xref: /openbmc/linux/drivers/spi/spi.c (revision 89cc9abe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 #define spi_pcpu_stats_totalize(ret, in, field)				\
121 do {									\
122 	int i;								\
123 	ret = 0;							\
124 	for_each_possible_cpu(i) {					\
125 		const struct spi_statistics *pcpu_stats;		\
126 		u64 inc;						\
127 		unsigned int start;					\
128 		pcpu_stats = per_cpu_ptr(in, i);			\
129 		do {							\
130 			start = u64_stats_fetch_begin(		\
131 					&pcpu_stats->syncp);		\
132 			inc = u64_stats_read(&pcpu_stats->field);	\
133 		} while (u64_stats_fetch_retry(			\
134 					&pcpu_stats->syncp, start));	\
135 		ret += inc;						\
136 	}								\
137 } while (0)
138 
139 #define SPI_STATISTICS_ATTRS(field, file)				\
140 static ssize_t spi_controller_##field##_show(struct device *dev,	\
141 					     struct device_attribute *attr, \
142 					     char *buf)			\
143 {									\
144 	struct spi_controller *ctlr = container_of(dev,			\
145 					 struct spi_controller, dev);	\
146 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
147 }									\
148 static struct device_attribute dev_attr_spi_controller_##field = {	\
149 	.attr = { .name = file, .mode = 0444 },				\
150 	.show = spi_controller_##field##_show,				\
151 };									\
152 static ssize_t spi_device_##field##_show(struct device *dev,		\
153 					 struct device_attribute *attr,	\
154 					char *buf)			\
155 {									\
156 	struct spi_device *spi = to_spi_device(dev);			\
157 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
158 }									\
159 static struct device_attribute dev_attr_spi_device_##field = {		\
160 	.attr = { .name = file, .mode = 0444 },				\
161 	.show = spi_device_##field##_show,				\
162 }
163 
164 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
166 					    char *buf)			\
167 {									\
168 	ssize_t len;							\
169 	u64 val;							\
170 	spi_pcpu_stats_totalize(val, stat, field);			\
171 	len = sysfs_emit(buf, "%llu\n", val);				\
172 	return len;							\
173 }									\
174 SPI_STATISTICS_ATTRS(name, file)
175 
176 #define SPI_STATISTICS_SHOW(field)					\
177 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
178 				 field)
179 
180 SPI_STATISTICS_SHOW(messages);
181 SPI_STATISTICS_SHOW(transfers);
182 SPI_STATISTICS_SHOW(errors);
183 SPI_STATISTICS_SHOW(timedout);
184 
185 SPI_STATISTICS_SHOW(spi_sync);
186 SPI_STATISTICS_SHOW(spi_sync_immediate);
187 SPI_STATISTICS_SHOW(spi_async);
188 
189 SPI_STATISTICS_SHOW(bytes);
190 SPI_STATISTICS_SHOW(bytes_rx);
191 SPI_STATISTICS_SHOW(bytes_tx);
192 
193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
194 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
195 				 "transfer_bytes_histo_" number,	\
196 				 transfer_bytes_histo[index])
197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
214 
215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
216 
217 static struct attribute *spi_dev_attrs[] = {
218 	&dev_attr_modalias.attr,
219 	&dev_attr_driver_override.attr,
220 	NULL,
221 };
222 
223 static const struct attribute_group spi_dev_group = {
224 	.attrs  = spi_dev_attrs,
225 };
226 
227 static struct attribute *spi_device_statistics_attrs[] = {
228 	&dev_attr_spi_device_messages.attr,
229 	&dev_attr_spi_device_transfers.attr,
230 	&dev_attr_spi_device_errors.attr,
231 	&dev_attr_spi_device_timedout.attr,
232 	&dev_attr_spi_device_spi_sync.attr,
233 	&dev_attr_spi_device_spi_sync_immediate.attr,
234 	&dev_attr_spi_device_spi_async.attr,
235 	&dev_attr_spi_device_bytes.attr,
236 	&dev_attr_spi_device_bytes_rx.attr,
237 	&dev_attr_spi_device_bytes_tx.attr,
238 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
255 	&dev_attr_spi_device_transfers_split_maxsize.attr,
256 	NULL,
257 };
258 
259 static const struct attribute_group spi_device_statistics_group = {
260 	.name  = "statistics",
261 	.attrs  = spi_device_statistics_attrs,
262 };
263 
264 static const struct attribute_group *spi_dev_groups[] = {
265 	&spi_dev_group,
266 	&spi_device_statistics_group,
267 	NULL,
268 };
269 
270 static struct attribute *spi_controller_statistics_attrs[] = {
271 	&dev_attr_spi_controller_messages.attr,
272 	&dev_attr_spi_controller_transfers.attr,
273 	&dev_attr_spi_controller_errors.attr,
274 	&dev_attr_spi_controller_timedout.attr,
275 	&dev_attr_spi_controller_spi_sync.attr,
276 	&dev_attr_spi_controller_spi_sync_immediate.attr,
277 	&dev_attr_spi_controller_spi_async.attr,
278 	&dev_attr_spi_controller_bytes.attr,
279 	&dev_attr_spi_controller_bytes_rx.attr,
280 	&dev_attr_spi_controller_bytes_tx.attr,
281 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
298 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
299 	NULL,
300 };
301 
302 static const struct attribute_group spi_controller_statistics_group = {
303 	.name  = "statistics",
304 	.attrs  = spi_controller_statistics_attrs,
305 };
306 
307 static const struct attribute_group *spi_master_groups[] = {
308 	&spi_controller_statistics_group,
309 	NULL,
310 };
311 
312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
313 					      struct spi_transfer *xfer,
314 					      struct spi_controller *ctlr)
315 {
316 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
317 	struct spi_statistics *stats;
318 
319 	if (l2len < 0)
320 		l2len = 0;
321 
322 	get_cpu();
323 	stats = this_cpu_ptr(pcpu_stats);
324 	u64_stats_update_begin(&stats->syncp);
325 
326 	u64_stats_inc(&stats->transfers);
327 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
328 
329 	u64_stats_add(&stats->bytes, xfer->len);
330 	if ((xfer->tx_buf) &&
331 	    (xfer->tx_buf != ctlr->dummy_tx))
332 		u64_stats_add(&stats->bytes_tx, xfer->len);
333 	if ((xfer->rx_buf) &&
334 	    (xfer->rx_buf != ctlr->dummy_rx))
335 		u64_stats_add(&stats->bytes_rx, xfer->len);
336 
337 	u64_stats_update_end(&stats->syncp);
338 	put_cpu();
339 }
340 
341 /*
342  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343  * and the sysfs version makes coldplug work too.
344  */
345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347 	while (id->name[0]) {
348 		if (!strcmp(name, id->name))
349 			return id;
350 		id++;
351 	}
352 	return NULL;
353 }
354 
355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358 
359 	return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362 
363 const void *spi_get_device_match_data(const struct spi_device *sdev)
364 {
365 	const void *match;
366 
367 	match = device_get_match_data(&sdev->dev);
368 	if (match)
369 		return match;
370 
371 	return (const void *)spi_get_device_id(sdev)->driver_data;
372 }
373 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
374 
375 static int spi_match_device(struct device *dev, struct device_driver *drv)
376 {
377 	const struct spi_device	*spi = to_spi_device(dev);
378 	const struct spi_driver	*sdrv = to_spi_driver(drv);
379 
380 	/* Check override first, and if set, only use the named driver */
381 	if (spi->driver_override)
382 		return strcmp(spi->driver_override, drv->name) == 0;
383 
384 	/* Attempt an OF style match */
385 	if (of_driver_match_device(dev, drv))
386 		return 1;
387 
388 	/* Then try ACPI */
389 	if (acpi_driver_match_device(dev, drv))
390 		return 1;
391 
392 	if (sdrv->id_table)
393 		return !!spi_match_id(sdrv->id_table, spi->modalias);
394 
395 	return strcmp(spi->modalias, drv->name) == 0;
396 }
397 
398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
399 {
400 	const struct spi_device		*spi = to_spi_device(dev);
401 	int rc;
402 
403 	rc = acpi_device_uevent_modalias(dev, env);
404 	if (rc != -ENODEV)
405 		return rc;
406 
407 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
408 }
409 
410 static int spi_probe(struct device *dev)
411 {
412 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
413 	struct spi_device		*spi = to_spi_device(dev);
414 	int ret;
415 
416 	ret = of_clk_set_defaults(dev->of_node, false);
417 	if (ret)
418 		return ret;
419 
420 	if (dev->of_node) {
421 		spi->irq = of_irq_get(dev->of_node, 0);
422 		if (spi->irq == -EPROBE_DEFER)
423 			return -EPROBE_DEFER;
424 		if (spi->irq < 0)
425 			spi->irq = 0;
426 	}
427 
428 	ret = dev_pm_domain_attach(dev, true);
429 	if (ret)
430 		return ret;
431 
432 	if (sdrv->probe) {
433 		ret = sdrv->probe(spi);
434 		if (ret)
435 			dev_pm_domain_detach(dev, true);
436 	}
437 
438 	return ret;
439 }
440 
441 static void spi_remove(struct device *dev)
442 {
443 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
444 
445 	if (sdrv->remove)
446 		sdrv->remove(to_spi_device(dev));
447 
448 	dev_pm_domain_detach(dev, true);
449 }
450 
451 static void spi_shutdown(struct device *dev)
452 {
453 	if (dev->driver) {
454 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
455 
456 		if (sdrv->shutdown)
457 			sdrv->shutdown(to_spi_device(dev));
458 	}
459 }
460 
461 struct bus_type spi_bus_type = {
462 	.name		= "spi",
463 	.dev_groups	= spi_dev_groups,
464 	.match		= spi_match_device,
465 	.uevent		= spi_uevent,
466 	.probe		= spi_probe,
467 	.remove		= spi_remove,
468 	.shutdown	= spi_shutdown,
469 };
470 EXPORT_SYMBOL_GPL(spi_bus_type);
471 
472 /**
473  * __spi_register_driver - register a SPI driver
474  * @owner: owner module of the driver to register
475  * @sdrv: the driver to register
476  * Context: can sleep
477  *
478  * Return: zero on success, else a negative error code.
479  */
480 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
481 {
482 	sdrv->driver.owner = owner;
483 	sdrv->driver.bus = &spi_bus_type;
484 
485 	/*
486 	 * For Really Good Reasons we use spi: modaliases not of:
487 	 * modaliases for DT so module autoloading won't work if we
488 	 * don't have a spi_device_id as well as a compatible string.
489 	 */
490 	if (sdrv->driver.of_match_table) {
491 		const struct of_device_id *of_id;
492 
493 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
494 		     of_id++) {
495 			const char *of_name;
496 
497 			/* Strip off any vendor prefix */
498 			of_name = strnchr(of_id->compatible,
499 					  sizeof(of_id->compatible), ',');
500 			if (of_name)
501 				of_name++;
502 			else
503 				of_name = of_id->compatible;
504 
505 			if (sdrv->id_table) {
506 				const struct spi_device_id *spi_id;
507 
508 				spi_id = spi_match_id(sdrv->id_table, of_name);
509 				if (spi_id)
510 					continue;
511 			} else {
512 				if (strcmp(sdrv->driver.name, of_name) == 0)
513 					continue;
514 			}
515 
516 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
517 				sdrv->driver.name, of_id->compatible);
518 		}
519 	}
520 
521 	return driver_register(&sdrv->driver);
522 }
523 EXPORT_SYMBOL_GPL(__spi_register_driver);
524 
525 /*-------------------------------------------------------------------------*/
526 
527 /*
528  * SPI devices should normally not be created by SPI device drivers; that
529  * would make them board-specific.  Similarly with SPI controller drivers.
530  * Device registration normally goes into like arch/.../mach.../board-YYY.c
531  * with other readonly (flashable) information about mainboard devices.
532  */
533 
534 struct boardinfo {
535 	struct list_head	list;
536 	struct spi_board_info	board_info;
537 };
538 
539 static LIST_HEAD(board_list);
540 static LIST_HEAD(spi_controller_list);
541 
542 /*
543  * Used to protect add/del operation for board_info list and
544  * spi_controller list, and their matching process also used
545  * to protect object of type struct idr.
546  */
547 static DEFINE_MUTEX(board_lock);
548 
549 /**
550  * spi_alloc_device - Allocate a new SPI device
551  * @ctlr: Controller to which device is connected
552  * Context: can sleep
553  *
554  * Allows a driver to allocate and initialize a spi_device without
555  * registering it immediately.  This allows a driver to directly
556  * fill the spi_device with device parameters before calling
557  * spi_add_device() on it.
558  *
559  * Caller is responsible to call spi_add_device() on the returned
560  * spi_device structure to add it to the SPI controller.  If the caller
561  * needs to discard the spi_device without adding it, then it should
562  * call spi_dev_put() on it.
563  *
564  * Return: a pointer to the new device, or NULL.
565  */
566 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
567 {
568 	struct spi_device	*spi;
569 
570 	if (!spi_controller_get(ctlr))
571 		return NULL;
572 
573 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
574 	if (!spi) {
575 		spi_controller_put(ctlr);
576 		return NULL;
577 	}
578 
579 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
580 	if (!spi->pcpu_statistics) {
581 		kfree(spi);
582 		spi_controller_put(ctlr);
583 		return NULL;
584 	}
585 
586 	spi->master = spi->controller = ctlr;
587 	spi->dev.parent = &ctlr->dev;
588 	spi->dev.bus = &spi_bus_type;
589 	spi->dev.release = spidev_release;
590 	spi->mode = ctlr->buswidth_override_bits;
591 
592 	device_initialize(&spi->dev);
593 	return spi;
594 }
595 EXPORT_SYMBOL_GPL(spi_alloc_device);
596 
597 static void spi_dev_set_name(struct spi_device *spi)
598 {
599 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
600 
601 	if (adev) {
602 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
603 		return;
604 	}
605 
606 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
607 		     spi_get_chipselect(spi, 0));
608 }
609 
610 static int spi_dev_check(struct device *dev, void *data)
611 {
612 	struct spi_device *spi = to_spi_device(dev);
613 	struct spi_device *new_spi = data;
614 
615 	if (spi->controller == new_spi->controller &&
616 	    spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
617 		return -EBUSY;
618 	return 0;
619 }
620 
621 static void spi_cleanup(struct spi_device *spi)
622 {
623 	if (spi->controller->cleanup)
624 		spi->controller->cleanup(spi);
625 }
626 
627 static int __spi_add_device(struct spi_device *spi)
628 {
629 	struct spi_controller *ctlr = spi->controller;
630 	struct device *dev = ctlr->dev.parent;
631 	int status;
632 
633 	/*
634 	 * We need to make sure there's no other device with this
635 	 * chipselect **BEFORE** we call setup(), else we'll trash
636 	 * its configuration.
637 	 */
638 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
639 	if (status) {
640 		dev_err(dev, "chipselect %d already in use\n",
641 				spi_get_chipselect(spi, 0));
642 		return status;
643 	}
644 
645 	/* Controller may unregister concurrently */
646 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
647 	    !device_is_registered(&ctlr->dev)) {
648 		return -ENODEV;
649 	}
650 
651 	if (ctlr->cs_gpiods)
652 		spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
653 
654 	/*
655 	 * Drivers may modify this initial i/o setup, but will
656 	 * normally rely on the device being setup.  Devices
657 	 * using SPI_CS_HIGH can't coexist well otherwise...
658 	 */
659 	status = spi_setup(spi);
660 	if (status < 0) {
661 		dev_err(dev, "can't setup %s, status %d\n",
662 				dev_name(&spi->dev), status);
663 		return status;
664 	}
665 
666 	/* Device may be bound to an active driver when this returns */
667 	status = device_add(&spi->dev);
668 	if (status < 0) {
669 		dev_err(dev, "can't add %s, status %d\n",
670 				dev_name(&spi->dev), status);
671 		spi_cleanup(spi);
672 	} else {
673 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
674 	}
675 
676 	return status;
677 }
678 
679 /**
680  * spi_add_device - Add spi_device allocated with spi_alloc_device
681  * @spi: spi_device to register
682  *
683  * Companion function to spi_alloc_device.  Devices allocated with
684  * spi_alloc_device can be added onto the spi bus with this function.
685  *
686  * Return: 0 on success; negative errno on failure
687  */
688 int spi_add_device(struct spi_device *spi)
689 {
690 	struct spi_controller *ctlr = spi->controller;
691 	struct device *dev = ctlr->dev.parent;
692 	int status;
693 
694 	/* Chipselects are numbered 0..max; validate. */
695 	if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
696 		dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
697 			ctlr->num_chipselect);
698 		return -EINVAL;
699 	}
700 
701 	/* Set the bus ID string */
702 	spi_dev_set_name(spi);
703 
704 	mutex_lock(&ctlr->add_lock);
705 	status = __spi_add_device(spi);
706 	mutex_unlock(&ctlr->add_lock);
707 	return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710 
711 static int spi_add_device_locked(struct spi_device *spi)
712 {
713 	struct spi_controller *ctlr = spi->controller;
714 	struct device *dev = ctlr->dev.parent;
715 
716 	/* Chipselects are numbered 0..max; validate. */
717 	if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
718 		dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
719 			ctlr->num_chipselect);
720 		return -EINVAL;
721 	}
722 
723 	/* Set the bus ID string */
724 	spi_dev_set_name(spi);
725 
726 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
727 	return __spi_add_device(spi);
728 }
729 
730 /**
731  * spi_new_device - instantiate one new SPI device
732  * @ctlr: Controller to which device is connected
733  * @chip: Describes the SPI device
734  * Context: can sleep
735  *
736  * On typical mainboards, this is purely internal; and it's not needed
737  * after board init creates the hard-wired devices.  Some development
738  * platforms may not be able to use spi_register_board_info though, and
739  * this is exported so that for example a USB or parport based adapter
740  * driver could add devices (which it would learn about out-of-band).
741  *
742  * Return: the new device, or NULL.
743  */
744 struct spi_device *spi_new_device(struct spi_controller *ctlr,
745 				  struct spi_board_info *chip)
746 {
747 	struct spi_device	*proxy;
748 	int			status;
749 
750 	/*
751 	 * NOTE:  caller did any chip->bus_num checks necessary.
752 	 *
753 	 * Also, unless we change the return value convention to use
754 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
755 	 * suggests syslogged diagnostics are best here (ugh).
756 	 */
757 
758 	proxy = spi_alloc_device(ctlr);
759 	if (!proxy)
760 		return NULL;
761 
762 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
763 
764 	spi_set_chipselect(proxy, 0, chip->chip_select);
765 	proxy->max_speed_hz = chip->max_speed_hz;
766 	proxy->mode = chip->mode;
767 	proxy->irq = chip->irq;
768 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
769 	proxy->dev.platform_data = (void *) chip->platform_data;
770 	proxy->controller_data = chip->controller_data;
771 	proxy->controller_state = NULL;
772 
773 	if (chip->swnode) {
774 		status = device_add_software_node(&proxy->dev, chip->swnode);
775 		if (status) {
776 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
777 				chip->modalias, status);
778 			goto err_dev_put;
779 		}
780 	}
781 
782 	status = spi_add_device(proxy);
783 	if (status < 0)
784 		goto err_dev_put;
785 
786 	return proxy;
787 
788 err_dev_put:
789 	device_remove_software_node(&proxy->dev);
790 	spi_dev_put(proxy);
791 	return NULL;
792 }
793 EXPORT_SYMBOL_GPL(spi_new_device);
794 
795 /**
796  * spi_unregister_device - unregister a single SPI device
797  * @spi: spi_device to unregister
798  *
799  * Start making the passed SPI device vanish. Normally this would be handled
800  * by spi_unregister_controller().
801  */
802 void spi_unregister_device(struct spi_device *spi)
803 {
804 	if (!spi)
805 		return;
806 
807 	if (spi->dev.of_node) {
808 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
809 		of_node_put(spi->dev.of_node);
810 	}
811 	if (ACPI_COMPANION(&spi->dev))
812 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
813 	device_remove_software_node(&spi->dev);
814 	device_del(&spi->dev);
815 	spi_cleanup(spi);
816 	put_device(&spi->dev);
817 }
818 EXPORT_SYMBOL_GPL(spi_unregister_device);
819 
820 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
821 					      struct spi_board_info *bi)
822 {
823 	struct spi_device *dev;
824 
825 	if (ctlr->bus_num != bi->bus_num)
826 		return;
827 
828 	dev = spi_new_device(ctlr, bi);
829 	if (!dev)
830 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
831 			bi->modalias);
832 }
833 
834 /**
835  * spi_register_board_info - register SPI devices for a given board
836  * @info: array of chip descriptors
837  * @n: how many descriptors are provided
838  * Context: can sleep
839  *
840  * Board-specific early init code calls this (probably during arch_initcall)
841  * with segments of the SPI device table.  Any device nodes are created later,
842  * after the relevant parent SPI controller (bus_num) is defined.  We keep
843  * this table of devices forever, so that reloading a controller driver will
844  * not make Linux forget about these hard-wired devices.
845  *
846  * Other code can also call this, e.g. a particular add-on board might provide
847  * SPI devices through its expansion connector, so code initializing that board
848  * would naturally declare its SPI devices.
849  *
850  * The board info passed can safely be __initdata ... but be careful of
851  * any embedded pointers (platform_data, etc), they're copied as-is.
852  *
853  * Return: zero on success, else a negative error code.
854  */
855 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
856 {
857 	struct boardinfo *bi;
858 	int i;
859 
860 	if (!n)
861 		return 0;
862 
863 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
864 	if (!bi)
865 		return -ENOMEM;
866 
867 	for (i = 0; i < n; i++, bi++, info++) {
868 		struct spi_controller *ctlr;
869 
870 		memcpy(&bi->board_info, info, sizeof(*info));
871 
872 		mutex_lock(&board_lock);
873 		list_add_tail(&bi->list, &board_list);
874 		list_for_each_entry(ctlr, &spi_controller_list, list)
875 			spi_match_controller_to_boardinfo(ctlr,
876 							  &bi->board_info);
877 		mutex_unlock(&board_lock);
878 	}
879 
880 	return 0;
881 }
882 
883 /*-------------------------------------------------------------------------*/
884 
885 /* Core methods for SPI resource management */
886 
887 /**
888  * spi_res_alloc - allocate a spi resource that is life-cycle managed
889  *                 during the processing of a spi_message while using
890  *                 spi_transfer_one
891  * @spi:     the spi device for which we allocate memory
892  * @release: the release code to execute for this resource
893  * @size:    size to alloc and return
894  * @gfp:     GFP allocation flags
895  *
896  * Return: the pointer to the allocated data
897  *
898  * This may get enhanced in the future to allocate from a memory pool
899  * of the @spi_device or @spi_controller to avoid repeated allocations.
900  */
901 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
902 			   size_t size, gfp_t gfp)
903 {
904 	struct spi_res *sres;
905 
906 	sres = kzalloc(sizeof(*sres) + size, gfp);
907 	if (!sres)
908 		return NULL;
909 
910 	INIT_LIST_HEAD(&sres->entry);
911 	sres->release = release;
912 
913 	return sres->data;
914 }
915 
916 /**
917  * spi_res_free - free an spi resource
918  * @res: pointer to the custom data of a resource
919  */
920 static void spi_res_free(void *res)
921 {
922 	struct spi_res *sres = container_of(res, struct spi_res, data);
923 
924 	if (!res)
925 		return;
926 
927 	WARN_ON(!list_empty(&sres->entry));
928 	kfree(sres);
929 }
930 
931 /**
932  * spi_res_add - add a spi_res to the spi_message
933  * @message: the spi message
934  * @res:     the spi_resource
935  */
936 static void spi_res_add(struct spi_message *message, void *res)
937 {
938 	struct spi_res *sres = container_of(res, struct spi_res, data);
939 
940 	WARN_ON(!list_empty(&sres->entry));
941 	list_add_tail(&sres->entry, &message->resources);
942 }
943 
944 /**
945  * spi_res_release - release all spi resources for this message
946  * @ctlr:  the @spi_controller
947  * @message: the @spi_message
948  */
949 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
950 {
951 	struct spi_res *res, *tmp;
952 
953 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
954 		if (res->release)
955 			res->release(ctlr, message, res->data);
956 
957 		list_del(&res->entry);
958 
959 		kfree(res);
960 	}
961 }
962 
963 /*-------------------------------------------------------------------------*/
964 
965 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
966 {
967 	bool activate = enable;
968 
969 	/*
970 	 * Avoid calling into the driver (or doing delays) if the chip select
971 	 * isn't actually changing from the last time this was called.
972 	 */
973 	if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
974 		       (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
975 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
976 		return;
977 
978 	trace_spi_set_cs(spi, activate);
979 
980 	spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
981 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
982 
983 	if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
984 		spi_delay_exec(&spi->cs_hold, NULL);
985 
986 	if (spi->mode & SPI_CS_HIGH)
987 		enable = !enable;
988 
989 	if (spi_get_csgpiod(spi, 0)) {
990 		if (!(spi->mode & SPI_NO_CS)) {
991 			/*
992 			 * Historically ACPI has no means of the GPIO polarity and
993 			 * thus the SPISerialBus() resource defines it on the per-chip
994 			 * basis. In order to avoid a chain of negations, the GPIO
995 			 * polarity is considered being Active High. Even for the cases
996 			 * when _DSD() is involved (in the updated versions of ACPI)
997 			 * the GPIO CS polarity must be defined Active High to avoid
998 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
999 			 * into account.
1000 			 */
1001 			if (has_acpi_companion(&spi->dev))
1002 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
1003 			else
1004 				/* Polarity handled by GPIO library */
1005 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
1006 		}
1007 		/* Some SPI masters need both GPIO CS & slave_select */
1008 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1009 		    spi->controller->set_cs)
1010 			spi->controller->set_cs(spi, !enable);
1011 	} else if (spi->controller->set_cs) {
1012 		spi->controller->set_cs(spi, !enable);
1013 	}
1014 
1015 	if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
1016 		if (activate)
1017 			spi_delay_exec(&spi->cs_setup, NULL);
1018 		else
1019 			spi_delay_exec(&spi->cs_inactive, NULL);
1020 	}
1021 }
1022 
1023 #ifdef CONFIG_HAS_DMA
1024 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1025 			     struct sg_table *sgt, void *buf, size_t len,
1026 			     enum dma_data_direction dir, unsigned long attrs)
1027 {
1028 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1029 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1030 #ifdef CONFIG_HIGHMEM
1031 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1032 				(unsigned long)buf < (PKMAP_BASE +
1033 					(LAST_PKMAP * PAGE_SIZE)));
1034 #else
1035 	const bool kmap_buf = false;
1036 #endif
1037 	int desc_len;
1038 	int sgs;
1039 	struct page *vm_page;
1040 	struct scatterlist *sg;
1041 	void *sg_buf;
1042 	size_t min;
1043 	int i, ret;
1044 
1045 	if (vmalloced_buf || kmap_buf) {
1046 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1047 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1048 	} else if (virt_addr_valid(buf)) {
1049 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1050 		sgs = DIV_ROUND_UP(len, desc_len);
1051 	} else {
1052 		return -EINVAL;
1053 	}
1054 
1055 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1056 	if (ret != 0)
1057 		return ret;
1058 
1059 	sg = &sgt->sgl[0];
1060 	for (i = 0; i < sgs; i++) {
1061 
1062 		if (vmalloced_buf || kmap_buf) {
1063 			/*
1064 			 * Next scatterlist entry size is the minimum between
1065 			 * the desc_len and the remaining buffer length that
1066 			 * fits in a page.
1067 			 */
1068 			min = min_t(size_t, desc_len,
1069 				    min_t(size_t, len,
1070 					  PAGE_SIZE - offset_in_page(buf)));
1071 			if (vmalloced_buf)
1072 				vm_page = vmalloc_to_page(buf);
1073 			else
1074 				vm_page = kmap_to_page(buf);
1075 			if (!vm_page) {
1076 				sg_free_table(sgt);
1077 				return -ENOMEM;
1078 			}
1079 			sg_set_page(sg, vm_page,
1080 				    min, offset_in_page(buf));
1081 		} else {
1082 			min = min_t(size_t, len, desc_len);
1083 			sg_buf = buf;
1084 			sg_set_buf(sg, sg_buf, min);
1085 		}
1086 
1087 		buf += min;
1088 		len -= min;
1089 		sg = sg_next(sg);
1090 	}
1091 
1092 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1093 	if (ret < 0) {
1094 		sg_free_table(sgt);
1095 		return ret;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1102 		struct sg_table *sgt, void *buf, size_t len,
1103 		enum dma_data_direction dir)
1104 {
1105 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1106 }
1107 
1108 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1109 				struct device *dev, struct sg_table *sgt,
1110 				enum dma_data_direction dir,
1111 				unsigned long attrs)
1112 {
1113 	if (sgt->orig_nents) {
1114 		dma_unmap_sgtable(dev, sgt, dir, attrs);
1115 		sg_free_table(sgt);
1116 		sgt->orig_nents = 0;
1117 		sgt->nents = 0;
1118 	}
1119 }
1120 
1121 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1122 		   struct sg_table *sgt, enum dma_data_direction dir)
1123 {
1124 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1125 }
1126 
1127 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1128 {
1129 	struct device *tx_dev, *rx_dev;
1130 	struct spi_transfer *xfer;
1131 	int ret;
1132 
1133 	if (!ctlr->can_dma)
1134 		return 0;
1135 
1136 	if (ctlr->dma_tx)
1137 		tx_dev = ctlr->dma_tx->device->dev;
1138 	else if (ctlr->dma_map_dev)
1139 		tx_dev = ctlr->dma_map_dev;
1140 	else
1141 		tx_dev = ctlr->dev.parent;
1142 
1143 	if (ctlr->dma_rx)
1144 		rx_dev = ctlr->dma_rx->device->dev;
1145 	else if (ctlr->dma_map_dev)
1146 		rx_dev = ctlr->dma_map_dev;
1147 	else
1148 		rx_dev = ctlr->dev.parent;
1149 
1150 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1151 		/* The sync is done before each transfer. */
1152 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1153 
1154 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1155 			continue;
1156 
1157 		if (xfer->tx_buf != NULL) {
1158 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1159 						(void *)xfer->tx_buf,
1160 						xfer->len, DMA_TO_DEVICE,
1161 						attrs);
1162 			if (ret != 0)
1163 				return ret;
1164 		}
1165 
1166 		if (xfer->rx_buf != NULL) {
1167 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1168 						xfer->rx_buf, xfer->len,
1169 						DMA_FROM_DEVICE, attrs);
1170 			if (ret != 0) {
1171 				spi_unmap_buf_attrs(ctlr, tx_dev,
1172 						&xfer->tx_sg, DMA_TO_DEVICE,
1173 						attrs);
1174 
1175 				return ret;
1176 			}
1177 		}
1178 	}
1179 
1180 	ctlr->cur_rx_dma_dev = rx_dev;
1181 	ctlr->cur_tx_dma_dev = tx_dev;
1182 	ctlr->cur_msg_mapped = true;
1183 
1184 	return 0;
1185 }
1186 
1187 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1188 {
1189 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1190 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1191 	struct spi_transfer *xfer;
1192 
1193 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1194 		return 0;
1195 
1196 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1197 		/* The sync has already been done after each transfer. */
1198 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1199 
1200 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1201 			continue;
1202 
1203 		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1204 				    DMA_FROM_DEVICE, attrs);
1205 		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1206 				    DMA_TO_DEVICE, attrs);
1207 	}
1208 
1209 	ctlr->cur_msg_mapped = false;
1210 
1211 	return 0;
1212 }
1213 
1214 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1215 				    struct spi_transfer *xfer)
1216 {
1217 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1218 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1219 
1220 	if (!ctlr->cur_msg_mapped)
1221 		return;
1222 
1223 	if (xfer->tx_sg.orig_nents)
1224 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1225 	if (xfer->rx_sg.orig_nents)
1226 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1227 }
1228 
1229 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1230 				 struct spi_transfer *xfer)
1231 {
1232 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1233 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1234 
1235 	if (!ctlr->cur_msg_mapped)
1236 		return;
1237 
1238 	if (xfer->rx_sg.orig_nents)
1239 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1240 	if (xfer->tx_sg.orig_nents)
1241 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1242 }
1243 #else /* !CONFIG_HAS_DMA */
1244 static inline int __spi_map_msg(struct spi_controller *ctlr,
1245 				struct spi_message *msg)
1246 {
1247 	return 0;
1248 }
1249 
1250 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1251 				  struct spi_message *msg)
1252 {
1253 	return 0;
1254 }
1255 
1256 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1257 				    struct spi_transfer *xfer)
1258 {
1259 }
1260 
1261 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1262 				 struct spi_transfer *xfer)
1263 {
1264 }
1265 #endif /* !CONFIG_HAS_DMA */
1266 
1267 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1268 				struct spi_message *msg)
1269 {
1270 	struct spi_transfer *xfer;
1271 
1272 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1273 		/*
1274 		 * Restore the original value of tx_buf or rx_buf if they are
1275 		 * NULL.
1276 		 */
1277 		if (xfer->tx_buf == ctlr->dummy_tx)
1278 			xfer->tx_buf = NULL;
1279 		if (xfer->rx_buf == ctlr->dummy_rx)
1280 			xfer->rx_buf = NULL;
1281 	}
1282 
1283 	return __spi_unmap_msg(ctlr, msg);
1284 }
1285 
1286 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1287 {
1288 	struct spi_transfer *xfer;
1289 	void *tmp;
1290 	unsigned int max_tx, max_rx;
1291 
1292 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1293 		&& !(msg->spi->mode & SPI_3WIRE)) {
1294 		max_tx = 0;
1295 		max_rx = 0;
1296 
1297 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1298 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1299 			    !xfer->tx_buf)
1300 				max_tx = max(xfer->len, max_tx);
1301 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1302 			    !xfer->rx_buf)
1303 				max_rx = max(xfer->len, max_rx);
1304 		}
1305 
1306 		if (max_tx) {
1307 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1308 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1309 			if (!tmp)
1310 				return -ENOMEM;
1311 			ctlr->dummy_tx = tmp;
1312 		}
1313 
1314 		if (max_rx) {
1315 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1316 				       GFP_KERNEL | GFP_DMA);
1317 			if (!tmp)
1318 				return -ENOMEM;
1319 			ctlr->dummy_rx = tmp;
1320 		}
1321 
1322 		if (max_tx || max_rx) {
1323 			list_for_each_entry(xfer, &msg->transfers,
1324 					    transfer_list) {
1325 				if (!xfer->len)
1326 					continue;
1327 				if (!xfer->tx_buf)
1328 					xfer->tx_buf = ctlr->dummy_tx;
1329 				if (!xfer->rx_buf)
1330 					xfer->rx_buf = ctlr->dummy_rx;
1331 			}
1332 		}
1333 	}
1334 
1335 	return __spi_map_msg(ctlr, msg);
1336 }
1337 
1338 static int spi_transfer_wait(struct spi_controller *ctlr,
1339 			     struct spi_message *msg,
1340 			     struct spi_transfer *xfer)
1341 {
1342 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1343 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1344 	u32 speed_hz = xfer->speed_hz;
1345 	unsigned long long ms;
1346 
1347 	if (spi_controller_is_slave(ctlr)) {
1348 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1349 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1350 			return -EINTR;
1351 		}
1352 	} else {
1353 		if (!speed_hz)
1354 			speed_hz = 100000;
1355 
1356 		/*
1357 		 * For each byte we wait for 8 cycles of the SPI clock.
1358 		 * Since speed is defined in Hz and we want milliseconds,
1359 		 * use respective multiplier, but before the division,
1360 		 * otherwise we may get 0 for short transfers.
1361 		 */
1362 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1363 		do_div(ms, speed_hz);
1364 
1365 		/*
1366 		 * Increase it twice and add 200 ms tolerance, use
1367 		 * predefined maximum in case of overflow.
1368 		 */
1369 		ms += ms + 200;
1370 		if (ms > UINT_MAX)
1371 			ms = UINT_MAX;
1372 
1373 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1374 						 msecs_to_jiffies(ms));
1375 
1376 		if (ms == 0) {
1377 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1378 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1379 			dev_err(&msg->spi->dev,
1380 				"SPI transfer timed out\n");
1381 			return -ETIMEDOUT;
1382 		}
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 static void _spi_transfer_delay_ns(u32 ns)
1389 {
1390 	if (!ns)
1391 		return;
1392 	if (ns <= NSEC_PER_USEC) {
1393 		ndelay(ns);
1394 	} else {
1395 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1396 
1397 		if (us <= 10)
1398 			udelay(us);
1399 		else
1400 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1401 	}
1402 }
1403 
1404 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1405 {
1406 	u32 delay = _delay->value;
1407 	u32 unit = _delay->unit;
1408 	u32 hz;
1409 
1410 	if (!delay)
1411 		return 0;
1412 
1413 	switch (unit) {
1414 	case SPI_DELAY_UNIT_USECS:
1415 		delay *= NSEC_PER_USEC;
1416 		break;
1417 	case SPI_DELAY_UNIT_NSECS:
1418 		/* Nothing to do here */
1419 		break;
1420 	case SPI_DELAY_UNIT_SCK:
1421 		/* Clock cycles need to be obtained from spi_transfer */
1422 		if (!xfer)
1423 			return -EINVAL;
1424 		/*
1425 		 * If there is unknown effective speed, approximate it
1426 		 * by underestimating with half of the requested hz.
1427 		 */
1428 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1429 		if (!hz)
1430 			return -EINVAL;
1431 
1432 		/* Convert delay to nanoseconds */
1433 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1434 		break;
1435 	default:
1436 		return -EINVAL;
1437 	}
1438 
1439 	return delay;
1440 }
1441 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1442 
1443 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1444 {
1445 	int delay;
1446 
1447 	might_sleep();
1448 
1449 	if (!_delay)
1450 		return -EINVAL;
1451 
1452 	delay = spi_delay_to_ns(_delay, xfer);
1453 	if (delay < 0)
1454 		return delay;
1455 
1456 	_spi_transfer_delay_ns(delay);
1457 
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(spi_delay_exec);
1461 
1462 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1463 					  struct spi_transfer *xfer)
1464 {
1465 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1466 	u32 delay = xfer->cs_change_delay.value;
1467 	u32 unit = xfer->cs_change_delay.unit;
1468 	int ret;
1469 
1470 	/* Return early on "fast" mode - for everything but USECS */
1471 	if (!delay) {
1472 		if (unit == SPI_DELAY_UNIT_USECS)
1473 			_spi_transfer_delay_ns(default_delay_ns);
1474 		return;
1475 	}
1476 
1477 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1478 	if (ret) {
1479 		dev_err_once(&msg->spi->dev,
1480 			     "Use of unsupported delay unit %i, using default of %luus\n",
1481 			     unit, default_delay_ns / NSEC_PER_USEC);
1482 		_spi_transfer_delay_ns(default_delay_ns);
1483 	}
1484 }
1485 
1486 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1487 						  struct spi_transfer *xfer)
1488 {
1489 	_spi_transfer_cs_change_delay(msg, xfer);
1490 }
1491 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1492 
1493 /*
1494  * spi_transfer_one_message - Default implementation of transfer_one_message()
1495  *
1496  * This is a standard implementation of transfer_one_message() for
1497  * drivers which implement a transfer_one() operation.  It provides
1498  * standard handling of delays and chip select management.
1499  */
1500 static int spi_transfer_one_message(struct spi_controller *ctlr,
1501 				    struct spi_message *msg)
1502 {
1503 	struct spi_transfer *xfer;
1504 	bool keep_cs = false;
1505 	int ret = 0;
1506 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1507 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1508 
1509 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1510 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1511 
1512 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1513 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1514 
1515 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1516 		trace_spi_transfer_start(msg, xfer);
1517 
1518 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1519 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1520 
1521 		if (!ctlr->ptp_sts_supported) {
1522 			xfer->ptp_sts_word_pre = 0;
1523 			ptp_read_system_prets(xfer->ptp_sts);
1524 		}
1525 
1526 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1527 			reinit_completion(&ctlr->xfer_completion);
1528 
1529 fallback_pio:
1530 			spi_dma_sync_for_device(ctlr, xfer);
1531 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1532 			if (ret < 0) {
1533 				spi_dma_sync_for_cpu(ctlr, xfer);
1534 
1535 				if (ctlr->cur_msg_mapped &&
1536 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1537 					__spi_unmap_msg(ctlr, msg);
1538 					ctlr->fallback = true;
1539 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1540 					goto fallback_pio;
1541 				}
1542 
1543 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1544 							       errors);
1545 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1546 							       errors);
1547 				dev_err(&msg->spi->dev,
1548 					"SPI transfer failed: %d\n", ret);
1549 				goto out;
1550 			}
1551 
1552 			if (ret > 0) {
1553 				ret = spi_transfer_wait(ctlr, msg, xfer);
1554 				if (ret < 0)
1555 					msg->status = ret;
1556 			}
1557 
1558 			spi_dma_sync_for_cpu(ctlr, xfer);
1559 		} else {
1560 			if (xfer->len)
1561 				dev_err(&msg->spi->dev,
1562 					"Bufferless transfer has length %u\n",
1563 					xfer->len);
1564 		}
1565 
1566 		if (!ctlr->ptp_sts_supported) {
1567 			ptp_read_system_postts(xfer->ptp_sts);
1568 			xfer->ptp_sts_word_post = xfer->len;
1569 		}
1570 
1571 		trace_spi_transfer_stop(msg, xfer);
1572 
1573 		if (msg->status != -EINPROGRESS)
1574 			goto out;
1575 
1576 		spi_transfer_delay_exec(xfer);
1577 
1578 		if (xfer->cs_change) {
1579 			if (list_is_last(&xfer->transfer_list,
1580 					 &msg->transfers)) {
1581 				keep_cs = true;
1582 			} else {
1583 				if (!xfer->cs_off)
1584 					spi_set_cs(msg->spi, false, false);
1585 				_spi_transfer_cs_change_delay(msg, xfer);
1586 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1587 					spi_set_cs(msg->spi, true, false);
1588 			}
1589 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1590 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1591 			spi_set_cs(msg->spi, xfer->cs_off, false);
1592 		}
1593 
1594 		msg->actual_length += xfer->len;
1595 	}
1596 
1597 out:
1598 	if (ret != 0 || !keep_cs)
1599 		spi_set_cs(msg->spi, false, false);
1600 
1601 	if (msg->status == -EINPROGRESS)
1602 		msg->status = ret;
1603 
1604 	if (msg->status && ctlr->handle_err)
1605 		ctlr->handle_err(ctlr, msg);
1606 
1607 	spi_finalize_current_message(ctlr);
1608 
1609 	return ret;
1610 }
1611 
1612 /**
1613  * spi_finalize_current_transfer - report completion of a transfer
1614  * @ctlr: the controller reporting completion
1615  *
1616  * Called by SPI drivers using the core transfer_one_message()
1617  * implementation to notify it that the current interrupt driven
1618  * transfer has finished and the next one may be scheduled.
1619  */
1620 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1621 {
1622 	complete(&ctlr->xfer_completion);
1623 }
1624 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1625 
1626 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1627 {
1628 	if (ctlr->auto_runtime_pm) {
1629 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1630 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1631 	}
1632 }
1633 
1634 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1635 		struct spi_message *msg, bool was_busy)
1636 {
1637 	struct spi_transfer *xfer;
1638 	int ret;
1639 
1640 	if (!was_busy && ctlr->auto_runtime_pm) {
1641 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1642 		if (ret < 0) {
1643 			pm_runtime_put_noidle(ctlr->dev.parent);
1644 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1645 				ret);
1646 			return ret;
1647 		}
1648 	}
1649 
1650 	if (!was_busy)
1651 		trace_spi_controller_busy(ctlr);
1652 
1653 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1654 		ret = ctlr->prepare_transfer_hardware(ctlr);
1655 		if (ret) {
1656 			dev_err(&ctlr->dev,
1657 				"failed to prepare transfer hardware: %d\n",
1658 				ret);
1659 
1660 			if (ctlr->auto_runtime_pm)
1661 				pm_runtime_put(ctlr->dev.parent);
1662 
1663 			msg->status = ret;
1664 			spi_finalize_current_message(ctlr);
1665 
1666 			return ret;
1667 		}
1668 	}
1669 
1670 	trace_spi_message_start(msg);
1671 
1672 	ret = spi_split_transfers_maxsize(ctlr, msg,
1673 					  spi_max_transfer_size(msg->spi),
1674 					  GFP_KERNEL | GFP_DMA);
1675 	if (ret) {
1676 		msg->status = ret;
1677 		spi_finalize_current_message(ctlr);
1678 		return ret;
1679 	}
1680 
1681 	if (ctlr->prepare_message) {
1682 		ret = ctlr->prepare_message(ctlr, msg);
1683 		if (ret) {
1684 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1685 				ret);
1686 			msg->status = ret;
1687 			spi_finalize_current_message(ctlr);
1688 			return ret;
1689 		}
1690 		msg->prepared = true;
1691 	}
1692 
1693 	ret = spi_map_msg(ctlr, msg);
1694 	if (ret) {
1695 		msg->status = ret;
1696 		spi_finalize_current_message(ctlr);
1697 		return ret;
1698 	}
1699 
1700 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1701 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1702 			xfer->ptp_sts_word_pre = 0;
1703 			ptp_read_system_prets(xfer->ptp_sts);
1704 		}
1705 	}
1706 
1707 	/*
1708 	 * Drivers implementation of transfer_one_message() must arrange for
1709 	 * spi_finalize_current_message() to get called. Most drivers will do
1710 	 * this in the calling context, but some don't. For those cases, a
1711 	 * completion is used to guarantee that this function does not return
1712 	 * until spi_finalize_current_message() is done accessing
1713 	 * ctlr->cur_msg.
1714 	 * Use of the following two flags enable to opportunistically skip the
1715 	 * use of the completion since its use involves expensive spin locks.
1716 	 * In case of a race with the context that calls
1717 	 * spi_finalize_current_message() the completion will always be used,
1718 	 * due to strict ordering of these flags using barriers.
1719 	 */
1720 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1721 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1722 	reinit_completion(&ctlr->cur_msg_completion);
1723 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1724 
1725 	ret = ctlr->transfer_one_message(ctlr, msg);
1726 	if (ret) {
1727 		dev_err(&ctlr->dev,
1728 			"failed to transfer one message from queue\n");
1729 		return ret;
1730 	}
1731 
1732 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1733 	smp_mb(); /* See spi_finalize_current_message()... */
1734 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1735 		wait_for_completion(&ctlr->cur_msg_completion);
1736 
1737 	return 0;
1738 }
1739 
1740 /**
1741  * __spi_pump_messages - function which processes spi message queue
1742  * @ctlr: controller to process queue for
1743  * @in_kthread: true if we are in the context of the message pump thread
1744  *
1745  * This function checks if there is any spi message in the queue that
1746  * needs processing and if so call out to the driver to initialize hardware
1747  * and transfer each message.
1748  *
1749  * Note that it is called both from the kthread itself and also from
1750  * inside spi_sync(); the queue extraction handling at the top of the
1751  * function should deal with this safely.
1752  */
1753 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1754 {
1755 	struct spi_message *msg;
1756 	bool was_busy = false;
1757 	unsigned long flags;
1758 	int ret;
1759 
1760 	/* Take the IO mutex */
1761 	mutex_lock(&ctlr->io_mutex);
1762 
1763 	/* Lock queue */
1764 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1765 
1766 	/* Make sure we are not already running a message */
1767 	if (ctlr->cur_msg)
1768 		goto out_unlock;
1769 
1770 	/* Check if the queue is idle */
1771 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1772 		if (!ctlr->busy)
1773 			goto out_unlock;
1774 
1775 		/* Defer any non-atomic teardown to the thread */
1776 		if (!in_kthread) {
1777 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1778 			    !ctlr->unprepare_transfer_hardware) {
1779 				spi_idle_runtime_pm(ctlr);
1780 				ctlr->busy = false;
1781 				ctlr->queue_empty = true;
1782 				trace_spi_controller_idle(ctlr);
1783 			} else {
1784 				kthread_queue_work(ctlr->kworker,
1785 						   &ctlr->pump_messages);
1786 			}
1787 			goto out_unlock;
1788 		}
1789 
1790 		ctlr->busy = false;
1791 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1792 
1793 		kfree(ctlr->dummy_rx);
1794 		ctlr->dummy_rx = NULL;
1795 		kfree(ctlr->dummy_tx);
1796 		ctlr->dummy_tx = NULL;
1797 		if (ctlr->unprepare_transfer_hardware &&
1798 		    ctlr->unprepare_transfer_hardware(ctlr))
1799 			dev_err(&ctlr->dev,
1800 				"failed to unprepare transfer hardware\n");
1801 		spi_idle_runtime_pm(ctlr);
1802 		trace_spi_controller_idle(ctlr);
1803 
1804 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1805 		ctlr->queue_empty = true;
1806 		goto out_unlock;
1807 	}
1808 
1809 	/* Extract head of queue */
1810 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1811 	ctlr->cur_msg = msg;
1812 
1813 	list_del_init(&msg->queue);
1814 	if (ctlr->busy)
1815 		was_busy = true;
1816 	else
1817 		ctlr->busy = true;
1818 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1819 
1820 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1821 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1822 
1823 	ctlr->cur_msg = NULL;
1824 	ctlr->fallback = false;
1825 
1826 	mutex_unlock(&ctlr->io_mutex);
1827 
1828 	/* Prod the scheduler in case transfer_one() was busy waiting */
1829 	if (!ret)
1830 		cond_resched();
1831 	return;
1832 
1833 out_unlock:
1834 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1835 	mutex_unlock(&ctlr->io_mutex);
1836 }
1837 
1838 /**
1839  * spi_pump_messages - kthread work function which processes spi message queue
1840  * @work: pointer to kthread work struct contained in the controller struct
1841  */
1842 static void spi_pump_messages(struct kthread_work *work)
1843 {
1844 	struct spi_controller *ctlr =
1845 		container_of(work, struct spi_controller, pump_messages);
1846 
1847 	__spi_pump_messages(ctlr, true);
1848 }
1849 
1850 /**
1851  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1852  * @ctlr: Pointer to the spi_controller structure of the driver
1853  * @xfer: Pointer to the transfer being timestamped
1854  * @progress: How many words (not bytes) have been transferred so far
1855  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1856  *	      transfer, for less jitter in time measurement. Only compatible
1857  *	      with PIO drivers. If true, must follow up with
1858  *	      spi_take_timestamp_post or otherwise system will crash.
1859  *	      WARNING: for fully predictable results, the CPU frequency must
1860  *	      also be under control (governor).
1861  *
1862  * This is a helper for drivers to collect the beginning of the TX timestamp
1863  * for the requested byte from the SPI transfer. The frequency with which this
1864  * function must be called (once per word, once for the whole transfer, once
1865  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1866  * greater than or equal to the requested byte at the time of the call. The
1867  * timestamp is only taken once, at the first such call. It is assumed that
1868  * the driver advances its @tx buffer pointer monotonically.
1869  */
1870 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1871 			    struct spi_transfer *xfer,
1872 			    size_t progress, bool irqs_off)
1873 {
1874 	if (!xfer->ptp_sts)
1875 		return;
1876 
1877 	if (xfer->timestamped)
1878 		return;
1879 
1880 	if (progress > xfer->ptp_sts_word_pre)
1881 		return;
1882 
1883 	/* Capture the resolution of the timestamp */
1884 	xfer->ptp_sts_word_pre = progress;
1885 
1886 	if (irqs_off) {
1887 		local_irq_save(ctlr->irq_flags);
1888 		preempt_disable();
1889 	}
1890 
1891 	ptp_read_system_prets(xfer->ptp_sts);
1892 }
1893 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1894 
1895 /**
1896  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1897  * @ctlr: Pointer to the spi_controller structure of the driver
1898  * @xfer: Pointer to the transfer being timestamped
1899  * @progress: How many words (not bytes) have been transferred so far
1900  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1901  *
1902  * This is a helper for drivers to collect the end of the TX timestamp for
1903  * the requested byte from the SPI transfer. Can be called with an arbitrary
1904  * frequency: only the first call where @tx exceeds or is equal to the
1905  * requested word will be timestamped.
1906  */
1907 void spi_take_timestamp_post(struct spi_controller *ctlr,
1908 			     struct spi_transfer *xfer,
1909 			     size_t progress, bool irqs_off)
1910 {
1911 	if (!xfer->ptp_sts)
1912 		return;
1913 
1914 	if (xfer->timestamped)
1915 		return;
1916 
1917 	if (progress < xfer->ptp_sts_word_post)
1918 		return;
1919 
1920 	ptp_read_system_postts(xfer->ptp_sts);
1921 
1922 	if (irqs_off) {
1923 		local_irq_restore(ctlr->irq_flags);
1924 		preempt_enable();
1925 	}
1926 
1927 	/* Capture the resolution of the timestamp */
1928 	xfer->ptp_sts_word_post = progress;
1929 
1930 	xfer->timestamped = 1;
1931 }
1932 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1933 
1934 /**
1935  * spi_set_thread_rt - set the controller to pump at realtime priority
1936  * @ctlr: controller to boost priority of
1937  *
1938  * This can be called because the controller requested realtime priority
1939  * (by setting the ->rt value before calling spi_register_controller()) or
1940  * because a device on the bus said that its transfers needed realtime
1941  * priority.
1942  *
1943  * NOTE: at the moment if any device on a bus says it needs realtime then
1944  * the thread will be at realtime priority for all transfers on that
1945  * controller.  If this eventually becomes a problem we may see if we can
1946  * find a way to boost the priority only temporarily during relevant
1947  * transfers.
1948  */
1949 static void spi_set_thread_rt(struct spi_controller *ctlr)
1950 {
1951 	dev_info(&ctlr->dev,
1952 		"will run message pump with realtime priority\n");
1953 	sched_set_fifo(ctlr->kworker->task);
1954 }
1955 
1956 static int spi_init_queue(struct spi_controller *ctlr)
1957 {
1958 	ctlr->running = false;
1959 	ctlr->busy = false;
1960 	ctlr->queue_empty = true;
1961 
1962 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1963 	if (IS_ERR(ctlr->kworker)) {
1964 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1965 		return PTR_ERR(ctlr->kworker);
1966 	}
1967 
1968 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1969 
1970 	/*
1971 	 * Controller config will indicate if this controller should run the
1972 	 * message pump with high (realtime) priority to reduce the transfer
1973 	 * latency on the bus by minimising the delay between a transfer
1974 	 * request and the scheduling of the message pump thread. Without this
1975 	 * setting the message pump thread will remain at default priority.
1976 	 */
1977 	if (ctlr->rt)
1978 		spi_set_thread_rt(ctlr);
1979 
1980 	return 0;
1981 }
1982 
1983 /**
1984  * spi_get_next_queued_message() - called by driver to check for queued
1985  * messages
1986  * @ctlr: the controller to check for queued messages
1987  *
1988  * If there are more messages in the queue, the next message is returned from
1989  * this call.
1990  *
1991  * Return: the next message in the queue, else NULL if the queue is empty.
1992  */
1993 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1994 {
1995 	struct spi_message *next;
1996 	unsigned long flags;
1997 
1998 	/* Get a pointer to the next message, if any */
1999 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2000 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2001 					queue);
2002 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2003 
2004 	return next;
2005 }
2006 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2007 
2008 /**
2009  * spi_finalize_current_message() - the current message is complete
2010  * @ctlr: the controller to return the message to
2011  *
2012  * Called by the driver to notify the core that the message in the front of the
2013  * queue is complete and can be removed from the queue.
2014  */
2015 void spi_finalize_current_message(struct spi_controller *ctlr)
2016 {
2017 	struct spi_transfer *xfer;
2018 	struct spi_message *mesg;
2019 	int ret;
2020 
2021 	mesg = ctlr->cur_msg;
2022 
2023 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2024 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2025 			ptp_read_system_postts(xfer->ptp_sts);
2026 			xfer->ptp_sts_word_post = xfer->len;
2027 		}
2028 	}
2029 
2030 	if (unlikely(ctlr->ptp_sts_supported))
2031 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2032 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2033 
2034 	spi_unmap_msg(ctlr, mesg);
2035 
2036 	/*
2037 	 * In the prepare_messages callback the SPI bus has the opportunity
2038 	 * to split a transfer to smaller chunks.
2039 	 *
2040 	 * Release the split transfers here since spi_map_msg() is done on
2041 	 * the split transfers.
2042 	 */
2043 	spi_res_release(ctlr, mesg);
2044 
2045 	if (mesg->prepared && ctlr->unprepare_message) {
2046 		ret = ctlr->unprepare_message(ctlr, mesg);
2047 		if (ret) {
2048 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2049 				ret);
2050 		}
2051 	}
2052 
2053 	mesg->prepared = false;
2054 
2055 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2056 	smp_mb(); /* See __spi_pump_transfer_message()... */
2057 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2058 		complete(&ctlr->cur_msg_completion);
2059 
2060 	trace_spi_message_done(mesg);
2061 
2062 	mesg->state = NULL;
2063 	if (mesg->complete)
2064 		mesg->complete(mesg->context);
2065 }
2066 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2067 
2068 static int spi_start_queue(struct spi_controller *ctlr)
2069 {
2070 	unsigned long flags;
2071 
2072 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2073 
2074 	if (ctlr->running || ctlr->busy) {
2075 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2076 		return -EBUSY;
2077 	}
2078 
2079 	ctlr->running = true;
2080 	ctlr->cur_msg = NULL;
2081 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2082 
2083 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2084 
2085 	return 0;
2086 }
2087 
2088 static int spi_stop_queue(struct spi_controller *ctlr)
2089 {
2090 	unsigned long flags;
2091 	unsigned limit = 500;
2092 	int ret = 0;
2093 
2094 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2095 
2096 	/*
2097 	 * This is a bit lame, but is optimized for the common execution path.
2098 	 * A wait_queue on the ctlr->busy could be used, but then the common
2099 	 * execution path (pump_messages) would be required to call wake_up or
2100 	 * friends on every SPI message. Do this instead.
2101 	 */
2102 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2103 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2104 		usleep_range(10000, 11000);
2105 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2106 	}
2107 
2108 	if (!list_empty(&ctlr->queue) || ctlr->busy)
2109 		ret = -EBUSY;
2110 	else
2111 		ctlr->running = false;
2112 
2113 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2114 
2115 	if (ret) {
2116 		dev_warn(&ctlr->dev, "could not stop message queue\n");
2117 		return ret;
2118 	}
2119 	return ret;
2120 }
2121 
2122 static int spi_destroy_queue(struct spi_controller *ctlr)
2123 {
2124 	int ret;
2125 
2126 	ret = spi_stop_queue(ctlr);
2127 
2128 	/*
2129 	 * kthread_flush_worker will block until all work is done.
2130 	 * If the reason that stop_queue timed out is that the work will never
2131 	 * finish, then it does no good to call flush/stop thread, so
2132 	 * return anyway.
2133 	 */
2134 	if (ret) {
2135 		dev_err(&ctlr->dev, "problem destroying queue\n");
2136 		return ret;
2137 	}
2138 
2139 	kthread_destroy_worker(ctlr->kworker);
2140 
2141 	return 0;
2142 }
2143 
2144 static int __spi_queued_transfer(struct spi_device *spi,
2145 				 struct spi_message *msg,
2146 				 bool need_pump)
2147 {
2148 	struct spi_controller *ctlr = spi->controller;
2149 	unsigned long flags;
2150 
2151 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2152 
2153 	if (!ctlr->running) {
2154 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2155 		return -ESHUTDOWN;
2156 	}
2157 	msg->actual_length = 0;
2158 	msg->status = -EINPROGRESS;
2159 
2160 	list_add_tail(&msg->queue, &ctlr->queue);
2161 	ctlr->queue_empty = false;
2162 	if (!ctlr->busy && need_pump)
2163 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2164 
2165 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2166 	return 0;
2167 }
2168 
2169 /**
2170  * spi_queued_transfer - transfer function for queued transfers
2171  * @spi: spi device which is requesting transfer
2172  * @msg: spi message which is to handled is queued to driver queue
2173  *
2174  * Return: zero on success, else a negative error code.
2175  */
2176 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2177 {
2178 	return __spi_queued_transfer(spi, msg, true);
2179 }
2180 
2181 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2182 {
2183 	int ret;
2184 
2185 	ctlr->transfer = spi_queued_transfer;
2186 	if (!ctlr->transfer_one_message)
2187 		ctlr->transfer_one_message = spi_transfer_one_message;
2188 
2189 	/* Initialize and start queue */
2190 	ret = spi_init_queue(ctlr);
2191 	if (ret) {
2192 		dev_err(&ctlr->dev, "problem initializing queue\n");
2193 		goto err_init_queue;
2194 	}
2195 	ctlr->queued = true;
2196 	ret = spi_start_queue(ctlr);
2197 	if (ret) {
2198 		dev_err(&ctlr->dev, "problem starting queue\n");
2199 		goto err_start_queue;
2200 	}
2201 
2202 	return 0;
2203 
2204 err_start_queue:
2205 	spi_destroy_queue(ctlr);
2206 err_init_queue:
2207 	return ret;
2208 }
2209 
2210 /**
2211  * spi_flush_queue - Send all pending messages in the queue from the callers'
2212  *		     context
2213  * @ctlr: controller to process queue for
2214  *
2215  * This should be used when one wants to ensure all pending messages have been
2216  * sent before doing something. Is used by the spi-mem code to make sure SPI
2217  * memory operations do not preempt regular SPI transfers that have been queued
2218  * before the spi-mem operation.
2219  */
2220 void spi_flush_queue(struct spi_controller *ctlr)
2221 {
2222 	if (ctlr->transfer == spi_queued_transfer)
2223 		__spi_pump_messages(ctlr, false);
2224 }
2225 
2226 /*-------------------------------------------------------------------------*/
2227 
2228 #if defined(CONFIG_OF)
2229 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2230 				     struct spi_delay *delay, const char *prop)
2231 {
2232 	u32 value;
2233 
2234 	if (!of_property_read_u32(nc, prop, &value)) {
2235 		if (value > U16_MAX) {
2236 			delay->value = DIV_ROUND_UP(value, 1000);
2237 			delay->unit = SPI_DELAY_UNIT_USECS;
2238 		} else {
2239 			delay->value = value;
2240 			delay->unit = SPI_DELAY_UNIT_NSECS;
2241 		}
2242 	}
2243 }
2244 
2245 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2246 			   struct device_node *nc)
2247 {
2248 	u32 value;
2249 	int rc;
2250 
2251 	/* Mode (clock phase/polarity/etc.) */
2252 	if (of_property_read_bool(nc, "spi-cpha"))
2253 		spi->mode |= SPI_CPHA;
2254 	if (of_property_read_bool(nc, "spi-cpol"))
2255 		spi->mode |= SPI_CPOL;
2256 	if (of_property_read_bool(nc, "spi-3wire"))
2257 		spi->mode |= SPI_3WIRE;
2258 	if (of_property_read_bool(nc, "spi-lsb-first"))
2259 		spi->mode |= SPI_LSB_FIRST;
2260 	if (of_property_read_bool(nc, "spi-cs-high"))
2261 		spi->mode |= SPI_CS_HIGH;
2262 
2263 	/* Device DUAL/QUAD mode */
2264 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2265 		switch (value) {
2266 		case 0:
2267 			spi->mode |= SPI_NO_TX;
2268 			break;
2269 		case 1:
2270 			break;
2271 		case 2:
2272 			spi->mode |= SPI_TX_DUAL;
2273 			break;
2274 		case 4:
2275 			spi->mode |= SPI_TX_QUAD;
2276 			break;
2277 		case 8:
2278 			spi->mode |= SPI_TX_OCTAL;
2279 			break;
2280 		default:
2281 			dev_warn(&ctlr->dev,
2282 				"spi-tx-bus-width %d not supported\n",
2283 				value);
2284 			break;
2285 		}
2286 	}
2287 
2288 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2289 		switch (value) {
2290 		case 0:
2291 			spi->mode |= SPI_NO_RX;
2292 			break;
2293 		case 1:
2294 			break;
2295 		case 2:
2296 			spi->mode |= SPI_RX_DUAL;
2297 			break;
2298 		case 4:
2299 			spi->mode |= SPI_RX_QUAD;
2300 			break;
2301 		case 8:
2302 			spi->mode |= SPI_RX_OCTAL;
2303 			break;
2304 		default:
2305 			dev_warn(&ctlr->dev,
2306 				"spi-rx-bus-width %d not supported\n",
2307 				value);
2308 			break;
2309 		}
2310 	}
2311 
2312 	if (spi_controller_is_slave(ctlr)) {
2313 		if (!of_node_name_eq(nc, "slave")) {
2314 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2315 				nc);
2316 			return -EINVAL;
2317 		}
2318 		return 0;
2319 	}
2320 
2321 	/* Device address */
2322 	rc = of_property_read_u32(nc, "reg", &value);
2323 	if (rc) {
2324 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2325 			nc, rc);
2326 		return rc;
2327 	}
2328 	spi_set_chipselect(spi, 0, value);
2329 
2330 	/* Device speed */
2331 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2332 		spi->max_speed_hz = value;
2333 
2334 	/* Device CS delays */
2335 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2336 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2337 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2338 
2339 	return 0;
2340 }
2341 
2342 static struct spi_device *
2343 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2344 {
2345 	struct spi_device *spi;
2346 	int rc;
2347 
2348 	/* Alloc an spi_device */
2349 	spi = spi_alloc_device(ctlr);
2350 	if (!spi) {
2351 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2352 		rc = -ENOMEM;
2353 		goto err_out;
2354 	}
2355 
2356 	/* Select device driver */
2357 	rc = of_modalias_node(nc, spi->modalias,
2358 				sizeof(spi->modalias));
2359 	if (rc < 0) {
2360 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2361 		goto err_out;
2362 	}
2363 
2364 	rc = of_spi_parse_dt(ctlr, spi, nc);
2365 	if (rc)
2366 		goto err_out;
2367 
2368 	/* Store a pointer to the node in the device structure */
2369 	of_node_get(nc);
2370 	spi->dev.of_node = nc;
2371 	spi->dev.fwnode = of_fwnode_handle(nc);
2372 
2373 	/* Register the new device */
2374 	rc = spi_add_device(spi);
2375 	if (rc) {
2376 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2377 		goto err_of_node_put;
2378 	}
2379 
2380 	return spi;
2381 
2382 err_of_node_put:
2383 	of_node_put(nc);
2384 err_out:
2385 	spi_dev_put(spi);
2386 	return ERR_PTR(rc);
2387 }
2388 
2389 /**
2390  * of_register_spi_devices() - Register child devices onto the SPI bus
2391  * @ctlr:	Pointer to spi_controller device
2392  *
2393  * Registers an spi_device for each child node of controller node which
2394  * represents a valid SPI slave.
2395  */
2396 static void of_register_spi_devices(struct spi_controller *ctlr)
2397 {
2398 	struct spi_device *spi;
2399 	struct device_node *nc;
2400 
2401 	if (!ctlr->dev.of_node)
2402 		return;
2403 
2404 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2405 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2406 			continue;
2407 		spi = of_register_spi_device(ctlr, nc);
2408 		if (IS_ERR(spi)) {
2409 			dev_warn(&ctlr->dev,
2410 				 "Failed to create SPI device for %pOF\n", nc);
2411 			of_node_clear_flag(nc, OF_POPULATED);
2412 		}
2413 	}
2414 }
2415 #else
2416 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2417 #endif
2418 
2419 /**
2420  * spi_new_ancillary_device() - Register ancillary SPI device
2421  * @spi:         Pointer to the main SPI device registering the ancillary device
2422  * @chip_select: Chip Select of the ancillary device
2423  *
2424  * Register an ancillary SPI device; for example some chips have a chip-select
2425  * for normal device usage and another one for setup/firmware upload.
2426  *
2427  * This may only be called from main SPI device's probe routine.
2428  *
2429  * Return: 0 on success; negative errno on failure
2430  */
2431 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2432 					     u8 chip_select)
2433 {
2434 	struct spi_device *ancillary;
2435 	int rc = 0;
2436 
2437 	/* Alloc an spi_device */
2438 	ancillary = spi_alloc_device(spi->controller);
2439 	if (!ancillary) {
2440 		rc = -ENOMEM;
2441 		goto err_out;
2442 	}
2443 
2444 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2445 
2446 	/* Use provided chip-select for ancillary device */
2447 	spi_set_chipselect(ancillary, 0, chip_select);
2448 
2449 	/* Take over SPI mode/speed from SPI main device */
2450 	ancillary->max_speed_hz = spi->max_speed_hz;
2451 	ancillary->mode = spi->mode;
2452 
2453 	/* Register the new device */
2454 	rc = spi_add_device_locked(ancillary);
2455 	if (rc) {
2456 		dev_err(&spi->dev, "failed to register ancillary device\n");
2457 		goto err_out;
2458 	}
2459 
2460 	return ancillary;
2461 
2462 err_out:
2463 	spi_dev_put(ancillary);
2464 	return ERR_PTR(rc);
2465 }
2466 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2467 
2468 #ifdef CONFIG_ACPI
2469 struct acpi_spi_lookup {
2470 	struct spi_controller 	*ctlr;
2471 	u32			max_speed_hz;
2472 	u32			mode;
2473 	int			irq;
2474 	u8			bits_per_word;
2475 	u8			chip_select;
2476 	int			n;
2477 	int			index;
2478 };
2479 
2480 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2481 {
2482 	struct acpi_resource_spi_serialbus *sb;
2483 	int *count = data;
2484 
2485 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2486 		return 1;
2487 
2488 	sb = &ares->data.spi_serial_bus;
2489 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2490 		return 1;
2491 
2492 	*count = *count + 1;
2493 
2494 	return 1;
2495 }
2496 
2497 /**
2498  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2499  * @adev:	ACPI device
2500  *
2501  * Returns the number of SpiSerialBus resources in the ACPI-device's
2502  * resource-list; or a negative error code.
2503  */
2504 int acpi_spi_count_resources(struct acpi_device *adev)
2505 {
2506 	LIST_HEAD(r);
2507 	int count = 0;
2508 	int ret;
2509 
2510 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2511 	if (ret < 0)
2512 		return ret;
2513 
2514 	acpi_dev_free_resource_list(&r);
2515 
2516 	return count;
2517 }
2518 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2519 
2520 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2521 					    struct acpi_spi_lookup *lookup)
2522 {
2523 	const union acpi_object *obj;
2524 
2525 	if (!x86_apple_machine)
2526 		return;
2527 
2528 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2529 	    && obj->buffer.length >= 4)
2530 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2531 
2532 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2533 	    && obj->buffer.length == 8)
2534 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2535 
2536 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2537 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2538 		lookup->mode |= SPI_LSB_FIRST;
2539 
2540 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2541 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2542 		lookup->mode |= SPI_CPOL;
2543 
2544 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2545 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2546 		lookup->mode |= SPI_CPHA;
2547 }
2548 
2549 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2550 
2551 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2552 {
2553 	struct acpi_spi_lookup *lookup = data;
2554 	struct spi_controller *ctlr = lookup->ctlr;
2555 
2556 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2557 		struct acpi_resource_spi_serialbus *sb;
2558 		acpi_handle parent_handle;
2559 		acpi_status status;
2560 
2561 		sb = &ares->data.spi_serial_bus;
2562 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2563 
2564 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2565 				return 1;
2566 
2567 			status = acpi_get_handle(NULL,
2568 						 sb->resource_source.string_ptr,
2569 						 &parent_handle);
2570 
2571 			if (ACPI_FAILURE(status))
2572 				return -ENODEV;
2573 
2574 			if (ctlr) {
2575 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2576 					return -ENODEV;
2577 			} else {
2578 				struct acpi_device *adev;
2579 
2580 				adev = acpi_fetch_acpi_dev(parent_handle);
2581 				if (!adev)
2582 					return -ENODEV;
2583 
2584 				ctlr = acpi_spi_find_controller_by_adev(adev);
2585 				if (!ctlr)
2586 					return -EPROBE_DEFER;
2587 
2588 				lookup->ctlr = ctlr;
2589 			}
2590 
2591 			/*
2592 			 * ACPI DeviceSelection numbering is handled by the
2593 			 * host controller driver in Windows and can vary
2594 			 * from driver to driver. In Linux we always expect
2595 			 * 0 .. max - 1 so we need to ask the driver to
2596 			 * translate between the two schemes.
2597 			 */
2598 			if (ctlr->fw_translate_cs) {
2599 				int cs = ctlr->fw_translate_cs(ctlr,
2600 						sb->device_selection);
2601 				if (cs < 0)
2602 					return cs;
2603 				lookup->chip_select = cs;
2604 			} else {
2605 				lookup->chip_select = sb->device_selection;
2606 			}
2607 
2608 			lookup->max_speed_hz = sb->connection_speed;
2609 			lookup->bits_per_word = sb->data_bit_length;
2610 
2611 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2612 				lookup->mode |= SPI_CPHA;
2613 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2614 				lookup->mode |= SPI_CPOL;
2615 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2616 				lookup->mode |= SPI_CS_HIGH;
2617 		}
2618 	} else if (lookup->irq < 0) {
2619 		struct resource r;
2620 
2621 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2622 			lookup->irq = r.start;
2623 	}
2624 
2625 	/* Always tell the ACPI core to skip this resource */
2626 	return 1;
2627 }
2628 
2629 /**
2630  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2631  * @ctlr: controller to which the spi device belongs
2632  * @adev: ACPI Device for the spi device
2633  * @index: Index of the spi resource inside the ACPI Node
2634  *
2635  * This should be used to allocate a new spi device from and ACPI Node.
2636  * The caller is responsible for calling spi_add_device to register the spi device.
2637  *
2638  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2639  * using the resource.
2640  * If index is set to -1, index is not used.
2641  * Note: If index is -1, ctlr must be set.
2642  *
2643  * Return: a pointer to the new device, or ERR_PTR on error.
2644  */
2645 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2646 					 struct acpi_device *adev,
2647 					 int index)
2648 {
2649 	acpi_handle parent_handle = NULL;
2650 	struct list_head resource_list;
2651 	struct acpi_spi_lookup lookup = {};
2652 	struct spi_device *spi;
2653 	int ret;
2654 
2655 	if (!ctlr && index == -1)
2656 		return ERR_PTR(-EINVAL);
2657 
2658 	lookup.ctlr		= ctlr;
2659 	lookup.irq		= -1;
2660 	lookup.index		= index;
2661 	lookup.n		= 0;
2662 
2663 	INIT_LIST_HEAD(&resource_list);
2664 	ret = acpi_dev_get_resources(adev, &resource_list,
2665 				     acpi_spi_add_resource, &lookup);
2666 	acpi_dev_free_resource_list(&resource_list);
2667 
2668 	if (ret < 0)
2669 		/* Found SPI in _CRS but it points to another controller */
2670 		return ERR_PTR(ret);
2671 
2672 	if (!lookup.max_speed_hz &&
2673 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2674 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2675 		/* Apple does not use _CRS but nested devices for SPI slaves */
2676 		acpi_spi_parse_apple_properties(adev, &lookup);
2677 	}
2678 
2679 	if (!lookup.max_speed_hz)
2680 		return ERR_PTR(-ENODEV);
2681 
2682 	spi = spi_alloc_device(lookup.ctlr);
2683 	if (!spi) {
2684 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2685 			dev_name(&adev->dev));
2686 		return ERR_PTR(-ENOMEM);
2687 	}
2688 
2689 	ACPI_COMPANION_SET(&spi->dev, adev);
2690 	spi->max_speed_hz	= lookup.max_speed_hz;
2691 	spi->mode		|= lookup.mode;
2692 	spi->irq		= lookup.irq;
2693 	spi->bits_per_word	= lookup.bits_per_word;
2694 	spi_set_chipselect(spi, 0, lookup.chip_select);
2695 
2696 	return spi;
2697 }
2698 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2699 
2700 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2701 					    struct acpi_device *adev)
2702 {
2703 	struct spi_device *spi;
2704 
2705 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2706 	    acpi_device_enumerated(adev))
2707 		return AE_OK;
2708 
2709 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2710 	if (IS_ERR(spi)) {
2711 		if (PTR_ERR(spi) == -ENOMEM)
2712 			return AE_NO_MEMORY;
2713 		else
2714 			return AE_OK;
2715 	}
2716 
2717 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2718 			  sizeof(spi->modalias));
2719 
2720 	if (spi->irq < 0)
2721 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2722 
2723 	acpi_device_set_enumerated(adev);
2724 
2725 	adev->power.flags.ignore_parent = true;
2726 	if (spi_add_device(spi)) {
2727 		adev->power.flags.ignore_parent = false;
2728 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2729 			dev_name(&adev->dev));
2730 		spi_dev_put(spi);
2731 	}
2732 
2733 	return AE_OK;
2734 }
2735 
2736 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2737 				       void *data, void **return_value)
2738 {
2739 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2740 	struct spi_controller *ctlr = data;
2741 
2742 	if (!adev)
2743 		return AE_OK;
2744 
2745 	return acpi_register_spi_device(ctlr, adev);
2746 }
2747 
2748 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2749 
2750 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2751 {
2752 	acpi_status status;
2753 	acpi_handle handle;
2754 
2755 	handle = ACPI_HANDLE(ctlr->dev.parent);
2756 	if (!handle)
2757 		return;
2758 
2759 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2760 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2761 				     acpi_spi_add_device, NULL, ctlr, NULL);
2762 	if (ACPI_FAILURE(status))
2763 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2764 }
2765 #else
2766 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2767 #endif /* CONFIG_ACPI */
2768 
2769 static void spi_controller_release(struct device *dev)
2770 {
2771 	struct spi_controller *ctlr;
2772 
2773 	ctlr = container_of(dev, struct spi_controller, dev);
2774 	kfree(ctlr);
2775 }
2776 
2777 static struct class spi_master_class = {
2778 	.name		= "spi_master",
2779 	.owner		= THIS_MODULE,
2780 	.dev_release	= spi_controller_release,
2781 	.dev_groups	= spi_master_groups,
2782 };
2783 
2784 #ifdef CONFIG_SPI_SLAVE
2785 /**
2786  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2787  *		     controller
2788  * @spi: device used for the current transfer
2789  */
2790 int spi_slave_abort(struct spi_device *spi)
2791 {
2792 	struct spi_controller *ctlr = spi->controller;
2793 
2794 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2795 		return ctlr->slave_abort(ctlr);
2796 
2797 	return -ENOTSUPP;
2798 }
2799 EXPORT_SYMBOL_GPL(spi_slave_abort);
2800 
2801 int spi_target_abort(struct spi_device *spi)
2802 {
2803 	struct spi_controller *ctlr = spi->controller;
2804 
2805 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2806 		return ctlr->target_abort(ctlr);
2807 
2808 	return -ENOTSUPP;
2809 }
2810 EXPORT_SYMBOL_GPL(spi_target_abort);
2811 
2812 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2813 			  char *buf)
2814 {
2815 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2816 						   dev);
2817 	struct device *child;
2818 
2819 	child = device_find_any_child(&ctlr->dev);
2820 	return sprintf(buf, "%s\n",
2821 		       child ? to_spi_device(child)->modalias : NULL);
2822 }
2823 
2824 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2825 			   const char *buf, size_t count)
2826 {
2827 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2828 						   dev);
2829 	struct spi_device *spi;
2830 	struct device *child;
2831 	char name[32];
2832 	int rc;
2833 
2834 	rc = sscanf(buf, "%31s", name);
2835 	if (rc != 1 || !name[0])
2836 		return -EINVAL;
2837 
2838 	child = device_find_any_child(&ctlr->dev);
2839 	if (child) {
2840 		/* Remove registered slave */
2841 		device_unregister(child);
2842 		put_device(child);
2843 	}
2844 
2845 	if (strcmp(name, "(null)")) {
2846 		/* Register new slave */
2847 		spi = spi_alloc_device(ctlr);
2848 		if (!spi)
2849 			return -ENOMEM;
2850 
2851 		strscpy(spi->modalias, name, sizeof(spi->modalias));
2852 
2853 		rc = spi_add_device(spi);
2854 		if (rc) {
2855 			spi_dev_put(spi);
2856 			return rc;
2857 		}
2858 	}
2859 
2860 	return count;
2861 }
2862 
2863 static DEVICE_ATTR_RW(slave);
2864 
2865 static struct attribute *spi_slave_attrs[] = {
2866 	&dev_attr_slave.attr,
2867 	NULL,
2868 };
2869 
2870 static const struct attribute_group spi_slave_group = {
2871 	.attrs = spi_slave_attrs,
2872 };
2873 
2874 static const struct attribute_group *spi_slave_groups[] = {
2875 	&spi_controller_statistics_group,
2876 	&spi_slave_group,
2877 	NULL,
2878 };
2879 
2880 static struct class spi_slave_class = {
2881 	.name		= "spi_slave",
2882 	.owner		= THIS_MODULE,
2883 	.dev_release	= spi_controller_release,
2884 	.dev_groups	= spi_slave_groups,
2885 };
2886 #else
2887 extern struct class spi_slave_class;	/* dummy */
2888 #endif
2889 
2890 /**
2891  * __spi_alloc_controller - allocate an SPI master or slave controller
2892  * @dev: the controller, possibly using the platform_bus
2893  * @size: how much zeroed driver-private data to allocate; the pointer to this
2894  *	memory is in the driver_data field of the returned device, accessible
2895  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2896  *	drivers granting DMA access to portions of their private data need to
2897  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2898  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2899  *	slave (true) controller
2900  * Context: can sleep
2901  *
2902  * This call is used only by SPI controller drivers, which are the
2903  * only ones directly touching chip registers.  It's how they allocate
2904  * an spi_controller structure, prior to calling spi_register_controller().
2905  *
2906  * This must be called from context that can sleep.
2907  *
2908  * The caller is responsible for assigning the bus number and initializing the
2909  * controller's methods before calling spi_register_controller(); and (after
2910  * errors adding the device) calling spi_controller_put() to prevent a memory
2911  * leak.
2912  *
2913  * Return: the SPI controller structure on success, else NULL.
2914  */
2915 struct spi_controller *__spi_alloc_controller(struct device *dev,
2916 					      unsigned int size, bool slave)
2917 {
2918 	struct spi_controller	*ctlr;
2919 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2920 
2921 	if (!dev)
2922 		return NULL;
2923 
2924 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2925 	if (!ctlr)
2926 		return NULL;
2927 
2928 	device_initialize(&ctlr->dev);
2929 	INIT_LIST_HEAD(&ctlr->queue);
2930 	spin_lock_init(&ctlr->queue_lock);
2931 	spin_lock_init(&ctlr->bus_lock_spinlock);
2932 	mutex_init(&ctlr->bus_lock_mutex);
2933 	mutex_init(&ctlr->io_mutex);
2934 	mutex_init(&ctlr->add_lock);
2935 	ctlr->bus_num = -1;
2936 	ctlr->num_chipselect = 1;
2937 	ctlr->slave = slave;
2938 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2939 		ctlr->dev.class = &spi_slave_class;
2940 	else
2941 		ctlr->dev.class = &spi_master_class;
2942 	ctlr->dev.parent = dev;
2943 	pm_suspend_ignore_children(&ctlr->dev, true);
2944 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2945 
2946 	return ctlr;
2947 }
2948 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2949 
2950 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2951 {
2952 	spi_controller_put(*(struct spi_controller **)ctlr);
2953 }
2954 
2955 /**
2956  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2957  * @dev: physical device of SPI controller
2958  * @size: how much zeroed driver-private data to allocate
2959  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2960  * Context: can sleep
2961  *
2962  * Allocate an SPI controller and automatically release a reference on it
2963  * when @dev is unbound from its driver.  Drivers are thus relieved from
2964  * having to call spi_controller_put().
2965  *
2966  * The arguments to this function are identical to __spi_alloc_controller().
2967  *
2968  * Return: the SPI controller structure on success, else NULL.
2969  */
2970 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2971 						   unsigned int size,
2972 						   bool slave)
2973 {
2974 	struct spi_controller **ptr, *ctlr;
2975 
2976 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2977 			   GFP_KERNEL);
2978 	if (!ptr)
2979 		return NULL;
2980 
2981 	ctlr = __spi_alloc_controller(dev, size, slave);
2982 	if (ctlr) {
2983 		ctlr->devm_allocated = true;
2984 		*ptr = ctlr;
2985 		devres_add(dev, ptr);
2986 	} else {
2987 		devres_free(ptr);
2988 	}
2989 
2990 	return ctlr;
2991 }
2992 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2993 
2994 /**
2995  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2996  * @ctlr: The SPI master to grab GPIO descriptors for
2997  */
2998 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2999 {
3000 	int nb, i;
3001 	struct gpio_desc **cs;
3002 	struct device *dev = &ctlr->dev;
3003 	unsigned long native_cs_mask = 0;
3004 	unsigned int num_cs_gpios = 0;
3005 
3006 	nb = gpiod_count(dev, "cs");
3007 	if (nb < 0) {
3008 		/* No GPIOs at all is fine, else return the error */
3009 		if (nb == -ENOENT)
3010 			return 0;
3011 		return nb;
3012 	}
3013 
3014 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3015 
3016 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3017 			  GFP_KERNEL);
3018 	if (!cs)
3019 		return -ENOMEM;
3020 	ctlr->cs_gpiods = cs;
3021 
3022 	for (i = 0; i < nb; i++) {
3023 		/*
3024 		 * Most chipselects are active low, the inverted
3025 		 * semantics are handled by special quirks in gpiolib,
3026 		 * so initializing them GPIOD_OUT_LOW here means
3027 		 * "unasserted", in most cases this will drive the physical
3028 		 * line high.
3029 		 */
3030 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3031 						      GPIOD_OUT_LOW);
3032 		if (IS_ERR(cs[i]))
3033 			return PTR_ERR(cs[i]);
3034 
3035 		if (cs[i]) {
3036 			/*
3037 			 * If we find a CS GPIO, name it after the device and
3038 			 * chip select line.
3039 			 */
3040 			char *gpioname;
3041 
3042 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3043 						  dev_name(dev), i);
3044 			if (!gpioname)
3045 				return -ENOMEM;
3046 			gpiod_set_consumer_name(cs[i], gpioname);
3047 			num_cs_gpios++;
3048 			continue;
3049 		}
3050 
3051 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3052 			dev_err(dev, "Invalid native chip select %d\n", i);
3053 			return -EINVAL;
3054 		}
3055 		native_cs_mask |= BIT(i);
3056 	}
3057 
3058 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3059 
3060 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3061 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3062 		dev_err(dev, "No unused native chip select available\n");
3063 		return -EINVAL;
3064 	}
3065 
3066 	return 0;
3067 }
3068 
3069 static int spi_controller_check_ops(struct spi_controller *ctlr)
3070 {
3071 	/*
3072 	 * The controller may implement only the high-level SPI-memory like
3073 	 * operations if it does not support regular SPI transfers, and this is
3074 	 * valid use case.
3075 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3076 	 * one of the ->transfer_xxx() method be implemented.
3077 	 */
3078 	if (!ctlr->mem_ops || (ctlr->mem_ops && !ctlr->mem_ops->exec_op)) {
3079 		if (!ctlr->transfer && !ctlr->transfer_one &&
3080 		   !ctlr->transfer_one_message) {
3081 			return -EINVAL;
3082 		}
3083 	}
3084 
3085 	return 0;
3086 }
3087 
3088 /**
3089  * spi_register_controller - register SPI master or slave controller
3090  * @ctlr: initialized master, originally from spi_alloc_master() or
3091  *	spi_alloc_slave()
3092  * Context: can sleep
3093  *
3094  * SPI controllers connect to their drivers using some non-SPI bus,
3095  * such as the platform bus.  The final stage of probe() in that code
3096  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3097  *
3098  * SPI controllers use board specific (often SOC specific) bus numbers,
3099  * and board-specific addressing for SPI devices combines those numbers
3100  * with chip select numbers.  Since SPI does not directly support dynamic
3101  * device identification, boards need configuration tables telling which
3102  * chip is at which address.
3103  *
3104  * This must be called from context that can sleep.  It returns zero on
3105  * success, else a negative error code (dropping the controller's refcount).
3106  * After a successful return, the caller is responsible for calling
3107  * spi_unregister_controller().
3108  *
3109  * Return: zero on success, else a negative error code.
3110  */
3111 int spi_register_controller(struct spi_controller *ctlr)
3112 {
3113 	struct device		*dev = ctlr->dev.parent;
3114 	struct boardinfo	*bi;
3115 	int			status;
3116 	int			id, first_dynamic;
3117 
3118 	if (!dev)
3119 		return -ENODEV;
3120 
3121 	/*
3122 	 * Make sure all necessary hooks are implemented before registering
3123 	 * the SPI controller.
3124 	 */
3125 	status = spi_controller_check_ops(ctlr);
3126 	if (status)
3127 		return status;
3128 
3129 	if (ctlr->bus_num >= 0) {
3130 		/* Devices with a fixed bus num must check-in with the num */
3131 		mutex_lock(&board_lock);
3132 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3133 			ctlr->bus_num + 1, GFP_KERNEL);
3134 		mutex_unlock(&board_lock);
3135 		if (WARN(id < 0, "couldn't get idr"))
3136 			return id == -ENOSPC ? -EBUSY : id;
3137 		ctlr->bus_num = id;
3138 	} else if (ctlr->dev.of_node) {
3139 		/* Allocate dynamic bus number using Linux idr */
3140 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
3141 		if (id >= 0) {
3142 			ctlr->bus_num = id;
3143 			mutex_lock(&board_lock);
3144 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3145 				       ctlr->bus_num + 1, GFP_KERNEL);
3146 			mutex_unlock(&board_lock);
3147 			if (WARN(id < 0, "couldn't get idr"))
3148 				return id == -ENOSPC ? -EBUSY : id;
3149 		}
3150 	}
3151 	if (ctlr->bus_num < 0) {
3152 		first_dynamic = of_alias_get_highest_id("spi");
3153 		if (first_dynamic < 0)
3154 			first_dynamic = 0;
3155 		else
3156 			first_dynamic++;
3157 
3158 		mutex_lock(&board_lock);
3159 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3160 			       0, GFP_KERNEL);
3161 		mutex_unlock(&board_lock);
3162 		if (WARN(id < 0, "couldn't get idr"))
3163 			return id;
3164 		ctlr->bus_num = id;
3165 	}
3166 	ctlr->bus_lock_flag = 0;
3167 	init_completion(&ctlr->xfer_completion);
3168 	init_completion(&ctlr->cur_msg_completion);
3169 	if (!ctlr->max_dma_len)
3170 		ctlr->max_dma_len = INT_MAX;
3171 
3172 	/*
3173 	 * Register the device, then userspace will see it.
3174 	 * Registration fails if the bus ID is in use.
3175 	 */
3176 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3177 
3178 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3179 		status = spi_get_gpio_descs(ctlr);
3180 		if (status)
3181 			goto free_bus_id;
3182 		/*
3183 		 * A controller using GPIO descriptors always
3184 		 * supports SPI_CS_HIGH if need be.
3185 		 */
3186 		ctlr->mode_bits |= SPI_CS_HIGH;
3187 	}
3188 
3189 	/*
3190 	 * Even if it's just one always-selected device, there must
3191 	 * be at least one chipselect.
3192 	 */
3193 	if (!ctlr->num_chipselect) {
3194 		status = -EINVAL;
3195 		goto free_bus_id;
3196 	}
3197 
3198 	/* Setting last_cs to -1 means no chip selected */
3199 	ctlr->last_cs = -1;
3200 
3201 	status = device_add(&ctlr->dev);
3202 	if (status < 0)
3203 		goto free_bus_id;
3204 	dev_dbg(dev, "registered %s %s\n",
3205 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3206 			dev_name(&ctlr->dev));
3207 
3208 	/*
3209 	 * If we're using a queued driver, start the queue. Note that we don't
3210 	 * need the queueing logic if the driver is only supporting high-level
3211 	 * memory operations.
3212 	 */
3213 	if (ctlr->transfer) {
3214 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3215 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3216 		status = spi_controller_initialize_queue(ctlr);
3217 		if (status) {
3218 			device_del(&ctlr->dev);
3219 			goto free_bus_id;
3220 		}
3221 	}
3222 	/* Add statistics */
3223 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3224 	if (!ctlr->pcpu_statistics) {
3225 		dev_err(dev, "Error allocating per-cpu statistics\n");
3226 		status = -ENOMEM;
3227 		goto destroy_queue;
3228 	}
3229 
3230 	mutex_lock(&board_lock);
3231 	list_add_tail(&ctlr->list, &spi_controller_list);
3232 	list_for_each_entry(bi, &board_list, list)
3233 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3234 	mutex_unlock(&board_lock);
3235 
3236 	/* Register devices from the device tree and ACPI */
3237 	of_register_spi_devices(ctlr);
3238 	acpi_register_spi_devices(ctlr);
3239 	return status;
3240 
3241 destroy_queue:
3242 	spi_destroy_queue(ctlr);
3243 free_bus_id:
3244 	mutex_lock(&board_lock);
3245 	idr_remove(&spi_master_idr, ctlr->bus_num);
3246 	mutex_unlock(&board_lock);
3247 	return status;
3248 }
3249 EXPORT_SYMBOL_GPL(spi_register_controller);
3250 
3251 static void devm_spi_unregister(struct device *dev, void *res)
3252 {
3253 	spi_unregister_controller(*(struct spi_controller **)res);
3254 }
3255 
3256 /**
3257  * devm_spi_register_controller - register managed SPI master or slave
3258  *	controller
3259  * @dev:    device managing SPI controller
3260  * @ctlr: initialized controller, originally from spi_alloc_master() or
3261  *	spi_alloc_slave()
3262  * Context: can sleep
3263  *
3264  * Register a SPI device as with spi_register_controller() which will
3265  * automatically be unregistered and freed.
3266  *
3267  * Return: zero on success, else a negative error code.
3268  */
3269 int devm_spi_register_controller(struct device *dev,
3270 				 struct spi_controller *ctlr)
3271 {
3272 	struct spi_controller **ptr;
3273 	int ret;
3274 
3275 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3276 	if (!ptr)
3277 		return -ENOMEM;
3278 
3279 	ret = spi_register_controller(ctlr);
3280 	if (!ret) {
3281 		*ptr = ctlr;
3282 		devres_add(dev, ptr);
3283 	} else {
3284 		devres_free(ptr);
3285 	}
3286 
3287 	return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3290 
3291 static int __unregister(struct device *dev, void *null)
3292 {
3293 	spi_unregister_device(to_spi_device(dev));
3294 	return 0;
3295 }
3296 
3297 /**
3298  * spi_unregister_controller - unregister SPI master or slave controller
3299  * @ctlr: the controller being unregistered
3300  * Context: can sleep
3301  *
3302  * This call is used only by SPI controller drivers, which are the
3303  * only ones directly touching chip registers.
3304  *
3305  * This must be called from context that can sleep.
3306  *
3307  * Note that this function also drops a reference to the controller.
3308  */
3309 void spi_unregister_controller(struct spi_controller *ctlr)
3310 {
3311 	struct spi_controller *found;
3312 	int id = ctlr->bus_num;
3313 
3314 	/* Prevent addition of new devices, unregister existing ones */
3315 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3316 		mutex_lock(&ctlr->add_lock);
3317 
3318 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3319 
3320 	/* First make sure that this controller was ever added */
3321 	mutex_lock(&board_lock);
3322 	found = idr_find(&spi_master_idr, id);
3323 	mutex_unlock(&board_lock);
3324 	if (ctlr->queued) {
3325 		if (spi_destroy_queue(ctlr))
3326 			dev_err(&ctlr->dev, "queue remove failed\n");
3327 	}
3328 	mutex_lock(&board_lock);
3329 	list_del(&ctlr->list);
3330 	mutex_unlock(&board_lock);
3331 
3332 	device_del(&ctlr->dev);
3333 
3334 	/* Free bus id */
3335 	mutex_lock(&board_lock);
3336 	if (found == ctlr)
3337 		idr_remove(&spi_master_idr, id);
3338 	mutex_unlock(&board_lock);
3339 
3340 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3341 		mutex_unlock(&ctlr->add_lock);
3342 
3343 	/* Release the last reference on the controller if its driver
3344 	 * has not yet been converted to devm_spi_alloc_master/slave().
3345 	 */
3346 	if (!ctlr->devm_allocated)
3347 		put_device(&ctlr->dev);
3348 }
3349 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3350 
3351 int spi_controller_suspend(struct spi_controller *ctlr)
3352 {
3353 	int ret;
3354 
3355 	/* Basically no-ops for non-queued controllers */
3356 	if (!ctlr->queued)
3357 		return 0;
3358 
3359 	ret = spi_stop_queue(ctlr);
3360 	if (ret)
3361 		dev_err(&ctlr->dev, "queue stop failed\n");
3362 
3363 	return ret;
3364 }
3365 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3366 
3367 int spi_controller_resume(struct spi_controller *ctlr)
3368 {
3369 	int ret;
3370 
3371 	if (!ctlr->queued)
3372 		return 0;
3373 
3374 	ret = spi_start_queue(ctlr);
3375 	if (ret)
3376 		dev_err(&ctlr->dev, "queue restart failed\n");
3377 
3378 	return ret;
3379 }
3380 EXPORT_SYMBOL_GPL(spi_controller_resume);
3381 
3382 /*-------------------------------------------------------------------------*/
3383 
3384 /* Core methods for spi_message alterations */
3385 
3386 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3387 					    struct spi_message *msg,
3388 					    void *res)
3389 {
3390 	struct spi_replaced_transfers *rxfer = res;
3391 	size_t i;
3392 
3393 	/* Call extra callback if requested */
3394 	if (rxfer->release)
3395 		rxfer->release(ctlr, msg, res);
3396 
3397 	/* Insert replaced transfers back into the message */
3398 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3399 
3400 	/* Remove the formerly inserted entries */
3401 	for (i = 0; i < rxfer->inserted; i++)
3402 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3403 }
3404 
3405 /**
3406  * spi_replace_transfers - replace transfers with several transfers
3407  *                         and register change with spi_message.resources
3408  * @msg:           the spi_message we work upon
3409  * @xfer_first:    the first spi_transfer we want to replace
3410  * @remove:        number of transfers to remove
3411  * @insert:        the number of transfers we want to insert instead
3412  * @release:       extra release code necessary in some circumstances
3413  * @extradatasize: extra data to allocate (with alignment guarantees
3414  *                 of struct @spi_transfer)
3415  * @gfp:           gfp flags
3416  *
3417  * Returns: pointer to @spi_replaced_transfers,
3418  *          PTR_ERR(...) in case of errors.
3419  */
3420 static struct spi_replaced_transfers *spi_replace_transfers(
3421 	struct spi_message *msg,
3422 	struct spi_transfer *xfer_first,
3423 	size_t remove,
3424 	size_t insert,
3425 	spi_replaced_release_t release,
3426 	size_t extradatasize,
3427 	gfp_t gfp)
3428 {
3429 	struct spi_replaced_transfers *rxfer;
3430 	struct spi_transfer *xfer;
3431 	size_t i;
3432 
3433 	/* Allocate the structure using spi_res */
3434 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3435 			      struct_size(rxfer, inserted_transfers, insert)
3436 			      + extradatasize,
3437 			      gfp);
3438 	if (!rxfer)
3439 		return ERR_PTR(-ENOMEM);
3440 
3441 	/* The release code to invoke before running the generic release */
3442 	rxfer->release = release;
3443 
3444 	/* Assign extradata */
3445 	if (extradatasize)
3446 		rxfer->extradata =
3447 			&rxfer->inserted_transfers[insert];
3448 
3449 	/* Init the replaced_transfers list */
3450 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3451 
3452 	/*
3453 	 * Assign the list_entry after which we should reinsert
3454 	 * the @replaced_transfers - it may be spi_message.messages!
3455 	 */
3456 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3457 
3458 	/* Remove the requested number of transfers */
3459 	for (i = 0; i < remove; i++) {
3460 		/*
3461 		 * If the entry after replaced_after it is msg->transfers
3462 		 * then we have been requested to remove more transfers
3463 		 * than are in the list.
3464 		 */
3465 		if (rxfer->replaced_after->next == &msg->transfers) {
3466 			dev_err(&msg->spi->dev,
3467 				"requested to remove more spi_transfers than are available\n");
3468 			/* Insert replaced transfers back into the message */
3469 			list_splice(&rxfer->replaced_transfers,
3470 				    rxfer->replaced_after);
3471 
3472 			/* Free the spi_replace_transfer structure... */
3473 			spi_res_free(rxfer);
3474 
3475 			/* ...and return with an error */
3476 			return ERR_PTR(-EINVAL);
3477 		}
3478 
3479 		/*
3480 		 * Remove the entry after replaced_after from list of
3481 		 * transfers and add it to list of replaced_transfers.
3482 		 */
3483 		list_move_tail(rxfer->replaced_after->next,
3484 			       &rxfer->replaced_transfers);
3485 	}
3486 
3487 	/*
3488 	 * Create copy of the given xfer with identical settings
3489 	 * based on the first transfer to get removed.
3490 	 */
3491 	for (i = 0; i < insert; i++) {
3492 		/* We need to run in reverse order */
3493 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3494 
3495 		/* Copy all spi_transfer data */
3496 		memcpy(xfer, xfer_first, sizeof(*xfer));
3497 
3498 		/* Add to list */
3499 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3500 
3501 		/* Clear cs_change and delay for all but the last */
3502 		if (i) {
3503 			xfer->cs_change = false;
3504 			xfer->delay.value = 0;
3505 		}
3506 	}
3507 
3508 	/* Set up inserted... */
3509 	rxfer->inserted = insert;
3510 
3511 	/* ...and register it with spi_res/spi_message */
3512 	spi_res_add(msg, rxfer);
3513 
3514 	return rxfer;
3515 }
3516 
3517 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3518 					struct spi_message *msg,
3519 					struct spi_transfer **xferp,
3520 					size_t maxsize,
3521 					gfp_t gfp)
3522 {
3523 	struct spi_transfer *xfer = *xferp, *xfers;
3524 	struct spi_replaced_transfers *srt;
3525 	size_t offset;
3526 	size_t count, i;
3527 
3528 	/* Calculate how many we have to replace */
3529 	count = DIV_ROUND_UP(xfer->len, maxsize);
3530 
3531 	/* Create replacement */
3532 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3533 	if (IS_ERR(srt))
3534 		return PTR_ERR(srt);
3535 	xfers = srt->inserted_transfers;
3536 
3537 	/*
3538 	 * Now handle each of those newly inserted spi_transfers.
3539 	 * Note that the replacements spi_transfers all are preset
3540 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3541 	 * are all identical (as well as most others)
3542 	 * so we just have to fix up len and the pointers.
3543 	 *
3544 	 * This also includes support for the depreciated
3545 	 * spi_message.is_dma_mapped interface.
3546 	 */
3547 
3548 	/*
3549 	 * The first transfer just needs the length modified, so we
3550 	 * run it outside the loop.
3551 	 */
3552 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3553 
3554 	/* All the others need rx_buf/tx_buf also set */
3555 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3556 		/* Update rx_buf, tx_buf and dma */
3557 		if (xfers[i].rx_buf)
3558 			xfers[i].rx_buf += offset;
3559 		if (xfers[i].rx_dma)
3560 			xfers[i].rx_dma += offset;
3561 		if (xfers[i].tx_buf)
3562 			xfers[i].tx_buf += offset;
3563 		if (xfers[i].tx_dma)
3564 			xfers[i].tx_dma += offset;
3565 
3566 		/* Update length */
3567 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3568 	}
3569 
3570 	/*
3571 	 * We set up xferp to the last entry we have inserted,
3572 	 * so that we skip those already split transfers.
3573 	 */
3574 	*xferp = &xfers[count - 1];
3575 
3576 	/* Increment statistics counters */
3577 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3578 				       transfers_split_maxsize);
3579 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3580 				       transfers_split_maxsize);
3581 
3582 	return 0;
3583 }
3584 
3585 /**
3586  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3587  *                               when an individual transfer exceeds a
3588  *                               certain size
3589  * @ctlr:    the @spi_controller for this transfer
3590  * @msg:   the @spi_message to transform
3591  * @maxsize:  the maximum when to apply this
3592  * @gfp: GFP allocation flags
3593  *
3594  * Return: status of transformation
3595  */
3596 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3597 				struct spi_message *msg,
3598 				size_t maxsize,
3599 				gfp_t gfp)
3600 {
3601 	struct spi_transfer *xfer;
3602 	int ret;
3603 
3604 	/*
3605 	 * Iterate over the transfer_list,
3606 	 * but note that xfer is advanced to the last transfer inserted
3607 	 * to avoid checking sizes again unnecessarily (also xfer does
3608 	 * potentially belong to a different list by the time the
3609 	 * replacement has happened).
3610 	 */
3611 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3612 		if (xfer->len > maxsize) {
3613 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3614 							   maxsize, gfp);
3615 			if (ret)
3616 				return ret;
3617 		}
3618 	}
3619 
3620 	return 0;
3621 }
3622 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3623 
3624 /*-------------------------------------------------------------------------*/
3625 
3626 /* Core methods for SPI controller protocol drivers.  Some of the
3627  * other core methods are currently defined as inline functions.
3628  */
3629 
3630 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3631 					u8 bits_per_word)
3632 {
3633 	if (ctlr->bits_per_word_mask) {
3634 		/* Only 32 bits fit in the mask */
3635 		if (bits_per_word > 32)
3636 			return -EINVAL;
3637 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3638 			return -EINVAL;
3639 	}
3640 
3641 	return 0;
3642 }
3643 
3644 /**
3645  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3646  * @spi: the device that requires specific CS timing configuration
3647  *
3648  * Return: zero on success, else a negative error code.
3649  */
3650 static int spi_set_cs_timing(struct spi_device *spi)
3651 {
3652 	struct device *parent = spi->controller->dev.parent;
3653 	int status = 0;
3654 
3655 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3656 		if (spi->controller->auto_runtime_pm) {
3657 			status = pm_runtime_get_sync(parent);
3658 			if (status < 0) {
3659 				pm_runtime_put_noidle(parent);
3660 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3661 					status);
3662 				return status;
3663 			}
3664 
3665 			status = spi->controller->set_cs_timing(spi);
3666 			pm_runtime_mark_last_busy(parent);
3667 			pm_runtime_put_autosuspend(parent);
3668 		} else {
3669 			status = spi->controller->set_cs_timing(spi);
3670 		}
3671 	}
3672 	return status;
3673 }
3674 
3675 /**
3676  * spi_setup - setup SPI mode and clock rate
3677  * @spi: the device whose settings are being modified
3678  * Context: can sleep, and no requests are queued to the device
3679  *
3680  * SPI protocol drivers may need to update the transfer mode if the
3681  * device doesn't work with its default.  They may likewise need
3682  * to update clock rates or word sizes from initial values.  This function
3683  * changes those settings, and must be called from a context that can sleep.
3684  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3685  * effect the next time the device is selected and data is transferred to
3686  * or from it.  When this function returns, the spi device is deselected.
3687  *
3688  * Note that this call will fail if the protocol driver specifies an option
3689  * that the underlying controller or its driver does not support.  For
3690  * example, not all hardware supports wire transfers using nine bit words,
3691  * LSB-first wire encoding, or active-high chipselects.
3692  *
3693  * Return: zero on success, else a negative error code.
3694  */
3695 int spi_setup(struct spi_device *spi)
3696 {
3697 	unsigned	bad_bits, ugly_bits;
3698 	int		status = 0;
3699 
3700 	/*
3701 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3702 	 * are set at the same time.
3703 	 */
3704 	if ((hweight_long(spi->mode &
3705 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3706 	    (hweight_long(spi->mode &
3707 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3708 		dev_err(&spi->dev,
3709 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3710 		return -EINVAL;
3711 	}
3712 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3713 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3714 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3715 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3716 		return -EINVAL;
3717 	/*
3718 	 * Help drivers fail *cleanly* when they need options
3719 	 * that aren't supported with their current controller.
3720 	 * SPI_CS_WORD has a fallback software implementation,
3721 	 * so it is ignored here.
3722 	 */
3723 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3724 				 SPI_NO_TX | SPI_NO_RX);
3725 	ugly_bits = bad_bits &
3726 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3727 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3728 	if (ugly_bits) {
3729 		dev_warn(&spi->dev,
3730 			 "setup: ignoring unsupported mode bits %x\n",
3731 			 ugly_bits);
3732 		spi->mode &= ~ugly_bits;
3733 		bad_bits &= ~ugly_bits;
3734 	}
3735 	if (bad_bits) {
3736 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3737 			bad_bits);
3738 		return -EINVAL;
3739 	}
3740 
3741 	if (!spi->bits_per_word) {
3742 		spi->bits_per_word = 8;
3743 	} else {
3744 		/*
3745 		 * Some controllers may not support the default 8 bits-per-word
3746 		 * so only perform the check when this is explicitly provided.
3747 		 */
3748 		status = __spi_validate_bits_per_word(spi->controller,
3749 						      spi->bits_per_word);
3750 		if (status)
3751 			return status;
3752 	}
3753 
3754 	if (spi->controller->max_speed_hz &&
3755 	    (!spi->max_speed_hz ||
3756 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3757 		spi->max_speed_hz = spi->controller->max_speed_hz;
3758 
3759 	mutex_lock(&spi->controller->io_mutex);
3760 
3761 	if (spi->controller->setup) {
3762 		status = spi->controller->setup(spi);
3763 		if (status) {
3764 			mutex_unlock(&spi->controller->io_mutex);
3765 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3766 				status);
3767 			return status;
3768 		}
3769 	}
3770 
3771 	status = spi_set_cs_timing(spi);
3772 	if (status) {
3773 		mutex_unlock(&spi->controller->io_mutex);
3774 		return status;
3775 	}
3776 
3777 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3778 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3779 		if (status < 0) {
3780 			mutex_unlock(&spi->controller->io_mutex);
3781 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3782 				status);
3783 			return status;
3784 		}
3785 
3786 		/*
3787 		 * We do not want to return positive value from pm_runtime_get,
3788 		 * there are many instances of devices calling spi_setup() and
3789 		 * checking for a non-zero return value instead of a negative
3790 		 * return value.
3791 		 */
3792 		status = 0;
3793 
3794 		spi_set_cs(spi, false, true);
3795 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3796 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3797 	} else {
3798 		spi_set_cs(spi, false, true);
3799 	}
3800 
3801 	mutex_unlock(&spi->controller->io_mutex);
3802 
3803 	if (spi->rt && !spi->controller->rt) {
3804 		spi->controller->rt = true;
3805 		spi_set_thread_rt(spi->controller);
3806 	}
3807 
3808 	trace_spi_setup(spi, status);
3809 
3810 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3811 			spi->mode & SPI_MODE_X_MASK,
3812 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3813 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3814 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3815 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3816 			spi->bits_per_word, spi->max_speed_hz,
3817 			status);
3818 
3819 	return status;
3820 }
3821 EXPORT_SYMBOL_GPL(spi_setup);
3822 
3823 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3824 				       struct spi_device *spi)
3825 {
3826 	int delay1, delay2;
3827 
3828 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3829 	if (delay1 < 0)
3830 		return delay1;
3831 
3832 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3833 	if (delay2 < 0)
3834 		return delay2;
3835 
3836 	if (delay1 < delay2)
3837 		memcpy(&xfer->word_delay, &spi->word_delay,
3838 		       sizeof(xfer->word_delay));
3839 
3840 	return 0;
3841 }
3842 
3843 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3844 {
3845 	struct spi_controller *ctlr = spi->controller;
3846 	struct spi_transfer *xfer;
3847 	int w_size;
3848 
3849 	if (list_empty(&message->transfers))
3850 		return -EINVAL;
3851 
3852 	/*
3853 	 * If an SPI controller does not support toggling the CS line on each
3854 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3855 	 * for the CS line, we can emulate the CS-per-word hardware function by
3856 	 * splitting transfers into one-word transfers and ensuring that
3857 	 * cs_change is set for each transfer.
3858 	 */
3859 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3860 					  spi_get_csgpiod(spi, 0))) {
3861 		size_t maxsize;
3862 		int ret;
3863 
3864 		maxsize = (spi->bits_per_word + 7) / 8;
3865 
3866 		/* spi_split_transfers_maxsize() requires message->spi */
3867 		message->spi = spi;
3868 
3869 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3870 						  GFP_KERNEL);
3871 		if (ret)
3872 			return ret;
3873 
3874 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3875 			/* Don't change cs_change on the last entry in the list */
3876 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3877 				break;
3878 			xfer->cs_change = 1;
3879 		}
3880 	}
3881 
3882 	/*
3883 	 * Half-duplex links include original MicroWire, and ones with
3884 	 * only one data pin like SPI_3WIRE (switches direction) or where
3885 	 * either MOSI or MISO is missing.  They can also be caused by
3886 	 * software limitations.
3887 	 */
3888 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3889 	    (spi->mode & SPI_3WIRE)) {
3890 		unsigned flags = ctlr->flags;
3891 
3892 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3893 			if (xfer->rx_buf && xfer->tx_buf)
3894 				return -EINVAL;
3895 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3896 				return -EINVAL;
3897 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3898 				return -EINVAL;
3899 		}
3900 	}
3901 
3902 	/*
3903 	 * Set transfer bits_per_word and max speed as spi device default if
3904 	 * it is not set for this transfer.
3905 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3906 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3907 	 * Ensure transfer word_delay is at least as long as that required by
3908 	 * device itself.
3909 	 */
3910 	message->frame_length = 0;
3911 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3912 		xfer->effective_speed_hz = 0;
3913 		message->frame_length += xfer->len;
3914 		if (!xfer->bits_per_word)
3915 			xfer->bits_per_word = spi->bits_per_word;
3916 
3917 		if (!xfer->speed_hz)
3918 			xfer->speed_hz = spi->max_speed_hz;
3919 
3920 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3921 			xfer->speed_hz = ctlr->max_speed_hz;
3922 
3923 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3924 			return -EINVAL;
3925 
3926 		/*
3927 		 * SPI transfer length should be multiple of SPI word size
3928 		 * where SPI word size should be power-of-two multiple.
3929 		 */
3930 		if (xfer->bits_per_word <= 8)
3931 			w_size = 1;
3932 		else if (xfer->bits_per_word <= 16)
3933 			w_size = 2;
3934 		else
3935 			w_size = 4;
3936 
3937 		/* No partial transfers accepted */
3938 		if (xfer->len % w_size)
3939 			return -EINVAL;
3940 
3941 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3942 		    xfer->speed_hz < ctlr->min_speed_hz)
3943 			return -EINVAL;
3944 
3945 		if (xfer->tx_buf && !xfer->tx_nbits)
3946 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3947 		if (xfer->rx_buf && !xfer->rx_nbits)
3948 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3949 		/*
3950 		 * Check transfer tx/rx_nbits:
3951 		 * 1. check the value matches one of single, dual and quad
3952 		 * 2. check tx/rx_nbits match the mode in spi_device
3953 		 */
3954 		if (xfer->tx_buf) {
3955 			if (spi->mode & SPI_NO_TX)
3956 				return -EINVAL;
3957 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3958 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3959 				xfer->tx_nbits != SPI_NBITS_QUAD)
3960 				return -EINVAL;
3961 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3962 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3963 				return -EINVAL;
3964 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3965 				!(spi->mode & SPI_TX_QUAD))
3966 				return -EINVAL;
3967 		}
3968 		/* Check transfer rx_nbits */
3969 		if (xfer->rx_buf) {
3970 			if (spi->mode & SPI_NO_RX)
3971 				return -EINVAL;
3972 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3973 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3974 				xfer->rx_nbits != SPI_NBITS_QUAD)
3975 				return -EINVAL;
3976 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3977 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3978 				return -EINVAL;
3979 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3980 				!(spi->mode & SPI_RX_QUAD))
3981 				return -EINVAL;
3982 		}
3983 
3984 		if (_spi_xfer_word_delay_update(xfer, spi))
3985 			return -EINVAL;
3986 	}
3987 
3988 	message->status = -EINPROGRESS;
3989 
3990 	return 0;
3991 }
3992 
3993 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3994 {
3995 	struct spi_controller *ctlr = spi->controller;
3996 	struct spi_transfer *xfer;
3997 
3998 	/*
3999 	 * Some controllers do not support doing regular SPI transfers. Return
4000 	 * ENOTSUPP when this is the case.
4001 	 */
4002 	if (!ctlr->transfer)
4003 		return -ENOTSUPP;
4004 
4005 	message->spi = spi;
4006 
4007 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4008 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4009 
4010 	trace_spi_message_submit(message);
4011 
4012 	if (!ctlr->ptp_sts_supported) {
4013 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4014 			xfer->ptp_sts_word_pre = 0;
4015 			ptp_read_system_prets(xfer->ptp_sts);
4016 		}
4017 	}
4018 
4019 	return ctlr->transfer(spi, message);
4020 }
4021 
4022 /**
4023  * spi_async - asynchronous SPI transfer
4024  * @spi: device with which data will be exchanged
4025  * @message: describes the data transfers, including completion callback
4026  * Context: any (irqs may be blocked, etc)
4027  *
4028  * This call may be used in_irq and other contexts which can't sleep,
4029  * as well as from task contexts which can sleep.
4030  *
4031  * The completion callback is invoked in a context which can't sleep.
4032  * Before that invocation, the value of message->status is undefined.
4033  * When the callback is issued, message->status holds either zero (to
4034  * indicate complete success) or a negative error code.  After that
4035  * callback returns, the driver which issued the transfer request may
4036  * deallocate the associated memory; it's no longer in use by any SPI
4037  * core or controller driver code.
4038  *
4039  * Note that although all messages to a spi_device are handled in
4040  * FIFO order, messages may go to different devices in other orders.
4041  * Some device might be higher priority, or have various "hard" access
4042  * time requirements, for example.
4043  *
4044  * On detection of any fault during the transfer, processing of
4045  * the entire message is aborted, and the device is deselected.
4046  * Until returning from the associated message completion callback,
4047  * no other spi_message queued to that device will be processed.
4048  * (This rule applies equally to all the synchronous transfer calls,
4049  * which are wrappers around this core asynchronous primitive.)
4050  *
4051  * Return: zero on success, else a negative error code.
4052  */
4053 int spi_async(struct spi_device *spi, struct spi_message *message)
4054 {
4055 	struct spi_controller *ctlr = spi->controller;
4056 	int ret;
4057 	unsigned long flags;
4058 
4059 	ret = __spi_validate(spi, message);
4060 	if (ret != 0)
4061 		return ret;
4062 
4063 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4064 
4065 	if (ctlr->bus_lock_flag)
4066 		ret = -EBUSY;
4067 	else
4068 		ret = __spi_async(spi, message);
4069 
4070 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4071 
4072 	return ret;
4073 }
4074 EXPORT_SYMBOL_GPL(spi_async);
4075 
4076 /**
4077  * spi_async_locked - version of spi_async with exclusive bus usage
4078  * @spi: device with which data will be exchanged
4079  * @message: describes the data transfers, including completion callback
4080  * Context: any (irqs may be blocked, etc)
4081  *
4082  * This call may be used in_irq and other contexts which can't sleep,
4083  * as well as from task contexts which can sleep.
4084  *
4085  * The completion callback is invoked in a context which can't sleep.
4086  * Before that invocation, the value of message->status is undefined.
4087  * When the callback is issued, message->status holds either zero (to
4088  * indicate complete success) or a negative error code.  After that
4089  * callback returns, the driver which issued the transfer request may
4090  * deallocate the associated memory; it's no longer in use by any SPI
4091  * core or controller driver code.
4092  *
4093  * Note that although all messages to a spi_device are handled in
4094  * FIFO order, messages may go to different devices in other orders.
4095  * Some device might be higher priority, or have various "hard" access
4096  * time requirements, for example.
4097  *
4098  * On detection of any fault during the transfer, processing of
4099  * the entire message is aborted, and the device is deselected.
4100  * Until returning from the associated message completion callback,
4101  * no other spi_message queued to that device will be processed.
4102  * (This rule applies equally to all the synchronous transfer calls,
4103  * which are wrappers around this core asynchronous primitive.)
4104  *
4105  * Return: zero on success, else a negative error code.
4106  */
4107 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4108 {
4109 	struct spi_controller *ctlr = spi->controller;
4110 	int ret;
4111 	unsigned long flags;
4112 
4113 	ret = __spi_validate(spi, message);
4114 	if (ret != 0)
4115 		return ret;
4116 
4117 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4118 
4119 	ret = __spi_async(spi, message);
4120 
4121 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4122 
4123 	return ret;
4124 
4125 }
4126 
4127 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4128 {
4129 	bool was_busy;
4130 	int ret;
4131 
4132 	mutex_lock(&ctlr->io_mutex);
4133 
4134 	was_busy = ctlr->busy;
4135 
4136 	ctlr->cur_msg = msg;
4137 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4138 	if (ret)
4139 		goto out;
4140 
4141 	ctlr->cur_msg = NULL;
4142 	ctlr->fallback = false;
4143 
4144 	if (!was_busy) {
4145 		kfree(ctlr->dummy_rx);
4146 		ctlr->dummy_rx = NULL;
4147 		kfree(ctlr->dummy_tx);
4148 		ctlr->dummy_tx = NULL;
4149 		if (ctlr->unprepare_transfer_hardware &&
4150 		    ctlr->unprepare_transfer_hardware(ctlr))
4151 			dev_err(&ctlr->dev,
4152 				"failed to unprepare transfer hardware\n");
4153 		spi_idle_runtime_pm(ctlr);
4154 	}
4155 
4156 out:
4157 	mutex_unlock(&ctlr->io_mutex);
4158 }
4159 
4160 /*-------------------------------------------------------------------------*/
4161 
4162 /*
4163  * Utility methods for SPI protocol drivers, layered on
4164  * top of the core.  Some other utility methods are defined as
4165  * inline functions.
4166  */
4167 
4168 static void spi_complete(void *arg)
4169 {
4170 	complete(arg);
4171 }
4172 
4173 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4174 {
4175 	DECLARE_COMPLETION_ONSTACK(done);
4176 	int status;
4177 	struct spi_controller *ctlr = spi->controller;
4178 
4179 	status = __spi_validate(spi, message);
4180 	if (status != 0)
4181 		return status;
4182 
4183 	message->spi = spi;
4184 
4185 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4186 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4187 
4188 	/*
4189 	 * Checking queue_empty here only guarantees async/sync message
4190 	 * ordering when coming from the same context. It does not need to
4191 	 * guard against reentrancy from a different context. The io_mutex
4192 	 * will catch those cases.
4193 	 */
4194 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4195 		message->actual_length = 0;
4196 		message->status = -EINPROGRESS;
4197 
4198 		trace_spi_message_submit(message);
4199 
4200 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4201 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4202 
4203 		__spi_transfer_message_noqueue(ctlr, message);
4204 
4205 		return message->status;
4206 	}
4207 
4208 	/*
4209 	 * There are messages in the async queue that could have originated
4210 	 * from the same context, so we need to preserve ordering.
4211 	 * Therefor we send the message to the async queue and wait until they
4212 	 * are completed.
4213 	 */
4214 	message->complete = spi_complete;
4215 	message->context = &done;
4216 	status = spi_async_locked(spi, message);
4217 	if (status == 0) {
4218 		wait_for_completion(&done);
4219 		status = message->status;
4220 	}
4221 	message->context = NULL;
4222 
4223 	return status;
4224 }
4225 
4226 /**
4227  * spi_sync - blocking/synchronous SPI data transfers
4228  * @spi: device with which data will be exchanged
4229  * @message: describes the data transfers
4230  * Context: can sleep
4231  *
4232  * This call may only be used from a context that may sleep.  The sleep
4233  * is non-interruptible, and has no timeout.  Low-overhead controller
4234  * drivers may DMA directly into and out of the message buffers.
4235  *
4236  * Note that the SPI device's chip select is active during the message,
4237  * and then is normally disabled between messages.  Drivers for some
4238  * frequently-used devices may want to minimize costs of selecting a chip,
4239  * by leaving it selected in anticipation that the next message will go
4240  * to the same chip.  (That may increase power usage.)
4241  *
4242  * Also, the caller is guaranteeing that the memory associated with the
4243  * message will not be freed before this call returns.
4244  *
4245  * Return: zero on success, else a negative error code.
4246  */
4247 int spi_sync(struct spi_device *spi, struct spi_message *message)
4248 {
4249 	int ret;
4250 
4251 	mutex_lock(&spi->controller->bus_lock_mutex);
4252 	ret = __spi_sync(spi, message);
4253 	mutex_unlock(&spi->controller->bus_lock_mutex);
4254 
4255 	return ret;
4256 }
4257 EXPORT_SYMBOL_GPL(spi_sync);
4258 
4259 /**
4260  * spi_sync_locked - version of spi_sync with exclusive bus usage
4261  * @spi: device with which data will be exchanged
4262  * @message: describes the data transfers
4263  * Context: can sleep
4264  *
4265  * This call may only be used from a context that may sleep.  The sleep
4266  * is non-interruptible, and has no timeout.  Low-overhead controller
4267  * drivers may DMA directly into and out of the message buffers.
4268  *
4269  * This call should be used by drivers that require exclusive access to the
4270  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4271  * be released by a spi_bus_unlock call when the exclusive access is over.
4272  *
4273  * Return: zero on success, else a negative error code.
4274  */
4275 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4276 {
4277 	return __spi_sync(spi, message);
4278 }
4279 EXPORT_SYMBOL_GPL(spi_sync_locked);
4280 
4281 /**
4282  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4283  * @ctlr: SPI bus master that should be locked for exclusive bus access
4284  * Context: can sleep
4285  *
4286  * This call may only be used from a context that may sleep.  The sleep
4287  * is non-interruptible, and has no timeout.
4288  *
4289  * This call should be used by drivers that require exclusive access to the
4290  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4291  * exclusive access is over. Data transfer must be done by spi_sync_locked
4292  * and spi_async_locked calls when the SPI bus lock is held.
4293  *
4294  * Return: always zero.
4295  */
4296 int spi_bus_lock(struct spi_controller *ctlr)
4297 {
4298 	unsigned long flags;
4299 
4300 	mutex_lock(&ctlr->bus_lock_mutex);
4301 
4302 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4303 	ctlr->bus_lock_flag = 1;
4304 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4305 
4306 	/* Mutex remains locked until spi_bus_unlock() is called */
4307 
4308 	return 0;
4309 }
4310 EXPORT_SYMBOL_GPL(spi_bus_lock);
4311 
4312 /**
4313  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4314  * @ctlr: SPI bus master that was locked for exclusive bus access
4315  * Context: can sleep
4316  *
4317  * This call may only be used from a context that may sleep.  The sleep
4318  * is non-interruptible, and has no timeout.
4319  *
4320  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4321  * call.
4322  *
4323  * Return: always zero.
4324  */
4325 int spi_bus_unlock(struct spi_controller *ctlr)
4326 {
4327 	ctlr->bus_lock_flag = 0;
4328 
4329 	mutex_unlock(&ctlr->bus_lock_mutex);
4330 
4331 	return 0;
4332 }
4333 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4334 
4335 /* Portable code must never pass more than 32 bytes */
4336 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4337 
4338 static u8	*buf;
4339 
4340 /**
4341  * spi_write_then_read - SPI synchronous write followed by read
4342  * @spi: device with which data will be exchanged
4343  * @txbuf: data to be written (need not be dma-safe)
4344  * @n_tx: size of txbuf, in bytes
4345  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4346  * @n_rx: size of rxbuf, in bytes
4347  * Context: can sleep
4348  *
4349  * This performs a half duplex MicroWire style transaction with the
4350  * device, sending txbuf and then reading rxbuf.  The return value
4351  * is zero for success, else a negative errno status code.
4352  * This call may only be used from a context that may sleep.
4353  *
4354  * Parameters to this routine are always copied using a small buffer.
4355  * Performance-sensitive or bulk transfer code should instead use
4356  * spi_{async,sync}() calls with dma-safe buffers.
4357  *
4358  * Return: zero on success, else a negative error code.
4359  */
4360 int spi_write_then_read(struct spi_device *spi,
4361 		const void *txbuf, unsigned n_tx,
4362 		void *rxbuf, unsigned n_rx)
4363 {
4364 	static DEFINE_MUTEX(lock);
4365 
4366 	int			status;
4367 	struct spi_message	message;
4368 	struct spi_transfer	x[2];
4369 	u8			*local_buf;
4370 
4371 	/*
4372 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4373 	 * copying here, (as a pure convenience thing), but we can
4374 	 * keep heap costs out of the hot path unless someone else is
4375 	 * using the pre-allocated buffer or the transfer is too large.
4376 	 */
4377 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4378 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4379 				    GFP_KERNEL | GFP_DMA);
4380 		if (!local_buf)
4381 			return -ENOMEM;
4382 	} else {
4383 		local_buf = buf;
4384 	}
4385 
4386 	spi_message_init(&message);
4387 	memset(x, 0, sizeof(x));
4388 	if (n_tx) {
4389 		x[0].len = n_tx;
4390 		spi_message_add_tail(&x[0], &message);
4391 	}
4392 	if (n_rx) {
4393 		x[1].len = n_rx;
4394 		spi_message_add_tail(&x[1], &message);
4395 	}
4396 
4397 	memcpy(local_buf, txbuf, n_tx);
4398 	x[0].tx_buf = local_buf;
4399 	x[1].rx_buf = local_buf + n_tx;
4400 
4401 	/* Do the i/o */
4402 	status = spi_sync(spi, &message);
4403 	if (status == 0)
4404 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4405 
4406 	if (x[0].tx_buf == buf)
4407 		mutex_unlock(&lock);
4408 	else
4409 		kfree(local_buf);
4410 
4411 	return status;
4412 }
4413 EXPORT_SYMBOL_GPL(spi_write_then_read);
4414 
4415 /*-------------------------------------------------------------------------*/
4416 
4417 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4418 /* Must call put_device() when done with returned spi_device device */
4419 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4420 {
4421 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4422 
4423 	return dev ? to_spi_device(dev) : NULL;
4424 }
4425 
4426 /* The spi controllers are not using spi_bus, so we find it with another way */
4427 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4428 {
4429 	struct device *dev;
4430 
4431 	dev = class_find_device_by_of_node(&spi_master_class, node);
4432 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4433 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4434 	if (!dev)
4435 		return NULL;
4436 
4437 	/* Reference got in class_find_device */
4438 	return container_of(dev, struct spi_controller, dev);
4439 }
4440 
4441 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4442 			 void *arg)
4443 {
4444 	struct of_reconfig_data *rd = arg;
4445 	struct spi_controller *ctlr;
4446 	struct spi_device *spi;
4447 
4448 	switch (of_reconfig_get_state_change(action, arg)) {
4449 	case OF_RECONFIG_CHANGE_ADD:
4450 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4451 		if (ctlr == NULL)
4452 			return NOTIFY_OK;	/* Not for us */
4453 
4454 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4455 			put_device(&ctlr->dev);
4456 			return NOTIFY_OK;
4457 		}
4458 
4459 		spi = of_register_spi_device(ctlr, rd->dn);
4460 		put_device(&ctlr->dev);
4461 
4462 		if (IS_ERR(spi)) {
4463 			pr_err("%s: failed to create for '%pOF'\n",
4464 					__func__, rd->dn);
4465 			of_node_clear_flag(rd->dn, OF_POPULATED);
4466 			return notifier_from_errno(PTR_ERR(spi));
4467 		}
4468 		break;
4469 
4470 	case OF_RECONFIG_CHANGE_REMOVE:
4471 		/* Already depopulated? */
4472 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4473 			return NOTIFY_OK;
4474 
4475 		/* Find our device by node */
4476 		spi = of_find_spi_device_by_node(rd->dn);
4477 		if (spi == NULL)
4478 			return NOTIFY_OK;	/* No? not meant for us */
4479 
4480 		/* Unregister takes one ref away */
4481 		spi_unregister_device(spi);
4482 
4483 		/* And put the reference of the find */
4484 		put_device(&spi->dev);
4485 		break;
4486 	}
4487 
4488 	return NOTIFY_OK;
4489 }
4490 
4491 static struct notifier_block spi_of_notifier = {
4492 	.notifier_call = of_spi_notify,
4493 };
4494 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4495 extern struct notifier_block spi_of_notifier;
4496 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4497 
4498 #if IS_ENABLED(CONFIG_ACPI)
4499 static int spi_acpi_controller_match(struct device *dev, const void *data)
4500 {
4501 	return ACPI_COMPANION(dev->parent) == data;
4502 }
4503 
4504 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4505 {
4506 	struct device *dev;
4507 
4508 	dev = class_find_device(&spi_master_class, NULL, adev,
4509 				spi_acpi_controller_match);
4510 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4511 		dev = class_find_device(&spi_slave_class, NULL, adev,
4512 					spi_acpi_controller_match);
4513 	if (!dev)
4514 		return NULL;
4515 
4516 	return container_of(dev, struct spi_controller, dev);
4517 }
4518 
4519 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4520 {
4521 	struct device *dev;
4522 
4523 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4524 	return to_spi_device(dev);
4525 }
4526 
4527 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4528 			   void *arg)
4529 {
4530 	struct acpi_device *adev = arg;
4531 	struct spi_controller *ctlr;
4532 	struct spi_device *spi;
4533 
4534 	switch (value) {
4535 	case ACPI_RECONFIG_DEVICE_ADD:
4536 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4537 		if (!ctlr)
4538 			break;
4539 
4540 		acpi_register_spi_device(ctlr, adev);
4541 		put_device(&ctlr->dev);
4542 		break;
4543 	case ACPI_RECONFIG_DEVICE_REMOVE:
4544 		if (!acpi_device_enumerated(adev))
4545 			break;
4546 
4547 		spi = acpi_spi_find_device_by_adev(adev);
4548 		if (!spi)
4549 			break;
4550 
4551 		spi_unregister_device(spi);
4552 		put_device(&spi->dev);
4553 		break;
4554 	}
4555 
4556 	return NOTIFY_OK;
4557 }
4558 
4559 static struct notifier_block spi_acpi_notifier = {
4560 	.notifier_call = acpi_spi_notify,
4561 };
4562 #else
4563 extern struct notifier_block spi_acpi_notifier;
4564 #endif
4565 
4566 static int __init spi_init(void)
4567 {
4568 	int	status;
4569 
4570 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4571 	if (!buf) {
4572 		status = -ENOMEM;
4573 		goto err0;
4574 	}
4575 
4576 	status = bus_register(&spi_bus_type);
4577 	if (status < 0)
4578 		goto err1;
4579 
4580 	status = class_register(&spi_master_class);
4581 	if (status < 0)
4582 		goto err2;
4583 
4584 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4585 		status = class_register(&spi_slave_class);
4586 		if (status < 0)
4587 			goto err3;
4588 	}
4589 
4590 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4591 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4592 	if (IS_ENABLED(CONFIG_ACPI))
4593 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4594 
4595 	return 0;
4596 
4597 err3:
4598 	class_unregister(&spi_master_class);
4599 err2:
4600 	bus_unregister(&spi_bus_type);
4601 err1:
4602 	kfree(buf);
4603 	buf = NULL;
4604 err0:
4605 	return status;
4606 }
4607 
4608 /*
4609  * A board_info is normally registered in arch_initcall(),
4610  * but even essential drivers wait till later.
4611  *
4612  * REVISIT only boardinfo really needs static linking. The rest (device and
4613  * driver registration) _could_ be dynamically linked (modular) ... Costs
4614  * include needing to have boardinfo data structures be much more public.
4615  */
4616 postcore_initcall(spi_init);
4617