1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/pm_domain.h> 24 #include <linux/property.h> 25 #include <linux/export.h> 26 #include <linux/sched/rt.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/ioport.h> 31 #include <linux/acpi.h> 32 #include <linux/highmem.h> 33 #include <linux/idr.h> 34 #include <linux/platform_data/x86/apple.h> 35 #include <linux/ptp_clock_kernel.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 spi_controller_put(spi->controller); 51 kfree(spi->driver_override); 52 kfree(spi); 53 } 54 55 static ssize_t 56 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 57 { 58 const struct spi_device *spi = to_spi_device(dev); 59 int len; 60 61 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 62 if (len != -ENODEV) 63 return len; 64 65 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 66 } 67 static DEVICE_ATTR_RO(modalias); 68 69 static ssize_t driver_override_store(struct device *dev, 70 struct device_attribute *a, 71 const char *buf, size_t count) 72 { 73 struct spi_device *spi = to_spi_device(dev); 74 const char *end = memchr(buf, '\n', count); 75 const size_t len = end ? end - buf : count; 76 const char *driver_override, *old; 77 78 /* We need to keep extra room for a newline when displaying value */ 79 if (len >= (PAGE_SIZE - 1)) 80 return -EINVAL; 81 82 driver_override = kstrndup(buf, len, GFP_KERNEL); 83 if (!driver_override) 84 return -ENOMEM; 85 86 device_lock(dev); 87 old = spi->driver_override; 88 if (len) { 89 spi->driver_override = driver_override; 90 } else { 91 /* Empty string, disable driver override */ 92 spi->driver_override = NULL; 93 kfree(driver_override); 94 } 95 device_unlock(dev); 96 kfree(old); 97 98 return count; 99 } 100 101 static ssize_t driver_override_show(struct device *dev, 102 struct device_attribute *a, char *buf) 103 { 104 const struct spi_device *spi = to_spi_device(dev); 105 ssize_t len; 106 107 device_lock(dev); 108 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 109 device_unlock(dev); 110 return len; 111 } 112 static DEVICE_ATTR_RW(driver_override); 113 114 #define SPI_STATISTICS_ATTRS(field, file) \ 115 static ssize_t spi_controller_##field##_show(struct device *dev, \ 116 struct device_attribute *attr, \ 117 char *buf) \ 118 { \ 119 struct spi_controller *ctlr = container_of(dev, \ 120 struct spi_controller, dev); \ 121 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 122 } \ 123 static struct device_attribute dev_attr_spi_controller_##field = { \ 124 .attr = { .name = file, .mode = 0444 }, \ 125 .show = spi_controller_##field##_show, \ 126 }; \ 127 static ssize_t spi_device_##field##_show(struct device *dev, \ 128 struct device_attribute *attr, \ 129 char *buf) \ 130 { \ 131 struct spi_device *spi = to_spi_device(dev); \ 132 return spi_statistics_##field##_show(&spi->statistics, buf); \ 133 } \ 134 static struct device_attribute dev_attr_spi_device_##field = { \ 135 .attr = { .name = file, .mode = 0444 }, \ 136 .show = spi_device_##field##_show, \ 137 } 138 139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 141 char *buf) \ 142 { \ 143 unsigned long flags; \ 144 ssize_t len; \ 145 spin_lock_irqsave(&stat->lock, flags); \ 146 len = sysfs_emit(buf, format_string "\n", stat->field); \ 147 spin_unlock_irqrestore(&stat->lock, flags); \ 148 return len; \ 149 } \ 150 SPI_STATISTICS_ATTRS(name, file) 151 152 #define SPI_STATISTICS_SHOW(field, format_string) \ 153 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 154 field, format_string) 155 156 SPI_STATISTICS_SHOW(messages, "%lu"); 157 SPI_STATISTICS_SHOW(transfers, "%lu"); 158 SPI_STATISTICS_SHOW(errors, "%lu"); 159 SPI_STATISTICS_SHOW(timedout, "%lu"); 160 161 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 163 SPI_STATISTICS_SHOW(spi_async, "%lu"); 164 165 SPI_STATISTICS_SHOW(bytes, "%llu"); 166 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 167 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 168 169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 170 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 171 "transfer_bytes_histo_" number, \ 172 transfer_bytes_histo[index], "%lu") 173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 190 191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 192 193 static struct attribute *spi_dev_attrs[] = { 194 &dev_attr_modalias.attr, 195 &dev_attr_driver_override.attr, 196 NULL, 197 }; 198 199 static const struct attribute_group spi_dev_group = { 200 .attrs = spi_dev_attrs, 201 }; 202 203 static struct attribute *spi_device_statistics_attrs[] = { 204 &dev_attr_spi_device_messages.attr, 205 &dev_attr_spi_device_transfers.attr, 206 &dev_attr_spi_device_errors.attr, 207 &dev_attr_spi_device_timedout.attr, 208 &dev_attr_spi_device_spi_sync.attr, 209 &dev_attr_spi_device_spi_sync_immediate.attr, 210 &dev_attr_spi_device_spi_async.attr, 211 &dev_attr_spi_device_bytes.attr, 212 &dev_attr_spi_device_bytes_rx.attr, 213 &dev_attr_spi_device_bytes_tx.attr, 214 &dev_attr_spi_device_transfer_bytes_histo0.attr, 215 &dev_attr_spi_device_transfer_bytes_histo1.attr, 216 &dev_attr_spi_device_transfer_bytes_histo2.attr, 217 &dev_attr_spi_device_transfer_bytes_histo3.attr, 218 &dev_attr_spi_device_transfer_bytes_histo4.attr, 219 &dev_attr_spi_device_transfer_bytes_histo5.attr, 220 &dev_attr_spi_device_transfer_bytes_histo6.attr, 221 &dev_attr_spi_device_transfer_bytes_histo7.attr, 222 &dev_attr_spi_device_transfer_bytes_histo8.attr, 223 &dev_attr_spi_device_transfer_bytes_histo9.attr, 224 &dev_attr_spi_device_transfer_bytes_histo10.attr, 225 &dev_attr_spi_device_transfer_bytes_histo11.attr, 226 &dev_attr_spi_device_transfer_bytes_histo12.attr, 227 &dev_attr_spi_device_transfer_bytes_histo13.attr, 228 &dev_attr_spi_device_transfer_bytes_histo14.attr, 229 &dev_attr_spi_device_transfer_bytes_histo15.attr, 230 &dev_attr_spi_device_transfer_bytes_histo16.attr, 231 &dev_attr_spi_device_transfers_split_maxsize.attr, 232 NULL, 233 }; 234 235 static const struct attribute_group spi_device_statistics_group = { 236 .name = "statistics", 237 .attrs = spi_device_statistics_attrs, 238 }; 239 240 static const struct attribute_group *spi_dev_groups[] = { 241 &spi_dev_group, 242 &spi_device_statistics_group, 243 NULL, 244 }; 245 246 static struct attribute *spi_controller_statistics_attrs[] = { 247 &dev_attr_spi_controller_messages.attr, 248 &dev_attr_spi_controller_transfers.attr, 249 &dev_attr_spi_controller_errors.attr, 250 &dev_attr_spi_controller_timedout.attr, 251 &dev_attr_spi_controller_spi_sync.attr, 252 &dev_attr_spi_controller_spi_sync_immediate.attr, 253 &dev_attr_spi_controller_spi_async.attr, 254 &dev_attr_spi_controller_bytes.attr, 255 &dev_attr_spi_controller_bytes_rx.attr, 256 &dev_attr_spi_controller_bytes_tx.attr, 257 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 258 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 259 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 260 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 274 &dev_attr_spi_controller_transfers_split_maxsize.attr, 275 NULL, 276 }; 277 278 static const struct attribute_group spi_controller_statistics_group = { 279 .name = "statistics", 280 .attrs = spi_controller_statistics_attrs, 281 }; 282 283 static const struct attribute_group *spi_master_groups[] = { 284 &spi_controller_statistics_group, 285 NULL, 286 }; 287 288 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 289 struct spi_transfer *xfer, 290 struct spi_controller *ctlr) 291 { 292 unsigned long flags; 293 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 294 295 if (l2len < 0) 296 l2len = 0; 297 298 spin_lock_irqsave(&stats->lock, flags); 299 300 stats->transfers++; 301 stats->transfer_bytes_histo[l2len]++; 302 303 stats->bytes += xfer->len; 304 if ((xfer->tx_buf) && 305 (xfer->tx_buf != ctlr->dummy_tx)) 306 stats->bytes_tx += xfer->len; 307 if ((xfer->rx_buf) && 308 (xfer->rx_buf != ctlr->dummy_rx)) 309 stats->bytes_rx += xfer->len; 310 311 spin_unlock_irqrestore(&stats->lock, flags); 312 } 313 314 /* 315 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 316 * and the sysfs version makes coldplug work too. 317 */ 318 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 319 { 320 while (id->name[0]) { 321 if (!strcmp(name, id->name)) 322 return id; 323 id++; 324 } 325 return NULL; 326 } 327 328 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 329 { 330 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 331 332 return spi_match_id(sdrv->id_table, sdev->modalias); 333 } 334 EXPORT_SYMBOL_GPL(spi_get_device_id); 335 336 static int spi_match_device(struct device *dev, struct device_driver *drv) 337 { 338 const struct spi_device *spi = to_spi_device(dev); 339 const struct spi_driver *sdrv = to_spi_driver(drv); 340 341 /* Check override first, and if set, only use the named driver */ 342 if (spi->driver_override) 343 return strcmp(spi->driver_override, drv->name) == 0; 344 345 /* Attempt an OF style match */ 346 if (of_driver_match_device(dev, drv)) 347 return 1; 348 349 /* Then try ACPI */ 350 if (acpi_driver_match_device(dev, drv)) 351 return 1; 352 353 if (sdrv->id_table) 354 return !!spi_match_id(sdrv->id_table, spi->modalias); 355 356 return strcmp(spi->modalias, drv->name) == 0; 357 } 358 359 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 360 { 361 const struct spi_device *spi = to_spi_device(dev); 362 int rc; 363 364 rc = acpi_device_uevent_modalias(dev, env); 365 if (rc != -ENODEV) 366 return rc; 367 368 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 369 } 370 371 static int spi_probe(struct device *dev) 372 { 373 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 374 struct spi_device *spi = to_spi_device(dev); 375 int ret; 376 377 ret = of_clk_set_defaults(dev->of_node, false); 378 if (ret) 379 return ret; 380 381 if (dev->of_node) { 382 spi->irq = of_irq_get(dev->of_node, 0); 383 if (spi->irq == -EPROBE_DEFER) 384 return -EPROBE_DEFER; 385 if (spi->irq < 0) 386 spi->irq = 0; 387 } 388 389 ret = dev_pm_domain_attach(dev, true); 390 if (ret) 391 return ret; 392 393 if (sdrv->probe) { 394 ret = sdrv->probe(spi); 395 if (ret) 396 dev_pm_domain_detach(dev, true); 397 } 398 399 return ret; 400 } 401 402 static void spi_remove(struct device *dev) 403 { 404 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 405 406 if (sdrv->remove) 407 sdrv->remove(to_spi_device(dev)); 408 409 dev_pm_domain_detach(dev, true); 410 } 411 412 static void spi_shutdown(struct device *dev) 413 { 414 if (dev->driver) { 415 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 416 417 if (sdrv->shutdown) 418 sdrv->shutdown(to_spi_device(dev)); 419 } 420 } 421 422 struct bus_type spi_bus_type = { 423 .name = "spi", 424 .dev_groups = spi_dev_groups, 425 .match = spi_match_device, 426 .uevent = spi_uevent, 427 .probe = spi_probe, 428 .remove = spi_remove, 429 .shutdown = spi_shutdown, 430 }; 431 EXPORT_SYMBOL_GPL(spi_bus_type); 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 446 /* 447 * For Really Good Reasons we use spi: modaliases not of: 448 * modaliases for DT so module autoloading won't work if we 449 * don't have a spi_device_id as well as a compatible string. 450 */ 451 if (sdrv->driver.of_match_table) { 452 const struct of_device_id *of_id; 453 454 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 455 of_id++) { 456 const char *of_name; 457 458 /* Strip off any vendor prefix */ 459 of_name = strnchr(of_id->compatible, 460 sizeof(of_id->compatible), ','); 461 if (of_name) 462 of_name++; 463 else 464 of_name = of_id->compatible; 465 466 if (sdrv->id_table) { 467 const struct spi_device_id *spi_id; 468 469 spi_id = spi_match_id(sdrv->id_table, of_name); 470 if (spi_id) 471 continue; 472 } else { 473 if (strcmp(sdrv->driver.name, of_name) == 0) 474 continue; 475 } 476 477 pr_warn("SPI driver %s has no spi_device_id for %s\n", 478 sdrv->driver.name, of_id->compatible); 479 } 480 } 481 482 return driver_register(&sdrv->driver); 483 } 484 EXPORT_SYMBOL_GPL(__spi_register_driver); 485 486 /*-------------------------------------------------------------------------*/ 487 488 /* 489 * SPI devices should normally not be created by SPI device drivers; that 490 * would make them board-specific. Similarly with SPI controller drivers. 491 * Device registration normally goes into like arch/.../mach.../board-YYY.c 492 * with other readonly (flashable) information about mainboard devices. 493 */ 494 495 struct boardinfo { 496 struct list_head list; 497 struct spi_board_info board_info; 498 }; 499 500 static LIST_HEAD(board_list); 501 static LIST_HEAD(spi_controller_list); 502 503 /* 504 * Used to protect add/del operation for board_info list and 505 * spi_controller list, and their matching process also used 506 * to protect object of type struct idr. 507 */ 508 static DEFINE_MUTEX(board_lock); 509 510 /** 511 * spi_alloc_device - Allocate a new SPI device 512 * @ctlr: Controller to which device is connected 513 * Context: can sleep 514 * 515 * Allows a driver to allocate and initialize a spi_device without 516 * registering it immediately. This allows a driver to directly 517 * fill the spi_device with device parameters before calling 518 * spi_add_device() on it. 519 * 520 * Caller is responsible to call spi_add_device() on the returned 521 * spi_device structure to add it to the SPI controller. If the caller 522 * needs to discard the spi_device without adding it, then it should 523 * call spi_dev_put() on it. 524 * 525 * Return: a pointer to the new device, or NULL. 526 */ 527 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 528 { 529 struct spi_device *spi; 530 531 if (!spi_controller_get(ctlr)) 532 return NULL; 533 534 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 535 if (!spi) { 536 spi_controller_put(ctlr); 537 return NULL; 538 } 539 540 spi->master = spi->controller = ctlr; 541 spi->dev.parent = &ctlr->dev; 542 spi->dev.bus = &spi_bus_type; 543 spi->dev.release = spidev_release; 544 spi->mode = ctlr->buswidth_override_bits; 545 546 spin_lock_init(&spi->statistics.lock); 547 548 device_initialize(&spi->dev); 549 return spi; 550 } 551 EXPORT_SYMBOL_GPL(spi_alloc_device); 552 553 static void spi_dev_set_name(struct spi_device *spi) 554 { 555 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 556 557 if (adev) { 558 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 559 return; 560 } 561 562 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 563 spi->chip_select); 564 } 565 566 static int spi_dev_check(struct device *dev, void *data) 567 { 568 struct spi_device *spi = to_spi_device(dev); 569 struct spi_device *new_spi = data; 570 571 if (spi->controller == new_spi->controller && 572 spi->chip_select == new_spi->chip_select) 573 return -EBUSY; 574 return 0; 575 } 576 577 static void spi_cleanup(struct spi_device *spi) 578 { 579 if (spi->controller->cleanup) 580 spi->controller->cleanup(spi); 581 } 582 583 static int __spi_add_device(struct spi_device *spi) 584 { 585 struct spi_controller *ctlr = spi->controller; 586 struct device *dev = ctlr->dev.parent; 587 int status; 588 589 /* 590 * We need to make sure there's no other device with this 591 * chipselect **BEFORE** we call setup(), else we'll trash 592 * its configuration. 593 */ 594 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 595 if (status) { 596 dev_err(dev, "chipselect %d already in use\n", 597 spi->chip_select); 598 return status; 599 } 600 601 /* Controller may unregister concurrently */ 602 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 603 !device_is_registered(&ctlr->dev)) { 604 return -ENODEV; 605 } 606 607 if (ctlr->cs_gpiods) 608 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 609 610 /* 611 * Drivers may modify this initial i/o setup, but will 612 * normally rely on the device being setup. Devices 613 * using SPI_CS_HIGH can't coexist well otherwise... 614 */ 615 status = spi_setup(spi); 616 if (status < 0) { 617 dev_err(dev, "can't setup %s, status %d\n", 618 dev_name(&spi->dev), status); 619 return status; 620 } 621 622 /* Device may be bound to an active driver when this returns */ 623 status = device_add(&spi->dev); 624 if (status < 0) { 625 dev_err(dev, "can't add %s, status %d\n", 626 dev_name(&spi->dev), status); 627 spi_cleanup(spi); 628 } else { 629 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 630 } 631 632 return status; 633 } 634 635 /** 636 * spi_add_device - Add spi_device allocated with spi_alloc_device 637 * @spi: spi_device to register 638 * 639 * Companion function to spi_alloc_device. Devices allocated with 640 * spi_alloc_device can be added onto the spi bus with this function. 641 * 642 * Return: 0 on success; negative errno on failure 643 */ 644 int spi_add_device(struct spi_device *spi) 645 { 646 struct spi_controller *ctlr = spi->controller; 647 struct device *dev = ctlr->dev.parent; 648 int status; 649 650 /* Chipselects are numbered 0..max; validate. */ 651 if (spi->chip_select >= ctlr->num_chipselect) { 652 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 653 ctlr->num_chipselect); 654 return -EINVAL; 655 } 656 657 /* Set the bus ID string */ 658 spi_dev_set_name(spi); 659 660 mutex_lock(&ctlr->add_lock); 661 status = __spi_add_device(spi); 662 mutex_unlock(&ctlr->add_lock); 663 return status; 664 } 665 EXPORT_SYMBOL_GPL(spi_add_device); 666 667 static int spi_add_device_locked(struct spi_device *spi) 668 { 669 struct spi_controller *ctlr = spi->controller; 670 struct device *dev = ctlr->dev.parent; 671 672 /* Chipselects are numbered 0..max; validate. */ 673 if (spi->chip_select >= ctlr->num_chipselect) { 674 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 675 ctlr->num_chipselect); 676 return -EINVAL; 677 } 678 679 /* Set the bus ID string */ 680 spi_dev_set_name(spi); 681 682 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 683 return __spi_add_device(spi); 684 } 685 686 /** 687 * spi_new_device - instantiate one new SPI device 688 * @ctlr: Controller to which device is connected 689 * @chip: Describes the SPI device 690 * Context: can sleep 691 * 692 * On typical mainboards, this is purely internal; and it's not needed 693 * after board init creates the hard-wired devices. Some development 694 * platforms may not be able to use spi_register_board_info though, and 695 * this is exported so that for example a USB or parport based adapter 696 * driver could add devices (which it would learn about out-of-band). 697 * 698 * Return: the new device, or NULL. 699 */ 700 struct spi_device *spi_new_device(struct spi_controller *ctlr, 701 struct spi_board_info *chip) 702 { 703 struct spi_device *proxy; 704 int status; 705 706 /* 707 * NOTE: caller did any chip->bus_num checks necessary. 708 * 709 * Also, unless we change the return value convention to use 710 * error-or-pointer (not NULL-or-pointer), troubleshootability 711 * suggests syslogged diagnostics are best here (ugh). 712 */ 713 714 proxy = spi_alloc_device(ctlr); 715 if (!proxy) 716 return NULL; 717 718 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 719 720 proxy->chip_select = chip->chip_select; 721 proxy->max_speed_hz = chip->max_speed_hz; 722 proxy->mode = chip->mode; 723 proxy->irq = chip->irq; 724 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 725 proxy->dev.platform_data = (void *) chip->platform_data; 726 proxy->controller_data = chip->controller_data; 727 proxy->controller_state = NULL; 728 729 if (chip->swnode) { 730 status = device_add_software_node(&proxy->dev, chip->swnode); 731 if (status) { 732 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 733 chip->modalias, status); 734 goto err_dev_put; 735 } 736 } 737 738 status = spi_add_device(proxy); 739 if (status < 0) 740 goto err_dev_put; 741 742 return proxy; 743 744 err_dev_put: 745 device_remove_software_node(&proxy->dev); 746 spi_dev_put(proxy); 747 return NULL; 748 } 749 EXPORT_SYMBOL_GPL(spi_new_device); 750 751 /** 752 * spi_unregister_device - unregister a single SPI device 753 * @spi: spi_device to unregister 754 * 755 * Start making the passed SPI device vanish. Normally this would be handled 756 * by spi_unregister_controller(). 757 */ 758 void spi_unregister_device(struct spi_device *spi) 759 { 760 if (!spi) 761 return; 762 763 if (spi->dev.of_node) { 764 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 765 of_node_put(spi->dev.of_node); 766 } 767 if (ACPI_COMPANION(&spi->dev)) 768 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 769 device_remove_software_node(&spi->dev); 770 device_del(&spi->dev); 771 spi_cleanup(spi); 772 put_device(&spi->dev); 773 } 774 EXPORT_SYMBOL_GPL(spi_unregister_device); 775 776 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 777 struct spi_board_info *bi) 778 { 779 struct spi_device *dev; 780 781 if (ctlr->bus_num != bi->bus_num) 782 return; 783 784 dev = spi_new_device(ctlr, bi); 785 if (!dev) 786 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 787 bi->modalias); 788 } 789 790 /** 791 * spi_register_board_info - register SPI devices for a given board 792 * @info: array of chip descriptors 793 * @n: how many descriptors are provided 794 * Context: can sleep 795 * 796 * Board-specific early init code calls this (probably during arch_initcall) 797 * with segments of the SPI device table. Any device nodes are created later, 798 * after the relevant parent SPI controller (bus_num) is defined. We keep 799 * this table of devices forever, so that reloading a controller driver will 800 * not make Linux forget about these hard-wired devices. 801 * 802 * Other code can also call this, e.g. a particular add-on board might provide 803 * SPI devices through its expansion connector, so code initializing that board 804 * would naturally declare its SPI devices. 805 * 806 * The board info passed can safely be __initdata ... but be careful of 807 * any embedded pointers (platform_data, etc), they're copied as-is. 808 * 809 * Return: zero on success, else a negative error code. 810 */ 811 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 812 { 813 struct boardinfo *bi; 814 int i; 815 816 if (!n) 817 return 0; 818 819 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 820 if (!bi) 821 return -ENOMEM; 822 823 for (i = 0; i < n; i++, bi++, info++) { 824 struct spi_controller *ctlr; 825 826 memcpy(&bi->board_info, info, sizeof(*info)); 827 828 mutex_lock(&board_lock); 829 list_add_tail(&bi->list, &board_list); 830 list_for_each_entry(ctlr, &spi_controller_list, list) 831 spi_match_controller_to_boardinfo(ctlr, 832 &bi->board_info); 833 mutex_unlock(&board_lock); 834 } 835 836 return 0; 837 } 838 839 /*-------------------------------------------------------------------------*/ 840 841 /* Core methods for SPI resource management */ 842 843 /** 844 * spi_res_alloc - allocate a spi resource that is life-cycle managed 845 * during the processing of a spi_message while using 846 * spi_transfer_one 847 * @spi: the spi device for which we allocate memory 848 * @release: the release code to execute for this resource 849 * @size: size to alloc and return 850 * @gfp: GFP allocation flags 851 * 852 * Return: the pointer to the allocated data 853 * 854 * This may get enhanced in the future to allocate from a memory pool 855 * of the @spi_device or @spi_controller to avoid repeated allocations. 856 */ 857 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 858 size_t size, gfp_t gfp) 859 { 860 struct spi_res *sres; 861 862 sres = kzalloc(sizeof(*sres) + size, gfp); 863 if (!sres) 864 return NULL; 865 866 INIT_LIST_HEAD(&sres->entry); 867 sres->release = release; 868 869 return sres->data; 870 } 871 872 /** 873 * spi_res_free - free an spi resource 874 * @res: pointer to the custom data of a resource 875 */ 876 static void spi_res_free(void *res) 877 { 878 struct spi_res *sres = container_of(res, struct spi_res, data); 879 880 if (!res) 881 return; 882 883 WARN_ON(!list_empty(&sres->entry)); 884 kfree(sres); 885 } 886 887 /** 888 * spi_res_add - add a spi_res to the spi_message 889 * @message: the spi message 890 * @res: the spi_resource 891 */ 892 static void spi_res_add(struct spi_message *message, void *res) 893 { 894 struct spi_res *sres = container_of(res, struct spi_res, data); 895 896 WARN_ON(!list_empty(&sres->entry)); 897 list_add_tail(&sres->entry, &message->resources); 898 } 899 900 /** 901 * spi_res_release - release all spi resources for this message 902 * @ctlr: the @spi_controller 903 * @message: the @spi_message 904 */ 905 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 906 { 907 struct spi_res *res, *tmp; 908 909 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 910 if (res->release) 911 res->release(ctlr, message, res->data); 912 913 list_del(&res->entry); 914 915 kfree(res); 916 } 917 } 918 919 /*-------------------------------------------------------------------------*/ 920 921 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 922 { 923 bool activate = enable; 924 925 /* 926 * Avoid calling into the driver (or doing delays) if the chip select 927 * isn't actually changing from the last time this was called. 928 */ 929 if (!force && ((enable && spi->controller->last_cs == spi->chip_select) || 930 (!enable && spi->controller->last_cs != spi->chip_select)) && 931 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 932 return; 933 934 trace_spi_set_cs(spi, activate); 935 936 spi->controller->last_cs = enable ? spi->chip_select : -1; 937 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 938 939 if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) { 940 spi_delay_exec(&spi->cs_hold, NULL); 941 } 942 943 if (spi->mode & SPI_CS_HIGH) 944 enable = !enable; 945 946 if (spi->cs_gpiod) { 947 if (!(spi->mode & SPI_NO_CS)) { 948 /* 949 * Historically ACPI has no means of the GPIO polarity and 950 * thus the SPISerialBus() resource defines it on the per-chip 951 * basis. In order to avoid a chain of negations, the GPIO 952 * polarity is considered being Active High. Even for the cases 953 * when _DSD() is involved (in the updated versions of ACPI) 954 * the GPIO CS polarity must be defined Active High to avoid 955 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 956 * into account. 957 */ 958 if (has_acpi_companion(&spi->dev)) 959 gpiod_set_value_cansleep(spi->cs_gpiod, !enable); 960 else 961 /* Polarity handled by GPIO library */ 962 gpiod_set_value_cansleep(spi->cs_gpiod, activate); 963 } 964 /* Some SPI masters need both GPIO CS & slave_select */ 965 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 966 spi->controller->set_cs) 967 spi->controller->set_cs(spi, !enable); 968 } else if (spi->controller->set_cs) { 969 spi->controller->set_cs(spi, !enable); 970 } 971 972 if (spi->cs_gpiod || !spi->controller->set_cs_timing) { 973 if (activate) 974 spi_delay_exec(&spi->cs_setup, NULL); 975 else 976 spi_delay_exec(&spi->cs_inactive, NULL); 977 } 978 } 979 980 #ifdef CONFIG_HAS_DMA 981 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 982 struct sg_table *sgt, void *buf, size_t len, 983 enum dma_data_direction dir) 984 { 985 const bool vmalloced_buf = is_vmalloc_addr(buf); 986 unsigned int max_seg_size = dma_get_max_seg_size(dev); 987 #ifdef CONFIG_HIGHMEM 988 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 989 (unsigned long)buf < (PKMAP_BASE + 990 (LAST_PKMAP * PAGE_SIZE))); 991 #else 992 const bool kmap_buf = false; 993 #endif 994 int desc_len; 995 int sgs; 996 struct page *vm_page; 997 struct scatterlist *sg; 998 void *sg_buf; 999 size_t min; 1000 int i, ret; 1001 1002 if (vmalloced_buf || kmap_buf) { 1003 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1004 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1005 } else if (virt_addr_valid(buf)) { 1006 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1007 sgs = DIV_ROUND_UP(len, desc_len); 1008 } else { 1009 return -EINVAL; 1010 } 1011 1012 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1013 if (ret != 0) 1014 return ret; 1015 1016 sg = &sgt->sgl[0]; 1017 for (i = 0; i < sgs; i++) { 1018 1019 if (vmalloced_buf || kmap_buf) { 1020 /* 1021 * Next scatterlist entry size is the minimum between 1022 * the desc_len and the remaining buffer length that 1023 * fits in a page. 1024 */ 1025 min = min_t(size_t, desc_len, 1026 min_t(size_t, len, 1027 PAGE_SIZE - offset_in_page(buf))); 1028 if (vmalloced_buf) 1029 vm_page = vmalloc_to_page(buf); 1030 else 1031 vm_page = kmap_to_page(buf); 1032 if (!vm_page) { 1033 sg_free_table(sgt); 1034 return -ENOMEM; 1035 } 1036 sg_set_page(sg, vm_page, 1037 min, offset_in_page(buf)); 1038 } else { 1039 min = min_t(size_t, len, desc_len); 1040 sg_buf = buf; 1041 sg_set_buf(sg, sg_buf, min); 1042 } 1043 1044 buf += min; 1045 len -= min; 1046 sg = sg_next(sg); 1047 } 1048 1049 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 1050 if (!ret) 1051 ret = -ENOMEM; 1052 if (ret < 0) { 1053 sg_free_table(sgt); 1054 return ret; 1055 } 1056 1057 sgt->nents = ret; 1058 1059 return 0; 1060 } 1061 1062 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1063 struct sg_table *sgt, enum dma_data_direction dir) 1064 { 1065 if (sgt->orig_nents) { 1066 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 1067 sg_free_table(sgt); 1068 } 1069 } 1070 1071 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1072 { 1073 struct device *tx_dev, *rx_dev; 1074 struct spi_transfer *xfer; 1075 int ret; 1076 1077 if (!ctlr->can_dma) 1078 return 0; 1079 1080 if (ctlr->dma_tx) 1081 tx_dev = ctlr->dma_tx->device->dev; 1082 else if (ctlr->dma_map_dev) 1083 tx_dev = ctlr->dma_map_dev; 1084 else 1085 tx_dev = ctlr->dev.parent; 1086 1087 if (ctlr->dma_rx) 1088 rx_dev = ctlr->dma_rx->device->dev; 1089 else if (ctlr->dma_map_dev) 1090 rx_dev = ctlr->dma_map_dev; 1091 else 1092 rx_dev = ctlr->dev.parent; 1093 1094 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1095 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1096 continue; 1097 1098 if (xfer->tx_buf != NULL) { 1099 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 1100 (void *)xfer->tx_buf, xfer->len, 1101 DMA_TO_DEVICE); 1102 if (ret != 0) 1103 return ret; 1104 } 1105 1106 if (xfer->rx_buf != NULL) { 1107 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 1108 xfer->rx_buf, xfer->len, 1109 DMA_FROM_DEVICE); 1110 if (ret != 0) { 1111 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 1112 DMA_TO_DEVICE); 1113 return ret; 1114 } 1115 } 1116 } 1117 1118 ctlr->cur_msg_mapped = true; 1119 1120 return 0; 1121 } 1122 1123 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1124 { 1125 struct spi_transfer *xfer; 1126 struct device *tx_dev, *rx_dev; 1127 1128 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1129 return 0; 1130 1131 if (ctlr->dma_tx) 1132 tx_dev = ctlr->dma_tx->device->dev; 1133 else 1134 tx_dev = ctlr->dev.parent; 1135 1136 if (ctlr->dma_rx) 1137 rx_dev = ctlr->dma_rx->device->dev; 1138 else 1139 rx_dev = ctlr->dev.parent; 1140 1141 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1142 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1143 continue; 1144 1145 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1146 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1147 } 1148 1149 ctlr->cur_msg_mapped = false; 1150 1151 return 0; 1152 } 1153 #else /* !CONFIG_HAS_DMA */ 1154 static inline int __spi_map_msg(struct spi_controller *ctlr, 1155 struct spi_message *msg) 1156 { 1157 return 0; 1158 } 1159 1160 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1161 struct spi_message *msg) 1162 { 1163 return 0; 1164 } 1165 #endif /* !CONFIG_HAS_DMA */ 1166 1167 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1168 struct spi_message *msg) 1169 { 1170 struct spi_transfer *xfer; 1171 1172 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1173 /* 1174 * Restore the original value of tx_buf or rx_buf if they are 1175 * NULL. 1176 */ 1177 if (xfer->tx_buf == ctlr->dummy_tx) 1178 xfer->tx_buf = NULL; 1179 if (xfer->rx_buf == ctlr->dummy_rx) 1180 xfer->rx_buf = NULL; 1181 } 1182 1183 return __spi_unmap_msg(ctlr, msg); 1184 } 1185 1186 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1187 { 1188 struct spi_transfer *xfer; 1189 void *tmp; 1190 unsigned int max_tx, max_rx; 1191 1192 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1193 && !(msg->spi->mode & SPI_3WIRE)) { 1194 max_tx = 0; 1195 max_rx = 0; 1196 1197 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1198 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1199 !xfer->tx_buf) 1200 max_tx = max(xfer->len, max_tx); 1201 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1202 !xfer->rx_buf) 1203 max_rx = max(xfer->len, max_rx); 1204 } 1205 1206 if (max_tx) { 1207 tmp = krealloc(ctlr->dummy_tx, max_tx, 1208 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1209 if (!tmp) 1210 return -ENOMEM; 1211 ctlr->dummy_tx = tmp; 1212 } 1213 1214 if (max_rx) { 1215 tmp = krealloc(ctlr->dummy_rx, max_rx, 1216 GFP_KERNEL | GFP_DMA); 1217 if (!tmp) 1218 return -ENOMEM; 1219 ctlr->dummy_rx = tmp; 1220 } 1221 1222 if (max_tx || max_rx) { 1223 list_for_each_entry(xfer, &msg->transfers, 1224 transfer_list) { 1225 if (!xfer->len) 1226 continue; 1227 if (!xfer->tx_buf) 1228 xfer->tx_buf = ctlr->dummy_tx; 1229 if (!xfer->rx_buf) 1230 xfer->rx_buf = ctlr->dummy_rx; 1231 } 1232 } 1233 } 1234 1235 return __spi_map_msg(ctlr, msg); 1236 } 1237 1238 static int spi_transfer_wait(struct spi_controller *ctlr, 1239 struct spi_message *msg, 1240 struct spi_transfer *xfer) 1241 { 1242 struct spi_statistics *statm = &ctlr->statistics; 1243 struct spi_statistics *stats = &msg->spi->statistics; 1244 u32 speed_hz = xfer->speed_hz; 1245 unsigned long long ms; 1246 1247 if (spi_controller_is_slave(ctlr)) { 1248 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1249 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1250 return -EINTR; 1251 } 1252 } else { 1253 if (!speed_hz) 1254 speed_hz = 100000; 1255 1256 /* 1257 * For each byte we wait for 8 cycles of the SPI clock. 1258 * Since speed is defined in Hz and we want milliseconds, 1259 * use respective multiplier, but before the division, 1260 * otherwise we may get 0 for short transfers. 1261 */ 1262 ms = 8LL * MSEC_PER_SEC * xfer->len; 1263 do_div(ms, speed_hz); 1264 1265 /* 1266 * Increase it twice and add 200 ms tolerance, use 1267 * predefined maximum in case of overflow. 1268 */ 1269 ms += ms + 200; 1270 if (ms > UINT_MAX) 1271 ms = UINT_MAX; 1272 1273 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1274 msecs_to_jiffies(ms)); 1275 1276 if (ms == 0) { 1277 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1278 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1279 dev_err(&msg->spi->dev, 1280 "SPI transfer timed out\n"); 1281 return -ETIMEDOUT; 1282 } 1283 } 1284 1285 return 0; 1286 } 1287 1288 static void _spi_transfer_delay_ns(u32 ns) 1289 { 1290 if (!ns) 1291 return; 1292 if (ns <= NSEC_PER_USEC) { 1293 ndelay(ns); 1294 } else { 1295 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1296 1297 if (us <= 10) 1298 udelay(us); 1299 else 1300 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1301 } 1302 } 1303 1304 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1305 { 1306 u32 delay = _delay->value; 1307 u32 unit = _delay->unit; 1308 u32 hz; 1309 1310 if (!delay) 1311 return 0; 1312 1313 switch (unit) { 1314 case SPI_DELAY_UNIT_USECS: 1315 delay *= NSEC_PER_USEC; 1316 break; 1317 case SPI_DELAY_UNIT_NSECS: 1318 /* Nothing to do here */ 1319 break; 1320 case SPI_DELAY_UNIT_SCK: 1321 /* clock cycles need to be obtained from spi_transfer */ 1322 if (!xfer) 1323 return -EINVAL; 1324 /* 1325 * If there is unknown effective speed, approximate it 1326 * by underestimating with half of the requested hz. 1327 */ 1328 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1329 if (!hz) 1330 return -EINVAL; 1331 1332 /* Convert delay to nanoseconds */ 1333 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1334 break; 1335 default: 1336 return -EINVAL; 1337 } 1338 1339 return delay; 1340 } 1341 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1342 1343 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1344 { 1345 int delay; 1346 1347 might_sleep(); 1348 1349 if (!_delay) 1350 return -EINVAL; 1351 1352 delay = spi_delay_to_ns(_delay, xfer); 1353 if (delay < 0) 1354 return delay; 1355 1356 _spi_transfer_delay_ns(delay); 1357 1358 return 0; 1359 } 1360 EXPORT_SYMBOL_GPL(spi_delay_exec); 1361 1362 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1363 struct spi_transfer *xfer) 1364 { 1365 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1366 u32 delay = xfer->cs_change_delay.value; 1367 u32 unit = xfer->cs_change_delay.unit; 1368 int ret; 1369 1370 /* return early on "fast" mode - for everything but USECS */ 1371 if (!delay) { 1372 if (unit == SPI_DELAY_UNIT_USECS) 1373 _spi_transfer_delay_ns(default_delay_ns); 1374 return; 1375 } 1376 1377 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1378 if (ret) { 1379 dev_err_once(&msg->spi->dev, 1380 "Use of unsupported delay unit %i, using default of %luus\n", 1381 unit, default_delay_ns / NSEC_PER_USEC); 1382 _spi_transfer_delay_ns(default_delay_ns); 1383 } 1384 } 1385 1386 /* 1387 * spi_transfer_one_message - Default implementation of transfer_one_message() 1388 * 1389 * This is a standard implementation of transfer_one_message() for 1390 * drivers which implement a transfer_one() operation. It provides 1391 * standard handling of delays and chip select management. 1392 */ 1393 static int spi_transfer_one_message(struct spi_controller *ctlr, 1394 struct spi_message *msg) 1395 { 1396 struct spi_transfer *xfer; 1397 bool keep_cs = false; 1398 int ret = 0; 1399 struct spi_statistics *statm = &ctlr->statistics; 1400 struct spi_statistics *stats = &msg->spi->statistics; 1401 1402 spi_set_cs(msg->spi, true, false); 1403 1404 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1405 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1406 1407 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1408 trace_spi_transfer_start(msg, xfer); 1409 1410 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1411 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1412 1413 if (!ctlr->ptp_sts_supported) { 1414 xfer->ptp_sts_word_pre = 0; 1415 ptp_read_system_prets(xfer->ptp_sts); 1416 } 1417 1418 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1419 reinit_completion(&ctlr->xfer_completion); 1420 1421 fallback_pio: 1422 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1423 if (ret < 0) { 1424 if (ctlr->cur_msg_mapped && 1425 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1426 __spi_unmap_msg(ctlr, msg); 1427 ctlr->fallback = true; 1428 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1429 goto fallback_pio; 1430 } 1431 1432 SPI_STATISTICS_INCREMENT_FIELD(statm, 1433 errors); 1434 SPI_STATISTICS_INCREMENT_FIELD(stats, 1435 errors); 1436 dev_err(&msg->spi->dev, 1437 "SPI transfer failed: %d\n", ret); 1438 goto out; 1439 } 1440 1441 if (ret > 0) { 1442 ret = spi_transfer_wait(ctlr, msg, xfer); 1443 if (ret < 0) 1444 msg->status = ret; 1445 } 1446 } else { 1447 if (xfer->len) 1448 dev_err(&msg->spi->dev, 1449 "Bufferless transfer has length %u\n", 1450 xfer->len); 1451 } 1452 1453 if (!ctlr->ptp_sts_supported) { 1454 ptp_read_system_postts(xfer->ptp_sts); 1455 xfer->ptp_sts_word_post = xfer->len; 1456 } 1457 1458 trace_spi_transfer_stop(msg, xfer); 1459 1460 if (msg->status != -EINPROGRESS) 1461 goto out; 1462 1463 spi_transfer_delay_exec(xfer); 1464 1465 if (xfer->cs_change) { 1466 if (list_is_last(&xfer->transfer_list, 1467 &msg->transfers)) { 1468 keep_cs = true; 1469 } else { 1470 spi_set_cs(msg->spi, false, false); 1471 _spi_transfer_cs_change_delay(msg, xfer); 1472 spi_set_cs(msg->spi, true, false); 1473 } 1474 } 1475 1476 msg->actual_length += xfer->len; 1477 } 1478 1479 out: 1480 if (ret != 0 || !keep_cs) 1481 spi_set_cs(msg->spi, false, false); 1482 1483 if (msg->status == -EINPROGRESS) 1484 msg->status = ret; 1485 1486 if (msg->status && ctlr->handle_err) 1487 ctlr->handle_err(ctlr, msg); 1488 1489 spi_finalize_current_message(ctlr); 1490 1491 return ret; 1492 } 1493 1494 /** 1495 * spi_finalize_current_transfer - report completion of a transfer 1496 * @ctlr: the controller reporting completion 1497 * 1498 * Called by SPI drivers using the core transfer_one_message() 1499 * implementation to notify it that the current interrupt driven 1500 * transfer has finished and the next one may be scheduled. 1501 */ 1502 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1503 { 1504 complete(&ctlr->xfer_completion); 1505 } 1506 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1507 1508 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1509 { 1510 if (ctlr->auto_runtime_pm) { 1511 pm_runtime_mark_last_busy(ctlr->dev.parent); 1512 pm_runtime_put_autosuspend(ctlr->dev.parent); 1513 } 1514 } 1515 1516 /** 1517 * __spi_pump_messages - function which processes spi message queue 1518 * @ctlr: controller to process queue for 1519 * @in_kthread: true if we are in the context of the message pump thread 1520 * 1521 * This function checks if there is any spi message in the queue that 1522 * needs processing and if so call out to the driver to initialize hardware 1523 * and transfer each message. 1524 * 1525 * Note that it is called both from the kthread itself and also from 1526 * inside spi_sync(); the queue extraction handling at the top of the 1527 * function should deal with this safely. 1528 */ 1529 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1530 { 1531 struct spi_transfer *xfer; 1532 struct spi_message *msg; 1533 bool was_busy = false; 1534 unsigned long flags; 1535 int ret; 1536 1537 /* Lock queue */ 1538 spin_lock_irqsave(&ctlr->queue_lock, flags); 1539 1540 /* Make sure we are not already running a message */ 1541 if (ctlr->cur_msg) { 1542 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1543 return; 1544 } 1545 1546 /* If another context is idling the device then defer */ 1547 if (ctlr->idling) { 1548 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1549 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1550 return; 1551 } 1552 1553 /* Check if the queue is idle */ 1554 if (list_empty(&ctlr->queue) || !ctlr->running) { 1555 if (!ctlr->busy) { 1556 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1557 return; 1558 } 1559 1560 /* Defer any non-atomic teardown to the thread */ 1561 if (!in_kthread) { 1562 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1563 !ctlr->unprepare_transfer_hardware) { 1564 spi_idle_runtime_pm(ctlr); 1565 ctlr->busy = false; 1566 trace_spi_controller_idle(ctlr); 1567 } else { 1568 kthread_queue_work(ctlr->kworker, 1569 &ctlr->pump_messages); 1570 } 1571 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1572 return; 1573 } 1574 1575 ctlr->busy = false; 1576 ctlr->idling = true; 1577 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1578 1579 kfree(ctlr->dummy_rx); 1580 ctlr->dummy_rx = NULL; 1581 kfree(ctlr->dummy_tx); 1582 ctlr->dummy_tx = NULL; 1583 if (ctlr->unprepare_transfer_hardware && 1584 ctlr->unprepare_transfer_hardware(ctlr)) 1585 dev_err(&ctlr->dev, 1586 "failed to unprepare transfer hardware\n"); 1587 spi_idle_runtime_pm(ctlr); 1588 trace_spi_controller_idle(ctlr); 1589 1590 spin_lock_irqsave(&ctlr->queue_lock, flags); 1591 ctlr->idling = false; 1592 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1593 return; 1594 } 1595 1596 /* Extract head of queue */ 1597 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1598 ctlr->cur_msg = msg; 1599 1600 list_del_init(&msg->queue); 1601 if (ctlr->busy) 1602 was_busy = true; 1603 else 1604 ctlr->busy = true; 1605 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1606 1607 mutex_lock(&ctlr->io_mutex); 1608 1609 if (!was_busy && ctlr->auto_runtime_pm) { 1610 ret = pm_runtime_get_sync(ctlr->dev.parent); 1611 if (ret < 0) { 1612 pm_runtime_put_noidle(ctlr->dev.parent); 1613 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1614 ret); 1615 mutex_unlock(&ctlr->io_mutex); 1616 return; 1617 } 1618 } 1619 1620 if (!was_busy) 1621 trace_spi_controller_busy(ctlr); 1622 1623 if (!was_busy && ctlr->prepare_transfer_hardware) { 1624 ret = ctlr->prepare_transfer_hardware(ctlr); 1625 if (ret) { 1626 dev_err(&ctlr->dev, 1627 "failed to prepare transfer hardware: %d\n", 1628 ret); 1629 1630 if (ctlr->auto_runtime_pm) 1631 pm_runtime_put(ctlr->dev.parent); 1632 1633 msg->status = ret; 1634 spi_finalize_current_message(ctlr); 1635 1636 mutex_unlock(&ctlr->io_mutex); 1637 return; 1638 } 1639 } 1640 1641 trace_spi_message_start(msg); 1642 1643 if (ctlr->prepare_message) { 1644 ret = ctlr->prepare_message(ctlr, msg); 1645 if (ret) { 1646 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1647 ret); 1648 msg->status = ret; 1649 spi_finalize_current_message(ctlr); 1650 goto out; 1651 } 1652 ctlr->cur_msg_prepared = true; 1653 } 1654 1655 ret = spi_map_msg(ctlr, msg); 1656 if (ret) { 1657 msg->status = ret; 1658 spi_finalize_current_message(ctlr); 1659 goto out; 1660 } 1661 1662 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1663 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1664 xfer->ptp_sts_word_pre = 0; 1665 ptp_read_system_prets(xfer->ptp_sts); 1666 } 1667 } 1668 1669 ret = ctlr->transfer_one_message(ctlr, msg); 1670 if (ret) { 1671 dev_err(&ctlr->dev, 1672 "failed to transfer one message from queue\n"); 1673 goto out; 1674 } 1675 1676 out: 1677 mutex_unlock(&ctlr->io_mutex); 1678 1679 /* Prod the scheduler in case transfer_one() was busy waiting */ 1680 if (!ret) 1681 cond_resched(); 1682 } 1683 1684 /** 1685 * spi_pump_messages - kthread work function which processes spi message queue 1686 * @work: pointer to kthread work struct contained in the controller struct 1687 */ 1688 static void spi_pump_messages(struct kthread_work *work) 1689 { 1690 struct spi_controller *ctlr = 1691 container_of(work, struct spi_controller, pump_messages); 1692 1693 __spi_pump_messages(ctlr, true); 1694 } 1695 1696 /** 1697 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1698 * @ctlr: Pointer to the spi_controller structure of the driver 1699 * @xfer: Pointer to the transfer being timestamped 1700 * @progress: How many words (not bytes) have been transferred so far 1701 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1702 * transfer, for less jitter in time measurement. Only compatible 1703 * with PIO drivers. If true, must follow up with 1704 * spi_take_timestamp_post or otherwise system will crash. 1705 * WARNING: for fully predictable results, the CPU frequency must 1706 * also be under control (governor). 1707 * 1708 * This is a helper for drivers to collect the beginning of the TX timestamp 1709 * for the requested byte from the SPI transfer. The frequency with which this 1710 * function must be called (once per word, once for the whole transfer, once 1711 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1712 * greater than or equal to the requested byte at the time of the call. The 1713 * timestamp is only taken once, at the first such call. It is assumed that 1714 * the driver advances its @tx buffer pointer monotonically. 1715 */ 1716 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1717 struct spi_transfer *xfer, 1718 size_t progress, bool irqs_off) 1719 { 1720 if (!xfer->ptp_sts) 1721 return; 1722 1723 if (xfer->timestamped) 1724 return; 1725 1726 if (progress > xfer->ptp_sts_word_pre) 1727 return; 1728 1729 /* Capture the resolution of the timestamp */ 1730 xfer->ptp_sts_word_pre = progress; 1731 1732 if (irqs_off) { 1733 local_irq_save(ctlr->irq_flags); 1734 preempt_disable(); 1735 } 1736 1737 ptp_read_system_prets(xfer->ptp_sts); 1738 } 1739 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1740 1741 /** 1742 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1743 * @ctlr: Pointer to the spi_controller structure of the driver 1744 * @xfer: Pointer to the transfer being timestamped 1745 * @progress: How many words (not bytes) have been transferred so far 1746 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1747 * 1748 * This is a helper for drivers to collect the end of the TX timestamp for 1749 * the requested byte from the SPI transfer. Can be called with an arbitrary 1750 * frequency: only the first call where @tx exceeds or is equal to the 1751 * requested word will be timestamped. 1752 */ 1753 void spi_take_timestamp_post(struct spi_controller *ctlr, 1754 struct spi_transfer *xfer, 1755 size_t progress, bool irqs_off) 1756 { 1757 if (!xfer->ptp_sts) 1758 return; 1759 1760 if (xfer->timestamped) 1761 return; 1762 1763 if (progress < xfer->ptp_sts_word_post) 1764 return; 1765 1766 ptp_read_system_postts(xfer->ptp_sts); 1767 1768 if (irqs_off) { 1769 local_irq_restore(ctlr->irq_flags); 1770 preempt_enable(); 1771 } 1772 1773 /* Capture the resolution of the timestamp */ 1774 xfer->ptp_sts_word_post = progress; 1775 1776 xfer->timestamped = true; 1777 } 1778 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1779 1780 /** 1781 * spi_set_thread_rt - set the controller to pump at realtime priority 1782 * @ctlr: controller to boost priority of 1783 * 1784 * This can be called because the controller requested realtime priority 1785 * (by setting the ->rt value before calling spi_register_controller()) or 1786 * because a device on the bus said that its transfers needed realtime 1787 * priority. 1788 * 1789 * NOTE: at the moment if any device on a bus says it needs realtime then 1790 * the thread will be at realtime priority for all transfers on that 1791 * controller. If this eventually becomes a problem we may see if we can 1792 * find a way to boost the priority only temporarily during relevant 1793 * transfers. 1794 */ 1795 static void spi_set_thread_rt(struct spi_controller *ctlr) 1796 { 1797 dev_info(&ctlr->dev, 1798 "will run message pump with realtime priority\n"); 1799 sched_set_fifo(ctlr->kworker->task); 1800 } 1801 1802 static int spi_init_queue(struct spi_controller *ctlr) 1803 { 1804 ctlr->running = false; 1805 ctlr->busy = false; 1806 1807 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1808 if (IS_ERR(ctlr->kworker)) { 1809 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1810 return PTR_ERR(ctlr->kworker); 1811 } 1812 1813 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1814 1815 /* 1816 * Controller config will indicate if this controller should run the 1817 * message pump with high (realtime) priority to reduce the transfer 1818 * latency on the bus by minimising the delay between a transfer 1819 * request and the scheduling of the message pump thread. Without this 1820 * setting the message pump thread will remain at default priority. 1821 */ 1822 if (ctlr->rt) 1823 spi_set_thread_rt(ctlr); 1824 1825 return 0; 1826 } 1827 1828 /** 1829 * spi_get_next_queued_message() - called by driver to check for queued 1830 * messages 1831 * @ctlr: the controller to check for queued messages 1832 * 1833 * If there are more messages in the queue, the next message is returned from 1834 * this call. 1835 * 1836 * Return: the next message in the queue, else NULL if the queue is empty. 1837 */ 1838 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1839 { 1840 struct spi_message *next; 1841 unsigned long flags; 1842 1843 /* get a pointer to the next message, if any */ 1844 spin_lock_irqsave(&ctlr->queue_lock, flags); 1845 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1846 queue); 1847 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1848 1849 return next; 1850 } 1851 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1852 1853 /** 1854 * spi_finalize_current_message() - the current message is complete 1855 * @ctlr: the controller to return the message to 1856 * 1857 * Called by the driver to notify the core that the message in the front of the 1858 * queue is complete and can be removed from the queue. 1859 */ 1860 void spi_finalize_current_message(struct spi_controller *ctlr) 1861 { 1862 struct spi_transfer *xfer; 1863 struct spi_message *mesg; 1864 unsigned long flags; 1865 int ret; 1866 1867 spin_lock_irqsave(&ctlr->queue_lock, flags); 1868 mesg = ctlr->cur_msg; 1869 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1870 1871 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1872 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1873 ptp_read_system_postts(xfer->ptp_sts); 1874 xfer->ptp_sts_word_post = xfer->len; 1875 } 1876 } 1877 1878 if (unlikely(ctlr->ptp_sts_supported)) 1879 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1880 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1881 1882 spi_unmap_msg(ctlr, mesg); 1883 1884 /* 1885 * In the prepare_messages callback the SPI bus has the opportunity 1886 * to split a transfer to smaller chunks. 1887 * 1888 * Release the split transfers here since spi_map_msg() is done on 1889 * the split transfers. 1890 */ 1891 spi_res_release(ctlr, mesg); 1892 1893 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1894 ret = ctlr->unprepare_message(ctlr, mesg); 1895 if (ret) { 1896 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1897 ret); 1898 } 1899 } 1900 1901 spin_lock_irqsave(&ctlr->queue_lock, flags); 1902 ctlr->cur_msg = NULL; 1903 ctlr->cur_msg_prepared = false; 1904 ctlr->fallback = false; 1905 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1906 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1907 1908 trace_spi_message_done(mesg); 1909 1910 mesg->state = NULL; 1911 if (mesg->complete) 1912 mesg->complete(mesg->context); 1913 } 1914 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1915 1916 static int spi_start_queue(struct spi_controller *ctlr) 1917 { 1918 unsigned long flags; 1919 1920 spin_lock_irqsave(&ctlr->queue_lock, flags); 1921 1922 if (ctlr->running || ctlr->busy) { 1923 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1924 return -EBUSY; 1925 } 1926 1927 ctlr->running = true; 1928 ctlr->cur_msg = NULL; 1929 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1930 1931 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1932 1933 return 0; 1934 } 1935 1936 static int spi_stop_queue(struct spi_controller *ctlr) 1937 { 1938 unsigned long flags; 1939 unsigned limit = 500; 1940 int ret = 0; 1941 1942 spin_lock_irqsave(&ctlr->queue_lock, flags); 1943 1944 /* 1945 * This is a bit lame, but is optimized for the common execution path. 1946 * A wait_queue on the ctlr->busy could be used, but then the common 1947 * execution path (pump_messages) would be required to call wake_up or 1948 * friends on every SPI message. Do this instead. 1949 */ 1950 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1951 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1952 usleep_range(10000, 11000); 1953 spin_lock_irqsave(&ctlr->queue_lock, flags); 1954 } 1955 1956 if (!list_empty(&ctlr->queue) || ctlr->busy) 1957 ret = -EBUSY; 1958 else 1959 ctlr->running = false; 1960 1961 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1962 1963 if (ret) { 1964 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1965 return ret; 1966 } 1967 return ret; 1968 } 1969 1970 static int spi_destroy_queue(struct spi_controller *ctlr) 1971 { 1972 int ret; 1973 1974 ret = spi_stop_queue(ctlr); 1975 1976 /* 1977 * kthread_flush_worker will block until all work is done. 1978 * If the reason that stop_queue timed out is that the work will never 1979 * finish, then it does no good to call flush/stop thread, so 1980 * return anyway. 1981 */ 1982 if (ret) { 1983 dev_err(&ctlr->dev, "problem destroying queue\n"); 1984 return ret; 1985 } 1986 1987 kthread_destroy_worker(ctlr->kworker); 1988 1989 return 0; 1990 } 1991 1992 static int __spi_queued_transfer(struct spi_device *spi, 1993 struct spi_message *msg, 1994 bool need_pump) 1995 { 1996 struct spi_controller *ctlr = spi->controller; 1997 unsigned long flags; 1998 1999 spin_lock_irqsave(&ctlr->queue_lock, flags); 2000 2001 if (!ctlr->running) { 2002 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2003 return -ESHUTDOWN; 2004 } 2005 msg->actual_length = 0; 2006 msg->status = -EINPROGRESS; 2007 2008 list_add_tail(&msg->queue, &ctlr->queue); 2009 if (!ctlr->busy && need_pump) 2010 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2011 2012 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2013 return 0; 2014 } 2015 2016 /** 2017 * spi_queued_transfer - transfer function for queued transfers 2018 * @spi: spi device which is requesting transfer 2019 * @msg: spi message which is to handled is queued to driver queue 2020 * 2021 * Return: zero on success, else a negative error code. 2022 */ 2023 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2024 { 2025 return __spi_queued_transfer(spi, msg, true); 2026 } 2027 2028 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2029 { 2030 int ret; 2031 2032 ctlr->transfer = spi_queued_transfer; 2033 if (!ctlr->transfer_one_message) 2034 ctlr->transfer_one_message = spi_transfer_one_message; 2035 2036 /* Initialize and start queue */ 2037 ret = spi_init_queue(ctlr); 2038 if (ret) { 2039 dev_err(&ctlr->dev, "problem initializing queue\n"); 2040 goto err_init_queue; 2041 } 2042 ctlr->queued = true; 2043 ret = spi_start_queue(ctlr); 2044 if (ret) { 2045 dev_err(&ctlr->dev, "problem starting queue\n"); 2046 goto err_start_queue; 2047 } 2048 2049 return 0; 2050 2051 err_start_queue: 2052 spi_destroy_queue(ctlr); 2053 err_init_queue: 2054 return ret; 2055 } 2056 2057 /** 2058 * spi_flush_queue - Send all pending messages in the queue from the callers' 2059 * context 2060 * @ctlr: controller to process queue for 2061 * 2062 * This should be used when one wants to ensure all pending messages have been 2063 * sent before doing something. Is used by the spi-mem code to make sure SPI 2064 * memory operations do not preempt regular SPI transfers that have been queued 2065 * before the spi-mem operation. 2066 */ 2067 void spi_flush_queue(struct spi_controller *ctlr) 2068 { 2069 if (ctlr->transfer == spi_queued_transfer) 2070 __spi_pump_messages(ctlr, false); 2071 } 2072 2073 /*-------------------------------------------------------------------------*/ 2074 2075 #if defined(CONFIG_OF) 2076 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2077 struct device_node *nc) 2078 { 2079 u32 value; 2080 int rc; 2081 2082 /* Mode (clock phase/polarity/etc.) */ 2083 if (of_property_read_bool(nc, "spi-cpha")) 2084 spi->mode |= SPI_CPHA; 2085 if (of_property_read_bool(nc, "spi-cpol")) 2086 spi->mode |= SPI_CPOL; 2087 if (of_property_read_bool(nc, "spi-3wire")) 2088 spi->mode |= SPI_3WIRE; 2089 if (of_property_read_bool(nc, "spi-lsb-first")) 2090 spi->mode |= SPI_LSB_FIRST; 2091 if (of_property_read_bool(nc, "spi-cs-high")) 2092 spi->mode |= SPI_CS_HIGH; 2093 2094 /* Device DUAL/QUAD mode */ 2095 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2096 switch (value) { 2097 case 0: 2098 spi->mode |= SPI_NO_TX; 2099 break; 2100 case 1: 2101 break; 2102 case 2: 2103 spi->mode |= SPI_TX_DUAL; 2104 break; 2105 case 4: 2106 spi->mode |= SPI_TX_QUAD; 2107 break; 2108 case 8: 2109 spi->mode |= SPI_TX_OCTAL; 2110 break; 2111 default: 2112 dev_warn(&ctlr->dev, 2113 "spi-tx-bus-width %d not supported\n", 2114 value); 2115 break; 2116 } 2117 } 2118 2119 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2120 switch (value) { 2121 case 0: 2122 spi->mode |= SPI_NO_RX; 2123 break; 2124 case 1: 2125 break; 2126 case 2: 2127 spi->mode |= SPI_RX_DUAL; 2128 break; 2129 case 4: 2130 spi->mode |= SPI_RX_QUAD; 2131 break; 2132 case 8: 2133 spi->mode |= SPI_RX_OCTAL; 2134 break; 2135 default: 2136 dev_warn(&ctlr->dev, 2137 "spi-rx-bus-width %d not supported\n", 2138 value); 2139 break; 2140 } 2141 } 2142 2143 if (spi_controller_is_slave(ctlr)) { 2144 if (!of_node_name_eq(nc, "slave")) { 2145 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2146 nc); 2147 return -EINVAL; 2148 } 2149 return 0; 2150 } 2151 2152 /* Device address */ 2153 rc = of_property_read_u32(nc, "reg", &value); 2154 if (rc) { 2155 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2156 nc, rc); 2157 return rc; 2158 } 2159 spi->chip_select = value; 2160 2161 /* Device speed */ 2162 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2163 spi->max_speed_hz = value; 2164 2165 return 0; 2166 } 2167 2168 static struct spi_device * 2169 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2170 { 2171 struct spi_device *spi; 2172 int rc; 2173 2174 /* Alloc an spi_device */ 2175 spi = spi_alloc_device(ctlr); 2176 if (!spi) { 2177 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2178 rc = -ENOMEM; 2179 goto err_out; 2180 } 2181 2182 /* Select device driver */ 2183 rc = of_modalias_node(nc, spi->modalias, 2184 sizeof(spi->modalias)); 2185 if (rc < 0) { 2186 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2187 goto err_out; 2188 } 2189 2190 rc = of_spi_parse_dt(ctlr, spi, nc); 2191 if (rc) 2192 goto err_out; 2193 2194 /* Store a pointer to the node in the device structure */ 2195 of_node_get(nc); 2196 spi->dev.of_node = nc; 2197 spi->dev.fwnode = of_fwnode_handle(nc); 2198 2199 /* Register the new device */ 2200 rc = spi_add_device(spi); 2201 if (rc) { 2202 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2203 goto err_of_node_put; 2204 } 2205 2206 return spi; 2207 2208 err_of_node_put: 2209 of_node_put(nc); 2210 err_out: 2211 spi_dev_put(spi); 2212 return ERR_PTR(rc); 2213 } 2214 2215 /** 2216 * of_register_spi_devices() - Register child devices onto the SPI bus 2217 * @ctlr: Pointer to spi_controller device 2218 * 2219 * Registers an spi_device for each child node of controller node which 2220 * represents a valid SPI slave. 2221 */ 2222 static void of_register_spi_devices(struct spi_controller *ctlr) 2223 { 2224 struct spi_device *spi; 2225 struct device_node *nc; 2226 2227 if (!ctlr->dev.of_node) 2228 return; 2229 2230 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2231 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2232 continue; 2233 spi = of_register_spi_device(ctlr, nc); 2234 if (IS_ERR(spi)) { 2235 dev_warn(&ctlr->dev, 2236 "Failed to create SPI device for %pOF\n", nc); 2237 of_node_clear_flag(nc, OF_POPULATED); 2238 } 2239 } 2240 } 2241 #else 2242 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2243 #endif 2244 2245 /** 2246 * spi_new_ancillary_device() - Register ancillary SPI device 2247 * @spi: Pointer to the main SPI device registering the ancillary device 2248 * @chip_select: Chip Select of the ancillary device 2249 * 2250 * Register an ancillary SPI device; for example some chips have a chip-select 2251 * for normal device usage and another one for setup/firmware upload. 2252 * 2253 * This may only be called from main SPI device's probe routine. 2254 * 2255 * Return: 0 on success; negative errno on failure 2256 */ 2257 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2258 u8 chip_select) 2259 { 2260 struct spi_device *ancillary; 2261 int rc = 0; 2262 2263 /* Alloc an spi_device */ 2264 ancillary = spi_alloc_device(spi->controller); 2265 if (!ancillary) { 2266 rc = -ENOMEM; 2267 goto err_out; 2268 } 2269 2270 strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2271 2272 /* Use provided chip-select for ancillary device */ 2273 ancillary->chip_select = chip_select; 2274 2275 /* Take over SPI mode/speed from SPI main device */ 2276 ancillary->max_speed_hz = spi->max_speed_hz; 2277 ancillary->mode = spi->mode; 2278 2279 /* Register the new device */ 2280 rc = spi_add_device_locked(ancillary); 2281 if (rc) { 2282 dev_err(&spi->dev, "failed to register ancillary device\n"); 2283 goto err_out; 2284 } 2285 2286 return ancillary; 2287 2288 err_out: 2289 spi_dev_put(ancillary); 2290 return ERR_PTR(rc); 2291 } 2292 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2293 2294 #ifdef CONFIG_ACPI 2295 struct acpi_spi_lookup { 2296 struct spi_controller *ctlr; 2297 u32 max_speed_hz; 2298 u32 mode; 2299 int irq; 2300 u8 bits_per_word; 2301 u8 chip_select; 2302 int n; 2303 int index; 2304 }; 2305 2306 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2307 { 2308 struct acpi_resource_spi_serialbus *sb; 2309 int *count = data; 2310 2311 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2312 return 1; 2313 2314 sb = &ares->data.spi_serial_bus; 2315 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2316 return 1; 2317 2318 *count = *count + 1; 2319 2320 return 1; 2321 } 2322 2323 /** 2324 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2325 * @adev: ACPI device 2326 * 2327 * Returns the number of SpiSerialBus resources in the ACPI-device's 2328 * resource-list; or a negative error code. 2329 */ 2330 int acpi_spi_count_resources(struct acpi_device *adev) 2331 { 2332 LIST_HEAD(r); 2333 int count = 0; 2334 int ret; 2335 2336 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2337 if (ret < 0) 2338 return ret; 2339 2340 acpi_dev_free_resource_list(&r); 2341 2342 return count; 2343 } 2344 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2345 2346 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2347 struct acpi_spi_lookup *lookup) 2348 { 2349 const union acpi_object *obj; 2350 2351 if (!x86_apple_machine) 2352 return; 2353 2354 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2355 && obj->buffer.length >= 4) 2356 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2357 2358 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2359 && obj->buffer.length == 8) 2360 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2361 2362 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2363 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2364 lookup->mode |= SPI_LSB_FIRST; 2365 2366 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2367 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2368 lookup->mode |= SPI_CPOL; 2369 2370 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2371 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2372 lookup->mode |= SPI_CPHA; 2373 } 2374 2375 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 2376 2377 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2378 { 2379 struct acpi_spi_lookup *lookup = data; 2380 struct spi_controller *ctlr = lookup->ctlr; 2381 2382 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2383 struct acpi_resource_spi_serialbus *sb; 2384 acpi_handle parent_handle; 2385 acpi_status status; 2386 2387 sb = &ares->data.spi_serial_bus; 2388 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2389 2390 if (lookup->index != -1 && lookup->n++ != lookup->index) 2391 return 1; 2392 2393 if (lookup->index == -1 && !ctlr) 2394 return -ENODEV; 2395 2396 status = acpi_get_handle(NULL, 2397 sb->resource_source.string_ptr, 2398 &parent_handle); 2399 2400 if (ACPI_FAILURE(status)) 2401 return -ENODEV; 2402 2403 if (ctlr) { 2404 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2405 return -ENODEV; 2406 } else { 2407 struct acpi_device *adev; 2408 2409 if (acpi_bus_get_device(parent_handle, &adev)) 2410 return -ENODEV; 2411 2412 ctlr = acpi_spi_find_controller_by_adev(adev); 2413 if (!ctlr) 2414 return -ENODEV; 2415 2416 lookup->ctlr = ctlr; 2417 } 2418 2419 /* 2420 * ACPI DeviceSelection numbering is handled by the 2421 * host controller driver in Windows and can vary 2422 * from driver to driver. In Linux we always expect 2423 * 0 .. max - 1 so we need to ask the driver to 2424 * translate between the two schemes. 2425 */ 2426 if (ctlr->fw_translate_cs) { 2427 int cs = ctlr->fw_translate_cs(ctlr, 2428 sb->device_selection); 2429 if (cs < 0) 2430 return cs; 2431 lookup->chip_select = cs; 2432 } else { 2433 lookup->chip_select = sb->device_selection; 2434 } 2435 2436 lookup->max_speed_hz = sb->connection_speed; 2437 lookup->bits_per_word = sb->data_bit_length; 2438 2439 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2440 lookup->mode |= SPI_CPHA; 2441 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2442 lookup->mode |= SPI_CPOL; 2443 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2444 lookup->mode |= SPI_CS_HIGH; 2445 } 2446 } else if (lookup->irq < 0) { 2447 struct resource r; 2448 2449 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2450 lookup->irq = r.start; 2451 } 2452 2453 /* Always tell the ACPI core to skip this resource */ 2454 return 1; 2455 } 2456 2457 /** 2458 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2459 * @ctlr: controller to which the spi device belongs 2460 * @adev: ACPI Device for the spi device 2461 * @index: Index of the spi resource inside the ACPI Node 2462 * 2463 * This should be used to allocate a new spi device from and ACPI Node. 2464 * The caller is responsible for calling spi_add_device to register the spi device. 2465 * 2466 * If ctlr is set to NULL, the Controller for the spi device will be looked up 2467 * using the resource. 2468 * If index is set to -1, index is not used. 2469 * Note: If index is -1, ctlr must be set. 2470 * 2471 * Return: a pointer to the new device, or ERR_PTR on error. 2472 */ 2473 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2474 struct acpi_device *adev, 2475 int index) 2476 { 2477 acpi_handle parent_handle = NULL; 2478 struct list_head resource_list; 2479 struct acpi_spi_lookup lookup = {}; 2480 struct spi_device *spi; 2481 int ret; 2482 2483 if (!ctlr && index == -1) 2484 return ERR_PTR(-EINVAL); 2485 2486 lookup.ctlr = ctlr; 2487 lookup.irq = -1; 2488 lookup.index = index; 2489 lookup.n = 0; 2490 2491 INIT_LIST_HEAD(&resource_list); 2492 ret = acpi_dev_get_resources(adev, &resource_list, 2493 acpi_spi_add_resource, &lookup); 2494 acpi_dev_free_resource_list(&resource_list); 2495 2496 if (ret < 0) 2497 /* found SPI in _CRS but it points to another controller */ 2498 return ERR_PTR(-ENODEV); 2499 2500 if (!lookup.max_speed_hz && 2501 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2502 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2503 /* Apple does not use _CRS but nested devices for SPI slaves */ 2504 acpi_spi_parse_apple_properties(adev, &lookup); 2505 } 2506 2507 if (!lookup.max_speed_hz) 2508 return ERR_PTR(-ENODEV); 2509 2510 spi = spi_alloc_device(lookup.ctlr); 2511 if (!spi) { 2512 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2513 dev_name(&adev->dev)); 2514 return ERR_PTR(-ENOMEM); 2515 } 2516 2517 ACPI_COMPANION_SET(&spi->dev, adev); 2518 spi->max_speed_hz = lookup.max_speed_hz; 2519 spi->mode |= lookup.mode; 2520 spi->irq = lookup.irq; 2521 spi->bits_per_word = lookup.bits_per_word; 2522 spi->chip_select = lookup.chip_select; 2523 2524 return spi; 2525 } 2526 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2527 2528 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2529 struct acpi_device *adev) 2530 { 2531 struct spi_device *spi; 2532 2533 if (acpi_bus_get_status(adev) || !adev->status.present || 2534 acpi_device_enumerated(adev)) 2535 return AE_OK; 2536 2537 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2538 if (IS_ERR(spi)) { 2539 if (PTR_ERR(spi) == -ENOMEM) 2540 return AE_NO_MEMORY; 2541 else 2542 return AE_OK; 2543 } 2544 2545 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2546 sizeof(spi->modalias)); 2547 2548 if (spi->irq < 0) 2549 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2550 2551 acpi_device_set_enumerated(adev); 2552 2553 adev->power.flags.ignore_parent = true; 2554 if (spi_add_device(spi)) { 2555 adev->power.flags.ignore_parent = false; 2556 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2557 dev_name(&adev->dev)); 2558 spi_dev_put(spi); 2559 } 2560 2561 return AE_OK; 2562 } 2563 2564 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2565 void *data, void **return_value) 2566 { 2567 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2568 struct spi_controller *ctlr = data; 2569 2570 if (!adev) 2571 return AE_OK; 2572 2573 return acpi_register_spi_device(ctlr, adev); 2574 } 2575 2576 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2577 2578 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2579 { 2580 acpi_status status; 2581 acpi_handle handle; 2582 2583 handle = ACPI_HANDLE(ctlr->dev.parent); 2584 if (!handle) 2585 return; 2586 2587 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2588 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2589 acpi_spi_add_device, NULL, ctlr, NULL); 2590 if (ACPI_FAILURE(status)) 2591 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2592 } 2593 #else 2594 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2595 #endif /* CONFIG_ACPI */ 2596 2597 static void spi_controller_release(struct device *dev) 2598 { 2599 struct spi_controller *ctlr; 2600 2601 ctlr = container_of(dev, struct spi_controller, dev); 2602 kfree(ctlr); 2603 } 2604 2605 static struct class spi_master_class = { 2606 .name = "spi_master", 2607 .owner = THIS_MODULE, 2608 .dev_release = spi_controller_release, 2609 .dev_groups = spi_master_groups, 2610 }; 2611 2612 #ifdef CONFIG_SPI_SLAVE 2613 /** 2614 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2615 * controller 2616 * @spi: device used for the current transfer 2617 */ 2618 int spi_slave_abort(struct spi_device *spi) 2619 { 2620 struct spi_controller *ctlr = spi->controller; 2621 2622 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2623 return ctlr->slave_abort(ctlr); 2624 2625 return -ENOTSUPP; 2626 } 2627 EXPORT_SYMBOL_GPL(spi_slave_abort); 2628 2629 static int match_true(struct device *dev, void *data) 2630 { 2631 return 1; 2632 } 2633 2634 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2635 char *buf) 2636 { 2637 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2638 dev); 2639 struct device *child; 2640 2641 child = device_find_child(&ctlr->dev, NULL, match_true); 2642 return sprintf(buf, "%s\n", 2643 child ? to_spi_device(child)->modalias : NULL); 2644 } 2645 2646 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2647 const char *buf, size_t count) 2648 { 2649 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2650 dev); 2651 struct spi_device *spi; 2652 struct device *child; 2653 char name[32]; 2654 int rc; 2655 2656 rc = sscanf(buf, "%31s", name); 2657 if (rc != 1 || !name[0]) 2658 return -EINVAL; 2659 2660 child = device_find_child(&ctlr->dev, NULL, match_true); 2661 if (child) { 2662 /* Remove registered slave */ 2663 device_unregister(child); 2664 put_device(child); 2665 } 2666 2667 if (strcmp(name, "(null)")) { 2668 /* Register new slave */ 2669 spi = spi_alloc_device(ctlr); 2670 if (!spi) 2671 return -ENOMEM; 2672 2673 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2674 2675 rc = spi_add_device(spi); 2676 if (rc) { 2677 spi_dev_put(spi); 2678 return rc; 2679 } 2680 } 2681 2682 return count; 2683 } 2684 2685 static DEVICE_ATTR_RW(slave); 2686 2687 static struct attribute *spi_slave_attrs[] = { 2688 &dev_attr_slave.attr, 2689 NULL, 2690 }; 2691 2692 static const struct attribute_group spi_slave_group = { 2693 .attrs = spi_slave_attrs, 2694 }; 2695 2696 static const struct attribute_group *spi_slave_groups[] = { 2697 &spi_controller_statistics_group, 2698 &spi_slave_group, 2699 NULL, 2700 }; 2701 2702 static struct class spi_slave_class = { 2703 .name = "spi_slave", 2704 .owner = THIS_MODULE, 2705 .dev_release = spi_controller_release, 2706 .dev_groups = spi_slave_groups, 2707 }; 2708 #else 2709 extern struct class spi_slave_class; /* dummy */ 2710 #endif 2711 2712 /** 2713 * __spi_alloc_controller - allocate an SPI master or slave controller 2714 * @dev: the controller, possibly using the platform_bus 2715 * @size: how much zeroed driver-private data to allocate; the pointer to this 2716 * memory is in the driver_data field of the returned device, accessible 2717 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2718 * drivers granting DMA access to portions of their private data need to 2719 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2720 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2721 * slave (true) controller 2722 * Context: can sleep 2723 * 2724 * This call is used only by SPI controller drivers, which are the 2725 * only ones directly touching chip registers. It's how they allocate 2726 * an spi_controller structure, prior to calling spi_register_controller(). 2727 * 2728 * This must be called from context that can sleep. 2729 * 2730 * The caller is responsible for assigning the bus number and initializing the 2731 * controller's methods before calling spi_register_controller(); and (after 2732 * errors adding the device) calling spi_controller_put() to prevent a memory 2733 * leak. 2734 * 2735 * Return: the SPI controller structure on success, else NULL. 2736 */ 2737 struct spi_controller *__spi_alloc_controller(struct device *dev, 2738 unsigned int size, bool slave) 2739 { 2740 struct spi_controller *ctlr; 2741 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2742 2743 if (!dev) 2744 return NULL; 2745 2746 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2747 if (!ctlr) 2748 return NULL; 2749 2750 device_initialize(&ctlr->dev); 2751 INIT_LIST_HEAD(&ctlr->queue); 2752 spin_lock_init(&ctlr->queue_lock); 2753 spin_lock_init(&ctlr->bus_lock_spinlock); 2754 mutex_init(&ctlr->bus_lock_mutex); 2755 mutex_init(&ctlr->io_mutex); 2756 mutex_init(&ctlr->add_lock); 2757 ctlr->bus_num = -1; 2758 ctlr->num_chipselect = 1; 2759 ctlr->slave = slave; 2760 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2761 ctlr->dev.class = &spi_slave_class; 2762 else 2763 ctlr->dev.class = &spi_master_class; 2764 ctlr->dev.parent = dev; 2765 pm_suspend_ignore_children(&ctlr->dev, true); 2766 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2767 2768 return ctlr; 2769 } 2770 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2771 2772 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2773 { 2774 spi_controller_put(*(struct spi_controller **)ctlr); 2775 } 2776 2777 /** 2778 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2779 * @dev: physical device of SPI controller 2780 * @size: how much zeroed driver-private data to allocate 2781 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2782 * Context: can sleep 2783 * 2784 * Allocate an SPI controller and automatically release a reference on it 2785 * when @dev is unbound from its driver. Drivers are thus relieved from 2786 * having to call spi_controller_put(). 2787 * 2788 * The arguments to this function are identical to __spi_alloc_controller(). 2789 * 2790 * Return: the SPI controller structure on success, else NULL. 2791 */ 2792 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2793 unsigned int size, 2794 bool slave) 2795 { 2796 struct spi_controller **ptr, *ctlr; 2797 2798 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2799 GFP_KERNEL); 2800 if (!ptr) 2801 return NULL; 2802 2803 ctlr = __spi_alloc_controller(dev, size, slave); 2804 if (ctlr) { 2805 ctlr->devm_allocated = true; 2806 *ptr = ctlr; 2807 devres_add(dev, ptr); 2808 } else { 2809 devres_free(ptr); 2810 } 2811 2812 return ctlr; 2813 } 2814 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2815 2816 /** 2817 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2818 * @ctlr: The SPI master to grab GPIO descriptors for 2819 */ 2820 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2821 { 2822 int nb, i; 2823 struct gpio_desc **cs; 2824 struct device *dev = &ctlr->dev; 2825 unsigned long native_cs_mask = 0; 2826 unsigned int num_cs_gpios = 0; 2827 2828 nb = gpiod_count(dev, "cs"); 2829 if (nb < 0) { 2830 /* No GPIOs at all is fine, else return the error */ 2831 if (nb == -ENOENT) 2832 return 0; 2833 return nb; 2834 } 2835 2836 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2837 2838 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2839 GFP_KERNEL); 2840 if (!cs) 2841 return -ENOMEM; 2842 ctlr->cs_gpiods = cs; 2843 2844 for (i = 0; i < nb; i++) { 2845 /* 2846 * Most chipselects are active low, the inverted 2847 * semantics are handled by special quirks in gpiolib, 2848 * so initializing them GPIOD_OUT_LOW here means 2849 * "unasserted", in most cases this will drive the physical 2850 * line high. 2851 */ 2852 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2853 GPIOD_OUT_LOW); 2854 if (IS_ERR(cs[i])) 2855 return PTR_ERR(cs[i]); 2856 2857 if (cs[i]) { 2858 /* 2859 * If we find a CS GPIO, name it after the device and 2860 * chip select line. 2861 */ 2862 char *gpioname; 2863 2864 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2865 dev_name(dev), i); 2866 if (!gpioname) 2867 return -ENOMEM; 2868 gpiod_set_consumer_name(cs[i], gpioname); 2869 num_cs_gpios++; 2870 continue; 2871 } 2872 2873 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2874 dev_err(dev, "Invalid native chip select %d\n", i); 2875 return -EINVAL; 2876 } 2877 native_cs_mask |= BIT(i); 2878 } 2879 2880 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 2881 2882 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios && 2883 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 2884 dev_err(dev, "No unused native chip select available\n"); 2885 return -EINVAL; 2886 } 2887 2888 return 0; 2889 } 2890 2891 static int spi_controller_check_ops(struct spi_controller *ctlr) 2892 { 2893 /* 2894 * The controller may implement only the high-level SPI-memory like 2895 * operations if it does not support regular SPI transfers, and this is 2896 * valid use case. 2897 * If ->mem_ops is NULL, we request that at least one of the 2898 * ->transfer_xxx() method be implemented. 2899 */ 2900 if (ctlr->mem_ops) { 2901 if (!ctlr->mem_ops->exec_op) 2902 return -EINVAL; 2903 } else if (!ctlr->transfer && !ctlr->transfer_one && 2904 !ctlr->transfer_one_message) { 2905 return -EINVAL; 2906 } 2907 2908 return 0; 2909 } 2910 2911 /** 2912 * spi_register_controller - register SPI master or slave controller 2913 * @ctlr: initialized master, originally from spi_alloc_master() or 2914 * spi_alloc_slave() 2915 * Context: can sleep 2916 * 2917 * SPI controllers connect to their drivers using some non-SPI bus, 2918 * such as the platform bus. The final stage of probe() in that code 2919 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2920 * 2921 * SPI controllers use board specific (often SOC specific) bus numbers, 2922 * and board-specific addressing for SPI devices combines those numbers 2923 * with chip select numbers. Since SPI does not directly support dynamic 2924 * device identification, boards need configuration tables telling which 2925 * chip is at which address. 2926 * 2927 * This must be called from context that can sleep. It returns zero on 2928 * success, else a negative error code (dropping the controller's refcount). 2929 * After a successful return, the caller is responsible for calling 2930 * spi_unregister_controller(). 2931 * 2932 * Return: zero on success, else a negative error code. 2933 */ 2934 int spi_register_controller(struct spi_controller *ctlr) 2935 { 2936 struct device *dev = ctlr->dev.parent; 2937 struct boardinfo *bi; 2938 int status; 2939 int id, first_dynamic; 2940 2941 if (!dev) 2942 return -ENODEV; 2943 2944 /* 2945 * Make sure all necessary hooks are implemented before registering 2946 * the SPI controller. 2947 */ 2948 status = spi_controller_check_ops(ctlr); 2949 if (status) 2950 return status; 2951 2952 if (ctlr->bus_num >= 0) { 2953 /* devices with a fixed bus num must check-in with the num */ 2954 mutex_lock(&board_lock); 2955 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2956 ctlr->bus_num + 1, GFP_KERNEL); 2957 mutex_unlock(&board_lock); 2958 if (WARN(id < 0, "couldn't get idr")) 2959 return id == -ENOSPC ? -EBUSY : id; 2960 ctlr->bus_num = id; 2961 } else if (ctlr->dev.of_node) { 2962 /* allocate dynamic bus number using Linux idr */ 2963 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2964 if (id >= 0) { 2965 ctlr->bus_num = id; 2966 mutex_lock(&board_lock); 2967 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2968 ctlr->bus_num + 1, GFP_KERNEL); 2969 mutex_unlock(&board_lock); 2970 if (WARN(id < 0, "couldn't get idr")) 2971 return id == -ENOSPC ? -EBUSY : id; 2972 } 2973 } 2974 if (ctlr->bus_num < 0) { 2975 first_dynamic = of_alias_get_highest_id("spi"); 2976 if (first_dynamic < 0) 2977 first_dynamic = 0; 2978 else 2979 first_dynamic++; 2980 2981 mutex_lock(&board_lock); 2982 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2983 0, GFP_KERNEL); 2984 mutex_unlock(&board_lock); 2985 if (WARN(id < 0, "couldn't get idr")) 2986 return id; 2987 ctlr->bus_num = id; 2988 } 2989 ctlr->bus_lock_flag = 0; 2990 init_completion(&ctlr->xfer_completion); 2991 if (!ctlr->max_dma_len) 2992 ctlr->max_dma_len = INT_MAX; 2993 2994 /* 2995 * Register the device, then userspace will see it. 2996 * Registration fails if the bus ID is in use. 2997 */ 2998 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2999 3000 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3001 status = spi_get_gpio_descs(ctlr); 3002 if (status) 3003 goto free_bus_id; 3004 /* 3005 * A controller using GPIO descriptors always 3006 * supports SPI_CS_HIGH if need be. 3007 */ 3008 ctlr->mode_bits |= SPI_CS_HIGH; 3009 } 3010 3011 /* 3012 * Even if it's just one always-selected device, there must 3013 * be at least one chipselect. 3014 */ 3015 if (!ctlr->num_chipselect) { 3016 status = -EINVAL; 3017 goto free_bus_id; 3018 } 3019 3020 /* setting last_cs to -1 means no chip selected */ 3021 ctlr->last_cs = -1; 3022 3023 status = device_add(&ctlr->dev); 3024 if (status < 0) 3025 goto free_bus_id; 3026 dev_dbg(dev, "registered %s %s\n", 3027 spi_controller_is_slave(ctlr) ? "slave" : "master", 3028 dev_name(&ctlr->dev)); 3029 3030 /* 3031 * If we're using a queued driver, start the queue. Note that we don't 3032 * need the queueing logic if the driver is only supporting high-level 3033 * memory operations. 3034 */ 3035 if (ctlr->transfer) { 3036 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3037 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3038 status = spi_controller_initialize_queue(ctlr); 3039 if (status) { 3040 device_del(&ctlr->dev); 3041 goto free_bus_id; 3042 } 3043 } 3044 /* add statistics */ 3045 spin_lock_init(&ctlr->statistics.lock); 3046 3047 mutex_lock(&board_lock); 3048 list_add_tail(&ctlr->list, &spi_controller_list); 3049 list_for_each_entry(bi, &board_list, list) 3050 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3051 mutex_unlock(&board_lock); 3052 3053 /* Register devices from the device tree and ACPI */ 3054 of_register_spi_devices(ctlr); 3055 acpi_register_spi_devices(ctlr); 3056 return status; 3057 3058 free_bus_id: 3059 mutex_lock(&board_lock); 3060 idr_remove(&spi_master_idr, ctlr->bus_num); 3061 mutex_unlock(&board_lock); 3062 return status; 3063 } 3064 EXPORT_SYMBOL_GPL(spi_register_controller); 3065 3066 static void devm_spi_unregister(void *ctlr) 3067 { 3068 spi_unregister_controller(ctlr); 3069 } 3070 3071 /** 3072 * devm_spi_register_controller - register managed SPI master or slave 3073 * controller 3074 * @dev: device managing SPI controller 3075 * @ctlr: initialized controller, originally from spi_alloc_master() or 3076 * spi_alloc_slave() 3077 * Context: can sleep 3078 * 3079 * Register a SPI device as with spi_register_controller() which will 3080 * automatically be unregistered and freed. 3081 * 3082 * Return: zero on success, else a negative error code. 3083 */ 3084 int devm_spi_register_controller(struct device *dev, 3085 struct spi_controller *ctlr) 3086 { 3087 int ret; 3088 3089 ret = spi_register_controller(ctlr); 3090 if (ret) 3091 return ret; 3092 3093 return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr); 3094 } 3095 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3096 3097 static int __unregister(struct device *dev, void *null) 3098 { 3099 spi_unregister_device(to_spi_device(dev)); 3100 return 0; 3101 } 3102 3103 /** 3104 * spi_unregister_controller - unregister SPI master or slave controller 3105 * @ctlr: the controller being unregistered 3106 * Context: can sleep 3107 * 3108 * This call is used only by SPI controller drivers, which are the 3109 * only ones directly touching chip registers. 3110 * 3111 * This must be called from context that can sleep. 3112 * 3113 * Note that this function also drops a reference to the controller. 3114 */ 3115 void spi_unregister_controller(struct spi_controller *ctlr) 3116 { 3117 struct spi_controller *found; 3118 int id = ctlr->bus_num; 3119 3120 /* Prevent addition of new devices, unregister existing ones */ 3121 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3122 mutex_lock(&ctlr->add_lock); 3123 3124 device_for_each_child(&ctlr->dev, NULL, __unregister); 3125 3126 /* First make sure that this controller was ever added */ 3127 mutex_lock(&board_lock); 3128 found = idr_find(&spi_master_idr, id); 3129 mutex_unlock(&board_lock); 3130 if (ctlr->queued) { 3131 if (spi_destroy_queue(ctlr)) 3132 dev_err(&ctlr->dev, "queue remove failed\n"); 3133 } 3134 mutex_lock(&board_lock); 3135 list_del(&ctlr->list); 3136 mutex_unlock(&board_lock); 3137 3138 device_del(&ctlr->dev); 3139 3140 /* free bus id */ 3141 mutex_lock(&board_lock); 3142 if (found == ctlr) 3143 idr_remove(&spi_master_idr, id); 3144 mutex_unlock(&board_lock); 3145 3146 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3147 mutex_unlock(&ctlr->add_lock); 3148 3149 /* Release the last reference on the controller if its driver 3150 * has not yet been converted to devm_spi_alloc_master/slave(). 3151 */ 3152 if (!ctlr->devm_allocated) 3153 put_device(&ctlr->dev); 3154 } 3155 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3156 3157 int spi_controller_suspend(struct spi_controller *ctlr) 3158 { 3159 int ret; 3160 3161 /* Basically no-ops for non-queued controllers */ 3162 if (!ctlr->queued) 3163 return 0; 3164 3165 ret = spi_stop_queue(ctlr); 3166 if (ret) 3167 dev_err(&ctlr->dev, "queue stop failed\n"); 3168 3169 return ret; 3170 } 3171 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3172 3173 int spi_controller_resume(struct spi_controller *ctlr) 3174 { 3175 int ret; 3176 3177 if (!ctlr->queued) 3178 return 0; 3179 3180 ret = spi_start_queue(ctlr); 3181 if (ret) 3182 dev_err(&ctlr->dev, "queue restart failed\n"); 3183 3184 return ret; 3185 } 3186 EXPORT_SYMBOL_GPL(spi_controller_resume); 3187 3188 /*-------------------------------------------------------------------------*/ 3189 3190 /* Core methods for spi_message alterations */ 3191 3192 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3193 struct spi_message *msg, 3194 void *res) 3195 { 3196 struct spi_replaced_transfers *rxfer = res; 3197 size_t i; 3198 3199 /* call extra callback if requested */ 3200 if (rxfer->release) 3201 rxfer->release(ctlr, msg, res); 3202 3203 /* insert replaced transfers back into the message */ 3204 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3205 3206 /* remove the formerly inserted entries */ 3207 for (i = 0; i < rxfer->inserted; i++) 3208 list_del(&rxfer->inserted_transfers[i].transfer_list); 3209 } 3210 3211 /** 3212 * spi_replace_transfers - replace transfers with several transfers 3213 * and register change with spi_message.resources 3214 * @msg: the spi_message we work upon 3215 * @xfer_first: the first spi_transfer we want to replace 3216 * @remove: number of transfers to remove 3217 * @insert: the number of transfers we want to insert instead 3218 * @release: extra release code necessary in some circumstances 3219 * @extradatasize: extra data to allocate (with alignment guarantees 3220 * of struct @spi_transfer) 3221 * @gfp: gfp flags 3222 * 3223 * Returns: pointer to @spi_replaced_transfers, 3224 * PTR_ERR(...) in case of errors. 3225 */ 3226 static struct spi_replaced_transfers *spi_replace_transfers( 3227 struct spi_message *msg, 3228 struct spi_transfer *xfer_first, 3229 size_t remove, 3230 size_t insert, 3231 spi_replaced_release_t release, 3232 size_t extradatasize, 3233 gfp_t gfp) 3234 { 3235 struct spi_replaced_transfers *rxfer; 3236 struct spi_transfer *xfer; 3237 size_t i; 3238 3239 /* allocate the structure using spi_res */ 3240 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3241 struct_size(rxfer, inserted_transfers, insert) 3242 + extradatasize, 3243 gfp); 3244 if (!rxfer) 3245 return ERR_PTR(-ENOMEM); 3246 3247 /* the release code to invoke before running the generic release */ 3248 rxfer->release = release; 3249 3250 /* assign extradata */ 3251 if (extradatasize) 3252 rxfer->extradata = 3253 &rxfer->inserted_transfers[insert]; 3254 3255 /* init the replaced_transfers list */ 3256 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3257 3258 /* 3259 * Assign the list_entry after which we should reinsert 3260 * the @replaced_transfers - it may be spi_message.messages! 3261 */ 3262 rxfer->replaced_after = xfer_first->transfer_list.prev; 3263 3264 /* remove the requested number of transfers */ 3265 for (i = 0; i < remove; i++) { 3266 /* 3267 * If the entry after replaced_after it is msg->transfers 3268 * then we have been requested to remove more transfers 3269 * than are in the list. 3270 */ 3271 if (rxfer->replaced_after->next == &msg->transfers) { 3272 dev_err(&msg->spi->dev, 3273 "requested to remove more spi_transfers than are available\n"); 3274 /* insert replaced transfers back into the message */ 3275 list_splice(&rxfer->replaced_transfers, 3276 rxfer->replaced_after); 3277 3278 /* free the spi_replace_transfer structure */ 3279 spi_res_free(rxfer); 3280 3281 /* and return with an error */ 3282 return ERR_PTR(-EINVAL); 3283 } 3284 3285 /* 3286 * Remove the entry after replaced_after from list of 3287 * transfers and add it to list of replaced_transfers. 3288 */ 3289 list_move_tail(rxfer->replaced_after->next, 3290 &rxfer->replaced_transfers); 3291 } 3292 3293 /* 3294 * Create copy of the given xfer with identical settings 3295 * based on the first transfer to get removed. 3296 */ 3297 for (i = 0; i < insert; i++) { 3298 /* we need to run in reverse order */ 3299 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3300 3301 /* copy all spi_transfer data */ 3302 memcpy(xfer, xfer_first, sizeof(*xfer)); 3303 3304 /* add to list */ 3305 list_add(&xfer->transfer_list, rxfer->replaced_after); 3306 3307 /* clear cs_change and delay for all but the last */ 3308 if (i) { 3309 xfer->cs_change = false; 3310 xfer->delay.value = 0; 3311 } 3312 } 3313 3314 /* set up inserted */ 3315 rxfer->inserted = insert; 3316 3317 /* and register it with spi_res/spi_message */ 3318 spi_res_add(msg, rxfer); 3319 3320 return rxfer; 3321 } 3322 3323 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3324 struct spi_message *msg, 3325 struct spi_transfer **xferp, 3326 size_t maxsize, 3327 gfp_t gfp) 3328 { 3329 struct spi_transfer *xfer = *xferp, *xfers; 3330 struct spi_replaced_transfers *srt; 3331 size_t offset; 3332 size_t count, i; 3333 3334 /* calculate how many we have to replace */ 3335 count = DIV_ROUND_UP(xfer->len, maxsize); 3336 3337 /* create replacement */ 3338 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3339 if (IS_ERR(srt)) 3340 return PTR_ERR(srt); 3341 xfers = srt->inserted_transfers; 3342 3343 /* 3344 * Now handle each of those newly inserted spi_transfers. 3345 * Note that the replacements spi_transfers all are preset 3346 * to the same values as *xferp, so tx_buf, rx_buf and len 3347 * are all identical (as well as most others) 3348 * so we just have to fix up len and the pointers. 3349 * 3350 * This also includes support for the depreciated 3351 * spi_message.is_dma_mapped interface. 3352 */ 3353 3354 /* 3355 * The first transfer just needs the length modified, so we 3356 * run it outside the loop. 3357 */ 3358 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3359 3360 /* all the others need rx_buf/tx_buf also set */ 3361 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3362 /* update rx_buf, tx_buf and dma */ 3363 if (xfers[i].rx_buf) 3364 xfers[i].rx_buf += offset; 3365 if (xfers[i].rx_dma) 3366 xfers[i].rx_dma += offset; 3367 if (xfers[i].tx_buf) 3368 xfers[i].tx_buf += offset; 3369 if (xfers[i].tx_dma) 3370 xfers[i].tx_dma += offset; 3371 3372 /* update length */ 3373 xfers[i].len = min(maxsize, xfers[i].len - offset); 3374 } 3375 3376 /* 3377 * We set up xferp to the last entry we have inserted, 3378 * so that we skip those already split transfers. 3379 */ 3380 *xferp = &xfers[count - 1]; 3381 3382 /* increment statistics counters */ 3383 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3384 transfers_split_maxsize); 3385 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3386 transfers_split_maxsize); 3387 3388 return 0; 3389 } 3390 3391 /** 3392 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3393 * when an individual transfer exceeds a 3394 * certain size 3395 * @ctlr: the @spi_controller for this transfer 3396 * @msg: the @spi_message to transform 3397 * @maxsize: the maximum when to apply this 3398 * @gfp: GFP allocation flags 3399 * 3400 * Return: status of transformation 3401 */ 3402 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3403 struct spi_message *msg, 3404 size_t maxsize, 3405 gfp_t gfp) 3406 { 3407 struct spi_transfer *xfer; 3408 int ret; 3409 3410 /* 3411 * Iterate over the transfer_list, 3412 * but note that xfer is advanced to the last transfer inserted 3413 * to avoid checking sizes again unnecessarily (also xfer does 3414 * potentially belong to a different list by the time the 3415 * replacement has happened). 3416 */ 3417 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3418 if (xfer->len > maxsize) { 3419 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3420 maxsize, gfp); 3421 if (ret) 3422 return ret; 3423 } 3424 } 3425 3426 return 0; 3427 } 3428 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3429 3430 /*-------------------------------------------------------------------------*/ 3431 3432 /* Core methods for SPI controller protocol drivers. Some of the 3433 * other core methods are currently defined as inline functions. 3434 */ 3435 3436 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3437 u8 bits_per_word) 3438 { 3439 if (ctlr->bits_per_word_mask) { 3440 /* Only 32 bits fit in the mask */ 3441 if (bits_per_word > 32) 3442 return -EINVAL; 3443 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3444 return -EINVAL; 3445 } 3446 3447 return 0; 3448 } 3449 3450 /** 3451 * spi_setup - setup SPI mode and clock rate 3452 * @spi: the device whose settings are being modified 3453 * Context: can sleep, and no requests are queued to the device 3454 * 3455 * SPI protocol drivers may need to update the transfer mode if the 3456 * device doesn't work with its default. They may likewise need 3457 * to update clock rates or word sizes from initial values. This function 3458 * changes those settings, and must be called from a context that can sleep. 3459 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3460 * effect the next time the device is selected and data is transferred to 3461 * or from it. When this function returns, the spi device is deselected. 3462 * 3463 * Note that this call will fail if the protocol driver specifies an option 3464 * that the underlying controller or its driver does not support. For 3465 * example, not all hardware supports wire transfers using nine bit words, 3466 * LSB-first wire encoding, or active-high chipselects. 3467 * 3468 * Return: zero on success, else a negative error code. 3469 */ 3470 int spi_setup(struct spi_device *spi) 3471 { 3472 unsigned bad_bits, ugly_bits; 3473 int status; 3474 3475 /* 3476 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3477 * are set at the same time. 3478 */ 3479 if ((hweight_long(spi->mode & 3480 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3481 (hweight_long(spi->mode & 3482 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3483 dev_err(&spi->dev, 3484 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3485 return -EINVAL; 3486 } 3487 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3488 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3489 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3490 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3491 return -EINVAL; 3492 /* 3493 * Help drivers fail *cleanly* when they need options 3494 * that aren't supported with their current controller. 3495 * SPI_CS_WORD has a fallback software implementation, 3496 * so it is ignored here. 3497 */ 3498 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3499 SPI_NO_TX | SPI_NO_RX); 3500 ugly_bits = bad_bits & 3501 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3502 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3503 if (ugly_bits) { 3504 dev_warn(&spi->dev, 3505 "setup: ignoring unsupported mode bits %x\n", 3506 ugly_bits); 3507 spi->mode &= ~ugly_bits; 3508 bad_bits &= ~ugly_bits; 3509 } 3510 if (bad_bits) { 3511 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3512 bad_bits); 3513 return -EINVAL; 3514 } 3515 3516 if (!spi->bits_per_word) 3517 spi->bits_per_word = 8; 3518 3519 status = __spi_validate_bits_per_word(spi->controller, 3520 spi->bits_per_word); 3521 if (status) 3522 return status; 3523 3524 if (spi->controller->max_speed_hz && 3525 (!spi->max_speed_hz || 3526 spi->max_speed_hz > spi->controller->max_speed_hz)) 3527 spi->max_speed_hz = spi->controller->max_speed_hz; 3528 3529 mutex_lock(&spi->controller->io_mutex); 3530 3531 if (spi->controller->setup) { 3532 status = spi->controller->setup(spi); 3533 if (status) { 3534 mutex_unlock(&spi->controller->io_mutex); 3535 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3536 status); 3537 return status; 3538 } 3539 } 3540 3541 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3542 status = pm_runtime_get_sync(spi->controller->dev.parent); 3543 if (status < 0) { 3544 mutex_unlock(&spi->controller->io_mutex); 3545 pm_runtime_put_noidle(spi->controller->dev.parent); 3546 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3547 status); 3548 return status; 3549 } 3550 3551 /* 3552 * We do not want to return positive value from pm_runtime_get, 3553 * there are many instances of devices calling spi_setup() and 3554 * checking for a non-zero return value instead of a negative 3555 * return value. 3556 */ 3557 status = 0; 3558 3559 spi_set_cs(spi, false, true); 3560 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3561 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3562 } else { 3563 spi_set_cs(spi, false, true); 3564 } 3565 3566 mutex_unlock(&spi->controller->io_mutex); 3567 3568 if (spi->rt && !spi->controller->rt) { 3569 spi->controller->rt = true; 3570 spi_set_thread_rt(spi->controller); 3571 } 3572 3573 trace_spi_setup(spi, status); 3574 3575 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3576 spi->mode & SPI_MODE_X_MASK, 3577 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3578 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3579 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3580 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3581 spi->bits_per_word, spi->max_speed_hz, 3582 status); 3583 3584 return status; 3585 } 3586 EXPORT_SYMBOL_GPL(spi_setup); 3587 3588 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3589 struct spi_device *spi) 3590 { 3591 int delay1, delay2; 3592 3593 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3594 if (delay1 < 0) 3595 return delay1; 3596 3597 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3598 if (delay2 < 0) 3599 return delay2; 3600 3601 if (delay1 < delay2) 3602 memcpy(&xfer->word_delay, &spi->word_delay, 3603 sizeof(xfer->word_delay)); 3604 3605 return 0; 3606 } 3607 3608 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3609 { 3610 struct spi_controller *ctlr = spi->controller; 3611 struct spi_transfer *xfer; 3612 int w_size; 3613 3614 if (list_empty(&message->transfers)) 3615 return -EINVAL; 3616 3617 /* 3618 * If an SPI controller does not support toggling the CS line on each 3619 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3620 * for the CS line, we can emulate the CS-per-word hardware function by 3621 * splitting transfers into one-word transfers and ensuring that 3622 * cs_change is set for each transfer. 3623 */ 3624 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3625 spi->cs_gpiod)) { 3626 size_t maxsize; 3627 int ret; 3628 3629 maxsize = (spi->bits_per_word + 7) / 8; 3630 3631 /* spi_split_transfers_maxsize() requires message->spi */ 3632 message->spi = spi; 3633 3634 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3635 GFP_KERNEL); 3636 if (ret) 3637 return ret; 3638 3639 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3640 /* don't change cs_change on the last entry in the list */ 3641 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3642 break; 3643 xfer->cs_change = 1; 3644 } 3645 } 3646 3647 /* 3648 * Half-duplex links include original MicroWire, and ones with 3649 * only one data pin like SPI_3WIRE (switches direction) or where 3650 * either MOSI or MISO is missing. They can also be caused by 3651 * software limitations. 3652 */ 3653 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3654 (spi->mode & SPI_3WIRE)) { 3655 unsigned flags = ctlr->flags; 3656 3657 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3658 if (xfer->rx_buf && xfer->tx_buf) 3659 return -EINVAL; 3660 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3661 return -EINVAL; 3662 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3663 return -EINVAL; 3664 } 3665 } 3666 3667 /* 3668 * Set transfer bits_per_word and max speed as spi device default if 3669 * it is not set for this transfer. 3670 * Set transfer tx_nbits and rx_nbits as single transfer default 3671 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3672 * Ensure transfer word_delay is at least as long as that required by 3673 * device itself. 3674 */ 3675 message->frame_length = 0; 3676 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3677 xfer->effective_speed_hz = 0; 3678 message->frame_length += xfer->len; 3679 if (!xfer->bits_per_word) 3680 xfer->bits_per_word = spi->bits_per_word; 3681 3682 if (!xfer->speed_hz) 3683 xfer->speed_hz = spi->max_speed_hz; 3684 3685 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3686 xfer->speed_hz = ctlr->max_speed_hz; 3687 3688 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3689 return -EINVAL; 3690 3691 /* 3692 * SPI transfer length should be multiple of SPI word size 3693 * where SPI word size should be power-of-two multiple. 3694 */ 3695 if (xfer->bits_per_word <= 8) 3696 w_size = 1; 3697 else if (xfer->bits_per_word <= 16) 3698 w_size = 2; 3699 else 3700 w_size = 4; 3701 3702 /* No partial transfers accepted */ 3703 if (xfer->len % w_size) 3704 return -EINVAL; 3705 3706 if (xfer->speed_hz && ctlr->min_speed_hz && 3707 xfer->speed_hz < ctlr->min_speed_hz) 3708 return -EINVAL; 3709 3710 if (xfer->tx_buf && !xfer->tx_nbits) 3711 xfer->tx_nbits = SPI_NBITS_SINGLE; 3712 if (xfer->rx_buf && !xfer->rx_nbits) 3713 xfer->rx_nbits = SPI_NBITS_SINGLE; 3714 /* 3715 * Check transfer tx/rx_nbits: 3716 * 1. check the value matches one of single, dual and quad 3717 * 2. check tx/rx_nbits match the mode in spi_device 3718 */ 3719 if (xfer->tx_buf) { 3720 if (spi->mode & SPI_NO_TX) 3721 return -EINVAL; 3722 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3723 xfer->tx_nbits != SPI_NBITS_DUAL && 3724 xfer->tx_nbits != SPI_NBITS_QUAD) 3725 return -EINVAL; 3726 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3727 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3728 return -EINVAL; 3729 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3730 !(spi->mode & SPI_TX_QUAD)) 3731 return -EINVAL; 3732 } 3733 /* check transfer rx_nbits */ 3734 if (xfer->rx_buf) { 3735 if (spi->mode & SPI_NO_RX) 3736 return -EINVAL; 3737 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3738 xfer->rx_nbits != SPI_NBITS_DUAL && 3739 xfer->rx_nbits != SPI_NBITS_QUAD) 3740 return -EINVAL; 3741 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3742 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3743 return -EINVAL; 3744 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3745 !(spi->mode & SPI_RX_QUAD)) 3746 return -EINVAL; 3747 } 3748 3749 if (_spi_xfer_word_delay_update(xfer, spi)) 3750 return -EINVAL; 3751 } 3752 3753 message->status = -EINPROGRESS; 3754 3755 return 0; 3756 } 3757 3758 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3759 { 3760 struct spi_controller *ctlr = spi->controller; 3761 struct spi_transfer *xfer; 3762 3763 /* 3764 * Some controllers do not support doing regular SPI transfers. Return 3765 * ENOTSUPP when this is the case. 3766 */ 3767 if (!ctlr->transfer) 3768 return -ENOTSUPP; 3769 3770 message->spi = spi; 3771 3772 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3773 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3774 3775 trace_spi_message_submit(message); 3776 3777 if (!ctlr->ptp_sts_supported) { 3778 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3779 xfer->ptp_sts_word_pre = 0; 3780 ptp_read_system_prets(xfer->ptp_sts); 3781 } 3782 } 3783 3784 return ctlr->transfer(spi, message); 3785 } 3786 3787 /** 3788 * spi_async - asynchronous SPI transfer 3789 * @spi: device with which data will be exchanged 3790 * @message: describes the data transfers, including completion callback 3791 * Context: any (irqs may be blocked, etc) 3792 * 3793 * This call may be used in_irq and other contexts which can't sleep, 3794 * as well as from task contexts which can sleep. 3795 * 3796 * The completion callback is invoked in a context which can't sleep. 3797 * Before that invocation, the value of message->status is undefined. 3798 * When the callback is issued, message->status holds either zero (to 3799 * indicate complete success) or a negative error code. After that 3800 * callback returns, the driver which issued the transfer request may 3801 * deallocate the associated memory; it's no longer in use by any SPI 3802 * core or controller driver code. 3803 * 3804 * Note that although all messages to a spi_device are handled in 3805 * FIFO order, messages may go to different devices in other orders. 3806 * Some device might be higher priority, or have various "hard" access 3807 * time requirements, for example. 3808 * 3809 * On detection of any fault during the transfer, processing of 3810 * the entire message is aborted, and the device is deselected. 3811 * Until returning from the associated message completion callback, 3812 * no other spi_message queued to that device will be processed. 3813 * (This rule applies equally to all the synchronous transfer calls, 3814 * which are wrappers around this core asynchronous primitive.) 3815 * 3816 * Return: zero on success, else a negative error code. 3817 */ 3818 int spi_async(struct spi_device *spi, struct spi_message *message) 3819 { 3820 struct spi_controller *ctlr = spi->controller; 3821 int ret; 3822 unsigned long flags; 3823 3824 ret = __spi_validate(spi, message); 3825 if (ret != 0) 3826 return ret; 3827 3828 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3829 3830 if (ctlr->bus_lock_flag) 3831 ret = -EBUSY; 3832 else 3833 ret = __spi_async(spi, message); 3834 3835 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3836 3837 return ret; 3838 } 3839 EXPORT_SYMBOL_GPL(spi_async); 3840 3841 /** 3842 * spi_async_locked - version of spi_async with exclusive bus usage 3843 * @spi: device with which data will be exchanged 3844 * @message: describes the data transfers, including completion callback 3845 * Context: any (irqs may be blocked, etc) 3846 * 3847 * This call may be used in_irq and other contexts which can't sleep, 3848 * as well as from task contexts which can sleep. 3849 * 3850 * The completion callback is invoked in a context which can't sleep. 3851 * Before that invocation, the value of message->status is undefined. 3852 * When the callback is issued, message->status holds either zero (to 3853 * indicate complete success) or a negative error code. After that 3854 * callback returns, the driver which issued the transfer request may 3855 * deallocate the associated memory; it's no longer in use by any SPI 3856 * core or controller driver code. 3857 * 3858 * Note that although all messages to a spi_device are handled in 3859 * FIFO order, messages may go to different devices in other orders. 3860 * Some device might be higher priority, or have various "hard" access 3861 * time requirements, for example. 3862 * 3863 * On detection of any fault during the transfer, processing of 3864 * the entire message is aborted, and the device is deselected. 3865 * Until returning from the associated message completion callback, 3866 * no other spi_message queued to that device will be processed. 3867 * (This rule applies equally to all the synchronous transfer calls, 3868 * which are wrappers around this core asynchronous primitive.) 3869 * 3870 * Return: zero on success, else a negative error code. 3871 */ 3872 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3873 { 3874 struct spi_controller *ctlr = spi->controller; 3875 int ret; 3876 unsigned long flags; 3877 3878 ret = __spi_validate(spi, message); 3879 if (ret != 0) 3880 return ret; 3881 3882 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3883 3884 ret = __spi_async(spi, message); 3885 3886 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3887 3888 return ret; 3889 3890 } 3891 3892 /*-------------------------------------------------------------------------*/ 3893 3894 /* 3895 * Utility methods for SPI protocol drivers, layered on 3896 * top of the core. Some other utility methods are defined as 3897 * inline functions. 3898 */ 3899 3900 static void spi_complete(void *arg) 3901 { 3902 complete(arg); 3903 } 3904 3905 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3906 { 3907 DECLARE_COMPLETION_ONSTACK(done); 3908 int status; 3909 struct spi_controller *ctlr = spi->controller; 3910 unsigned long flags; 3911 3912 status = __spi_validate(spi, message); 3913 if (status != 0) 3914 return status; 3915 3916 message->complete = spi_complete; 3917 message->context = &done; 3918 message->spi = spi; 3919 3920 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3921 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3922 3923 /* 3924 * If we're not using the legacy transfer method then we will 3925 * try to transfer in the calling context so special case. 3926 * This code would be less tricky if we could remove the 3927 * support for driver implemented message queues. 3928 */ 3929 if (ctlr->transfer == spi_queued_transfer) { 3930 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3931 3932 trace_spi_message_submit(message); 3933 3934 status = __spi_queued_transfer(spi, message, false); 3935 3936 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3937 } else { 3938 status = spi_async_locked(spi, message); 3939 } 3940 3941 if (status == 0) { 3942 /* Push out the messages in the calling context if we can */ 3943 if (ctlr->transfer == spi_queued_transfer) { 3944 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3945 spi_sync_immediate); 3946 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3947 spi_sync_immediate); 3948 __spi_pump_messages(ctlr, false); 3949 } 3950 3951 wait_for_completion(&done); 3952 status = message->status; 3953 } 3954 message->context = NULL; 3955 return status; 3956 } 3957 3958 /** 3959 * spi_sync - blocking/synchronous SPI data transfers 3960 * @spi: device with which data will be exchanged 3961 * @message: describes the data transfers 3962 * Context: can sleep 3963 * 3964 * This call may only be used from a context that may sleep. The sleep 3965 * is non-interruptible, and has no timeout. Low-overhead controller 3966 * drivers may DMA directly into and out of the message buffers. 3967 * 3968 * Note that the SPI device's chip select is active during the message, 3969 * and then is normally disabled between messages. Drivers for some 3970 * frequently-used devices may want to minimize costs of selecting a chip, 3971 * by leaving it selected in anticipation that the next message will go 3972 * to the same chip. (That may increase power usage.) 3973 * 3974 * Also, the caller is guaranteeing that the memory associated with the 3975 * message will not be freed before this call returns. 3976 * 3977 * Return: zero on success, else a negative error code. 3978 */ 3979 int spi_sync(struct spi_device *spi, struct spi_message *message) 3980 { 3981 int ret; 3982 3983 mutex_lock(&spi->controller->bus_lock_mutex); 3984 ret = __spi_sync(spi, message); 3985 mutex_unlock(&spi->controller->bus_lock_mutex); 3986 3987 return ret; 3988 } 3989 EXPORT_SYMBOL_GPL(spi_sync); 3990 3991 /** 3992 * spi_sync_locked - version of spi_sync with exclusive bus usage 3993 * @spi: device with which data will be exchanged 3994 * @message: describes the data transfers 3995 * Context: can sleep 3996 * 3997 * This call may only be used from a context that may sleep. The sleep 3998 * is non-interruptible, and has no timeout. Low-overhead controller 3999 * drivers may DMA directly into and out of the message buffers. 4000 * 4001 * This call should be used by drivers that require exclusive access to the 4002 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4003 * be released by a spi_bus_unlock call when the exclusive access is over. 4004 * 4005 * Return: zero on success, else a negative error code. 4006 */ 4007 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4008 { 4009 return __spi_sync(spi, message); 4010 } 4011 EXPORT_SYMBOL_GPL(spi_sync_locked); 4012 4013 /** 4014 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4015 * @ctlr: SPI bus master that should be locked for exclusive bus access 4016 * Context: can sleep 4017 * 4018 * This call may only be used from a context that may sleep. The sleep 4019 * is non-interruptible, and has no timeout. 4020 * 4021 * This call should be used by drivers that require exclusive access to the 4022 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4023 * exclusive access is over. Data transfer must be done by spi_sync_locked 4024 * and spi_async_locked calls when the SPI bus lock is held. 4025 * 4026 * Return: always zero. 4027 */ 4028 int spi_bus_lock(struct spi_controller *ctlr) 4029 { 4030 unsigned long flags; 4031 4032 mutex_lock(&ctlr->bus_lock_mutex); 4033 4034 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4035 ctlr->bus_lock_flag = 1; 4036 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4037 4038 /* mutex remains locked until spi_bus_unlock is called */ 4039 4040 return 0; 4041 } 4042 EXPORT_SYMBOL_GPL(spi_bus_lock); 4043 4044 /** 4045 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4046 * @ctlr: SPI bus master that was locked for exclusive bus access 4047 * Context: can sleep 4048 * 4049 * This call may only be used from a context that may sleep. The sleep 4050 * is non-interruptible, and has no timeout. 4051 * 4052 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4053 * call. 4054 * 4055 * Return: always zero. 4056 */ 4057 int spi_bus_unlock(struct spi_controller *ctlr) 4058 { 4059 ctlr->bus_lock_flag = 0; 4060 4061 mutex_unlock(&ctlr->bus_lock_mutex); 4062 4063 return 0; 4064 } 4065 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4066 4067 /* portable code must never pass more than 32 bytes */ 4068 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4069 4070 static u8 *buf; 4071 4072 /** 4073 * spi_write_then_read - SPI synchronous write followed by read 4074 * @spi: device with which data will be exchanged 4075 * @txbuf: data to be written (need not be dma-safe) 4076 * @n_tx: size of txbuf, in bytes 4077 * @rxbuf: buffer into which data will be read (need not be dma-safe) 4078 * @n_rx: size of rxbuf, in bytes 4079 * Context: can sleep 4080 * 4081 * This performs a half duplex MicroWire style transaction with the 4082 * device, sending txbuf and then reading rxbuf. The return value 4083 * is zero for success, else a negative errno status code. 4084 * This call may only be used from a context that may sleep. 4085 * 4086 * Parameters to this routine are always copied using a small buffer. 4087 * Performance-sensitive or bulk transfer code should instead use 4088 * spi_{async,sync}() calls with dma-safe buffers. 4089 * 4090 * Return: zero on success, else a negative error code. 4091 */ 4092 int spi_write_then_read(struct spi_device *spi, 4093 const void *txbuf, unsigned n_tx, 4094 void *rxbuf, unsigned n_rx) 4095 { 4096 static DEFINE_MUTEX(lock); 4097 4098 int status; 4099 struct spi_message message; 4100 struct spi_transfer x[2]; 4101 u8 *local_buf; 4102 4103 /* 4104 * Use preallocated DMA-safe buffer if we can. We can't avoid 4105 * copying here, (as a pure convenience thing), but we can 4106 * keep heap costs out of the hot path unless someone else is 4107 * using the pre-allocated buffer or the transfer is too large. 4108 */ 4109 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4110 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4111 GFP_KERNEL | GFP_DMA); 4112 if (!local_buf) 4113 return -ENOMEM; 4114 } else { 4115 local_buf = buf; 4116 } 4117 4118 spi_message_init(&message); 4119 memset(x, 0, sizeof(x)); 4120 if (n_tx) { 4121 x[0].len = n_tx; 4122 spi_message_add_tail(&x[0], &message); 4123 } 4124 if (n_rx) { 4125 x[1].len = n_rx; 4126 spi_message_add_tail(&x[1], &message); 4127 } 4128 4129 memcpy(local_buf, txbuf, n_tx); 4130 x[0].tx_buf = local_buf; 4131 x[1].rx_buf = local_buf + n_tx; 4132 4133 /* do the i/o */ 4134 status = spi_sync(spi, &message); 4135 if (status == 0) 4136 memcpy(rxbuf, x[1].rx_buf, n_rx); 4137 4138 if (x[0].tx_buf == buf) 4139 mutex_unlock(&lock); 4140 else 4141 kfree(local_buf); 4142 4143 return status; 4144 } 4145 EXPORT_SYMBOL_GPL(spi_write_then_read); 4146 4147 /*-------------------------------------------------------------------------*/ 4148 4149 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4150 /* must call put_device() when done with returned spi_device device */ 4151 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4152 { 4153 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4154 4155 return dev ? to_spi_device(dev) : NULL; 4156 } 4157 4158 /* the spi controllers are not using spi_bus, so we find it with another way */ 4159 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4160 { 4161 struct device *dev; 4162 4163 dev = class_find_device_by_of_node(&spi_master_class, node); 4164 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4165 dev = class_find_device_by_of_node(&spi_slave_class, node); 4166 if (!dev) 4167 return NULL; 4168 4169 /* reference got in class_find_device */ 4170 return container_of(dev, struct spi_controller, dev); 4171 } 4172 4173 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4174 void *arg) 4175 { 4176 struct of_reconfig_data *rd = arg; 4177 struct spi_controller *ctlr; 4178 struct spi_device *spi; 4179 4180 switch (of_reconfig_get_state_change(action, arg)) { 4181 case OF_RECONFIG_CHANGE_ADD: 4182 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4183 if (ctlr == NULL) 4184 return NOTIFY_OK; /* not for us */ 4185 4186 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4187 put_device(&ctlr->dev); 4188 return NOTIFY_OK; 4189 } 4190 4191 spi = of_register_spi_device(ctlr, rd->dn); 4192 put_device(&ctlr->dev); 4193 4194 if (IS_ERR(spi)) { 4195 pr_err("%s: failed to create for '%pOF'\n", 4196 __func__, rd->dn); 4197 of_node_clear_flag(rd->dn, OF_POPULATED); 4198 return notifier_from_errno(PTR_ERR(spi)); 4199 } 4200 break; 4201 4202 case OF_RECONFIG_CHANGE_REMOVE: 4203 /* already depopulated? */ 4204 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4205 return NOTIFY_OK; 4206 4207 /* find our device by node */ 4208 spi = of_find_spi_device_by_node(rd->dn); 4209 if (spi == NULL) 4210 return NOTIFY_OK; /* no? not meant for us */ 4211 4212 /* unregister takes one ref away */ 4213 spi_unregister_device(spi); 4214 4215 /* and put the reference of the find */ 4216 put_device(&spi->dev); 4217 break; 4218 } 4219 4220 return NOTIFY_OK; 4221 } 4222 4223 static struct notifier_block spi_of_notifier = { 4224 .notifier_call = of_spi_notify, 4225 }; 4226 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4227 extern struct notifier_block spi_of_notifier; 4228 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4229 4230 #if IS_ENABLED(CONFIG_ACPI) 4231 static int spi_acpi_controller_match(struct device *dev, const void *data) 4232 { 4233 return ACPI_COMPANION(dev->parent) == data; 4234 } 4235 4236 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4237 { 4238 struct device *dev; 4239 4240 dev = class_find_device(&spi_master_class, NULL, adev, 4241 spi_acpi_controller_match); 4242 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4243 dev = class_find_device(&spi_slave_class, NULL, adev, 4244 spi_acpi_controller_match); 4245 if (!dev) 4246 return NULL; 4247 4248 return container_of(dev, struct spi_controller, dev); 4249 } 4250 4251 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4252 { 4253 struct device *dev; 4254 4255 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4256 return to_spi_device(dev); 4257 } 4258 4259 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4260 void *arg) 4261 { 4262 struct acpi_device *adev = arg; 4263 struct spi_controller *ctlr; 4264 struct spi_device *spi; 4265 4266 switch (value) { 4267 case ACPI_RECONFIG_DEVICE_ADD: 4268 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4269 if (!ctlr) 4270 break; 4271 4272 acpi_register_spi_device(ctlr, adev); 4273 put_device(&ctlr->dev); 4274 break; 4275 case ACPI_RECONFIG_DEVICE_REMOVE: 4276 if (!acpi_device_enumerated(adev)) 4277 break; 4278 4279 spi = acpi_spi_find_device_by_adev(adev); 4280 if (!spi) 4281 break; 4282 4283 spi_unregister_device(spi); 4284 put_device(&spi->dev); 4285 break; 4286 } 4287 4288 return NOTIFY_OK; 4289 } 4290 4291 static struct notifier_block spi_acpi_notifier = { 4292 .notifier_call = acpi_spi_notify, 4293 }; 4294 #else 4295 extern struct notifier_block spi_acpi_notifier; 4296 #endif 4297 4298 static int __init spi_init(void) 4299 { 4300 int status; 4301 4302 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4303 if (!buf) { 4304 status = -ENOMEM; 4305 goto err0; 4306 } 4307 4308 status = bus_register(&spi_bus_type); 4309 if (status < 0) 4310 goto err1; 4311 4312 status = class_register(&spi_master_class); 4313 if (status < 0) 4314 goto err2; 4315 4316 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4317 status = class_register(&spi_slave_class); 4318 if (status < 0) 4319 goto err3; 4320 } 4321 4322 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4323 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4324 if (IS_ENABLED(CONFIG_ACPI)) 4325 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4326 4327 return 0; 4328 4329 err3: 4330 class_unregister(&spi_master_class); 4331 err2: 4332 bus_unregister(&spi_bus_type); 4333 err1: 4334 kfree(buf); 4335 buf = NULL; 4336 err0: 4337 return status; 4338 } 4339 4340 /* 4341 * A board_info is normally registered in arch_initcall(), 4342 * but even essential drivers wait till later. 4343 * 4344 * REVISIT only boardinfo really needs static linking. The rest (device and 4345 * driver registration) _could_ be dynamically linked (modular) ... Costs 4346 * include needing to have boardinfo data structures be much more public. 4347 */ 4348 postcore_initcall(spi_init); 4349