1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del operation for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /** 479 * spi_alloc_device - Allocate a new SPI device 480 * @ctlr: Controller to which device is connected 481 * Context: can sleep 482 * 483 * Allows a driver to allocate and initialize a spi_device without 484 * registering it immediately. This allows a driver to directly 485 * fill the spi_device with device parameters before calling 486 * spi_add_device() on it. 487 * 488 * Caller is responsible to call spi_add_device() on the returned 489 * spi_device structure to add it to the SPI controller. If the caller 490 * needs to discard the spi_device without adding it, then it should 491 * call spi_dev_put() on it. 492 * 493 * Return: a pointer to the new device, or NULL. 494 */ 495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 496 { 497 struct spi_device *spi; 498 499 if (!spi_controller_get(ctlr)) 500 return NULL; 501 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 503 if (!spi) { 504 spi_controller_put(ctlr); 505 return NULL; 506 } 507 508 spi->master = spi->controller = ctlr; 509 spi->dev.parent = &ctlr->dev; 510 spi->dev.bus = &spi_bus_type; 511 spi->dev.release = spidev_release; 512 spi->cs_gpio = -ENOENT; 513 514 spin_lock_init(&spi->statistics.lock); 515 516 device_initialize(&spi->dev); 517 return spi; 518 } 519 EXPORT_SYMBOL_GPL(spi_alloc_device); 520 521 static void spi_dev_set_name(struct spi_device *spi) 522 { 523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 524 525 if (adev) { 526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 527 return; 528 } 529 530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 531 spi->chip_select); 532 } 533 534 static int spi_dev_check(struct device *dev, void *data) 535 { 536 struct spi_device *spi = to_spi_device(dev); 537 struct spi_device *new_spi = data; 538 539 if (spi->controller == new_spi->controller && 540 spi->chip_select == new_spi->chip_select) 541 return -EBUSY; 542 return 0; 543 } 544 545 /** 546 * spi_add_device - Add spi_device allocated with spi_alloc_device 547 * @spi: spi_device to register 548 * 549 * Companion function to spi_alloc_device. Devices allocated with 550 * spi_alloc_device can be added onto the spi bus with this function. 551 * 552 * Return: 0 on success; negative errno on failure 553 */ 554 int spi_add_device(struct spi_device *spi) 555 { 556 static DEFINE_MUTEX(spi_add_lock); 557 struct spi_controller *ctlr = spi->controller; 558 struct device *dev = ctlr->dev.parent; 559 int status; 560 561 /* Chipselects are numbered 0..max; validate. */ 562 if (spi->chip_select >= ctlr->num_chipselect) { 563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 564 ctlr->num_chipselect); 565 return -EINVAL; 566 } 567 568 /* Set the bus ID string */ 569 spi_dev_set_name(spi); 570 571 /* We need to make sure there's no other device with this 572 * chipselect **BEFORE** we call setup(), else we'll trash 573 * its configuration. Lock against concurrent add() calls. 574 */ 575 mutex_lock(&spi_add_lock); 576 577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 578 if (status) { 579 dev_err(dev, "chipselect %d already in use\n", 580 spi->chip_select); 581 goto done; 582 } 583 584 /* Descriptors take precedence */ 585 if (ctlr->cs_gpiods) 586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 587 else if (ctlr->cs_gpios) 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 589 590 /* Drivers may modify this initial i/o setup, but will 591 * normally rely on the device being setup. Devices 592 * using SPI_CS_HIGH can't coexist well otherwise... 593 */ 594 status = spi_setup(spi); 595 if (status < 0) { 596 dev_err(dev, "can't setup %s, status %d\n", 597 dev_name(&spi->dev), status); 598 goto done; 599 } 600 601 /* Device may be bound to an active driver when this returns */ 602 status = device_add(&spi->dev); 603 if (status < 0) 604 dev_err(dev, "can't add %s, status %d\n", 605 dev_name(&spi->dev), status); 606 else 607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 608 609 done: 610 mutex_unlock(&spi_add_lock); 611 return status; 612 } 613 EXPORT_SYMBOL_GPL(spi_add_device); 614 615 /** 616 * spi_new_device - instantiate one new SPI device 617 * @ctlr: Controller to which device is connected 618 * @chip: Describes the SPI device 619 * Context: can sleep 620 * 621 * On typical mainboards, this is purely internal; and it's not needed 622 * after board init creates the hard-wired devices. Some development 623 * platforms may not be able to use spi_register_board_info though, and 624 * this is exported so that for example a USB or parport based adapter 625 * driver could add devices (which it would learn about out-of-band). 626 * 627 * Return: the new device, or NULL. 628 */ 629 struct spi_device *spi_new_device(struct spi_controller *ctlr, 630 struct spi_board_info *chip) 631 { 632 struct spi_device *proxy; 633 int status; 634 635 /* NOTE: caller did any chip->bus_num checks necessary. 636 * 637 * Also, unless we change the return value convention to use 638 * error-or-pointer (not NULL-or-pointer), troubleshootability 639 * suggests syslogged diagnostics are best here (ugh). 640 */ 641 642 proxy = spi_alloc_device(ctlr); 643 if (!proxy) 644 return NULL; 645 646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 647 648 proxy->chip_select = chip->chip_select; 649 proxy->max_speed_hz = chip->max_speed_hz; 650 proxy->mode = chip->mode; 651 proxy->irq = chip->irq; 652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 653 proxy->dev.platform_data = (void *) chip->platform_data; 654 proxy->controller_data = chip->controller_data; 655 proxy->controller_state = NULL; 656 657 if (chip->properties) { 658 status = device_add_properties(&proxy->dev, chip->properties); 659 if (status) { 660 dev_err(&ctlr->dev, 661 "failed to add properties to '%s': %d\n", 662 chip->modalias, status); 663 goto err_dev_put; 664 } 665 } 666 667 status = spi_add_device(proxy); 668 if (status < 0) 669 goto err_remove_props; 670 671 return proxy; 672 673 err_remove_props: 674 if (chip->properties) 675 device_remove_properties(&proxy->dev); 676 err_dev_put: 677 spi_dev_put(proxy); 678 return NULL; 679 } 680 EXPORT_SYMBOL_GPL(spi_new_device); 681 682 /** 683 * spi_unregister_device - unregister a single SPI device 684 * @spi: spi_device to unregister 685 * 686 * Start making the passed SPI device vanish. Normally this would be handled 687 * by spi_unregister_controller(). 688 */ 689 void spi_unregister_device(struct spi_device *spi) 690 { 691 if (!spi) 692 return; 693 694 if (spi->dev.of_node) { 695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 696 of_node_put(spi->dev.of_node); 697 } 698 if (ACPI_COMPANION(&spi->dev)) 699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 700 device_unregister(&spi->dev); 701 } 702 EXPORT_SYMBOL_GPL(spi_unregister_device); 703 704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 705 struct spi_board_info *bi) 706 { 707 struct spi_device *dev; 708 709 if (ctlr->bus_num != bi->bus_num) 710 return; 711 712 dev = spi_new_device(ctlr, bi); 713 if (!dev) 714 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 715 bi->modalias); 716 } 717 718 /** 719 * spi_register_board_info - register SPI devices for a given board 720 * @info: array of chip descriptors 721 * @n: how many descriptors are provided 722 * Context: can sleep 723 * 724 * Board-specific early init code calls this (probably during arch_initcall) 725 * with segments of the SPI device table. Any device nodes are created later, 726 * after the relevant parent SPI controller (bus_num) is defined. We keep 727 * this table of devices forever, so that reloading a controller driver will 728 * not make Linux forget about these hard-wired devices. 729 * 730 * Other code can also call this, e.g. a particular add-on board might provide 731 * SPI devices through its expansion connector, so code initializing that board 732 * would naturally declare its SPI devices. 733 * 734 * The board info passed can safely be __initdata ... but be careful of 735 * any embedded pointers (platform_data, etc), they're copied as-is. 736 * Device properties are deep-copied though. 737 * 738 * Return: zero on success, else a negative error code. 739 */ 740 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 741 { 742 struct boardinfo *bi; 743 int i; 744 745 if (!n) 746 return 0; 747 748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 749 if (!bi) 750 return -ENOMEM; 751 752 for (i = 0; i < n; i++, bi++, info++) { 753 struct spi_controller *ctlr; 754 755 memcpy(&bi->board_info, info, sizeof(*info)); 756 if (info->properties) { 757 bi->board_info.properties = 758 property_entries_dup(info->properties); 759 if (IS_ERR(bi->board_info.properties)) 760 return PTR_ERR(bi->board_info.properties); 761 } 762 763 mutex_lock(&board_lock); 764 list_add_tail(&bi->list, &board_list); 765 list_for_each_entry(ctlr, &spi_controller_list, list) 766 spi_match_controller_to_boardinfo(ctlr, 767 &bi->board_info); 768 mutex_unlock(&board_lock); 769 } 770 771 return 0; 772 } 773 774 /*-------------------------------------------------------------------------*/ 775 776 static void spi_set_cs(struct spi_device *spi, bool enable) 777 { 778 bool enable1 = enable; 779 780 if (!spi->controller->set_cs_timing) { 781 if (enable1) 782 spi_delay_exec(&spi->controller->cs_setup, NULL); 783 else 784 spi_delay_exec(&spi->controller->cs_hold, NULL); 785 } 786 787 if (spi->mode & SPI_CS_HIGH) 788 enable = !enable; 789 790 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 791 /* 792 * Honour the SPI_NO_CS flag and invert the enable line, as 793 * active low is default for SPI. Execution paths that handle 794 * polarity inversion in gpiolib (such as device tree) will 795 * enforce active high using the SPI_CS_HIGH resulting in a 796 * double inversion through the code above. 797 */ 798 if (!(spi->mode & SPI_NO_CS)) { 799 if (spi->cs_gpiod) 800 gpiod_set_value_cansleep(spi->cs_gpiod, 801 !enable); 802 else 803 gpio_set_value_cansleep(spi->cs_gpio, !enable); 804 } 805 /* Some SPI masters need both GPIO CS & slave_select */ 806 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 807 spi->controller->set_cs) 808 spi->controller->set_cs(spi, !enable); 809 } else if (spi->controller->set_cs) { 810 spi->controller->set_cs(spi, !enable); 811 } 812 813 if (!spi->controller->set_cs_timing) { 814 if (!enable1) 815 spi_delay_exec(&spi->controller->cs_inactive, NULL); 816 } 817 } 818 819 #ifdef CONFIG_HAS_DMA 820 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 821 struct sg_table *sgt, void *buf, size_t len, 822 enum dma_data_direction dir) 823 { 824 const bool vmalloced_buf = is_vmalloc_addr(buf); 825 unsigned int max_seg_size = dma_get_max_seg_size(dev); 826 #ifdef CONFIG_HIGHMEM 827 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 828 (unsigned long)buf < (PKMAP_BASE + 829 (LAST_PKMAP * PAGE_SIZE))); 830 #else 831 const bool kmap_buf = false; 832 #endif 833 int desc_len; 834 int sgs; 835 struct page *vm_page; 836 struct scatterlist *sg; 837 void *sg_buf; 838 size_t min; 839 int i, ret; 840 841 if (vmalloced_buf || kmap_buf) { 842 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 843 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 844 } else if (virt_addr_valid(buf)) { 845 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 846 sgs = DIV_ROUND_UP(len, desc_len); 847 } else { 848 return -EINVAL; 849 } 850 851 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 852 if (ret != 0) 853 return ret; 854 855 sg = &sgt->sgl[0]; 856 for (i = 0; i < sgs; i++) { 857 858 if (vmalloced_buf || kmap_buf) { 859 /* 860 * Next scatterlist entry size is the minimum between 861 * the desc_len and the remaining buffer length that 862 * fits in a page. 863 */ 864 min = min_t(size_t, desc_len, 865 min_t(size_t, len, 866 PAGE_SIZE - offset_in_page(buf))); 867 if (vmalloced_buf) 868 vm_page = vmalloc_to_page(buf); 869 else 870 vm_page = kmap_to_page(buf); 871 if (!vm_page) { 872 sg_free_table(sgt); 873 return -ENOMEM; 874 } 875 sg_set_page(sg, vm_page, 876 min, offset_in_page(buf)); 877 } else { 878 min = min_t(size_t, len, desc_len); 879 sg_buf = buf; 880 sg_set_buf(sg, sg_buf, min); 881 } 882 883 buf += min; 884 len -= min; 885 sg = sg_next(sg); 886 } 887 888 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 889 if (!ret) 890 ret = -ENOMEM; 891 if (ret < 0) { 892 sg_free_table(sgt); 893 return ret; 894 } 895 896 sgt->nents = ret; 897 898 return 0; 899 } 900 901 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 902 struct sg_table *sgt, enum dma_data_direction dir) 903 { 904 if (sgt->orig_nents) { 905 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 906 sg_free_table(sgt); 907 } 908 } 909 910 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 911 { 912 struct device *tx_dev, *rx_dev; 913 struct spi_transfer *xfer; 914 int ret; 915 916 if (!ctlr->can_dma) 917 return 0; 918 919 if (ctlr->dma_tx) 920 tx_dev = ctlr->dma_tx->device->dev; 921 else 922 tx_dev = ctlr->dev.parent; 923 924 if (ctlr->dma_rx) 925 rx_dev = ctlr->dma_rx->device->dev; 926 else 927 rx_dev = ctlr->dev.parent; 928 929 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 930 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 931 continue; 932 933 if (xfer->tx_buf != NULL) { 934 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 935 (void *)xfer->tx_buf, xfer->len, 936 DMA_TO_DEVICE); 937 if (ret != 0) 938 return ret; 939 } 940 941 if (xfer->rx_buf != NULL) { 942 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 943 xfer->rx_buf, xfer->len, 944 DMA_FROM_DEVICE); 945 if (ret != 0) { 946 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 947 DMA_TO_DEVICE); 948 return ret; 949 } 950 } 951 } 952 953 ctlr->cur_msg_mapped = true; 954 955 return 0; 956 } 957 958 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 959 { 960 struct spi_transfer *xfer; 961 struct device *tx_dev, *rx_dev; 962 963 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 964 return 0; 965 966 if (ctlr->dma_tx) 967 tx_dev = ctlr->dma_tx->device->dev; 968 else 969 tx_dev = ctlr->dev.parent; 970 971 if (ctlr->dma_rx) 972 rx_dev = ctlr->dma_rx->device->dev; 973 else 974 rx_dev = ctlr->dev.parent; 975 976 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 977 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 978 continue; 979 980 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 981 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 982 } 983 984 return 0; 985 } 986 #else /* !CONFIG_HAS_DMA */ 987 static inline int __spi_map_msg(struct spi_controller *ctlr, 988 struct spi_message *msg) 989 { 990 return 0; 991 } 992 993 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 994 struct spi_message *msg) 995 { 996 return 0; 997 } 998 #endif /* !CONFIG_HAS_DMA */ 999 1000 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1001 struct spi_message *msg) 1002 { 1003 struct spi_transfer *xfer; 1004 1005 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1006 /* 1007 * Restore the original value of tx_buf or rx_buf if they are 1008 * NULL. 1009 */ 1010 if (xfer->tx_buf == ctlr->dummy_tx) 1011 xfer->tx_buf = NULL; 1012 if (xfer->rx_buf == ctlr->dummy_rx) 1013 xfer->rx_buf = NULL; 1014 } 1015 1016 return __spi_unmap_msg(ctlr, msg); 1017 } 1018 1019 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1020 { 1021 struct spi_transfer *xfer; 1022 void *tmp; 1023 unsigned int max_tx, max_rx; 1024 1025 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { 1026 max_tx = 0; 1027 max_rx = 0; 1028 1029 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1030 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1031 !xfer->tx_buf) 1032 max_tx = max(xfer->len, max_tx); 1033 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1034 !xfer->rx_buf) 1035 max_rx = max(xfer->len, max_rx); 1036 } 1037 1038 if (max_tx) { 1039 tmp = krealloc(ctlr->dummy_tx, max_tx, 1040 GFP_KERNEL | GFP_DMA); 1041 if (!tmp) 1042 return -ENOMEM; 1043 ctlr->dummy_tx = tmp; 1044 memset(tmp, 0, max_tx); 1045 } 1046 1047 if (max_rx) { 1048 tmp = krealloc(ctlr->dummy_rx, max_rx, 1049 GFP_KERNEL | GFP_DMA); 1050 if (!tmp) 1051 return -ENOMEM; 1052 ctlr->dummy_rx = tmp; 1053 } 1054 1055 if (max_tx || max_rx) { 1056 list_for_each_entry(xfer, &msg->transfers, 1057 transfer_list) { 1058 if (!xfer->len) 1059 continue; 1060 if (!xfer->tx_buf) 1061 xfer->tx_buf = ctlr->dummy_tx; 1062 if (!xfer->rx_buf) 1063 xfer->rx_buf = ctlr->dummy_rx; 1064 } 1065 } 1066 } 1067 1068 return __spi_map_msg(ctlr, msg); 1069 } 1070 1071 static int spi_transfer_wait(struct spi_controller *ctlr, 1072 struct spi_message *msg, 1073 struct spi_transfer *xfer) 1074 { 1075 struct spi_statistics *statm = &ctlr->statistics; 1076 struct spi_statistics *stats = &msg->spi->statistics; 1077 unsigned long long ms = 1; 1078 1079 if (spi_controller_is_slave(ctlr)) { 1080 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1081 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1082 return -EINTR; 1083 } 1084 } else { 1085 ms = 8LL * 1000LL * xfer->len; 1086 do_div(ms, xfer->speed_hz); 1087 ms += ms + 200; /* some tolerance */ 1088 1089 if (ms > UINT_MAX) 1090 ms = UINT_MAX; 1091 1092 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1093 msecs_to_jiffies(ms)); 1094 1095 if (ms == 0) { 1096 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1097 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1098 dev_err(&msg->spi->dev, 1099 "SPI transfer timed out\n"); 1100 return -ETIMEDOUT; 1101 } 1102 } 1103 1104 return 0; 1105 } 1106 1107 static void _spi_transfer_delay_ns(u32 ns) 1108 { 1109 if (!ns) 1110 return; 1111 if (ns <= 1000) { 1112 ndelay(ns); 1113 } else { 1114 u32 us = DIV_ROUND_UP(ns, 1000); 1115 1116 if (us <= 10) 1117 udelay(us); 1118 else 1119 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1120 } 1121 } 1122 1123 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1124 { 1125 u32 delay = _delay->value; 1126 u32 unit = _delay->unit; 1127 u32 hz; 1128 1129 if (!delay) 1130 return 0; 1131 1132 switch (unit) { 1133 case SPI_DELAY_UNIT_USECS: 1134 delay *= 1000; 1135 break; 1136 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1137 break; 1138 case SPI_DELAY_UNIT_SCK: 1139 /* clock cycles need to be obtained from spi_transfer */ 1140 if (!xfer) 1141 return -EINVAL; 1142 /* if there is no effective speed know, then approximate 1143 * by underestimating with half the requested hz 1144 */ 1145 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1146 if (!hz) 1147 return -EINVAL; 1148 delay *= DIV_ROUND_UP(1000000000, hz); 1149 break; 1150 default: 1151 return -EINVAL; 1152 } 1153 1154 return delay; 1155 } 1156 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1157 1158 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1159 { 1160 int delay; 1161 1162 if (!_delay) 1163 return -EINVAL; 1164 1165 delay = spi_delay_to_ns(_delay, xfer); 1166 if (delay < 0) 1167 return delay; 1168 1169 _spi_transfer_delay_ns(delay); 1170 1171 return 0; 1172 } 1173 EXPORT_SYMBOL_GPL(spi_delay_exec); 1174 1175 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1176 struct spi_transfer *xfer) 1177 { 1178 u32 delay = xfer->cs_change_delay.value; 1179 u32 unit = xfer->cs_change_delay.unit; 1180 int ret; 1181 1182 /* return early on "fast" mode - for everything but USECS */ 1183 if (!delay) { 1184 if (unit == SPI_DELAY_UNIT_USECS) 1185 _spi_transfer_delay_ns(10000); 1186 return; 1187 } 1188 1189 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1190 if (ret) { 1191 dev_err_once(&msg->spi->dev, 1192 "Use of unsupported delay unit %i, using default of 10us\n", 1193 unit); 1194 _spi_transfer_delay_ns(10000); 1195 } 1196 } 1197 1198 /* 1199 * spi_transfer_one_message - Default implementation of transfer_one_message() 1200 * 1201 * This is a standard implementation of transfer_one_message() for 1202 * drivers which implement a transfer_one() operation. It provides 1203 * standard handling of delays and chip select management. 1204 */ 1205 static int spi_transfer_one_message(struct spi_controller *ctlr, 1206 struct spi_message *msg) 1207 { 1208 struct spi_transfer *xfer; 1209 bool keep_cs = false; 1210 int ret = 0; 1211 struct spi_statistics *statm = &ctlr->statistics; 1212 struct spi_statistics *stats = &msg->spi->statistics; 1213 1214 spi_set_cs(msg->spi, true); 1215 1216 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1217 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1218 1219 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1220 trace_spi_transfer_start(msg, xfer); 1221 1222 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1223 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1224 1225 if (!ctlr->ptp_sts_supported) { 1226 xfer->ptp_sts_word_pre = 0; 1227 ptp_read_system_prets(xfer->ptp_sts); 1228 } 1229 1230 if (xfer->tx_buf || xfer->rx_buf) { 1231 reinit_completion(&ctlr->xfer_completion); 1232 1233 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1234 if (ret < 0) { 1235 SPI_STATISTICS_INCREMENT_FIELD(statm, 1236 errors); 1237 SPI_STATISTICS_INCREMENT_FIELD(stats, 1238 errors); 1239 dev_err(&msg->spi->dev, 1240 "SPI transfer failed: %d\n", ret); 1241 goto out; 1242 } 1243 1244 if (ret > 0) { 1245 ret = spi_transfer_wait(ctlr, msg, xfer); 1246 if (ret < 0) 1247 msg->status = ret; 1248 } 1249 } else { 1250 if (xfer->len) 1251 dev_err(&msg->spi->dev, 1252 "Bufferless transfer has length %u\n", 1253 xfer->len); 1254 } 1255 1256 if (!ctlr->ptp_sts_supported) { 1257 ptp_read_system_postts(xfer->ptp_sts); 1258 xfer->ptp_sts_word_post = xfer->len; 1259 } 1260 1261 trace_spi_transfer_stop(msg, xfer); 1262 1263 if (msg->status != -EINPROGRESS) 1264 goto out; 1265 1266 spi_transfer_delay_exec(xfer); 1267 1268 if (xfer->cs_change) { 1269 if (list_is_last(&xfer->transfer_list, 1270 &msg->transfers)) { 1271 keep_cs = true; 1272 } else { 1273 spi_set_cs(msg->spi, false); 1274 _spi_transfer_cs_change_delay(msg, xfer); 1275 spi_set_cs(msg->spi, true); 1276 } 1277 } 1278 1279 msg->actual_length += xfer->len; 1280 } 1281 1282 out: 1283 if (ret != 0 || !keep_cs) 1284 spi_set_cs(msg->spi, false); 1285 1286 if (msg->status == -EINPROGRESS) 1287 msg->status = ret; 1288 1289 if (msg->status && ctlr->handle_err) 1290 ctlr->handle_err(ctlr, msg); 1291 1292 spi_res_release(ctlr, msg); 1293 1294 spi_finalize_current_message(ctlr); 1295 1296 return ret; 1297 } 1298 1299 /** 1300 * spi_finalize_current_transfer - report completion of a transfer 1301 * @ctlr: the controller reporting completion 1302 * 1303 * Called by SPI drivers using the core transfer_one_message() 1304 * implementation to notify it that the current interrupt driven 1305 * transfer has finished and the next one may be scheduled. 1306 */ 1307 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1308 { 1309 complete(&ctlr->xfer_completion); 1310 } 1311 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1312 1313 /** 1314 * __spi_pump_messages - function which processes spi message queue 1315 * @ctlr: controller to process queue for 1316 * @in_kthread: true if we are in the context of the message pump thread 1317 * 1318 * This function checks if there is any spi message in the queue that 1319 * needs processing and if so call out to the driver to initialize hardware 1320 * and transfer each message. 1321 * 1322 * Note that it is called both from the kthread itself and also from 1323 * inside spi_sync(); the queue extraction handling at the top of the 1324 * function should deal with this safely. 1325 */ 1326 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1327 { 1328 struct spi_transfer *xfer; 1329 struct spi_message *msg; 1330 bool was_busy = false; 1331 unsigned long flags; 1332 int ret; 1333 1334 /* Lock queue */ 1335 spin_lock_irqsave(&ctlr->queue_lock, flags); 1336 1337 /* Make sure we are not already running a message */ 1338 if (ctlr->cur_msg) { 1339 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1340 return; 1341 } 1342 1343 /* If another context is idling the device then defer */ 1344 if (ctlr->idling) { 1345 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1346 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1347 return; 1348 } 1349 1350 /* Check if the queue is idle */ 1351 if (list_empty(&ctlr->queue) || !ctlr->running) { 1352 if (!ctlr->busy) { 1353 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1354 return; 1355 } 1356 1357 /* Only do teardown in the thread */ 1358 if (!in_kthread) { 1359 kthread_queue_work(&ctlr->kworker, 1360 &ctlr->pump_messages); 1361 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1362 return; 1363 } 1364 1365 ctlr->busy = false; 1366 ctlr->idling = true; 1367 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1368 1369 kfree(ctlr->dummy_rx); 1370 ctlr->dummy_rx = NULL; 1371 kfree(ctlr->dummy_tx); 1372 ctlr->dummy_tx = NULL; 1373 if (ctlr->unprepare_transfer_hardware && 1374 ctlr->unprepare_transfer_hardware(ctlr)) 1375 dev_err(&ctlr->dev, 1376 "failed to unprepare transfer hardware\n"); 1377 if (ctlr->auto_runtime_pm) { 1378 pm_runtime_mark_last_busy(ctlr->dev.parent); 1379 pm_runtime_put_autosuspend(ctlr->dev.parent); 1380 } 1381 trace_spi_controller_idle(ctlr); 1382 1383 spin_lock_irqsave(&ctlr->queue_lock, flags); 1384 ctlr->idling = false; 1385 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1386 return; 1387 } 1388 1389 /* Extract head of queue */ 1390 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1391 ctlr->cur_msg = msg; 1392 1393 list_del_init(&msg->queue); 1394 if (ctlr->busy) 1395 was_busy = true; 1396 else 1397 ctlr->busy = true; 1398 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1399 1400 mutex_lock(&ctlr->io_mutex); 1401 1402 if (!was_busy && ctlr->auto_runtime_pm) { 1403 ret = pm_runtime_get_sync(ctlr->dev.parent); 1404 if (ret < 0) { 1405 pm_runtime_put_noidle(ctlr->dev.parent); 1406 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1407 ret); 1408 mutex_unlock(&ctlr->io_mutex); 1409 return; 1410 } 1411 } 1412 1413 if (!was_busy) 1414 trace_spi_controller_busy(ctlr); 1415 1416 if (!was_busy && ctlr->prepare_transfer_hardware) { 1417 ret = ctlr->prepare_transfer_hardware(ctlr); 1418 if (ret) { 1419 dev_err(&ctlr->dev, 1420 "failed to prepare transfer hardware: %d\n", 1421 ret); 1422 1423 if (ctlr->auto_runtime_pm) 1424 pm_runtime_put(ctlr->dev.parent); 1425 1426 msg->status = ret; 1427 spi_finalize_current_message(ctlr); 1428 1429 mutex_unlock(&ctlr->io_mutex); 1430 return; 1431 } 1432 } 1433 1434 trace_spi_message_start(msg); 1435 1436 if (ctlr->prepare_message) { 1437 ret = ctlr->prepare_message(ctlr, msg); 1438 if (ret) { 1439 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1440 ret); 1441 msg->status = ret; 1442 spi_finalize_current_message(ctlr); 1443 goto out; 1444 } 1445 ctlr->cur_msg_prepared = true; 1446 } 1447 1448 ret = spi_map_msg(ctlr, msg); 1449 if (ret) { 1450 msg->status = ret; 1451 spi_finalize_current_message(ctlr); 1452 goto out; 1453 } 1454 1455 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1456 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1457 xfer->ptp_sts_word_pre = 0; 1458 ptp_read_system_prets(xfer->ptp_sts); 1459 } 1460 } 1461 1462 ret = ctlr->transfer_one_message(ctlr, msg); 1463 if (ret) { 1464 dev_err(&ctlr->dev, 1465 "failed to transfer one message from queue\n"); 1466 goto out; 1467 } 1468 1469 out: 1470 mutex_unlock(&ctlr->io_mutex); 1471 1472 /* Prod the scheduler in case transfer_one() was busy waiting */ 1473 if (!ret) 1474 cond_resched(); 1475 } 1476 1477 /** 1478 * spi_pump_messages - kthread work function which processes spi message queue 1479 * @work: pointer to kthread work struct contained in the controller struct 1480 */ 1481 static void spi_pump_messages(struct kthread_work *work) 1482 { 1483 struct spi_controller *ctlr = 1484 container_of(work, struct spi_controller, pump_messages); 1485 1486 __spi_pump_messages(ctlr, true); 1487 } 1488 1489 /** 1490 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1491 * TX timestamp for the requested byte from the SPI 1492 * transfer. The frequency with which this function 1493 * must be called (once per word, once for the whole 1494 * transfer, once per batch of words etc) is arbitrary 1495 * as long as the @tx buffer offset is greater than or 1496 * equal to the requested byte at the time of the 1497 * call. The timestamp is only taken once, at the 1498 * first such call. It is assumed that the driver 1499 * advances its @tx buffer pointer monotonically. 1500 * @ctlr: Pointer to the spi_controller structure of the driver 1501 * @xfer: Pointer to the transfer being timestamped 1502 * @progress: How many words (not bytes) have been transferred so far 1503 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1504 * transfer, for less jitter in time measurement. Only compatible 1505 * with PIO drivers. If true, must follow up with 1506 * spi_take_timestamp_post or otherwise system will crash. 1507 * WARNING: for fully predictable results, the CPU frequency must 1508 * also be under control (governor). 1509 */ 1510 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1511 struct spi_transfer *xfer, 1512 size_t progress, bool irqs_off) 1513 { 1514 if (!xfer->ptp_sts) 1515 return; 1516 1517 if (xfer->timestamped_pre) 1518 return; 1519 1520 if (progress < xfer->ptp_sts_word_pre) 1521 return; 1522 1523 /* Capture the resolution of the timestamp */ 1524 xfer->ptp_sts_word_pre = progress; 1525 1526 xfer->timestamped_pre = true; 1527 1528 if (irqs_off) { 1529 local_irq_save(ctlr->irq_flags); 1530 preempt_disable(); 1531 } 1532 1533 ptp_read_system_prets(xfer->ptp_sts); 1534 } 1535 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1536 1537 /** 1538 * spi_take_timestamp_post - helper for drivers to collect the end of the 1539 * TX timestamp for the requested byte from the SPI 1540 * transfer. Can be called with an arbitrary 1541 * frequency: only the first call where @tx exceeds 1542 * or is equal to the requested word will be 1543 * timestamped. 1544 * @ctlr: Pointer to the spi_controller structure of the driver 1545 * @xfer: Pointer to the transfer being timestamped 1546 * @progress: How many words (not bytes) have been transferred so far 1547 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1548 */ 1549 void spi_take_timestamp_post(struct spi_controller *ctlr, 1550 struct spi_transfer *xfer, 1551 size_t progress, bool irqs_off) 1552 { 1553 if (!xfer->ptp_sts) 1554 return; 1555 1556 if (xfer->timestamped_post) 1557 return; 1558 1559 if (progress < xfer->ptp_sts_word_post) 1560 return; 1561 1562 ptp_read_system_postts(xfer->ptp_sts); 1563 1564 if (irqs_off) { 1565 local_irq_restore(ctlr->irq_flags); 1566 preempt_enable(); 1567 } 1568 1569 /* Capture the resolution of the timestamp */ 1570 xfer->ptp_sts_word_post = progress; 1571 1572 xfer->timestamped_post = true; 1573 } 1574 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1575 1576 /** 1577 * spi_set_thread_rt - set the controller to pump at realtime priority 1578 * @ctlr: controller to boost priority of 1579 * 1580 * This can be called because the controller requested realtime priority 1581 * (by setting the ->rt value before calling spi_register_controller()) or 1582 * because a device on the bus said that its transfers needed realtime 1583 * priority. 1584 * 1585 * NOTE: at the moment if any device on a bus says it needs realtime then 1586 * the thread will be at realtime priority for all transfers on that 1587 * controller. If this eventually becomes a problem we may see if we can 1588 * find a way to boost the priority only temporarily during relevant 1589 * transfers. 1590 */ 1591 static void spi_set_thread_rt(struct spi_controller *ctlr) 1592 { 1593 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 }; 1594 1595 dev_info(&ctlr->dev, 1596 "will run message pump with realtime priority\n"); 1597 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); 1598 } 1599 1600 static int spi_init_queue(struct spi_controller *ctlr) 1601 { 1602 ctlr->running = false; 1603 ctlr->busy = false; 1604 1605 kthread_init_worker(&ctlr->kworker); 1606 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, 1607 "%s", dev_name(&ctlr->dev)); 1608 if (IS_ERR(ctlr->kworker_task)) { 1609 dev_err(&ctlr->dev, "failed to create message pump task\n"); 1610 return PTR_ERR(ctlr->kworker_task); 1611 } 1612 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1613 1614 /* 1615 * Controller config will indicate if this controller should run the 1616 * message pump with high (realtime) priority to reduce the transfer 1617 * latency on the bus by minimising the delay between a transfer 1618 * request and the scheduling of the message pump thread. Without this 1619 * setting the message pump thread will remain at default priority. 1620 */ 1621 if (ctlr->rt) 1622 spi_set_thread_rt(ctlr); 1623 1624 return 0; 1625 } 1626 1627 /** 1628 * spi_get_next_queued_message() - called by driver to check for queued 1629 * messages 1630 * @ctlr: the controller to check for queued messages 1631 * 1632 * If there are more messages in the queue, the next message is returned from 1633 * this call. 1634 * 1635 * Return: the next message in the queue, else NULL if the queue is empty. 1636 */ 1637 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1638 { 1639 struct spi_message *next; 1640 unsigned long flags; 1641 1642 /* get a pointer to the next message, if any */ 1643 spin_lock_irqsave(&ctlr->queue_lock, flags); 1644 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1645 queue); 1646 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1647 1648 return next; 1649 } 1650 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1651 1652 /** 1653 * spi_finalize_current_message() - the current message is complete 1654 * @ctlr: the controller to return the message to 1655 * 1656 * Called by the driver to notify the core that the message in the front of the 1657 * queue is complete and can be removed from the queue. 1658 */ 1659 void spi_finalize_current_message(struct spi_controller *ctlr) 1660 { 1661 struct spi_transfer *xfer; 1662 struct spi_message *mesg; 1663 unsigned long flags; 1664 int ret; 1665 1666 spin_lock_irqsave(&ctlr->queue_lock, flags); 1667 mesg = ctlr->cur_msg; 1668 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1669 1670 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1671 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1672 ptp_read_system_postts(xfer->ptp_sts); 1673 xfer->ptp_sts_word_post = xfer->len; 1674 } 1675 } 1676 1677 if (unlikely(ctlr->ptp_sts_supported)) { 1678 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1679 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped_pre); 1680 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped_post); 1681 } 1682 } 1683 1684 spi_unmap_msg(ctlr, mesg); 1685 1686 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1687 ret = ctlr->unprepare_message(ctlr, mesg); 1688 if (ret) { 1689 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1690 ret); 1691 } 1692 } 1693 1694 spin_lock_irqsave(&ctlr->queue_lock, flags); 1695 ctlr->cur_msg = NULL; 1696 ctlr->cur_msg_prepared = false; 1697 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1698 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1699 1700 trace_spi_message_done(mesg); 1701 1702 mesg->state = NULL; 1703 if (mesg->complete) 1704 mesg->complete(mesg->context); 1705 } 1706 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1707 1708 static int spi_start_queue(struct spi_controller *ctlr) 1709 { 1710 unsigned long flags; 1711 1712 spin_lock_irqsave(&ctlr->queue_lock, flags); 1713 1714 if (ctlr->running || ctlr->busy) { 1715 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1716 return -EBUSY; 1717 } 1718 1719 ctlr->running = true; 1720 ctlr->cur_msg = NULL; 1721 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1722 1723 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1724 1725 return 0; 1726 } 1727 1728 static int spi_stop_queue(struct spi_controller *ctlr) 1729 { 1730 unsigned long flags; 1731 unsigned limit = 500; 1732 int ret = 0; 1733 1734 spin_lock_irqsave(&ctlr->queue_lock, flags); 1735 1736 /* 1737 * This is a bit lame, but is optimized for the common execution path. 1738 * A wait_queue on the ctlr->busy could be used, but then the common 1739 * execution path (pump_messages) would be required to call wake_up or 1740 * friends on every SPI message. Do this instead. 1741 */ 1742 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1743 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1744 usleep_range(10000, 11000); 1745 spin_lock_irqsave(&ctlr->queue_lock, flags); 1746 } 1747 1748 if (!list_empty(&ctlr->queue) || ctlr->busy) 1749 ret = -EBUSY; 1750 else 1751 ctlr->running = false; 1752 1753 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1754 1755 if (ret) { 1756 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1757 return ret; 1758 } 1759 return ret; 1760 } 1761 1762 static int spi_destroy_queue(struct spi_controller *ctlr) 1763 { 1764 int ret; 1765 1766 ret = spi_stop_queue(ctlr); 1767 1768 /* 1769 * kthread_flush_worker will block until all work is done. 1770 * If the reason that stop_queue timed out is that the work will never 1771 * finish, then it does no good to call flush/stop thread, so 1772 * return anyway. 1773 */ 1774 if (ret) { 1775 dev_err(&ctlr->dev, "problem destroying queue\n"); 1776 return ret; 1777 } 1778 1779 kthread_flush_worker(&ctlr->kworker); 1780 kthread_stop(ctlr->kworker_task); 1781 1782 return 0; 1783 } 1784 1785 static int __spi_queued_transfer(struct spi_device *spi, 1786 struct spi_message *msg, 1787 bool need_pump) 1788 { 1789 struct spi_controller *ctlr = spi->controller; 1790 unsigned long flags; 1791 1792 spin_lock_irqsave(&ctlr->queue_lock, flags); 1793 1794 if (!ctlr->running) { 1795 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1796 return -ESHUTDOWN; 1797 } 1798 msg->actual_length = 0; 1799 msg->status = -EINPROGRESS; 1800 1801 list_add_tail(&msg->queue, &ctlr->queue); 1802 if (!ctlr->busy && need_pump) 1803 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1804 1805 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1806 return 0; 1807 } 1808 1809 /** 1810 * spi_queued_transfer - transfer function for queued transfers 1811 * @spi: spi device which is requesting transfer 1812 * @msg: spi message which is to handled is queued to driver queue 1813 * 1814 * Return: zero on success, else a negative error code. 1815 */ 1816 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1817 { 1818 return __spi_queued_transfer(spi, msg, true); 1819 } 1820 1821 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1822 { 1823 int ret; 1824 1825 ctlr->transfer = spi_queued_transfer; 1826 if (!ctlr->transfer_one_message) 1827 ctlr->transfer_one_message = spi_transfer_one_message; 1828 1829 /* Initialize and start queue */ 1830 ret = spi_init_queue(ctlr); 1831 if (ret) { 1832 dev_err(&ctlr->dev, "problem initializing queue\n"); 1833 goto err_init_queue; 1834 } 1835 ctlr->queued = true; 1836 ret = spi_start_queue(ctlr); 1837 if (ret) { 1838 dev_err(&ctlr->dev, "problem starting queue\n"); 1839 goto err_start_queue; 1840 } 1841 1842 return 0; 1843 1844 err_start_queue: 1845 spi_destroy_queue(ctlr); 1846 err_init_queue: 1847 return ret; 1848 } 1849 1850 /** 1851 * spi_flush_queue - Send all pending messages in the queue from the callers' 1852 * context 1853 * @ctlr: controller to process queue for 1854 * 1855 * This should be used when one wants to ensure all pending messages have been 1856 * sent before doing something. Is used by the spi-mem code to make sure SPI 1857 * memory operations do not preempt regular SPI transfers that have been queued 1858 * before the spi-mem operation. 1859 */ 1860 void spi_flush_queue(struct spi_controller *ctlr) 1861 { 1862 if (ctlr->transfer == spi_queued_transfer) 1863 __spi_pump_messages(ctlr, false); 1864 } 1865 1866 /*-------------------------------------------------------------------------*/ 1867 1868 #if defined(CONFIG_OF) 1869 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1870 struct device_node *nc) 1871 { 1872 u32 value; 1873 int rc; 1874 1875 /* Mode (clock phase/polarity/etc.) */ 1876 if (of_property_read_bool(nc, "spi-cpha")) 1877 spi->mode |= SPI_CPHA; 1878 if (of_property_read_bool(nc, "spi-cpol")) 1879 spi->mode |= SPI_CPOL; 1880 if (of_property_read_bool(nc, "spi-3wire")) 1881 spi->mode |= SPI_3WIRE; 1882 if (of_property_read_bool(nc, "spi-lsb-first")) 1883 spi->mode |= SPI_LSB_FIRST; 1884 if (of_property_read_bool(nc, "spi-cs-high")) 1885 spi->mode |= SPI_CS_HIGH; 1886 1887 /* Device DUAL/QUAD mode */ 1888 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1889 switch (value) { 1890 case 1: 1891 break; 1892 case 2: 1893 spi->mode |= SPI_TX_DUAL; 1894 break; 1895 case 4: 1896 spi->mode |= SPI_TX_QUAD; 1897 break; 1898 case 8: 1899 spi->mode |= SPI_TX_OCTAL; 1900 break; 1901 default: 1902 dev_warn(&ctlr->dev, 1903 "spi-tx-bus-width %d not supported\n", 1904 value); 1905 break; 1906 } 1907 } 1908 1909 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1910 switch (value) { 1911 case 1: 1912 break; 1913 case 2: 1914 spi->mode |= SPI_RX_DUAL; 1915 break; 1916 case 4: 1917 spi->mode |= SPI_RX_QUAD; 1918 break; 1919 case 8: 1920 spi->mode |= SPI_RX_OCTAL; 1921 break; 1922 default: 1923 dev_warn(&ctlr->dev, 1924 "spi-rx-bus-width %d not supported\n", 1925 value); 1926 break; 1927 } 1928 } 1929 1930 if (spi_controller_is_slave(ctlr)) { 1931 if (!of_node_name_eq(nc, "slave")) { 1932 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1933 nc); 1934 return -EINVAL; 1935 } 1936 return 0; 1937 } 1938 1939 /* Device address */ 1940 rc = of_property_read_u32(nc, "reg", &value); 1941 if (rc) { 1942 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1943 nc, rc); 1944 return rc; 1945 } 1946 spi->chip_select = value; 1947 1948 /* 1949 * For descriptors associated with the device, polarity inversion is 1950 * handled in the gpiolib, so all gpio chip selects are "active high" 1951 * in the logical sense, the gpiolib will invert the line if need be. 1952 */ 1953 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods && 1954 ctlr->cs_gpiods[spi->chip_select]) 1955 spi->mode |= SPI_CS_HIGH; 1956 1957 /* Device speed */ 1958 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1959 if (rc) { 1960 dev_err(&ctlr->dev, 1961 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); 1962 return rc; 1963 } 1964 spi->max_speed_hz = value; 1965 1966 return 0; 1967 } 1968 1969 static struct spi_device * 1970 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1971 { 1972 struct spi_device *spi; 1973 int rc; 1974 1975 /* Alloc an spi_device */ 1976 spi = spi_alloc_device(ctlr); 1977 if (!spi) { 1978 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 1979 rc = -ENOMEM; 1980 goto err_out; 1981 } 1982 1983 /* Select device driver */ 1984 rc = of_modalias_node(nc, spi->modalias, 1985 sizeof(spi->modalias)); 1986 if (rc < 0) { 1987 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 1988 goto err_out; 1989 } 1990 1991 rc = of_spi_parse_dt(ctlr, spi, nc); 1992 if (rc) 1993 goto err_out; 1994 1995 /* Store a pointer to the node in the device structure */ 1996 of_node_get(nc); 1997 spi->dev.of_node = nc; 1998 1999 /* Register the new device */ 2000 rc = spi_add_device(spi); 2001 if (rc) { 2002 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2003 goto err_of_node_put; 2004 } 2005 2006 return spi; 2007 2008 err_of_node_put: 2009 of_node_put(nc); 2010 err_out: 2011 spi_dev_put(spi); 2012 return ERR_PTR(rc); 2013 } 2014 2015 /** 2016 * of_register_spi_devices() - Register child devices onto the SPI bus 2017 * @ctlr: Pointer to spi_controller device 2018 * 2019 * Registers an spi_device for each child node of controller node which 2020 * represents a valid SPI slave. 2021 */ 2022 static void of_register_spi_devices(struct spi_controller *ctlr) 2023 { 2024 struct spi_device *spi; 2025 struct device_node *nc; 2026 2027 if (!ctlr->dev.of_node) 2028 return; 2029 2030 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2031 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2032 continue; 2033 spi = of_register_spi_device(ctlr, nc); 2034 if (IS_ERR(spi)) { 2035 dev_warn(&ctlr->dev, 2036 "Failed to create SPI device for %pOF\n", nc); 2037 of_node_clear_flag(nc, OF_POPULATED); 2038 } 2039 } 2040 } 2041 #else 2042 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2043 #endif 2044 2045 #ifdef CONFIG_ACPI 2046 struct acpi_spi_lookup { 2047 struct spi_controller *ctlr; 2048 u32 max_speed_hz; 2049 u32 mode; 2050 int irq; 2051 u8 bits_per_word; 2052 u8 chip_select; 2053 }; 2054 2055 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2056 struct acpi_spi_lookup *lookup) 2057 { 2058 const union acpi_object *obj; 2059 2060 if (!x86_apple_machine) 2061 return; 2062 2063 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2064 && obj->buffer.length >= 4) 2065 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2066 2067 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2068 && obj->buffer.length == 8) 2069 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2070 2071 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2072 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2073 lookup->mode |= SPI_LSB_FIRST; 2074 2075 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2076 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2077 lookup->mode |= SPI_CPOL; 2078 2079 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2080 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2081 lookup->mode |= SPI_CPHA; 2082 } 2083 2084 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2085 { 2086 struct acpi_spi_lookup *lookup = data; 2087 struct spi_controller *ctlr = lookup->ctlr; 2088 2089 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2090 struct acpi_resource_spi_serialbus *sb; 2091 acpi_handle parent_handle; 2092 acpi_status status; 2093 2094 sb = &ares->data.spi_serial_bus; 2095 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2096 2097 status = acpi_get_handle(NULL, 2098 sb->resource_source.string_ptr, 2099 &parent_handle); 2100 2101 if (ACPI_FAILURE(status) || 2102 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2103 return -ENODEV; 2104 2105 /* 2106 * ACPI DeviceSelection numbering is handled by the 2107 * host controller driver in Windows and can vary 2108 * from driver to driver. In Linux we always expect 2109 * 0 .. max - 1 so we need to ask the driver to 2110 * translate between the two schemes. 2111 */ 2112 if (ctlr->fw_translate_cs) { 2113 int cs = ctlr->fw_translate_cs(ctlr, 2114 sb->device_selection); 2115 if (cs < 0) 2116 return cs; 2117 lookup->chip_select = cs; 2118 } else { 2119 lookup->chip_select = sb->device_selection; 2120 } 2121 2122 lookup->max_speed_hz = sb->connection_speed; 2123 2124 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2125 lookup->mode |= SPI_CPHA; 2126 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2127 lookup->mode |= SPI_CPOL; 2128 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2129 lookup->mode |= SPI_CS_HIGH; 2130 } 2131 } else if (lookup->irq < 0) { 2132 struct resource r; 2133 2134 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2135 lookup->irq = r.start; 2136 } 2137 2138 /* Always tell the ACPI core to skip this resource */ 2139 return 1; 2140 } 2141 2142 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2143 struct acpi_device *adev) 2144 { 2145 acpi_handle parent_handle = NULL; 2146 struct list_head resource_list; 2147 struct acpi_spi_lookup lookup = {}; 2148 struct spi_device *spi; 2149 int ret; 2150 2151 if (acpi_bus_get_status(adev) || !adev->status.present || 2152 acpi_device_enumerated(adev)) 2153 return AE_OK; 2154 2155 lookup.ctlr = ctlr; 2156 lookup.irq = -1; 2157 2158 INIT_LIST_HEAD(&resource_list); 2159 ret = acpi_dev_get_resources(adev, &resource_list, 2160 acpi_spi_add_resource, &lookup); 2161 acpi_dev_free_resource_list(&resource_list); 2162 2163 if (ret < 0) 2164 /* found SPI in _CRS but it points to another controller */ 2165 return AE_OK; 2166 2167 if (!lookup.max_speed_hz && 2168 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 2169 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2170 /* Apple does not use _CRS but nested devices for SPI slaves */ 2171 acpi_spi_parse_apple_properties(adev, &lookup); 2172 } 2173 2174 if (!lookup.max_speed_hz) 2175 return AE_OK; 2176 2177 spi = spi_alloc_device(ctlr); 2178 if (!spi) { 2179 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2180 dev_name(&adev->dev)); 2181 return AE_NO_MEMORY; 2182 } 2183 2184 ACPI_COMPANION_SET(&spi->dev, adev); 2185 spi->max_speed_hz = lookup.max_speed_hz; 2186 spi->mode = lookup.mode; 2187 spi->irq = lookup.irq; 2188 spi->bits_per_word = lookup.bits_per_word; 2189 spi->chip_select = lookup.chip_select; 2190 2191 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2192 sizeof(spi->modalias)); 2193 2194 if (spi->irq < 0) 2195 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2196 2197 acpi_device_set_enumerated(adev); 2198 2199 adev->power.flags.ignore_parent = true; 2200 if (spi_add_device(spi)) { 2201 adev->power.flags.ignore_parent = false; 2202 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2203 dev_name(&adev->dev)); 2204 spi_dev_put(spi); 2205 } 2206 2207 return AE_OK; 2208 } 2209 2210 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2211 void *data, void **return_value) 2212 { 2213 struct spi_controller *ctlr = data; 2214 struct acpi_device *adev; 2215 2216 if (acpi_bus_get_device(handle, &adev)) 2217 return AE_OK; 2218 2219 return acpi_register_spi_device(ctlr, adev); 2220 } 2221 2222 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2223 2224 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2225 { 2226 acpi_status status; 2227 acpi_handle handle; 2228 2229 handle = ACPI_HANDLE(ctlr->dev.parent); 2230 if (!handle) 2231 return; 2232 2233 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2234 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2235 acpi_spi_add_device, NULL, ctlr, NULL); 2236 if (ACPI_FAILURE(status)) 2237 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2238 } 2239 #else 2240 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2241 #endif /* CONFIG_ACPI */ 2242 2243 static void spi_controller_release(struct device *dev) 2244 { 2245 struct spi_controller *ctlr; 2246 2247 ctlr = container_of(dev, struct spi_controller, dev); 2248 kfree(ctlr); 2249 } 2250 2251 static struct class spi_master_class = { 2252 .name = "spi_master", 2253 .owner = THIS_MODULE, 2254 .dev_release = spi_controller_release, 2255 .dev_groups = spi_master_groups, 2256 }; 2257 2258 #ifdef CONFIG_SPI_SLAVE 2259 /** 2260 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2261 * controller 2262 * @spi: device used for the current transfer 2263 */ 2264 int spi_slave_abort(struct spi_device *spi) 2265 { 2266 struct spi_controller *ctlr = spi->controller; 2267 2268 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2269 return ctlr->slave_abort(ctlr); 2270 2271 return -ENOTSUPP; 2272 } 2273 EXPORT_SYMBOL_GPL(spi_slave_abort); 2274 2275 static int match_true(struct device *dev, void *data) 2276 { 2277 return 1; 2278 } 2279 2280 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2281 char *buf) 2282 { 2283 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2284 dev); 2285 struct device *child; 2286 2287 child = device_find_child(&ctlr->dev, NULL, match_true); 2288 return sprintf(buf, "%s\n", 2289 child ? to_spi_device(child)->modalias : NULL); 2290 } 2291 2292 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2293 const char *buf, size_t count) 2294 { 2295 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2296 dev); 2297 struct spi_device *spi; 2298 struct device *child; 2299 char name[32]; 2300 int rc; 2301 2302 rc = sscanf(buf, "%31s", name); 2303 if (rc != 1 || !name[0]) 2304 return -EINVAL; 2305 2306 child = device_find_child(&ctlr->dev, NULL, match_true); 2307 if (child) { 2308 /* Remove registered slave */ 2309 device_unregister(child); 2310 put_device(child); 2311 } 2312 2313 if (strcmp(name, "(null)")) { 2314 /* Register new slave */ 2315 spi = spi_alloc_device(ctlr); 2316 if (!spi) 2317 return -ENOMEM; 2318 2319 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2320 2321 rc = spi_add_device(spi); 2322 if (rc) { 2323 spi_dev_put(spi); 2324 return rc; 2325 } 2326 } 2327 2328 return count; 2329 } 2330 2331 static DEVICE_ATTR_RW(slave); 2332 2333 static struct attribute *spi_slave_attrs[] = { 2334 &dev_attr_slave.attr, 2335 NULL, 2336 }; 2337 2338 static const struct attribute_group spi_slave_group = { 2339 .attrs = spi_slave_attrs, 2340 }; 2341 2342 static const struct attribute_group *spi_slave_groups[] = { 2343 &spi_controller_statistics_group, 2344 &spi_slave_group, 2345 NULL, 2346 }; 2347 2348 static struct class spi_slave_class = { 2349 .name = "spi_slave", 2350 .owner = THIS_MODULE, 2351 .dev_release = spi_controller_release, 2352 .dev_groups = spi_slave_groups, 2353 }; 2354 #else 2355 extern struct class spi_slave_class; /* dummy */ 2356 #endif 2357 2358 /** 2359 * __spi_alloc_controller - allocate an SPI master or slave controller 2360 * @dev: the controller, possibly using the platform_bus 2361 * @size: how much zeroed driver-private data to allocate; the pointer to this 2362 * memory is in the driver_data field of the returned device, accessible 2363 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2364 * drivers granting DMA access to portions of their private data need to 2365 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2366 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2367 * slave (true) controller 2368 * Context: can sleep 2369 * 2370 * This call is used only by SPI controller drivers, which are the 2371 * only ones directly touching chip registers. It's how they allocate 2372 * an spi_controller structure, prior to calling spi_register_controller(). 2373 * 2374 * This must be called from context that can sleep. 2375 * 2376 * The caller is responsible for assigning the bus number and initializing the 2377 * controller's methods before calling spi_register_controller(); and (after 2378 * errors adding the device) calling spi_controller_put() to prevent a memory 2379 * leak. 2380 * 2381 * Return: the SPI controller structure on success, else NULL. 2382 */ 2383 struct spi_controller *__spi_alloc_controller(struct device *dev, 2384 unsigned int size, bool slave) 2385 { 2386 struct spi_controller *ctlr; 2387 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2388 2389 if (!dev) 2390 return NULL; 2391 2392 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2393 if (!ctlr) 2394 return NULL; 2395 2396 device_initialize(&ctlr->dev); 2397 ctlr->bus_num = -1; 2398 ctlr->num_chipselect = 1; 2399 ctlr->slave = slave; 2400 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2401 ctlr->dev.class = &spi_slave_class; 2402 else 2403 ctlr->dev.class = &spi_master_class; 2404 ctlr->dev.parent = dev; 2405 pm_suspend_ignore_children(&ctlr->dev, true); 2406 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2407 2408 return ctlr; 2409 } 2410 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2411 2412 #ifdef CONFIG_OF 2413 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2414 { 2415 int nb, i, *cs; 2416 struct device_node *np = ctlr->dev.of_node; 2417 2418 if (!np) 2419 return 0; 2420 2421 nb = of_gpio_named_count(np, "cs-gpios"); 2422 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2423 2424 /* Return error only for an incorrectly formed cs-gpios property */ 2425 if (nb == 0 || nb == -ENOENT) 2426 return 0; 2427 else if (nb < 0) 2428 return nb; 2429 2430 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2431 GFP_KERNEL); 2432 ctlr->cs_gpios = cs; 2433 2434 if (!ctlr->cs_gpios) 2435 return -ENOMEM; 2436 2437 for (i = 0; i < ctlr->num_chipselect; i++) 2438 cs[i] = -ENOENT; 2439 2440 for (i = 0; i < nb; i++) 2441 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2442 2443 return 0; 2444 } 2445 #else 2446 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2447 { 2448 return 0; 2449 } 2450 #endif 2451 2452 /** 2453 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2454 * @ctlr: The SPI master to grab GPIO descriptors for 2455 */ 2456 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2457 { 2458 int nb, i; 2459 struct gpio_desc **cs; 2460 struct device *dev = &ctlr->dev; 2461 unsigned long native_cs_mask = 0; 2462 unsigned int num_cs_gpios = 0; 2463 2464 nb = gpiod_count(dev, "cs"); 2465 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2466 2467 /* No GPIOs at all is fine, else return the error */ 2468 if (nb == 0 || nb == -ENOENT) 2469 return 0; 2470 else if (nb < 0) 2471 return nb; 2472 2473 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2474 GFP_KERNEL); 2475 if (!cs) 2476 return -ENOMEM; 2477 ctlr->cs_gpiods = cs; 2478 2479 for (i = 0; i < nb; i++) { 2480 /* 2481 * Most chipselects are active low, the inverted 2482 * semantics are handled by special quirks in gpiolib, 2483 * so initializing them GPIOD_OUT_LOW here means 2484 * "unasserted", in most cases this will drive the physical 2485 * line high. 2486 */ 2487 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2488 GPIOD_OUT_LOW); 2489 if (IS_ERR(cs[i])) 2490 return PTR_ERR(cs[i]); 2491 2492 if (cs[i]) { 2493 /* 2494 * If we find a CS GPIO, name it after the device and 2495 * chip select line. 2496 */ 2497 char *gpioname; 2498 2499 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2500 dev_name(dev), i); 2501 if (!gpioname) 2502 return -ENOMEM; 2503 gpiod_set_consumer_name(cs[i], gpioname); 2504 num_cs_gpios++; 2505 continue; 2506 } 2507 2508 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2509 dev_err(dev, "Invalid native chip select %d\n", i); 2510 return -EINVAL; 2511 } 2512 native_cs_mask |= BIT(i); 2513 } 2514 2515 ctlr->unused_native_cs = ffz(native_cs_mask); 2516 if (num_cs_gpios && ctlr->max_native_cs && 2517 ctlr->unused_native_cs >= ctlr->max_native_cs) { 2518 dev_err(dev, "No unused native chip select available\n"); 2519 return -EINVAL; 2520 } 2521 2522 return 0; 2523 } 2524 2525 static int spi_controller_check_ops(struct spi_controller *ctlr) 2526 { 2527 /* 2528 * The controller may implement only the high-level SPI-memory like 2529 * operations if it does not support regular SPI transfers, and this is 2530 * valid use case. 2531 * If ->mem_ops is NULL, we request that at least one of the 2532 * ->transfer_xxx() method be implemented. 2533 */ 2534 if (ctlr->mem_ops) { 2535 if (!ctlr->mem_ops->exec_op) 2536 return -EINVAL; 2537 } else if (!ctlr->transfer && !ctlr->transfer_one && 2538 !ctlr->transfer_one_message) { 2539 return -EINVAL; 2540 } 2541 2542 return 0; 2543 } 2544 2545 /** 2546 * spi_register_controller - register SPI master or slave controller 2547 * @ctlr: initialized master, originally from spi_alloc_master() or 2548 * spi_alloc_slave() 2549 * Context: can sleep 2550 * 2551 * SPI controllers connect to their drivers using some non-SPI bus, 2552 * such as the platform bus. The final stage of probe() in that code 2553 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2554 * 2555 * SPI controllers use board specific (often SOC specific) bus numbers, 2556 * and board-specific addressing for SPI devices combines those numbers 2557 * with chip select numbers. Since SPI does not directly support dynamic 2558 * device identification, boards need configuration tables telling which 2559 * chip is at which address. 2560 * 2561 * This must be called from context that can sleep. It returns zero on 2562 * success, else a negative error code (dropping the controller's refcount). 2563 * After a successful return, the caller is responsible for calling 2564 * spi_unregister_controller(). 2565 * 2566 * Return: zero on success, else a negative error code. 2567 */ 2568 int spi_register_controller(struct spi_controller *ctlr) 2569 { 2570 struct device *dev = ctlr->dev.parent; 2571 struct boardinfo *bi; 2572 int status; 2573 int id, first_dynamic; 2574 2575 if (!dev) 2576 return -ENODEV; 2577 2578 /* 2579 * Make sure all necessary hooks are implemented before registering 2580 * the SPI controller. 2581 */ 2582 status = spi_controller_check_ops(ctlr); 2583 if (status) 2584 return status; 2585 2586 if (ctlr->bus_num >= 0) { 2587 /* devices with a fixed bus num must check-in with the num */ 2588 mutex_lock(&board_lock); 2589 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2590 ctlr->bus_num + 1, GFP_KERNEL); 2591 mutex_unlock(&board_lock); 2592 if (WARN(id < 0, "couldn't get idr")) 2593 return id == -ENOSPC ? -EBUSY : id; 2594 ctlr->bus_num = id; 2595 } else if (ctlr->dev.of_node) { 2596 /* allocate dynamic bus number using Linux idr */ 2597 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2598 if (id >= 0) { 2599 ctlr->bus_num = id; 2600 mutex_lock(&board_lock); 2601 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2602 ctlr->bus_num + 1, GFP_KERNEL); 2603 mutex_unlock(&board_lock); 2604 if (WARN(id < 0, "couldn't get idr")) 2605 return id == -ENOSPC ? -EBUSY : id; 2606 } 2607 } 2608 if (ctlr->bus_num < 0) { 2609 first_dynamic = of_alias_get_highest_id("spi"); 2610 if (first_dynamic < 0) 2611 first_dynamic = 0; 2612 else 2613 first_dynamic++; 2614 2615 mutex_lock(&board_lock); 2616 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2617 0, GFP_KERNEL); 2618 mutex_unlock(&board_lock); 2619 if (WARN(id < 0, "couldn't get idr")) 2620 return id; 2621 ctlr->bus_num = id; 2622 } 2623 INIT_LIST_HEAD(&ctlr->queue); 2624 spin_lock_init(&ctlr->queue_lock); 2625 spin_lock_init(&ctlr->bus_lock_spinlock); 2626 mutex_init(&ctlr->bus_lock_mutex); 2627 mutex_init(&ctlr->io_mutex); 2628 ctlr->bus_lock_flag = 0; 2629 init_completion(&ctlr->xfer_completion); 2630 if (!ctlr->max_dma_len) 2631 ctlr->max_dma_len = INT_MAX; 2632 2633 /* register the device, then userspace will see it. 2634 * registration fails if the bus ID is in use. 2635 */ 2636 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2637 2638 if (!spi_controller_is_slave(ctlr)) { 2639 if (ctlr->use_gpio_descriptors) { 2640 status = spi_get_gpio_descs(ctlr); 2641 if (status) 2642 return status; 2643 /* 2644 * A controller using GPIO descriptors always 2645 * supports SPI_CS_HIGH if need be. 2646 */ 2647 ctlr->mode_bits |= SPI_CS_HIGH; 2648 } else { 2649 /* Legacy code path for GPIOs from DT */ 2650 status = of_spi_get_gpio_numbers(ctlr); 2651 if (status) 2652 return status; 2653 } 2654 } 2655 2656 /* 2657 * Even if it's just one always-selected device, there must 2658 * be at least one chipselect. 2659 */ 2660 if (!ctlr->num_chipselect) 2661 return -EINVAL; 2662 2663 status = device_add(&ctlr->dev); 2664 if (status < 0) { 2665 /* free bus id */ 2666 mutex_lock(&board_lock); 2667 idr_remove(&spi_master_idr, ctlr->bus_num); 2668 mutex_unlock(&board_lock); 2669 goto done; 2670 } 2671 dev_dbg(dev, "registered %s %s\n", 2672 spi_controller_is_slave(ctlr) ? "slave" : "master", 2673 dev_name(&ctlr->dev)); 2674 2675 /* 2676 * If we're using a queued driver, start the queue. Note that we don't 2677 * need the queueing logic if the driver is only supporting high-level 2678 * memory operations. 2679 */ 2680 if (ctlr->transfer) { 2681 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2682 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2683 status = spi_controller_initialize_queue(ctlr); 2684 if (status) { 2685 device_del(&ctlr->dev); 2686 /* free bus id */ 2687 mutex_lock(&board_lock); 2688 idr_remove(&spi_master_idr, ctlr->bus_num); 2689 mutex_unlock(&board_lock); 2690 goto done; 2691 } 2692 } 2693 /* add statistics */ 2694 spin_lock_init(&ctlr->statistics.lock); 2695 2696 mutex_lock(&board_lock); 2697 list_add_tail(&ctlr->list, &spi_controller_list); 2698 list_for_each_entry(bi, &board_list, list) 2699 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2700 mutex_unlock(&board_lock); 2701 2702 /* Register devices from the device tree and ACPI */ 2703 of_register_spi_devices(ctlr); 2704 acpi_register_spi_devices(ctlr); 2705 done: 2706 return status; 2707 } 2708 EXPORT_SYMBOL_GPL(spi_register_controller); 2709 2710 static void devm_spi_unregister(struct device *dev, void *res) 2711 { 2712 spi_unregister_controller(*(struct spi_controller **)res); 2713 } 2714 2715 /** 2716 * devm_spi_register_controller - register managed SPI master or slave 2717 * controller 2718 * @dev: device managing SPI controller 2719 * @ctlr: initialized controller, originally from spi_alloc_master() or 2720 * spi_alloc_slave() 2721 * Context: can sleep 2722 * 2723 * Register a SPI device as with spi_register_controller() which will 2724 * automatically be unregistered and freed. 2725 * 2726 * Return: zero on success, else a negative error code. 2727 */ 2728 int devm_spi_register_controller(struct device *dev, 2729 struct spi_controller *ctlr) 2730 { 2731 struct spi_controller **ptr; 2732 int ret; 2733 2734 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2735 if (!ptr) 2736 return -ENOMEM; 2737 2738 ret = spi_register_controller(ctlr); 2739 if (!ret) { 2740 *ptr = ctlr; 2741 devres_add(dev, ptr); 2742 } else { 2743 devres_free(ptr); 2744 } 2745 2746 return ret; 2747 } 2748 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2749 2750 static int __unregister(struct device *dev, void *null) 2751 { 2752 spi_unregister_device(to_spi_device(dev)); 2753 return 0; 2754 } 2755 2756 /** 2757 * spi_unregister_controller - unregister SPI master or slave controller 2758 * @ctlr: the controller being unregistered 2759 * Context: can sleep 2760 * 2761 * This call is used only by SPI controller drivers, which are the 2762 * only ones directly touching chip registers. 2763 * 2764 * This must be called from context that can sleep. 2765 * 2766 * Note that this function also drops a reference to the controller. 2767 */ 2768 void spi_unregister_controller(struct spi_controller *ctlr) 2769 { 2770 struct spi_controller *found; 2771 int id = ctlr->bus_num; 2772 2773 /* First make sure that this controller was ever added */ 2774 mutex_lock(&board_lock); 2775 found = idr_find(&spi_master_idr, id); 2776 mutex_unlock(&board_lock); 2777 if (ctlr->queued) { 2778 if (spi_destroy_queue(ctlr)) 2779 dev_err(&ctlr->dev, "queue remove failed\n"); 2780 } 2781 mutex_lock(&board_lock); 2782 list_del(&ctlr->list); 2783 mutex_unlock(&board_lock); 2784 2785 device_for_each_child(&ctlr->dev, NULL, __unregister); 2786 device_unregister(&ctlr->dev); 2787 /* free bus id */ 2788 mutex_lock(&board_lock); 2789 if (found == ctlr) 2790 idr_remove(&spi_master_idr, id); 2791 mutex_unlock(&board_lock); 2792 } 2793 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2794 2795 int spi_controller_suspend(struct spi_controller *ctlr) 2796 { 2797 int ret; 2798 2799 /* Basically no-ops for non-queued controllers */ 2800 if (!ctlr->queued) 2801 return 0; 2802 2803 ret = spi_stop_queue(ctlr); 2804 if (ret) 2805 dev_err(&ctlr->dev, "queue stop failed\n"); 2806 2807 return ret; 2808 } 2809 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2810 2811 int spi_controller_resume(struct spi_controller *ctlr) 2812 { 2813 int ret; 2814 2815 if (!ctlr->queued) 2816 return 0; 2817 2818 ret = spi_start_queue(ctlr); 2819 if (ret) 2820 dev_err(&ctlr->dev, "queue restart failed\n"); 2821 2822 return ret; 2823 } 2824 EXPORT_SYMBOL_GPL(spi_controller_resume); 2825 2826 static int __spi_controller_match(struct device *dev, const void *data) 2827 { 2828 struct spi_controller *ctlr; 2829 const u16 *bus_num = data; 2830 2831 ctlr = container_of(dev, struct spi_controller, dev); 2832 return ctlr->bus_num == *bus_num; 2833 } 2834 2835 /** 2836 * spi_busnum_to_master - look up master associated with bus_num 2837 * @bus_num: the master's bus number 2838 * Context: can sleep 2839 * 2840 * This call may be used with devices that are registered after 2841 * arch init time. It returns a refcounted pointer to the relevant 2842 * spi_controller (which the caller must release), or NULL if there is 2843 * no such master registered. 2844 * 2845 * Return: the SPI master structure on success, else NULL. 2846 */ 2847 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2848 { 2849 struct device *dev; 2850 struct spi_controller *ctlr = NULL; 2851 2852 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2853 __spi_controller_match); 2854 if (dev) 2855 ctlr = container_of(dev, struct spi_controller, dev); 2856 /* reference got in class_find_device */ 2857 return ctlr; 2858 } 2859 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2860 2861 /*-------------------------------------------------------------------------*/ 2862 2863 /* Core methods for SPI resource management */ 2864 2865 /** 2866 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2867 * during the processing of a spi_message while using 2868 * spi_transfer_one 2869 * @spi: the spi device for which we allocate memory 2870 * @release: the release code to execute for this resource 2871 * @size: size to alloc and return 2872 * @gfp: GFP allocation flags 2873 * 2874 * Return: the pointer to the allocated data 2875 * 2876 * This may get enhanced in the future to allocate from a memory pool 2877 * of the @spi_device or @spi_controller to avoid repeated allocations. 2878 */ 2879 void *spi_res_alloc(struct spi_device *spi, 2880 spi_res_release_t release, 2881 size_t size, gfp_t gfp) 2882 { 2883 struct spi_res *sres; 2884 2885 sres = kzalloc(sizeof(*sres) + size, gfp); 2886 if (!sres) 2887 return NULL; 2888 2889 INIT_LIST_HEAD(&sres->entry); 2890 sres->release = release; 2891 2892 return sres->data; 2893 } 2894 EXPORT_SYMBOL_GPL(spi_res_alloc); 2895 2896 /** 2897 * spi_res_free - free an spi resource 2898 * @res: pointer to the custom data of a resource 2899 * 2900 */ 2901 void spi_res_free(void *res) 2902 { 2903 struct spi_res *sres = container_of(res, struct spi_res, data); 2904 2905 if (!res) 2906 return; 2907 2908 WARN_ON(!list_empty(&sres->entry)); 2909 kfree(sres); 2910 } 2911 EXPORT_SYMBOL_GPL(spi_res_free); 2912 2913 /** 2914 * spi_res_add - add a spi_res to the spi_message 2915 * @message: the spi message 2916 * @res: the spi_resource 2917 */ 2918 void spi_res_add(struct spi_message *message, void *res) 2919 { 2920 struct spi_res *sres = container_of(res, struct spi_res, data); 2921 2922 WARN_ON(!list_empty(&sres->entry)); 2923 list_add_tail(&sres->entry, &message->resources); 2924 } 2925 EXPORT_SYMBOL_GPL(spi_res_add); 2926 2927 /** 2928 * spi_res_release - release all spi resources for this message 2929 * @ctlr: the @spi_controller 2930 * @message: the @spi_message 2931 */ 2932 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2933 { 2934 struct spi_res *res, *tmp; 2935 2936 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 2937 if (res->release) 2938 res->release(ctlr, message, res->data); 2939 2940 list_del(&res->entry); 2941 2942 kfree(res); 2943 } 2944 } 2945 EXPORT_SYMBOL_GPL(spi_res_release); 2946 2947 /*-------------------------------------------------------------------------*/ 2948 2949 /* Core methods for spi_message alterations */ 2950 2951 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2952 struct spi_message *msg, 2953 void *res) 2954 { 2955 struct spi_replaced_transfers *rxfer = res; 2956 size_t i; 2957 2958 /* call extra callback if requested */ 2959 if (rxfer->release) 2960 rxfer->release(ctlr, msg, res); 2961 2962 /* insert replaced transfers back into the message */ 2963 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2964 2965 /* remove the formerly inserted entries */ 2966 for (i = 0; i < rxfer->inserted; i++) 2967 list_del(&rxfer->inserted_transfers[i].transfer_list); 2968 } 2969 2970 /** 2971 * spi_replace_transfers - replace transfers with several transfers 2972 * and register change with spi_message.resources 2973 * @msg: the spi_message we work upon 2974 * @xfer_first: the first spi_transfer we want to replace 2975 * @remove: number of transfers to remove 2976 * @insert: the number of transfers we want to insert instead 2977 * @release: extra release code necessary in some circumstances 2978 * @extradatasize: extra data to allocate (with alignment guarantees 2979 * of struct @spi_transfer) 2980 * @gfp: gfp flags 2981 * 2982 * Returns: pointer to @spi_replaced_transfers, 2983 * PTR_ERR(...) in case of errors. 2984 */ 2985 struct spi_replaced_transfers *spi_replace_transfers( 2986 struct spi_message *msg, 2987 struct spi_transfer *xfer_first, 2988 size_t remove, 2989 size_t insert, 2990 spi_replaced_release_t release, 2991 size_t extradatasize, 2992 gfp_t gfp) 2993 { 2994 struct spi_replaced_transfers *rxfer; 2995 struct spi_transfer *xfer; 2996 size_t i; 2997 2998 /* allocate the structure using spi_res */ 2999 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3000 struct_size(rxfer, inserted_transfers, insert) 3001 + extradatasize, 3002 gfp); 3003 if (!rxfer) 3004 return ERR_PTR(-ENOMEM); 3005 3006 /* the release code to invoke before running the generic release */ 3007 rxfer->release = release; 3008 3009 /* assign extradata */ 3010 if (extradatasize) 3011 rxfer->extradata = 3012 &rxfer->inserted_transfers[insert]; 3013 3014 /* init the replaced_transfers list */ 3015 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3016 3017 /* assign the list_entry after which we should reinsert 3018 * the @replaced_transfers - it may be spi_message.messages! 3019 */ 3020 rxfer->replaced_after = xfer_first->transfer_list.prev; 3021 3022 /* remove the requested number of transfers */ 3023 for (i = 0; i < remove; i++) { 3024 /* if the entry after replaced_after it is msg->transfers 3025 * then we have been requested to remove more transfers 3026 * than are in the list 3027 */ 3028 if (rxfer->replaced_after->next == &msg->transfers) { 3029 dev_err(&msg->spi->dev, 3030 "requested to remove more spi_transfers than are available\n"); 3031 /* insert replaced transfers back into the message */ 3032 list_splice(&rxfer->replaced_transfers, 3033 rxfer->replaced_after); 3034 3035 /* free the spi_replace_transfer structure */ 3036 spi_res_free(rxfer); 3037 3038 /* and return with an error */ 3039 return ERR_PTR(-EINVAL); 3040 } 3041 3042 /* remove the entry after replaced_after from list of 3043 * transfers and add it to list of replaced_transfers 3044 */ 3045 list_move_tail(rxfer->replaced_after->next, 3046 &rxfer->replaced_transfers); 3047 } 3048 3049 /* create copy of the given xfer with identical settings 3050 * based on the first transfer to get removed 3051 */ 3052 for (i = 0; i < insert; i++) { 3053 /* we need to run in reverse order */ 3054 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3055 3056 /* copy all spi_transfer data */ 3057 memcpy(xfer, xfer_first, sizeof(*xfer)); 3058 3059 /* add to list */ 3060 list_add(&xfer->transfer_list, rxfer->replaced_after); 3061 3062 /* clear cs_change and delay for all but the last */ 3063 if (i) { 3064 xfer->cs_change = false; 3065 xfer->delay_usecs = 0; 3066 xfer->delay.value = 0; 3067 } 3068 } 3069 3070 /* set up inserted */ 3071 rxfer->inserted = insert; 3072 3073 /* and register it with spi_res/spi_message */ 3074 spi_res_add(msg, rxfer); 3075 3076 return rxfer; 3077 } 3078 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3079 3080 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3081 struct spi_message *msg, 3082 struct spi_transfer **xferp, 3083 size_t maxsize, 3084 gfp_t gfp) 3085 { 3086 struct spi_transfer *xfer = *xferp, *xfers; 3087 struct spi_replaced_transfers *srt; 3088 size_t offset; 3089 size_t count, i; 3090 3091 /* calculate how many we have to replace */ 3092 count = DIV_ROUND_UP(xfer->len, maxsize); 3093 3094 /* create replacement */ 3095 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3096 if (IS_ERR(srt)) 3097 return PTR_ERR(srt); 3098 xfers = srt->inserted_transfers; 3099 3100 /* now handle each of those newly inserted spi_transfers 3101 * note that the replacements spi_transfers all are preset 3102 * to the same values as *xferp, so tx_buf, rx_buf and len 3103 * are all identical (as well as most others) 3104 * so we just have to fix up len and the pointers. 3105 * 3106 * this also includes support for the depreciated 3107 * spi_message.is_dma_mapped interface 3108 */ 3109 3110 /* the first transfer just needs the length modified, so we 3111 * run it outside the loop 3112 */ 3113 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3114 3115 /* all the others need rx_buf/tx_buf also set */ 3116 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3117 /* update rx_buf, tx_buf and dma */ 3118 if (xfers[i].rx_buf) 3119 xfers[i].rx_buf += offset; 3120 if (xfers[i].rx_dma) 3121 xfers[i].rx_dma += offset; 3122 if (xfers[i].tx_buf) 3123 xfers[i].tx_buf += offset; 3124 if (xfers[i].tx_dma) 3125 xfers[i].tx_dma += offset; 3126 3127 /* update length */ 3128 xfers[i].len = min(maxsize, xfers[i].len - offset); 3129 } 3130 3131 /* we set up xferp to the last entry we have inserted, 3132 * so that we skip those already split transfers 3133 */ 3134 *xferp = &xfers[count - 1]; 3135 3136 /* increment statistics counters */ 3137 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3138 transfers_split_maxsize); 3139 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3140 transfers_split_maxsize); 3141 3142 return 0; 3143 } 3144 3145 /** 3146 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 3147 * when an individual transfer exceeds a 3148 * certain size 3149 * @ctlr: the @spi_controller for this transfer 3150 * @msg: the @spi_message to transform 3151 * @maxsize: the maximum when to apply this 3152 * @gfp: GFP allocation flags 3153 * 3154 * Return: status of transformation 3155 */ 3156 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3157 struct spi_message *msg, 3158 size_t maxsize, 3159 gfp_t gfp) 3160 { 3161 struct spi_transfer *xfer; 3162 int ret; 3163 3164 /* iterate over the transfer_list, 3165 * but note that xfer is advanced to the last transfer inserted 3166 * to avoid checking sizes again unnecessarily (also xfer does 3167 * potentiall belong to a different list by the time the 3168 * replacement has happened 3169 */ 3170 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3171 if (xfer->len > maxsize) { 3172 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3173 maxsize, gfp); 3174 if (ret) 3175 return ret; 3176 } 3177 } 3178 3179 return 0; 3180 } 3181 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3182 3183 /*-------------------------------------------------------------------------*/ 3184 3185 /* Core methods for SPI controller protocol drivers. Some of the 3186 * other core methods are currently defined as inline functions. 3187 */ 3188 3189 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3190 u8 bits_per_word) 3191 { 3192 if (ctlr->bits_per_word_mask) { 3193 /* Only 32 bits fit in the mask */ 3194 if (bits_per_word > 32) 3195 return -EINVAL; 3196 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3197 return -EINVAL; 3198 } 3199 3200 return 0; 3201 } 3202 3203 /** 3204 * spi_setup - setup SPI mode and clock rate 3205 * @spi: the device whose settings are being modified 3206 * Context: can sleep, and no requests are queued to the device 3207 * 3208 * SPI protocol drivers may need to update the transfer mode if the 3209 * device doesn't work with its default. They may likewise need 3210 * to update clock rates or word sizes from initial values. This function 3211 * changes those settings, and must be called from a context that can sleep. 3212 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3213 * effect the next time the device is selected and data is transferred to 3214 * or from it. When this function returns, the spi device is deselected. 3215 * 3216 * Note that this call will fail if the protocol driver specifies an option 3217 * that the underlying controller or its driver does not support. For 3218 * example, not all hardware supports wire transfers using nine bit words, 3219 * LSB-first wire encoding, or active-high chipselects. 3220 * 3221 * Return: zero on success, else a negative error code. 3222 */ 3223 int spi_setup(struct spi_device *spi) 3224 { 3225 unsigned bad_bits, ugly_bits; 3226 int status; 3227 3228 /* check mode to prevent that DUAL and QUAD set at the same time 3229 */ 3230 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3231 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3232 dev_err(&spi->dev, 3233 "setup: can not select dual and quad at the same time\n"); 3234 return -EINVAL; 3235 } 3236 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3237 */ 3238 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3239 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3240 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3241 return -EINVAL; 3242 /* help drivers fail *cleanly* when they need options 3243 * that aren't supported with their current controller 3244 * SPI_CS_WORD has a fallback software implementation, 3245 * so it is ignored here. 3246 */ 3247 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3248 /* nothing prevents from working with active-high CS in case if it 3249 * is driven by GPIO. 3250 */ 3251 if (gpio_is_valid(spi->cs_gpio)) 3252 bad_bits &= ~SPI_CS_HIGH; 3253 ugly_bits = bad_bits & 3254 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3255 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3256 if (ugly_bits) { 3257 dev_warn(&spi->dev, 3258 "setup: ignoring unsupported mode bits %x\n", 3259 ugly_bits); 3260 spi->mode &= ~ugly_bits; 3261 bad_bits &= ~ugly_bits; 3262 } 3263 if (bad_bits) { 3264 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3265 bad_bits); 3266 return -EINVAL; 3267 } 3268 3269 if (!spi->bits_per_word) 3270 spi->bits_per_word = 8; 3271 3272 status = __spi_validate_bits_per_word(spi->controller, 3273 spi->bits_per_word); 3274 if (status) 3275 return status; 3276 3277 if (!spi->max_speed_hz) 3278 spi->max_speed_hz = spi->controller->max_speed_hz; 3279 3280 if (spi->controller->setup) 3281 status = spi->controller->setup(spi); 3282 3283 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3284 status = pm_runtime_get_sync(spi->controller->dev.parent); 3285 if (status < 0) { 3286 pm_runtime_put_noidle(spi->controller->dev.parent); 3287 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3288 status); 3289 return status; 3290 } 3291 3292 /* 3293 * We do not want to return positive value from pm_runtime_get, 3294 * there are many instances of devices calling spi_setup() and 3295 * checking for a non-zero return value instead of a negative 3296 * return value. 3297 */ 3298 status = 0; 3299 3300 spi_set_cs(spi, false); 3301 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3302 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3303 } else { 3304 spi_set_cs(spi, false); 3305 } 3306 3307 if (spi->rt && !spi->controller->rt) { 3308 spi->controller->rt = true; 3309 spi_set_thread_rt(spi->controller); 3310 } 3311 3312 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3313 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3314 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3315 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3316 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3317 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3318 spi->bits_per_word, spi->max_speed_hz, 3319 status); 3320 3321 return status; 3322 } 3323 EXPORT_SYMBOL_GPL(spi_setup); 3324 3325 /** 3326 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3327 * @spi: the device that requires specific CS timing configuration 3328 * @setup: CS setup time specified via @spi_delay 3329 * @hold: CS hold time specified via @spi_delay 3330 * @inactive: CS inactive delay between transfers specified via @spi_delay 3331 * 3332 * Return: zero on success, else a negative error code. 3333 */ 3334 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3335 struct spi_delay *hold, struct spi_delay *inactive) 3336 { 3337 size_t len; 3338 3339 if (spi->controller->set_cs_timing) 3340 return spi->controller->set_cs_timing(spi, setup, hold, 3341 inactive); 3342 3343 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3344 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3345 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3346 dev_err(&spi->dev, 3347 "Clock-cycle delays for CS not supported in SW mode\n"); 3348 return -ENOTSUPP; 3349 } 3350 3351 len = sizeof(struct spi_delay); 3352 3353 /* copy delays to controller */ 3354 if (setup) 3355 memcpy(&spi->controller->cs_setup, setup, len); 3356 else 3357 memset(&spi->controller->cs_setup, 0, len); 3358 3359 if (hold) 3360 memcpy(&spi->controller->cs_hold, hold, len); 3361 else 3362 memset(&spi->controller->cs_hold, 0, len); 3363 3364 if (inactive) 3365 memcpy(&spi->controller->cs_inactive, inactive, len); 3366 else 3367 memset(&spi->controller->cs_inactive, 0, len); 3368 3369 return 0; 3370 } 3371 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3372 3373 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3374 struct spi_device *spi) 3375 { 3376 int delay1, delay2; 3377 3378 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3379 if (delay1 < 0) 3380 return delay1; 3381 3382 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3383 if (delay2 < 0) 3384 return delay2; 3385 3386 if (delay1 < delay2) 3387 memcpy(&xfer->word_delay, &spi->word_delay, 3388 sizeof(xfer->word_delay)); 3389 3390 return 0; 3391 } 3392 3393 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3394 { 3395 struct spi_controller *ctlr = spi->controller; 3396 struct spi_transfer *xfer; 3397 int w_size; 3398 3399 if (list_empty(&message->transfers)) 3400 return -EINVAL; 3401 3402 /* If an SPI controller does not support toggling the CS line on each 3403 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3404 * for the CS line, we can emulate the CS-per-word hardware function by 3405 * splitting transfers into one-word transfers and ensuring that 3406 * cs_change is set for each transfer. 3407 */ 3408 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3409 spi->cs_gpiod || 3410 gpio_is_valid(spi->cs_gpio))) { 3411 size_t maxsize; 3412 int ret; 3413 3414 maxsize = (spi->bits_per_word + 7) / 8; 3415 3416 /* spi_split_transfers_maxsize() requires message->spi */ 3417 message->spi = spi; 3418 3419 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3420 GFP_KERNEL); 3421 if (ret) 3422 return ret; 3423 3424 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3425 /* don't change cs_change on the last entry in the list */ 3426 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3427 break; 3428 xfer->cs_change = 1; 3429 } 3430 } 3431 3432 /* Half-duplex links include original MicroWire, and ones with 3433 * only one data pin like SPI_3WIRE (switches direction) or where 3434 * either MOSI or MISO is missing. They can also be caused by 3435 * software limitations. 3436 */ 3437 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3438 (spi->mode & SPI_3WIRE)) { 3439 unsigned flags = ctlr->flags; 3440 3441 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3442 if (xfer->rx_buf && xfer->tx_buf) 3443 return -EINVAL; 3444 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3445 return -EINVAL; 3446 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3447 return -EINVAL; 3448 } 3449 } 3450 3451 /** 3452 * Set transfer bits_per_word and max speed as spi device default if 3453 * it is not set for this transfer. 3454 * Set transfer tx_nbits and rx_nbits as single transfer default 3455 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3456 * Ensure transfer word_delay is at least as long as that required by 3457 * device itself. 3458 */ 3459 message->frame_length = 0; 3460 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3461 xfer->effective_speed_hz = 0; 3462 message->frame_length += xfer->len; 3463 if (!xfer->bits_per_word) 3464 xfer->bits_per_word = spi->bits_per_word; 3465 3466 if (!xfer->speed_hz) 3467 xfer->speed_hz = spi->max_speed_hz; 3468 3469 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3470 xfer->speed_hz = ctlr->max_speed_hz; 3471 3472 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3473 return -EINVAL; 3474 3475 /* 3476 * SPI transfer length should be multiple of SPI word size 3477 * where SPI word size should be power-of-two multiple 3478 */ 3479 if (xfer->bits_per_word <= 8) 3480 w_size = 1; 3481 else if (xfer->bits_per_word <= 16) 3482 w_size = 2; 3483 else 3484 w_size = 4; 3485 3486 /* No partial transfers accepted */ 3487 if (xfer->len % w_size) 3488 return -EINVAL; 3489 3490 if (xfer->speed_hz && ctlr->min_speed_hz && 3491 xfer->speed_hz < ctlr->min_speed_hz) 3492 return -EINVAL; 3493 3494 if (xfer->tx_buf && !xfer->tx_nbits) 3495 xfer->tx_nbits = SPI_NBITS_SINGLE; 3496 if (xfer->rx_buf && !xfer->rx_nbits) 3497 xfer->rx_nbits = SPI_NBITS_SINGLE; 3498 /* check transfer tx/rx_nbits: 3499 * 1. check the value matches one of single, dual and quad 3500 * 2. check tx/rx_nbits match the mode in spi_device 3501 */ 3502 if (xfer->tx_buf) { 3503 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3504 xfer->tx_nbits != SPI_NBITS_DUAL && 3505 xfer->tx_nbits != SPI_NBITS_QUAD) 3506 return -EINVAL; 3507 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3508 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3509 return -EINVAL; 3510 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3511 !(spi->mode & SPI_TX_QUAD)) 3512 return -EINVAL; 3513 } 3514 /* check transfer rx_nbits */ 3515 if (xfer->rx_buf) { 3516 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3517 xfer->rx_nbits != SPI_NBITS_DUAL && 3518 xfer->rx_nbits != SPI_NBITS_QUAD) 3519 return -EINVAL; 3520 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3521 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3522 return -EINVAL; 3523 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3524 !(spi->mode & SPI_RX_QUAD)) 3525 return -EINVAL; 3526 } 3527 3528 if (_spi_xfer_word_delay_update(xfer, spi)) 3529 return -EINVAL; 3530 } 3531 3532 message->status = -EINPROGRESS; 3533 3534 return 0; 3535 } 3536 3537 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3538 { 3539 struct spi_controller *ctlr = spi->controller; 3540 struct spi_transfer *xfer; 3541 3542 /* 3543 * Some controllers do not support doing regular SPI transfers. Return 3544 * ENOTSUPP when this is the case. 3545 */ 3546 if (!ctlr->transfer) 3547 return -ENOTSUPP; 3548 3549 message->spi = spi; 3550 3551 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3552 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3553 3554 trace_spi_message_submit(message); 3555 3556 if (!ctlr->ptp_sts_supported) { 3557 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3558 xfer->ptp_sts_word_pre = 0; 3559 ptp_read_system_prets(xfer->ptp_sts); 3560 } 3561 } 3562 3563 return ctlr->transfer(spi, message); 3564 } 3565 3566 /** 3567 * spi_async - asynchronous SPI transfer 3568 * @spi: device with which data will be exchanged 3569 * @message: describes the data transfers, including completion callback 3570 * Context: any (irqs may be blocked, etc) 3571 * 3572 * This call may be used in_irq and other contexts which can't sleep, 3573 * as well as from task contexts which can sleep. 3574 * 3575 * The completion callback is invoked in a context which can't sleep. 3576 * Before that invocation, the value of message->status is undefined. 3577 * When the callback is issued, message->status holds either zero (to 3578 * indicate complete success) or a negative error code. After that 3579 * callback returns, the driver which issued the transfer request may 3580 * deallocate the associated memory; it's no longer in use by any SPI 3581 * core or controller driver code. 3582 * 3583 * Note that although all messages to a spi_device are handled in 3584 * FIFO order, messages may go to different devices in other orders. 3585 * Some device might be higher priority, or have various "hard" access 3586 * time requirements, for example. 3587 * 3588 * On detection of any fault during the transfer, processing of 3589 * the entire message is aborted, and the device is deselected. 3590 * Until returning from the associated message completion callback, 3591 * no other spi_message queued to that device will be processed. 3592 * (This rule applies equally to all the synchronous transfer calls, 3593 * which are wrappers around this core asynchronous primitive.) 3594 * 3595 * Return: zero on success, else a negative error code. 3596 */ 3597 int spi_async(struct spi_device *spi, struct spi_message *message) 3598 { 3599 struct spi_controller *ctlr = spi->controller; 3600 int ret; 3601 unsigned long flags; 3602 3603 ret = __spi_validate(spi, message); 3604 if (ret != 0) 3605 return ret; 3606 3607 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3608 3609 if (ctlr->bus_lock_flag) 3610 ret = -EBUSY; 3611 else 3612 ret = __spi_async(spi, message); 3613 3614 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3615 3616 return ret; 3617 } 3618 EXPORT_SYMBOL_GPL(spi_async); 3619 3620 /** 3621 * spi_async_locked - version of spi_async with exclusive bus usage 3622 * @spi: device with which data will be exchanged 3623 * @message: describes the data transfers, including completion callback 3624 * Context: any (irqs may be blocked, etc) 3625 * 3626 * This call may be used in_irq and other contexts which can't sleep, 3627 * as well as from task contexts which can sleep. 3628 * 3629 * The completion callback is invoked in a context which can't sleep. 3630 * Before that invocation, the value of message->status is undefined. 3631 * When the callback is issued, message->status holds either zero (to 3632 * indicate complete success) or a negative error code. After that 3633 * callback returns, the driver which issued the transfer request may 3634 * deallocate the associated memory; it's no longer in use by any SPI 3635 * core or controller driver code. 3636 * 3637 * Note that although all messages to a spi_device are handled in 3638 * FIFO order, messages may go to different devices in other orders. 3639 * Some device might be higher priority, or have various "hard" access 3640 * time requirements, for example. 3641 * 3642 * On detection of any fault during the transfer, processing of 3643 * the entire message is aborted, and the device is deselected. 3644 * Until returning from the associated message completion callback, 3645 * no other spi_message queued to that device will be processed. 3646 * (This rule applies equally to all the synchronous transfer calls, 3647 * which are wrappers around this core asynchronous primitive.) 3648 * 3649 * Return: zero on success, else a negative error code. 3650 */ 3651 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3652 { 3653 struct spi_controller *ctlr = spi->controller; 3654 int ret; 3655 unsigned long flags; 3656 3657 ret = __spi_validate(spi, message); 3658 if (ret != 0) 3659 return ret; 3660 3661 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3662 3663 ret = __spi_async(spi, message); 3664 3665 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3666 3667 return ret; 3668 3669 } 3670 EXPORT_SYMBOL_GPL(spi_async_locked); 3671 3672 /*-------------------------------------------------------------------------*/ 3673 3674 /* Utility methods for SPI protocol drivers, layered on 3675 * top of the core. Some other utility methods are defined as 3676 * inline functions. 3677 */ 3678 3679 static void spi_complete(void *arg) 3680 { 3681 complete(arg); 3682 } 3683 3684 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3685 { 3686 DECLARE_COMPLETION_ONSTACK(done); 3687 int status; 3688 struct spi_controller *ctlr = spi->controller; 3689 unsigned long flags; 3690 3691 status = __spi_validate(spi, message); 3692 if (status != 0) 3693 return status; 3694 3695 message->complete = spi_complete; 3696 message->context = &done; 3697 message->spi = spi; 3698 3699 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3700 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3701 3702 /* If we're not using the legacy transfer method then we will 3703 * try to transfer in the calling context so special case. 3704 * This code would be less tricky if we could remove the 3705 * support for driver implemented message queues. 3706 */ 3707 if (ctlr->transfer == spi_queued_transfer) { 3708 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3709 3710 trace_spi_message_submit(message); 3711 3712 status = __spi_queued_transfer(spi, message, false); 3713 3714 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3715 } else { 3716 status = spi_async_locked(spi, message); 3717 } 3718 3719 if (status == 0) { 3720 /* Push out the messages in the calling context if we 3721 * can. 3722 */ 3723 if (ctlr->transfer == spi_queued_transfer) { 3724 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3725 spi_sync_immediate); 3726 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3727 spi_sync_immediate); 3728 __spi_pump_messages(ctlr, false); 3729 } 3730 3731 wait_for_completion(&done); 3732 status = message->status; 3733 } 3734 message->context = NULL; 3735 return status; 3736 } 3737 3738 /** 3739 * spi_sync - blocking/synchronous SPI data transfers 3740 * @spi: device with which data will be exchanged 3741 * @message: describes the data transfers 3742 * Context: can sleep 3743 * 3744 * This call may only be used from a context that may sleep. The sleep 3745 * is non-interruptible, and has no timeout. Low-overhead controller 3746 * drivers may DMA directly into and out of the message buffers. 3747 * 3748 * Note that the SPI device's chip select is active during the message, 3749 * and then is normally disabled between messages. Drivers for some 3750 * frequently-used devices may want to minimize costs of selecting a chip, 3751 * by leaving it selected in anticipation that the next message will go 3752 * to the same chip. (That may increase power usage.) 3753 * 3754 * Also, the caller is guaranteeing that the memory associated with the 3755 * message will not be freed before this call returns. 3756 * 3757 * Return: zero on success, else a negative error code. 3758 */ 3759 int spi_sync(struct spi_device *spi, struct spi_message *message) 3760 { 3761 int ret; 3762 3763 mutex_lock(&spi->controller->bus_lock_mutex); 3764 ret = __spi_sync(spi, message); 3765 mutex_unlock(&spi->controller->bus_lock_mutex); 3766 3767 return ret; 3768 } 3769 EXPORT_SYMBOL_GPL(spi_sync); 3770 3771 /** 3772 * spi_sync_locked - version of spi_sync with exclusive bus usage 3773 * @spi: device with which data will be exchanged 3774 * @message: describes the data transfers 3775 * Context: can sleep 3776 * 3777 * This call may only be used from a context that may sleep. The sleep 3778 * is non-interruptible, and has no timeout. Low-overhead controller 3779 * drivers may DMA directly into and out of the message buffers. 3780 * 3781 * This call should be used by drivers that require exclusive access to the 3782 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3783 * be released by a spi_bus_unlock call when the exclusive access is over. 3784 * 3785 * Return: zero on success, else a negative error code. 3786 */ 3787 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3788 { 3789 return __spi_sync(spi, message); 3790 } 3791 EXPORT_SYMBOL_GPL(spi_sync_locked); 3792 3793 /** 3794 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3795 * @ctlr: SPI bus master that should be locked for exclusive bus access 3796 * Context: can sleep 3797 * 3798 * This call may only be used from a context that may sleep. The sleep 3799 * is non-interruptible, and has no timeout. 3800 * 3801 * This call should be used by drivers that require exclusive access to the 3802 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3803 * exclusive access is over. Data transfer must be done by spi_sync_locked 3804 * and spi_async_locked calls when the SPI bus lock is held. 3805 * 3806 * Return: always zero. 3807 */ 3808 int spi_bus_lock(struct spi_controller *ctlr) 3809 { 3810 unsigned long flags; 3811 3812 mutex_lock(&ctlr->bus_lock_mutex); 3813 3814 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3815 ctlr->bus_lock_flag = 1; 3816 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3817 3818 /* mutex remains locked until spi_bus_unlock is called */ 3819 3820 return 0; 3821 } 3822 EXPORT_SYMBOL_GPL(spi_bus_lock); 3823 3824 /** 3825 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3826 * @ctlr: SPI bus master that was locked for exclusive bus access 3827 * Context: can sleep 3828 * 3829 * This call may only be used from a context that may sleep. The sleep 3830 * is non-interruptible, and has no timeout. 3831 * 3832 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3833 * call. 3834 * 3835 * Return: always zero. 3836 */ 3837 int spi_bus_unlock(struct spi_controller *ctlr) 3838 { 3839 ctlr->bus_lock_flag = 0; 3840 3841 mutex_unlock(&ctlr->bus_lock_mutex); 3842 3843 return 0; 3844 } 3845 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3846 3847 /* portable code must never pass more than 32 bytes */ 3848 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3849 3850 static u8 *buf; 3851 3852 /** 3853 * spi_write_then_read - SPI synchronous write followed by read 3854 * @spi: device with which data will be exchanged 3855 * @txbuf: data to be written (need not be dma-safe) 3856 * @n_tx: size of txbuf, in bytes 3857 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3858 * @n_rx: size of rxbuf, in bytes 3859 * Context: can sleep 3860 * 3861 * This performs a half duplex MicroWire style transaction with the 3862 * device, sending txbuf and then reading rxbuf. The return value 3863 * is zero for success, else a negative errno status code. 3864 * This call may only be used from a context that may sleep. 3865 * 3866 * Parameters to this routine are always copied using a small buffer; 3867 * portable code should never use this for more than 32 bytes. 3868 * Performance-sensitive or bulk transfer code should instead use 3869 * spi_{async,sync}() calls with dma-safe buffers. 3870 * 3871 * Return: zero on success, else a negative error code. 3872 */ 3873 int spi_write_then_read(struct spi_device *spi, 3874 const void *txbuf, unsigned n_tx, 3875 void *rxbuf, unsigned n_rx) 3876 { 3877 static DEFINE_MUTEX(lock); 3878 3879 int status; 3880 struct spi_message message; 3881 struct spi_transfer x[2]; 3882 u8 *local_buf; 3883 3884 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3885 * copying here, (as a pure convenience thing), but we can 3886 * keep heap costs out of the hot path unless someone else is 3887 * using the pre-allocated buffer or the transfer is too large. 3888 */ 3889 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3890 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3891 GFP_KERNEL | GFP_DMA); 3892 if (!local_buf) 3893 return -ENOMEM; 3894 } else { 3895 local_buf = buf; 3896 } 3897 3898 spi_message_init(&message); 3899 memset(x, 0, sizeof(x)); 3900 if (n_tx) { 3901 x[0].len = n_tx; 3902 spi_message_add_tail(&x[0], &message); 3903 } 3904 if (n_rx) { 3905 x[1].len = n_rx; 3906 spi_message_add_tail(&x[1], &message); 3907 } 3908 3909 memcpy(local_buf, txbuf, n_tx); 3910 x[0].tx_buf = local_buf; 3911 x[1].rx_buf = local_buf + n_tx; 3912 3913 /* do the i/o */ 3914 status = spi_sync(spi, &message); 3915 if (status == 0) 3916 memcpy(rxbuf, x[1].rx_buf, n_rx); 3917 3918 if (x[0].tx_buf == buf) 3919 mutex_unlock(&lock); 3920 else 3921 kfree(local_buf); 3922 3923 return status; 3924 } 3925 EXPORT_SYMBOL_GPL(spi_write_then_read); 3926 3927 /*-------------------------------------------------------------------------*/ 3928 3929 #if IS_ENABLED(CONFIG_OF) 3930 /* must call put_device() when done with returned spi_device device */ 3931 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3932 { 3933 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 3934 3935 return dev ? to_spi_device(dev) : NULL; 3936 } 3937 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3938 #endif /* IS_ENABLED(CONFIG_OF) */ 3939 3940 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3941 /* the spi controllers are not using spi_bus, so we find it with another way */ 3942 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3943 { 3944 struct device *dev; 3945 3946 dev = class_find_device_by_of_node(&spi_master_class, node); 3947 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3948 dev = class_find_device_by_of_node(&spi_slave_class, node); 3949 if (!dev) 3950 return NULL; 3951 3952 /* reference got in class_find_device */ 3953 return container_of(dev, struct spi_controller, dev); 3954 } 3955 3956 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3957 void *arg) 3958 { 3959 struct of_reconfig_data *rd = arg; 3960 struct spi_controller *ctlr; 3961 struct spi_device *spi; 3962 3963 switch (of_reconfig_get_state_change(action, arg)) { 3964 case OF_RECONFIG_CHANGE_ADD: 3965 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3966 if (ctlr == NULL) 3967 return NOTIFY_OK; /* not for us */ 3968 3969 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3970 put_device(&ctlr->dev); 3971 return NOTIFY_OK; 3972 } 3973 3974 spi = of_register_spi_device(ctlr, rd->dn); 3975 put_device(&ctlr->dev); 3976 3977 if (IS_ERR(spi)) { 3978 pr_err("%s: failed to create for '%pOF'\n", 3979 __func__, rd->dn); 3980 of_node_clear_flag(rd->dn, OF_POPULATED); 3981 return notifier_from_errno(PTR_ERR(spi)); 3982 } 3983 break; 3984 3985 case OF_RECONFIG_CHANGE_REMOVE: 3986 /* already depopulated? */ 3987 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3988 return NOTIFY_OK; 3989 3990 /* find our device by node */ 3991 spi = of_find_spi_device_by_node(rd->dn); 3992 if (spi == NULL) 3993 return NOTIFY_OK; /* no? not meant for us */ 3994 3995 /* unregister takes one ref away */ 3996 spi_unregister_device(spi); 3997 3998 /* and put the reference of the find */ 3999 put_device(&spi->dev); 4000 break; 4001 } 4002 4003 return NOTIFY_OK; 4004 } 4005 4006 static struct notifier_block spi_of_notifier = { 4007 .notifier_call = of_spi_notify, 4008 }; 4009 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4010 extern struct notifier_block spi_of_notifier; 4011 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4012 4013 #if IS_ENABLED(CONFIG_ACPI) 4014 static int spi_acpi_controller_match(struct device *dev, const void *data) 4015 { 4016 return ACPI_COMPANION(dev->parent) == data; 4017 } 4018 4019 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4020 { 4021 struct device *dev; 4022 4023 dev = class_find_device(&spi_master_class, NULL, adev, 4024 spi_acpi_controller_match); 4025 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4026 dev = class_find_device(&spi_slave_class, NULL, adev, 4027 spi_acpi_controller_match); 4028 if (!dev) 4029 return NULL; 4030 4031 return container_of(dev, struct spi_controller, dev); 4032 } 4033 4034 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4035 { 4036 struct device *dev; 4037 4038 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4039 return dev ? to_spi_device(dev) : NULL; 4040 } 4041 4042 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4043 void *arg) 4044 { 4045 struct acpi_device *adev = arg; 4046 struct spi_controller *ctlr; 4047 struct spi_device *spi; 4048 4049 switch (value) { 4050 case ACPI_RECONFIG_DEVICE_ADD: 4051 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4052 if (!ctlr) 4053 break; 4054 4055 acpi_register_spi_device(ctlr, adev); 4056 put_device(&ctlr->dev); 4057 break; 4058 case ACPI_RECONFIG_DEVICE_REMOVE: 4059 if (!acpi_device_enumerated(adev)) 4060 break; 4061 4062 spi = acpi_spi_find_device_by_adev(adev); 4063 if (!spi) 4064 break; 4065 4066 spi_unregister_device(spi); 4067 put_device(&spi->dev); 4068 break; 4069 } 4070 4071 return NOTIFY_OK; 4072 } 4073 4074 static struct notifier_block spi_acpi_notifier = { 4075 .notifier_call = acpi_spi_notify, 4076 }; 4077 #else 4078 extern struct notifier_block spi_acpi_notifier; 4079 #endif 4080 4081 static int __init spi_init(void) 4082 { 4083 int status; 4084 4085 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4086 if (!buf) { 4087 status = -ENOMEM; 4088 goto err0; 4089 } 4090 4091 status = bus_register(&spi_bus_type); 4092 if (status < 0) 4093 goto err1; 4094 4095 status = class_register(&spi_master_class); 4096 if (status < 0) 4097 goto err2; 4098 4099 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4100 status = class_register(&spi_slave_class); 4101 if (status < 0) 4102 goto err3; 4103 } 4104 4105 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4106 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4107 if (IS_ENABLED(CONFIG_ACPI)) 4108 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4109 4110 return 0; 4111 4112 err3: 4113 class_unregister(&spi_master_class); 4114 err2: 4115 bus_unregister(&spi_bus_type); 4116 err1: 4117 kfree(buf); 4118 buf = NULL; 4119 err0: 4120 return status; 4121 } 4122 4123 /* board_info is normally registered in arch_initcall(), 4124 * but even essential drivers wait till later 4125 * 4126 * REVISIT only boardinfo really needs static linking. the rest (device and 4127 * driver registration) _could_ be dynamically linked (modular) ... costs 4128 * include needing to have boardinfo data structures be much more public. 4129 */ 4130 postcore_initcall(spi_init); 4131