xref: /openbmc/linux/drivers/spi/spi.c (revision 8c0b9ee8)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/kmod.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/cache.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmaengine.h>
25 #include <linux/mutex.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/clk/clk-conf.h>
29 #include <linux/slab.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/spi/spi.h>
32 #include <linux/of_gpio.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/pm_domain.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44 
45 static void spidev_release(struct device *dev)
46 {
47 	struct spi_device	*spi = to_spi_device(dev);
48 
49 	/* spi masters may cleanup for released devices */
50 	if (spi->master->cleanup)
51 		spi->master->cleanup(spi);
52 
53 	spi_master_put(spi->master);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static struct attribute *spi_dev_attrs[] = {
72 	&dev_attr_modalias.attr,
73 	NULL,
74 };
75 ATTRIBUTE_GROUPS(spi_dev);
76 
77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
78  * and the sysfs version makes coldplug work too.
79  */
80 
81 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
82 						const struct spi_device *sdev)
83 {
84 	while (id->name[0]) {
85 		if (!strcmp(sdev->modalias, id->name))
86 			return id;
87 		id++;
88 	}
89 	return NULL;
90 }
91 
92 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
93 {
94 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
95 
96 	return spi_match_id(sdrv->id_table, sdev);
97 }
98 EXPORT_SYMBOL_GPL(spi_get_device_id);
99 
100 static int spi_match_device(struct device *dev, struct device_driver *drv)
101 {
102 	const struct spi_device	*spi = to_spi_device(dev);
103 	const struct spi_driver	*sdrv = to_spi_driver(drv);
104 
105 	/* Attempt an OF style match */
106 	if (of_driver_match_device(dev, drv))
107 		return 1;
108 
109 	/* Then try ACPI */
110 	if (acpi_driver_match_device(dev, drv))
111 		return 1;
112 
113 	if (sdrv->id_table)
114 		return !!spi_match_id(sdrv->id_table, spi);
115 
116 	return strcmp(spi->modalias, drv->name) == 0;
117 }
118 
119 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
120 {
121 	const struct spi_device		*spi = to_spi_device(dev);
122 	int rc;
123 
124 	rc = acpi_device_uevent_modalias(dev, env);
125 	if (rc != -ENODEV)
126 		return rc;
127 
128 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
129 	return 0;
130 }
131 
132 #ifdef CONFIG_PM_SLEEP
133 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
134 {
135 	int			value = 0;
136 	struct spi_driver	*drv = to_spi_driver(dev->driver);
137 
138 	/* suspend will stop irqs and dma; no more i/o */
139 	if (drv) {
140 		if (drv->suspend)
141 			value = drv->suspend(to_spi_device(dev), message);
142 		else
143 			dev_dbg(dev, "... can't suspend\n");
144 	}
145 	return value;
146 }
147 
148 static int spi_legacy_resume(struct device *dev)
149 {
150 	int			value = 0;
151 	struct spi_driver	*drv = to_spi_driver(dev->driver);
152 
153 	/* resume may restart the i/o queue */
154 	if (drv) {
155 		if (drv->resume)
156 			value = drv->resume(to_spi_device(dev));
157 		else
158 			dev_dbg(dev, "... can't resume\n");
159 	}
160 	return value;
161 }
162 
163 static int spi_pm_suspend(struct device *dev)
164 {
165 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
166 
167 	if (pm)
168 		return pm_generic_suspend(dev);
169 	else
170 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
171 }
172 
173 static int spi_pm_resume(struct device *dev)
174 {
175 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
176 
177 	if (pm)
178 		return pm_generic_resume(dev);
179 	else
180 		return spi_legacy_resume(dev);
181 }
182 
183 static int spi_pm_freeze(struct device *dev)
184 {
185 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
186 
187 	if (pm)
188 		return pm_generic_freeze(dev);
189 	else
190 		return spi_legacy_suspend(dev, PMSG_FREEZE);
191 }
192 
193 static int spi_pm_thaw(struct device *dev)
194 {
195 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
196 
197 	if (pm)
198 		return pm_generic_thaw(dev);
199 	else
200 		return spi_legacy_resume(dev);
201 }
202 
203 static int spi_pm_poweroff(struct device *dev)
204 {
205 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
206 
207 	if (pm)
208 		return pm_generic_poweroff(dev);
209 	else
210 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
211 }
212 
213 static int spi_pm_restore(struct device *dev)
214 {
215 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
216 
217 	if (pm)
218 		return pm_generic_restore(dev);
219 	else
220 		return spi_legacy_resume(dev);
221 }
222 #else
223 #define spi_pm_suspend	NULL
224 #define spi_pm_resume	NULL
225 #define spi_pm_freeze	NULL
226 #define spi_pm_thaw	NULL
227 #define spi_pm_poweroff	NULL
228 #define spi_pm_restore	NULL
229 #endif
230 
231 static const struct dev_pm_ops spi_pm = {
232 	.suspend = spi_pm_suspend,
233 	.resume = spi_pm_resume,
234 	.freeze = spi_pm_freeze,
235 	.thaw = spi_pm_thaw,
236 	.poweroff = spi_pm_poweroff,
237 	.restore = spi_pm_restore,
238 	SET_RUNTIME_PM_OPS(
239 		pm_generic_runtime_suspend,
240 		pm_generic_runtime_resume,
241 		NULL
242 	)
243 };
244 
245 struct bus_type spi_bus_type = {
246 	.name		= "spi",
247 	.dev_groups	= spi_dev_groups,
248 	.match		= spi_match_device,
249 	.uevent		= spi_uevent,
250 	.pm		= &spi_pm,
251 };
252 EXPORT_SYMBOL_GPL(spi_bus_type);
253 
254 
255 static int spi_drv_probe(struct device *dev)
256 {
257 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
258 	int ret;
259 
260 	ret = of_clk_set_defaults(dev->of_node, false);
261 	if (ret)
262 		return ret;
263 
264 	ret = dev_pm_domain_attach(dev, true);
265 	if (ret != -EPROBE_DEFER) {
266 		ret = sdrv->probe(to_spi_device(dev));
267 		if (ret)
268 			dev_pm_domain_detach(dev, true);
269 	}
270 
271 	return ret;
272 }
273 
274 static int spi_drv_remove(struct device *dev)
275 {
276 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
277 	int ret;
278 
279 	ret = sdrv->remove(to_spi_device(dev));
280 	dev_pm_domain_detach(dev, true);
281 
282 	return ret;
283 }
284 
285 static void spi_drv_shutdown(struct device *dev)
286 {
287 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
288 
289 	sdrv->shutdown(to_spi_device(dev));
290 }
291 
292 /**
293  * spi_register_driver - register a SPI driver
294  * @sdrv: the driver to register
295  * Context: can sleep
296  */
297 int spi_register_driver(struct spi_driver *sdrv)
298 {
299 	sdrv->driver.bus = &spi_bus_type;
300 	if (sdrv->probe)
301 		sdrv->driver.probe = spi_drv_probe;
302 	if (sdrv->remove)
303 		sdrv->driver.remove = spi_drv_remove;
304 	if (sdrv->shutdown)
305 		sdrv->driver.shutdown = spi_drv_shutdown;
306 	return driver_register(&sdrv->driver);
307 }
308 EXPORT_SYMBOL_GPL(spi_register_driver);
309 
310 /*-------------------------------------------------------------------------*/
311 
312 /* SPI devices should normally not be created by SPI device drivers; that
313  * would make them board-specific.  Similarly with SPI master drivers.
314  * Device registration normally goes into like arch/.../mach.../board-YYY.c
315  * with other readonly (flashable) information about mainboard devices.
316  */
317 
318 struct boardinfo {
319 	struct list_head	list;
320 	struct spi_board_info	board_info;
321 };
322 
323 static LIST_HEAD(board_list);
324 static LIST_HEAD(spi_master_list);
325 
326 /*
327  * Used to protect add/del opertion for board_info list and
328  * spi_master list, and their matching process
329  */
330 static DEFINE_MUTEX(board_lock);
331 
332 /**
333  * spi_alloc_device - Allocate a new SPI device
334  * @master: Controller to which device is connected
335  * Context: can sleep
336  *
337  * Allows a driver to allocate and initialize a spi_device without
338  * registering it immediately.  This allows a driver to directly
339  * fill the spi_device with device parameters before calling
340  * spi_add_device() on it.
341  *
342  * Caller is responsible to call spi_add_device() on the returned
343  * spi_device structure to add it to the SPI master.  If the caller
344  * needs to discard the spi_device without adding it, then it should
345  * call spi_dev_put() on it.
346  *
347  * Returns a pointer to the new device, or NULL.
348  */
349 struct spi_device *spi_alloc_device(struct spi_master *master)
350 {
351 	struct spi_device	*spi;
352 
353 	if (!spi_master_get(master))
354 		return NULL;
355 
356 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
357 	if (!spi) {
358 		spi_master_put(master);
359 		return NULL;
360 	}
361 
362 	spi->master = master;
363 	spi->dev.parent = &master->dev;
364 	spi->dev.bus = &spi_bus_type;
365 	spi->dev.release = spidev_release;
366 	spi->cs_gpio = -ENOENT;
367 	device_initialize(&spi->dev);
368 	return spi;
369 }
370 EXPORT_SYMBOL_GPL(spi_alloc_device);
371 
372 static void spi_dev_set_name(struct spi_device *spi)
373 {
374 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
375 
376 	if (adev) {
377 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
378 		return;
379 	}
380 
381 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
382 		     spi->chip_select);
383 }
384 
385 static int spi_dev_check(struct device *dev, void *data)
386 {
387 	struct spi_device *spi = to_spi_device(dev);
388 	struct spi_device *new_spi = data;
389 
390 	if (spi->master == new_spi->master &&
391 	    spi->chip_select == new_spi->chip_select)
392 		return -EBUSY;
393 	return 0;
394 }
395 
396 /**
397  * spi_add_device - Add spi_device allocated with spi_alloc_device
398  * @spi: spi_device to register
399  *
400  * Companion function to spi_alloc_device.  Devices allocated with
401  * spi_alloc_device can be added onto the spi bus with this function.
402  *
403  * Returns 0 on success; negative errno on failure
404  */
405 int spi_add_device(struct spi_device *spi)
406 {
407 	static DEFINE_MUTEX(spi_add_lock);
408 	struct spi_master *master = spi->master;
409 	struct device *dev = master->dev.parent;
410 	int status;
411 
412 	/* Chipselects are numbered 0..max; validate. */
413 	if (spi->chip_select >= master->num_chipselect) {
414 		dev_err(dev, "cs%d >= max %d\n",
415 			spi->chip_select,
416 			master->num_chipselect);
417 		return -EINVAL;
418 	}
419 
420 	/* Set the bus ID string */
421 	spi_dev_set_name(spi);
422 
423 	/* We need to make sure there's no other device with this
424 	 * chipselect **BEFORE** we call setup(), else we'll trash
425 	 * its configuration.  Lock against concurrent add() calls.
426 	 */
427 	mutex_lock(&spi_add_lock);
428 
429 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
430 	if (status) {
431 		dev_err(dev, "chipselect %d already in use\n",
432 				spi->chip_select);
433 		goto done;
434 	}
435 
436 	if (master->cs_gpios)
437 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
438 
439 	/* Drivers may modify this initial i/o setup, but will
440 	 * normally rely on the device being setup.  Devices
441 	 * using SPI_CS_HIGH can't coexist well otherwise...
442 	 */
443 	status = spi_setup(spi);
444 	if (status < 0) {
445 		dev_err(dev, "can't setup %s, status %d\n",
446 				dev_name(&spi->dev), status);
447 		goto done;
448 	}
449 
450 	/* Device may be bound to an active driver when this returns */
451 	status = device_add(&spi->dev);
452 	if (status < 0)
453 		dev_err(dev, "can't add %s, status %d\n",
454 				dev_name(&spi->dev), status);
455 	else
456 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
457 
458 done:
459 	mutex_unlock(&spi_add_lock);
460 	return status;
461 }
462 EXPORT_SYMBOL_GPL(spi_add_device);
463 
464 /**
465  * spi_new_device - instantiate one new SPI device
466  * @master: Controller to which device is connected
467  * @chip: Describes the SPI device
468  * Context: can sleep
469  *
470  * On typical mainboards, this is purely internal; and it's not needed
471  * after board init creates the hard-wired devices.  Some development
472  * platforms may not be able to use spi_register_board_info though, and
473  * this is exported so that for example a USB or parport based adapter
474  * driver could add devices (which it would learn about out-of-band).
475  *
476  * Returns the new device, or NULL.
477  */
478 struct spi_device *spi_new_device(struct spi_master *master,
479 				  struct spi_board_info *chip)
480 {
481 	struct spi_device	*proxy;
482 	int			status;
483 
484 	/* NOTE:  caller did any chip->bus_num checks necessary.
485 	 *
486 	 * Also, unless we change the return value convention to use
487 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
488 	 * suggests syslogged diagnostics are best here (ugh).
489 	 */
490 
491 	proxy = spi_alloc_device(master);
492 	if (!proxy)
493 		return NULL;
494 
495 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
496 
497 	proxy->chip_select = chip->chip_select;
498 	proxy->max_speed_hz = chip->max_speed_hz;
499 	proxy->mode = chip->mode;
500 	proxy->irq = chip->irq;
501 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
502 	proxy->dev.platform_data = (void *) chip->platform_data;
503 	proxy->controller_data = chip->controller_data;
504 	proxy->controller_state = NULL;
505 
506 	status = spi_add_device(proxy);
507 	if (status < 0) {
508 		spi_dev_put(proxy);
509 		return NULL;
510 	}
511 
512 	return proxy;
513 }
514 EXPORT_SYMBOL_GPL(spi_new_device);
515 
516 static void spi_match_master_to_boardinfo(struct spi_master *master,
517 				struct spi_board_info *bi)
518 {
519 	struct spi_device *dev;
520 
521 	if (master->bus_num != bi->bus_num)
522 		return;
523 
524 	dev = spi_new_device(master, bi);
525 	if (!dev)
526 		dev_err(master->dev.parent, "can't create new device for %s\n",
527 			bi->modalias);
528 }
529 
530 /**
531  * spi_register_board_info - register SPI devices for a given board
532  * @info: array of chip descriptors
533  * @n: how many descriptors are provided
534  * Context: can sleep
535  *
536  * Board-specific early init code calls this (probably during arch_initcall)
537  * with segments of the SPI device table.  Any device nodes are created later,
538  * after the relevant parent SPI controller (bus_num) is defined.  We keep
539  * this table of devices forever, so that reloading a controller driver will
540  * not make Linux forget about these hard-wired devices.
541  *
542  * Other code can also call this, e.g. a particular add-on board might provide
543  * SPI devices through its expansion connector, so code initializing that board
544  * would naturally declare its SPI devices.
545  *
546  * The board info passed can safely be __initdata ... but be careful of
547  * any embedded pointers (platform_data, etc), they're copied as-is.
548  */
549 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
550 {
551 	struct boardinfo *bi;
552 	int i;
553 
554 	if (!n)
555 		return -EINVAL;
556 
557 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
558 	if (!bi)
559 		return -ENOMEM;
560 
561 	for (i = 0; i < n; i++, bi++, info++) {
562 		struct spi_master *master;
563 
564 		memcpy(&bi->board_info, info, sizeof(*info));
565 		mutex_lock(&board_lock);
566 		list_add_tail(&bi->list, &board_list);
567 		list_for_each_entry(master, &spi_master_list, list)
568 			spi_match_master_to_boardinfo(master, &bi->board_info);
569 		mutex_unlock(&board_lock);
570 	}
571 
572 	return 0;
573 }
574 
575 /*-------------------------------------------------------------------------*/
576 
577 static void spi_set_cs(struct spi_device *spi, bool enable)
578 {
579 	if (spi->mode & SPI_CS_HIGH)
580 		enable = !enable;
581 
582 	if (spi->cs_gpio >= 0)
583 		gpio_set_value(spi->cs_gpio, !enable);
584 	else if (spi->master->set_cs)
585 		spi->master->set_cs(spi, !enable);
586 }
587 
588 #ifdef CONFIG_HAS_DMA
589 static int spi_map_buf(struct spi_master *master, struct device *dev,
590 		       struct sg_table *sgt, void *buf, size_t len,
591 		       enum dma_data_direction dir)
592 {
593 	const bool vmalloced_buf = is_vmalloc_addr(buf);
594 	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
595 	const int sgs = DIV_ROUND_UP(len, desc_len);
596 	struct page *vm_page;
597 	void *sg_buf;
598 	size_t min;
599 	int i, ret;
600 
601 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
602 	if (ret != 0)
603 		return ret;
604 
605 	for (i = 0; i < sgs; i++) {
606 		min = min_t(size_t, len, desc_len);
607 
608 		if (vmalloced_buf) {
609 			vm_page = vmalloc_to_page(buf);
610 			if (!vm_page) {
611 				sg_free_table(sgt);
612 				return -ENOMEM;
613 			}
614 			sg_set_page(&sgt->sgl[i], vm_page,
615 				    min, offset_in_page(buf));
616 		} else {
617 			sg_buf = buf;
618 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
619 		}
620 
621 
622 		buf += min;
623 		len -= min;
624 	}
625 
626 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
627 	if (!ret)
628 		ret = -ENOMEM;
629 	if (ret < 0) {
630 		sg_free_table(sgt);
631 		return ret;
632 	}
633 
634 	sgt->nents = ret;
635 
636 	return 0;
637 }
638 
639 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
640 			  struct sg_table *sgt, enum dma_data_direction dir)
641 {
642 	if (sgt->orig_nents) {
643 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
644 		sg_free_table(sgt);
645 	}
646 }
647 
648 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
649 {
650 	struct device *tx_dev, *rx_dev;
651 	struct spi_transfer *xfer;
652 	int ret;
653 
654 	if (!master->can_dma)
655 		return 0;
656 
657 	tx_dev = master->dma_tx->device->dev;
658 	rx_dev = master->dma_rx->device->dev;
659 
660 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
661 		if (!master->can_dma(master, msg->spi, xfer))
662 			continue;
663 
664 		if (xfer->tx_buf != NULL) {
665 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
666 					  (void *)xfer->tx_buf, xfer->len,
667 					  DMA_TO_DEVICE);
668 			if (ret != 0)
669 				return ret;
670 		}
671 
672 		if (xfer->rx_buf != NULL) {
673 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
674 					  xfer->rx_buf, xfer->len,
675 					  DMA_FROM_DEVICE);
676 			if (ret != 0) {
677 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
678 					      DMA_TO_DEVICE);
679 				return ret;
680 			}
681 		}
682 	}
683 
684 	master->cur_msg_mapped = true;
685 
686 	return 0;
687 }
688 
689 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
690 {
691 	struct spi_transfer *xfer;
692 	struct device *tx_dev, *rx_dev;
693 
694 	if (!master->cur_msg_mapped || !master->can_dma)
695 		return 0;
696 
697 	tx_dev = master->dma_tx->device->dev;
698 	rx_dev = master->dma_rx->device->dev;
699 
700 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
701 		if (!master->can_dma(master, msg->spi, xfer))
702 			continue;
703 
704 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
705 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
706 	}
707 
708 	return 0;
709 }
710 #else /* !CONFIG_HAS_DMA */
711 static inline int __spi_map_msg(struct spi_master *master,
712 				struct spi_message *msg)
713 {
714 	return 0;
715 }
716 
717 static inline int spi_unmap_msg(struct spi_master *master,
718 				struct spi_message *msg)
719 {
720 	return 0;
721 }
722 #endif /* !CONFIG_HAS_DMA */
723 
724 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
725 {
726 	struct spi_transfer *xfer;
727 	void *tmp;
728 	unsigned int max_tx, max_rx;
729 
730 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
731 		max_tx = 0;
732 		max_rx = 0;
733 
734 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
735 			if ((master->flags & SPI_MASTER_MUST_TX) &&
736 			    !xfer->tx_buf)
737 				max_tx = max(xfer->len, max_tx);
738 			if ((master->flags & SPI_MASTER_MUST_RX) &&
739 			    !xfer->rx_buf)
740 				max_rx = max(xfer->len, max_rx);
741 		}
742 
743 		if (max_tx) {
744 			tmp = krealloc(master->dummy_tx, max_tx,
745 				       GFP_KERNEL | GFP_DMA);
746 			if (!tmp)
747 				return -ENOMEM;
748 			master->dummy_tx = tmp;
749 			memset(tmp, 0, max_tx);
750 		}
751 
752 		if (max_rx) {
753 			tmp = krealloc(master->dummy_rx, max_rx,
754 				       GFP_KERNEL | GFP_DMA);
755 			if (!tmp)
756 				return -ENOMEM;
757 			master->dummy_rx = tmp;
758 		}
759 
760 		if (max_tx || max_rx) {
761 			list_for_each_entry(xfer, &msg->transfers,
762 					    transfer_list) {
763 				if (!xfer->tx_buf)
764 					xfer->tx_buf = master->dummy_tx;
765 				if (!xfer->rx_buf)
766 					xfer->rx_buf = master->dummy_rx;
767 			}
768 		}
769 	}
770 
771 	return __spi_map_msg(master, msg);
772 }
773 
774 /*
775  * spi_transfer_one_message - Default implementation of transfer_one_message()
776  *
777  * This is a standard implementation of transfer_one_message() for
778  * drivers which impelment a transfer_one() operation.  It provides
779  * standard handling of delays and chip select management.
780  */
781 static int spi_transfer_one_message(struct spi_master *master,
782 				    struct spi_message *msg)
783 {
784 	struct spi_transfer *xfer;
785 	bool keep_cs = false;
786 	int ret = 0;
787 	unsigned long ms = 1;
788 
789 	spi_set_cs(msg->spi, true);
790 
791 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
792 		trace_spi_transfer_start(msg, xfer);
793 
794 		if (xfer->tx_buf || xfer->rx_buf) {
795 			reinit_completion(&master->xfer_completion);
796 
797 			ret = master->transfer_one(master, msg->spi, xfer);
798 			if (ret < 0) {
799 				dev_err(&msg->spi->dev,
800 					"SPI transfer failed: %d\n", ret);
801 				goto out;
802 			}
803 
804 			if (ret > 0) {
805 				ret = 0;
806 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
807 				ms += ms + 100; /* some tolerance */
808 
809 				ms = wait_for_completion_timeout(&master->xfer_completion,
810 								 msecs_to_jiffies(ms));
811 			}
812 
813 			if (ms == 0) {
814 				dev_err(&msg->spi->dev,
815 					"SPI transfer timed out\n");
816 				msg->status = -ETIMEDOUT;
817 			}
818 		} else {
819 			if (xfer->len)
820 				dev_err(&msg->spi->dev,
821 					"Bufferless transfer has length %u\n",
822 					xfer->len);
823 		}
824 
825 		trace_spi_transfer_stop(msg, xfer);
826 
827 		if (msg->status != -EINPROGRESS)
828 			goto out;
829 
830 		if (xfer->delay_usecs)
831 			udelay(xfer->delay_usecs);
832 
833 		if (xfer->cs_change) {
834 			if (list_is_last(&xfer->transfer_list,
835 					 &msg->transfers)) {
836 				keep_cs = true;
837 			} else {
838 				spi_set_cs(msg->spi, false);
839 				udelay(10);
840 				spi_set_cs(msg->spi, true);
841 			}
842 		}
843 
844 		msg->actual_length += xfer->len;
845 	}
846 
847 out:
848 	if (ret != 0 || !keep_cs)
849 		spi_set_cs(msg->spi, false);
850 
851 	if (msg->status == -EINPROGRESS)
852 		msg->status = ret;
853 
854 	spi_finalize_current_message(master);
855 
856 	return ret;
857 }
858 
859 /**
860  * spi_finalize_current_transfer - report completion of a transfer
861  * @master: the master reporting completion
862  *
863  * Called by SPI drivers using the core transfer_one_message()
864  * implementation to notify it that the current interrupt driven
865  * transfer has finished and the next one may be scheduled.
866  */
867 void spi_finalize_current_transfer(struct spi_master *master)
868 {
869 	complete(&master->xfer_completion);
870 }
871 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
872 
873 /**
874  * __spi_pump_messages - function which processes spi message queue
875  * @master: master to process queue for
876  * @in_kthread: true if we are in the context of the message pump thread
877  *
878  * This function checks if there is any spi message in the queue that
879  * needs processing and if so call out to the driver to initialize hardware
880  * and transfer each message.
881  *
882  * Note that it is called both from the kthread itself and also from
883  * inside spi_sync(); the queue extraction handling at the top of the
884  * function should deal with this safely.
885  */
886 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
887 {
888 	unsigned long flags;
889 	bool was_busy = false;
890 	int ret;
891 
892 	/* Lock queue */
893 	spin_lock_irqsave(&master->queue_lock, flags);
894 
895 	/* Make sure we are not already running a message */
896 	if (master->cur_msg) {
897 		spin_unlock_irqrestore(&master->queue_lock, flags);
898 		return;
899 	}
900 
901 	/* If another context is idling the device then defer */
902 	if (master->idling) {
903 		queue_kthread_work(&master->kworker, &master->pump_messages);
904 		spin_unlock_irqrestore(&master->queue_lock, flags);
905 		return;
906 	}
907 
908 	/* Check if the queue is idle */
909 	if (list_empty(&master->queue) || !master->running) {
910 		if (!master->busy) {
911 			spin_unlock_irqrestore(&master->queue_lock, flags);
912 			return;
913 		}
914 
915 		/* Only do teardown in the thread */
916 		if (!in_kthread) {
917 			queue_kthread_work(&master->kworker,
918 					   &master->pump_messages);
919 			spin_unlock_irqrestore(&master->queue_lock, flags);
920 			return;
921 		}
922 
923 		master->busy = false;
924 		master->idling = true;
925 		spin_unlock_irqrestore(&master->queue_lock, flags);
926 
927 		kfree(master->dummy_rx);
928 		master->dummy_rx = NULL;
929 		kfree(master->dummy_tx);
930 		master->dummy_tx = NULL;
931 		if (master->unprepare_transfer_hardware &&
932 		    master->unprepare_transfer_hardware(master))
933 			dev_err(&master->dev,
934 				"failed to unprepare transfer hardware\n");
935 		if (master->auto_runtime_pm) {
936 			pm_runtime_mark_last_busy(master->dev.parent);
937 			pm_runtime_put_autosuspend(master->dev.parent);
938 		}
939 		trace_spi_master_idle(master);
940 
941 		spin_lock_irqsave(&master->queue_lock, flags);
942 		master->idling = false;
943 		spin_unlock_irqrestore(&master->queue_lock, flags);
944 		return;
945 	}
946 
947 	/* Extract head of queue */
948 	master->cur_msg =
949 		list_first_entry(&master->queue, struct spi_message, queue);
950 
951 	list_del_init(&master->cur_msg->queue);
952 	if (master->busy)
953 		was_busy = true;
954 	else
955 		master->busy = true;
956 	spin_unlock_irqrestore(&master->queue_lock, flags);
957 
958 	if (!was_busy && master->auto_runtime_pm) {
959 		ret = pm_runtime_get_sync(master->dev.parent);
960 		if (ret < 0) {
961 			dev_err(&master->dev, "Failed to power device: %d\n",
962 				ret);
963 			return;
964 		}
965 	}
966 
967 	if (!was_busy)
968 		trace_spi_master_busy(master);
969 
970 	if (!was_busy && master->prepare_transfer_hardware) {
971 		ret = master->prepare_transfer_hardware(master);
972 		if (ret) {
973 			dev_err(&master->dev,
974 				"failed to prepare transfer hardware\n");
975 
976 			if (master->auto_runtime_pm)
977 				pm_runtime_put(master->dev.parent);
978 			return;
979 		}
980 	}
981 
982 	trace_spi_message_start(master->cur_msg);
983 
984 	if (master->prepare_message) {
985 		ret = master->prepare_message(master, master->cur_msg);
986 		if (ret) {
987 			dev_err(&master->dev,
988 				"failed to prepare message: %d\n", ret);
989 			master->cur_msg->status = ret;
990 			spi_finalize_current_message(master);
991 			return;
992 		}
993 		master->cur_msg_prepared = true;
994 	}
995 
996 	ret = spi_map_msg(master, master->cur_msg);
997 	if (ret) {
998 		master->cur_msg->status = ret;
999 		spi_finalize_current_message(master);
1000 		return;
1001 	}
1002 
1003 	ret = master->transfer_one_message(master, master->cur_msg);
1004 	if (ret) {
1005 		dev_err(&master->dev,
1006 			"failed to transfer one message from queue\n");
1007 		return;
1008 	}
1009 }
1010 
1011 /**
1012  * spi_pump_messages - kthread work function which processes spi message queue
1013  * @work: pointer to kthread work struct contained in the master struct
1014  */
1015 static void spi_pump_messages(struct kthread_work *work)
1016 {
1017 	struct spi_master *master =
1018 		container_of(work, struct spi_master, pump_messages);
1019 
1020 	__spi_pump_messages(master, true);
1021 }
1022 
1023 static int spi_init_queue(struct spi_master *master)
1024 {
1025 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1026 
1027 	master->running = false;
1028 	master->busy = false;
1029 
1030 	init_kthread_worker(&master->kworker);
1031 	master->kworker_task = kthread_run(kthread_worker_fn,
1032 					   &master->kworker, "%s",
1033 					   dev_name(&master->dev));
1034 	if (IS_ERR(master->kworker_task)) {
1035 		dev_err(&master->dev, "failed to create message pump task\n");
1036 		return PTR_ERR(master->kworker_task);
1037 	}
1038 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1039 
1040 	/*
1041 	 * Master config will indicate if this controller should run the
1042 	 * message pump with high (realtime) priority to reduce the transfer
1043 	 * latency on the bus by minimising the delay between a transfer
1044 	 * request and the scheduling of the message pump thread. Without this
1045 	 * setting the message pump thread will remain at default priority.
1046 	 */
1047 	if (master->rt) {
1048 		dev_info(&master->dev,
1049 			"will run message pump with realtime priority\n");
1050 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 /**
1057  * spi_get_next_queued_message() - called by driver to check for queued
1058  * messages
1059  * @master: the master to check for queued messages
1060  *
1061  * If there are more messages in the queue, the next message is returned from
1062  * this call.
1063  */
1064 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1065 {
1066 	struct spi_message *next;
1067 	unsigned long flags;
1068 
1069 	/* get a pointer to the next message, if any */
1070 	spin_lock_irqsave(&master->queue_lock, flags);
1071 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1072 					queue);
1073 	spin_unlock_irqrestore(&master->queue_lock, flags);
1074 
1075 	return next;
1076 }
1077 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1078 
1079 /**
1080  * spi_finalize_current_message() - the current message is complete
1081  * @master: the master to return the message to
1082  *
1083  * Called by the driver to notify the core that the message in the front of the
1084  * queue is complete and can be removed from the queue.
1085  */
1086 void spi_finalize_current_message(struct spi_master *master)
1087 {
1088 	struct spi_message *mesg;
1089 	unsigned long flags;
1090 	int ret;
1091 
1092 	spin_lock_irqsave(&master->queue_lock, flags);
1093 	mesg = master->cur_msg;
1094 	master->cur_msg = NULL;
1095 
1096 	queue_kthread_work(&master->kworker, &master->pump_messages);
1097 	spin_unlock_irqrestore(&master->queue_lock, flags);
1098 
1099 	spi_unmap_msg(master, mesg);
1100 
1101 	if (master->cur_msg_prepared && master->unprepare_message) {
1102 		ret = master->unprepare_message(master, mesg);
1103 		if (ret) {
1104 			dev_err(&master->dev,
1105 				"failed to unprepare message: %d\n", ret);
1106 		}
1107 	}
1108 	master->cur_msg_prepared = false;
1109 
1110 	mesg->state = NULL;
1111 	if (mesg->complete)
1112 		mesg->complete(mesg->context);
1113 
1114 	trace_spi_message_done(mesg);
1115 }
1116 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1117 
1118 static int spi_start_queue(struct spi_master *master)
1119 {
1120 	unsigned long flags;
1121 
1122 	spin_lock_irqsave(&master->queue_lock, flags);
1123 
1124 	if (master->running || master->busy) {
1125 		spin_unlock_irqrestore(&master->queue_lock, flags);
1126 		return -EBUSY;
1127 	}
1128 
1129 	master->running = true;
1130 	master->cur_msg = NULL;
1131 	spin_unlock_irqrestore(&master->queue_lock, flags);
1132 
1133 	queue_kthread_work(&master->kworker, &master->pump_messages);
1134 
1135 	return 0;
1136 }
1137 
1138 static int spi_stop_queue(struct spi_master *master)
1139 {
1140 	unsigned long flags;
1141 	unsigned limit = 500;
1142 	int ret = 0;
1143 
1144 	spin_lock_irqsave(&master->queue_lock, flags);
1145 
1146 	/*
1147 	 * This is a bit lame, but is optimized for the common execution path.
1148 	 * A wait_queue on the master->busy could be used, but then the common
1149 	 * execution path (pump_messages) would be required to call wake_up or
1150 	 * friends on every SPI message. Do this instead.
1151 	 */
1152 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1153 		spin_unlock_irqrestore(&master->queue_lock, flags);
1154 		usleep_range(10000, 11000);
1155 		spin_lock_irqsave(&master->queue_lock, flags);
1156 	}
1157 
1158 	if (!list_empty(&master->queue) || master->busy)
1159 		ret = -EBUSY;
1160 	else
1161 		master->running = false;
1162 
1163 	spin_unlock_irqrestore(&master->queue_lock, flags);
1164 
1165 	if (ret) {
1166 		dev_warn(&master->dev,
1167 			 "could not stop message queue\n");
1168 		return ret;
1169 	}
1170 	return ret;
1171 }
1172 
1173 static int spi_destroy_queue(struct spi_master *master)
1174 {
1175 	int ret;
1176 
1177 	ret = spi_stop_queue(master);
1178 
1179 	/*
1180 	 * flush_kthread_worker will block until all work is done.
1181 	 * If the reason that stop_queue timed out is that the work will never
1182 	 * finish, then it does no good to call flush/stop thread, so
1183 	 * return anyway.
1184 	 */
1185 	if (ret) {
1186 		dev_err(&master->dev, "problem destroying queue\n");
1187 		return ret;
1188 	}
1189 
1190 	flush_kthread_worker(&master->kworker);
1191 	kthread_stop(master->kworker_task);
1192 
1193 	return 0;
1194 }
1195 
1196 static int __spi_queued_transfer(struct spi_device *spi,
1197 				 struct spi_message *msg,
1198 				 bool need_pump)
1199 {
1200 	struct spi_master *master = spi->master;
1201 	unsigned long flags;
1202 
1203 	spin_lock_irqsave(&master->queue_lock, flags);
1204 
1205 	if (!master->running) {
1206 		spin_unlock_irqrestore(&master->queue_lock, flags);
1207 		return -ESHUTDOWN;
1208 	}
1209 	msg->actual_length = 0;
1210 	msg->status = -EINPROGRESS;
1211 
1212 	list_add_tail(&msg->queue, &master->queue);
1213 	if (!master->busy && need_pump)
1214 		queue_kthread_work(&master->kworker, &master->pump_messages);
1215 
1216 	spin_unlock_irqrestore(&master->queue_lock, flags);
1217 	return 0;
1218 }
1219 
1220 /**
1221  * spi_queued_transfer - transfer function for queued transfers
1222  * @spi: spi device which is requesting transfer
1223  * @msg: spi message which is to handled is queued to driver queue
1224  */
1225 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1226 {
1227 	return __spi_queued_transfer(spi, msg, true);
1228 }
1229 
1230 static int spi_master_initialize_queue(struct spi_master *master)
1231 {
1232 	int ret;
1233 
1234 	master->transfer = spi_queued_transfer;
1235 	if (!master->transfer_one_message)
1236 		master->transfer_one_message = spi_transfer_one_message;
1237 
1238 	/* Initialize and start queue */
1239 	ret = spi_init_queue(master);
1240 	if (ret) {
1241 		dev_err(&master->dev, "problem initializing queue\n");
1242 		goto err_init_queue;
1243 	}
1244 	master->queued = true;
1245 	ret = spi_start_queue(master);
1246 	if (ret) {
1247 		dev_err(&master->dev, "problem starting queue\n");
1248 		goto err_start_queue;
1249 	}
1250 
1251 	return 0;
1252 
1253 err_start_queue:
1254 	spi_destroy_queue(master);
1255 err_init_queue:
1256 	return ret;
1257 }
1258 
1259 /*-------------------------------------------------------------------------*/
1260 
1261 #if defined(CONFIG_OF)
1262 static struct spi_device *
1263 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1264 {
1265 	struct spi_device *spi;
1266 	int rc;
1267 	u32 value;
1268 
1269 	/* Alloc an spi_device */
1270 	spi = spi_alloc_device(master);
1271 	if (!spi) {
1272 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1273 			nc->full_name);
1274 		rc = -ENOMEM;
1275 		goto err_out;
1276 	}
1277 
1278 	/* Select device driver */
1279 	rc = of_modalias_node(nc, spi->modalias,
1280 				sizeof(spi->modalias));
1281 	if (rc < 0) {
1282 		dev_err(&master->dev, "cannot find modalias for %s\n",
1283 			nc->full_name);
1284 		goto err_out;
1285 	}
1286 
1287 	/* Device address */
1288 	rc = of_property_read_u32(nc, "reg", &value);
1289 	if (rc) {
1290 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1291 			nc->full_name, rc);
1292 		goto err_out;
1293 	}
1294 	spi->chip_select = value;
1295 
1296 	/* Mode (clock phase/polarity/etc.) */
1297 	if (of_find_property(nc, "spi-cpha", NULL))
1298 		spi->mode |= SPI_CPHA;
1299 	if (of_find_property(nc, "spi-cpol", NULL))
1300 		spi->mode |= SPI_CPOL;
1301 	if (of_find_property(nc, "spi-cs-high", NULL))
1302 		spi->mode |= SPI_CS_HIGH;
1303 	if (of_find_property(nc, "spi-3wire", NULL))
1304 		spi->mode |= SPI_3WIRE;
1305 	if (of_find_property(nc, "spi-lsb-first", NULL))
1306 		spi->mode |= SPI_LSB_FIRST;
1307 
1308 	/* Device DUAL/QUAD mode */
1309 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1310 		switch (value) {
1311 		case 1:
1312 			break;
1313 		case 2:
1314 			spi->mode |= SPI_TX_DUAL;
1315 			break;
1316 		case 4:
1317 			spi->mode |= SPI_TX_QUAD;
1318 			break;
1319 		default:
1320 			dev_warn(&master->dev,
1321 				"spi-tx-bus-width %d not supported\n",
1322 				value);
1323 			break;
1324 		}
1325 	}
1326 
1327 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1328 		switch (value) {
1329 		case 1:
1330 			break;
1331 		case 2:
1332 			spi->mode |= SPI_RX_DUAL;
1333 			break;
1334 		case 4:
1335 			spi->mode |= SPI_RX_QUAD;
1336 			break;
1337 		default:
1338 			dev_warn(&master->dev,
1339 				"spi-rx-bus-width %d not supported\n",
1340 				value);
1341 			break;
1342 		}
1343 	}
1344 
1345 	/* Device speed */
1346 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1347 	if (rc) {
1348 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1349 			nc->full_name, rc);
1350 		goto err_out;
1351 	}
1352 	spi->max_speed_hz = value;
1353 
1354 	/* IRQ */
1355 	spi->irq = irq_of_parse_and_map(nc, 0);
1356 
1357 	/* Store a pointer to the node in the device structure */
1358 	of_node_get(nc);
1359 	spi->dev.of_node = nc;
1360 
1361 	/* Register the new device */
1362 	request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1363 	rc = spi_add_device(spi);
1364 	if (rc) {
1365 		dev_err(&master->dev, "spi_device register error %s\n",
1366 			nc->full_name);
1367 		goto err_out;
1368 	}
1369 
1370 	return spi;
1371 
1372 err_out:
1373 	spi_dev_put(spi);
1374 	return ERR_PTR(rc);
1375 }
1376 
1377 /**
1378  * of_register_spi_devices() - Register child devices onto the SPI bus
1379  * @master:	Pointer to spi_master device
1380  *
1381  * Registers an spi_device for each child node of master node which has a 'reg'
1382  * property.
1383  */
1384 static void of_register_spi_devices(struct spi_master *master)
1385 {
1386 	struct spi_device *spi;
1387 	struct device_node *nc;
1388 
1389 	if (!master->dev.of_node)
1390 		return;
1391 
1392 	for_each_available_child_of_node(master->dev.of_node, nc) {
1393 		spi = of_register_spi_device(master, nc);
1394 		if (IS_ERR(spi))
1395 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1396 				nc->full_name);
1397 	}
1398 }
1399 #else
1400 static void of_register_spi_devices(struct spi_master *master) { }
1401 #endif
1402 
1403 #ifdef CONFIG_ACPI
1404 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1405 {
1406 	struct spi_device *spi = data;
1407 
1408 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1409 		struct acpi_resource_spi_serialbus *sb;
1410 
1411 		sb = &ares->data.spi_serial_bus;
1412 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1413 			spi->chip_select = sb->device_selection;
1414 			spi->max_speed_hz = sb->connection_speed;
1415 
1416 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1417 				spi->mode |= SPI_CPHA;
1418 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1419 				spi->mode |= SPI_CPOL;
1420 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1421 				spi->mode |= SPI_CS_HIGH;
1422 		}
1423 	} else if (spi->irq < 0) {
1424 		struct resource r;
1425 
1426 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1427 			spi->irq = r.start;
1428 	}
1429 
1430 	/* Always tell the ACPI core to skip this resource */
1431 	return 1;
1432 }
1433 
1434 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1435 				       void *data, void **return_value)
1436 {
1437 	struct spi_master *master = data;
1438 	struct list_head resource_list;
1439 	struct acpi_device *adev;
1440 	struct spi_device *spi;
1441 	int ret;
1442 
1443 	if (acpi_bus_get_device(handle, &adev))
1444 		return AE_OK;
1445 	if (acpi_bus_get_status(adev) || !adev->status.present)
1446 		return AE_OK;
1447 
1448 	spi = spi_alloc_device(master);
1449 	if (!spi) {
1450 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1451 			dev_name(&adev->dev));
1452 		return AE_NO_MEMORY;
1453 	}
1454 
1455 	ACPI_COMPANION_SET(&spi->dev, adev);
1456 	spi->irq = -1;
1457 
1458 	INIT_LIST_HEAD(&resource_list);
1459 	ret = acpi_dev_get_resources(adev, &resource_list,
1460 				     acpi_spi_add_resource, spi);
1461 	acpi_dev_free_resource_list(&resource_list);
1462 
1463 	if (ret < 0 || !spi->max_speed_hz) {
1464 		spi_dev_put(spi);
1465 		return AE_OK;
1466 	}
1467 
1468 	adev->power.flags.ignore_parent = true;
1469 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1470 	if (spi_add_device(spi)) {
1471 		adev->power.flags.ignore_parent = false;
1472 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1473 			dev_name(&adev->dev));
1474 		spi_dev_put(spi);
1475 	}
1476 
1477 	return AE_OK;
1478 }
1479 
1480 static void acpi_register_spi_devices(struct spi_master *master)
1481 {
1482 	acpi_status status;
1483 	acpi_handle handle;
1484 
1485 	handle = ACPI_HANDLE(master->dev.parent);
1486 	if (!handle)
1487 		return;
1488 
1489 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1490 				     acpi_spi_add_device, NULL,
1491 				     master, NULL);
1492 	if (ACPI_FAILURE(status))
1493 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1494 }
1495 #else
1496 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1497 #endif /* CONFIG_ACPI */
1498 
1499 static void spi_master_release(struct device *dev)
1500 {
1501 	struct spi_master *master;
1502 
1503 	master = container_of(dev, struct spi_master, dev);
1504 	kfree(master);
1505 }
1506 
1507 static struct class spi_master_class = {
1508 	.name		= "spi_master",
1509 	.owner		= THIS_MODULE,
1510 	.dev_release	= spi_master_release,
1511 };
1512 
1513 
1514 
1515 /**
1516  * spi_alloc_master - allocate SPI master controller
1517  * @dev: the controller, possibly using the platform_bus
1518  * @size: how much zeroed driver-private data to allocate; the pointer to this
1519  *	memory is in the driver_data field of the returned device,
1520  *	accessible with spi_master_get_devdata().
1521  * Context: can sleep
1522  *
1523  * This call is used only by SPI master controller drivers, which are the
1524  * only ones directly touching chip registers.  It's how they allocate
1525  * an spi_master structure, prior to calling spi_register_master().
1526  *
1527  * This must be called from context that can sleep.  It returns the SPI
1528  * master structure on success, else NULL.
1529  *
1530  * The caller is responsible for assigning the bus number and initializing
1531  * the master's methods before calling spi_register_master(); and (after errors
1532  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1533  * leak.
1534  */
1535 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1536 {
1537 	struct spi_master	*master;
1538 
1539 	if (!dev)
1540 		return NULL;
1541 
1542 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1543 	if (!master)
1544 		return NULL;
1545 
1546 	device_initialize(&master->dev);
1547 	master->bus_num = -1;
1548 	master->num_chipselect = 1;
1549 	master->dev.class = &spi_master_class;
1550 	master->dev.parent = get_device(dev);
1551 	spi_master_set_devdata(master, &master[1]);
1552 
1553 	return master;
1554 }
1555 EXPORT_SYMBOL_GPL(spi_alloc_master);
1556 
1557 #ifdef CONFIG_OF
1558 static int of_spi_register_master(struct spi_master *master)
1559 {
1560 	int nb, i, *cs;
1561 	struct device_node *np = master->dev.of_node;
1562 
1563 	if (!np)
1564 		return 0;
1565 
1566 	nb = of_gpio_named_count(np, "cs-gpios");
1567 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1568 
1569 	/* Return error only for an incorrectly formed cs-gpios property */
1570 	if (nb == 0 || nb == -ENOENT)
1571 		return 0;
1572 	else if (nb < 0)
1573 		return nb;
1574 
1575 	cs = devm_kzalloc(&master->dev,
1576 			  sizeof(int) * master->num_chipselect,
1577 			  GFP_KERNEL);
1578 	master->cs_gpios = cs;
1579 
1580 	if (!master->cs_gpios)
1581 		return -ENOMEM;
1582 
1583 	for (i = 0; i < master->num_chipselect; i++)
1584 		cs[i] = -ENOENT;
1585 
1586 	for (i = 0; i < nb; i++)
1587 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1588 
1589 	return 0;
1590 }
1591 #else
1592 static int of_spi_register_master(struct spi_master *master)
1593 {
1594 	return 0;
1595 }
1596 #endif
1597 
1598 /**
1599  * spi_register_master - register SPI master controller
1600  * @master: initialized master, originally from spi_alloc_master()
1601  * Context: can sleep
1602  *
1603  * SPI master controllers connect to their drivers using some non-SPI bus,
1604  * such as the platform bus.  The final stage of probe() in that code
1605  * includes calling spi_register_master() to hook up to this SPI bus glue.
1606  *
1607  * SPI controllers use board specific (often SOC specific) bus numbers,
1608  * and board-specific addressing for SPI devices combines those numbers
1609  * with chip select numbers.  Since SPI does not directly support dynamic
1610  * device identification, boards need configuration tables telling which
1611  * chip is at which address.
1612  *
1613  * This must be called from context that can sleep.  It returns zero on
1614  * success, else a negative error code (dropping the master's refcount).
1615  * After a successful return, the caller is responsible for calling
1616  * spi_unregister_master().
1617  */
1618 int spi_register_master(struct spi_master *master)
1619 {
1620 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1621 	struct device		*dev = master->dev.parent;
1622 	struct boardinfo	*bi;
1623 	int			status = -ENODEV;
1624 	int			dynamic = 0;
1625 
1626 	if (!dev)
1627 		return -ENODEV;
1628 
1629 	status = of_spi_register_master(master);
1630 	if (status)
1631 		return status;
1632 
1633 	/* even if it's just one always-selected device, there must
1634 	 * be at least one chipselect
1635 	 */
1636 	if (master->num_chipselect == 0)
1637 		return -EINVAL;
1638 
1639 	if ((master->bus_num < 0) && master->dev.of_node)
1640 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1641 
1642 	/* convention:  dynamically assigned bus IDs count down from the max */
1643 	if (master->bus_num < 0) {
1644 		/* FIXME switch to an IDR based scheme, something like
1645 		 * I2C now uses, so we can't run out of "dynamic" IDs
1646 		 */
1647 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1648 		dynamic = 1;
1649 	}
1650 
1651 	INIT_LIST_HEAD(&master->queue);
1652 	spin_lock_init(&master->queue_lock);
1653 	spin_lock_init(&master->bus_lock_spinlock);
1654 	mutex_init(&master->bus_lock_mutex);
1655 	master->bus_lock_flag = 0;
1656 	init_completion(&master->xfer_completion);
1657 	if (!master->max_dma_len)
1658 		master->max_dma_len = INT_MAX;
1659 
1660 	/* register the device, then userspace will see it.
1661 	 * registration fails if the bus ID is in use.
1662 	 */
1663 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1664 	status = device_add(&master->dev);
1665 	if (status < 0)
1666 		goto done;
1667 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1668 			dynamic ? " (dynamic)" : "");
1669 
1670 	/* If we're using a queued driver, start the queue */
1671 	if (master->transfer)
1672 		dev_info(dev, "master is unqueued, this is deprecated\n");
1673 	else {
1674 		status = spi_master_initialize_queue(master);
1675 		if (status) {
1676 			device_del(&master->dev);
1677 			goto done;
1678 		}
1679 	}
1680 
1681 	mutex_lock(&board_lock);
1682 	list_add_tail(&master->list, &spi_master_list);
1683 	list_for_each_entry(bi, &board_list, list)
1684 		spi_match_master_to_boardinfo(master, &bi->board_info);
1685 	mutex_unlock(&board_lock);
1686 
1687 	/* Register devices from the device tree and ACPI */
1688 	of_register_spi_devices(master);
1689 	acpi_register_spi_devices(master);
1690 done:
1691 	return status;
1692 }
1693 EXPORT_SYMBOL_GPL(spi_register_master);
1694 
1695 static void devm_spi_unregister(struct device *dev, void *res)
1696 {
1697 	spi_unregister_master(*(struct spi_master **)res);
1698 }
1699 
1700 /**
1701  * dev_spi_register_master - register managed SPI master controller
1702  * @dev:    device managing SPI master
1703  * @master: initialized master, originally from spi_alloc_master()
1704  * Context: can sleep
1705  *
1706  * Register a SPI device as with spi_register_master() which will
1707  * automatically be unregister
1708  */
1709 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1710 {
1711 	struct spi_master **ptr;
1712 	int ret;
1713 
1714 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1715 	if (!ptr)
1716 		return -ENOMEM;
1717 
1718 	ret = spi_register_master(master);
1719 	if (!ret) {
1720 		*ptr = master;
1721 		devres_add(dev, ptr);
1722 	} else {
1723 		devres_free(ptr);
1724 	}
1725 
1726 	return ret;
1727 }
1728 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1729 
1730 static int __unregister(struct device *dev, void *null)
1731 {
1732 	spi_unregister_device(to_spi_device(dev));
1733 	return 0;
1734 }
1735 
1736 /**
1737  * spi_unregister_master - unregister SPI master controller
1738  * @master: the master being unregistered
1739  * Context: can sleep
1740  *
1741  * This call is used only by SPI master controller drivers, which are the
1742  * only ones directly touching chip registers.
1743  *
1744  * This must be called from context that can sleep.
1745  */
1746 void spi_unregister_master(struct spi_master *master)
1747 {
1748 	int dummy;
1749 
1750 	if (master->queued) {
1751 		if (spi_destroy_queue(master))
1752 			dev_err(&master->dev, "queue remove failed\n");
1753 	}
1754 
1755 	mutex_lock(&board_lock);
1756 	list_del(&master->list);
1757 	mutex_unlock(&board_lock);
1758 
1759 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1760 	device_unregister(&master->dev);
1761 }
1762 EXPORT_SYMBOL_GPL(spi_unregister_master);
1763 
1764 int spi_master_suspend(struct spi_master *master)
1765 {
1766 	int ret;
1767 
1768 	/* Basically no-ops for non-queued masters */
1769 	if (!master->queued)
1770 		return 0;
1771 
1772 	ret = spi_stop_queue(master);
1773 	if (ret)
1774 		dev_err(&master->dev, "queue stop failed\n");
1775 
1776 	return ret;
1777 }
1778 EXPORT_SYMBOL_GPL(spi_master_suspend);
1779 
1780 int spi_master_resume(struct spi_master *master)
1781 {
1782 	int ret;
1783 
1784 	if (!master->queued)
1785 		return 0;
1786 
1787 	ret = spi_start_queue(master);
1788 	if (ret)
1789 		dev_err(&master->dev, "queue restart failed\n");
1790 
1791 	return ret;
1792 }
1793 EXPORT_SYMBOL_GPL(spi_master_resume);
1794 
1795 static int __spi_master_match(struct device *dev, const void *data)
1796 {
1797 	struct spi_master *m;
1798 	const u16 *bus_num = data;
1799 
1800 	m = container_of(dev, struct spi_master, dev);
1801 	return m->bus_num == *bus_num;
1802 }
1803 
1804 /**
1805  * spi_busnum_to_master - look up master associated with bus_num
1806  * @bus_num: the master's bus number
1807  * Context: can sleep
1808  *
1809  * This call may be used with devices that are registered after
1810  * arch init time.  It returns a refcounted pointer to the relevant
1811  * spi_master (which the caller must release), or NULL if there is
1812  * no such master registered.
1813  */
1814 struct spi_master *spi_busnum_to_master(u16 bus_num)
1815 {
1816 	struct device		*dev;
1817 	struct spi_master	*master = NULL;
1818 
1819 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1820 				__spi_master_match);
1821 	if (dev)
1822 		master = container_of(dev, struct spi_master, dev);
1823 	/* reference got in class_find_device */
1824 	return master;
1825 }
1826 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1827 
1828 
1829 /*-------------------------------------------------------------------------*/
1830 
1831 /* Core methods for SPI master protocol drivers.  Some of the
1832  * other core methods are currently defined as inline functions.
1833  */
1834 
1835 /**
1836  * spi_setup - setup SPI mode and clock rate
1837  * @spi: the device whose settings are being modified
1838  * Context: can sleep, and no requests are queued to the device
1839  *
1840  * SPI protocol drivers may need to update the transfer mode if the
1841  * device doesn't work with its default.  They may likewise need
1842  * to update clock rates or word sizes from initial values.  This function
1843  * changes those settings, and must be called from a context that can sleep.
1844  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1845  * effect the next time the device is selected and data is transferred to
1846  * or from it.  When this function returns, the spi device is deselected.
1847  *
1848  * Note that this call will fail if the protocol driver specifies an option
1849  * that the underlying controller or its driver does not support.  For
1850  * example, not all hardware supports wire transfers using nine bit words,
1851  * LSB-first wire encoding, or active-high chipselects.
1852  */
1853 int spi_setup(struct spi_device *spi)
1854 {
1855 	unsigned	bad_bits, ugly_bits;
1856 	int		status = 0;
1857 
1858 	/* check mode to prevent that DUAL and QUAD set at the same time
1859 	 */
1860 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1861 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1862 		dev_err(&spi->dev,
1863 		"setup: can not select dual and quad at the same time\n");
1864 		return -EINVAL;
1865 	}
1866 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1867 	 */
1868 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1869 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1870 		return -EINVAL;
1871 	/* help drivers fail *cleanly* when they need options
1872 	 * that aren't supported with their current master
1873 	 */
1874 	bad_bits = spi->mode & ~spi->master->mode_bits;
1875 	ugly_bits = bad_bits &
1876 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1877 	if (ugly_bits) {
1878 		dev_warn(&spi->dev,
1879 			 "setup: ignoring unsupported mode bits %x\n",
1880 			 ugly_bits);
1881 		spi->mode &= ~ugly_bits;
1882 		bad_bits &= ~ugly_bits;
1883 	}
1884 	if (bad_bits) {
1885 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1886 			bad_bits);
1887 		return -EINVAL;
1888 	}
1889 
1890 	if (!spi->bits_per_word)
1891 		spi->bits_per_word = 8;
1892 
1893 	if (!spi->max_speed_hz)
1894 		spi->max_speed_hz = spi->master->max_speed_hz;
1895 
1896 	if (spi->master->setup)
1897 		status = spi->master->setup(spi);
1898 
1899 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1900 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1901 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1902 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1903 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1904 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1905 			spi->bits_per_word, spi->max_speed_hz,
1906 			status);
1907 
1908 	return status;
1909 }
1910 EXPORT_SYMBOL_GPL(spi_setup);
1911 
1912 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1913 {
1914 	struct spi_master *master = spi->master;
1915 	struct spi_transfer *xfer;
1916 	int w_size;
1917 
1918 	if (list_empty(&message->transfers))
1919 		return -EINVAL;
1920 
1921 	/* Half-duplex links include original MicroWire, and ones with
1922 	 * only one data pin like SPI_3WIRE (switches direction) or where
1923 	 * either MOSI or MISO is missing.  They can also be caused by
1924 	 * software limitations.
1925 	 */
1926 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1927 			|| (spi->mode & SPI_3WIRE)) {
1928 		unsigned flags = master->flags;
1929 
1930 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1931 			if (xfer->rx_buf && xfer->tx_buf)
1932 				return -EINVAL;
1933 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1934 				return -EINVAL;
1935 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1936 				return -EINVAL;
1937 		}
1938 	}
1939 
1940 	/**
1941 	 * Set transfer bits_per_word and max speed as spi device default if
1942 	 * it is not set for this transfer.
1943 	 * Set transfer tx_nbits and rx_nbits as single transfer default
1944 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1945 	 */
1946 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1947 		message->frame_length += xfer->len;
1948 		if (!xfer->bits_per_word)
1949 			xfer->bits_per_word = spi->bits_per_word;
1950 
1951 		if (!xfer->speed_hz)
1952 			xfer->speed_hz = spi->max_speed_hz;
1953 
1954 		if (master->max_speed_hz &&
1955 		    xfer->speed_hz > master->max_speed_hz)
1956 			xfer->speed_hz = master->max_speed_hz;
1957 
1958 		if (master->bits_per_word_mask) {
1959 			/* Only 32 bits fit in the mask */
1960 			if (xfer->bits_per_word > 32)
1961 				return -EINVAL;
1962 			if (!(master->bits_per_word_mask &
1963 					BIT(xfer->bits_per_word - 1)))
1964 				return -EINVAL;
1965 		}
1966 
1967 		/*
1968 		 * SPI transfer length should be multiple of SPI word size
1969 		 * where SPI word size should be power-of-two multiple
1970 		 */
1971 		if (xfer->bits_per_word <= 8)
1972 			w_size = 1;
1973 		else if (xfer->bits_per_word <= 16)
1974 			w_size = 2;
1975 		else
1976 			w_size = 4;
1977 
1978 		/* No partial transfers accepted */
1979 		if (xfer->len % w_size)
1980 			return -EINVAL;
1981 
1982 		if (xfer->speed_hz && master->min_speed_hz &&
1983 		    xfer->speed_hz < master->min_speed_hz)
1984 			return -EINVAL;
1985 
1986 		if (xfer->tx_buf && !xfer->tx_nbits)
1987 			xfer->tx_nbits = SPI_NBITS_SINGLE;
1988 		if (xfer->rx_buf && !xfer->rx_nbits)
1989 			xfer->rx_nbits = SPI_NBITS_SINGLE;
1990 		/* check transfer tx/rx_nbits:
1991 		 * 1. check the value matches one of single, dual and quad
1992 		 * 2. check tx/rx_nbits match the mode in spi_device
1993 		 */
1994 		if (xfer->tx_buf) {
1995 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1996 				xfer->tx_nbits != SPI_NBITS_DUAL &&
1997 				xfer->tx_nbits != SPI_NBITS_QUAD)
1998 				return -EINVAL;
1999 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2000 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2001 				return -EINVAL;
2002 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2003 				!(spi->mode & SPI_TX_QUAD))
2004 				return -EINVAL;
2005 		}
2006 		/* check transfer rx_nbits */
2007 		if (xfer->rx_buf) {
2008 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2009 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2010 				xfer->rx_nbits != SPI_NBITS_QUAD)
2011 				return -EINVAL;
2012 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2013 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2014 				return -EINVAL;
2015 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2016 				!(spi->mode & SPI_RX_QUAD))
2017 				return -EINVAL;
2018 		}
2019 	}
2020 
2021 	message->status = -EINPROGRESS;
2022 
2023 	return 0;
2024 }
2025 
2026 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2027 {
2028 	struct spi_master *master = spi->master;
2029 
2030 	message->spi = spi;
2031 
2032 	trace_spi_message_submit(message);
2033 
2034 	return master->transfer(spi, message);
2035 }
2036 
2037 /**
2038  * spi_async - asynchronous SPI transfer
2039  * @spi: device with which data will be exchanged
2040  * @message: describes the data transfers, including completion callback
2041  * Context: any (irqs may be blocked, etc)
2042  *
2043  * This call may be used in_irq and other contexts which can't sleep,
2044  * as well as from task contexts which can sleep.
2045  *
2046  * The completion callback is invoked in a context which can't sleep.
2047  * Before that invocation, the value of message->status is undefined.
2048  * When the callback is issued, message->status holds either zero (to
2049  * indicate complete success) or a negative error code.  After that
2050  * callback returns, the driver which issued the transfer request may
2051  * deallocate the associated memory; it's no longer in use by any SPI
2052  * core or controller driver code.
2053  *
2054  * Note that although all messages to a spi_device are handled in
2055  * FIFO order, messages may go to different devices in other orders.
2056  * Some device might be higher priority, or have various "hard" access
2057  * time requirements, for example.
2058  *
2059  * On detection of any fault during the transfer, processing of
2060  * the entire message is aborted, and the device is deselected.
2061  * Until returning from the associated message completion callback,
2062  * no other spi_message queued to that device will be processed.
2063  * (This rule applies equally to all the synchronous transfer calls,
2064  * which are wrappers around this core asynchronous primitive.)
2065  */
2066 int spi_async(struct spi_device *spi, struct spi_message *message)
2067 {
2068 	struct spi_master *master = spi->master;
2069 	int ret;
2070 	unsigned long flags;
2071 
2072 	ret = __spi_validate(spi, message);
2073 	if (ret != 0)
2074 		return ret;
2075 
2076 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2077 
2078 	if (master->bus_lock_flag)
2079 		ret = -EBUSY;
2080 	else
2081 		ret = __spi_async(spi, message);
2082 
2083 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2084 
2085 	return ret;
2086 }
2087 EXPORT_SYMBOL_GPL(spi_async);
2088 
2089 /**
2090  * spi_async_locked - version of spi_async with exclusive bus usage
2091  * @spi: device with which data will be exchanged
2092  * @message: describes the data transfers, including completion callback
2093  * Context: any (irqs may be blocked, etc)
2094  *
2095  * This call may be used in_irq and other contexts which can't sleep,
2096  * as well as from task contexts which can sleep.
2097  *
2098  * The completion callback is invoked in a context which can't sleep.
2099  * Before that invocation, the value of message->status is undefined.
2100  * When the callback is issued, message->status holds either zero (to
2101  * indicate complete success) or a negative error code.  After that
2102  * callback returns, the driver which issued the transfer request may
2103  * deallocate the associated memory; it's no longer in use by any SPI
2104  * core or controller driver code.
2105  *
2106  * Note that although all messages to a spi_device are handled in
2107  * FIFO order, messages may go to different devices in other orders.
2108  * Some device might be higher priority, or have various "hard" access
2109  * time requirements, for example.
2110  *
2111  * On detection of any fault during the transfer, processing of
2112  * the entire message is aborted, and the device is deselected.
2113  * Until returning from the associated message completion callback,
2114  * no other spi_message queued to that device will be processed.
2115  * (This rule applies equally to all the synchronous transfer calls,
2116  * which are wrappers around this core asynchronous primitive.)
2117  */
2118 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2119 {
2120 	struct spi_master *master = spi->master;
2121 	int ret;
2122 	unsigned long flags;
2123 
2124 	ret = __spi_validate(spi, message);
2125 	if (ret != 0)
2126 		return ret;
2127 
2128 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2129 
2130 	ret = __spi_async(spi, message);
2131 
2132 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2133 
2134 	return ret;
2135 
2136 }
2137 EXPORT_SYMBOL_GPL(spi_async_locked);
2138 
2139 
2140 /*-------------------------------------------------------------------------*/
2141 
2142 /* Utility methods for SPI master protocol drivers, layered on
2143  * top of the core.  Some other utility methods are defined as
2144  * inline functions.
2145  */
2146 
2147 static void spi_complete(void *arg)
2148 {
2149 	complete(arg);
2150 }
2151 
2152 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2153 		      int bus_locked)
2154 {
2155 	DECLARE_COMPLETION_ONSTACK(done);
2156 	int status;
2157 	struct spi_master *master = spi->master;
2158 	unsigned long flags;
2159 
2160 	status = __spi_validate(spi, message);
2161 	if (status != 0)
2162 		return status;
2163 
2164 	message->complete = spi_complete;
2165 	message->context = &done;
2166 	message->spi = spi;
2167 
2168 	if (!bus_locked)
2169 		mutex_lock(&master->bus_lock_mutex);
2170 
2171 	/* If we're not using the legacy transfer method then we will
2172 	 * try to transfer in the calling context so special case.
2173 	 * This code would be less tricky if we could remove the
2174 	 * support for driver implemented message queues.
2175 	 */
2176 	if (master->transfer == spi_queued_transfer) {
2177 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2178 
2179 		trace_spi_message_submit(message);
2180 
2181 		status = __spi_queued_transfer(spi, message, false);
2182 
2183 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2184 	} else {
2185 		status = spi_async_locked(spi, message);
2186 	}
2187 
2188 	if (!bus_locked)
2189 		mutex_unlock(&master->bus_lock_mutex);
2190 
2191 	if (status == 0) {
2192 		/* Push out the messages in the calling context if we
2193 		 * can.
2194 		 */
2195 		if (master->transfer == spi_queued_transfer)
2196 			__spi_pump_messages(master, false);
2197 
2198 		wait_for_completion(&done);
2199 		status = message->status;
2200 	}
2201 	message->context = NULL;
2202 	return status;
2203 }
2204 
2205 /**
2206  * spi_sync - blocking/synchronous SPI data transfers
2207  * @spi: device with which data will be exchanged
2208  * @message: describes the data transfers
2209  * Context: can sleep
2210  *
2211  * This call may only be used from a context that may sleep.  The sleep
2212  * is non-interruptible, and has no timeout.  Low-overhead controller
2213  * drivers may DMA directly into and out of the message buffers.
2214  *
2215  * Note that the SPI device's chip select is active during the message,
2216  * and then is normally disabled between messages.  Drivers for some
2217  * frequently-used devices may want to minimize costs of selecting a chip,
2218  * by leaving it selected in anticipation that the next message will go
2219  * to the same chip.  (That may increase power usage.)
2220  *
2221  * Also, the caller is guaranteeing that the memory associated with the
2222  * message will not be freed before this call returns.
2223  *
2224  * It returns zero on success, else a negative error code.
2225  */
2226 int spi_sync(struct spi_device *spi, struct spi_message *message)
2227 {
2228 	return __spi_sync(spi, message, 0);
2229 }
2230 EXPORT_SYMBOL_GPL(spi_sync);
2231 
2232 /**
2233  * spi_sync_locked - version of spi_sync with exclusive bus usage
2234  * @spi: device with which data will be exchanged
2235  * @message: describes the data transfers
2236  * Context: can sleep
2237  *
2238  * This call may only be used from a context that may sleep.  The sleep
2239  * is non-interruptible, and has no timeout.  Low-overhead controller
2240  * drivers may DMA directly into and out of the message buffers.
2241  *
2242  * This call should be used by drivers that require exclusive access to the
2243  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2244  * be released by a spi_bus_unlock call when the exclusive access is over.
2245  *
2246  * It returns zero on success, else a negative error code.
2247  */
2248 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2249 {
2250 	return __spi_sync(spi, message, 1);
2251 }
2252 EXPORT_SYMBOL_GPL(spi_sync_locked);
2253 
2254 /**
2255  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2256  * @master: SPI bus master that should be locked for exclusive bus access
2257  * Context: can sleep
2258  *
2259  * This call may only be used from a context that may sleep.  The sleep
2260  * is non-interruptible, and has no timeout.
2261  *
2262  * This call should be used by drivers that require exclusive access to the
2263  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2264  * exclusive access is over. Data transfer must be done by spi_sync_locked
2265  * and spi_async_locked calls when the SPI bus lock is held.
2266  *
2267  * It returns zero on success, else a negative error code.
2268  */
2269 int spi_bus_lock(struct spi_master *master)
2270 {
2271 	unsigned long flags;
2272 
2273 	mutex_lock(&master->bus_lock_mutex);
2274 
2275 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2276 	master->bus_lock_flag = 1;
2277 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2278 
2279 	/* mutex remains locked until spi_bus_unlock is called */
2280 
2281 	return 0;
2282 }
2283 EXPORT_SYMBOL_GPL(spi_bus_lock);
2284 
2285 /**
2286  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2287  * @master: SPI bus master that was locked for exclusive bus access
2288  * Context: can sleep
2289  *
2290  * This call may only be used from a context that may sleep.  The sleep
2291  * is non-interruptible, and has no timeout.
2292  *
2293  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2294  * call.
2295  *
2296  * It returns zero on success, else a negative error code.
2297  */
2298 int spi_bus_unlock(struct spi_master *master)
2299 {
2300 	master->bus_lock_flag = 0;
2301 
2302 	mutex_unlock(&master->bus_lock_mutex);
2303 
2304 	return 0;
2305 }
2306 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2307 
2308 /* portable code must never pass more than 32 bytes */
2309 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2310 
2311 static u8	*buf;
2312 
2313 /**
2314  * spi_write_then_read - SPI synchronous write followed by read
2315  * @spi: device with which data will be exchanged
2316  * @txbuf: data to be written (need not be dma-safe)
2317  * @n_tx: size of txbuf, in bytes
2318  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2319  * @n_rx: size of rxbuf, in bytes
2320  * Context: can sleep
2321  *
2322  * This performs a half duplex MicroWire style transaction with the
2323  * device, sending txbuf and then reading rxbuf.  The return value
2324  * is zero for success, else a negative errno status code.
2325  * This call may only be used from a context that may sleep.
2326  *
2327  * Parameters to this routine are always copied using a small buffer;
2328  * portable code should never use this for more than 32 bytes.
2329  * Performance-sensitive or bulk transfer code should instead use
2330  * spi_{async,sync}() calls with dma-safe buffers.
2331  */
2332 int spi_write_then_read(struct spi_device *spi,
2333 		const void *txbuf, unsigned n_tx,
2334 		void *rxbuf, unsigned n_rx)
2335 {
2336 	static DEFINE_MUTEX(lock);
2337 
2338 	int			status;
2339 	struct spi_message	message;
2340 	struct spi_transfer	x[2];
2341 	u8			*local_buf;
2342 
2343 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2344 	 * copying here, (as a pure convenience thing), but we can
2345 	 * keep heap costs out of the hot path unless someone else is
2346 	 * using the pre-allocated buffer or the transfer is too large.
2347 	 */
2348 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2349 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2350 				    GFP_KERNEL | GFP_DMA);
2351 		if (!local_buf)
2352 			return -ENOMEM;
2353 	} else {
2354 		local_buf = buf;
2355 	}
2356 
2357 	spi_message_init(&message);
2358 	memset(x, 0, sizeof(x));
2359 	if (n_tx) {
2360 		x[0].len = n_tx;
2361 		spi_message_add_tail(&x[0], &message);
2362 	}
2363 	if (n_rx) {
2364 		x[1].len = n_rx;
2365 		spi_message_add_tail(&x[1], &message);
2366 	}
2367 
2368 	memcpy(local_buf, txbuf, n_tx);
2369 	x[0].tx_buf = local_buf;
2370 	x[1].rx_buf = local_buf + n_tx;
2371 
2372 	/* do the i/o */
2373 	status = spi_sync(spi, &message);
2374 	if (status == 0)
2375 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2376 
2377 	if (x[0].tx_buf == buf)
2378 		mutex_unlock(&lock);
2379 	else
2380 		kfree(local_buf);
2381 
2382 	return status;
2383 }
2384 EXPORT_SYMBOL_GPL(spi_write_then_read);
2385 
2386 /*-------------------------------------------------------------------------*/
2387 
2388 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2389 static int __spi_of_device_match(struct device *dev, void *data)
2390 {
2391 	return dev->of_node == data;
2392 }
2393 
2394 /* must call put_device() when done with returned spi_device device */
2395 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2396 {
2397 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2398 						__spi_of_device_match);
2399 	return dev ? to_spi_device(dev) : NULL;
2400 }
2401 
2402 static int __spi_of_master_match(struct device *dev, const void *data)
2403 {
2404 	return dev->of_node == data;
2405 }
2406 
2407 /* the spi masters are not using spi_bus, so we find it with another way */
2408 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2409 {
2410 	struct device *dev;
2411 
2412 	dev = class_find_device(&spi_master_class, NULL, node,
2413 				__spi_of_master_match);
2414 	if (!dev)
2415 		return NULL;
2416 
2417 	/* reference got in class_find_device */
2418 	return container_of(dev, struct spi_master, dev);
2419 }
2420 
2421 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2422 			 void *arg)
2423 {
2424 	struct of_reconfig_data *rd = arg;
2425 	struct spi_master *master;
2426 	struct spi_device *spi;
2427 
2428 	switch (of_reconfig_get_state_change(action, arg)) {
2429 	case OF_RECONFIG_CHANGE_ADD:
2430 		master = of_find_spi_master_by_node(rd->dn->parent);
2431 		if (master == NULL)
2432 			return NOTIFY_OK;	/* not for us */
2433 
2434 		spi = of_register_spi_device(master, rd->dn);
2435 		put_device(&master->dev);
2436 
2437 		if (IS_ERR(spi)) {
2438 			pr_err("%s: failed to create for '%s'\n",
2439 					__func__, rd->dn->full_name);
2440 			return notifier_from_errno(PTR_ERR(spi));
2441 		}
2442 		break;
2443 
2444 	case OF_RECONFIG_CHANGE_REMOVE:
2445 		/* find our device by node */
2446 		spi = of_find_spi_device_by_node(rd->dn);
2447 		if (spi == NULL)
2448 			return NOTIFY_OK;	/* no? not meant for us */
2449 
2450 		/* unregister takes one ref away */
2451 		spi_unregister_device(spi);
2452 
2453 		/* and put the reference of the find */
2454 		put_device(&spi->dev);
2455 		break;
2456 	}
2457 
2458 	return NOTIFY_OK;
2459 }
2460 
2461 static struct notifier_block spi_of_notifier = {
2462 	.notifier_call = of_spi_notify,
2463 };
2464 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2465 extern struct notifier_block spi_of_notifier;
2466 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2467 
2468 static int __init spi_init(void)
2469 {
2470 	int	status;
2471 
2472 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2473 	if (!buf) {
2474 		status = -ENOMEM;
2475 		goto err0;
2476 	}
2477 
2478 	status = bus_register(&spi_bus_type);
2479 	if (status < 0)
2480 		goto err1;
2481 
2482 	status = class_register(&spi_master_class);
2483 	if (status < 0)
2484 		goto err2;
2485 
2486 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2487 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2488 
2489 	return 0;
2490 
2491 err2:
2492 	bus_unregister(&spi_bus_type);
2493 err1:
2494 	kfree(buf);
2495 	buf = NULL;
2496 err0:
2497 	return status;
2498 }
2499 
2500 /* board_info is normally registered in arch_initcall(),
2501  * but even essential drivers wait till later
2502  *
2503  * REVISIT only boardinfo really needs static linking. the rest (device and
2504  * driver registration) _could_ be dynamically linked (modular) ... costs
2505  * include needing to have boardinfo data structures be much more public.
2506  */
2507 postcore_initcall(spi_init);
2508 
2509