1865 	.dev_groups	= spi_master_groups,
1866 };
1867 
1868 #ifdef CONFIG_SPI_SLAVE
1869 /**
1870  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1871  *		     controller
1872  * @spi: device used for the current transfer
1873  */
1874 int spi_slave_abort(struct spi_device *spi)
1875 {
1876 	struct spi_controller *ctlr = spi->controller;
1877 
1878 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1879 		return ctlr->slave_abort(ctlr);
1880 
1881 	return -ENOTSUPP;
1882 }
1883 EXPORT_SYMBOL_GPL(spi_slave_abort);
1884 
1885 static int match_true(struct device *dev, void *data)
1886 {
1887 	return 1;
1888 }
1889 
1890 static ssize_t spi_slave_show(struct device *dev,
1891 			      struct device_attribute *attr, char *buf)
1892 {
1893 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1894 						   dev);
1895 	struct device *child;
1896 
1897 	child = device_find_child(&ctlr->dev, NULL, match_true);
1898 	return sprintf(buf, "%s\n",
1899 		       child ? to_spi_device(child)->modalias : NULL);
1900 }
1901 
1902 static ssize_t spi_slave_store(struct device *dev,
1903 			       struct device_attribute *attr, const char *buf,
1904 			       size_t count)
1905 {
1906 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1907 						   dev);
1908 	struct spi_device *spi;
1909 	struct device *child;
1910 	char name[32];
1911 	int rc;
1912 
1913 	rc = sscanf(buf, "%31s", name);
1914 	if (rc != 1 || !name[0])
1915 		return -EINVAL;
1916 
1917 	child = device_find_child(&ctlr->dev, NULL, match_true);
1918 	if (child) {
1919 		/* Remove registered slave */
1920 		device_unregister(child);
1921 		put_device(child);
1922 	}
1923 
1924 	if (strcmp(name, "(null)")) {
1925 		/* Register new slave */
1926 		spi = spi_alloc_device(ctlr);
1927 		if (!spi)
1928 			return -ENOMEM;
1929 
1930 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
1931 
1932 		rc = spi_add_device(spi);
1933 		if (rc) {
1934 			spi_dev_put(spi);
1935 			return rc;
1936 		}
1937 	}
1938 
1939 	return count;
1940 }
1941 
1942 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1943 
1944 static struct attribute *spi_slave_attrs[] = {
1945 	&dev_attr_slave.attr,
1946 	NULL,
1947 };
1948 
1949 static const struct attribute_group spi_slave_group = {
1950 	.attrs = spi_slave_attrs,
1951 };
1952 
1953 static const struct attribute_group *spi_slave_groups[] = {
1954 	&spi_controller_statistics_group,
1955 	&spi_slave_group,
1956 	NULL,
1957 };
1958 
1959 static struct class spi_slave_class = {
1960 	.name		= "spi_slave",
1961 	.owner		= THIS_MODULE,
1962 	.dev_release	= spi_controller_release,
1963 	.dev_groups	= spi_slave_groups,
1964 };
1965 #else
1966 extern struct class spi_slave_class;	/* dummy */
1967 #endif
1968 
1969 /**
1970  * __spi_alloc_controller - allocate an SPI master or slave controller
1971  * @dev: the controller, possibly using the platform_bus
1972  * @size: how much zeroed driver-private data to allocate; the pointer to this
1973  *	memory is in the driver_data field of the returned device,
1974  *	accessible with spi_controller_get_devdata().
1975  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1976  *	slave (true) controller
1977  * Context: can sleep
1978  *
1979  * This call is used only by SPI controller drivers, which are the
1980  * only ones directly touching chip registers.  It's how they allocate
1981  * an spi_controller structure, prior to calling spi_register_controller().
1982  *
1983  * This must be called from context that can sleep.
1984  *
1985  * The caller is responsible for assigning the bus number and initializing the
1986  * controller's methods before calling spi_register_controller(); and (after
1987  * errors adding the device) calling spi_controller_put() to prevent a memory
1988  * leak.
1989  *
1990  * Return: the SPI controller structure on success, else NULL.
1991  */
1992 struct spi_controller *__spi_alloc_controller(struct device *dev,
1993 					      unsigned int size, bool slave)
1994 {
1995 	struct spi_controller	*ctlr;
1996 
1997 	if (!dev)
1998 		return NULL;
1999 
2000 	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2001 	if (!ctlr)
2002 		return NULL;
2003 
2004 	device_initialize(&ctlr->dev);
2005 	ctlr->bus_num = -1;
2006 	ctlr->num_chipselect = 1;
2007 	ctlr->slave = slave;
2008 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2009 		ctlr->dev.class = &spi_slave_class;
2010 	else
2011 		ctlr->dev.class = &spi_master_class;
2012 	ctlr->dev.parent = dev;
2013 	pm_suspend_ignore_children(&ctlr->dev, true);
2014 	spi_controller_set_devdata(ctlr, &ctlr[1]);
2015 
2016 	return ctlr;
2017 }
2018 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2019 
2020 #ifdef CONFIG_OF
2021 static int of_spi_register_master(struct spi_controller *ctlr)
2022 {
2023 	int nb, i, *cs;
2024 	struct device_node *np = ctlr->dev.of_node;
2025 
2026 	if (!np)
2027 		return 0;
2028 
2029 	nb = of_gpio_named_count(np, "cs-gpios");
2030 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2031 
2032 	/* Return error only for an incorrectly formed cs-gpios property */
2033 	if (nb == 0 || nb == -ENOENT)
2034 		return 0;
2035 	else if (nb < 0)
2036 		return nb;
2037 
2038 	cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2039 			  GFP_KERNEL);
2040 	ctlr->cs_gpios = cs;
2041 
2042 	if (!ctlr->cs_gpios)
2043 		return -ENOMEM;
2044 
2045 	for (i = 0; i < ctlr->num_chipselect; i++)
2046 		cs[i] = -ENOENT;
2047 
2048 	for (i = 0; i < nb; i++)
2049 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2050 
2051 	return 0;
2052 }
2053 #else
2054 static int of_spi_register_master(struct spi_controller *ctlr)
2055 {
2056 	return 0;
2057 }
2058 #endif
2059 
2060 /**
2061  * spi_register_controller - register SPI master or slave controller
2062  * @ctlr: initialized master, originally from spi_alloc_master() or
2063  *	spi_alloc_slave()
2064  * Context: can sleep
2065  *
2066  * SPI controllers connect to their drivers using some non-SPI bus,
2067  * such as the platform bus.  The final stage of probe() in that code
2068  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2069  *
2070  * SPI controllers use board specific (often SOC specific) bus numbers,
2071  * and board-specific addressing for SPI devices combines those numbers
2072  * with chip select numbers.  Since SPI does not directly support dynamic
2073  * device identification, boards need configuration tables telling which
2074  * chip is at which address.
2075  *
2076  * This must be called from context that can sleep.  It returns zero on
2077  * success, else a negative error code (dropping the controller's refcount).
2078  * After a successful return, the caller is responsible for calling
2079  * spi_unregister_controller().
2080  *
2081  * Return: zero on success, else a negative error code.
2082  */
2083 int spi_register_controller(struct spi_controller *ctlr)
2084 {
2085 	struct device		*dev = ctlr->dev.parent;
2086 	struct boardinfo	*bi;
2087 	int			status = -ENODEV;
2088 	int			id, first_dynamic;
2089 
2090 	if (!dev)
2091 		return -ENODEV;
2092 
2093 	if (!spi_controller_is_slave(ctlr)) {
2094 		status = of_spi_register_master(ctlr);
2095 		if (status)
2096 			return status;
2097 	}
2098 
2099 	/* even if it's just one always-selected device, there must
2100 	 * be at least one chipselect
2101 	 */
2102 	if (ctlr->num_chipselect == 0)
2103 		return -EINVAL;
2104 	/* allocate dynamic bus number using Linux idr */
2105 	if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2106 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2107 		if (id >= 0) {
2108 			ctlr->bus_num = id;
2109 			mutex_lock(&board_lock);
2110 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2111 				       ctlr->bus_num + 1, GFP_KERNEL);
2112 			mutex_unlock(&board_lock);
2113 			if (WARN(id < 0, "couldn't get idr"))
2114 				return id == -ENOSPC ? -EBUSY : id;
2115 		}
2116 	}
2117 	if (ctlr->bus_num < 0) {
2118 		first_dynamic = of_alias_get_highest_id("spi");
2119 		if (first_dynamic < 0)
2120 			first_dynamic = 0;
2121 		else
2122 			first_dynamic++;
2123 
2124 		mutex_lock(&board_lock);
2125 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2126 			       0, GFP_KERNEL);
2127 		mutex_unlock(&board_lock);
2128 		if (WARN(id < 0, "couldn't get idr"))
2129 			return id;
2130 		ctlr->bus_num = id;
2131 	}
2132 	INIT_LIST_HEAD(&ctlr->queue);
2133 	spin_lock_init(&ctlr->queue_lock);
2134 	spin_lock_init(&ctlr->bus_lock_spinlock);
2135 	mutex_init(&ctlr->bus_lock_mutex);
2136 	mutex_init(&ctlr->io_mutex);
2137 	ctlr->bus_lock_flag = 0;
2138 	init_completion(&ctlr->xfer_completion);
2139 	if (!ctlr->max_dma_len)
2140 		ctlr->max_dma_len = INT_MAX;
2141 
2142 	/* register the device, then userspace will see it.
2143 	 * registration fails if the bus ID is in use.
2144 	 */
2145 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2146 	status = device_add(&ctlr->dev);
2147 	if (status < 0) {
2148 		/* free bus id */
2149 		mutex_lock(&board_lock);
2150 		idr_remove(&spi_master_idr, ctlr->bus_num);
2151 		mutex_unlock(&board_lock);
2152 		goto done;
2153 	}
2154 	dev_dbg(dev, "registered %s %s\n",
2155 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2156 			dev_name(&ctlr->dev));
2157 
2158 	/* If we're using a queued driver, start the queue */
2159 	if (ctlr->transfer)
2160 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2161 	else {
2162 		status = spi_controller_initialize_queue(ctlr);
2163 		if (status) {
2164 			device_del(&ctlr->dev);
2165 			/* free bus id */
2166 			mutex_lock(&board_lock);
2167 			idr_remove(&spi_master_idr, ctlr->bus_num);
2168 			mutex_unlock(&board_lock);
2169 			goto done;
2170 		}
2171 	}
2172 	/* add statistics */
2173 	spin_lock_init(&ctlr->statistics.lock);
2174 
2175 	mutex_lock(&board_lock);
2176 	list_add_tail(&ctlr->list, &spi_controller_list);
2177 	list_for_each_entry(bi, &board_list, list)
2178 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2179 	mutex_unlock(&board_lock);
2180 
2181 	/* Register devices from the device tree and ACPI */
2182 	of_register_spi_devices(ctlr);
2183 	acpi_register_spi_devices(ctlr);
2184 done:
2185 	return status;
2186 }
2187 EXPORT_SYMBOL_GPL(spi_register_controller);
2188 
2189 static void devm_spi_unregister(struct device *dev, void *res)
2190 {
2191 	spi_unregister_controller(*(struct spi_controller **)res);
2192 }
2193 
2194 /**
2195  * devm_spi_register_controller - register managed SPI master or slave
2196  *	controller
2197  * @dev:    device managing SPI controller
2198  * @ctlr: initialized controller, originally from spi_alloc_master() or
2199  *	spi_alloc_slave()
2200  * Context: can sleep
2201  *
2202  * Register a SPI device as with spi_register_controller() which will
2203  * automatically be unregistered and freed.
2204  *
2205  * Return: zero on success, else a negative error code.
2206  */
2207 int devm_spi_register_controller(struct device *dev,
2208 				 struct spi_controller *ctlr)
2209 {
2210 	struct spi_controller **ptr;
2211 	int ret;
2212 
2213 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2214 	if (!ptr)
2215 		return -ENOMEM;
2216 
2217 	ret = spi_register_controller(ctlr);
2218 	if (!ret) {
2219 		*ptr = ctlr;
2220 		devres_add(dev, ptr);
2221 	} else {
2222 		devres_free(ptr);
2223 	}
2224 
2225 	return ret;
2226 }
2227 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2228 
2229 static int __unregister(struct device *dev, void *null)
2230 {
2231 	spi_unregister_device(to_spi_device(dev));
2232 	return 0;
2233 }
2234 
2235 /**
2236  * spi_unregister_controller - unregister SPI master or slave controller
2237  * @ctlr: the controller being unregistered
2238  * Context: can sleep
2239  *
2240  * This call is used only by SPI controller drivers, which are the
2241  * only ones directly touching chip registers.
2242  *
2243  * This must be called from context that can sleep.
2244  *
2245  * Note that this function also drops a reference to the controller.
2246  */
2247 void spi_unregister_controller(struct spi_controller *ctlr)
2248 {
2249 	struct spi_controller *found;
2250 	int id = ctlr->bus_num;
2251 	int dummy;
2252 
2253 	/* First make sure that this controller was ever added */
2254 	mutex_lock(&board_lock);
2255 	found = idr_find(&spi_master_idr, id);
2256 	mutex_unlock(&board_lock);
2257 	if (found != ctlr) {
2258 		dev_dbg(&ctlr->dev,
2259 			"attempting to delete unregistered controller [%s]\n",
2260 			dev_name(&ctlr->dev));
2261 		return;
2262 	}
2263 	if (ctlr->queued) {
2264 		if (spi_destroy_queue(ctlr))
2265 			dev_err(&ctlr->dev, "queue remove failed\n");
2266 	}
2267 	mutex_lock(&board_lock);
2268 	list_del(&ctlr->list);
2269 	mutex_unlock(&board_lock);
2270 
2271 	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2272 	device_unregister(&ctlr->dev);
2273 	/* free bus id */
2274 	mutex_lock(&board_lock);
2275 	idr_remove(&spi_master_idr, id);
2276 	mutex_unlock(&board_lock);
2277 }
2278 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2279 
2280 int spi_controller_suspend(struct spi_controller *ctlr)
2281 {
2282 	int ret;
2283 
2284 	/* Basically no-ops for non-queued controllers */
2285 	if (!ctlr->queued)
2286 		return 0;
2287 
2288 	ret = spi_stop_queue(ctlr);
2289 	if (ret)
2290 		dev_err(&ctlr->dev, "queue stop failed\n");
2291 
2292 	return ret;
2293 }
2294 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2295 
2296 int spi_controller_resume(struct spi_controller *ctlr)
2297 {
2298 	int ret;
2299 
2300 	if (!ctlr->queued)
2301 		return 0;
2302 
2303 	ret = spi_start_queue(ctlr);
2304 	if (ret)
2305 		dev_err(&ctlr->dev, "queue restart failed\n");
2306 
2307 	return ret;
2308 }
2309 EXPORT_SYMBOL_GPL(spi_controller_resume);
2310 
2311 static int __spi_controller_match(struct device *dev, const void *data)
2312 {
2313 	struct spi_controller *ctlr;
2314 	const u16 *bus_num = data;
2315 
2316 	ctlr = container_of(dev, struct spi_controller, dev);
2317 	return ctlr->bus_num == *bus_num;
2318 }
2319 
2320 /**
2321  * spi_busnum_to_master - look up master associated with bus_num
2322  * @bus_num: the master's bus number
2323  * Context: can sleep
2324  *
2325  * This call may be used with devices that are registered after
2326  * arch init time.  It returns a refcounted pointer to the relevant
2327  * spi_controller (which the caller must release), or NULL if there is
2328  * no such master registered.
2329  *
2330  * Return: the SPI master structure on success, else NULL.
2331  */
2332 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2333 {
2334 	struct device		*dev;
2335 	struct spi_controller	*ctlr = NULL;
2336 
2337 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2338 				__spi_controller_match);
2339 	if (dev)
2340 		ctlr = container_of(dev, struct spi_controller, dev);
2341 	/* reference got in class_find_device */
2342 	return ctlr;
2343 }
2344 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2345 
2346 /*-------------------------------------------------------------------------*/
2347 
2348 /* Core methods for SPI resource management */
2349 
2350 /**
2351  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2352  *                 during the processing of a spi_message while using
2353  *                 spi_transfer_one
2354  * @spi:     the spi device for which we allocate memory
2355  * @release: the release code to execute for this resource
2356  * @size:    size to alloc and return
2357  * @gfp:     GFP allocation flags
2358  *
2359  * Return: the pointer to the allocated data
2360  *
2361  * This may get enhanced in the future to allocate from a memory pool
2362  * of the @spi_device or @spi_controller to avoid repeated allocations.
2363  */
2364 void *spi_res_alloc(struct spi_device *spi,
2365 		    spi_res_release_t release,
2366 		    size_t size, gfp_t gfp)
2367 {
2368 	struct spi_res *sres;
2369 
2370 	sres = kzalloc(sizeof(*sres) + size, gfp);
2371 	if (!sres)
2372 		return NULL;
2373 
2374 	INIT_LIST_HEAD(&sres->entry);
2375 	sres->release = release;
2376 
2377 	return sres->data;
2378 }
2379 EXPORT_SYMBOL_GPL(spi_res_alloc);
2380 
2381 /**
2382  * spi_res_free - free an spi resource
2383  * @res: pointer to the custom data of a resource
2384  *
2385  */
2386 void spi_res_free(void *res)
2387 {
2388 	struct spi_res *sres = container_of(res, struct spi_res, data);
2389 
2390 	if (!res)
2391 		return;
2392 
2393 	WARN_ON(!list_empty(&sres->entry));
2394 	kfree(sres);
2395 }
2396 EXPORT_SYMBOL_GPL(spi_res_free);
2397 
2398 /**
2399  * spi_res_add - add a spi_res to the spi_message
2400  * @message: the spi message
2401  * @res:     the spi_resource
2402  */
2403 void spi_res_add(struct spi_message *message, void *res)
2404 {
2405 	struct spi_res *sres = container_of(res, struct spi_res, data);
2406 
2407 	WARN_ON(!list_empty(&sres->entry));
2408 	list_add_tail(&sres->entry, &message->resources);
2409 }
2410 EXPORT_SYMBOL_GPL(spi_res_add);
2411 
2412 /**
2413  * spi_res_release - release all spi resources for this message
2414  * @ctlr:  the @spi_controller
2415  * @message: the @spi_message
2416  */
2417 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2418 {
2419 	struct spi_res *res;
2420 
2421 	while (!list_empty(&message->resources)) {
2422 		res = list_last_entry(&message->resources,
2423 				      struct spi_res, entry);
2424 
2425 		if (res->release)
2426 			res->release(ctlr, message, res->data);
2427 
2428 		list_del(&res->entry);
2429 
2430 		kfree(res);
2431 	}
2432 }
2433 EXPORT_SYMBOL_GPL(spi_res_release);
2434 
2435 /*-------------------------------------------------------------------------*/
2436 
2437 /* Core methods for spi_message alterations */
2438 
2439 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2440 					    struct spi_message *msg,
2441 					    void *res)
2442 {
2443 	struct spi_replaced_transfers *rxfer = res;
2444 	size_t i;
2445 
2446 	/* call extra callback if requested */
2447 	if (rxfer->release)
2448 		rxfer->release(ctlr, msg, res);
2449 
2450 	/* insert replaced transfers back into the message */
2451 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2452 
2453 	/* remove the formerly inserted entries */
2454 	for (i = 0; i < rxfer->inserted; i++)
2455 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2456 }
2457 
2458 /**
2459  * spi_replace_transfers - replace transfers with several transfers
2460  *                         and register change with spi_message.resources
2461  * @msg:           the spi_message we work upon
2462  * @xfer_first:    the first spi_transfer we want to replace
2463  * @remove:        number of transfers to remove
2464  * @insert:        the number of transfers we want to insert instead
2465  * @release:       extra release code necessary in some circumstances
2466  * @extradatasize: extra data to allocate (with alignment guarantees
2467  *                 of struct @spi_transfer)
2468  * @gfp:           gfp flags
2469  *
2470  * Returns: pointer to @spi_replaced_transfers,
2471  *          PTR_ERR(...) in case of errors.
2472  */
2473 struct spi_replaced_transfers *spi_replace_transfers(
2474 	struct spi_message *msg,
2475 	struct spi_transfer *xfer_first,
2476 	size_t remove,
2477 	size_t insert,
2478 	spi_replaced_release_t release,
2479 	size_t extradatasize,
2480 	gfp_t gfp)
2481 {
2482 	struct spi_replaced_transfers *rxfer;
2483 	struct spi_transfer *xfer;
2484 	size_t i;
2485 
2486 	/* allocate the structure using spi_res */
2487 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2488 			      insert * sizeof(struct spi_transfer)
2489 			      + sizeof(struct spi_replaced_transfers)
2490 			      + extradatasize,
2491 			      gfp);
2492 	if (!rxfer)
2493 		return ERR_PTR(-ENOMEM);
2494 
2495 	/* the release code to invoke before running the generic release */
2496 	rxfer->release = release;
2497 
2498 	/* assign extradata */
2499 	if (extradatasize)
2500 		rxfer->extradata =
2501 			&rxfer->inserted_transfers[insert];
2502 
2503 	/* init the replaced_transfers list */
2504 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2505 
2506 	/* assign the list_entry after which we should reinsert
2507 	 * the @replaced_transfers - it may be spi_message.messages!
2508 	 */
2509 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2510 
2511 	/* remove the requested number of transfers */
2512 	for (i = 0; i < remove; i++) {
2513 		/* if the entry after replaced_after it is msg->transfers
2514 		 * then we have been requested to remove more transfers
2515 		 * than are in the list
2516 		 */
2517 		if (rxfer->replaced_after->next == &msg->transfers) {
2518 			dev_err(&msg->spi->dev,
2519 				"requested to remove more spi_transfers than are available\n");
2520 			/* insert replaced transfers back into the message */
2521 			list_splice(&rxfer->replaced_transfers,
2522 				    rxfer->replaced_after);
2523 
2524 			/* free the spi_replace_transfer structure */
2525 			spi_res_free(rxfer);
2526 
2527 			/* and return with an error */
2528 			return ERR_PTR(-EINVAL);
2529 		}
2530 
2531 		/* remove the entry after replaced_after from list of
2532 		 * transfers and add it to list of replaced_transfers
2533 		 */
2534 		list_move_tail(rxfer->replaced_after->next,
2535 			       &rxfer->replaced_transfers);
2536 	}
2537 
2538 	/* create copy of the given xfer with identical settings
2539 	 * based on the first transfer to get removed
2540 	 */
2541 	for (i = 0; i < insert; i++) {
2542 		/* we need to run in reverse order */
2543 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2544 
2545 		/* copy all spi_transfer data */
2546 		memcpy(xfer, xfer_first, sizeof(*xfer));
2547 
2548 		/* add to list */
2549 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2550 
2551 		/* clear cs_change and delay_usecs for all but the last */
2552 		if (i) {
2553 			xfer->cs_change = false;
2554 			xfer->delay_usecs = 0;
2555 		}
2556 	}
2557 
2558 	/* set up inserted */
2559 	rxfer->inserted = insert;
2560 
2561 	/* and register it with spi_res/spi_message */
2562 	spi_res_add(msg, rxfer);
2563 
2564 	return rxfer;
2565 }
2566 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2567 
2568 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2569 					struct spi_message *msg,
2570 					struct spi_transfer **xferp,
2571 					size_t maxsize,
2572 					gfp_t gfp)
2573 {
2574 	struct spi_transfer *xfer = *xferp, *xfers;
2575 	struct spi_replaced_transfers *srt;
2576 	size_t offset;
2577 	size_t count, i;
2578 
2579 	/* warn once about this fact that we are splitting a transfer */
2580 	dev_warn_once(&msg->spi->dev,
2581 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2582 		      xfer->len, maxsize);
2583 
2584 	/* calculate how many we have to replace */
2585 	count = DIV_ROUND_UP(xfer->len, maxsize);
2586 
2587 	/* create replacement */
2588 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2589 	if (IS_ERR(srt))
2590 		return PTR_ERR(srt);
2591 	xfers = srt->inserted_transfers;
2592 
2593 	/* now handle each of those newly inserted spi_transfers
2594 	 * note that the replacements spi_transfers all are preset
2595 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2596 	 * are all identical (as well as most others)
2597 	 * so we just have to fix up len and the pointers.
2598 	 *
2599 	 * this also includes support for the depreciated
2600 	 * spi_message.is_dma_mapped interface
2601 	 */
2602 
2603 	/* the first transfer just needs the length modified, so we
2604 	 * run it outside the loop
2605 	 */
2606 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2607 
2608 	/* all the others need rx_buf/tx_buf also set */
2609 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2610 		/* update rx_buf, tx_buf and dma */
2611 		if (xfers[i].rx_buf)
2612 			xfers[i].rx_buf += offset;
2613 		if (xfers[i].rx_dma)
2614 			xfers[i].rx_dma += offset;
2615 		if (xfers[i].tx_buf)
2616 			xfers[i].tx_buf += offset;
2617 		if (xfers[i].tx_dma)
2618 			xfers[i].tx_dma += offset;
2619 
2620 		/* update length */
2621 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2622 	}
2623 
2624 	/* we set up xferp to the last entry we have inserted,
2625 	 * so that we skip those already split transfers
2626 	 */
2627 	*xferp = &xfers[count - 1];
2628 
2629 	/* increment statistics counters */
2630 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2631 				       transfers_split_maxsize);
2632 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2633 				       transfers_split_maxsize);
2634 
2635 	return 0;
2636 }
2637 
2638 /**
2639  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2640  *                              when an individual transfer exceeds a
2641  *                              certain size
2642  * @ctlr:    the @spi_controller for this transfer
2643  * @msg:   the @spi_message to transform
2644  * @maxsize:  the maximum when to apply this
2645  * @gfp: GFP allocation flags
2646  *
2647  * Return: status of transformation
2648  */
2649 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2650 				struct spi_message *msg,
2651 				size_t maxsize,
2652 				gfp_t gfp)
2653 {
2654 	struct spi_transfer *xfer;
2655 	int ret;
2656 
2657 	/* iterate over the transfer_list,
2658 	 * but note that xfer is advanced to the last transfer inserted
2659 	 * to avoid checking sizes again unnecessarily (also xfer does
2660 	 * potentiall belong to a different list by the time the
2661 	 * replacement has happened
2662 	 */
2663 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2664 		if (xfer->len > maxsize) {
2665 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2666 							   maxsize, gfp);
2667 			if (ret)
2668 				return ret;
2669 		}
2670 	}
2671 
2672 	return 0;
2673 }
2674 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2675 
2676 /*-------------------------------------------------------------------------*/
2677 
2678 /* Core methods for SPI controller protocol drivers.  Some of the
2679  * other core methods are currently defined as inline functions.
2680  */
2681 
2682 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2683 					u8 bits_per_word)
2684 {
2685 	if (ctlr->bits_per_word_mask) {
2686 		/* Only 32 bits fit in the mask */
2687 		if (bits_per_word > 32)
2688 			return -EINVAL;
2689 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2690 			return -EINVAL;
2691 	}
2692 
2693 	return 0;
2694 }
2695 
2696 /**
2697  * spi_setup - setup SPI mode and clock rate
2698  * @spi: the device whose settings are being modified
2699  * Context: can sleep, and no requests are queued to the device
2700  *
2701  * SPI protocol drivers may need to update the transfer mode if the
2702  * device doesn't work with its default.  They may likewise need
2703  * to update clock rates or word sizes from initial values.  This function
2704  * changes those settings, and must be called from a context that can sleep.
2705  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2706  * effect the next time the device is selected and data is transferred to
2707  * or from it.  When this function returns, the spi device is deselected.
2708  *
2709  * Note that this call will fail if the protocol driver specifies an option
2710  * that the underlying controller or its driver does not support.  For
2711  * example, not all hardware supports wire transfers using nine bit words,
2712  * LSB-first wire encoding, or active-high chipselects.
2713  *
2714  * Return: zero on success, else a negative error code.
2715  */
2716 int spi_setup(struct spi_device *spi)
2717 {
2718 	unsigned	bad_bits, ugly_bits;
2719 	int		status;
2720 
2721 	/* check mode to prevent that DUAL and QUAD set at the same time
2722 	 */
2723 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2724 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2725 		dev_err(&spi->dev,
2726 		"setup: can not select dual and quad at the same time\n");
2727 		return -EINVAL;
2728 	}
2729 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2730 	 */
2731 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2732 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2733 		return -EINVAL;
2734 	/* help drivers fail *cleanly* when they need options
2735 	 * that aren't supported with their current controller
2736 	 */
2737 	bad_bits = spi->mode & ~spi->controller->mode_bits;
2738 	ugly_bits = bad_bits &
2739 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2740 	if (ugly_bits) {
2741 		dev_warn(&spi->dev,
2742 			 "setup: ignoring unsupported mode bits %x\n",
2743 			 ugly_bits);
2744 		spi->mode &= ~ugly_bits;
2745 		bad_bits &= ~ugly_bits;
2746 	}
2747 	if (bad_bits) {
2748 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2749 			bad_bits);
2750 		return -EINVAL;
2751 	}
2752 
2753 	if (!spi->bits_per_word)
2754 		spi->bits_per_word = 8;
2755 
2756 	status = __spi_validate_bits_per_word(spi->controller,
2757 					      spi->bits_per_word);
2758 	if (status)
2759 		return status;
2760 
2761 	if (!spi->max_speed_hz)
2762 		spi->max_speed_hz = spi->controller->max_speed_hz;
2763 
2764 	if (spi->controller->setup)
2765 		status = spi->controller->setup(spi);
2766 
2767 	spi_set_cs(spi, false);
2768 
2769 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2770 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2771 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2772 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2773 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2774 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2775 			spi->bits_per_word, spi->max_speed_hz,
2776 			status);
2777 
2778 	return status;
2779 }
2780 EXPORT_SYMBOL_GPL(spi_setup);
2781 
2782 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2783 {
2784 	struct spi_controller *ctlr = spi->controller;
2785 	struct spi_transfer *xfer;
2786 	int w_size;
2787 
2788 	if (list_empty(&message->transfers))
2789 		return -EINVAL;
2790 
2791 	/* Half-duplex links include original MicroWire, and ones with
2792 	 * only one data pin like SPI_3WIRE (switches direction) or where
2793 	 * either MOSI or MISO is missing.  They can also be caused by
2794 	 * software limitations.
2795 	 */
2796 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2797 	    (spi->mode & SPI_3WIRE)) {
2798 		unsigned flags = ctlr->flags;
2799 
2800 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2801 			if (xfer->rx_buf && xfer->tx_buf)
2802 				return -EINVAL;
2803 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2804 				return -EINVAL;
2805 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2806 				return -EINVAL;
2807 		}
2808 	}
2809 
2810 	/**
2811 	 * Set transfer bits_per_word and max speed as spi device default if
2812 	 * it is not set for this transfer.
2813 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2814 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2815 	 */
2816 	message->frame_length = 0;
2817 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2818 		message->frame_length += xfer->len;
2819 		if (!xfer->bits_per_word)
2820 			xfer->bits_per_word = spi->bits_per_word;
2821 
2822 		if (!xfer->speed_hz)
2823 			xfer->speed_hz = spi->max_speed_hz;
2824 		if (!xfer->speed_hz)
2825 			xfer->speed_hz = ctlr->max_speed_hz;
2826 
2827 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2828 			xfer->speed_hz = ctlr->max_speed_hz;
2829 
2830 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2831 			return -EINVAL;
2832 
2833 		/*
2834 		 * SPI transfer length should be multiple of SPI word size
2835 		 * where SPI word size should be power-of-two multiple
2836 		 */
2837 		if (xfer->bits_per_word <= 8)
2838 			w_size = 1;
2839 		else if (xfer->bits_per_word <= 16)
2840 			w_size = 2;
2841 		else
2842 			w_size = 4;
2843 
2844 		/* No partial transfers accepted */
2845 		if (xfer->len % w_size)
2846 			return -EINVAL;
2847 
2848 		if (xfer->speed_hz && ctlr->min_speed_hz &&
2849 		    xfer->speed_hz < ctlr->min_speed_hz)
2850 			return -EINVAL;
2851 
2852 		if (xfer->tx_buf && !xfer->tx_nbits)
2853 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2854 		if (xfer->rx_buf && !xfer->rx_nbits)
2855 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2856 		/* check transfer tx/rx_nbits:
2857 		 * 1. check the value matches one of single, dual and quad
2858 		 * 2. check tx/rx_nbits match the mode in spi_device
2859 		 */
2860 		if (xfer->tx_buf) {
2861 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2862 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2863 				xfer->tx_nbits != SPI_NBITS_QUAD)
2864 				return -EINVAL;
2865 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2866 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2867 				return -EINVAL;
2868 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2869 				!(spi->mode & SPI_TX_QUAD))
2870 				return -EINVAL;
2871 		}
2872 		/* check transfer rx_nbits */
2873 		if (xfer->rx_buf) {
2874 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2875 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2876 				xfer->rx_nbits != SPI_NBITS_QUAD)
2877 				return -EINVAL;
2878 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2879 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2880 				return -EINVAL;
2881 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2882 				!(spi->mode & SPI_RX_QUAD))
2883 				return -EINVAL;
2884 		}
2885 	}
2886 
2887 	message->status = -EINPROGRESS;
2888 
2889 	return 0;
2890 }
2891 
2892 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2893 {
2894 	struct spi_controller *ctlr = spi->controller;
2895 
2896 	message->spi = spi;
2897 
2898 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2899 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2900 
2901 	trace_spi_message_submit(message);
2902 
2903 	return ctlr->transfer(spi, message);
2904 }
2905 
2906 /**
2907  * spi_async - asynchronous SPI transfer
2908  * @spi: device with which data will be exchanged
2909  * @message: describes the data transfers, including completion callback
2910  * Context: any (irqs may be blocked, etc)
2911  *
2912  * This call may be used in_irq and other contexts which can't sleep,
2913  * as well as from task contexts which can sleep.
2914  *
2915  * The completion callback is invoked in a context which can't sleep.
2916  * Before that invocation, the value of message->status is undefined.
2917  * When the callback is issued, message->status holds either zero (to
2918  * indicate complete success) or a negative error code.  After that
2919  * callback returns, the driver which issued the transfer request may
2920  * deallocate the associated memory; it's no longer in use by any SPI
2921  * core or controller driver code.
2922  *
2923  * Note that although all messages to a spi_device are handled in
2924  * FIFO order, messages may go to different devices in other orders.
2925  * Some device might be higher priority, or have various "hard" access
2926  * time requirements, for example.
2927  *
2928  * On detection of any fault during the transfer, processing of
2929  * the entire message is aborted, and the device is deselected.
2930  * Until returning from the associated message completion callback,
2931  * no other spi_message queued to that device will be processed.
2932  * (This rule applies equally to all the synchronous transfer calls,
2933  * which are wrappers around this core asynchronous primitive.)
2934  *
2935  * Return: zero on success, else a negative error code.
2936  */
2937 int spi_async(struct spi_device *spi, struct spi_message *message)
2938 {
2939 	struct spi_controller *ctlr = spi->controller;
2940 	int ret;
2941 	unsigned long flags;
2942 
2943 	ret = __spi_validate(spi, message);
2944 	if (ret != 0)
2945 		return ret;
2946 
2947 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2948 
2949 	if (ctlr->bus_lock_flag)
2950 		ret = -EBUSY;
2951 	else
2952 		ret = __spi_async(spi, message);
2953 
2954 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2955 
2956 	return ret;
2957 }
2958 EXPORT_SYMBOL_GPL(spi_async);
2959 
2960 /**
2961  * spi_async_locked - version of spi_async with exclusive bus usage
2962  * @spi: device with which data will be exchanged
2963  * @message: describes the data transfers, including completion callback
2964  * Context: any (irqs may be blocked, etc)
2965  *
2966  * This call may be used in_irq and other contexts which can't sleep,
2967  * as well as from task contexts which can sleep.
2968  *
2969  * The completion callback is invoked in a context which can't sleep.
2970  * Before that invocation, the value of message->status is undefined.
2971  * When the callback is issued, message->status holds either zero (to
2972  * indicate complete success) or a negative error code.  After that
2973  * callback returns, the driver which issued the transfer request may
2974  * deallocate the associated memory; it's no longer in use by any SPI
2975  * core or controller driver code.
2976  *
2977  * Note that although all messages to a spi_device are handled in
2978  * FIFO order, messages may go to different devices in other orders.
2979  * Some device might be higher priority, or have various "hard" access
2980  * time requirements, for example.
2981  *
2982  * On detection of any fault during the transfer, processing of
2983  * the entire message is aborted, and the device is deselected.
2984  * Until returning from the associated message completion callback,
2985  * no other spi_message queued to that device will be processed.
2986  * (This rule applies equally to all the synchronous transfer calls,
2987  * which are wrappers around this core asynchronous primitive.)
2988  *
2989  * Return: zero on success, else a negative error code.
2990  */
2991 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2992 {
2993 	struct spi_controller *ctlr = spi->controller;
2994 	int ret;
2995 	unsigned long flags;
2996 
2997 	ret = __spi_validate(spi, message);
2998 	if (ret != 0)
2999 		return ret;
3000 
3001 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3002 
3003 	ret = __spi_async(spi, message);
3004 
3005 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3006 
3007 	return ret;
3008 
3009 }
3010 EXPORT_SYMBOL_GPL(spi_async_locked);
3011 
3012 
3013 int spi_flash_read(struct spi_device *spi,
3014 		   struct spi_flash_read_message *msg)
3015 
3016 {
3017 	struct spi_controller *master = spi->controller;
3018 	struct device *rx_dev = NULL;
3019 	int ret;
3020 
3021 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3022 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
3023 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3024 		return -EINVAL;
3025 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3026 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
3027 	    !(spi->mode & SPI_TX_QUAD))
3028 		return -EINVAL;
3029 	if (msg->data_nbits == SPI_NBITS_DUAL &&
3030 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3031 		return -EINVAL;
3032 	if (msg->data_nbits == SPI_NBITS_QUAD &&
3033 	    !(spi->mode &  SPI_RX_QUAD))
3034 		return -EINVAL;
3035 
3036 	if (master->auto_runtime_pm) {
3037 		ret = pm_runtime_get_sync(master->dev.parent);
3038 		if (ret < 0) {
3039 			dev_err(&master->dev, "Failed to power device: %d\n",
3040 				ret);
3041 			return ret;
3042 		}
3043 	}
3044 
3045 	mutex_lock(&master->bus_lock_mutex);
3046 	mutex_lock(&master->io_mutex);
3047 	if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3048 		rx_dev = master->dma_rx->device->dev;
3049 		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3050 				  msg->buf, msg->len,
3051 				  DMA_FROM_DEVICE);
3052 		if (!ret)
3053 			msg->cur_msg_mapped = true;
3054 	}
3055 	ret = master->spi_flash_read(spi, msg);
3056 	if (msg->cur_msg_mapped)
3057 		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3058 			      DMA_FROM_DEVICE);
3059 	mutex_unlock(&master->io_mutex);
3060 	mutex_unlock(&master->bus_lock_mutex);
3061 
3062 	if (master->auto_runtime_pm)
3063 		pm_runtime_put(master->dev.parent);
3064 
3065 	return ret;
3066 }
3067 EXPORT_SYMBOL_GPL(spi_flash_read);
3068 
3069 /*-------------------------------------------------------------------------*/
3070 
3071 /* Utility methods for SPI protocol drivers, layered on
3072  * top of the core.  Some other utility methods are defined as
3073  * inline functions.
3074  */
3075 
3076 static void spi_complete(void *arg)
3077 {
3078 	complete(arg);
3079 }
3080 
3081 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3082 {
3083 	DECLARE_COMPLETION_ONSTACK(done);
3084 	int status;
3085 	struct spi_controller *ctlr = spi->controller;
3086 	unsigned long flags;
3087 
3088 	status = __spi_validate(spi, message);
3089 	if (status != 0)
3090 		return status;
3091 
3092 	message->complete = spi_complete;
3093 	message->context = &done;
3094 	message->spi = spi;
3095 
3096 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3097 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3098 
3099 	/* If we're not using the legacy transfer method then we will
3100 	 * try to transfer in the calling context so special case.
3101 	 * This code would be less tricky if we could remove the
3102 	 * support for driver implemented message queues.
3103 	 */
3104 	if (ctlr->transfer == spi_queued_transfer) {
3105 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3106 
3107 		trace_spi_message_submit(message);
3108 
3109 		status = __spi_queued_transfer(spi, message, false);
3110 
3111 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3112 	} else {
3113 		status = spi_async_locked(spi, message);
3114 	}
3115 
3116 	if (status == 0) {
3117 		/* Push out the messages in the calling context if we
3118 		 * can.
3119 		 */
3120 		if (ctlr->transfer == spi_queued_transfer) {
3121 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3122 						       spi_sync_immediate);
3123 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3124 						       spi_sync_immediate);
3125 			__spi_pump_messages(ctlr, false);
3126 		}
3127 
3128 		wait_for_completion(&done);
3129 		status = message->status;
3130 	}
3131 	message->context = NULL;
3132 	return status;
3133 }
3134 
3135 /**
3136  * spi_sync - blocking/synchronous SPI data transfers
3137  * @spi: device with which data will be exchanged
3138  * @message: describes the data transfers
3139  * Context: can sleep
3140  *
3141  * This call may only be used from a context that may sleep.  The sleep
3142  * is non-interruptible, and has no timeout.  Low-overhead controller
3143  * drivers may DMA directly into and out of the message buffers.
3144  *
3145  * Note that the SPI device's chip select is active during the message,
3146  * and then is normally disabled between messages.  Drivers for some
3147  * frequently-used devices may want to minimize costs of selecting a chip,
3148  * by leaving it selected in anticipation that the next message will go
3149  * to the same chip.  (That may increase power usage.)
3150  *
3151  * Also, the caller is guaranteeing that the memory associated with the
3152  * message will not be freed before this call returns.
3153  *
3154  * Return: zero on success, else a negative error code.
3155  */
3156 int spi_sync(struct spi_device *spi, struct spi_message *message)
3157 {
3158 	int ret;
3159 
3160 	mutex_lock(&spi->controller->bus_lock_mutex);
3161 	ret = __spi_sync(spi, message);
3162 	mutex_unlock(&spi->controller->bus_lock_mutex);
3163 
3164 	return ret;
3165 }
3166 EXPORT_SYMBOL_GPL(spi_sync);
3167 
3168 /**
3169  * spi_sync_locked - version of spi_sync with exclusive bus usage
3170  * @spi: device with which data will be exchanged
3171  * @message: describes the data transfers
3172  * Context: can sleep
3173  *
3174  * This call may only be used from a context that may sleep.  The sleep
3175  * is non-interruptible, and has no timeout.  Low-overhead controller
3176  * drivers may DMA directly into and out of the message buffers.
3177  *
3178  * This call should be used by drivers that require exclusive access to the
3179  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3180  * be released by a spi_bus_unlock call when the exclusive access is over.
3181  *
3182  * Return: zero on success, else a negative error code.
3183  */
3184 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3185 {
3186 	return __spi_sync(spi, message);
3187 }
3188 EXPORT_SYMBOL_GPL(spi_sync_locked);
3189 
3190 /**
3191  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3192  * @ctlr: SPI bus master that should be locked for exclusive bus access
3193  * Context: can sleep
3194  *
3195  * This call may only be used from a context that may sleep.  The sleep
3196  * is non-interruptible, and has no timeout.
3197  *
3198  * This call should be used by drivers that require exclusive access to the
3199  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3200  * exclusive access is over. Data transfer must be done by spi_sync_locked
3201  * and spi_async_locked calls when the SPI bus lock is held.
3202  *
3203  * Return: always zero.
3204  */
3205 int spi_bus_lock(struct spi_controller *ctlr)
3206 {
3207 	unsigned long flags;
3208 
3209 	mutex_lock(&ctlr->bus_lock_mutex);
3210 
3211 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3212 	ctlr->bus_lock_flag = 1;
3213 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3214 
3215 	/* mutex remains locked until spi_bus_unlock is called */
3216 
3217 	return 0;
3218 }
3219 EXPORT_SYMBOL_GPL(spi_bus_lock);
3220 
3221 /**
3222  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3223  * @ctlr: SPI bus master that was locked for exclusive bus access
3224  * Context: can sleep
3225  *
3226  * This call may only be used from a context that may sleep.  The sleep
3227  * is non-interruptible, and has no timeout.
3228  *
3229  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3230  * call.
3231  *
3232  * Return: always zero.
3233  */
3234 int spi_bus_unlock(struct spi_controller *ctlr)
3235 {
3236 	ctlr->bus_lock_flag = 0;
3237 
3238 	mutex_unlock(&ctlr->bus_lock_mutex);
3239 
3240 	return 0;
3241 }
3242 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3243 
3244 /* portable code must never pass more than 32 bytes */
3245 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3246 
3247 static u8	*buf;
3248 
3249 /**
3250  * spi_write_then_read - SPI synchronous write followed by read
3251  * @spi: device with which data will be exchanged
3252  * @txbuf: data to be written (need not be dma-safe)
3253  * @n_tx: size of txbuf, in bytes
3254  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3255  * @n_rx: size of rxbuf, in bytes
3256  * Context: can sleep
3257  *
3258  * This performs a half duplex MicroWire style transaction with the
3259  * device, sending txbuf and then reading rxbuf.  The return value
3260  * is zero for success, else a negative errno status code.
3261  * This call may only be used from a context that may sleep.
3262  *
3263  * Parameters to this routine are always copied using a small buffer;
3264  * portable code should never use this for more than 32 bytes.
3265  * Performance-sensitive or bulk transfer code should instead use
3266  * spi_{async,sync}() calls with dma-safe buffers.
3267  *
3268  * Return: zero on success, else a negative error code.
3269  */
3270 int spi_write_then_read(struct spi_device *spi,
3271 		const void *txbuf, unsigned n_tx,
3272 		void *rxbuf, unsigned n_rx)
3273 {
3274 	static DEFINE_MUTEX(lock);
3275 
3276 	int			status;
3277 	struct spi_message	message;
3278 	struct spi_transfer	x[2];
3279 	u8			*local_buf;
3280 
3281 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3282 	 * copying here, (as a pure convenience thing), but we can
3283 	 * keep heap costs out of the hot path unless someone else is
3284 	 * using the pre-allocated buffer or the transfer is too large.
3285 	 */
3286 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3287 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3288 				    GFP_KERNEL | GFP_DMA);
3289 		if (!local_buf)
3290 			return -ENOMEM;
3291 	} else {
3292 		local_buf = buf;
3293 	}
3294 
3295 	spi_message_init(&message);
3296 	memset(x, 0, sizeof(x));
3297 	if (n_tx) {
3298 		x[0].len = n_tx;
3299 		spi_message_add_tail(&x[0], &message);
3300 	}
3301 	if (n_rx) {
3302 		x[1].len = n_rx;
3303 		spi_message_add_tail(&x[1], &message);
3304 	}
3305 
3306 	memcpy(local_buf, txbuf, n_tx);
3307 	x[0].tx_buf = local_buf;
3308 	x[1].rx_buf = local_buf + n_tx;
3309 
3310 	/* do the i/o */
3311 	status = spi_sync(spi, &message);
3312 	if (status == 0)
3313 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3314 
3315 	if (x[0].tx_buf == buf)
3316 		mutex_unlock(&lock);
3317 	else
3318 		kfree(local_buf);
3319 
3320 	return status;
3321 }
3322 EXPORT_SYMBOL_GPL(spi_write_then_read);
3323 
3324 /*-------------------------------------------------------------------------*/
3325 
3326 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3327 static int __spi_of_device_match(struct device *dev, void *data)
3328 {
3329 	return dev->of_node == data;
3330 }
3331 
3332 /* must call put_device() when done with returned spi_device device */
3333 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3334 {
3335 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3336 						__spi_of_device_match);
3337 	return dev ? to_spi_device(dev) : NULL;
3338 }
3339 
3340 static int __spi_of_controller_match(struct device *dev, const void *data)
3341 {
3342 	return dev->of_node == data;
3343 }
3344 
3345 /* the spi controllers are not using spi_bus, so we find it with another way */
3346 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3347 {
3348 	struct device *dev;
3349 
3350 	dev = class_find_device(&spi_master_class, NULL, node,
3351 				__spi_of_controller_match);
3352 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3353 		dev = class_find_device(&spi_slave_class, NULL, node,
3354 					__spi_of_controller_match);
3355 	if (!dev)
3356 		return NULL;
3357 
3358 	/* reference got in class_find_device */
3359 	return container_of(dev, struct spi_controller, dev);
3360 }
3361 
3362 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3363 			 void *arg)
3364 {
3365 	struct of_reconfig_data *rd = arg;
3366 	struct spi_controller *ctlr;
3367 	struct spi_device *spi;
3368 
3369 	switch (of_reconfig_get_state_change(action, arg)) {
3370 	case OF_RECONFIG_CHANGE_ADD:
3371 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3372 		if (ctlr == NULL)
3373 			return NOTIFY_OK;	/* not for us */
3374 
3375 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3376 			put_device(&ctlr->dev);
3377 			return NOTIFY_OK;
3378 		}
3379 
3380 		spi = of_register_spi_device(ctlr, rd->dn);
3381 		put_device(&ctlr->dev);
3382 
3383 		if (IS_ERR(spi)) {
3384 			pr_err("%s: failed to create for '%pOF'\n",
3385 					__func__, rd->dn);
3386 			of_node_clear_flag(rd->dn, OF_POPULATED);
3387 			return notifier_from_errno(PTR_ERR(spi));
3388 		}
3389 		break;
3390 
3391 	case OF_RECONFIG_CHANGE_REMOVE:
3392 		/* already depopulated? */
3393 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3394 			return NOTIFY_OK;
3395 
3396 		/* find our device by node */
3397 		spi = of_find_spi_device_by_node(rd->dn);
3398 		if (spi == NULL)
3399 			return NOTIFY_OK;	/* no? not meant for us */
3400 
3401 		/* unregister takes one ref away */
3402 		spi_unregister_device(spi);
3403 
3404 		/* and put the reference of the find */
3405 		put_device(&spi->dev);
3406 		break;
3407 	}
3408 
3409 	return NOTIFY_OK;
3410 }
3411 
3412 static struct notifier_block spi_of_notifier = {
3413 	.notifier_call = of_spi_notify,
3414 };
3415 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3416 extern struct notifier_block spi_of_notifier;
3417 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3418 
3419 #if IS_ENABLED(CONFIG_ACPI)
3420 static int spi_acpi_controller_match(struct device *dev, const void *data)
3421 {
3422 	return ACPI_COMPANION(dev->parent) == data;
3423 }
3424 
3425 static int spi_acpi_device_match(struct device *dev, void *data)
3426 {
3427 	return ACPI_COMPANION(dev) == data;
3428 }
3429 
3430 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3431 {
3432 	struct device *dev;
3433 
3434 	dev = class_find_device(&spi_master_class, NULL, adev,
3435 				spi_acpi_controller_match);
3436 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3437 		dev = class_find_device(&spi_slave_class, NULL, adev,
3438 					spi_acpi_controller_match);
3439 	if (!dev)
3440 		return NULL;
3441 
3442 	return container_of(dev, struct spi_controller, dev);
3443 }
3444 
3445 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3446 {
3447 	struct device *dev;
3448 
3449 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3450 
3451 	return dev ? to_spi_device(dev) : NULL;
3452 }
3453 
3454 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3455 			   void *arg)
3456 {
3457 	struct acpi_device *adev = arg;
3458 	struct spi_controller *ctlr;
3459 	struct spi_device *spi;
3460 
3461 	switch (value) {
3462 	case ACPI_RECONFIG_DEVICE_ADD:
3463 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3464 		if (!ctlr)
3465 			break;
3466 
3467 		acpi_register_spi_device(ctlr, adev);
3468 		put_device(&ctlr->dev);
3469 		break;
3470 	case ACPI_RECONFIG_DEVICE_REMOVE:
3471 		if (!acpi_device_enumerated(adev))
3472 			break;
3473 
3474 		spi = acpi_spi_find_device_by_adev(adev);
3475 		if (!spi)
3476 			break;
3477 
3478 		spi_unregister_device(spi);
3479 		put_device(&spi->dev);
3480 		break;
3481 	}
3482 
3483 	return NOTIFY_OK;
3484 }
3485 
3486 static struct notifier_block spi_acpi_notifier = {
3487 	.notifier_call = acpi_spi_notify,
3488 };
3489 #else
3490 extern struct notifier_block spi_acpi_notifier;
3491 #endif
3492 
3493 static int __init spi_init(void)
3494 {
3495 	int	status;
3496 
3497 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3498 	if (!buf) {
3499 		status = -ENOMEM;
3500 		goto err0;
3501 	}
3502 
3503 	status = bus_register(&spi_bus_type);
3504 	if (status < 0)
3505 		goto err1;
3506 
3507 	status = class_register(&spi_master_class);
3508 	if (status < 0)
3509 		goto err2;
3510 
3511 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3512 		status = class_register(&spi_slave_class);
3513 		if (status < 0)
3514 			goto err3;
3515 	}
3516 
3517 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3518 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3519 	if (IS_ENABLED(CONFIG_ACPI))
3520 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3521 
3522 	return 0;
3523 
3524 err3:
3525 	class_unregister(&spi_master_class);
3526 err2:
3527 	bus_unregister(&spi_bus_type);
3528 err1:
3529 	kfree(buf);
3530 	buf = NULL;
3531 err0:
3532 	return status;
3533 }
3534 
3535 /* board_info is normally registered in arch_initcall(),
3536  * but even essential drivers wait till later
3537  *
3538  * REVISIT only boardinfo really needs static linking. the rest (device and
3539  * driver registration) _could_ be dynamically linked (modular) ... costs
3540  * include needing to have boardinfo data structures be much more public.
3541  */
3542 postcore_initcall(spi_init);
3543 
3544