1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/kmod.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/cache.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/dmaengine.h> 29 #include <linux/mutex.h> 30 #include <linux/of_device.h> 31 #include <linux/of_irq.h> 32 #include <linux/clk/clk-conf.h> 33 #include <linux/slab.h> 34 #include <linux/mod_devicetable.h> 35 #include <linux/spi/spi.h> 36 #include <linux/of_gpio.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/pm_domain.h> 39 #include <linux/export.h> 40 #include <linux/sched/rt.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/ioport.h> 44 #include <linux/acpi.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/spi.h> 48 49 static void spidev_release(struct device *dev) 50 { 51 struct spi_device *spi = to_spi_device(dev); 52 53 /* spi masters may cleanup for released devices */ 54 if (spi->master->cleanup) 55 spi->master->cleanup(spi); 56 57 spi_master_put(spi->master); 58 kfree(spi); 59 } 60 61 static ssize_t 62 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 63 { 64 const struct spi_device *spi = to_spi_device(dev); 65 int len; 66 67 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 68 if (len != -ENODEV) 69 return len; 70 71 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 72 } 73 static DEVICE_ATTR_RO(modalias); 74 75 static struct attribute *spi_dev_attrs[] = { 76 &dev_attr_modalias.attr, 77 NULL, 78 }; 79 ATTRIBUTE_GROUPS(spi_dev); 80 81 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 82 * and the sysfs version makes coldplug work too. 83 */ 84 85 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 86 const struct spi_device *sdev) 87 { 88 while (id->name[0]) { 89 if (!strcmp(sdev->modalias, id->name)) 90 return id; 91 id++; 92 } 93 return NULL; 94 } 95 96 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 97 { 98 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 99 100 return spi_match_id(sdrv->id_table, sdev); 101 } 102 EXPORT_SYMBOL_GPL(spi_get_device_id); 103 104 static int spi_match_device(struct device *dev, struct device_driver *drv) 105 { 106 const struct spi_device *spi = to_spi_device(dev); 107 const struct spi_driver *sdrv = to_spi_driver(drv); 108 109 /* Attempt an OF style match */ 110 if (of_driver_match_device(dev, drv)) 111 return 1; 112 113 /* Then try ACPI */ 114 if (acpi_driver_match_device(dev, drv)) 115 return 1; 116 117 if (sdrv->id_table) 118 return !!spi_match_id(sdrv->id_table, spi); 119 120 return strcmp(spi->modalias, drv->name) == 0; 121 } 122 123 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 124 { 125 const struct spi_device *spi = to_spi_device(dev); 126 int rc; 127 128 rc = acpi_device_uevent_modalias(dev, env); 129 if (rc != -ENODEV) 130 return rc; 131 132 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 133 return 0; 134 } 135 136 #ifdef CONFIG_PM_SLEEP 137 static int spi_legacy_suspend(struct device *dev, pm_message_t message) 138 { 139 int value = 0; 140 struct spi_driver *drv = to_spi_driver(dev->driver); 141 142 /* suspend will stop irqs and dma; no more i/o */ 143 if (drv) { 144 if (drv->suspend) 145 value = drv->suspend(to_spi_device(dev), message); 146 else 147 dev_dbg(dev, "... can't suspend\n"); 148 } 149 return value; 150 } 151 152 static int spi_legacy_resume(struct device *dev) 153 { 154 int value = 0; 155 struct spi_driver *drv = to_spi_driver(dev->driver); 156 157 /* resume may restart the i/o queue */ 158 if (drv) { 159 if (drv->resume) 160 value = drv->resume(to_spi_device(dev)); 161 else 162 dev_dbg(dev, "... can't resume\n"); 163 } 164 return value; 165 } 166 167 static int spi_pm_suspend(struct device *dev) 168 { 169 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 170 171 if (pm) 172 return pm_generic_suspend(dev); 173 else 174 return spi_legacy_suspend(dev, PMSG_SUSPEND); 175 } 176 177 static int spi_pm_resume(struct device *dev) 178 { 179 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 180 181 if (pm) 182 return pm_generic_resume(dev); 183 else 184 return spi_legacy_resume(dev); 185 } 186 187 static int spi_pm_freeze(struct device *dev) 188 { 189 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 190 191 if (pm) 192 return pm_generic_freeze(dev); 193 else 194 return spi_legacy_suspend(dev, PMSG_FREEZE); 195 } 196 197 static int spi_pm_thaw(struct device *dev) 198 { 199 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 200 201 if (pm) 202 return pm_generic_thaw(dev); 203 else 204 return spi_legacy_resume(dev); 205 } 206 207 static int spi_pm_poweroff(struct device *dev) 208 { 209 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 210 211 if (pm) 212 return pm_generic_poweroff(dev); 213 else 214 return spi_legacy_suspend(dev, PMSG_HIBERNATE); 215 } 216 217 static int spi_pm_restore(struct device *dev) 218 { 219 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 220 221 if (pm) 222 return pm_generic_restore(dev); 223 else 224 return spi_legacy_resume(dev); 225 } 226 #else 227 #define spi_pm_suspend NULL 228 #define spi_pm_resume NULL 229 #define spi_pm_freeze NULL 230 #define spi_pm_thaw NULL 231 #define spi_pm_poweroff NULL 232 #define spi_pm_restore NULL 233 #endif 234 235 static const struct dev_pm_ops spi_pm = { 236 .suspend = spi_pm_suspend, 237 .resume = spi_pm_resume, 238 .freeze = spi_pm_freeze, 239 .thaw = spi_pm_thaw, 240 .poweroff = spi_pm_poweroff, 241 .restore = spi_pm_restore, 242 SET_RUNTIME_PM_OPS( 243 pm_generic_runtime_suspend, 244 pm_generic_runtime_resume, 245 NULL 246 ) 247 }; 248 249 struct bus_type spi_bus_type = { 250 .name = "spi", 251 .dev_groups = spi_dev_groups, 252 .match = spi_match_device, 253 .uevent = spi_uevent, 254 .pm = &spi_pm, 255 }; 256 EXPORT_SYMBOL_GPL(spi_bus_type); 257 258 259 static int spi_drv_probe(struct device *dev) 260 { 261 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 262 int ret; 263 264 ret = of_clk_set_defaults(dev->of_node, false); 265 if (ret) 266 return ret; 267 268 ret = dev_pm_domain_attach(dev, true); 269 if (ret != -EPROBE_DEFER) { 270 ret = sdrv->probe(to_spi_device(dev)); 271 if (ret) 272 dev_pm_domain_detach(dev, true); 273 } 274 275 return ret; 276 } 277 278 static int spi_drv_remove(struct device *dev) 279 { 280 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 281 int ret; 282 283 ret = sdrv->remove(to_spi_device(dev)); 284 dev_pm_domain_detach(dev, true); 285 286 return ret; 287 } 288 289 static void spi_drv_shutdown(struct device *dev) 290 { 291 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 292 293 sdrv->shutdown(to_spi_device(dev)); 294 } 295 296 /** 297 * spi_register_driver - register a SPI driver 298 * @sdrv: the driver to register 299 * Context: can sleep 300 */ 301 int spi_register_driver(struct spi_driver *sdrv) 302 { 303 sdrv->driver.bus = &spi_bus_type; 304 if (sdrv->probe) 305 sdrv->driver.probe = spi_drv_probe; 306 if (sdrv->remove) 307 sdrv->driver.remove = spi_drv_remove; 308 if (sdrv->shutdown) 309 sdrv->driver.shutdown = spi_drv_shutdown; 310 return driver_register(&sdrv->driver); 311 } 312 EXPORT_SYMBOL_GPL(spi_register_driver); 313 314 /*-------------------------------------------------------------------------*/ 315 316 /* SPI devices should normally not be created by SPI device drivers; that 317 * would make them board-specific. Similarly with SPI master drivers. 318 * Device registration normally goes into like arch/.../mach.../board-YYY.c 319 * with other readonly (flashable) information about mainboard devices. 320 */ 321 322 struct boardinfo { 323 struct list_head list; 324 struct spi_board_info board_info; 325 }; 326 327 static LIST_HEAD(board_list); 328 static LIST_HEAD(spi_master_list); 329 330 /* 331 * Used to protect add/del opertion for board_info list and 332 * spi_master list, and their matching process 333 */ 334 static DEFINE_MUTEX(board_lock); 335 336 /** 337 * spi_alloc_device - Allocate a new SPI device 338 * @master: Controller to which device is connected 339 * Context: can sleep 340 * 341 * Allows a driver to allocate and initialize a spi_device without 342 * registering it immediately. This allows a driver to directly 343 * fill the spi_device with device parameters before calling 344 * spi_add_device() on it. 345 * 346 * Caller is responsible to call spi_add_device() on the returned 347 * spi_device structure to add it to the SPI master. If the caller 348 * needs to discard the spi_device without adding it, then it should 349 * call spi_dev_put() on it. 350 * 351 * Returns a pointer to the new device, or NULL. 352 */ 353 struct spi_device *spi_alloc_device(struct spi_master *master) 354 { 355 struct spi_device *spi; 356 357 if (!spi_master_get(master)) 358 return NULL; 359 360 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 361 if (!spi) { 362 spi_master_put(master); 363 return NULL; 364 } 365 366 spi->master = master; 367 spi->dev.parent = &master->dev; 368 spi->dev.bus = &spi_bus_type; 369 spi->dev.release = spidev_release; 370 spi->cs_gpio = -ENOENT; 371 device_initialize(&spi->dev); 372 return spi; 373 } 374 EXPORT_SYMBOL_GPL(spi_alloc_device); 375 376 static void spi_dev_set_name(struct spi_device *spi) 377 { 378 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 379 380 if (adev) { 381 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 382 return; 383 } 384 385 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 386 spi->chip_select); 387 } 388 389 static int spi_dev_check(struct device *dev, void *data) 390 { 391 struct spi_device *spi = to_spi_device(dev); 392 struct spi_device *new_spi = data; 393 394 if (spi->master == new_spi->master && 395 spi->chip_select == new_spi->chip_select) 396 return -EBUSY; 397 return 0; 398 } 399 400 /** 401 * spi_add_device - Add spi_device allocated with spi_alloc_device 402 * @spi: spi_device to register 403 * 404 * Companion function to spi_alloc_device. Devices allocated with 405 * spi_alloc_device can be added onto the spi bus with this function. 406 * 407 * Returns 0 on success; negative errno on failure 408 */ 409 int spi_add_device(struct spi_device *spi) 410 { 411 static DEFINE_MUTEX(spi_add_lock); 412 struct spi_master *master = spi->master; 413 struct device *dev = master->dev.parent; 414 int status; 415 416 /* Chipselects are numbered 0..max; validate. */ 417 if (spi->chip_select >= master->num_chipselect) { 418 dev_err(dev, "cs%d >= max %d\n", 419 spi->chip_select, 420 master->num_chipselect); 421 return -EINVAL; 422 } 423 424 /* Set the bus ID string */ 425 spi_dev_set_name(spi); 426 427 /* We need to make sure there's no other device with this 428 * chipselect **BEFORE** we call setup(), else we'll trash 429 * its configuration. Lock against concurrent add() calls. 430 */ 431 mutex_lock(&spi_add_lock); 432 433 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 434 if (status) { 435 dev_err(dev, "chipselect %d already in use\n", 436 spi->chip_select); 437 goto done; 438 } 439 440 if (master->cs_gpios) 441 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 442 443 /* Drivers may modify this initial i/o setup, but will 444 * normally rely on the device being setup. Devices 445 * using SPI_CS_HIGH can't coexist well otherwise... 446 */ 447 status = spi_setup(spi); 448 if (status < 0) { 449 dev_err(dev, "can't setup %s, status %d\n", 450 dev_name(&spi->dev), status); 451 goto done; 452 } 453 454 /* Device may be bound to an active driver when this returns */ 455 status = device_add(&spi->dev); 456 if (status < 0) 457 dev_err(dev, "can't add %s, status %d\n", 458 dev_name(&spi->dev), status); 459 else 460 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 461 462 done: 463 mutex_unlock(&spi_add_lock); 464 return status; 465 } 466 EXPORT_SYMBOL_GPL(spi_add_device); 467 468 /** 469 * spi_new_device - instantiate one new SPI device 470 * @master: Controller to which device is connected 471 * @chip: Describes the SPI device 472 * Context: can sleep 473 * 474 * On typical mainboards, this is purely internal; and it's not needed 475 * after board init creates the hard-wired devices. Some development 476 * platforms may not be able to use spi_register_board_info though, and 477 * this is exported so that for example a USB or parport based adapter 478 * driver could add devices (which it would learn about out-of-band). 479 * 480 * Returns the new device, or NULL. 481 */ 482 struct spi_device *spi_new_device(struct spi_master *master, 483 struct spi_board_info *chip) 484 { 485 struct spi_device *proxy; 486 int status; 487 488 /* NOTE: caller did any chip->bus_num checks necessary. 489 * 490 * Also, unless we change the return value convention to use 491 * error-or-pointer (not NULL-or-pointer), troubleshootability 492 * suggests syslogged diagnostics are best here (ugh). 493 */ 494 495 proxy = spi_alloc_device(master); 496 if (!proxy) 497 return NULL; 498 499 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 500 501 proxy->chip_select = chip->chip_select; 502 proxy->max_speed_hz = chip->max_speed_hz; 503 proxy->mode = chip->mode; 504 proxy->irq = chip->irq; 505 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 506 proxy->dev.platform_data = (void *) chip->platform_data; 507 proxy->controller_data = chip->controller_data; 508 proxy->controller_state = NULL; 509 510 status = spi_add_device(proxy); 511 if (status < 0) { 512 spi_dev_put(proxy); 513 return NULL; 514 } 515 516 return proxy; 517 } 518 EXPORT_SYMBOL_GPL(spi_new_device); 519 520 static void spi_match_master_to_boardinfo(struct spi_master *master, 521 struct spi_board_info *bi) 522 { 523 struct spi_device *dev; 524 525 if (master->bus_num != bi->bus_num) 526 return; 527 528 dev = spi_new_device(master, bi); 529 if (!dev) 530 dev_err(master->dev.parent, "can't create new device for %s\n", 531 bi->modalias); 532 } 533 534 /** 535 * spi_register_board_info - register SPI devices for a given board 536 * @info: array of chip descriptors 537 * @n: how many descriptors are provided 538 * Context: can sleep 539 * 540 * Board-specific early init code calls this (probably during arch_initcall) 541 * with segments of the SPI device table. Any device nodes are created later, 542 * after the relevant parent SPI controller (bus_num) is defined. We keep 543 * this table of devices forever, so that reloading a controller driver will 544 * not make Linux forget about these hard-wired devices. 545 * 546 * Other code can also call this, e.g. a particular add-on board might provide 547 * SPI devices through its expansion connector, so code initializing that board 548 * would naturally declare its SPI devices. 549 * 550 * The board info passed can safely be __initdata ... but be careful of 551 * any embedded pointers (platform_data, etc), they're copied as-is. 552 */ 553 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 554 { 555 struct boardinfo *bi; 556 int i; 557 558 if (!n) 559 return -EINVAL; 560 561 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 562 if (!bi) 563 return -ENOMEM; 564 565 for (i = 0; i < n; i++, bi++, info++) { 566 struct spi_master *master; 567 568 memcpy(&bi->board_info, info, sizeof(*info)); 569 mutex_lock(&board_lock); 570 list_add_tail(&bi->list, &board_list); 571 list_for_each_entry(master, &spi_master_list, list) 572 spi_match_master_to_boardinfo(master, &bi->board_info); 573 mutex_unlock(&board_lock); 574 } 575 576 return 0; 577 } 578 579 /*-------------------------------------------------------------------------*/ 580 581 static void spi_set_cs(struct spi_device *spi, bool enable) 582 { 583 if (spi->mode & SPI_CS_HIGH) 584 enable = !enable; 585 586 if (spi->cs_gpio >= 0) 587 gpio_set_value(spi->cs_gpio, !enable); 588 else if (spi->master->set_cs) 589 spi->master->set_cs(spi, !enable); 590 } 591 592 #ifdef CONFIG_HAS_DMA 593 static int spi_map_buf(struct spi_master *master, struct device *dev, 594 struct sg_table *sgt, void *buf, size_t len, 595 enum dma_data_direction dir) 596 { 597 const bool vmalloced_buf = is_vmalloc_addr(buf); 598 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len; 599 const int sgs = DIV_ROUND_UP(len, desc_len); 600 struct page *vm_page; 601 void *sg_buf; 602 size_t min; 603 int i, ret; 604 605 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 606 if (ret != 0) 607 return ret; 608 609 for (i = 0; i < sgs; i++) { 610 min = min_t(size_t, len, desc_len); 611 612 if (vmalloced_buf) { 613 vm_page = vmalloc_to_page(buf); 614 if (!vm_page) { 615 sg_free_table(sgt); 616 return -ENOMEM; 617 } 618 sg_set_page(&sgt->sgl[i], vm_page, 619 min, offset_in_page(buf)); 620 } else { 621 sg_buf = buf; 622 sg_set_buf(&sgt->sgl[i], sg_buf, min); 623 } 624 625 626 buf += min; 627 len -= min; 628 } 629 630 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 631 if (!ret) 632 ret = -ENOMEM; 633 if (ret < 0) { 634 sg_free_table(sgt); 635 return ret; 636 } 637 638 sgt->nents = ret; 639 640 return 0; 641 } 642 643 static void spi_unmap_buf(struct spi_master *master, struct device *dev, 644 struct sg_table *sgt, enum dma_data_direction dir) 645 { 646 if (sgt->orig_nents) { 647 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 648 sg_free_table(sgt); 649 } 650 } 651 652 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg) 653 { 654 struct device *tx_dev, *rx_dev; 655 struct spi_transfer *xfer; 656 int ret; 657 658 if (!master->can_dma) 659 return 0; 660 661 tx_dev = master->dma_tx->device->dev; 662 rx_dev = master->dma_rx->device->dev; 663 664 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 665 if (!master->can_dma(master, msg->spi, xfer)) 666 continue; 667 668 if (xfer->tx_buf != NULL) { 669 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg, 670 (void *)xfer->tx_buf, xfer->len, 671 DMA_TO_DEVICE); 672 if (ret != 0) 673 return ret; 674 } 675 676 if (xfer->rx_buf != NULL) { 677 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg, 678 xfer->rx_buf, xfer->len, 679 DMA_FROM_DEVICE); 680 if (ret != 0) { 681 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, 682 DMA_TO_DEVICE); 683 return ret; 684 } 685 } 686 } 687 688 master->cur_msg_mapped = true; 689 690 return 0; 691 } 692 693 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg) 694 { 695 struct spi_transfer *xfer; 696 struct device *tx_dev, *rx_dev; 697 698 if (!master->cur_msg_mapped || !master->can_dma) 699 return 0; 700 701 tx_dev = master->dma_tx->device->dev; 702 rx_dev = master->dma_rx->device->dev; 703 704 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 705 if (!master->can_dma(master, msg->spi, xfer)) 706 continue; 707 708 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 709 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 710 } 711 712 return 0; 713 } 714 #else /* !CONFIG_HAS_DMA */ 715 static inline int __spi_map_msg(struct spi_master *master, 716 struct spi_message *msg) 717 { 718 return 0; 719 } 720 721 static inline int spi_unmap_msg(struct spi_master *master, 722 struct spi_message *msg) 723 { 724 return 0; 725 } 726 #endif /* !CONFIG_HAS_DMA */ 727 728 static int spi_map_msg(struct spi_master *master, struct spi_message *msg) 729 { 730 struct spi_transfer *xfer; 731 void *tmp; 732 unsigned int max_tx, max_rx; 733 734 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) { 735 max_tx = 0; 736 max_rx = 0; 737 738 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 739 if ((master->flags & SPI_MASTER_MUST_TX) && 740 !xfer->tx_buf) 741 max_tx = max(xfer->len, max_tx); 742 if ((master->flags & SPI_MASTER_MUST_RX) && 743 !xfer->rx_buf) 744 max_rx = max(xfer->len, max_rx); 745 } 746 747 if (max_tx) { 748 tmp = krealloc(master->dummy_tx, max_tx, 749 GFP_KERNEL | GFP_DMA); 750 if (!tmp) 751 return -ENOMEM; 752 master->dummy_tx = tmp; 753 memset(tmp, 0, max_tx); 754 } 755 756 if (max_rx) { 757 tmp = krealloc(master->dummy_rx, max_rx, 758 GFP_KERNEL | GFP_DMA); 759 if (!tmp) 760 return -ENOMEM; 761 master->dummy_rx = tmp; 762 } 763 764 if (max_tx || max_rx) { 765 list_for_each_entry(xfer, &msg->transfers, 766 transfer_list) { 767 if (!xfer->tx_buf) 768 xfer->tx_buf = master->dummy_tx; 769 if (!xfer->rx_buf) 770 xfer->rx_buf = master->dummy_rx; 771 } 772 } 773 } 774 775 return __spi_map_msg(master, msg); 776 } 777 778 /* 779 * spi_transfer_one_message - Default implementation of transfer_one_message() 780 * 781 * This is a standard implementation of transfer_one_message() for 782 * drivers which impelment a transfer_one() operation. It provides 783 * standard handling of delays and chip select management. 784 */ 785 static int spi_transfer_one_message(struct spi_master *master, 786 struct spi_message *msg) 787 { 788 struct spi_transfer *xfer; 789 bool keep_cs = false; 790 int ret = 0; 791 int ms = 1; 792 793 spi_set_cs(msg->spi, true); 794 795 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 796 trace_spi_transfer_start(msg, xfer); 797 798 if (xfer->tx_buf || xfer->rx_buf) { 799 reinit_completion(&master->xfer_completion); 800 801 ret = master->transfer_one(master, msg->spi, xfer); 802 if (ret < 0) { 803 dev_err(&msg->spi->dev, 804 "SPI transfer failed: %d\n", ret); 805 goto out; 806 } 807 808 if (ret > 0) { 809 ret = 0; 810 ms = xfer->len * 8 * 1000 / xfer->speed_hz; 811 ms += ms + 100; /* some tolerance */ 812 813 ms = wait_for_completion_timeout(&master->xfer_completion, 814 msecs_to_jiffies(ms)); 815 } 816 817 if (ms == 0) { 818 dev_err(&msg->spi->dev, 819 "SPI transfer timed out\n"); 820 msg->status = -ETIMEDOUT; 821 } 822 } else { 823 if (xfer->len) 824 dev_err(&msg->spi->dev, 825 "Bufferless transfer has length %u\n", 826 xfer->len); 827 } 828 829 trace_spi_transfer_stop(msg, xfer); 830 831 if (msg->status != -EINPROGRESS) 832 goto out; 833 834 if (xfer->delay_usecs) 835 udelay(xfer->delay_usecs); 836 837 if (xfer->cs_change) { 838 if (list_is_last(&xfer->transfer_list, 839 &msg->transfers)) { 840 keep_cs = true; 841 } else { 842 spi_set_cs(msg->spi, false); 843 udelay(10); 844 spi_set_cs(msg->spi, true); 845 } 846 } 847 848 msg->actual_length += xfer->len; 849 } 850 851 out: 852 if (ret != 0 || !keep_cs) 853 spi_set_cs(msg->spi, false); 854 855 if (msg->status == -EINPROGRESS) 856 msg->status = ret; 857 858 spi_finalize_current_message(master); 859 860 return ret; 861 } 862 863 /** 864 * spi_finalize_current_transfer - report completion of a transfer 865 * @master: the master reporting completion 866 * 867 * Called by SPI drivers using the core transfer_one_message() 868 * implementation to notify it that the current interrupt driven 869 * transfer has finished and the next one may be scheduled. 870 */ 871 void spi_finalize_current_transfer(struct spi_master *master) 872 { 873 complete(&master->xfer_completion); 874 } 875 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 876 877 /** 878 * spi_pump_messages - kthread work function which processes spi message queue 879 * @work: pointer to kthread work struct contained in the master struct 880 * 881 * This function checks if there is any spi message in the queue that 882 * needs processing and if so call out to the driver to initialize hardware 883 * and transfer each message. 884 * 885 */ 886 static void spi_pump_messages(struct kthread_work *work) 887 { 888 struct spi_master *master = 889 container_of(work, struct spi_master, pump_messages); 890 unsigned long flags; 891 bool was_busy = false; 892 int ret; 893 894 /* Lock queue and check for queue work */ 895 spin_lock_irqsave(&master->queue_lock, flags); 896 if (list_empty(&master->queue) || !master->running) { 897 if (!master->busy) { 898 spin_unlock_irqrestore(&master->queue_lock, flags); 899 return; 900 } 901 master->busy = false; 902 spin_unlock_irqrestore(&master->queue_lock, flags); 903 kfree(master->dummy_rx); 904 master->dummy_rx = NULL; 905 kfree(master->dummy_tx); 906 master->dummy_tx = NULL; 907 if (master->unprepare_transfer_hardware && 908 master->unprepare_transfer_hardware(master)) 909 dev_err(&master->dev, 910 "failed to unprepare transfer hardware\n"); 911 if (master->auto_runtime_pm) { 912 pm_runtime_mark_last_busy(master->dev.parent); 913 pm_runtime_put_autosuspend(master->dev.parent); 914 } 915 trace_spi_master_idle(master); 916 return; 917 } 918 919 /* Make sure we are not already running a message */ 920 if (master->cur_msg) { 921 spin_unlock_irqrestore(&master->queue_lock, flags); 922 return; 923 } 924 /* Extract head of queue */ 925 master->cur_msg = 926 list_first_entry(&master->queue, struct spi_message, queue); 927 928 list_del_init(&master->cur_msg->queue); 929 if (master->busy) 930 was_busy = true; 931 else 932 master->busy = true; 933 spin_unlock_irqrestore(&master->queue_lock, flags); 934 935 if (!was_busy && master->auto_runtime_pm) { 936 ret = pm_runtime_get_sync(master->dev.parent); 937 if (ret < 0) { 938 dev_err(&master->dev, "Failed to power device: %d\n", 939 ret); 940 return; 941 } 942 } 943 944 if (!was_busy) 945 trace_spi_master_busy(master); 946 947 if (!was_busy && master->prepare_transfer_hardware) { 948 ret = master->prepare_transfer_hardware(master); 949 if (ret) { 950 dev_err(&master->dev, 951 "failed to prepare transfer hardware\n"); 952 953 if (master->auto_runtime_pm) 954 pm_runtime_put(master->dev.parent); 955 return; 956 } 957 } 958 959 trace_spi_message_start(master->cur_msg); 960 961 if (master->prepare_message) { 962 ret = master->prepare_message(master, master->cur_msg); 963 if (ret) { 964 dev_err(&master->dev, 965 "failed to prepare message: %d\n", ret); 966 master->cur_msg->status = ret; 967 spi_finalize_current_message(master); 968 return; 969 } 970 master->cur_msg_prepared = true; 971 } 972 973 ret = spi_map_msg(master, master->cur_msg); 974 if (ret) { 975 master->cur_msg->status = ret; 976 spi_finalize_current_message(master); 977 return; 978 } 979 980 ret = master->transfer_one_message(master, master->cur_msg); 981 if (ret) { 982 dev_err(&master->dev, 983 "failed to transfer one message from queue\n"); 984 return; 985 } 986 } 987 988 static int spi_init_queue(struct spi_master *master) 989 { 990 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 991 992 INIT_LIST_HEAD(&master->queue); 993 spin_lock_init(&master->queue_lock); 994 995 master->running = false; 996 master->busy = false; 997 998 init_kthread_worker(&master->kworker); 999 master->kworker_task = kthread_run(kthread_worker_fn, 1000 &master->kworker, "%s", 1001 dev_name(&master->dev)); 1002 if (IS_ERR(master->kworker_task)) { 1003 dev_err(&master->dev, "failed to create message pump task\n"); 1004 return PTR_ERR(master->kworker_task); 1005 } 1006 init_kthread_work(&master->pump_messages, spi_pump_messages); 1007 1008 /* 1009 * Master config will indicate if this controller should run the 1010 * message pump with high (realtime) priority to reduce the transfer 1011 * latency on the bus by minimising the delay between a transfer 1012 * request and the scheduling of the message pump thread. Without this 1013 * setting the message pump thread will remain at default priority. 1014 */ 1015 if (master->rt) { 1016 dev_info(&master->dev, 1017 "will run message pump with realtime priority\n"); 1018 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 1019 } 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * spi_get_next_queued_message() - called by driver to check for queued 1026 * messages 1027 * @master: the master to check for queued messages 1028 * 1029 * If there are more messages in the queue, the next message is returned from 1030 * this call. 1031 */ 1032 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 1033 { 1034 struct spi_message *next; 1035 unsigned long flags; 1036 1037 /* get a pointer to the next message, if any */ 1038 spin_lock_irqsave(&master->queue_lock, flags); 1039 next = list_first_entry_or_null(&master->queue, struct spi_message, 1040 queue); 1041 spin_unlock_irqrestore(&master->queue_lock, flags); 1042 1043 return next; 1044 } 1045 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1046 1047 /** 1048 * spi_finalize_current_message() - the current message is complete 1049 * @master: the master to return the message to 1050 * 1051 * Called by the driver to notify the core that the message in the front of the 1052 * queue is complete and can be removed from the queue. 1053 */ 1054 void spi_finalize_current_message(struct spi_master *master) 1055 { 1056 struct spi_message *mesg; 1057 unsigned long flags; 1058 int ret; 1059 1060 spin_lock_irqsave(&master->queue_lock, flags); 1061 mesg = master->cur_msg; 1062 master->cur_msg = NULL; 1063 1064 queue_kthread_work(&master->kworker, &master->pump_messages); 1065 spin_unlock_irqrestore(&master->queue_lock, flags); 1066 1067 spi_unmap_msg(master, mesg); 1068 1069 if (master->cur_msg_prepared && master->unprepare_message) { 1070 ret = master->unprepare_message(master, mesg); 1071 if (ret) { 1072 dev_err(&master->dev, 1073 "failed to unprepare message: %d\n", ret); 1074 } 1075 } 1076 master->cur_msg_prepared = false; 1077 1078 mesg->state = NULL; 1079 if (mesg->complete) 1080 mesg->complete(mesg->context); 1081 1082 trace_spi_message_done(mesg); 1083 } 1084 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1085 1086 static int spi_start_queue(struct spi_master *master) 1087 { 1088 unsigned long flags; 1089 1090 spin_lock_irqsave(&master->queue_lock, flags); 1091 1092 if (master->running || master->busy) { 1093 spin_unlock_irqrestore(&master->queue_lock, flags); 1094 return -EBUSY; 1095 } 1096 1097 master->running = true; 1098 master->cur_msg = NULL; 1099 spin_unlock_irqrestore(&master->queue_lock, flags); 1100 1101 queue_kthread_work(&master->kworker, &master->pump_messages); 1102 1103 return 0; 1104 } 1105 1106 static int spi_stop_queue(struct spi_master *master) 1107 { 1108 unsigned long flags; 1109 unsigned limit = 500; 1110 int ret = 0; 1111 1112 spin_lock_irqsave(&master->queue_lock, flags); 1113 1114 /* 1115 * This is a bit lame, but is optimized for the common execution path. 1116 * A wait_queue on the master->busy could be used, but then the common 1117 * execution path (pump_messages) would be required to call wake_up or 1118 * friends on every SPI message. Do this instead. 1119 */ 1120 while ((!list_empty(&master->queue) || master->busy) && limit--) { 1121 spin_unlock_irqrestore(&master->queue_lock, flags); 1122 usleep_range(10000, 11000); 1123 spin_lock_irqsave(&master->queue_lock, flags); 1124 } 1125 1126 if (!list_empty(&master->queue) || master->busy) 1127 ret = -EBUSY; 1128 else 1129 master->running = false; 1130 1131 spin_unlock_irqrestore(&master->queue_lock, flags); 1132 1133 if (ret) { 1134 dev_warn(&master->dev, 1135 "could not stop message queue\n"); 1136 return ret; 1137 } 1138 return ret; 1139 } 1140 1141 static int spi_destroy_queue(struct spi_master *master) 1142 { 1143 int ret; 1144 1145 ret = spi_stop_queue(master); 1146 1147 /* 1148 * flush_kthread_worker will block until all work is done. 1149 * If the reason that stop_queue timed out is that the work will never 1150 * finish, then it does no good to call flush/stop thread, so 1151 * return anyway. 1152 */ 1153 if (ret) { 1154 dev_err(&master->dev, "problem destroying queue\n"); 1155 return ret; 1156 } 1157 1158 flush_kthread_worker(&master->kworker); 1159 kthread_stop(master->kworker_task); 1160 1161 return 0; 1162 } 1163 1164 /** 1165 * spi_queued_transfer - transfer function for queued transfers 1166 * @spi: spi device which is requesting transfer 1167 * @msg: spi message which is to handled is queued to driver queue 1168 */ 1169 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1170 { 1171 struct spi_master *master = spi->master; 1172 unsigned long flags; 1173 1174 spin_lock_irqsave(&master->queue_lock, flags); 1175 1176 if (!master->running) { 1177 spin_unlock_irqrestore(&master->queue_lock, flags); 1178 return -ESHUTDOWN; 1179 } 1180 msg->actual_length = 0; 1181 msg->status = -EINPROGRESS; 1182 1183 list_add_tail(&msg->queue, &master->queue); 1184 if (!master->busy) 1185 queue_kthread_work(&master->kworker, &master->pump_messages); 1186 1187 spin_unlock_irqrestore(&master->queue_lock, flags); 1188 return 0; 1189 } 1190 1191 static int spi_master_initialize_queue(struct spi_master *master) 1192 { 1193 int ret; 1194 1195 master->transfer = spi_queued_transfer; 1196 if (!master->transfer_one_message) 1197 master->transfer_one_message = spi_transfer_one_message; 1198 1199 /* Initialize and start queue */ 1200 ret = spi_init_queue(master); 1201 if (ret) { 1202 dev_err(&master->dev, "problem initializing queue\n"); 1203 goto err_init_queue; 1204 } 1205 master->queued = true; 1206 ret = spi_start_queue(master); 1207 if (ret) { 1208 dev_err(&master->dev, "problem starting queue\n"); 1209 goto err_start_queue; 1210 } 1211 1212 return 0; 1213 1214 err_start_queue: 1215 spi_destroy_queue(master); 1216 err_init_queue: 1217 return ret; 1218 } 1219 1220 /*-------------------------------------------------------------------------*/ 1221 1222 #if defined(CONFIG_OF) 1223 static struct spi_device * 1224 of_register_spi_device(struct spi_master *master, struct device_node *nc) 1225 { 1226 struct spi_device *spi; 1227 int rc; 1228 u32 value; 1229 1230 /* Alloc an spi_device */ 1231 spi = spi_alloc_device(master); 1232 if (!spi) { 1233 dev_err(&master->dev, "spi_device alloc error for %s\n", 1234 nc->full_name); 1235 rc = -ENOMEM; 1236 goto err_out; 1237 } 1238 1239 /* Select device driver */ 1240 rc = of_modalias_node(nc, spi->modalias, 1241 sizeof(spi->modalias)); 1242 if (rc < 0) { 1243 dev_err(&master->dev, "cannot find modalias for %s\n", 1244 nc->full_name); 1245 goto err_out; 1246 } 1247 1248 /* Device address */ 1249 rc = of_property_read_u32(nc, "reg", &value); 1250 if (rc) { 1251 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", 1252 nc->full_name, rc); 1253 goto err_out; 1254 } 1255 spi->chip_select = value; 1256 1257 /* Mode (clock phase/polarity/etc.) */ 1258 if (of_find_property(nc, "spi-cpha", NULL)) 1259 spi->mode |= SPI_CPHA; 1260 if (of_find_property(nc, "spi-cpol", NULL)) 1261 spi->mode |= SPI_CPOL; 1262 if (of_find_property(nc, "spi-cs-high", NULL)) 1263 spi->mode |= SPI_CS_HIGH; 1264 if (of_find_property(nc, "spi-3wire", NULL)) 1265 spi->mode |= SPI_3WIRE; 1266 if (of_find_property(nc, "spi-lsb-first", NULL)) 1267 spi->mode |= SPI_LSB_FIRST; 1268 1269 /* Device DUAL/QUAD mode */ 1270 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1271 switch (value) { 1272 case 1: 1273 break; 1274 case 2: 1275 spi->mode |= SPI_TX_DUAL; 1276 break; 1277 case 4: 1278 spi->mode |= SPI_TX_QUAD; 1279 break; 1280 default: 1281 dev_warn(&master->dev, 1282 "spi-tx-bus-width %d not supported\n", 1283 value); 1284 break; 1285 } 1286 } 1287 1288 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1289 switch (value) { 1290 case 1: 1291 break; 1292 case 2: 1293 spi->mode |= SPI_RX_DUAL; 1294 break; 1295 case 4: 1296 spi->mode |= SPI_RX_QUAD; 1297 break; 1298 default: 1299 dev_warn(&master->dev, 1300 "spi-rx-bus-width %d not supported\n", 1301 value); 1302 break; 1303 } 1304 } 1305 1306 /* Device speed */ 1307 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1308 if (rc) { 1309 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", 1310 nc->full_name, rc); 1311 goto err_out; 1312 } 1313 spi->max_speed_hz = value; 1314 1315 /* IRQ */ 1316 spi->irq = irq_of_parse_and_map(nc, 0); 1317 1318 /* Store a pointer to the node in the device structure */ 1319 of_node_get(nc); 1320 spi->dev.of_node = nc; 1321 1322 /* Register the new device */ 1323 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias); 1324 rc = spi_add_device(spi); 1325 if (rc) { 1326 dev_err(&master->dev, "spi_device register error %s\n", 1327 nc->full_name); 1328 goto err_out; 1329 } 1330 1331 return spi; 1332 1333 err_out: 1334 spi_dev_put(spi); 1335 return ERR_PTR(rc); 1336 } 1337 1338 /** 1339 * of_register_spi_devices() - Register child devices onto the SPI bus 1340 * @master: Pointer to spi_master device 1341 * 1342 * Registers an spi_device for each child node of master node which has a 'reg' 1343 * property. 1344 */ 1345 static void of_register_spi_devices(struct spi_master *master) 1346 { 1347 struct spi_device *spi; 1348 struct device_node *nc; 1349 1350 if (!master->dev.of_node) 1351 return; 1352 1353 for_each_available_child_of_node(master->dev.of_node, nc) { 1354 spi = of_register_spi_device(master, nc); 1355 if (IS_ERR(spi)) 1356 dev_warn(&master->dev, "Failed to create SPI device for %s\n", 1357 nc->full_name); 1358 } 1359 } 1360 #else 1361 static void of_register_spi_devices(struct spi_master *master) { } 1362 #endif 1363 1364 #ifdef CONFIG_ACPI 1365 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1366 { 1367 struct spi_device *spi = data; 1368 1369 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1370 struct acpi_resource_spi_serialbus *sb; 1371 1372 sb = &ares->data.spi_serial_bus; 1373 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1374 spi->chip_select = sb->device_selection; 1375 spi->max_speed_hz = sb->connection_speed; 1376 1377 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1378 spi->mode |= SPI_CPHA; 1379 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1380 spi->mode |= SPI_CPOL; 1381 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1382 spi->mode |= SPI_CS_HIGH; 1383 } 1384 } else if (spi->irq < 0) { 1385 struct resource r; 1386 1387 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1388 spi->irq = r.start; 1389 } 1390 1391 /* Always tell the ACPI core to skip this resource */ 1392 return 1; 1393 } 1394 1395 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1396 void *data, void **return_value) 1397 { 1398 struct spi_master *master = data; 1399 struct list_head resource_list; 1400 struct acpi_device *adev; 1401 struct spi_device *spi; 1402 int ret; 1403 1404 if (acpi_bus_get_device(handle, &adev)) 1405 return AE_OK; 1406 if (acpi_bus_get_status(adev) || !adev->status.present) 1407 return AE_OK; 1408 1409 spi = spi_alloc_device(master); 1410 if (!spi) { 1411 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 1412 dev_name(&adev->dev)); 1413 return AE_NO_MEMORY; 1414 } 1415 1416 ACPI_COMPANION_SET(&spi->dev, adev); 1417 spi->irq = -1; 1418 1419 INIT_LIST_HEAD(&resource_list); 1420 ret = acpi_dev_get_resources(adev, &resource_list, 1421 acpi_spi_add_resource, spi); 1422 acpi_dev_free_resource_list(&resource_list); 1423 1424 if (ret < 0 || !spi->max_speed_hz) { 1425 spi_dev_put(spi); 1426 return AE_OK; 1427 } 1428 1429 adev->power.flags.ignore_parent = true; 1430 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); 1431 if (spi_add_device(spi)) { 1432 adev->power.flags.ignore_parent = false; 1433 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 1434 dev_name(&adev->dev)); 1435 spi_dev_put(spi); 1436 } 1437 1438 return AE_OK; 1439 } 1440 1441 static void acpi_register_spi_devices(struct spi_master *master) 1442 { 1443 acpi_status status; 1444 acpi_handle handle; 1445 1446 handle = ACPI_HANDLE(master->dev.parent); 1447 if (!handle) 1448 return; 1449 1450 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1451 acpi_spi_add_device, NULL, 1452 master, NULL); 1453 if (ACPI_FAILURE(status)) 1454 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 1455 } 1456 #else 1457 static inline void acpi_register_spi_devices(struct spi_master *master) {} 1458 #endif /* CONFIG_ACPI */ 1459 1460 static void spi_master_release(struct device *dev) 1461 { 1462 struct spi_master *master; 1463 1464 master = container_of(dev, struct spi_master, dev); 1465 kfree(master); 1466 } 1467 1468 static struct class spi_master_class = { 1469 .name = "spi_master", 1470 .owner = THIS_MODULE, 1471 .dev_release = spi_master_release, 1472 }; 1473 1474 1475 1476 /** 1477 * spi_alloc_master - allocate SPI master controller 1478 * @dev: the controller, possibly using the platform_bus 1479 * @size: how much zeroed driver-private data to allocate; the pointer to this 1480 * memory is in the driver_data field of the returned device, 1481 * accessible with spi_master_get_devdata(). 1482 * Context: can sleep 1483 * 1484 * This call is used only by SPI master controller drivers, which are the 1485 * only ones directly touching chip registers. It's how they allocate 1486 * an spi_master structure, prior to calling spi_register_master(). 1487 * 1488 * This must be called from context that can sleep. It returns the SPI 1489 * master structure on success, else NULL. 1490 * 1491 * The caller is responsible for assigning the bus number and initializing 1492 * the master's methods before calling spi_register_master(); and (after errors 1493 * adding the device) calling spi_master_put() and kfree() to prevent a memory 1494 * leak. 1495 */ 1496 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1497 { 1498 struct spi_master *master; 1499 1500 if (!dev) 1501 return NULL; 1502 1503 master = kzalloc(size + sizeof(*master), GFP_KERNEL); 1504 if (!master) 1505 return NULL; 1506 1507 device_initialize(&master->dev); 1508 master->bus_num = -1; 1509 master->num_chipselect = 1; 1510 master->dev.class = &spi_master_class; 1511 master->dev.parent = get_device(dev); 1512 spi_master_set_devdata(master, &master[1]); 1513 1514 return master; 1515 } 1516 EXPORT_SYMBOL_GPL(spi_alloc_master); 1517 1518 #ifdef CONFIG_OF 1519 static int of_spi_register_master(struct spi_master *master) 1520 { 1521 int nb, i, *cs; 1522 struct device_node *np = master->dev.of_node; 1523 1524 if (!np) 1525 return 0; 1526 1527 nb = of_gpio_named_count(np, "cs-gpios"); 1528 master->num_chipselect = max_t(int, nb, master->num_chipselect); 1529 1530 /* Return error only for an incorrectly formed cs-gpios property */ 1531 if (nb == 0 || nb == -ENOENT) 1532 return 0; 1533 else if (nb < 0) 1534 return nb; 1535 1536 cs = devm_kzalloc(&master->dev, 1537 sizeof(int) * master->num_chipselect, 1538 GFP_KERNEL); 1539 master->cs_gpios = cs; 1540 1541 if (!master->cs_gpios) 1542 return -ENOMEM; 1543 1544 for (i = 0; i < master->num_chipselect; i++) 1545 cs[i] = -ENOENT; 1546 1547 for (i = 0; i < nb; i++) 1548 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1549 1550 return 0; 1551 } 1552 #else 1553 static int of_spi_register_master(struct spi_master *master) 1554 { 1555 return 0; 1556 } 1557 #endif 1558 1559 /** 1560 * spi_register_master - register SPI master controller 1561 * @master: initialized master, originally from spi_alloc_master() 1562 * Context: can sleep 1563 * 1564 * SPI master controllers connect to their drivers using some non-SPI bus, 1565 * such as the platform bus. The final stage of probe() in that code 1566 * includes calling spi_register_master() to hook up to this SPI bus glue. 1567 * 1568 * SPI controllers use board specific (often SOC specific) bus numbers, 1569 * and board-specific addressing for SPI devices combines those numbers 1570 * with chip select numbers. Since SPI does not directly support dynamic 1571 * device identification, boards need configuration tables telling which 1572 * chip is at which address. 1573 * 1574 * This must be called from context that can sleep. It returns zero on 1575 * success, else a negative error code (dropping the master's refcount). 1576 * After a successful return, the caller is responsible for calling 1577 * spi_unregister_master(). 1578 */ 1579 int spi_register_master(struct spi_master *master) 1580 { 1581 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1582 struct device *dev = master->dev.parent; 1583 struct boardinfo *bi; 1584 int status = -ENODEV; 1585 int dynamic = 0; 1586 1587 if (!dev) 1588 return -ENODEV; 1589 1590 status = of_spi_register_master(master); 1591 if (status) 1592 return status; 1593 1594 /* even if it's just one always-selected device, there must 1595 * be at least one chipselect 1596 */ 1597 if (master->num_chipselect == 0) 1598 return -EINVAL; 1599 1600 if ((master->bus_num < 0) && master->dev.of_node) 1601 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1602 1603 /* convention: dynamically assigned bus IDs count down from the max */ 1604 if (master->bus_num < 0) { 1605 /* FIXME switch to an IDR based scheme, something like 1606 * I2C now uses, so we can't run out of "dynamic" IDs 1607 */ 1608 master->bus_num = atomic_dec_return(&dyn_bus_id); 1609 dynamic = 1; 1610 } 1611 1612 spin_lock_init(&master->bus_lock_spinlock); 1613 mutex_init(&master->bus_lock_mutex); 1614 master->bus_lock_flag = 0; 1615 init_completion(&master->xfer_completion); 1616 if (!master->max_dma_len) 1617 master->max_dma_len = INT_MAX; 1618 1619 /* register the device, then userspace will see it. 1620 * registration fails if the bus ID is in use. 1621 */ 1622 dev_set_name(&master->dev, "spi%u", master->bus_num); 1623 status = device_add(&master->dev); 1624 if (status < 0) 1625 goto done; 1626 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1627 dynamic ? " (dynamic)" : ""); 1628 1629 /* If we're using a queued driver, start the queue */ 1630 if (master->transfer) 1631 dev_info(dev, "master is unqueued, this is deprecated\n"); 1632 else { 1633 status = spi_master_initialize_queue(master); 1634 if (status) { 1635 device_del(&master->dev); 1636 goto done; 1637 } 1638 } 1639 1640 mutex_lock(&board_lock); 1641 list_add_tail(&master->list, &spi_master_list); 1642 list_for_each_entry(bi, &board_list, list) 1643 spi_match_master_to_boardinfo(master, &bi->board_info); 1644 mutex_unlock(&board_lock); 1645 1646 /* Register devices from the device tree and ACPI */ 1647 of_register_spi_devices(master); 1648 acpi_register_spi_devices(master); 1649 done: 1650 return status; 1651 } 1652 EXPORT_SYMBOL_GPL(spi_register_master); 1653 1654 static void devm_spi_unregister(struct device *dev, void *res) 1655 { 1656 spi_unregister_master(*(struct spi_master **)res); 1657 } 1658 1659 /** 1660 * dev_spi_register_master - register managed SPI master controller 1661 * @dev: device managing SPI master 1662 * @master: initialized master, originally from spi_alloc_master() 1663 * Context: can sleep 1664 * 1665 * Register a SPI device as with spi_register_master() which will 1666 * automatically be unregister 1667 */ 1668 int devm_spi_register_master(struct device *dev, struct spi_master *master) 1669 { 1670 struct spi_master **ptr; 1671 int ret; 1672 1673 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 1674 if (!ptr) 1675 return -ENOMEM; 1676 1677 ret = spi_register_master(master); 1678 if (!ret) { 1679 *ptr = master; 1680 devres_add(dev, ptr); 1681 } else { 1682 devres_free(ptr); 1683 } 1684 1685 return ret; 1686 } 1687 EXPORT_SYMBOL_GPL(devm_spi_register_master); 1688 1689 static int __unregister(struct device *dev, void *null) 1690 { 1691 spi_unregister_device(to_spi_device(dev)); 1692 return 0; 1693 } 1694 1695 /** 1696 * spi_unregister_master - unregister SPI master controller 1697 * @master: the master being unregistered 1698 * Context: can sleep 1699 * 1700 * This call is used only by SPI master controller drivers, which are the 1701 * only ones directly touching chip registers. 1702 * 1703 * This must be called from context that can sleep. 1704 */ 1705 void spi_unregister_master(struct spi_master *master) 1706 { 1707 int dummy; 1708 1709 if (master->queued) { 1710 if (spi_destroy_queue(master)) 1711 dev_err(&master->dev, "queue remove failed\n"); 1712 } 1713 1714 mutex_lock(&board_lock); 1715 list_del(&master->list); 1716 mutex_unlock(&board_lock); 1717 1718 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1719 device_unregister(&master->dev); 1720 } 1721 EXPORT_SYMBOL_GPL(spi_unregister_master); 1722 1723 int spi_master_suspend(struct spi_master *master) 1724 { 1725 int ret; 1726 1727 /* Basically no-ops for non-queued masters */ 1728 if (!master->queued) 1729 return 0; 1730 1731 ret = spi_stop_queue(master); 1732 if (ret) 1733 dev_err(&master->dev, "queue stop failed\n"); 1734 1735 return ret; 1736 } 1737 EXPORT_SYMBOL_GPL(spi_master_suspend); 1738 1739 int spi_master_resume(struct spi_master *master) 1740 { 1741 int ret; 1742 1743 if (!master->queued) 1744 return 0; 1745 1746 ret = spi_start_queue(master); 1747 if (ret) 1748 dev_err(&master->dev, "queue restart failed\n"); 1749 1750 return ret; 1751 } 1752 EXPORT_SYMBOL_GPL(spi_master_resume); 1753 1754 static int __spi_master_match(struct device *dev, const void *data) 1755 { 1756 struct spi_master *m; 1757 const u16 *bus_num = data; 1758 1759 m = container_of(dev, struct spi_master, dev); 1760 return m->bus_num == *bus_num; 1761 } 1762 1763 /** 1764 * spi_busnum_to_master - look up master associated with bus_num 1765 * @bus_num: the master's bus number 1766 * Context: can sleep 1767 * 1768 * This call may be used with devices that are registered after 1769 * arch init time. It returns a refcounted pointer to the relevant 1770 * spi_master (which the caller must release), or NULL if there is 1771 * no such master registered. 1772 */ 1773 struct spi_master *spi_busnum_to_master(u16 bus_num) 1774 { 1775 struct device *dev; 1776 struct spi_master *master = NULL; 1777 1778 dev = class_find_device(&spi_master_class, NULL, &bus_num, 1779 __spi_master_match); 1780 if (dev) 1781 master = container_of(dev, struct spi_master, dev); 1782 /* reference got in class_find_device */ 1783 return master; 1784 } 1785 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 1786 1787 1788 /*-------------------------------------------------------------------------*/ 1789 1790 /* Core methods for SPI master protocol drivers. Some of the 1791 * other core methods are currently defined as inline functions. 1792 */ 1793 1794 /** 1795 * spi_setup - setup SPI mode and clock rate 1796 * @spi: the device whose settings are being modified 1797 * Context: can sleep, and no requests are queued to the device 1798 * 1799 * SPI protocol drivers may need to update the transfer mode if the 1800 * device doesn't work with its default. They may likewise need 1801 * to update clock rates or word sizes from initial values. This function 1802 * changes those settings, and must be called from a context that can sleep. 1803 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 1804 * effect the next time the device is selected and data is transferred to 1805 * or from it. When this function returns, the spi device is deselected. 1806 * 1807 * Note that this call will fail if the protocol driver specifies an option 1808 * that the underlying controller or its driver does not support. For 1809 * example, not all hardware supports wire transfers using nine bit words, 1810 * LSB-first wire encoding, or active-high chipselects. 1811 */ 1812 int spi_setup(struct spi_device *spi) 1813 { 1814 unsigned bad_bits, ugly_bits; 1815 int status = 0; 1816 1817 /* check mode to prevent that DUAL and QUAD set at the same time 1818 */ 1819 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 1820 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 1821 dev_err(&spi->dev, 1822 "setup: can not select dual and quad at the same time\n"); 1823 return -EINVAL; 1824 } 1825 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 1826 */ 1827 if ((spi->mode & SPI_3WIRE) && (spi->mode & 1828 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 1829 return -EINVAL; 1830 /* help drivers fail *cleanly* when they need options 1831 * that aren't supported with their current master 1832 */ 1833 bad_bits = spi->mode & ~spi->master->mode_bits; 1834 ugly_bits = bad_bits & 1835 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); 1836 if (ugly_bits) { 1837 dev_warn(&spi->dev, 1838 "setup: ignoring unsupported mode bits %x\n", 1839 ugly_bits); 1840 spi->mode &= ~ugly_bits; 1841 bad_bits &= ~ugly_bits; 1842 } 1843 if (bad_bits) { 1844 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 1845 bad_bits); 1846 return -EINVAL; 1847 } 1848 1849 if (!spi->bits_per_word) 1850 spi->bits_per_word = 8; 1851 1852 if (!spi->max_speed_hz) 1853 spi->max_speed_hz = spi->master->max_speed_hz; 1854 1855 if (spi->master->setup) 1856 status = spi->master->setup(spi); 1857 1858 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 1859 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 1860 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 1861 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 1862 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 1863 (spi->mode & SPI_LOOP) ? "loopback, " : "", 1864 spi->bits_per_word, spi->max_speed_hz, 1865 status); 1866 1867 return status; 1868 } 1869 EXPORT_SYMBOL_GPL(spi_setup); 1870 1871 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 1872 { 1873 struct spi_master *master = spi->master; 1874 struct spi_transfer *xfer; 1875 int w_size; 1876 1877 if (list_empty(&message->transfers)) 1878 return -EINVAL; 1879 1880 /* Half-duplex links include original MicroWire, and ones with 1881 * only one data pin like SPI_3WIRE (switches direction) or where 1882 * either MOSI or MISO is missing. They can also be caused by 1883 * software limitations. 1884 */ 1885 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 1886 || (spi->mode & SPI_3WIRE)) { 1887 unsigned flags = master->flags; 1888 1889 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1890 if (xfer->rx_buf && xfer->tx_buf) 1891 return -EINVAL; 1892 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 1893 return -EINVAL; 1894 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 1895 return -EINVAL; 1896 } 1897 } 1898 1899 /** 1900 * Set transfer bits_per_word and max speed as spi device default if 1901 * it is not set for this transfer. 1902 * Set transfer tx_nbits and rx_nbits as single transfer default 1903 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 1904 */ 1905 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1906 message->frame_length += xfer->len; 1907 if (!xfer->bits_per_word) 1908 xfer->bits_per_word = spi->bits_per_word; 1909 1910 if (!xfer->speed_hz) 1911 xfer->speed_hz = spi->max_speed_hz; 1912 1913 if (master->max_speed_hz && 1914 xfer->speed_hz > master->max_speed_hz) 1915 xfer->speed_hz = master->max_speed_hz; 1916 1917 if (master->bits_per_word_mask) { 1918 /* Only 32 bits fit in the mask */ 1919 if (xfer->bits_per_word > 32) 1920 return -EINVAL; 1921 if (!(master->bits_per_word_mask & 1922 BIT(xfer->bits_per_word - 1))) 1923 return -EINVAL; 1924 } 1925 1926 /* 1927 * SPI transfer length should be multiple of SPI word size 1928 * where SPI word size should be power-of-two multiple 1929 */ 1930 if (xfer->bits_per_word <= 8) 1931 w_size = 1; 1932 else if (xfer->bits_per_word <= 16) 1933 w_size = 2; 1934 else 1935 w_size = 4; 1936 1937 /* No partial transfers accepted */ 1938 if (xfer->len % w_size) 1939 return -EINVAL; 1940 1941 if (xfer->speed_hz && master->min_speed_hz && 1942 xfer->speed_hz < master->min_speed_hz) 1943 return -EINVAL; 1944 1945 if (xfer->tx_buf && !xfer->tx_nbits) 1946 xfer->tx_nbits = SPI_NBITS_SINGLE; 1947 if (xfer->rx_buf && !xfer->rx_nbits) 1948 xfer->rx_nbits = SPI_NBITS_SINGLE; 1949 /* check transfer tx/rx_nbits: 1950 * 1. check the value matches one of single, dual and quad 1951 * 2. check tx/rx_nbits match the mode in spi_device 1952 */ 1953 if (xfer->tx_buf) { 1954 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 1955 xfer->tx_nbits != SPI_NBITS_DUAL && 1956 xfer->tx_nbits != SPI_NBITS_QUAD) 1957 return -EINVAL; 1958 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 1959 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 1960 return -EINVAL; 1961 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 1962 !(spi->mode & SPI_TX_QUAD)) 1963 return -EINVAL; 1964 } 1965 /* check transfer rx_nbits */ 1966 if (xfer->rx_buf) { 1967 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 1968 xfer->rx_nbits != SPI_NBITS_DUAL && 1969 xfer->rx_nbits != SPI_NBITS_QUAD) 1970 return -EINVAL; 1971 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 1972 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 1973 return -EINVAL; 1974 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 1975 !(spi->mode & SPI_RX_QUAD)) 1976 return -EINVAL; 1977 } 1978 } 1979 1980 message->status = -EINPROGRESS; 1981 1982 return 0; 1983 } 1984 1985 static int __spi_async(struct spi_device *spi, struct spi_message *message) 1986 { 1987 struct spi_master *master = spi->master; 1988 1989 message->spi = spi; 1990 1991 trace_spi_message_submit(message); 1992 1993 return master->transfer(spi, message); 1994 } 1995 1996 /** 1997 * spi_async - asynchronous SPI transfer 1998 * @spi: device with which data will be exchanged 1999 * @message: describes the data transfers, including completion callback 2000 * Context: any (irqs may be blocked, etc) 2001 * 2002 * This call may be used in_irq and other contexts which can't sleep, 2003 * as well as from task contexts which can sleep. 2004 * 2005 * The completion callback is invoked in a context which can't sleep. 2006 * Before that invocation, the value of message->status is undefined. 2007 * When the callback is issued, message->status holds either zero (to 2008 * indicate complete success) or a negative error code. After that 2009 * callback returns, the driver which issued the transfer request may 2010 * deallocate the associated memory; it's no longer in use by any SPI 2011 * core or controller driver code. 2012 * 2013 * Note that although all messages to a spi_device are handled in 2014 * FIFO order, messages may go to different devices in other orders. 2015 * Some device might be higher priority, or have various "hard" access 2016 * time requirements, for example. 2017 * 2018 * On detection of any fault during the transfer, processing of 2019 * the entire message is aborted, and the device is deselected. 2020 * Until returning from the associated message completion callback, 2021 * no other spi_message queued to that device will be processed. 2022 * (This rule applies equally to all the synchronous transfer calls, 2023 * which are wrappers around this core asynchronous primitive.) 2024 */ 2025 int spi_async(struct spi_device *spi, struct spi_message *message) 2026 { 2027 struct spi_master *master = spi->master; 2028 int ret; 2029 unsigned long flags; 2030 2031 ret = __spi_validate(spi, message); 2032 if (ret != 0) 2033 return ret; 2034 2035 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2036 2037 if (master->bus_lock_flag) 2038 ret = -EBUSY; 2039 else 2040 ret = __spi_async(spi, message); 2041 2042 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2043 2044 return ret; 2045 } 2046 EXPORT_SYMBOL_GPL(spi_async); 2047 2048 /** 2049 * spi_async_locked - version of spi_async with exclusive bus usage 2050 * @spi: device with which data will be exchanged 2051 * @message: describes the data transfers, including completion callback 2052 * Context: any (irqs may be blocked, etc) 2053 * 2054 * This call may be used in_irq and other contexts which can't sleep, 2055 * as well as from task contexts which can sleep. 2056 * 2057 * The completion callback is invoked in a context which can't sleep. 2058 * Before that invocation, the value of message->status is undefined. 2059 * When the callback is issued, message->status holds either zero (to 2060 * indicate complete success) or a negative error code. After that 2061 * callback returns, the driver which issued the transfer request may 2062 * deallocate the associated memory; it's no longer in use by any SPI 2063 * core or controller driver code. 2064 * 2065 * Note that although all messages to a spi_device are handled in 2066 * FIFO order, messages may go to different devices in other orders. 2067 * Some device might be higher priority, or have various "hard" access 2068 * time requirements, for example. 2069 * 2070 * On detection of any fault during the transfer, processing of 2071 * the entire message is aborted, and the device is deselected. 2072 * Until returning from the associated message completion callback, 2073 * no other spi_message queued to that device will be processed. 2074 * (This rule applies equally to all the synchronous transfer calls, 2075 * which are wrappers around this core asynchronous primitive.) 2076 */ 2077 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 2078 { 2079 struct spi_master *master = spi->master; 2080 int ret; 2081 unsigned long flags; 2082 2083 ret = __spi_validate(spi, message); 2084 if (ret != 0) 2085 return ret; 2086 2087 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2088 2089 ret = __spi_async(spi, message); 2090 2091 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2092 2093 return ret; 2094 2095 } 2096 EXPORT_SYMBOL_GPL(spi_async_locked); 2097 2098 2099 /*-------------------------------------------------------------------------*/ 2100 2101 /* Utility methods for SPI master protocol drivers, layered on 2102 * top of the core. Some other utility methods are defined as 2103 * inline functions. 2104 */ 2105 2106 static void spi_complete(void *arg) 2107 { 2108 complete(arg); 2109 } 2110 2111 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 2112 int bus_locked) 2113 { 2114 DECLARE_COMPLETION_ONSTACK(done); 2115 int status; 2116 struct spi_master *master = spi->master; 2117 2118 message->complete = spi_complete; 2119 message->context = &done; 2120 2121 if (!bus_locked) 2122 mutex_lock(&master->bus_lock_mutex); 2123 2124 status = spi_async_locked(spi, message); 2125 2126 if (!bus_locked) 2127 mutex_unlock(&master->bus_lock_mutex); 2128 2129 if (status == 0) { 2130 wait_for_completion(&done); 2131 status = message->status; 2132 } 2133 message->context = NULL; 2134 return status; 2135 } 2136 2137 /** 2138 * spi_sync - blocking/synchronous SPI data transfers 2139 * @spi: device with which data will be exchanged 2140 * @message: describes the data transfers 2141 * Context: can sleep 2142 * 2143 * This call may only be used from a context that may sleep. The sleep 2144 * is non-interruptible, and has no timeout. Low-overhead controller 2145 * drivers may DMA directly into and out of the message buffers. 2146 * 2147 * Note that the SPI device's chip select is active during the message, 2148 * and then is normally disabled between messages. Drivers for some 2149 * frequently-used devices may want to minimize costs of selecting a chip, 2150 * by leaving it selected in anticipation that the next message will go 2151 * to the same chip. (That may increase power usage.) 2152 * 2153 * Also, the caller is guaranteeing that the memory associated with the 2154 * message will not be freed before this call returns. 2155 * 2156 * It returns zero on success, else a negative error code. 2157 */ 2158 int spi_sync(struct spi_device *spi, struct spi_message *message) 2159 { 2160 return __spi_sync(spi, message, 0); 2161 } 2162 EXPORT_SYMBOL_GPL(spi_sync); 2163 2164 /** 2165 * spi_sync_locked - version of spi_sync with exclusive bus usage 2166 * @spi: device with which data will be exchanged 2167 * @message: describes the data transfers 2168 * Context: can sleep 2169 * 2170 * This call may only be used from a context that may sleep. The sleep 2171 * is non-interruptible, and has no timeout. Low-overhead controller 2172 * drivers may DMA directly into and out of the message buffers. 2173 * 2174 * This call should be used by drivers that require exclusive access to the 2175 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 2176 * be released by a spi_bus_unlock call when the exclusive access is over. 2177 * 2178 * It returns zero on success, else a negative error code. 2179 */ 2180 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 2181 { 2182 return __spi_sync(spi, message, 1); 2183 } 2184 EXPORT_SYMBOL_GPL(spi_sync_locked); 2185 2186 /** 2187 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 2188 * @master: SPI bus master that should be locked for exclusive bus access 2189 * Context: can sleep 2190 * 2191 * This call may only be used from a context that may sleep. The sleep 2192 * is non-interruptible, and has no timeout. 2193 * 2194 * This call should be used by drivers that require exclusive access to the 2195 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 2196 * exclusive access is over. Data transfer must be done by spi_sync_locked 2197 * and spi_async_locked calls when the SPI bus lock is held. 2198 * 2199 * It returns zero on success, else a negative error code. 2200 */ 2201 int spi_bus_lock(struct spi_master *master) 2202 { 2203 unsigned long flags; 2204 2205 mutex_lock(&master->bus_lock_mutex); 2206 2207 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2208 master->bus_lock_flag = 1; 2209 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2210 2211 /* mutex remains locked until spi_bus_unlock is called */ 2212 2213 return 0; 2214 } 2215 EXPORT_SYMBOL_GPL(spi_bus_lock); 2216 2217 /** 2218 * spi_bus_unlock - release the lock for exclusive SPI bus usage 2219 * @master: SPI bus master that was locked for exclusive bus access 2220 * Context: can sleep 2221 * 2222 * This call may only be used from a context that may sleep. The sleep 2223 * is non-interruptible, and has no timeout. 2224 * 2225 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 2226 * call. 2227 * 2228 * It returns zero on success, else a negative error code. 2229 */ 2230 int spi_bus_unlock(struct spi_master *master) 2231 { 2232 master->bus_lock_flag = 0; 2233 2234 mutex_unlock(&master->bus_lock_mutex); 2235 2236 return 0; 2237 } 2238 EXPORT_SYMBOL_GPL(spi_bus_unlock); 2239 2240 /* portable code must never pass more than 32 bytes */ 2241 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 2242 2243 static u8 *buf; 2244 2245 /** 2246 * spi_write_then_read - SPI synchronous write followed by read 2247 * @spi: device with which data will be exchanged 2248 * @txbuf: data to be written (need not be dma-safe) 2249 * @n_tx: size of txbuf, in bytes 2250 * @rxbuf: buffer into which data will be read (need not be dma-safe) 2251 * @n_rx: size of rxbuf, in bytes 2252 * Context: can sleep 2253 * 2254 * This performs a half duplex MicroWire style transaction with the 2255 * device, sending txbuf and then reading rxbuf. The return value 2256 * is zero for success, else a negative errno status code. 2257 * This call may only be used from a context that may sleep. 2258 * 2259 * Parameters to this routine are always copied using a small buffer; 2260 * portable code should never use this for more than 32 bytes. 2261 * Performance-sensitive or bulk transfer code should instead use 2262 * spi_{async,sync}() calls with dma-safe buffers. 2263 */ 2264 int spi_write_then_read(struct spi_device *spi, 2265 const void *txbuf, unsigned n_tx, 2266 void *rxbuf, unsigned n_rx) 2267 { 2268 static DEFINE_MUTEX(lock); 2269 2270 int status; 2271 struct spi_message message; 2272 struct spi_transfer x[2]; 2273 u8 *local_buf; 2274 2275 /* Use preallocated DMA-safe buffer if we can. We can't avoid 2276 * copying here, (as a pure convenience thing), but we can 2277 * keep heap costs out of the hot path unless someone else is 2278 * using the pre-allocated buffer or the transfer is too large. 2279 */ 2280 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 2281 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 2282 GFP_KERNEL | GFP_DMA); 2283 if (!local_buf) 2284 return -ENOMEM; 2285 } else { 2286 local_buf = buf; 2287 } 2288 2289 spi_message_init(&message); 2290 memset(x, 0, sizeof(x)); 2291 if (n_tx) { 2292 x[0].len = n_tx; 2293 spi_message_add_tail(&x[0], &message); 2294 } 2295 if (n_rx) { 2296 x[1].len = n_rx; 2297 spi_message_add_tail(&x[1], &message); 2298 } 2299 2300 memcpy(local_buf, txbuf, n_tx); 2301 x[0].tx_buf = local_buf; 2302 x[1].rx_buf = local_buf + n_tx; 2303 2304 /* do the i/o */ 2305 status = spi_sync(spi, &message); 2306 if (status == 0) 2307 memcpy(rxbuf, x[1].rx_buf, n_rx); 2308 2309 if (x[0].tx_buf == buf) 2310 mutex_unlock(&lock); 2311 else 2312 kfree(local_buf); 2313 2314 return status; 2315 } 2316 EXPORT_SYMBOL_GPL(spi_write_then_read); 2317 2318 /*-------------------------------------------------------------------------*/ 2319 2320 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 2321 static int __spi_of_device_match(struct device *dev, void *data) 2322 { 2323 return dev->of_node == data; 2324 } 2325 2326 /* must call put_device() when done with returned spi_device device */ 2327 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 2328 { 2329 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 2330 __spi_of_device_match); 2331 return dev ? to_spi_device(dev) : NULL; 2332 } 2333 2334 static int __spi_of_master_match(struct device *dev, const void *data) 2335 { 2336 return dev->of_node == data; 2337 } 2338 2339 /* the spi masters are not using spi_bus, so we find it with another way */ 2340 static struct spi_master *of_find_spi_master_by_node(struct device_node *node) 2341 { 2342 struct device *dev; 2343 2344 dev = class_find_device(&spi_master_class, NULL, node, 2345 __spi_of_master_match); 2346 if (!dev) 2347 return NULL; 2348 2349 /* reference got in class_find_device */ 2350 return container_of(dev, struct spi_master, dev); 2351 } 2352 2353 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 2354 void *arg) 2355 { 2356 struct of_reconfig_data *rd = arg; 2357 struct spi_master *master; 2358 struct spi_device *spi; 2359 2360 switch (of_reconfig_get_state_change(action, arg)) { 2361 case OF_RECONFIG_CHANGE_ADD: 2362 master = of_find_spi_master_by_node(rd->dn->parent); 2363 if (master == NULL) 2364 return NOTIFY_OK; /* not for us */ 2365 2366 spi = of_register_spi_device(master, rd->dn); 2367 put_device(&master->dev); 2368 2369 if (IS_ERR(spi)) { 2370 pr_err("%s: failed to create for '%s'\n", 2371 __func__, rd->dn->full_name); 2372 return notifier_from_errno(PTR_ERR(spi)); 2373 } 2374 break; 2375 2376 case OF_RECONFIG_CHANGE_REMOVE: 2377 /* find our device by node */ 2378 spi = of_find_spi_device_by_node(rd->dn); 2379 if (spi == NULL) 2380 return NOTIFY_OK; /* no? not meant for us */ 2381 2382 /* unregister takes one ref away */ 2383 spi_unregister_device(spi); 2384 2385 /* and put the reference of the find */ 2386 put_device(&spi->dev); 2387 break; 2388 } 2389 2390 return NOTIFY_OK; 2391 } 2392 2393 static struct notifier_block spi_of_notifier = { 2394 .notifier_call = of_spi_notify, 2395 }; 2396 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 2397 extern struct notifier_block spi_of_notifier; 2398 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 2399 2400 static int __init spi_init(void) 2401 { 2402 int status; 2403 2404 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 2405 if (!buf) { 2406 status = -ENOMEM; 2407 goto err0; 2408 } 2409 2410 status = bus_register(&spi_bus_type); 2411 if (status < 0) 2412 goto err1; 2413 2414 status = class_register(&spi_master_class); 2415 if (status < 0) 2416 goto err2; 2417 2418 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 2419 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 2420 2421 return 0; 2422 2423 err2: 2424 bus_unregister(&spi_bus_type); 2425 err1: 2426 kfree(buf); 2427 buf = NULL; 2428 err0: 2429 return status; 2430 } 2431 2432 /* board_info is normally registered in arch_initcall(), 2433 * but even essential drivers wait till later 2434 * 2435 * REVISIT only boardinfo really needs static linking. the rest (device and 2436 * driver registration) _could_ be dynamically linked (modular) ... costs 2437 * include needing to have boardinfo data structures be much more public. 2438 */ 2439 postcore_initcall(spi_init); 2440 2441