xref: /openbmc/linux/drivers/spi/spi.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	spi_controller_put(spi->controller);
51 	kfree(spi->driver_override);
52 	kfree(spi);
53 }
54 
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 	const struct spi_device	*spi = to_spi_device(dev);
59 	int len;
60 
61 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 	if (len != -ENODEV)
63 		return len;
64 
65 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68 
69 static ssize_t driver_override_store(struct device *dev,
70 				     struct device_attribute *a,
71 				     const char *buf, size_t count)
72 {
73 	struct spi_device *spi = to_spi_device(dev);
74 	const char *end = memchr(buf, '\n', count);
75 	const size_t len = end ? end - buf : count;
76 	const char *driver_override, *old;
77 
78 	/* We need to keep extra room for a newline when displaying value */
79 	if (len >= (PAGE_SIZE - 1))
80 		return -EINVAL;
81 
82 	driver_override = kstrndup(buf, len, GFP_KERNEL);
83 	if (!driver_override)
84 		return -ENOMEM;
85 
86 	device_lock(dev);
87 	old = spi->driver_override;
88 	if (len) {
89 		spi->driver_override = driver_override;
90 	} else {
91 		/* Empty string, disable driver override */
92 		spi->driver_override = NULL;
93 		kfree(driver_override);
94 	}
95 	device_unlock(dev);
96 	kfree(old);
97 
98 	return count;
99 }
100 
101 static ssize_t driver_override_show(struct device *dev,
102 				    struct device_attribute *a, char *buf)
103 {
104 	const struct spi_device *spi = to_spi_device(dev);
105 	ssize_t len;
106 
107 	device_lock(dev);
108 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 	device_unlock(dev);
110 	return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113 
114 #define SPI_STATISTICS_ATTRS(field, file)				\
115 static ssize_t spi_controller_##field##_show(struct device *dev,	\
116 					     struct device_attribute *attr, \
117 					     char *buf)			\
118 {									\
119 	struct spi_controller *ctlr = container_of(dev,			\
120 					 struct spi_controller, dev);	\
121 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
122 }									\
123 static struct device_attribute dev_attr_spi_controller_##field = {	\
124 	.attr = { .name = file, .mode = 0444 },				\
125 	.show = spi_controller_##field##_show,				\
126 };									\
127 static ssize_t spi_device_##field##_show(struct device *dev,		\
128 					 struct device_attribute *attr,	\
129 					char *buf)			\
130 {									\
131 	struct spi_device *spi = to_spi_device(dev);			\
132 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
133 }									\
134 static struct device_attribute dev_attr_spi_device_##field = {		\
135 	.attr = { .name = file, .mode = 0444 },				\
136 	.show = spi_device_##field##_show,				\
137 }
138 
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 					    char *buf)			\
142 {									\
143 	unsigned long flags;						\
144 	ssize_t len;							\
145 	spin_lock_irqsave(&stat->lock, flags);				\
146 	len = sprintf(buf, format_string, stat->field);			\
147 	spin_unlock_irqrestore(&stat->lock, flags);			\
148 	return len;							\
149 }									\
150 SPI_STATISTICS_ATTRS(name, file)
151 
152 #define SPI_STATISTICS_SHOW(field, format_string)			\
153 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
154 				 field, format_string)
155 
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160 
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164 
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168 
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
170 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
171 				 "transfer_bytes_histo_" number,	\
172 				 transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190 
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192 
193 static struct attribute *spi_dev_attrs[] = {
194 	&dev_attr_modalias.attr,
195 	&dev_attr_driver_override.attr,
196 	NULL,
197 };
198 
199 static const struct attribute_group spi_dev_group = {
200 	.attrs  = spi_dev_attrs,
201 };
202 
203 static struct attribute *spi_device_statistics_attrs[] = {
204 	&dev_attr_spi_device_messages.attr,
205 	&dev_attr_spi_device_transfers.attr,
206 	&dev_attr_spi_device_errors.attr,
207 	&dev_attr_spi_device_timedout.attr,
208 	&dev_attr_spi_device_spi_sync.attr,
209 	&dev_attr_spi_device_spi_sync_immediate.attr,
210 	&dev_attr_spi_device_spi_async.attr,
211 	&dev_attr_spi_device_bytes.attr,
212 	&dev_attr_spi_device_bytes_rx.attr,
213 	&dev_attr_spi_device_bytes_tx.attr,
214 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
231 	&dev_attr_spi_device_transfers_split_maxsize.attr,
232 	NULL,
233 };
234 
235 static const struct attribute_group spi_device_statistics_group = {
236 	.name  = "statistics",
237 	.attrs  = spi_device_statistics_attrs,
238 };
239 
240 static const struct attribute_group *spi_dev_groups[] = {
241 	&spi_dev_group,
242 	&spi_device_statistics_group,
243 	NULL,
244 };
245 
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 	&dev_attr_spi_controller_messages.attr,
248 	&dev_attr_spi_controller_transfers.attr,
249 	&dev_attr_spi_controller_errors.attr,
250 	&dev_attr_spi_controller_timedout.attr,
251 	&dev_attr_spi_controller_spi_sync.attr,
252 	&dev_attr_spi_controller_spi_sync_immediate.attr,
253 	&dev_attr_spi_controller_spi_async.attr,
254 	&dev_attr_spi_controller_bytes.attr,
255 	&dev_attr_spi_controller_bytes_rx.attr,
256 	&dev_attr_spi_controller_bytes_tx.attr,
257 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
275 	NULL,
276 };
277 
278 static const struct attribute_group spi_controller_statistics_group = {
279 	.name  = "statistics",
280 	.attrs  = spi_controller_statistics_attrs,
281 };
282 
283 static const struct attribute_group *spi_master_groups[] = {
284 	&spi_controller_statistics_group,
285 	NULL,
286 };
287 
288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 				       struct spi_transfer *xfer,
290 				       struct spi_controller *ctlr)
291 {
292 	unsigned long flags;
293 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294 
295 	if (l2len < 0)
296 		l2len = 0;
297 
298 	spin_lock_irqsave(&stats->lock, flags);
299 
300 	stats->transfers++;
301 	stats->transfer_bytes_histo[l2len]++;
302 
303 	stats->bytes += xfer->len;
304 	if ((xfer->tx_buf) &&
305 	    (xfer->tx_buf != ctlr->dummy_tx))
306 		stats->bytes_tx += xfer->len;
307 	if ((xfer->rx_buf) &&
308 	    (xfer->rx_buf != ctlr->dummy_rx))
309 		stats->bytes_rx += xfer->len;
310 
311 	spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314 
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316  * and the sysfs version makes coldplug work too.
317  */
318 
319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320 						const struct spi_device *sdev)
321 {
322 	while (id->name[0]) {
323 		if (!strcmp(sdev->modalias, id->name))
324 			return id;
325 		id++;
326 	}
327 	return NULL;
328 }
329 
330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333 
334 	return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337 
338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340 	const struct spi_device	*spi = to_spi_device(dev);
341 	const struct spi_driver	*sdrv = to_spi_driver(drv);
342 
343 	/* Check override first, and if set, only use the named driver */
344 	if (spi->driver_override)
345 		return strcmp(spi->driver_override, drv->name) == 0;
346 
347 	/* Attempt an OF style match */
348 	if (of_driver_match_device(dev, drv))
349 		return 1;
350 
351 	/* Then try ACPI */
352 	if (acpi_driver_match_device(dev, drv))
353 		return 1;
354 
355 	if (sdrv->id_table)
356 		return !!spi_match_id(sdrv->id_table, spi);
357 
358 	return strcmp(spi->modalias, drv->name) == 0;
359 }
360 
361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363 	const struct spi_device		*spi = to_spi_device(dev);
364 	int rc;
365 
366 	rc = of_device_uevent_modalias(dev, env);
367 	if (rc != -ENODEV)
368 		return rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 static int spi_probe(struct device *dev)
378 {
379 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
380 	struct spi_device		*spi = to_spi_device(dev);
381 	int ret;
382 
383 	ret = of_clk_set_defaults(dev->of_node, false);
384 	if (ret)
385 		return ret;
386 
387 	if (dev->of_node) {
388 		spi->irq = of_irq_get(dev->of_node, 0);
389 		if (spi->irq == -EPROBE_DEFER)
390 			return -EPROBE_DEFER;
391 		if (spi->irq < 0)
392 			spi->irq = 0;
393 	}
394 
395 	ret = dev_pm_domain_attach(dev, true);
396 	if (ret)
397 		return ret;
398 
399 	if (sdrv->probe) {
400 		ret = sdrv->probe(spi);
401 		if (ret)
402 			dev_pm_domain_detach(dev, true);
403 	}
404 
405 	return ret;
406 }
407 
408 static int spi_remove(struct device *dev)
409 {
410 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
411 
412 	if (sdrv->remove) {
413 		int ret;
414 
415 		ret = sdrv->remove(to_spi_device(dev));
416 		if (ret)
417 			dev_warn(dev,
418 				 "Failed to unbind driver (%pe), ignoring\n",
419 				 ERR_PTR(ret));
420 	}
421 
422 	dev_pm_domain_detach(dev, true);
423 
424 	return 0;
425 }
426 
427 static void spi_shutdown(struct device *dev)
428 {
429 	if (dev->driver) {
430 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
431 
432 		if (sdrv->shutdown)
433 			sdrv->shutdown(to_spi_device(dev));
434 	}
435 }
436 
437 struct bus_type spi_bus_type = {
438 	.name		= "spi",
439 	.dev_groups	= spi_dev_groups,
440 	.match		= spi_match_device,
441 	.uevent		= spi_uevent,
442 	.probe		= spi_probe,
443 	.remove		= spi_remove,
444 	.shutdown	= spi_shutdown,
445 };
446 EXPORT_SYMBOL_GPL(spi_bus_type);
447 
448 /**
449  * __spi_register_driver - register a SPI driver
450  * @owner: owner module of the driver to register
451  * @sdrv: the driver to register
452  * Context: can sleep
453  *
454  * Return: zero on success, else a negative error code.
455  */
456 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
457 {
458 	sdrv->driver.owner = owner;
459 	sdrv->driver.bus = &spi_bus_type;
460 	return driver_register(&sdrv->driver);
461 }
462 EXPORT_SYMBOL_GPL(__spi_register_driver);
463 
464 /*-------------------------------------------------------------------------*/
465 
466 /* SPI devices should normally not be created by SPI device drivers; that
467  * would make them board-specific.  Similarly with SPI controller drivers.
468  * Device registration normally goes into like arch/.../mach.../board-YYY.c
469  * with other readonly (flashable) information about mainboard devices.
470  */
471 
472 struct boardinfo {
473 	struct list_head	list;
474 	struct spi_board_info	board_info;
475 };
476 
477 static LIST_HEAD(board_list);
478 static LIST_HEAD(spi_controller_list);
479 
480 /*
481  * Used to protect add/del operation for board_info list and
482  * spi_controller list, and their matching process
483  * also used to protect object of type struct idr
484  */
485 static DEFINE_MUTEX(board_lock);
486 
487 /*
488  * Prevents addition of devices with same chip select and
489  * addition of devices below an unregistering controller.
490  */
491 static DEFINE_MUTEX(spi_add_lock);
492 
493 /**
494  * spi_alloc_device - Allocate a new SPI device
495  * @ctlr: Controller to which device is connected
496  * Context: can sleep
497  *
498  * Allows a driver to allocate and initialize a spi_device without
499  * registering it immediately.  This allows a driver to directly
500  * fill the spi_device with device parameters before calling
501  * spi_add_device() on it.
502  *
503  * Caller is responsible to call spi_add_device() on the returned
504  * spi_device structure to add it to the SPI controller.  If the caller
505  * needs to discard the spi_device without adding it, then it should
506  * call spi_dev_put() on it.
507  *
508  * Return: a pointer to the new device, or NULL.
509  */
510 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
511 {
512 	struct spi_device	*spi;
513 
514 	if (!spi_controller_get(ctlr))
515 		return NULL;
516 
517 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
518 	if (!spi) {
519 		spi_controller_put(ctlr);
520 		return NULL;
521 	}
522 
523 	spi->master = spi->controller = ctlr;
524 	spi->dev.parent = &ctlr->dev;
525 	spi->dev.bus = &spi_bus_type;
526 	spi->dev.release = spidev_release;
527 	spi->cs_gpio = -ENOENT;
528 	spi->mode = ctlr->buswidth_override_bits;
529 
530 	spin_lock_init(&spi->statistics.lock);
531 
532 	device_initialize(&spi->dev);
533 	return spi;
534 }
535 EXPORT_SYMBOL_GPL(spi_alloc_device);
536 
537 static void spi_dev_set_name(struct spi_device *spi)
538 {
539 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
540 
541 	if (adev) {
542 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
543 		return;
544 	}
545 
546 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
547 		     spi->chip_select);
548 }
549 
550 static int spi_dev_check(struct device *dev, void *data)
551 {
552 	struct spi_device *spi = to_spi_device(dev);
553 	struct spi_device *new_spi = data;
554 
555 	if (spi->controller == new_spi->controller &&
556 	    spi->chip_select == new_spi->chip_select)
557 		return -EBUSY;
558 	return 0;
559 }
560 
561 static void spi_cleanup(struct spi_device *spi)
562 {
563 	if (spi->controller->cleanup)
564 		spi->controller->cleanup(spi);
565 }
566 
567 static int __spi_add_device(struct spi_device *spi)
568 {
569 	struct spi_controller *ctlr = spi->controller;
570 	struct device *dev = ctlr->dev.parent;
571 	int status;
572 
573 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
574 	if (status) {
575 		dev_err(dev, "chipselect %d already in use\n",
576 				spi->chip_select);
577 		return status;
578 	}
579 
580 	/* Controller may unregister concurrently */
581 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
582 	    !device_is_registered(&ctlr->dev)) {
583 		return -ENODEV;
584 	}
585 
586 	/* Descriptors take precedence */
587 	if (ctlr->cs_gpiods)
588 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
589 	else if (ctlr->cs_gpios)
590 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
591 
592 	/* Drivers may modify this initial i/o setup, but will
593 	 * normally rely on the device being setup.  Devices
594 	 * using SPI_CS_HIGH can't coexist well otherwise...
595 	 */
596 	status = spi_setup(spi);
597 	if (status < 0) {
598 		dev_err(dev, "can't setup %s, status %d\n",
599 				dev_name(&spi->dev), status);
600 		return status;
601 	}
602 
603 	/* Device may be bound to an active driver when this returns */
604 	status = device_add(&spi->dev);
605 	if (status < 0) {
606 		dev_err(dev, "can't add %s, status %d\n",
607 				dev_name(&spi->dev), status);
608 		spi_cleanup(spi);
609 	} else {
610 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
611 	}
612 
613 	return status;
614 }
615 
616 /**
617  * spi_add_device - Add spi_device allocated with spi_alloc_device
618  * @spi: spi_device to register
619  *
620  * Companion function to spi_alloc_device.  Devices allocated with
621  * spi_alloc_device can be added onto the spi bus with this function.
622  *
623  * Return: 0 on success; negative errno on failure
624  */
625 int spi_add_device(struct spi_device *spi)
626 {
627 	struct spi_controller *ctlr = spi->controller;
628 	struct device *dev = ctlr->dev.parent;
629 	int status;
630 
631 	/* Chipselects are numbered 0..max; validate. */
632 	if (spi->chip_select >= ctlr->num_chipselect) {
633 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
634 			ctlr->num_chipselect);
635 		return -EINVAL;
636 	}
637 
638 	/* Set the bus ID string */
639 	spi_dev_set_name(spi);
640 
641 	/* We need to make sure there's no other device with this
642 	 * chipselect **BEFORE** we call setup(), else we'll trash
643 	 * its configuration.  Lock against concurrent add() calls.
644 	 */
645 	mutex_lock(&spi_add_lock);
646 	status = __spi_add_device(spi);
647 	mutex_unlock(&spi_add_lock);
648 	return status;
649 }
650 EXPORT_SYMBOL_GPL(spi_add_device);
651 
652 static int spi_add_device_locked(struct spi_device *spi)
653 {
654 	struct spi_controller *ctlr = spi->controller;
655 	struct device *dev = ctlr->dev.parent;
656 
657 	/* Chipselects are numbered 0..max; validate. */
658 	if (spi->chip_select >= ctlr->num_chipselect) {
659 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
660 			ctlr->num_chipselect);
661 		return -EINVAL;
662 	}
663 
664 	/* Set the bus ID string */
665 	spi_dev_set_name(spi);
666 
667 	WARN_ON(!mutex_is_locked(&spi_add_lock));
668 	return __spi_add_device(spi);
669 }
670 
671 /**
672  * spi_new_device - instantiate one new SPI device
673  * @ctlr: Controller to which device is connected
674  * @chip: Describes the SPI device
675  * Context: can sleep
676  *
677  * On typical mainboards, this is purely internal; and it's not needed
678  * after board init creates the hard-wired devices.  Some development
679  * platforms may not be able to use spi_register_board_info though, and
680  * this is exported so that for example a USB or parport based adapter
681  * driver could add devices (which it would learn about out-of-band).
682  *
683  * Return: the new device, or NULL.
684  */
685 struct spi_device *spi_new_device(struct spi_controller *ctlr,
686 				  struct spi_board_info *chip)
687 {
688 	struct spi_device	*proxy;
689 	int			status;
690 
691 	/* NOTE:  caller did any chip->bus_num checks necessary.
692 	 *
693 	 * Also, unless we change the return value convention to use
694 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
695 	 * suggests syslogged diagnostics are best here (ugh).
696 	 */
697 
698 	proxy = spi_alloc_device(ctlr);
699 	if (!proxy)
700 		return NULL;
701 
702 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
703 
704 	proxy->chip_select = chip->chip_select;
705 	proxy->max_speed_hz = chip->max_speed_hz;
706 	proxy->mode = chip->mode;
707 	proxy->irq = chip->irq;
708 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
709 	proxy->dev.platform_data = (void *) chip->platform_data;
710 	proxy->controller_data = chip->controller_data;
711 	proxy->controller_state = NULL;
712 
713 	if (chip->swnode) {
714 		status = device_add_software_node(&proxy->dev, chip->swnode);
715 		if (status) {
716 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
717 				chip->modalias, status);
718 			goto err_dev_put;
719 		}
720 	}
721 
722 	status = spi_add_device(proxy);
723 	if (status < 0)
724 		goto err_dev_put;
725 
726 	return proxy;
727 
728 err_dev_put:
729 	device_remove_software_node(&proxy->dev);
730 	spi_dev_put(proxy);
731 	return NULL;
732 }
733 EXPORT_SYMBOL_GPL(spi_new_device);
734 
735 /**
736  * spi_unregister_device - unregister a single SPI device
737  * @spi: spi_device to unregister
738  *
739  * Start making the passed SPI device vanish. Normally this would be handled
740  * by spi_unregister_controller().
741  */
742 void spi_unregister_device(struct spi_device *spi)
743 {
744 	if (!spi)
745 		return;
746 
747 	if (spi->dev.of_node) {
748 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
749 		of_node_put(spi->dev.of_node);
750 	}
751 	if (ACPI_COMPANION(&spi->dev))
752 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
753 	device_remove_software_node(&spi->dev);
754 	device_del(&spi->dev);
755 	spi_cleanup(spi);
756 	put_device(&spi->dev);
757 }
758 EXPORT_SYMBOL_GPL(spi_unregister_device);
759 
760 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
761 					      struct spi_board_info *bi)
762 {
763 	struct spi_device *dev;
764 
765 	if (ctlr->bus_num != bi->bus_num)
766 		return;
767 
768 	dev = spi_new_device(ctlr, bi);
769 	if (!dev)
770 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
771 			bi->modalias);
772 }
773 
774 /**
775  * spi_register_board_info - register SPI devices for a given board
776  * @info: array of chip descriptors
777  * @n: how many descriptors are provided
778  * Context: can sleep
779  *
780  * Board-specific early init code calls this (probably during arch_initcall)
781  * with segments of the SPI device table.  Any device nodes are created later,
782  * after the relevant parent SPI controller (bus_num) is defined.  We keep
783  * this table of devices forever, so that reloading a controller driver will
784  * not make Linux forget about these hard-wired devices.
785  *
786  * Other code can also call this, e.g. a particular add-on board might provide
787  * SPI devices through its expansion connector, so code initializing that board
788  * would naturally declare its SPI devices.
789  *
790  * The board info passed can safely be __initdata ... but be careful of
791  * any embedded pointers (platform_data, etc), they're copied as-is.
792  *
793  * Return: zero on success, else a negative error code.
794  */
795 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
796 {
797 	struct boardinfo *bi;
798 	int i;
799 
800 	if (!n)
801 		return 0;
802 
803 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
804 	if (!bi)
805 		return -ENOMEM;
806 
807 	for (i = 0; i < n; i++, bi++, info++) {
808 		struct spi_controller *ctlr;
809 
810 		memcpy(&bi->board_info, info, sizeof(*info));
811 
812 		mutex_lock(&board_lock);
813 		list_add_tail(&bi->list, &board_list);
814 		list_for_each_entry(ctlr, &spi_controller_list, list)
815 			spi_match_controller_to_boardinfo(ctlr,
816 							  &bi->board_info);
817 		mutex_unlock(&board_lock);
818 	}
819 
820 	return 0;
821 }
822 
823 /*-------------------------------------------------------------------------*/
824 
825 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
826 {
827 	bool activate = enable;
828 
829 	/*
830 	 * Avoid calling into the driver (or doing delays) if the chip select
831 	 * isn't actually changing from the last time this was called.
832 	 */
833 	if (!force && (spi->controller->last_cs_enable == enable) &&
834 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
835 		return;
836 
837 	trace_spi_set_cs(spi, activate);
838 
839 	spi->controller->last_cs_enable = enable;
840 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
841 
842 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
843 	    !spi->controller->set_cs_timing) {
844 		if (activate)
845 			spi_delay_exec(&spi->controller->cs_setup, NULL);
846 		else
847 			spi_delay_exec(&spi->controller->cs_hold, NULL);
848 	}
849 
850 	if (spi->mode & SPI_CS_HIGH)
851 		enable = !enable;
852 
853 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
854 		if (!(spi->mode & SPI_NO_CS)) {
855 			if (spi->cs_gpiod) {
856 				/*
857 				 * Historically ACPI has no means of the GPIO polarity and
858 				 * thus the SPISerialBus() resource defines it on the per-chip
859 				 * basis. In order to avoid a chain of negations, the GPIO
860 				 * polarity is considered being Active High. Even for the cases
861 				 * when _DSD() is involved (in the updated versions of ACPI)
862 				 * the GPIO CS polarity must be defined Active High to avoid
863 				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
864 				 * into account.
865 				 */
866 				if (has_acpi_companion(&spi->dev))
867 					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
868 				else
869 					/* Polarity handled by GPIO library */
870 					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
871 			} else {
872 				/*
873 				 * invert the enable line, as active low is
874 				 * default for SPI.
875 				 */
876 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
877 			}
878 		}
879 		/* Some SPI masters need both GPIO CS & slave_select */
880 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
881 		    spi->controller->set_cs)
882 			spi->controller->set_cs(spi, !enable);
883 	} else if (spi->controller->set_cs) {
884 		spi->controller->set_cs(spi, !enable);
885 	}
886 
887 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
888 	    !spi->controller->set_cs_timing) {
889 		if (!activate)
890 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
891 	}
892 }
893 
894 #ifdef CONFIG_HAS_DMA
895 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
896 		struct sg_table *sgt, void *buf, size_t len,
897 		enum dma_data_direction dir)
898 {
899 	const bool vmalloced_buf = is_vmalloc_addr(buf);
900 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
901 #ifdef CONFIG_HIGHMEM
902 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
903 				(unsigned long)buf < (PKMAP_BASE +
904 					(LAST_PKMAP * PAGE_SIZE)));
905 #else
906 	const bool kmap_buf = false;
907 #endif
908 	int desc_len;
909 	int sgs;
910 	struct page *vm_page;
911 	struct scatterlist *sg;
912 	void *sg_buf;
913 	size_t min;
914 	int i, ret;
915 
916 	if (vmalloced_buf || kmap_buf) {
917 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
918 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
919 	} else if (virt_addr_valid(buf)) {
920 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
921 		sgs = DIV_ROUND_UP(len, desc_len);
922 	} else {
923 		return -EINVAL;
924 	}
925 
926 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
927 	if (ret != 0)
928 		return ret;
929 
930 	sg = &sgt->sgl[0];
931 	for (i = 0; i < sgs; i++) {
932 
933 		if (vmalloced_buf || kmap_buf) {
934 			/*
935 			 * Next scatterlist entry size is the minimum between
936 			 * the desc_len and the remaining buffer length that
937 			 * fits in a page.
938 			 */
939 			min = min_t(size_t, desc_len,
940 				    min_t(size_t, len,
941 					  PAGE_SIZE - offset_in_page(buf)));
942 			if (vmalloced_buf)
943 				vm_page = vmalloc_to_page(buf);
944 			else
945 				vm_page = kmap_to_page(buf);
946 			if (!vm_page) {
947 				sg_free_table(sgt);
948 				return -ENOMEM;
949 			}
950 			sg_set_page(sg, vm_page,
951 				    min, offset_in_page(buf));
952 		} else {
953 			min = min_t(size_t, len, desc_len);
954 			sg_buf = buf;
955 			sg_set_buf(sg, sg_buf, min);
956 		}
957 
958 		buf += min;
959 		len -= min;
960 		sg = sg_next(sg);
961 	}
962 
963 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
964 	if (!ret)
965 		ret = -ENOMEM;
966 	if (ret < 0) {
967 		sg_free_table(sgt);
968 		return ret;
969 	}
970 
971 	sgt->nents = ret;
972 
973 	return 0;
974 }
975 
976 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
977 		   struct sg_table *sgt, enum dma_data_direction dir)
978 {
979 	if (sgt->orig_nents) {
980 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
981 		sg_free_table(sgt);
982 	}
983 }
984 
985 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
986 {
987 	struct device *tx_dev, *rx_dev;
988 	struct spi_transfer *xfer;
989 	int ret;
990 
991 	if (!ctlr->can_dma)
992 		return 0;
993 
994 	if (ctlr->dma_tx)
995 		tx_dev = ctlr->dma_tx->device->dev;
996 	else if (ctlr->dma_map_dev)
997 		tx_dev = ctlr->dma_map_dev;
998 	else
999 		tx_dev = ctlr->dev.parent;
1000 
1001 	if (ctlr->dma_rx)
1002 		rx_dev = ctlr->dma_rx->device->dev;
1003 	else if (ctlr->dma_map_dev)
1004 		rx_dev = ctlr->dma_map_dev;
1005 	else
1006 		rx_dev = ctlr->dev.parent;
1007 
1008 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1009 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1010 			continue;
1011 
1012 		if (xfer->tx_buf != NULL) {
1013 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1014 					  (void *)xfer->tx_buf, xfer->len,
1015 					  DMA_TO_DEVICE);
1016 			if (ret != 0)
1017 				return ret;
1018 		}
1019 
1020 		if (xfer->rx_buf != NULL) {
1021 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1022 					  xfer->rx_buf, xfer->len,
1023 					  DMA_FROM_DEVICE);
1024 			if (ret != 0) {
1025 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1026 					      DMA_TO_DEVICE);
1027 				return ret;
1028 			}
1029 		}
1030 	}
1031 
1032 	ctlr->cur_msg_mapped = true;
1033 
1034 	return 0;
1035 }
1036 
1037 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1038 {
1039 	struct spi_transfer *xfer;
1040 	struct device *tx_dev, *rx_dev;
1041 
1042 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1043 		return 0;
1044 
1045 	if (ctlr->dma_tx)
1046 		tx_dev = ctlr->dma_tx->device->dev;
1047 	else
1048 		tx_dev = ctlr->dev.parent;
1049 
1050 	if (ctlr->dma_rx)
1051 		rx_dev = ctlr->dma_rx->device->dev;
1052 	else
1053 		rx_dev = ctlr->dev.parent;
1054 
1055 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1056 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1057 			continue;
1058 
1059 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1060 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1061 	}
1062 
1063 	ctlr->cur_msg_mapped = false;
1064 
1065 	return 0;
1066 }
1067 #else /* !CONFIG_HAS_DMA */
1068 static inline int __spi_map_msg(struct spi_controller *ctlr,
1069 				struct spi_message *msg)
1070 {
1071 	return 0;
1072 }
1073 
1074 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1075 				  struct spi_message *msg)
1076 {
1077 	return 0;
1078 }
1079 #endif /* !CONFIG_HAS_DMA */
1080 
1081 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1082 				struct spi_message *msg)
1083 {
1084 	struct spi_transfer *xfer;
1085 
1086 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1087 		/*
1088 		 * Restore the original value of tx_buf or rx_buf if they are
1089 		 * NULL.
1090 		 */
1091 		if (xfer->tx_buf == ctlr->dummy_tx)
1092 			xfer->tx_buf = NULL;
1093 		if (xfer->rx_buf == ctlr->dummy_rx)
1094 			xfer->rx_buf = NULL;
1095 	}
1096 
1097 	return __spi_unmap_msg(ctlr, msg);
1098 }
1099 
1100 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1101 {
1102 	struct spi_transfer *xfer;
1103 	void *tmp;
1104 	unsigned int max_tx, max_rx;
1105 
1106 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1107 		&& !(msg->spi->mode & SPI_3WIRE)) {
1108 		max_tx = 0;
1109 		max_rx = 0;
1110 
1111 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1112 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1113 			    !xfer->tx_buf)
1114 				max_tx = max(xfer->len, max_tx);
1115 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1116 			    !xfer->rx_buf)
1117 				max_rx = max(xfer->len, max_rx);
1118 		}
1119 
1120 		if (max_tx) {
1121 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1122 				       GFP_KERNEL | GFP_DMA);
1123 			if (!tmp)
1124 				return -ENOMEM;
1125 			ctlr->dummy_tx = tmp;
1126 			memset(tmp, 0, max_tx);
1127 		}
1128 
1129 		if (max_rx) {
1130 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1131 				       GFP_KERNEL | GFP_DMA);
1132 			if (!tmp)
1133 				return -ENOMEM;
1134 			ctlr->dummy_rx = tmp;
1135 		}
1136 
1137 		if (max_tx || max_rx) {
1138 			list_for_each_entry(xfer, &msg->transfers,
1139 					    transfer_list) {
1140 				if (!xfer->len)
1141 					continue;
1142 				if (!xfer->tx_buf)
1143 					xfer->tx_buf = ctlr->dummy_tx;
1144 				if (!xfer->rx_buf)
1145 					xfer->rx_buf = ctlr->dummy_rx;
1146 			}
1147 		}
1148 	}
1149 
1150 	return __spi_map_msg(ctlr, msg);
1151 }
1152 
1153 static int spi_transfer_wait(struct spi_controller *ctlr,
1154 			     struct spi_message *msg,
1155 			     struct spi_transfer *xfer)
1156 {
1157 	struct spi_statistics *statm = &ctlr->statistics;
1158 	struct spi_statistics *stats = &msg->spi->statistics;
1159 	u32 speed_hz = xfer->speed_hz;
1160 	unsigned long long ms;
1161 
1162 	if (spi_controller_is_slave(ctlr)) {
1163 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1164 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1165 			return -EINTR;
1166 		}
1167 	} else {
1168 		if (!speed_hz)
1169 			speed_hz = 100000;
1170 
1171 		/*
1172 		 * For each byte we wait for 8 cycles of the SPI clock.
1173 		 * Since speed is defined in Hz and we want milliseconds,
1174 		 * use respective multiplier, but before the division,
1175 		 * otherwise we may get 0 for short transfers.
1176 		 */
1177 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1178 		do_div(ms, speed_hz);
1179 
1180 		/*
1181 		 * Increase it twice and add 200 ms tolerance, use
1182 		 * predefined maximum in case of overflow.
1183 		 */
1184 		ms += ms + 200;
1185 		if (ms > UINT_MAX)
1186 			ms = UINT_MAX;
1187 
1188 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1189 						 msecs_to_jiffies(ms));
1190 
1191 		if (ms == 0) {
1192 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1193 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1194 			dev_err(&msg->spi->dev,
1195 				"SPI transfer timed out\n");
1196 			return -ETIMEDOUT;
1197 		}
1198 	}
1199 
1200 	return 0;
1201 }
1202 
1203 static void _spi_transfer_delay_ns(u32 ns)
1204 {
1205 	if (!ns)
1206 		return;
1207 	if (ns <= NSEC_PER_USEC) {
1208 		ndelay(ns);
1209 	} else {
1210 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1211 
1212 		if (us <= 10)
1213 			udelay(us);
1214 		else
1215 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1216 	}
1217 }
1218 
1219 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1220 {
1221 	u32 delay = _delay->value;
1222 	u32 unit = _delay->unit;
1223 	u32 hz;
1224 
1225 	if (!delay)
1226 		return 0;
1227 
1228 	switch (unit) {
1229 	case SPI_DELAY_UNIT_USECS:
1230 		delay *= NSEC_PER_USEC;
1231 		break;
1232 	case SPI_DELAY_UNIT_NSECS:
1233 		/* Nothing to do here */
1234 		break;
1235 	case SPI_DELAY_UNIT_SCK:
1236 		/* clock cycles need to be obtained from spi_transfer */
1237 		if (!xfer)
1238 			return -EINVAL;
1239 		/*
1240 		 * If there is unknown effective speed, approximate it
1241 		 * by underestimating with half of the requested hz.
1242 		 */
1243 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1244 		if (!hz)
1245 			return -EINVAL;
1246 
1247 		/* Convert delay to nanoseconds */
1248 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1249 		break;
1250 	default:
1251 		return -EINVAL;
1252 	}
1253 
1254 	return delay;
1255 }
1256 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1257 
1258 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1259 {
1260 	int delay;
1261 
1262 	might_sleep();
1263 
1264 	if (!_delay)
1265 		return -EINVAL;
1266 
1267 	delay = spi_delay_to_ns(_delay, xfer);
1268 	if (delay < 0)
1269 		return delay;
1270 
1271 	_spi_transfer_delay_ns(delay);
1272 
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL_GPL(spi_delay_exec);
1276 
1277 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1278 					  struct spi_transfer *xfer)
1279 {
1280 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1281 	u32 delay = xfer->cs_change_delay.value;
1282 	u32 unit = xfer->cs_change_delay.unit;
1283 	int ret;
1284 
1285 	/* return early on "fast" mode - for everything but USECS */
1286 	if (!delay) {
1287 		if (unit == SPI_DELAY_UNIT_USECS)
1288 			_spi_transfer_delay_ns(default_delay_ns);
1289 		return;
1290 	}
1291 
1292 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1293 	if (ret) {
1294 		dev_err_once(&msg->spi->dev,
1295 			     "Use of unsupported delay unit %i, using default of %luus\n",
1296 			     unit, default_delay_ns / NSEC_PER_USEC);
1297 		_spi_transfer_delay_ns(default_delay_ns);
1298 	}
1299 }
1300 
1301 /*
1302  * spi_transfer_one_message - Default implementation of transfer_one_message()
1303  *
1304  * This is a standard implementation of transfer_one_message() for
1305  * drivers which implement a transfer_one() operation.  It provides
1306  * standard handling of delays and chip select management.
1307  */
1308 static int spi_transfer_one_message(struct spi_controller *ctlr,
1309 				    struct spi_message *msg)
1310 {
1311 	struct spi_transfer *xfer;
1312 	bool keep_cs = false;
1313 	int ret = 0;
1314 	struct spi_statistics *statm = &ctlr->statistics;
1315 	struct spi_statistics *stats = &msg->spi->statistics;
1316 
1317 	spi_set_cs(msg->spi, true, false);
1318 
1319 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1320 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1321 
1322 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1323 		trace_spi_transfer_start(msg, xfer);
1324 
1325 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1326 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1327 
1328 		if (!ctlr->ptp_sts_supported) {
1329 			xfer->ptp_sts_word_pre = 0;
1330 			ptp_read_system_prets(xfer->ptp_sts);
1331 		}
1332 
1333 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1334 			reinit_completion(&ctlr->xfer_completion);
1335 
1336 fallback_pio:
1337 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1338 			if (ret < 0) {
1339 				if (ctlr->cur_msg_mapped &&
1340 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1341 					__spi_unmap_msg(ctlr, msg);
1342 					ctlr->fallback = true;
1343 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1344 					goto fallback_pio;
1345 				}
1346 
1347 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1348 							       errors);
1349 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1350 							       errors);
1351 				dev_err(&msg->spi->dev,
1352 					"SPI transfer failed: %d\n", ret);
1353 				goto out;
1354 			}
1355 
1356 			if (ret > 0) {
1357 				ret = spi_transfer_wait(ctlr, msg, xfer);
1358 				if (ret < 0)
1359 					msg->status = ret;
1360 			}
1361 		} else {
1362 			if (xfer->len)
1363 				dev_err(&msg->spi->dev,
1364 					"Bufferless transfer has length %u\n",
1365 					xfer->len);
1366 		}
1367 
1368 		if (!ctlr->ptp_sts_supported) {
1369 			ptp_read_system_postts(xfer->ptp_sts);
1370 			xfer->ptp_sts_word_post = xfer->len;
1371 		}
1372 
1373 		trace_spi_transfer_stop(msg, xfer);
1374 
1375 		if (msg->status != -EINPROGRESS)
1376 			goto out;
1377 
1378 		spi_transfer_delay_exec(xfer);
1379 
1380 		if (xfer->cs_change) {
1381 			if (list_is_last(&xfer->transfer_list,
1382 					 &msg->transfers)) {
1383 				keep_cs = true;
1384 			} else {
1385 				spi_set_cs(msg->spi, false, false);
1386 				_spi_transfer_cs_change_delay(msg, xfer);
1387 				spi_set_cs(msg->spi, true, false);
1388 			}
1389 		}
1390 
1391 		msg->actual_length += xfer->len;
1392 	}
1393 
1394 out:
1395 	if (ret != 0 || !keep_cs)
1396 		spi_set_cs(msg->spi, false, false);
1397 
1398 	if (msg->status == -EINPROGRESS)
1399 		msg->status = ret;
1400 
1401 	if (msg->status && ctlr->handle_err)
1402 		ctlr->handle_err(ctlr, msg);
1403 
1404 	spi_finalize_current_message(ctlr);
1405 
1406 	return ret;
1407 }
1408 
1409 /**
1410  * spi_finalize_current_transfer - report completion of a transfer
1411  * @ctlr: the controller reporting completion
1412  *
1413  * Called by SPI drivers using the core transfer_one_message()
1414  * implementation to notify it that the current interrupt driven
1415  * transfer has finished and the next one may be scheduled.
1416  */
1417 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1418 {
1419 	complete(&ctlr->xfer_completion);
1420 }
1421 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1422 
1423 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1424 {
1425 	if (ctlr->auto_runtime_pm) {
1426 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1427 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1428 	}
1429 }
1430 
1431 /**
1432  * __spi_pump_messages - function which processes spi message queue
1433  * @ctlr: controller to process queue for
1434  * @in_kthread: true if we are in the context of the message pump thread
1435  *
1436  * This function checks if there is any spi message in the queue that
1437  * needs processing and if so call out to the driver to initialize hardware
1438  * and transfer each message.
1439  *
1440  * Note that it is called both from the kthread itself and also from
1441  * inside spi_sync(); the queue extraction handling at the top of the
1442  * function should deal with this safely.
1443  */
1444 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1445 {
1446 	struct spi_transfer *xfer;
1447 	struct spi_message *msg;
1448 	bool was_busy = false;
1449 	unsigned long flags;
1450 	int ret;
1451 
1452 	/* Lock queue */
1453 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1454 
1455 	/* Make sure we are not already running a message */
1456 	if (ctlr->cur_msg) {
1457 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1458 		return;
1459 	}
1460 
1461 	/* If another context is idling the device then defer */
1462 	if (ctlr->idling) {
1463 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1464 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1465 		return;
1466 	}
1467 
1468 	/* Check if the queue is idle */
1469 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1470 		if (!ctlr->busy) {
1471 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1472 			return;
1473 		}
1474 
1475 		/* Defer any non-atomic teardown to the thread */
1476 		if (!in_kthread) {
1477 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1478 			    !ctlr->unprepare_transfer_hardware) {
1479 				spi_idle_runtime_pm(ctlr);
1480 				ctlr->busy = false;
1481 				trace_spi_controller_idle(ctlr);
1482 			} else {
1483 				kthread_queue_work(ctlr->kworker,
1484 						   &ctlr->pump_messages);
1485 			}
1486 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1487 			return;
1488 		}
1489 
1490 		ctlr->busy = false;
1491 		ctlr->idling = true;
1492 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1493 
1494 		kfree(ctlr->dummy_rx);
1495 		ctlr->dummy_rx = NULL;
1496 		kfree(ctlr->dummy_tx);
1497 		ctlr->dummy_tx = NULL;
1498 		if (ctlr->unprepare_transfer_hardware &&
1499 		    ctlr->unprepare_transfer_hardware(ctlr))
1500 			dev_err(&ctlr->dev,
1501 				"failed to unprepare transfer hardware\n");
1502 		spi_idle_runtime_pm(ctlr);
1503 		trace_spi_controller_idle(ctlr);
1504 
1505 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1506 		ctlr->idling = false;
1507 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1508 		return;
1509 	}
1510 
1511 	/* Extract head of queue */
1512 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1513 	ctlr->cur_msg = msg;
1514 
1515 	list_del_init(&msg->queue);
1516 	if (ctlr->busy)
1517 		was_busy = true;
1518 	else
1519 		ctlr->busy = true;
1520 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1521 
1522 	mutex_lock(&ctlr->io_mutex);
1523 
1524 	if (!was_busy && ctlr->auto_runtime_pm) {
1525 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1526 		if (ret < 0) {
1527 			pm_runtime_put_noidle(ctlr->dev.parent);
1528 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1529 				ret);
1530 			mutex_unlock(&ctlr->io_mutex);
1531 			return;
1532 		}
1533 	}
1534 
1535 	if (!was_busy)
1536 		trace_spi_controller_busy(ctlr);
1537 
1538 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1539 		ret = ctlr->prepare_transfer_hardware(ctlr);
1540 		if (ret) {
1541 			dev_err(&ctlr->dev,
1542 				"failed to prepare transfer hardware: %d\n",
1543 				ret);
1544 
1545 			if (ctlr->auto_runtime_pm)
1546 				pm_runtime_put(ctlr->dev.parent);
1547 
1548 			msg->status = ret;
1549 			spi_finalize_current_message(ctlr);
1550 
1551 			mutex_unlock(&ctlr->io_mutex);
1552 			return;
1553 		}
1554 	}
1555 
1556 	trace_spi_message_start(msg);
1557 
1558 	if (ctlr->prepare_message) {
1559 		ret = ctlr->prepare_message(ctlr, msg);
1560 		if (ret) {
1561 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1562 				ret);
1563 			msg->status = ret;
1564 			spi_finalize_current_message(ctlr);
1565 			goto out;
1566 		}
1567 		ctlr->cur_msg_prepared = true;
1568 	}
1569 
1570 	ret = spi_map_msg(ctlr, msg);
1571 	if (ret) {
1572 		msg->status = ret;
1573 		spi_finalize_current_message(ctlr);
1574 		goto out;
1575 	}
1576 
1577 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1578 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1579 			xfer->ptp_sts_word_pre = 0;
1580 			ptp_read_system_prets(xfer->ptp_sts);
1581 		}
1582 	}
1583 
1584 	ret = ctlr->transfer_one_message(ctlr, msg);
1585 	if (ret) {
1586 		dev_err(&ctlr->dev,
1587 			"failed to transfer one message from queue\n");
1588 		goto out;
1589 	}
1590 
1591 out:
1592 	mutex_unlock(&ctlr->io_mutex);
1593 
1594 	/* Prod the scheduler in case transfer_one() was busy waiting */
1595 	if (!ret)
1596 		cond_resched();
1597 }
1598 
1599 /**
1600  * spi_pump_messages - kthread work function which processes spi message queue
1601  * @work: pointer to kthread work struct contained in the controller struct
1602  */
1603 static void spi_pump_messages(struct kthread_work *work)
1604 {
1605 	struct spi_controller *ctlr =
1606 		container_of(work, struct spi_controller, pump_messages);
1607 
1608 	__spi_pump_messages(ctlr, true);
1609 }
1610 
1611 /**
1612  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1613  *			    TX timestamp for the requested byte from the SPI
1614  *			    transfer. The frequency with which this function
1615  *			    must be called (once per word, once for the whole
1616  *			    transfer, once per batch of words etc) is arbitrary
1617  *			    as long as the @tx buffer offset is greater than or
1618  *			    equal to the requested byte at the time of the
1619  *			    call. The timestamp is only taken once, at the
1620  *			    first such call. It is assumed that the driver
1621  *			    advances its @tx buffer pointer monotonically.
1622  * @ctlr: Pointer to the spi_controller structure of the driver
1623  * @xfer: Pointer to the transfer being timestamped
1624  * @progress: How many words (not bytes) have been transferred so far
1625  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1626  *	      transfer, for less jitter in time measurement. Only compatible
1627  *	      with PIO drivers. If true, must follow up with
1628  *	      spi_take_timestamp_post or otherwise system will crash.
1629  *	      WARNING: for fully predictable results, the CPU frequency must
1630  *	      also be under control (governor).
1631  */
1632 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1633 			    struct spi_transfer *xfer,
1634 			    size_t progress, bool irqs_off)
1635 {
1636 	if (!xfer->ptp_sts)
1637 		return;
1638 
1639 	if (xfer->timestamped)
1640 		return;
1641 
1642 	if (progress > xfer->ptp_sts_word_pre)
1643 		return;
1644 
1645 	/* Capture the resolution of the timestamp */
1646 	xfer->ptp_sts_word_pre = progress;
1647 
1648 	if (irqs_off) {
1649 		local_irq_save(ctlr->irq_flags);
1650 		preempt_disable();
1651 	}
1652 
1653 	ptp_read_system_prets(xfer->ptp_sts);
1654 }
1655 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1656 
1657 /**
1658  * spi_take_timestamp_post - helper for drivers to collect the end of the
1659  *			     TX timestamp for the requested byte from the SPI
1660  *			     transfer. Can be called with an arbitrary
1661  *			     frequency: only the first call where @tx exceeds
1662  *			     or is equal to the requested word will be
1663  *			     timestamped.
1664  * @ctlr: Pointer to the spi_controller structure of the driver
1665  * @xfer: Pointer to the transfer being timestamped
1666  * @progress: How many words (not bytes) have been transferred so far
1667  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1668  */
1669 void spi_take_timestamp_post(struct spi_controller *ctlr,
1670 			     struct spi_transfer *xfer,
1671 			     size_t progress, bool irqs_off)
1672 {
1673 	if (!xfer->ptp_sts)
1674 		return;
1675 
1676 	if (xfer->timestamped)
1677 		return;
1678 
1679 	if (progress < xfer->ptp_sts_word_post)
1680 		return;
1681 
1682 	ptp_read_system_postts(xfer->ptp_sts);
1683 
1684 	if (irqs_off) {
1685 		local_irq_restore(ctlr->irq_flags);
1686 		preempt_enable();
1687 	}
1688 
1689 	/* Capture the resolution of the timestamp */
1690 	xfer->ptp_sts_word_post = progress;
1691 
1692 	xfer->timestamped = true;
1693 }
1694 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1695 
1696 /**
1697  * spi_set_thread_rt - set the controller to pump at realtime priority
1698  * @ctlr: controller to boost priority of
1699  *
1700  * This can be called because the controller requested realtime priority
1701  * (by setting the ->rt value before calling spi_register_controller()) or
1702  * because a device on the bus said that its transfers needed realtime
1703  * priority.
1704  *
1705  * NOTE: at the moment if any device on a bus says it needs realtime then
1706  * the thread will be at realtime priority for all transfers on that
1707  * controller.  If this eventually becomes a problem we may see if we can
1708  * find a way to boost the priority only temporarily during relevant
1709  * transfers.
1710  */
1711 static void spi_set_thread_rt(struct spi_controller *ctlr)
1712 {
1713 	dev_info(&ctlr->dev,
1714 		"will run message pump with realtime priority\n");
1715 	sched_set_fifo(ctlr->kworker->task);
1716 }
1717 
1718 static int spi_init_queue(struct spi_controller *ctlr)
1719 {
1720 	ctlr->running = false;
1721 	ctlr->busy = false;
1722 
1723 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1724 	if (IS_ERR(ctlr->kworker)) {
1725 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1726 		return PTR_ERR(ctlr->kworker);
1727 	}
1728 
1729 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1730 
1731 	/*
1732 	 * Controller config will indicate if this controller should run the
1733 	 * message pump with high (realtime) priority to reduce the transfer
1734 	 * latency on the bus by minimising the delay between a transfer
1735 	 * request and the scheduling of the message pump thread. Without this
1736 	 * setting the message pump thread will remain at default priority.
1737 	 */
1738 	if (ctlr->rt)
1739 		spi_set_thread_rt(ctlr);
1740 
1741 	return 0;
1742 }
1743 
1744 /**
1745  * spi_get_next_queued_message() - called by driver to check for queued
1746  * messages
1747  * @ctlr: the controller to check for queued messages
1748  *
1749  * If there are more messages in the queue, the next message is returned from
1750  * this call.
1751  *
1752  * Return: the next message in the queue, else NULL if the queue is empty.
1753  */
1754 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1755 {
1756 	struct spi_message *next;
1757 	unsigned long flags;
1758 
1759 	/* get a pointer to the next message, if any */
1760 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1761 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1762 					queue);
1763 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1764 
1765 	return next;
1766 }
1767 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1768 
1769 /**
1770  * spi_finalize_current_message() - the current message is complete
1771  * @ctlr: the controller to return the message to
1772  *
1773  * Called by the driver to notify the core that the message in the front of the
1774  * queue is complete and can be removed from the queue.
1775  */
1776 void spi_finalize_current_message(struct spi_controller *ctlr)
1777 {
1778 	struct spi_transfer *xfer;
1779 	struct spi_message *mesg;
1780 	unsigned long flags;
1781 	int ret;
1782 
1783 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1784 	mesg = ctlr->cur_msg;
1785 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1786 
1787 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1788 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1789 			ptp_read_system_postts(xfer->ptp_sts);
1790 			xfer->ptp_sts_word_post = xfer->len;
1791 		}
1792 	}
1793 
1794 	if (unlikely(ctlr->ptp_sts_supported))
1795 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1796 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1797 
1798 	spi_unmap_msg(ctlr, mesg);
1799 
1800 	/* In the prepare_messages callback the spi bus has the opportunity to
1801 	 * split a transfer to smaller chunks.
1802 	 * Release splited transfers here since spi_map_msg is done on the
1803 	 * splited transfers.
1804 	 */
1805 	spi_res_release(ctlr, mesg);
1806 
1807 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1808 		ret = ctlr->unprepare_message(ctlr, mesg);
1809 		if (ret) {
1810 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1811 				ret);
1812 		}
1813 	}
1814 
1815 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1816 	ctlr->cur_msg = NULL;
1817 	ctlr->cur_msg_prepared = false;
1818 	ctlr->fallback = false;
1819 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1820 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1821 
1822 	trace_spi_message_done(mesg);
1823 
1824 	mesg->state = NULL;
1825 	if (mesg->complete)
1826 		mesg->complete(mesg->context);
1827 }
1828 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1829 
1830 static int spi_start_queue(struct spi_controller *ctlr)
1831 {
1832 	unsigned long flags;
1833 
1834 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1835 
1836 	if (ctlr->running || ctlr->busy) {
1837 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1838 		return -EBUSY;
1839 	}
1840 
1841 	ctlr->running = true;
1842 	ctlr->cur_msg = NULL;
1843 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1844 
1845 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1846 
1847 	return 0;
1848 }
1849 
1850 static int spi_stop_queue(struct spi_controller *ctlr)
1851 {
1852 	unsigned long flags;
1853 	unsigned limit = 500;
1854 	int ret = 0;
1855 
1856 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1857 
1858 	/*
1859 	 * This is a bit lame, but is optimized for the common execution path.
1860 	 * A wait_queue on the ctlr->busy could be used, but then the common
1861 	 * execution path (pump_messages) would be required to call wake_up or
1862 	 * friends on every SPI message. Do this instead.
1863 	 */
1864 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1865 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1866 		usleep_range(10000, 11000);
1867 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1868 	}
1869 
1870 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1871 		ret = -EBUSY;
1872 	else
1873 		ctlr->running = false;
1874 
1875 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1876 
1877 	if (ret) {
1878 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1879 		return ret;
1880 	}
1881 	return ret;
1882 }
1883 
1884 static int spi_destroy_queue(struct spi_controller *ctlr)
1885 {
1886 	int ret;
1887 
1888 	ret = spi_stop_queue(ctlr);
1889 
1890 	/*
1891 	 * kthread_flush_worker will block until all work is done.
1892 	 * If the reason that stop_queue timed out is that the work will never
1893 	 * finish, then it does no good to call flush/stop thread, so
1894 	 * return anyway.
1895 	 */
1896 	if (ret) {
1897 		dev_err(&ctlr->dev, "problem destroying queue\n");
1898 		return ret;
1899 	}
1900 
1901 	kthread_destroy_worker(ctlr->kworker);
1902 
1903 	return 0;
1904 }
1905 
1906 static int __spi_queued_transfer(struct spi_device *spi,
1907 				 struct spi_message *msg,
1908 				 bool need_pump)
1909 {
1910 	struct spi_controller *ctlr = spi->controller;
1911 	unsigned long flags;
1912 
1913 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1914 
1915 	if (!ctlr->running) {
1916 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1917 		return -ESHUTDOWN;
1918 	}
1919 	msg->actual_length = 0;
1920 	msg->status = -EINPROGRESS;
1921 
1922 	list_add_tail(&msg->queue, &ctlr->queue);
1923 	if (!ctlr->busy && need_pump)
1924 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1925 
1926 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1927 	return 0;
1928 }
1929 
1930 /**
1931  * spi_queued_transfer - transfer function for queued transfers
1932  * @spi: spi device which is requesting transfer
1933  * @msg: spi message which is to handled is queued to driver queue
1934  *
1935  * Return: zero on success, else a negative error code.
1936  */
1937 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1938 {
1939 	return __spi_queued_transfer(spi, msg, true);
1940 }
1941 
1942 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1943 {
1944 	int ret;
1945 
1946 	ctlr->transfer = spi_queued_transfer;
1947 	if (!ctlr->transfer_one_message)
1948 		ctlr->transfer_one_message = spi_transfer_one_message;
1949 
1950 	/* Initialize and start queue */
1951 	ret = spi_init_queue(ctlr);
1952 	if (ret) {
1953 		dev_err(&ctlr->dev, "problem initializing queue\n");
1954 		goto err_init_queue;
1955 	}
1956 	ctlr->queued = true;
1957 	ret = spi_start_queue(ctlr);
1958 	if (ret) {
1959 		dev_err(&ctlr->dev, "problem starting queue\n");
1960 		goto err_start_queue;
1961 	}
1962 
1963 	return 0;
1964 
1965 err_start_queue:
1966 	spi_destroy_queue(ctlr);
1967 err_init_queue:
1968 	return ret;
1969 }
1970 
1971 /**
1972  * spi_flush_queue - Send all pending messages in the queue from the callers'
1973  *		     context
1974  * @ctlr: controller to process queue for
1975  *
1976  * This should be used when one wants to ensure all pending messages have been
1977  * sent before doing something. Is used by the spi-mem code to make sure SPI
1978  * memory operations do not preempt regular SPI transfers that have been queued
1979  * before the spi-mem operation.
1980  */
1981 void spi_flush_queue(struct spi_controller *ctlr)
1982 {
1983 	if (ctlr->transfer == spi_queued_transfer)
1984 		__spi_pump_messages(ctlr, false);
1985 }
1986 
1987 /*-------------------------------------------------------------------------*/
1988 
1989 #if defined(CONFIG_OF)
1990 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1991 			   struct device_node *nc)
1992 {
1993 	u32 value;
1994 	int rc;
1995 
1996 	/* Mode (clock phase/polarity/etc.) */
1997 	if (of_property_read_bool(nc, "spi-cpha"))
1998 		spi->mode |= SPI_CPHA;
1999 	if (of_property_read_bool(nc, "spi-cpol"))
2000 		spi->mode |= SPI_CPOL;
2001 	if (of_property_read_bool(nc, "spi-3wire"))
2002 		spi->mode |= SPI_3WIRE;
2003 	if (of_property_read_bool(nc, "spi-lsb-first"))
2004 		spi->mode |= SPI_LSB_FIRST;
2005 	if (of_property_read_bool(nc, "spi-cs-high"))
2006 		spi->mode |= SPI_CS_HIGH;
2007 
2008 	/* Device DUAL/QUAD mode */
2009 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2010 		switch (value) {
2011 		case 0:
2012 			spi->mode |= SPI_NO_TX;
2013 			break;
2014 		case 1:
2015 			break;
2016 		case 2:
2017 			spi->mode |= SPI_TX_DUAL;
2018 			break;
2019 		case 4:
2020 			spi->mode |= SPI_TX_QUAD;
2021 			break;
2022 		case 8:
2023 			spi->mode |= SPI_TX_OCTAL;
2024 			break;
2025 		default:
2026 			dev_warn(&ctlr->dev,
2027 				"spi-tx-bus-width %d not supported\n",
2028 				value);
2029 			break;
2030 		}
2031 	}
2032 
2033 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2034 		switch (value) {
2035 		case 0:
2036 			spi->mode |= SPI_NO_RX;
2037 			break;
2038 		case 1:
2039 			break;
2040 		case 2:
2041 			spi->mode |= SPI_RX_DUAL;
2042 			break;
2043 		case 4:
2044 			spi->mode |= SPI_RX_QUAD;
2045 			break;
2046 		case 8:
2047 			spi->mode |= SPI_RX_OCTAL;
2048 			break;
2049 		default:
2050 			dev_warn(&ctlr->dev,
2051 				"spi-rx-bus-width %d not supported\n",
2052 				value);
2053 			break;
2054 		}
2055 	}
2056 
2057 	if (spi_controller_is_slave(ctlr)) {
2058 		if (!of_node_name_eq(nc, "slave")) {
2059 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2060 				nc);
2061 			return -EINVAL;
2062 		}
2063 		return 0;
2064 	}
2065 
2066 	/* Device address */
2067 	rc = of_property_read_u32(nc, "reg", &value);
2068 	if (rc) {
2069 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2070 			nc, rc);
2071 		return rc;
2072 	}
2073 	spi->chip_select = value;
2074 
2075 	/* Device speed */
2076 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2077 		spi->max_speed_hz = value;
2078 
2079 	return 0;
2080 }
2081 
2082 static struct spi_device *
2083 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2084 {
2085 	struct spi_device *spi;
2086 	int rc;
2087 
2088 	/* Alloc an spi_device */
2089 	spi = spi_alloc_device(ctlr);
2090 	if (!spi) {
2091 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2092 		rc = -ENOMEM;
2093 		goto err_out;
2094 	}
2095 
2096 	/* Select device driver */
2097 	rc = of_modalias_node(nc, spi->modalias,
2098 				sizeof(spi->modalias));
2099 	if (rc < 0) {
2100 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2101 		goto err_out;
2102 	}
2103 
2104 	rc = of_spi_parse_dt(ctlr, spi, nc);
2105 	if (rc)
2106 		goto err_out;
2107 
2108 	/* Store a pointer to the node in the device structure */
2109 	of_node_get(nc);
2110 	spi->dev.of_node = nc;
2111 	spi->dev.fwnode = of_fwnode_handle(nc);
2112 
2113 	/* Register the new device */
2114 	rc = spi_add_device(spi);
2115 	if (rc) {
2116 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2117 		goto err_of_node_put;
2118 	}
2119 
2120 	return spi;
2121 
2122 err_of_node_put:
2123 	of_node_put(nc);
2124 err_out:
2125 	spi_dev_put(spi);
2126 	return ERR_PTR(rc);
2127 }
2128 
2129 /**
2130  * of_register_spi_devices() - Register child devices onto the SPI bus
2131  * @ctlr:	Pointer to spi_controller device
2132  *
2133  * Registers an spi_device for each child node of controller node which
2134  * represents a valid SPI slave.
2135  */
2136 static void of_register_spi_devices(struct spi_controller *ctlr)
2137 {
2138 	struct spi_device *spi;
2139 	struct device_node *nc;
2140 
2141 	if (!ctlr->dev.of_node)
2142 		return;
2143 
2144 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2145 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2146 			continue;
2147 		spi = of_register_spi_device(ctlr, nc);
2148 		if (IS_ERR(spi)) {
2149 			dev_warn(&ctlr->dev,
2150 				 "Failed to create SPI device for %pOF\n", nc);
2151 			of_node_clear_flag(nc, OF_POPULATED);
2152 		}
2153 	}
2154 }
2155 #else
2156 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2157 #endif
2158 
2159 /**
2160  * spi_new_ancillary_device() - Register ancillary SPI device
2161  * @spi:         Pointer to the main SPI device registering the ancillary device
2162  * @chip_select: Chip Select of the ancillary device
2163  *
2164  * Register an ancillary SPI device; for example some chips have a chip-select
2165  * for normal device usage and another one for setup/firmware upload.
2166  *
2167  * This may only be called from main SPI device's probe routine.
2168  *
2169  * Return: 0 on success; negative errno on failure
2170  */
2171 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2172 					     u8 chip_select)
2173 {
2174 	struct spi_device *ancillary;
2175 	int rc = 0;
2176 
2177 	/* Alloc an spi_device */
2178 	ancillary = spi_alloc_device(spi->controller);
2179 	if (!ancillary) {
2180 		rc = -ENOMEM;
2181 		goto err_out;
2182 	}
2183 
2184 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2185 
2186 	/* Use provided chip-select for ancillary device */
2187 	ancillary->chip_select = chip_select;
2188 
2189 	/* Take over SPI mode/speed from SPI main device */
2190 	ancillary->max_speed_hz = spi->max_speed_hz;
2191 	ancillary->mode = spi->mode;
2192 
2193 	/* Register the new device */
2194 	rc = spi_add_device_locked(ancillary);
2195 	if (rc) {
2196 		dev_err(&spi->dev, "failed to register ancillary device\n");
2197 		goto err_out;
2198 	}
2199 
2200 	return ancillary;
2201 
2202 err_out:
2203 	spi_dev_put(ancillary);
2204 	return ERR_PTR(rc);
2205 }
2206 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2207 
2208 #ifdef CONFIG_ACPI
2209 struct acpi_spi_lookup {
2210 	struct spi_controller 	*ctlr;
2211 	u32			max_speed_hz;
2212 	u32			mode;
2213 	int			irq;
2214 	u8			bits_per_word;
2215 	u8			chip_select;
2216 };
2217 
2218 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2219 					    struct acpi_spi_lookup *lookup)
2220 {
2221 	const union acpi_object *obj;
2222 
2223 	if (!x86_apple_machine)
2224 		return;
2225 
2226 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2227 	    && obj->buffer.length >= 4)
2228 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2229 
2230 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2231 	    && obj->buffer.length == 8)
2232 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2233 
2234 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2235 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2236 		lookup->mode |= SPI_LSB_FIRST;
2237 
2238 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2239 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2240 		lookup->mode |= SPI_CPOL;
2241 
2242 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2243 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2244 		lookup->mode |= SPI_CPHA;
2245 }
2246 
2247 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2248 {
2249 	struct acpi_spi_lookup *lookup = data;
2250 	struct spi_controller *ctlr = lookup->ctlr;
2251 
2252 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2253 		struct acpi_resource_spi_serialbus *sb;
2254 		acpi_handle parent_handle;
2255 		acpi_status status;
2256 
2257 		sb = &ares->data.spi_serial_bus;
2258 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2259 
2260 			status = acpi_get_handle(NULL,
2261 						 sb->resource_source.string_ptr,
2262 						 &parent_handle);
2263 
2264 			if (ACPI_FAILURE(status) ||
2265 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2266 				return -ENODEV;
2267 
2268 			/*
2269 			 * ACPI DeviceSelection numbering is handled by the
2270 			 * host controller driver in Windows and can vary
2271 			 * from driver to driver. In Linux we always expect
2272 			 * 0 .. max - 1 so we need to ask the driver to
2273 			 * translate between the two schemes.
2274 			 */
2275 			if (ctlr->fw_translate_cs) {
2276 				int cs = ctlr->fw_translate_cs(ctlr,
2277 						sb->device_selection);
2278 				if (cs < 0)
2279 					return cs;
2280 				lookup->chip_select = cs;
2281 			} else {
2282 				lookup->chip_select = sb->device_selection;
2283 			}
2284 
2285 			lookup->max_speed_hz = sb->connection_speed;
2286 			lookup->bits_per_word = sb->data_bit_length;
2287 
2288 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2289 				lookup->mode |= SPI_CPHA;
2290 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2291 				lookup->mode |= SPI_CPOL;
2292 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2293 				lookup->mode |= SPI_CS_HIGH;
2294 		}
2295 	} else if (lookup->irq < 0) {
2296 		struct resource r;
2297 
2298 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2299 			lookup->irq = r.start;
2300 	}
2301 
2302 	/* Always tell the ACPI core to skip this resource */
2303 	return 1;
2304 }
2305 
2306 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2307 					    struct acpi_device *adev)
2308 {
2309 	acpi_handle parent_handle = NULL;
2310 	struct list_head resource_list;
2311 	struct acpi_spi_lookup lookup = {};
2312 	struct spi_device *spi;
2313 	int ret;
2314 
2315 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2316 	    acpi_device_enumerated(adev))
2317 		return AE_OK;
2318 
2319 	lookup.ctlr		= ctlr;
2320 	lookup.irq		= -1;
2321 
2322 	INIT_LIST_HEAD(&resource_list);
2323 	ret = acpi_dev_get_resources(adev, &resource_list,
2324 				     acpi_spi_add_resource, &lookup);
2325 	acpi_dev_free_resource_list(&resource_list);
2326 
2327 	if (ret < 0)
2328 		/* found SPI in _CRS but it points to another controller */
2329 		return AE_OK;
2330 
2331 	if (!lookup.max_speed_hz &&
2332 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2333 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2334 		/* Apple does not use _CRS but nested devices for SPI slaves */
2335 		acpi_spi_parse_apple_properties(adev, &lookup);
2336 	}
2337 
2338 	if (!lookup.max_speed_hz)
2339 		return AE_OK;
2340 
2341 	spi = spi_alloc_device(ctlr);
2342 	if (!spi) {
2343 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2344 			dev_name(&adev->dev));
2345 		return AE_NO_MEMORY;
2346 	}
2347 
2348 
2349 	ACPI_COMPANION_SET(&spi->dev, adev);
2350 	spi->max_speed_hz	= lookup.max_speed_hz;
2351 	spi->mode		|= lookup.mode;
2352 	spi->irq		= lookup.irq;
2353 	spi->bits_per_word	= lookup.bits_per_word;
2354 	spi->chip_select	= lookup.chip_select;
2355 
2356 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2357 			  sizeof(spi->modalias));
2358 
2359 	if (spi->irq < 0)
2360 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2361 
2362 	acpi_device_set_enumerated(adev);
2363 
2364 	adev->power.flags.ignore_parent = true;
2365 	if (spi_add_device(spi)) {
2366 		adev->power.flags.ignore_parent = false;
2367 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2368 			dev_name(&adev->dev));
2369 		spi_dev_put(spi);
2370 	}
2371 
2372 	return AE_OK;
2373 }
2374 
2375 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2376 				       void *data, void **return_value)
2377 {
2378 	struct spi_controller *ctlr = data;
2379 	struct acpi_device *adev;
2380 
2381 	if (acpi_bus_get_device(handle, &adev))
2382 		return AE_OK;
2383 
2384 	return acpi_register_spi_device(ctlr, adev);
2385 }
2386 
2387 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2388 
2389 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2390 {
2391 	acpi_status status;
2392 	acpi_handle handle;
2393 
2394 	handle = ACPI_HANDLE(ctlr->dev.parent);
2395 	if (!handle)
2396 		return;
2397 
2398 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2399 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2400 				     acpi_spi_add_device, NULL, ctlr, NULL);
2401 	if (ACPI_FAILURE(status))
2402 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2403 }
2404 #else
2405 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2406 #endif /* CONFIG_ACPI */
2407 
2408 static void spi_controller_release(struct device *dev)
2409 {
2410 	struct spi_controller *ctlr;
2411 
2412 	ctlr = container_of(dev, struct spi_controller, dev);
2413 	kfree(ctlr);
2414 }
2415 
2416 static struct class spi_master_class = {
2417 	.name		= "spi_master",
2418 	.owner		= THIS_MODULE,
2419 	.dev_release	= spi_controller_release,
2420 	.dev_groups	= spi_master_groups,
2421 };
2422 
2423 #ifdef CONFIG_SPI_SLAVE
2424 /**
2425  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2426  *		     controller
2427  * @spi: device used for the current transfer
2428  */
2429 int spi_slave_abort(struct spi_device *spi)
2430 {
2431 	struct spi_controller *ctlr = spi->controller;
2432 
2433 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2434 		return ctlr->slave_abort(ctlr);
2435 
2436 	return -ENOTSUPP;
2437 }
2438 EXPORT_SYMBOL_GPL(spi_slave_abort);
2439 
2440 static int match_true(struct device *dev, void *data)
2441 {
2442 	return 1;
2443 }
2444 
2445 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2446 			  char *buf)
2447 {
2448 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2449 						   dev);
2450 	struct device *child;
2451 
2452 	child = device_find_child(&ctlr->dev, NULL, match_true);
2453 	return sprintf(buf, "%s\n",
2454 		       child ? to_spi_device(child)->modalias : NULL);
2455 }
2456 
2457 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2458 			   const char *buf, size_t count)
2459 {
2460 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2461 						   dev);
2462 	struct spi_device *spi;
2463 	struct device *child;
2464 	char name[32];
2465 	int rc;
2466 
2467 	rc = sscanf(buf, "%31s", name);
2468 	if (rc != 1 || !name[0])
2469 		return -EINVAL;
2470 
2471 	child = device_find_child(&ctlr->dev, NULL, match_true);
2472 	if (child) {
2473 		/* Remove registered slave */
2474 		device_unregister(child);
2475 		put_device(child);
2476 	}
2477 
2478 	if (strcmp(name, "(null)")) {
2479 		/* Register new slave */
2480 		spi = spi_alloc_device(ctlr);
2481 		if (!spi)
2482 			return -ENOMEM;
2483 
2484 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2485 
2486 		rc = spi_add_device(spi);
2487 		if (rc) {
2488 			spi_dev_put(spi);
2489 			return rc;
2490 		}
2491 	}
2492 
2493 	return count;
2494 }
2495 
2496 static DEVICE_ATTR_RW(slave);
2497 
2498 static struct attribute *spi_slave_attrs[] = {
2499 	&dev_attr_slave.attr,
2500 	NULL,
2501 };
2502 
2503 static const struct attribute_group spi_slave_group = {
2504 	.attrs = spi_slave_attrs,
2505 };
2506 
2507 static const struct attribute_group *spi_slave_groups[] = {
2508 	&spi_controller_statistics_group,
2509 	&spi_slave_group,
2510 	NULL,
2511 };
2512 
2513 static struct class spi_slave_class = {
2514 	.name		= "spi_slave",
2515 	.owner		= THIS_MODULE,
2516 	.dev_release	= spi_controller_release,
2517 	.dev_groups	= spi_slave_groups,
2518 };
2519 #else
2520 extern struct class spi_slave_class;	/* dummy */
2521 #endif
2522 
2523 /**
2524  * __spi_alloc_controller - allocate an SPI master or slave controller
2525  * @dev: the controller, possibly using the platform_bus
2526  * @size: how much zeroed driver-private data to allocate; the pointer to this
2527  *	memory is in the driver_data field of the returned device, accessible
2528  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2529  *	drivers granting DMA access to portions of their private data need to
2530  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2531  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2532  *	slave (true) controller
2533  * Context: can sleep
2534  *
2535  * This call is used only by SPI controller drivers, which are the
2536  * only ones directly touching chip registers.  It's how they allocate
2537  * an spi_controller structure, prior to calling spi_register_controller().
2538  *
2539  * This must be called from context that can sleep.
2540  *
2541  * The caller is responsible for assigning the bus number and initializing the
2542  * controller's methods before calling spi_register_controller(); and (after
2543  * errors adding the device) calling spi_controller_put() to prevent a memory
2544  * leak.
2545  *
2546  * Return: the SPI controller structure on success, else NULL.
2547  */
2548 struct spi_controller *__spi_alloc_controller(struct device *dev,
2549 					      unsigned int size, bool slave)
2550 {
2551 	struct spi_controller	*ctlr;
2552 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2553 
2554 	if (!dev)
2555 		return NULL;
2556 
2557 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2558 	if (!ctlr)
2559 		return NULL;
2560 
2561 	device_initialize(&ctlr->dev);
2562 	ctlr->bus_num = -1;
2563 	ctlr->num_chipselect = 1;
2564 	ctlr->slave = slave;
2565 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2566 		ctlr->dev.class = &spi_slave_class;
2567 	else
2568 		ctlr->dev.class = &spi_master_class;
2569 	ctlr->dev.parent = dev;
2570 	pm_suspend_ignore_children(&ctlr->dev, true);
2571 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2572 
2573 	return ctlr;
2574 }
2575 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2576 
2577 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2578 {
2579 	spi_controller_put(*(struct spi_controller **)ctlr);
2580 }
2581 
2582 /**
2583  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2584  * @dev: physical device of SPI controller
2585  * @size: how much zeroed driver-private data to allocate
2586  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2587  * Context: can sleep
2588  *
2589  * Allocate an SPI controller and automatically release a reference on it
2590  * when @dev is unbound from its driver.  Drivers are thus relieved from
2591  * having to call spi_controller_put().
2592  *
2593  * The arguments to this function are identical to __spi_alloc_controller().
2594  *
2595  * Return: the SPI controller structure on success, else NULL.
2596  */
2597 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2598 						   unsigned int size,
2599 						   bool slave)
2600 {
2601 	struct spi_controller **ptr, *ctlr;
2602 
2603 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2604 			   GFP_KERNEL);
2605 	if (!ptr)
2606 		return NULL;
2607 
2608 	ctlr = __spi_alloc_controller(dev, size, slave);
2609 	if (ctlr) {
2610 		ctlr->devm_allocated = true;
2611 		*ptr = ctlr;
2612 		devres_add(dev, ptr);
2613 	} else {
2614 		devres_free(ptr);
2615 	}
2616 
2617 	return ctlr;
2618 }
2619 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2620 
2621 #ifdef CONFIG_OF
2622 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2623 {
2624 	int nb, i, *cs;
2625 	struct device_node *np = ctlr->dev.of_node;
2626 
2627 	if (!np)
2628 		return 0;
2629 
2630 	nb = of_gpio_named_count(np, "cs-gpios");
2631 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2632 
2633 	/* Return error only for an incorrectly formed cs-gpios property */
2634 	if (nb == 0 || nb == -ENOENT)
2635 		return 0;
2636 	else if (nb < 0)
2637 		return nb;
2638 
2639 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2640 			  GFP_KERNEL);
2641 	ctlr->cs_gpios = cs;
2642 
2643 	if (!ctlr->cs_gpios)
2644 		return -ENOMEM;
2645 
2646 	for (i = 0; i < ctlr->num_chipselect; i++)
2647 		cs[i] = -ENOENT;
2648 
2649 	for (i = 0; i < nb; i++)
2650 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2651 
2652 	return 0;
2653 }
2654 #else
2655 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2656 {
2657 	return 0;
2658 }
2659 #endif
2660 
2661 /**
2662  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2663  * @ctlr: The SPI master to grab GPIO descriptors for
2664  */
2665 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2666 {
2667 	int nb, i;
2668 	struct gpio_desc **cs;
2669 	struct device *dev = &ctlr->dev;
2670 	unsigned long native_cs_mask = 0;
2671 	unsigned int num_cs_gpios = 0;
2672 
2673 	nb = gpiod_count(dev, "cs");
2674 	if (nb < 0) {
2675 		/* No GPIOs at all is fine, else return the error */
2676 		if (nb == -ENOENT)
2677 			return 0;
2678 		return nb;
2679 	}
2680 
2681 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2682 
2683 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2684 			  GFP_KERNEL);
2685 	if (!cs)
2686 		return -ENOMEM;
2687 	ctlr->cs_gpiods = cs;
2688 
2689 	for (i = 0; i < nb; i++) {
2690 		/*
2691 		 * Most chipselects are active low, the inverted
2692 		 * semantics are handled by special quirks in gpiolib,
2693 		 * so initializing them GPIOD_OUT_LOW here means
2694 		 * "unasserted", in most cases this will drive the physical
2695 		 * line high.
2696 		 */
2697 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2698 						      GPIOD_OUT_LOW);
2699 		if (IS_ERR(cs[i]))
2700 			return PTR_ERR(cs[i]);
2701 
2702 		if (cs[i]) {
2703 			/*
2704 			 * If we find a CS GPIO, name it after the device and
2705 			 * chip select line.
2706 			 */
2707 			char *gpioname;
2708 
2709 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2710 						  dev_name(dev), i);
2711 			if (!gpioname)
2712 				return -ENOMEM;
2713 			gpiod_set_consumer_name(cs[i], gpioname);
2714 			num_cs_gpios++;
2715 			continue;
2716 		}
2717 
2718 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2719 			dev_err(dev, "Invalid native chip select %d\n", i);
2720 			return -EINVAL;
2721 		}
2722 		native_cs_mask |= BIT(i);
2723 	}
2724 
2725 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2726 
2727 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2728 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2729 		dev_err(dev, "No unused native chip select available\n");
2730 		return -EINVAL;
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 static int spi_controller_check_ops(struct spi_controller *ctlr)
2737 {
2738 	/*
2739 	 * The controller may implement only the high-level SPI-memory like
2740 	 * operations if it does not support regular SPI transfers, and this is
2741 	 * valid use case.
2742 	 * If ->mem_ops is NULL, we request that at least one of the
2743 	 * ->transfer_xxx() method be implemented.
2744 	 */
2745 	if (ctlr->mem_ops) {
2746 		if (!ctlr->mem_ops->exec_op)
2747 			return -EINVAL;
2748 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2749 		   !ctlr->transfer_one_message) {
2750 		return -EINVAL;
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 /**
2757  * spi_register_controller - register SPI master or slave controller
2758  * @ctlr: initialized master, originally from spi_alloc_master() or
2759  *	spi_alloc_slave()
2760  * Context: can sleep
2761  *
2762  * SPI controllers connect to their drivers using some non-SPI bus,
2763  * such as the platform bus.  The final stage of probe() in that code
2764  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2765  *
2766  * SPI controllers use board specific (often SOC specific) bus numbers,
2767  * and board-specific addressing for SPI devices combines those numbers
2768  * with chip select numbers.  Since SPI does not directly support dynamic
2769  * device identification, boards need configuration tables telling which
2770  * chip is at which address.
2771  *
2772  * This must be called from context that can sleep.  It returns zero on
2773  * success, else a negative error code (dropping the controller's refcount).
2774  * After a successful return, the caller is responsible for calling
2775  * spi_unregister_controller().
2776  *
2777  * Return: zero on success, else a negative error code.
2778  */
2779 int spi_register_controller(struct spi_controller *ctlr)
2780 {
2781 	struct device		*dev = ctlr->dev.parent;
2782 	struct boardinfo	*bi;
2783 	int			status;
2784 	int			id, first_dynamic;
2785 
2786 	if (!dev)
2787 		return -ENODEV;
2788 
2789 	/*
2790 	 * Make sure all necessary hooks are implemented before registering
2791 	 * the SPI controller.
2792 	 */
2793 	status = spi_controller_check_ops(ctlr);
2794 	if (status)
2795 		return status;
2796 
2797 	if (ctlr->bus_num >= 0) {
2798 		/* devices with a fixed bus num must check-in with the num */
2799 		mutex_lock(&board_lock);
2800 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2801 			ctlr->bus_num + 1, GFP_KERNEL);
2802 		mutex_unlock(&board_lock);
2803 		if (WARN(id < 0, "couldn't get idr"))
2804 			return id == -ENOSPC ? -EBUSY : id;
2805 		ctlr->bus_num = id;
2806 	} else if (ctlr->dev.of_node) {
2807 		/* allocate dynamic bus number using Linux idr */
2808 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2809 		if (id >= 0) {
2810 			ctlr->bus_num = id;
2811 			mutex_lock(&board_lock);
2812 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2813 				       ctlr->bus_num + 1, GFP_KERNEL);
2814 			mutex_unlock(&board_lock);
2815 			if (WARN(id < 0, "couldn't get idr"))
2816 				return id == -ENOSPC ? -EBUSY : id;
2817 		}
2818 	}
2819 	if (ctlr->bus_num < 0) {
2820 		first_dynamic = of_alias_get_highest_id("spi");
2821 		if (first_dynamic < 0)
2822 			first_dynamic = 0;
2823 		else
2824 			first_dynamic++;
2825 
2826 		mutex_lock(&board_lock);
2827 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2828 			       0, GFP_KERNEL);
2829 		mutex_unlock(&board_lock);
2830 		if (WARN(id < 0, "couldn't get idr"))
2831 			return id;
2832 		ctlr->bus_num = id;
2833 	}
2834 	INIT_LIST_HEAD(&ctlr->queue);
2835 	spin_lock_init(&ctlr->queue_lock);
2836 	spin_lock_init(&ctlr->bus_lock_spinlock);
2837 	mutex_init(&ctlr->bus_lock_mutex);
2838 	mutex_init(&ctlr->io_mutex);
2839 	ctlr->bus_lock_flag = 0;
2840 	init_completion(&ctlr->xfer_completion);
2841 	if (!ctlr->max_dma_len)
2842 		ctlr->max_dma_len = INT_MAX;
2843 
2844 	/* register the device, then userspace will see it.
2845 	 * registration fails if the bus ID is in use.
2846 	 */
2847 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2848 
2849 	if (!spi_controller_is_slave(ctlr)) {
2850 		if (ctlr->use_gpio_descriptors) {
2851 			status = spi_get_gpio_descs(ctlr);
2852 			if (status)
2853 				goto free_bus_id;
2854 			/*
2855 			 * A controller using GPIO descriptors always
2856 			 * supports SPI_CS_HIGH if need be.
2857 			 */
2858 			ctlr->mode_bits |= SPI_CS_HIGH;
2859 		} else {
2860 			/* Legacy code path for GPIOs from DT */
2861 			status = of_spi_get_gpio_numbers(ctlr);
2862 			if (status)
2863 				goto free_bus_id;
2864 		}
2865 	}
2866 
2867 	/*
2868 	 * Even if it's just one always-selected device, there must
2869 	 * be at least one chipselect.
2870 	 */
2871 	if (!ctlr->num_chipselect) {
2872 		status = -EINVAL;
2873 		goto free_bus_id;
2874 	}
2875 
2876 	status = device_add(&ctlr->dev);
2877 	if (status < 0)
2878 		goto free_bus_id;
2879 	dev_dbg(dev, "registered %s %s\n",
2880 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2881 			dev_name(&ctlr->dev));
2882 
2883 	/*
2884 	 * If we're using a queued driver, start the queue. Note that we don't
2885 	 * need the queueing logic if the driver is only supporting high-level
2886 	 * memory operations.
2887 	 */
2888 	if (ctlr->transfer) {
2889 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2890 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2891 		status = spi_controller_initialize_queue(ctlr);
2892 		if (status) {
2893 			device_del(&ctlr->dev);
2894 			goto free_bus_id;
2895 		}
2896 	}
2897 	/* add statistics */
2898 	spin_lock_init(&ctlr->statistics.lock);
2899 
2900 	mutex_lock(&board_lock);
2901 	list_add_tail(&ctlr->list, &spi_controller_list);
2902 	list_for_each_entry(bi, &board_list, list)
2903 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2904 	mutex_unlock(&board_lock);
2905 
2906 	/* Register devices from the device tree and ACPI */
2907 	of_register_spi_devices(ctlr);
2908 	acpi_register_spi_devices(ctlr);
2909 	return status;
2910 
2911 free_bus_id:
2912 	mutex_lock(&board_lock);
2913 	idr_remove(&spi_master_idr, ctlr->bus_num);
2914 	mutex_unlock(&board_lock);
2915 	return status;
2916 }
2917 EXPORT_SYMBOL_GPL(spi_register_controller);
2918 
2919 static void devm_spi_unregister(void *ctlr)
2920 {
2921 	spi_unregister_controller(ctlr);
2922 }
2923 
2924 /**
2925  * devm_spi_register_controller - register managed SPI master or slave
2926  *	controller
2927  * @dev:    device managing SPI controller
2928  * @ctlr: initialized controller, originally from spi_alloc_master() or
2929  *	spi_alloc_slave()
2930  * Context: can sleep
2931  *
2932  * Register a SPI device as with spi_register_controller() which will
2933  * automatically be unregistered and freed.
2934  *
2935  * Return: zero on success, else a negative error code.
2936  */
2937 int devm_spi_register_controller(struct device *dev,
2938 				 struct spi_controller *ctlr)
2939 {
2940 	int ret;
2941 
2942 	ret = spi_register_controller(ctlr);
2943 	if (ret)
2944 		return ret;
2945 
2946 	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
2947 }
2948 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2949 
2950 static int __unregister(struct device *dev, void *null)
2951 {
2952 	spi_unregister_device(to_spi_device(dev));
2953 	return 0;
2954 }
2955 
2956 /**
2957  * spi_unregister_controller - unregister SPI master or slave controller
2958  * @ctlr: the controller being unregistered
2959  * Context: can sleep
2960  *
2961  * This call is used only by SPI controller drivers, which are the
2962  * only ones directly touching chip registers.
2963  *
2964  * This must be called from context that can sleep.
2965  *
2966  * Note that this function also drops a reference to the controller.
2967  */
2968 void spi_unregister_controller(struct spi_controller *ctlr)
2969 {
2970 	struct spi_controller *found;
2971 	int id = ctlr->bus_num;
2972 
2973 	/* Prevent addition of new devices, unregister existing ones */
2974 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2975 		mutex_lock(&spi_add_lock);
2976 
2977 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2978 
2979 	/* First make sure that this controller was ever added */
2980 	mutex_lock(&board_lock);
2981 	found = idr_find(&spi_master_idr, id);
2982 	mutex_unlock(&board_lock);
2983 	if (ctlr->queued) {
2984 		if (spi_destroy_queue(ctlr))
2985 			dev_err(&ctlr->dev, "queue remove failed\n");
2986 	}
2987 	mutex_lock(&board_lock);
2988 	list_del(&ctlr->list);
2989 	mutex_unlock(&board_lock);
2990 
2991 	device_del(&ctlr->dev);
2992 
2993 	/* Release the last reference on the controller if its driver
2994 	 * has not yet been converted to devm_spi_alloc_master/slave().
2995 	 */
2996 	if (!ctlr->devm_allocated)
2997 		put_device(&ctlr->dev);
2998 
2999 	/* free bus id */
3000 	mutex_lock(&board_lock);
3001 	if (found == ctlr)
3002 		idr_remove(&spi_master_idr, id);
3003 	mutex_unlock(&board_lock);
3004 
3005 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3006 		mutex_unlock(&spi_add_lock);
3007 }
3008 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3009 
3010 int spi_controller_suspend(struct spi_controller *ctlr)
3011 {
3012 	int ret;
3013 
3014 	/* Basically no-ops for non-queued controllers */
3015 	if (!ctlr->queued)
3016 		return 0;
3017 
3018 	ret = spi_stop_queue(ctlr);
3019 	if (ret)
3020 		dev_err(&ctlr->dev, "queue stop failed\n");
3021 
3022 	return ret;
3023 }
3024 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3025 
3026 int spi_controller_resume(struct spi_controller *ctlr)
3027 {
3028 	int ret;
3029 
3030 	if (!ctlr->queued)
3031 		return 0;
3032 
3033 	ret = spi_start_queue(ctlr);
3034 	if (ret)
3035 		dev_err(&ctlr->dev, "queue restart failed\n");
3036 
3037 	return ret;
3038 }
3039 EXPORT_SYMBOL_GPL(spi_controller_resume);
3040 
3041 static int __spi_controller_match(struct device *dev, const void *data)
3042 {
3043 	struct spi_controller *ctlr;
3044 	const u16 *bus_num = data;
3045 
3046 	ctlr = container_of(dev, struct spi_controller, dev);
3047 	return ctlr->bus_num == *bus_num;
3048 }
3049 
3050 /**
3051  * spi_busnum_to_master - look up master associated with bus_num
3052  * @bus_num: the master's bus number
3053  * Context: can sleep
3054  *
3055  * This call may be used with devices that are registered after
3056  * arch init time.  It returns a refcounted pointer to the relevant
3057  * spi_controller (which the caller must release), or NULL if there is
3058  * no such master registered.
3059  *
3060  * Return: the SPI master structure on success, else NULL.
3061  */
3062 struct spi_controller *spi_busnum_to_master(u16 bus_num)
3063 {
3064 	struct device		*dev;
3065 	struct spi_controller	*ctlr = NULL;
3066 
3067 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
3068 				__spi_controller_match);
3069 	if (dev)
3070 		ctlr = container_of(dev, struct spi_controller, dev);
3071 	/* reference got in class_find_device */
3072 	return ctlr;
3073 }
3074 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3075 
3076 /*-------------------------------------------------------------------------*/
3077 
3078 /* Core methods for SPI resource management */
3079 
3080 /**
3081  * spi_res_alloc - allocate a spi resource that is life-cycle managed
3082  *                 during the processing of a spi_message while using
3083  *                 spi_transfer_one
3084  * @spi:     the spi device for which we allocate memory
3085  * @release: the release code to execute for this resource
3086  * @size:    size to alloc and return
3087  * @gfp:     GFP allocation flags
3088  *
3089  * Return: the pointer to the allocated data
3090  *
3091  * This may get enhanced in the future to allocate from a memory pool
3092  * of the @spi_device or @spi_controller to avoid repeated allocations.
3093  */
3094 void *spi_res_alloc(struct spi_device *spi,
3095 		    spi_res_release_t release,
3096 		    size_t size, gfp_t gfp)
3097 {
3098 	struct spi_res *sres;
3099 
3100 	sres = kzalloc(sizeof(*sres) + size, gfp);
3101 	if (!sres)
3102 		return NULL;
3103 
3104 	INIT_LIST_HEAD(&sres->entry);
3105 	sres->release = release;
3106 
3107 	return sres->data;
3108 }
3109 EXPORT_SYMBOL_GPL(spi_res_alloc);
3110 
3111 /**
3112  * spi_res_free - free an spi resource
3113  * @res: pointer to the custom data of a resource
3114  *
3115  */
3116 void spi_res_free(void *res)
3117 {
3118 	struct spi_res *sres = container_of(res, struct spi_res, data);
3119 
3120 	if (!res)
3121 		return;
3122 
3123 	WARN_ON(!list_empty(&sres->entry));
3124 	kfree(sres);
3125 }
3126 EXPORT_SYMBOL_GPL(spi_res_free);
3127 
3128 /**
3129  * spi_res_add - add a spi_res to the spi_message
3130  * @message: the spi message
3131  * @res:     the spi_resource
3132  */
3133 void spi_res_add(struct spi_message *message, void *res)
3134 {
3135 	struct spi_res *sres = container_of(res, struct spi_res, data);
3136 
3137 	WARN_ON(!list_empty(&sres->entry));
3138 	list_add_tail(&sres->entry, &message->resources);
3139 }
3140 EXPORT_SYMBOL_GPL(spi_res_add);
3141 
3142 /**
3143  * spi_res_release - release all spi resources for this message
3144  * @ctlr:  the @spi_controller
3145  * @message: the @spi_message
3146  */
3147 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3148 {
3149 	struct spi_res *res, *tmp;
3150 
3151 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3152 		if (res->release)
3153 			res->release(ctlr, message, res->data);
3154 
3155 		list_del(&res->entry);
3156 
3157 		kfree(res);
3158 	}
3159 }
3160 EXPORT_SYMBOL_GPL(spi_res_release);
3161 
3162 /*-------------------------------------------------------------------------*/
3163 
3164 /* Core methods for spi_message alterations */
3165 
3166 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3167 					    struct spi_message *msg,
3168 					    void *res)
3169 {
3170 	struct spi_replaced_transfers *rxfer = res;
3171 	size_t i;
3172 
3173 	/* call extra callback if requested */
3174 	if (rxfer->release)
3175 		rxfer->release(ctlr, msg, res);
3176 
3177 	/* insert replaced transfers back into the message */
3178 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3179 
3180 	/* remove the formerly inserted entries */
3181 	for (i = 0; i < rxfer->inserted; i++)
3182 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3183 }
3184 
3185 /**
3186  * spi_replace_transfers - replace transfers with several transfers
3187  *                         and register change with spi_message.resources
3188  * @msg:           the spi_message we work upon
3189  * @xfer_first:    the first spi_transfer we want to replace
3190  * @remove:        number of transfers to remove
3191  * @insert:        the number of transfers we want to insert instead
3192  * @release:       extra release code necessary in some circumstances
3193  * @extradatasize: extra data to allocate (with alignment guarantees
3194  *                 of struct @spi_transfer)
3195  * @gfp:           gfp flags
3196  *
3197  * Returns: pointer to @spi_replaced_transfers,
3198  *          PTR_ERR(...) in case of errors.
3199  */
3200 struct spi_replaced_transfers *spi_replace_transfers(
3201 	struct spi_message *msg,
3202 	struct spi_transfer *xfer_first,
3203 	size_t remove,
3204 	size_t insert,
3205 	spi_replaced_release_t release,
3206 	size_t extradatasize,
3207 	gfp_t gfp)
3208 {
3209 	struct spi_replaced_transfers *rxfer;
3210 	struct spi_transfer *xfer;
3211 	size_t i;
3212 
3213 	/* allocate the structure using spi_res */
3214 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3215 			      struct_size(rxfer, inserted_transfers, insert)
3216 			      + extradatasize,
3217 			      gfp);
3218 	if (!rxfer)
3219 		return ERR_PTR(-ENOMEM);
3220 
3221 	/* the release code to invoke before running the generic release */
3222 	rxfer->release = release;
3223 
3224 	/* assign extradata */
3225 	if (extradatasize)
3226 		rxfer->extradata =
3227 			&rxfer->inserted_transfers[insert];
3228 
3229 	/* init the replaced_transfers list */
3230 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3231 
3232 	/* assign the list_entry after which we should reinsert
3233 	 * the @replaced_transfers - it may be spi_message.messages!
3234 	 */
3235 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3236 
3237 	/* remove the requested number of transfers */
3238 	for (i = 0; i < remove; i++) {
3239 		/* if the entry after replaced_after it is msg->transfers
3240 		 * then we have been requested to remove more transfers
3241 		 * than are in the list
3242 		 */
3243 		if (rxfer->replaced_after->next == &msg->transfers) {
3244 			dev_err(&msg->spi->dev,
3245 				"requested to remove more spi_transfers than are available\n");
3246 			/* insert replaced transfers back into the message */
3247 			list_splice(&rxfer->replaced_transfers,
3248 				    rxfer->replaced_after);
3249 
3250 			/* free the spi_replace_transfer structure */
3251 			spi_res_free(rxfer);
3252 
3253 			/* and return with an error */
3254 			return ERR_PTR(-EINVAL);
3255 		}
3256 
3257 		/* remove the entry after replaced_after from list of
3258 		 * transfers and add it to list of replaced_transfers
3259 		 */
3260 		list_move_tail(rxfer->replaced_after->next,
3261 			       &rxfer->replaced_transfers);
3262 	}
3263 
3264 	/* create copy of the given xfer with identical settings
3265 	 * based on the first transfer to get removed
3266 	 */
3267 	for (i = 0; i < insert; i++) {
3268 		/* we need to run in reverse order */
3269 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3270 
3271 		/* copy all spi_transfer data */
3272 		memcpy(xfer, xfer_first, sizeof(*xfer));
3273 
3274 		/* add to list */
3275 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3276 
3277 		/* clear cs_change and delay for all but the last */
3278 		if (i) {
3279 			xfer->cs_change = false;
3280 			xfer->delay.value = 0;
3281 		}
3282 	}
3283 
3284 	/* set up inserted */
3285 	rxfer->inserted = insert;
3286 
3287 	/* and register it with spi_res/spi_message */
3288 	spi_res_add(msg, rxfer);
3289 
3290 	return rxfer;
3291 }
3292 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3293 
3294 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3295 					struct spi_message *msg,
3296 					struct spi_transfer **xferp,
3297 					size_t maxsize,
3298 					gfp_t gfp)
3299 {
3300 	struct spi_transfer *xfer = *xferp, *xfers;
3301 	struct spi_replaced_transfers *srt;
3302 	size_t offset;
3303 	size_t count, i;
3304 
3305 	/* calculate how many we have to replace */
3306 	count = DIV_ROUND_UP(xfer->len, maxsize);
3307 
3308 	/* create replacement */
3309 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3310 	if (IS_ERR(srt))
3311 		return PTR_ERR(srt);
3312 	xfers = srt->inserted_transfers;
3313 
3314 	/* now handle each of those newly inserted spi_transfers
3315 	 * note that the replacements spi_transfers all are preset
3316 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3317 	 * are all identical (as well as most others)
3318 	 * so we just have to fix up len and the pointers.
3319 	 *
3320 	 * this also includes support for the depreciated
3321 	 * spi_message.is_dma_mapped interface
3322 	 */
3323 
3324 	/* the first transfer just needs the length modified, so we
3325 	 * run it outside the loop
3326 	 */
3327 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3328 
3329 	/* all the others need rx_buf/tx_buf also set */
3330 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3331 		/* update rx_buf, tx_buf and dma */
3332 		if (xfers[i].rx_buf)
3333 			xfers[i].rx_buf += offset;
3334 		if (xfers[i].rx_dma)
3335 			xfers[i].rx_dma += offset;
3336 		if (xfers[i].tx_buf)
3337 			xfers[i].tx_buf += offset;
3338 		if (xfers[i].tx_dma)
3339 			xfers[i].tx_dma += offset;
3340 
3341 		/* update length */
3342 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3343 	}
3344 
3345 	/* we set up xferp to the last entry we have inserted,
3346 	 * so that we skip those already split transfers
3347 	 */
3348 	*xferp = &xfers[count - 1];
3349 
3350 	/* increment statistics counters */
3351 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3352 				       transfers_split_maxsize);
3353 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3354 				       transfers_split_maxsize);
3355 
3356 	return 0;
3357 }
3358 
3359 /**
3360  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3361  *                               when an individual transfer exceeds a
3362  *                               certain size
3363  * @ctlr:    the @spi_controller for this transfer
3364  * @msg:   the @spi_message to transform
3365  * @maxsize:  the maximum when to apply this
3366  * @gfp: GFP allocation flags
3367  *
3368  * Return: status of transformation
3369  */
3370 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3371 				struct spi_message *msg,
3372 				size_t maxsize,
3373 				gfp_t gfp)
3374 {
3375 	struct spi_transfer *xfer;
3376 	int ret;
3377 
3378 	/* iterate over the transfer_list,
3379 	 * but note that xfer is advanced to the last transfer inserted
3380 	 * to avoid checking sizes again unnecessarily (also xfer does
3381 	 * potentiall belong to a different list by the time the
3382 	 * replacement has happened
3383 	 */
3384 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3385 		if (xfer->len > maxsize) {
3386 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3387 							   maxsize, gfp);
3388 			if (ret)
3389 				return ret;
3390 		}
3391 	}
3392 
3393 	return 0;
3394 }
3395 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3396 
3397 /*-------------------------------------------------------------------------*/
3398 
3399 /* Core methods for SPI controller protocol drivers.  Some of the
3400  * other core methods are currently defined as inline functions.
3401  */
3402 
3403 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3404 					u8 bits_per_word)
3405 {
3406 	if (ctlr->bits_per_word_mask) {
3407 		/* Only 32 bits fit in the mask */
3408 		if (bits_per_word > 32)
3409 			return -EINVAL;
3410 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3411 			return -EINVAL;
3412 	}
3413 
3414 	return 0;
3415 }
3416 
3417 /**
3418  * spi_setup - setup SPI mode and clock rate
3419  * @spi: the device whose settings are being modified
3420  * Context: can sleep, and no requests are queued to the device
3421  *
3422  * SPI protocol drivers may need to update the transfer mode if the
3423  * device doesn't work with its default.  They may likewise need
3424  * to update clock rates or word sizes from initial values.  This function
3425  * changes those settings, and must be called from a context that can sleep.
3426  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3427  * effect the next time the device is selected and data is transferred to
3428  * or from it.  When this function returns, the spi device is deselected.
3429  *
3430  * Note that this call will fail if the protocol driver specifies an option
3431  * that the underlying controller or its driver does not support.  For
3432  * example, not all hardware supports wire transfers using nine bit words,
3433  * LSB-first wire encoding, or active-high chipselects.
3434  *
3435  * Return: zero on success, else a negative error code.
3436  */
3437 int spi_setup(struct spi_device *spi)
3438 {
3439 	unsigned	bad_bits, ugly_bits;
3440 	int		status;
3441 
3442 	/*
3443 	 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3444 	 * are set at the same time
3445 	 */
3446 	if ((hweight_long(spi->mode &
3447 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3448 	    (hweight_long(spi->mode &
3449 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3450 		dev_err(&spi->dev,
3451 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3452 		return -EINVAL;
3453 	}
3454 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3455 	 */
3456 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3457 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3458 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3459 		return -EINVAL;
3460 	/* help drivers fail *cleanly* when they need options
3461 	 * that aren't supported with their current controller
3462 	 * SPI_CS_WORD has a fallback software implementation,
3463 	 * so it is ignored here.
3464 	 */
3465 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3466 				 SPI_NO_TX | SPI_NO_RX);
3467 	/* nothing prevents from working with active-high CS in case if it
3468 	 * is driven by GPIO.
3469 	 */
3470 	if (gpio_is_valid(spi->cs_gpio))
3471 		bad_bits &= ~SPI_CS_HIGH;
3472 	ugly_bits = bad_bits &
3473 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3474 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3475 	if (ugly_bits) {
3476 		dev_warn(&spi->dev,
3477 			 "setup: ignoring unsupported mode bits %x\n",
3478 			 ugly_bits);
3479 		spi->mode &= ~ugly_bits;
3480 		bad_bits &= ~ugly_bits;
3481 	}
3482 	if (bad_bits) {
3483 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3484 			bad_bits);
3485 		return -EINVAL;
3486 	}
3487 
3488 	if (!spi->bits_per_word)
3489 		spi->bits_per_word = 8;
3490 
3491 	status = __spi_validate_bits_per_word(spi->controller,
3492 					      spi->bits_per_word);
3493 	if (status)
3494 		return status;
3495 
3496 	if (spi->controller->max_speed_hz &&
3497 	    (!spi->max_speed_hz ||
3498 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3499 		spi->max_speed_hz = spi->controller->max_speed_hz;
3500 
3501 	mutex_lock(&spi->controller->io_mutex);
3502 
3503 	if (spi->controller->setup) {
3504 		status = spi->controller->setup(spi);
3505 		if (status) {
3506 			mutex_unlock(&spi->controller->io_mutex);
3507 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3508 				status);
3509 			return status;
3510 		}
3511 	}
3512 
3513 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3514 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3515 		if (status < 0) {
3516 			mutex_unlock(&spi->controller->io_mutex);
3517 			pm_runtime_put_noidle(spi->controller->dev.parent);
3518 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3519 				status);
3520 			return status;
3521 		}
3522 
3523 		/*
3524 		 * We do not want to return positive value from pm_runtime_get,
3525 		 * there are many instances of devices calling spi_setup() and
3526 		 * checking for a non-zero return value instead of a negative
3527 		 * return value.
3528 		 */
3529 		status = 0;
3530 
3531 		spi_set_cs(spi, false, true);
3532 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3533 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3534 	} else {
3535 		spi_set_cs(spi, false, true);
3536 	}
3537 
3538 	mutex_unlock(&spi->controller->io_mutex);
3539 
3540 	if (spi->rt && !spi->controller->rt) {
3541 		spi->controller->rt = true;
3542 		spi_set_thread_rt(spi->controller);
3543 	}
3544 
3545 	trace_spi_setup(spi, status);
3546 
3547 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3548 			spi->mode & SPI_MODE_X_MASK,
3549 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3550 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3551 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3552 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3553 			spi->bits_per_word, spi->max_speed_hz,
3554 			status);
3555 
3556 	return status;
3557 }
3558 EXPORT_SYMBOL_GPL(spi_setup);
3559 
3560 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3561 				       struct spi_device *spi)
3562 {
3563 	int delay1, delay2;
3564 
3565 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3566 	if (delay1 < 0)
3567 		return delay1;
3568 
3569 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3570 	if (delay2 < 0)
3571 		return delay2;
3572 
3573 	if (delay1 < delay2)
3574 		memcpy(&xfer->word_delay, &spi->word_delay,
3575 		       sizeof(xfer->word_delay));
3576 
3577 	return 0;
3578 }
3579 
3580 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3581 {
3582 	struct spi_controller *ctlr = spi->controller;
3583 	struct spi_transfer *xfer;
3584 	int w_size;
3585 
3586 	if (list_empty(&message->transfers))
3587 		return -EINVAL;
3588 
3589 	/* If an SPI controller does not support toggling the CS line on each
3590 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3591 	 * for the CS line, we can emulate the CS-per-word hardware function by
3592 	 * splitting transfers into one-word transfers and ensuring that
3593 	 * cs_change is set for each transfer.
3594 	 */
3595 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3596 					  spi->cs_gpiod ||
3597 					  gpio_is_valid(spi->cs_gpio))) {
3598 		size_t maxsize;
3599 		int ret;
3600 
3601 		maxsize = (spi->bits_per_word + 7) / 8;
3602 
3603 		/* spi_split_transfers_maxsize() requires message->spi */
3604 		message->spi = spi;
3605 
3606 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3607 						  GFP_KERNEL);
3608 		if (ret)
3609 			return ret;
3610 
3611 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3612 			/* don't change cs_change on the last entry in the list */
3613 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3614 				break;
3615 			xfer->cs_change = 1;
3616 		}
3617 	}
3618 
3619 	/* Half-duplex links include original MicroWire, and ones with
3620 	 * only one data pin like SPI_3WIRE (switches direction) or where
3621 	 * either MOSI or MISO is missing.  They can also be caused by
3622 	 * software limitations.
3623 	 */
3624 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3625 	    (spi->mode & SPI_3WIRE)) {
3626 		unsigned flags = ctlr->flags;
3627 
3628 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3629 			if (xfer->rx_buf && xfer->tx_buf)
3630 				return -EINVAL;
3631 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3632 				return -EINVAL;
3633 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3634 				return -EINVAL;
3635 		}
3636 	}
3637 
3638 	/**
3639 	 * Set transfer bits_per_word and max speed as spi device default if
3640 	 * it is not set for this transfer.
3641 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3642 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3643 	 * Ensure transfer word_delay is at least as long as that required by
3644 	 * device itself.
3645 	 */
3646 	message->frame_length = 0;
3647 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3648 		xfer->effective_speed_hz = 0;
3649 		message->frame_length += xfer->len;
3650 		if (!xfer->bits_per_word)
3651 			xfer->bits_per_word = spi->bits_per_word;
3652 
3653 		if (!xfer->speed_hz)
3654 			xfer->speed_hz = spi->max_speed_hz;
3655 
3656 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3657 			xfer->speed_hz = ctlr->max_speed_hz;
3658 
3659 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3660 			return -EINVAL;
3661 
3662 		/*
3663 		 * SPI transfer length should be multiple of SPI word size
3664 		 * where SPI word size should be power-of-two multiple
3665 		 */
3666 		if (xfer->bits_per_word <= 8)
3667 			w_size = 1;
3668 		else if (xfer->bits_per_word <= 16)
3669 			w_size = 2;
3670 		else
3671 			w_size = 4;
3672 
3673 		/* No partial transfers accepted */
3674 		if (xfer->len % w_size)
3675 			return -EINVAL;
3676 
3677 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3678 		    xfer->speed_hz < ctlr->min_speed_hz)
3679 			return -EINVAL;
3680 
3681 		if (xfer->tx_buf && !xfer->tx_nbits)
3682 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3683 		if (xfer->rx_buf && !xfer->rx_nbits)
3684 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3685 		/* check transfer tx/rx_nbits:
3686 		 * 1. check the value matches one of single, dual and quad
3687 		 * 2. check tx/rx_nbits match the mode in spi_device
3688 		 */
3689 		if (xfer->tx_buf) {
3690 			if (spi->mode & SPI_NO_TX)
3691 				return -EINVAL;
3692 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3693 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3694 				xfer->tx_nbits != SPI_NBITS_QUAD)
3695 				return -EINVAL;
3696 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3697 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3698 				return -EINVAL;
3699 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3700 				!(spi->mode & SPI_TX_QUAD))
3701 				return -EINVAL;
3702 		}
3703 		/* check transfer rx_nbits */
3704 		if (xfer->rx_buf) {
3705 			if (spi->mode & SPI_NO_RX)
3706 				return -EINVAL;
3707 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3708 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3709 				xfer->rx_nbits != SPI_NBITS_QUAD)
3710 				return -EINVAL;
3711 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3712 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3713 				return -EINVAL;
3714 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3715 				!(spi->mode & SPI_RX_QUAD))
3716 				return -EINVAL;
3717 		}
3718 
3719 		if (_spi_xfer_word_delay_update(xfer, spi))
3720 			return -EINVAL;
3721 	}
3722 
3723 	message->status = -EINPROGRESS;
3724 
3725 	return 0;
3726 }
3727 
3728 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3729 {
3730 	struct spi_controller *ctlr = spi->controller;
3731 	struct spi_transfer *xfer;
3732 
3733 	/*
3734 	 * Some controllers do not support doing regular SPI transfers. Return
3735 	 * ENOTSUPP when this is the case.
3736 	 */
3737 	if (!ctlr->transfer)
3738 		return -ENOTSUPP;
3739 
3740 	message->spi = spi;
3741 
3742 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3743 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3744 
3745 	trace_spi_message_submit(message);
3746 
3747 	if (!ctlr->ptp_sts_supported) {
3748 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3749 			xfer->ptp_sts_word_pre = 0;
3750 			ptp_read_system_prets(xfer->ptp_sts);
3751 		}
3752 	}
3753 
3754 	return ctlr->transfer(spi, message);
3755 }
3756 
3757 /**
3758  * spi_async - asynchronous SPI transfer
3759  * @spi: device with which data will be exchanged
3760  * @message: describes the data transfers, including completion callback
3761  * Context: any (irqs may be blocked, etc)
3762  *
3763  * This call may be used in_irq and other contexts which can't sleep,
3764  * as well as from task contexts which can sleep.
3765  *
3766  * The completion callback is invoked in a context which can't sleep.
3767  * Before that invocation, the value of message->status is undefined.
3768  * When the callback is issued, message->status holds either zero (to
3769  * indicate complete success) or a negative error code.  After that
3770  * callback returns, the driver which issued the transfer request may
3771  * deallocate the associated memory; it's no longer in use by any SPI
3772  * core or controller driver code.
3773  *
3774  * Note that although all messages to a spi_device are handled in
3775  * FIFO order, messages may go to different devices in other orders.
3776  * Some device might be higher priority, or have various "hard" access
3777  * time requirements, for example.
3778  *
3779  * On detection of any fault during the transfer, processing of
3780  * the entire message is aborted, and the device is deselected.
3781  * Until returning from the associated message completion callback,
3782  * no other spi_message queued to that device will be processed.
3783  * (This rule applies equally to all the synchronous transfer calls,
3784  * which are wrappers around this core asynchronous primitive.)
3785  *
3786  * Return: zero on success, else a negative error code.
3787  */
3788 int spi_async(struct spi_device *spi, struct spi_message *message)
3789 {
3790 	struct spi_controller *ctlr = spi->controller;
3791 	int ret;
3792 	unsigned long flags;
3793 
3794 	ret = __spi_validate(spi, message);
3795 	if (ret != 0)
3796 		return ret;
3797 
3798 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3799 
3800 	if (ctlr->bus_lock_flag)
3801 		ret = -EBUSY;
3802 	else
3803 		ret = __spi_async(spi, message);
3804 
3805 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3806 
3807 	return ret;
3808 }
3809 EXPORT_SYMBOL_GPL(spi_async);
3810 
3811 /**
3812  * spi_async_locked - version of spi_async with exclusive bus usage
3813  * @spi: device with which data will be exchanged
3814  * @message: describes the data transfers, including completion callback
3815  * Context: any (irqs may be blocked, etc)
3816  *
3817  * This call may be used in_irq and other contexts which can't sleep,
3818  * as well as from task contexts which can sleep.
3819  *
3820  * The completion callback is invoked in a context which can't sleep.
3821  * Before that invocation, the value of message->status is undefined.
3822  * When the callback is issued, message->status holds either zero (to
3823  * indicate complete success) or a negative error code.  After that
3824  * callback returns, the driver which issued the transfer request may
3825  * deallocate the associated memory; it's no longer in use by any SPI
3826  * core or controller driver code.
3827  *
3828  * Note that although all messages to a spi_device are handled in
3829  * FIFO order, messages may go to different devices in other orders.
3830  * Some device might be higher priority, or have various "hard" access
3831  * time requirements, for example.
3832  *
3833  * On detection of any fault during the transfer, processing of
3834  * the entire message is aborted, and the device is deselected.
3835  * Until returning from the associated message completion callback,
3836  * no other spi_message queued to that device will be processed.
3837  * (This rule applies equally to all the synchronous transfer calls,
3838  * which are wrappers around this core asynchronous primitive.)
3839  *
3840  * Return: zero on success, else a negative error code.
3841  */
3842 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3843 {
3844 	struct spi_controller *ctlr = spi->controller;
3845 	int ret;
3846 	unsigned long flags;
3847 
3848 	ret = __spi_validate(spi, message);
3849 	if (ret != 0)
3850 		return ret;
3851 
3852 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3853 
3854 	ret = __spi_async(spi, message);
3855 
3856 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3857 
3858 	return ret;
3859 
3860 }
3861 EXPORT_SYMBOL_GPL(spi_async_locked);
3862 
3863 /*-------------------------------------------------------------------------*/
3864 
3865 /* Utility methods for SPI protocol drivers, layered on
3866  * top of the core.  Some other utility methods are defined as
3867  * inline functions.
3868  */
3869 
3870 static void spi_complete(void *arg)
3871 {
3872 	complete(arg);
3873 }
3874 
3875 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3876 {
3877 	DECLARE_COMPLETION_ONSTACK(done);
3878 	int status;
3879 	struct spi_controller *ctlr = spi->controller;
3880 	unsigned long flags;
3881 
3882 	status = __spi_validate(spi, message);
3883 	if (status != 0)
3884 		return status;
3885 
3886 	message->complete = spi_complete;
3887 	message->context = &done;
3888 	message->spi = spi;
3889 
3890 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3891 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3892 
3893 	/* If we're not using the legacy transfer method then we will
3894 	 * try to transfer in the calling context so special case.
3895 	 * This code would be less tricky if we could remove the
3896 	 * support for driver implemented message queues.
3897 	 */
3898 	if (ctlr->transfer == spi_queued_transfer) {
3899 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3900 
3901 		trace_spi_message_submit(message);
3902 
3903 		status = __spi_queued_transfer(spi, message, false);
3904 
3905 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3906 	} else {
3907 		status = spi_async_locked(spi, message);
3908 	}
3909 
3910 	if (status == 0) {
3911 		/* Push out the messages in the calling context if we
3912 		 * can.
3913 		 */
3914 		if (ctlr->transfer == spi_queued_transfer) {
3915 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3916 						       spi_sync_immediate);
3917 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3918 						       spi_sync_immediate);
3919 			__spi_pump_messages(ctlr, false);
3920 		}
3921 
3922 		wait_for_completion(&done);
3923 		status = message->status;
3924 	}
3925 	message->context = NULL;
3926 	return status;
3927 }
3928 
3929 /**
3930  * spi_sync - blocking/synchronous SPI data transfers
3931  * @spi: device with which data will be exchanged
3932  * @message: describes the data transfers
3933  * Context: can sleep
3934  *
3935  * This call may only be used from a context that may sleep.  The sleep
3936  * is non-interruptible, and has no timeout.  Low-overhead controller
3937  * drivers may DMA directly into and out of the message buffers.
3938  *
3939  * Note that the SPI device's chip select is active during the message,
3940  * and then is normally disabled between messages.  Drivers for some
3941  * frequently-used devices may want to minimize costs of selecting a chip,
3942  * by leaving it selected in anticipation that the next message will go
3943  * to the same chip.  (That may increase power usage.)
3944  *
3945  * Also, the caller is guaranteeing that the memory associated with the
3946  * message will not be freed before this call returns.
3947  *
3948  * Return: zero on success, else a negative error code.
3949  */
3950 int spi_sync(struct spi_device *spi, struct spi_message *message)
3951 {
3952 	int ret;
3953 
3954 	mutex_lock(&spi->controller->bus_lock_mutex);
3955 	ret = __spi_sync(spi, message);
3956 	mutex_unlock(&spi->controller->bus_lock_mutex);
3957 
3958 	return ret;
3959 }
3960 EXPORT_SYMBOL_GPL(spi_sync);
3961 
3962 /**
3963  * spi_sync_locked - version of spi_sync with exclusive bus usage
3964  * @spi: device with which data will be exchanged
3965  * @message: describes the data transfers
3966  * Context: can sleep
3967  *
3968  * This call may only be used from a context that may sleep.  The sleep
3969  * is non-interruptible, and has no timeout.  Low-overhead controller
3970  * drivers may DMA directly into and out of the message buffers.
3971  *
3972  * This call should be used by drivers that require exclusive access to the
3973  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3974  * be released by a spi_bus_unlock call when the exclusive access is over.
3975  *
3976  * Return: zero on success, else a negative error code.
3977  */
3978 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3979 {
3980 	return __spi_sync(spi, message);
3981 }
3982 EXPORT_SYMBOL_GPL(spi_sync_locked);
3983 
3984 /**
3985  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3986  * @ctlr: SPI bus master that should be locked for exclusive bus access
3987  * Context: can sleep
3988  *
3989  * This call may only be used from a context that may sleep.  The sleep
3990  * is non-interruptible, and has no timeout.
3991  *
3992  * This call should be used by drivers that require exclusive access to the
3993  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3994  * exclusive access is over. Data transfer must be done by spi_sync_locked
3995  * and spi_async_locked calls when the SPI bus lock is held.
3996  *
3997  * Return: always zero.
3998  */
3999 int spi_bus_lock(struct spi_controller *ctlr)
4000 {
4001 	unsigned long flags;
4002 
4003 	mutex_lock(&ctlr->bus_lock_mutex);
4004 
4005 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4006 	ctlr->bus_lock_flag = 1;
4007 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4008 
4009 	/* mutex remains locked until spi_bus_unlock is called */
4010 
4011 	return 0;
4012 }
4013 EXPORT_SYMBOL_GPL(spi_bus_lock);
4014 
4015 /**
4016  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4017  * @ctlr: SPI bus master that was locked for exclusive bus access
4018  * Context: can sleep
4019  *
4020  * This call may only be used from a context that may sleep.  The sleep
4021  * is non-interruptible, and has no timeout.
4022  *
4023  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4024  * call.
4025  *
4026  * Return: always zero.
4027  */
4028 int spi_bus_unlock(struct spi_controller *ctlr)
4029 {
4030 	ctlr->bus_lock_flag = 0;
4031 
4032 	mutex_unlock(&ctlr->bus_lock_mutex);
4033 
4034 	return 0;
4035 }
4036 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4037 
4038 /* portable code must never pass more than 32 bytes */
4039 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4040 
4041 static u8	*buf;
4042 
4043 /**
4044  * spi_write_then_read - SPI synchronous write followed by read
4045  * @spi: device with which data will be exchanged
4046  * @txbuf: data to be written (need not be dma-safe)
4047  * @n_tx: size of txbuf, in bytes
4048  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4049  * @n_rx: size of rxbuf, in bytes
4050  * Context: can sleep
4051  *
4052  * This performs a half duplex MicroWire style transaction with the
4053  * device, sending txbuf and then reading rxbuf.  The return value
4054  * is zero for success, else a negative errno status code.
4055  * This call may only be used from a context that may sleep.
4056  *
4057  * Parameters to this routine are always copied using a small buffer.
4058  * Performance-sensitive or bulk transfer code should instead use
4059  * spi_{async,sync}() calls with dma-safe buffers.
4060  *
4061  * Return: zero on success, else a negative error code.
4062  */
4063 int spi_write_then_read(struct spi_device *spi,
4064 		const void *txbuf, unsigned n_tx,
4065 		void *rxbuf, unsigned n_rx)
4066 {
4067 	static DEFINE_MUTEX(lock);
4068 
4069 	int			status;
4070 	struct spi_message	message;
4071 	struct spi_transfer	x[2];
4072 	u8			*local_buf;
4073 
4074 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
4075 	 * copying here, (as a pure convenience thing), but we can
4076 	 * keep heap costs out of the hot path unless someone else is
4077 	 * using the pre-allocated buffer or the transfer is too large.
4078 	 */
4079 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4080 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4081 				    GFP_KERNEL | GFP_DMA);
4082 		if (!local_buf)
4083 			return -ENOMEM;
4084 	} else {
4085 		local_buf = buf;
4086 	}
4087 
4088 	spi_message_init(&message);
4089 	memset(x, 0, sizeof(x));
4090 	if (n_tx) {
4091 		x[0].len = n_tx;
4092 		spi_message_add_tail(&x[0], &message);
4093 	}
4094 	if (n_rx) {
4095 		x[1].len = n_rx;
4096 		spi_message_add_tail(&x[1], &message);
4097 	}
4098 
4099 	memcpy(local_buf, txbuf, n_tx);
4100 	x[0].tx_buf = local_buf;
4101 	x[1].rx_buf = local_buf + n_tx;
4102 
4103 	/* do the i/o */
4104 	status = spi_sync(spi, &message);
4105 	if (status == 0)
4106 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4107 
4108 	if (x[0].tx_buf == buf)
4109 		mutex_unlock(&lock);
4110 	else
4111 		kfree(local_buf);
4112 
4113 	return status;
4114 }
4115 EXPORT_SYMBOL_GPL(spi_write_then_read);
4116 
4117 /*-------------------------------------------------------------------------*/
4118 
4119 #if IS_ENABLED(CONFIG_OF)
4120 /* must call put_device() when done with returned spi_device device */
4121 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4122 {
4123 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4124 
4125 	return dev ? to_spi_device(dev) : NULL;
4126 }
4127 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4128 #endif /* IS_ENABLED(CONFIG_OF) */
4129 
4130 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4131 /* the spi controllers are not using spi_bus, so we find it with another way */
4132 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4133 {
4134 	struct device *dev;
4135 
4136 	dev = class_find_device_by_of_node(&spi_master_class, node);
4137 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4138 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4139 	if (!dev)
4140 		return NULL;
4141 
4142 	/* reference got in class_find_device */
4143 	return container_of(dev, struct spi_controller, dev);
4144 }
4145 
4146 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4147 			 void *arg)
4148 {
4149 	struct of_reconfig_data *rd = arg;
4150 	struct spi_controller *ctlr;
4151 	struct spi_device *spi;
4152 
4153 	switch (of_reconfig_get_state_change(action, arg)) {
4154 	case OF_RECONFIG_CHANGE_ADD:
4155 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4156 		if (ctlr == NULL)
4157 			return NOTIFY_OK;	/* not for us */
4158 
4159 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4160 			put_device(&ctlr->dev);
4161 			return NOTIFY_OK;
4162 		}
4163 
4164 		spi = of_register_spi_device(ctlr, rd->dn);
4165 		put_device(&ctlr->dev);
4166 
4167 		if (IS_ERR(spi)) {
4168 			pr_err("%s: failed to create for '%pOF'\n",
4169 					__func__, rd->dn);
4170 			of_node_clear_flag(rd->dn, OF_POPULATED);
4171 			return notifier_from_errno(PTR_ERR(spi));
4172 		}
4173 		break;
4174 
4175 	case OF_RECONFIG_CHANGE_REMOVE:
4176 		/* already depopulated? */
4177 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4178 			return NOTIFY_OK;
4179 
4180 		/* find our device by node */
4181 		spi = of_find_spi_device_by_node(rd->dn);
4182 		if (spi == NULL)
4183 			return NOTIFY_OK;	/* no? not meant for us */
4184 
4185 		/* unregister takes one ref away */
4186 		spi_unregister_device(spi);
4187 
4188 		/* and put the reference of the find */
4189 		put_device(&spi->dev);
4190 		break;
4191 	}
4192 
4193 	return NOTIFY_OK;
4194 }
4195 
4196 static struct notifier_block spi_of_notifier = {
4197 	.notifier_call = of_spi_notify,
4198 };
4199 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4200 extern struct notifier_block spi_of_notifier;
4201 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4202 
4203 #if IS_ENABLED(CONFIG_ACPI)
4204 static int spi_acpi_controller_match(struct device *dev, const void *data)
4205 {
4206 	return ACPI_COMPANION(dev->parent) == data;
4207 }
4208 
4209 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4210 {
4211 	struct device *dev;
4212 
4213 	dev = class_find_device(&spi_master_class, NULL, adev,
4214 				spi_acpi_controller_match);
4215 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4216 		dev = class_find_device(&spi_slave_class, NULL, adev,
4217 					spi_acpi_controller_match);
4218 	if (!dev)
4219 		return NULL;
4220 
4221 	return container_of(dev, struct spi_controller, dev);
4222 }
4223 
4224 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4225 {
4226 	struct device *dev;
4227 
4228 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4229 	return to_spi_device(dev);
4230 }
4231 
4232 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4233 			   void *arg)
4234 {
4235 	struct acpi_device *adev = arg;
4236 	struct spi_controller *ctlr;
4237 	struct spi_device *spi;
4238 
4239 	switch (value) {
4240 	case ACPI_RECONFIG_DEVICE_ADD:
4241 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4242 		if (!ctlr)
4243 			break;
4244 
4245 		acpi_register_spi_device(ctlr, adev);
4246 		put_device(&ctlr->dev);
4247 		break;
4248 	case ACPI_RECONFIG_DEVICE_REMOVE:
4249 		if (!acpi_device_enumerated(adev))
4250 			break;
4251 
4252 		spi = acpi_spi_find_device_by_adev(adev);
4253 		if (!spi)
4254 			break;
4255 
4256 		spi_unregister_device(spi);
4257 		put_device(&spi->dev);
4258 		break;
4259 	}
4260 
4261 	return NOTIFY_OK;
4262 }
4263 
4264 static struct notifier_block spi_acpi_notifier = {
4265 	.notifier_call = acpi_spi_notify,
4266 };
4267 #else
4268 extern struct notifier_block spi_acpi_notifier;
4269 #endif
4270 
4271 static int __init spi_init(void)
4272 {
4273 	int	status;
4274 
4275 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4276 	if (!buf) {
4277 		status = -ENOMEM;
4278 		goto err0;
4279 	}
4280 
4281 	status = bus_register(&spi_bus_type);
4282 	if (status < 0)
4283 		goto err1;
4284 
4285 	status = class_register(&spi_master_class);
4286 	if (status < 0)
4287 		goto err2;
4288 
4289 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4290 		status = class_register(&spi_slave_class);
4291 		if (status < 0)
4292 			goto err3;
4293 	}
4294 
4295 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4296 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4297 	if (IS_ENABLED(CONFIG_ACPI))
4298 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4299 
4300 	return 0;
4301 
4302 err3:
4303 	class_unregister(&spi_master_class);
4304 err2:
4305 	bus_unregister(&spi_bus_type);
4306 err1:
4307 	kfree(buf);
4308 	buf = NULL;
4309 err0:
4310 	return status;
4311 }
4312 
4313 /* board_info is normally registered in arch_initcall(),
4314  * but even essential drivers wait till later
4315  *
4316  * REVISIT only boardinfo really needs static linking. the rest (device and
4317  * driver registration) _could_ be dynamically linked (modular) ... costs
4318  * include needing to have boardinfo data structures be much more public.
4319  */
4320 postcore_initcall(spi_init);
4321