xref: /openbmc/linux/drivers/spi/spi.c (revision 842b6b16)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43 
44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi masters may cleanup for released devices */
49 	if (spi->master->cleanup)
50 		spi->master->cleanup(spi);
51 
52 	spi_master_put(spi->master);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 #define SPI_STATISTICS_ATTRS(field, file)				\
71 static ssize_t spi_master_##field##_show(struct device *dev,		\
72 					 struct device_attribute *attr,	\
73 					 char *buf)			\
74 {									\
75 	struct spi_master *master = container_of(dev,			\
76 						 struct spi_master, dev); \
77 	return spi_statistics_##field##_show(&master->statistics, buf);	\
78 }									\
79 static struct device_attribute dev_attr_spi_master_##field = {		\
80 	.attr = { .name = file, .mode = S_IRUGO },			\
81 	.show = spi_master_##field##_show,				\
82 };									\
83 static ssize_t spi_device_##field##_show(struct device *dev,		\
84 					 struct device_attribute *attr,	\
85 					char *buf)			\
86 {									\
87 	struct spi_device *spi = container_of(dev,			\
88 					      struct spi_device, dev);	\
89 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
90 }									\
91 static struct device_attribute dev_attr_spi_device_##field = {		\
92 	.attr = { .name = file, .mode = S_IRUGO },			\
93 	.show = spi_device_##field##_show,				\
94 }
95 
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 					    char *buf)			\
99 {									\
100 	unsigned long flags;						\
101 	ssize_t len;							\
102 	spin_lock_irqsave(&stat->lock, flags);				\
103 	len = sprintf(buf, format_string, stat->field);			\
104 	spin_unlock_irqrestore(&stat->lock, flags);			\
105 	return len;							\
106 }									\
107 SPI_STATISTICS_ATTRS(name, file)
108 
109 #define SPI_STATISTICS_SHOW(field, format_string)			\
110 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
111 				 field, format_string)
112 
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117 
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121 
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125 
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
127 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
128 				 "transfer_bytes_histo_" number,	\
129 				 transfer_bytes_histo[index],  "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147 
148 static struct attribute *spi_dev_attrs[] = {
149 	&dev_attr_modalias.attr,
150 	NULL,
151 };
152 
153 static const struct attribute_group spi_dev_group = {
154 	.attrs  = spi_dev_attrs,
155 };
156 
157 static struct attribute *spi_device_statistics_attrs[] = {
158 	&dev_attr_spi_device_messages.attr,
159 	&dev_attr_spi_device_transfers.attr,
160 	&dev_attr_spi_device_errors.attr,
161 	&dev_attr_spi_device_timedout.attr,
162 	&dev_attr_spi_device_spi_sync.attr,
163 	&dev_attr_spi_device_spi_sync_immediate.attr,
164 	&dev_attr_spi_device_spi_async.attr,
165 	&dev_attr_spi_device_bytes.attr,
166 	&dev_attr_spi_device_bytes_rx.attr,
167 	&dev_attr_spi_device_bytes_tx.attr,
168 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
169 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
185 	NULL,
186 };
187 
188 static const struct attribute_group spi_device_statistics_group = {
189 	.name  = "statistics",
190 	.attrs  = spi_device_statistics_attrs,
191 };
192 
193 static const struct attribute_group *spi_dev_groups[] = {
194 	&spi_dev_group,
195 	&spi_device_statistics_group,
196 	NULL,
197 };
198 
199 static struct attribute *spi_master_statistics_attrs[] = {
200 	&dev_attr_spi_master_messages.attr,
201 	&dev_attr_spi_master_transfers.attr,
202 	&dev_attr_spi_master_errors.attr,
203 	&dev_attr_spi_master_timedout.attr,
204 	&dev_attr_spi_master_spi_sync.attr,
205 	&dev_attr_spi_master_spi_sync_immediate.attr,
206 	&dev_attr_spi_master_spi_async.attr,
207 	&dev_attr_spi_master_bytes.attr,
208 	&dev_attr_spi_master_bytes_rx.attr,
209 	&dev_attr_spi_master_bytes_tx.attr,
210 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
211 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
212 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
226 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
227 	NULL,
228 };
229 
230 static const struct attribute_group spi_master_statistics_group = {
231 	.name  = "statistics",
232 	.attrs  = spi_master_statistics_attrs,
233 };
234 
235 static const struct attribute_group *spi_master_groups[] = {
236 	&spi_master_statistics_group,
237 	NULL,
238 };
239 
240 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
241 				       struct spi_transfer *xfer,
242 				       struct spi_master *master)
243 {
244 	unsigned long flags;
245 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
246 
247 	if (l2len < 0)
248 		l2len = 0;
249 
250 	spin_lock_irqsave(&stats->lock, flags);
251 
252 	stats->transfers++;
253 	stats->transfer_bytes_histo[l2len]++;
254 
255 	stats->bytes += xfer->len;
256 	if ((xfer->tx_buf) &&
257 	    (xfer->tx_buf != master->dummy_tx))
258 		stats->bytes_tx += xfer->len;
259 	if ((xfer->rx_buf) &&
260 	    (xfer->rx_buf != master->dummy_rx))
261 		stats->bytes_rx += xfer->len;
262 
263 	spin_unlock_irqrestore(&stats->lock, flags);
264 }
265 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
266 
267 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268  * and the sysfs version makes coldplug work too.
269  */
270 
271 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
272 						const struct spi_device *sdev)
273 {
274 	while (id->name[0]) {
275 		if (!strcmp(sdev->modalias, id->name))
276 			return id;
277 		id++;
278 	}
279 	return NULL;
280 }
281 
282 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
283 {
284 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
285 
286 	return spi_match_id(sdrv->id_table, sdev);
287 }
288 EXPORT_SYMBOL_GPL(spi_get_device_id);
289 
290 static int spi_match_device(struct device *dev, struct device_driver *drv)
291 {
292 	const struct spi_device	*spi = to_spi_device(dev);
293 	const struct spi_driver	*sdrv = to_spi_driver(drv);
294 
295 	/* Attempt an OF style match */
296 	if (of_driver_match_device(dev, drv))
297 		return 1;
298 
299 	/* Then try ACPI */
300 	if (acpi_driver_match_device(dev, drv))
301 		return 1;
302 
303 	if (sdrv->id_table)
304 		return !!spi_match_id(sdrv->id_table, spi);
305 
306 	return strcmp(spi->modalias, drv->name) == 0;
307 }
308 
309 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
310 {
311 	const struct spi_device		*spi = to_spi_device(dev);
312 	int rc;
313 
314 	rc = acpi_device_uevent_modalias(dev, env);
315 	if (rc != -ENODEV)
316 		return rc;
317 
318 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
319 	return 0;
320 }
321 
322 struct bus_type spi_bus_type = {
323 	.name		= "spi",
324 	.dev_groups	= spi_dev_groups,
325 	.match		= spi_match_device,
326 	.uevent		= spi_uevent,
327 };
328 EXPORT_SYMBOL_GPL(spi_bus_type);
329 
330 
331 static int spi_drv_probe(struct device *dev)
332 {
333 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
334 	struct spi_device		*spi = to_spi_device(dev);
335 	int ret;
336 
337 	ret = of_clk_set_defaults(dev->of_node, false);
338 	if (ret)
339 		return ret;
340 
341 	if (dev->of_node) {
342 		spi->irq = of_irq_get(dev->of_node, 0);
343 		if (spi->irq == -EPROBE_DEFER)
344 			return -EPROBE_DEFER;
345 		if (spi->irq < 0)
346 			spi->irq = 0;
347 	}
348 
349 	ret = dev_pm_domain_attach(dev, true);
350 	if (ret != -EPROBE_DEFER) {
351 		ret = sdrv->probe(spi);
352 		if (ret)
353 			dev_pm_domain_detach(dev, true);
354 	}
355 
356 	return ret;
357 }
358 
359 static int spi_drv_remove(struct device *dev)
360 {
361 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
362 	int ret;
363 
364 	ret = sdrv->remove(to_spi_device(dev));
365 	dev_pm_domain_detach(dev, true);
366 
367 	return ret;
368 }
369 
370 static void spi_drv_shutdown(struct device *dev)
371 {
372 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
373 
374 	sdrv->shutdown(to_spi_device(dev));
375 }
376 
377 /**
378  * __spi_register_driver - register a SPI driver
379  * @owner: owner module of the driver to register
380  * @sdrv: the driver to register
381  * Context: can sleep
382  *
383  * Return: zero on success, else a negative error code.
384  */
385 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
386 {
387 	sdrv->driver.owner = owner;
388 	sdrv->driver.bus = &spi_bus_type;
389 	if (sdrv->probe)
390 		sdrv->driver.probe = spi_drv_probe;
391 	if (sdrv->remove)
392 		sdrv->driver.remove = spi_drv_remove;
393 	if (sdrv->shutdown)
394 		sdrv->driver.shutdown = spi_drv_shutdown;
395 	return driver_register(&sdrv->driver);
396 }
397 EXPORT_SYMBOL_GPL(__spi_register_driver);
398 
399 /*-------------------------------------------------------------------------*/
400 
401 /* SPI devices should normally not be created by SPI device drivers; that
402  * would make them board-specific.  Similarly with SPI master drivers.
403  * Device registration normally goes into like arch/.../mach.../board-YYY.c
404  * with other readonly (flashable) information about mainboard devices.
405  */
406 
407 struct boardinfo {
408 	struct list_head	list;
409 	struct spi_board_info	board_info;
410 };
411 
412 static LIST_HEAD(board_list);
413 static LIST_HEAD(spi_master_list);
414 
415 /*
416  * Used to protect add/del opertion for board_info list and
417  * spi_master list, and their matching process
418  */
419 static DEFINE_MUTEX(board_lock);
420 
421 /**
422  * spi_alloc_device - Allocate a new SPI device
423  * @master: Controller to which device is connected
424  * Context: can sleep
425  *
426  * Allows a driver to allocate and initialize a spi_device without
427  * registering it immediately.  This allows a driver to directly
428  * fill the spi_device with device parameters before calling
429  * spi_add_device() on it.
430  *
431  * Caller is responsible to call spi_add_device() on the returned
432  * spi_device structure to add it to the SPI master.  If the caller
433  * needs to discard the spi_device without adding it, then it should
434  * call spi_dev_put() on it.
435  *
436  * Return: a pointer to the new device, or NULL.
437  */
438 struct spi_device *spi_alloc_device(struct spi_master *master)
439 {
440 	struct spi_device	*spi;
441 
442 	if (!spi_master_get(master))
443 		return NULL;
444 
445 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
446 	if (!spi) {
447 		spi_master_put(master);
448 		return NULL;
449 	}
450 
451 	spi->master = master;
452 	spi->dev.parent = &master->dev;
453 	spi->dev.bus = &spi_bus_type;
454 	spi->dev.release = spidev_release;
455 	spi->cs_gpio = -ENOENT;
456 
457 	spin_lock_init(&spi->statistics.lock);
458 
459 	device_initialize(&spi->dev);
460 	return spi;
461 }
462 EXPORT_SYMBOL_GPL(spi_alloc_device);
463 
464 static void spi_dev_set_name(struct spi_device *spi)
465 {
466 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
467 
468 	if (adev) {
469 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
470 		return;
471 	}
472 
473 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
474 		     spi->chip_select);
475 }
476 
477 static int spi_dev_check(struct device *dev, void *data)
478 {
479 	struct spi_device *spi = to_spi_device(dev);
480 	struct spi_device *new_spi = data;
481 
482 	if (spi->master == new_spi->master &&
483 	    spi->chip_select == new_spi->chip_select)
484 		return -EBUSY;
485 	return 0;
486 }
487 
488 /**
489  * spi_add_device - Add spi_device allocated with spi_alloc_device
490  * @spi: spi_device to register
491  *
492  * Companion function to spi_alloc_device.  Devices allocated with
493  * spi_alloc_device can be added onto the spi bus with this function.
494  *
495  * Return: 0 on success; negative errno on failure
496  */
497 int spi_add_device(struct spi_device *spi)
498 {
499 	static DEFINE_MUTEX(spi_add_lock);
500 	struct spi_master *master = spi->master;
501 	struct device *dev = master->dev.parent;
502 	int status;
503 
504 	/* Chipselects are numbered 0..max; validate. */
505 	if (spi->chip_select >= master->num_chipselect) {
506 		dev_err(dev, "cs%d >= max %d\n",
507 			spi->chip_select,
508 			master->num_chipselect);
509 		return -EINVAL;
510 	}
511 
512 	/* Set the bus ID string */
513 	spi_dev_set_name(spi);
514 
515 	/* We need to make sure there's no other device with this
516 	 * chipselect **BEFORE** we call setup(), else we'll trash
517 	 * its configuration.  Lock against concurrent add() calls.
518 	 */
519 	mutex_lock(&spi_add_lock);
520 
521 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
522 	if (status) {
523 		dev_err(dev, "chipselect %d already in use\n",
524 				spi->chip_select);
525 		goto done;
526 	}
527 
528 	if (master->cs_gpios)
529 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
530 
531 	/* Drivers may modify this initial i/o setup, but will
532 	 * normally rely on the device being setup.  Devices
533 	 * using SPI_CS_HIGH can't coexist well otherwise...
534 	 */
535 	status = spi_setup(spi);
536 	if (status < 0) {
537 		dev_err(dev, "can't setup %s, status %d\n",
538 				dev_name(&spi->dev), status);
539 		goto done;
540 	}
541 
542 	/* Device may be bound to an active driver when this returns */
543 	status = device_add(&spi->dev);
544 	if (status < 0)
545 		dev_err(dev, "can't add %s, status %d\n",
546 				dev_name(&spi->dev), status);
547 	else
548 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
549 
550 done:
551 	mutex_unlock(&spi_add_lock);
552 	return status;
553 }
554 EXPORT_SYMBOL_GPL(spi_add_device);
555 
556 /**
557  * spi_new_device - instantiate one new SPI device
558  * @master: Controller to which device is connected
559  * @chip: Describes the SPI device
560  * Context: can sleep
561  *
562  * On typical mainboards, this is purely internal; and it's not needed
563  * after board init creates the hard-wired devices.  Some development
564  * platforms may not be able to use spi_register_board_info though, and
565  * this is exported so that for example a USB or parport based adapter
566  * driver could add devices (which it would learn about out-of-band).
567  *
568  * Return: the new device, or NULL.
569  */
570 struct spi_device *spi_new_device(struct spi_master *master,
571 				  struct spi_board_info *chip)
572 {
573 	struct spi_device	*proxy;
574 	int			status;
575 
576 	/* NOTE:  caller did any chip->bus_num checks necessary.
577 	 *
578 	 * Also, unless we change the return value convention to use
579 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
580 	 * suggests syslogged diagnostics are best here (ugh).
581 	 */
582 
583 	proxy = spi_alloc_device(master);
584 	if (!proxy)
585 		return NULL;
586 
587 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
588 
589 	proxy->chip_select = chip->chip_select;
590 	proxy->max_speed_hz = chip->max_speed_hz;
591 	proxy->mode = chip->mode;
592 	proxy->irq = chip->irq;
593 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
594 	proxy->dev.platform_data = (void *) chip->platform_data;
595 	proxy->controller_data = chip->controller_data;
596 	proxy->controller_state = NULL;
597 
598 	status = spi_add_device(proxy);
599 	if (status < 0) {
600 		spi_dev_put(proxy);
601 		return NULL;
602 	}
603 
604 	return proxy;
605 }
606 EXPORT_SYMBOL_GPL(spi_new_device);
607 
608 static void spi_match_master_to_boardinfo(struct spi_master *master,
609 				struct spi_board_info *bi)
610 {
611 	struct spi_device *dev;
612 
613 	if (master->bus_num != bi->bus_num)
614 		return;
615 
616 	dev = spi_new_device(master, bi);
617 	if (!dev)
618 		dev_err(master->dev.parent, "can't create new device for %s\n",
619 			bi->modalias);
620 }
621 
622 /**
623  * spi_register_board_info - register SPI devices for a given board
624  * @info: array of chip descriptors
625  * @n: how many descriptors are provided
626  * Context: can sleep
627  *
628  * Board-specific early init code calls this (probably during arch_initcall)
629  * with segments of the SPI device table.  Any device nodes are created later,
630  * after the relevant parent SPI controller (bus_num) is defined.  We keep
631  * this table of devices forever, so that reloading a controller driver will
632  * not make Linux forget about these hard-wired devices.
633  *
634  * Other code can also call this, e.g. a particular add-on board might provide
635  * SPI devices through its expansion connector, so code initializing that board
636  * would naturally declare its SPI devices.
637  *
638  * The board info passed can safely be __initdata ... but be careful of
639  * any embedded pointers (platform_data, etc), they're copied as-is.
640  *
641  * Return: zero on success, else a negative error code.
642  */
643 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
644 {
645 	struct boardinfo *bi;
646 	int i;
647 
648 	if (!n)
649 		return -EINVAL;
650 
651 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
652 	if (!bi)
653 		return -ENOMEM;
654 
655 	for (i = 0; i < n; i++, bi++, info++) {
656 		struct spi_master *master;
657 
658 		memcpy(&bi->board_info, info, sizeof(*info));
659 		mutex_lock(&board_lock);
660 		list_add_tail(&bi->list, &board_list);
661 		list_for_each_entry(master, &spi_master_list, list)
662 			spi_match_master_to_boardinfo(master, &bi->board_info);
663 		mutex_unlock(&board_lock);
664 	}
665 
666 	return 0;
667 }
668 
669 /*-------------------------------------------------------------------------*/
670 
671 static void spi_set_cs(struct spi_device *spi, bool enable)
672 {
673 	if (spi->mode & SPI_CS_HIGH)
674 		enable = !enable;
675 
676 	if (gpio_is_valid(spi->cs_gpio))
677 		gpio_set_value(spi->cs_gpio, !enable);
678 	else if (spi->master->set_cs)
679 		spi->master->set_cs(spi, !enable);
680 }
681 
682 #ifdef CONFIG_HAS_DMA
683 static int spi_map_buf(struct spi_master *master, struct device *dev,
684 		       struct sg_table *sgt, void *buf, size_t len,
685 		       enum dma_data_direction dir)
686 {
687 	const bool vmalloced_buf = is_vmalloc_addr(buf);
688 	int desc_len;
689 	int sgs;
690 	struct page *vm_page;
691 	void *sg_buf;
692 	size_t min;
693 	int i, ret;
694 
695 	if (vmalloced_buf) {
696 		desc_len = PAGE_SIZE;
697 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
698 	} else {
699 		desc_len = master->max_dma_len;
700 		sgs = DIV_ROUND_UP(len, desc_len);
701 	}
702 
703 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
704 	if (ret != 0)
705 		return ret;
706 
707 	for (i = 0; i < sgs; i++) {
708 
709 		if (vmalloced_buf) {
710 			min = min_t(size_t,
711 				    len, desc_len - offset_in_page(buf));
712 			vm_page = vmalloc_to_page(buf);
713 			if (!vm_page) {
714 				sg_free_table(sgt);
715 				return -ENOMEM;
716 			}
717 			sg_set_page(&sgt->sgl[i], vm_page,
718 				    min, offset_in_page(buf));
719 		} else {
720 			min = min_t(size_t, len, desc_len);
721 			sg_buf = buf;
722 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
723 		}
724 
725 
726 		buf += min;
727 		len -= min;
728 	}
729 
730 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
731 	if (!ret)
732 		ret = -ENOMEM;
733 	if (ret < 0) {
734 		sg_free_table(sgt);
735 		return ret;
736 	}
737 
738 	sgt->nents = ret;
739 
740 	return 0;
741 }
742 
743 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
744 			  struct sg_table *sgt, enum dma_data_direction dir)
745 {
746 	if (sgt->orig_nents) {
747 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
748 		sg_free_table(sgt);
749 	}
750 }
751 
752 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
753 {
754 	struct device *tx_dev, *rx_dev;
755 	struct spi_transfer *xfer;
756 	int ret;
757 
758 	if (!master->can_dma)
759 		return 0;
760 
761 	if (master->dma_tx)
762 		tx_dev = master->dma_tx->device->dev;
763 	else
764 		tx_dev = &master->dev;
765 
766 	if (master->dma_rx)
767 		rx_dev = master->dma_rx->device->dev;
768 	else
769 		rx_dev = &master->dev;
770 
771 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
772 		if (!master->can_dma(master, msg->spi, xfer))
773 			continue;
774 
775 		if (xfer->tx_buf != NULL) {
776 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
777 					  (void *)xfer->tx_buf, xfer->len,
778 					  DMA_TO_DEVICE);
779 			if (ret != 0)
780 				return ret;
781 		}
782 
783 		if (xfer->rx_buf != NULL) {
784 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
785 					  xfer->rx_buf, xfer->len,
786 					  DMA_FROM_DEVICE);
787 			if (ret != 0) {
788 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
789 					      DMA_TO_DEVICE);
790 				return ret;
791 			}
792 		}
793 	}
794 
795 	master->cur_msg_mapped = true;
796 
797 	return 0;
798 }
799 
800 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
801 {
802 	struct spi_transfer *xfer;
803 	struct device *tx_dev, *rx_dev;
804 
805 	if (!master->cur_msg_mapped || !master->can_dma)
806 		return 0;
807 
808 	if (master->dma_tx)
809 		tx_dev = master->dma_tx->device->dev;
810 	else
811 		tx_dev = &master->dev;
812 
813 	if (master->dma_rx)
814 		rx_dev = master->dma_rx->device->dev;
815 	else
816 		rx_dev = &master->dev;
817 
818 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
819 		if (!master->can_dma(master, msg->spi, xfer))
820 			continue;
821 
822 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
823 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
824 	}
825 
826 	return 0;
827 }
828 #else /* !CONFIG_HAS_DMA */
829 static inline int __spi_map_msg(struct spi_master *master,
830 				struct spi_message *msg)
831 {
832 	return 0;
833 }
834 
835 static inline int __spi_unmap_msg(struct spi_master *master,
836 				  struct spi_message *msg)
837 {
838 	return 0;
839 }
840 #endif /* !CONFIG_HAS_DMA */
841 
842 static inline int spi_unmap_msg(struct spi_master *master,
843 				struct spi_message *msg)
844 {
845 	struct spi_transfer *xfer;
846 
847 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
848 		/*
849 		 * Restore the original value of tx_buf or rx_buf if they are
850 		 * NULL.
851 		 */
852 		if (xfer->tx_buf == master->dummy_tx)
853 			xfer->tx_buf = NULL;
854 		if (xfer->rx_buf == master->dummy_rx)
855 			xfer->rx_buf = NULL;
856 	}
857 
858 	return __spi_unmap_msg(master, msg);
859 }
860 
861 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
862 {
863 	struct spi_transfer *xfer;
864 	void *tmp;
865 	unsigned int max_tx, max_rx;
866 
867 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
868 		max_tx = 0;
869 		max_rx = 0;
870 
871 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
872 			if ((master->flags & SPI_MASTER_MUST_TX) &&
873 			    !xfer->tx_buf)
874 				max_tx = max(xfer->len, max_tx);
875 			if ((master->flags & SPI_MASTER_MUST_RX) &&
876 			    !xfer->rx_buf)
877 				max_rx = max(xfer->len, max_rx);
878 		}
879 
880 		if (max_tx) {
881 			tmp = krealloc(master->dummy_tx, max_tx,
882 				       GFP_KERNEL | GFP_DMA);
883 			if (!tmp)
884 				return -ENOMEM;
885 			master->dummy_tx = tmp;
886 			memset(tmp, 0, max_tx);
887 		}
888 
889 		if (max_rx) {
890 			tmp = krealloc(master->dummy_rx, max_rx,
891 				       GFP_KERNEL | GFP_DMA);
892 			if (!tmp)
893 				return -ENOMEM;
894 			master->dummy_rx = tmp;
895 		}
896 
897 		if (max_tx || max_rx) {
898 			list_for_each_entry(xfer, &msg->transfers,
899 					    transfer_list) {
900 				if (!xfer->tx_buf)
901 					xfer->tx_buf = master->dummy_tx;
902 				if (!xfer->rx_buf)
903 					xfer->rx_buf = master->dummy_rx;
904 			}
905 		}
906 	}
907 
908 	return __spi_map_msg(master, msg);
909 }
910 
911 /*
912  * spi_transfer_one_message - Default implementation of transfer_one_message()
913  *
914  * This is a standard implementation of transfer_one_message() for
915  * drivers which impelment a transfer_one() operation.  It provides
916  * standard handling of delays and chip select management.
917  */
918 static int spi_transfer_one_message(struct spi_master *master,
919 				    struct spi_message *msg)
920 {
921 	struct spi_transfer *xfer;
922 	bool keep_cs = false;
923 	int ret = 0;
924 	unsigned long ms = 1;
925 	struct spi_statistics *statm = &master->statistics;
926 	struct spi_statistics *stats = &msg->spi->statistics;
927 
928 	spi_set_cs(msg->spi, true);
929 
930 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
931 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
932 
933 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
934 		trace_spi_transfer_start(msg, xfer);
935 
936 		spi_statistics_add_transfer_stats(statm, xfer, master);
937 		spi_statistics_add_transfer_stats(stats, xfer, master);
938 
939 		if (xfer->tx_buf || xfer->rx_buf) {
940 			reinit_completion(&master->xfer_completion);
941 
942 			ret = master->transfer_one(master, msg->spi, xfer);
943 			if (ret < 0) {
944 				SPI_STATISTICS_INCREMENT_FIELD(statm,
945 							       errors);
946 				SPI_STATISTICS_INCREMENT_FIELD(stats,
947 							       errors);
948 				dev_err(&msg->spi->dev,
949 					"SPI transfer failed: %d\n", ret);
950 				goto out;
951 			}
952 
953 			if (ret > 0) {
954 				ret = 0;
955 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
956 				ms += ms + 100; /* some tolerance */
957 
958 				ms = wait_for_completion_timeout(&master->xfer_completion,
959 								 msecs_to_jiffies(ms));
960 			}
961 
962 			if (ms == 0) {
963 				SPI_STATISTICS_INCREMENT_FIELD(statm,
964 							       timedout);
965 				SPI_STATISTICS_INCREMENT_FIELD(stats,
966 							       timedout);
967 				dev_err(&msg->spi->dev,
968 					"SPI transfer timed out\n");
969 				msg->status = -ETIMEDOUT;
970 			}
971 		} else {
972 			if (xfer->len)
973 				dev_err(&msg->spi->dev,
974 					"Bufferless transfer has length %u\n",
975 					xfer->len);
976 		}
977 
978 		trace_spi_transfer_stop(msg, xfer);
979 
980 		if (msg->status != -EINPROGRESS)
981 			goto out;
982 
983 		if (xfer->delay_usecs)
984 			udelay(xfer->delay_usecs);
985 
986 		if (xfer->cs_change) {
987 			if (list_is_last(&xfer->transfer_list,
988 					 &msg->transfers)) {
989 				keep_cs = true;
990 			} else {
991 				spi_set_cs(msg->spi, false);
992 				udelay(10);
993 				spi_set_cs(msg->spi, true);
994 			}
995 		}
996 
997 		msg->actual_length += xfer->len;
998 	}
999 
1000 out:
1001 	if (ret != 0 || !keep_cs)
1002 		spi_set_cs(msg->spi, false);
1003 
1004 	if (msg->status == -EINPROGRESS)
1005 		msg->status = ret;
1006 
1007 	if (msg->status && master->handle_err)
1008 		master->handle_err(master, msg);
1009 
1010 	spi_finalize_current_message(master);
1011 
1012 	return ret;
1013 }
1014 
1015 /**
1016  * spi_finalize_current_transfer - report completion of a transfer
1017  * @master: the master reporting completion
1018  *
1019  * Called by SPI drivers using the core transfer_one_message()
1020  * implementation to notify it that the current interrupt driven
1021  * transfer has finished and the next one may be scheduled.
1022  */
1023 void spi_finalize_current_transfer(struct spi_master *master)
1024 {
1025 	complete(&master->xfer_completion);
1026 }
1027 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1028 
1029 /**
1030  * __spi_pump_messages - function which processes spi message queue
1031  * @master: master to process queue for
1032  * @in_kthread: true if we are in the context of the message pump thread
1033  *
1034  * This function checks if there is any spi message in the queue that
1035  * needs processing and if so call out to the driver to initialize hardware
1036  * and transfer each message.
1037  *
1038  * Note that it is called both from the kthread itself and also from
1039  * inside spi_sync(); the queue extraction handling at the top of the
1040  * function should deal with this safely.
1041  */
1042 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1043 {
1044 	unsigned long flags;
1045 	bool was_busy = false;
1046 	int ret;
1047 
1048 	/* Lock queue */
1049 	spin_lock_irqsave(&master->queue_lock, flags);
1050 
1051 	/* Make sure we are not already running a message */
1052 	if (master->cur_msg) {
1053 		spin_unlock_irqrestore(&master->queue_lock, flags);
1054 		return;
1055 	}
1056 
1057 	/* If another context is idling the device then defer */
1058 	if (master->idling) {
1059 		queue_kthread_work(&master->kworker, &master->pump_messages);
1060 		spin_unlock_irqrestore(&master->queue_lock, flags);
1061 		return;
1062 	}
1063 
1064 	/* Check if the queue is idle */
1065 	if (list_empty(&master->queue) || !master->running) {
1066 		if (!master->busy) {
1067 			spin_unlock_irqrestore(&master->queue_lock, flags);
1068 			return;
1069 		}
1070 
1071 		/* Only do teardown in the thread */
1072 		if (!in_kthread) {
1073 			queue_kthread_work(&master->kworker,
1074 					   &master->pump_messages);
1075 			spin_unlock_irqrestore(&master->queue_lock, flags);
1076 			return;
1077 		}
1078 
1079 		master->busy = false;
1080 		master->idling = true;
1081 		spin_unlock_irqrestore(&master->queue_lock, flags);
1082 
1083 		kfree(master->dummy_rx);
1084 		master->dummy_rx = NULL;
1085 		kfree(master->dummy_tx);
1086 		master->dummy_tx = NULL;
1087 		if (master->unprepare_transfer_hardware &&
1088 		    master->unprepare_transfer_hardware(master))
1089 			dev_err(&master->dev,
1090 				"failed to unprepare transfer hardware\n");
1091 		if (master->auto_runtime_pm) {
1092 			pm_runtime_mark_last_busy(master->dev.parent);
1093 			pm_runtime_put_autosuspend(master->dev.parent);
1094 		}
1095 		trace_spi_master_idle(master);
1096 
1097 		spin_lock_irqsave(&master->queue_lock, flags);
1098 		master->idling = false;
1099 		spin_unlock_irqrestore(&master->queue_lock, flags);
1100 		return;
1101 	}
1102 
1103 	/* Extract head of queue */
1104 	master->cur_msg =
1105 		list_first_entry(&master->queue, struct spi_message, queue);
1106 
1107 	list_del_init(&master->cur_msg->queue);
1108 	if (master->busy)
1109 		was_busy = true;
1110 	else
1111 		master->busy = true;
1112 	spin_unlock_irqrestore(&master->queue_lock, flags);
1113 
1114 	if (!was_busy && master->auto_runtime_pm) {
1115 		ret = pm_runtime_get_sync(master->dev.parent);
1116 		if (ret < 0) {
1117 			dev_err(&master->dev, "Failed to power device: %d\n",
1118 				ret);
1119 			return;
1120 		}
1121 	}
1122 
1123 	if (!was_busy)
1124 		trace_spi_master_busy(master);
1125 
1126 	if (!was_busy && master->prepare_transfer_hardware) {
1127 		ret = master->prepare_transfer_hardware(master);
1128 		if (ret) {
1129 			dev_err(&master->dev,
1130 				"failed to prepare transfer hardware\n");
1131 
1132 			if (master->auto_runtime_pm)
1133 				pm_runtime_put(master->dev.parent);
1134 			return;
1135 		}
1136 	}
1137 
1138 	trace_spi_message_start(master->cur_msg);
1139 
1140 	if (master->prepare_message) {
1141 		ret = master->prepare_message(master, master->cur_msg);
1142 		if (ret) {
1143 			dev_err(&master->dev,
1144 				"failed to prepare message: %d\n", ret);
1145 			master->cur_msg->status = ret;
1146 			spi_finalize_current_message(master);
1147 			return;
1148 		}
1149 		master->cur_msg_prepared = true;
1150 	}
1151 
1152 	ret = spi_map_msg(master, master->cur_msg);
1153 	if (ret) {
1154 		master->cur_msg->status = ret;
1155 		spi_finalize_current_message(master);
1156 		return;
1157 	}
1158 
1159 	ret = master->transfer_one_message(master, master->cur_msg);
1160 	if (ret) {
1161 		dev_err(&master->dev,
1162 			"failed to transfer one message from queue\n");
1163 		return;
1164 	}
1165 }
1166 
1167 /**
1168  * spi_pump_messages - kthread work function which processes spi message queue
1169  * @work: pointer to kthread work struct contained in the master struct
1170  */
1171 static void spi_pump_messages(struct kthread_work *work)
1172 {
1173 	struct spi_master *master =
1174 		container_of(work, struct spi_master, pump_messages);
1175 
1176 	__spi_pump_messages(master, true);
1177 }
1178 
1179 static int spi_init_queue(struct spi_master *master)
1180 {
1181 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1182 
1183 	master->running = false;
1184 	master->busy = false;
1185 
1186 	init_kthread_worker(&master->kworker);
1187 	master->kworker_task = kthread_run(kthread_worker_fn,
1188 					   &master->kworker, "%s",
1189 					   dev_name(&master->dev));
1190 	if (IS_ERR(master->kworker_task)) {
1191 		dev_err(&master->dev, "failed to create message pump task\n");
1192 		return PTR_ERR(master->kworker_task);
1193 	}
1194 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1195 
1196 	/*
1197 	 * Master config will indicate if this controller should run the
1198 	 * message pump with high (realtime) priority to reduce the transfer
1199 	 * latency on the bus by minimising the delay between a transfer
1200 	 * request and the scheduling of the message pump thread. Without this
1201 	 * setting the message pump thread will remain at default priority.
1202 	 */
1203 	if (master->rt) {
1204 		dev_info(&master->dev,
1205 			"will run message pump with realtime priority\n");
1206 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 /**
1213  * spi_get_next_queued_message() - called by driver to check for queued
1214  * messages
1215  * @master: the master to check for queued messages
1216  *
1217  * If there are more messages in the queue, the next message is returned from
1218  * this call.
1219  *
1220  * Return: the next message in the queue, else NULL if the queue is empty.
1221  */
1222 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1223 {
1224 	struct spi_message *next;
1225 	unsigned long flags;
1226 
1227 	/* get a pointer to the next message, if any */
1228 	spin_lock_irqsave(&master->queue_lock, flags);
1229 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1230 					queue);
1231 	spin_unlock_irqrestore(&master->queue_lock, flags);
1232 
1233 	return next;
1234 }
1235 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1236 
1237 /**
1238  * spi_finalize_current_message() - the current message is complete
1239  * @master: the master to return the message to
1240  *
1241  * Called by the driver to notify the core that the message in the front of the
1242  * queue is complete and can be removed from the queue.
1243  */
1244 void spi_finalize_current_message(struct spi_master *master)
1245 {
1246 	struct spi_message *mesg;
1247 	unsigned long flags;
1248 	int ret;
1249 
1250 	spin_lock_irqsave(&master->queue_lock, flags);
1251 	mesg = master->cur_msg;
1252 	spin_unlock_irqrestore(&master->queue_lock, flags);
1253 
1254 	spi_unmap_msg(master, mesg);
1255 
1256 	if (master->cur_msg_prepared && master->unprepare_message) {
1257 		ret = master->unprepare_message(master, mesg);
1258 		if (ret) {
1259 			dev_err(&master->dev,
1260 				"failed to unprepare message: %d\n", ret);
1261 		}
1262 	}
1263 
1264 	spin_lock_irqsave(&master->queue_lock, flags);
1265 	master->cur_msg = NULL;
1266 	master->cur_msg_prepared = false;
1267 	queue_kthread_work(&master->kworker, &master->pump_messages);
1268 	spin_unlock_irqrestore(&master->queue_lock, flags);
1269 
1270 	trace_spi_message_done(mesg);
1271 
1272 	mesg->state = NULL;
1273 	if (mesg->complete)
1274 		mesg->complete(mesg->context);
1275 }
1276 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1277 
1278 static int spi_start_queue(struct spi_master *master)
1279 {
1280 	unsigned long flags;
1281 
1282 	spin_lock_irqsave(&master->queue_lock, flags);
1283 
1284 	if (master->running || master->busy) {
1285 		spin_unlock_irqrestore(&master->queue_lock, flags);
1286 		return -EBUSY;
1287 	}
1288 
1289 	master->running = true;
1290 	master->cur_msg = NULL;
1291 	spin_unlock_irqrestore(&master->queue_lock, flags);
1292 
1293 	queue_kthread_work(&master->kworker, &master->pump_messages);
1294 
1295 	return 0;
1296 }
1297 
1298 static int spi_stop_queue(struct spi_master *master)
1299 {
1300 	unsigned long flags;
1301 	unsigned limit = 500;
1302 	int ret = 0;
1303 
1304 	spin_lock_irqsave(&master->queue_lock, flags);
1305 
1306 	/*
1307 	 * This is a bit lame, but is optimized for the common execution path.
1308 	 * A wait_queue on the master->busy could be used, but then the common
1309 	 * execution path (pump_messages) would be required to call wake_up or
1310 	 * friends on every SPI message. Do this instead.
1311 	 */
1312 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1313 		spin_unlock_irqrestore(&master->queue_lock, flags);
1314 		usleep_range(10000, 11000);
1315 		spin_lock_irqsave(&master->queue_lock, flags);
1316 	}
1317 
1318 	if (!list_empty(&master->queue) || master->busy)
1319 		ret = -EBUSY;
1320 	else
1321 		master->running = false;
1322 
1323 	spin_unlock_irqrestore(&master->queue_lock, flags);
1324 
1325 	if (ret) {
1326 		dev_warn(&master->dev,
1327 			 "could not stop message queue\n");
1328 		return ret;
1329 	}
1330 	return ret;
1331 }
1332 
1333 static int spi_destroy_queue(struct spi_master *master)
1334 {
1335 	int ret;
1336 
1337 	ret = spi_stop_queue(master);
1338 
1339 	/*
1340 	 * flush_kthread_worker will block until all work is done.
1341 	 * If the reason that stop_queue timed out is that the work will never
1342 	 * finish, then it does no good to call flush/stop thread, so
1343 	 * return anyway.
1344 	 */
1345 	if (ret) {
1346 		dev_err(&master->dev, "problem destroying queue\n");
1347 		return ret;
1348 	}
1349 
1350 	flush_kthread_worker(&master->kworker);
1351 	kthread_stop(master->kworker_task);
1352 
1353 	return 0;
1354 }
1355 
1356 static int __spi_queued_transfer(struct spi_device *spi,
1357 				 struct spi_message *msg,
1358 				 bool need_pump)
1359 {
1360 	struct spi_master *master = spi->master;
1361 	unsigned long flags;
1362 
1363 	spin_lock_irqsave(&master->queue_lock, flags);
1364 
1365 	if (!master->running) {
1366 		spin_unlock_irqrestore(&master->queue_lock, flags);
1367 		return -ESHUTDOWN;
1368 	}
1369 	msg->actual_length = 0;
1370 	msg->status = -EINPROGRESS;
1371 
1372 	list_add_tail(&msg->queue, &master->queue);
1373 	if (!master->busy && need_pump)
1374 		queue_kthread_work(&master->kworker, &master->pump_messages);
1375 
1376 	spin_unlock_irqrestore(&master->queue_lock, flags);
1377 	return 0;
1378 }
1379 
1380 /**
1381  * spi_queued_transfer - transfer function for queued transfers
1382  * @spi: spi device which is requesting transfer
1383  * @msg: spi message which is to handled is queued to driver queue
1384  *
1385  * Return: zero on success, else a negative error code.
1386  */
1387 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1388 {
1389 	return __spi_queued_transfer(spi, msg, true);
1390 }
1391 
1392 static int spi_master_initialize_queue(struct spi_master *master)
1393 {
1394 	int ret;
1395 
1396 	master->transfer = spi_queued_transfer;
1397 	if (!master->transfer_one_message)
1398 		master->transfer_one_message = spi_transfer_one_message;
1399 
1400 	/* Initialize and start queue */
1401 	ret = spi_init_queue(master);
1402 	if (ret) {
1403 		dev_err(&master->dev, "problem initializing queue\n");
1404 		goto err_init_queue;
1405 	}
1406 	master->queued = true;
1407 	ret = spi_start_queue(master);
1408 	if (ret) {
1409 		dev_err(&master->dev, "problem starting queue\n");
1410 		goto err_start_queue;
1411 	}
1412 
1413 	return 0;
1414 
1415 err_start_queue:
1416 	spi_destroy_queue(master);
1417 err_init_queue:
1418 	return ret;
1419 }
1420 
1421 /*-------------------------------------------------------------------------*/
1422 
1423 #if defined(CONFIG_OF)
1424 static struct spi_device *
1425 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1426 {
1427 	struct spi_device *spi;
1428 	int rc;
1429 	u32 value;
1430 
1431 	/* Alloc an spi_device */
1432 	spi = spi_alloc_device(master);
1433 	if (!spi) {
1434 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1435 			nc->full_name);
1436 		rc = -ENOMEM;
1437 		goto err_out;
1438 	}
1439 
1440 	/* Select device driver */
1441 	rc = of_modalias_node(nc, spi->modalias,
1442 				sizeof(spi->modalias));
1443 	if (rc < 0) {
1444 		dev_err(&master->dev, "cannot find modalias for %s\n",
1445 			nc->full_name);
1446 		goto err_out;
1447 	}
1448 
1449 	/* Device address */
1450 	rc = of_property_read_u32(nc, "reg", &value);
1451 	if (rc) {
1452 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1453 			nc->full_name, rc);
1454 		goto err_out;
1455 	}
1456 	spi->chip_select = value;
1457 
1458 	/* Mode (clock phase/polarity/etc.) */
1459 	if (of_find_property(nc, "spi-cpha", NULL))
1460 		spi->mode |= SPI_CPHA;
1461 	if (of_find_property(nc, "spi-cpol", NULL))
1462 		spi->mode |= SPI_CPOL;
1463 	if (of_find_property(nc, "spi-cs-high", NULL))
1464 		spi->mode |= SPI_CS_HIGH;
1465 	if (of_find_property(nc, "spi-3wire", NULL))
1466 		spi->mode |= SPI_3WIRE;
1467 	if (of_find_property(nc, "spi-lsb-first", NULL))
1468 		spi->mode |= SPI_LSB_FIRST;
1469 
1470 	/* Device DUAL/QUAD mode */
1471 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1472 		switch (value) {
1473 		case 1:
1474 			break;
1475 		case 2:
1476 			spi->mode |= SPI_TX_DUAL;
1477 			break;
1478 		case 4:
1479 			spi->mode |= SPI_TX_QUAD;
1480 			break;
1481 		default:
1482 			dev_warn(&master->dev,
1483 				"spi-tx-bus-width %d not supported\n",
1484 				value);
1485 			break;
1486 		}
1487 	}
1488 
1489 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1490 		switch (value) {
1491 		case 1:
1492 			break;
1493 		case 2:
1494 			spi->mode |= SPI_RX_DUAL;
1495 			break;
1496 		case 4:
1497 			spi->mode |= SPI_RX_QUAD;
1498 			break;
1499 		default:
1500 			dev_warn(&master->dev,
1501 				"spi-rx-bus-width %d not supported\n",
1502 				value);
1503 			break;
1504 		}
1505 	}
1506 
1507 	/* Device speed */
1508 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1509 	if (rc) {
1510 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1511 			nc->full_name, rc);
1512 		goto err_out;
1513 	}
1514 	spi->max_speed_hz = value;
1515 
1516 	/* Store a pointer to the node in the device structure */
1517 	of_node_get(nc);
1518 	spi->dev.of_node = nc;
1519 
1520 	/* Register the new device */
1521 	rc = spi_add_device(spi);
1522 	if (rc) {
1523 		dev_err(&master->dev, "spi_device register error %s\n",
1524 			nc->full_name);
1525 		goto err_out;
1526 	}
1527 
1528 	return spi;
1529 
1530 err_out:
1531 	spi_dev_put(spi);
1532 	return ERR_PTR(rc);
1533 }
1534 
1535 /**
1536  * of_register_spi_devices() - Register child devices onto the SPI bus
1537  * @master:	Pointer to spi_master device
1538  *
1539  * Registers an spi_device for each child node of master node which has a 'reg'
1540  * property.
1541  */
1542 static void of_register_spi_devices(struct spi_master *master)
1543 {
1544 	struct spi_device *spi;
1545 	struct device_node *nc;
1546 
1547 	if (!master->dev.of_node)
1548 		return;
1549 
1550 	for_each_available_child_of_node(master->dev.of_node, nc) {
1551 		spi = of_register_spi_device(master, nc);
1552 		if (IS_ERR(spi))
1553 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1554 				nc->full_name);
1555 	}
1556 }
1557 #else
1558 static void of_register_spi_devices(struct spi_master *master) { }
1559 #endif
1560 
1561 #ifdef CONFIG_ACPI
1562 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1563 {
1564 	struct spi_device *spi = data;
1565 
1566 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1567 		struct acpi_resource_spi_serialbus *sb;
1568 
1569 		sb = &ares->data.spi_serial_bus;
1570 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1571 			spi->chip_select = sb->device_selection;
1572 			spi->max_speed_hz = sb->connection_speed;
1573 
1574 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1575 				spi->mode |= SPI_CPHA;
1576 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1577 				spi->mode |= SPI_CPOL;
1578 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1579 				spi->mode |= SPI_CS_HIGH;
1580 		}
1581 	} else if (spi->irq < 0) {
1582 		struct resource r;
1583 
1584 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1585 			spi->irq = r.start;
1586 	}
1587 
1588 	/* Always tell the ACPI core to skip this resource */
1589 	return 1;
1590 }
1591 
1592 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1593 				       void *data, void **return_value)
1594 {
1595 	struct spi_master *master = data;
1596 	struct list_head resource_list;
1597 	struct acpi_device *adev;
1598 	struct spi_device *spi;
1599 	int ret;
1600 
1601 	if (acpi_bus_get_device(handle, &adev))
1602 		return AE_OK;
1603 	if (acpi_bus_get_status(adev) || !adev->status.present)
1604 		return AE_OK;
1605 
1606 	spi = spi_alloc_device(master);
1607 	if (!spi) {
1608 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1609 			dev_name(&adev->dev));
1610 		return AE_NO_MEMORY;
1611 	}
1612 
1613 	ACPI_COMPANION_SET(&spi->dev, adev);
1614 	spi->irq = -1;
1615 
1616 	INIT_LIST_HEAD(&resource_list);
1617 	ret = acpi_dev_get_resources(adev, &resource_list,
1618 				     acpi_spi_add_resource, spi);
1619 	acpi_dev_free_resource_list(&resource_list);
1620 
1621 	if (ret < 0 || !spi->max_speed_hz) {
1622 		spi_dev_put(spi);
1623 		return AE_OK;
1624 	}
1625 
1626 	adev->power.flags.ignore_parent = true;
1627 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1628 	if (spi_add_device(spi)) {
1629 		adev->power.flags.ignore_parent = false;
1630 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1631 			dev_name(&adev->dev));
1632 		spi_dev_put(spi);
1633 	}
1634 
1635 	return AE_OK;
1636 }
1637 
1638 static void acpi_register_spi_devices(struct spi_master *master)
1639 {
1640 	acpi_status status;
1641 	acpi_handle handle;
1642 
1643 	handle = ACPI_HANDLE(master->dev.parent);
1644 	if (!handle)
1645 		return;
1646 
1647 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1648 				     acpi_spi_add_device, NULL,
1649 				     master, NULL);
1650 	if (ACPI_FAILURE(status))
1651 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1652 }
1653 #else
1654 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1655 #endif /* CONFIG_ACPI */
1656 
1657 static void spi_master_release(struct device *dev)
1658 {
1659 	struct spi_master *master;
1660 
1661 	master = container_of(dev, struct spi_master, dev);
1662 	kfree(master);
1663 }
1664 
1665 static struct class spi_master_class = {
1666 	.name		= "spi_master",
1667 	.owner		= THIS_MODULE,
1668 	.dev_release	= spi_master_release,
1669 	.dev_groups	= spi_master_groups,
1670 };
1671 
1672 
1673 /**
1674  * spi_alloc_master - allocate SPI master controller
1675  * @dev: the controller, possibly using the platform_bus
1676  * @size: how much zeroed driver-private data to allocate; the pointer to this
1677  *	memory is in the driver_data field of the returned device,
1678  *	accessible with spi_master_get_devdata().
1679  * Context: can sleep
1680  *
1681  * This call is used only by SPI master controller drivers, which are the
1682  * only ones directly touching chip registers.  It's how they allocate
1683  * an spi_master structure, prior to calling spi_register_master().
1684  *
1685  * This must be called from context that can sleep.
1686  *
1687  * The caller is responsible for assigning the bus number and initializing
1688  * the master's methods before calling spi_register_master(); and (after errors
1689  * adding the device) calling spi_master_put() to prevent a memory leak.
1690  *
1691  * Return: the SPI master structure on success, else NULL.
1692  */
1693 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1694 {
1695 	struct spi_master	*master;
1696 
1697 	if (!dev)
1698 		return NULL;
1699 
1700 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1701 	if (!master)
1702 		return NULL;
1703 
1704 	device_initialize(&master->dev);
1705 	master->bus_num = -1;
1706 	master->num_chipselect = 1;
1707 	master->dev.class = &spi_master_class;
1708 	master->dev.parent = dev;
1709 	spi_master_set_devdata(master, &master[1]);
1710 
1711 	return master;
1712 }
1713 EXPORT_SYMBOL_GPL(spi_alloc_master);
1714 
1715 #ifdef CONFIG_OF
1716 static int of_spi_register_master(struct spi_master *master)
1717 {
1718 	int nb, i, *cs;
1719 	struct device_node *np = master->dev.of_node;
1720 
1721 	if (!np)
1722 		return 0;
1723 
1724 	nb = of_gpio_named_count(np, "cs-gpios");
1725 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1726 
1727 	/* Return error only for an incorrectly formed cs-gpios property */
1728 	if (nb == 0 || nb == -ENOENT)
1729 		return 0;
1730 	else if (nb < 0)
1731 		return nb;
1732 
1733 	cs = devm_kzalloc(&master->dev,
1734 			  sizeof(int) * master->num_chipselect,
1735 			  GFP_KERNEL);
1736 	master->cs_gpios = cs;
1737 
1738 	if (!master->cs_gpios)
1739 		return -ENOMEM;
1740 
1741 	for (i = 0; i < master->num_chipselect; i++)
1742 		cs[i] = -ENOENT;
1743 
1744 	for (i = 0; i < nb; i++)
1745 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1746 
1747 	return 0;
1748 }
1749 #else
1750 static int of_spi_register_master(struct spi_master *master)
1751 {
1752 	return 0;
1753 }
1754 #endif
1755 
1756 /**
1757  * spi_register_master - register SPI master controller
1758  * @master: initialized master, originally from spi_alloc_master()
1759  * Context: can sleep
1760  *
1761  * SPI master controllers connect to their drivers using some non-SPI bus,
1762  * such as the platform bus.  The final stage of probe() in that code
1763  * includes calling spi_register_master() to hook up to this SPI bus glue.
1764  *
1765  * SPI controllers use board specific (often SOC specific) bus numbers,
1766  * and board-specific addressing for SPI devices combines those numbers
1767  * with chip select numbers.  Since SPI does not directly support dynamic
1768  * device identification, boards need configuration tables telling which
1769  * chip is at which address.
1770  *
1771  * This must be called from context that can sleep.  It returns zero on
1772  * success, else a negative error code (dropping the master's refcount).
1773  * After a successful return, the caller is responsible for calling
1774  * spi_unregister_master().
1775  *
1776  * Return: zero on success, else a negative error code.
1777  */
1778 int spi_register_master(struct spi_master *master)
1779 {
1780 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1781 	struct device		*dev = master->dev.parent;
1782 	struct boardinfo	*bi;
1783 	int			status = -ENODEV;
1784 	int			dynamic = 0;
1785 
1786 	if (!dev)
1787 		return -ENODEV;
1788 
1789 	status = of_spi_register_master(master);
1790 	if (status)
1791 		return status;
1792 
1793 	/* even if it's just one always-selected device, there must
1794 	 * be at least one chipselect
1795 	 */
1796 	if (master->num_chipselect == 0)
1797 		return -EINVAL;
1798 
1799 	if ((master->bus_num < 0) && master->dev.of_node)
1800 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1801 
1802 	/* convention:  dynamically assigned bus IDs count down from the max */
1803 	if (master->bus_num < 0) {
1804 		/* FIXME switch to an IDR based scheme, something like
1805 		 * I2C now uses, so we can't run out of "dynamic" IDs
1806 		 */
1807 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1808 		dynamic = 1;
1809 	}
1810 
1811 	INIT_LIST_HEAD(&master->queue);
1812 	spin_lock_init(&master->queue_lock);
1813 	spin_lock_init(&master->bus_lock_spinlock);
1814 	mutex_init(&master->bus_lock_mutex);
1815 	master->bus_lock_flag = 0;
1816 	init_completion(&master->xfer_completion);
1817 	if (!master->max_dma_len)
1818 		master->max_dma_len = INT_MAX;
1819 
1820 	/* register the device, then userspace will see it.
1821 	 * registration fails if the bus ID is in use.
1822 	 */
1823 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1824 	status = device_add(&master->dev);
1825 	if (status < 0)
1826 		goto done;
1827 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1828 			dynamic ? " (dynamic)" : "");
1829 
1830 	/* If we're using a queued driver, start the queue */
1831 	if (master->transfer)
1832 		dev_info(dev, "master is unqueued, this is deprecated\n");
1833 	else {
1834 		status = spi_master_initialize_queue(master);
1835 		if (status) {
1836 			device_del(&master->dev);
1837 			goto done;
1838 		}
1839 	}
1840 	/* add statistics */
1841 	spin_lock_init(&master->statistics.lock);
1842 
1843 	mutex_lock(&board_lock);
1844 	list_add_tail(&master->list, &spi_master_list);
1845 	list_for_each_entry(bi, &board_list, list)
1846 		spi_match_master_to_boardinfo(master, &bi->board_info);
1847 	mutex_unlock(&board_lock);
1848 
1849 	/* Register devices from the device tree and ACPI */
1850 	of_register_spi_devices(master);
1851 	acpi_register_spi_devices(master);
1852 done:
1853 	return status;
1854 }
1855 EXPORT_SYMBOL_GPL(spi_register_master);
1856 
1857 static void devm_spi_unregister(struct device *dev, void *res)
1858 {
1859 	spi_unregister_master(*(struct spi_master **)res);
1860 }
1861 
1862 /**
1863  * dev_spi_register_master - register managed SPI master controller
1864  * @dev:    device managing SPI master
1865  * @master: initialized master, originally from spi_alloc_master()
1866  * Context: can sleep
1867  *
1868  * Register a SPI device as with spi_register_master() which will
1869  * automatically be unregister
1870  *
1871  * Return: zero on success, else a negative error code.
1872  */
1873 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1874 {
1875 	struct spi_master **ptr;
1876 	int ret;
1877 
1878 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1879 	if (!ptr)
1880 		return -ENOMEM;
1881 
1882 	ret = spi_register_master(master);
1883 	if (!ret) {
1884 		*ptr = master;
1885 		devres_add(dev, ptr);
1886 	} else {
1887 		devres_free(ptr);
1888 	}
1889 
1890 	return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1893 
1894 static int __unregister(struct device *dev, void *null)
1895 {
1896 	spi_unregister_device(to_spi_device(dev));
1897 	return 0;
1898 }
1899 
1900 /**
1901  * spi_unregister_master - unregister SPI master controller
1902  * @master: the master being unregistered
1903  * Context: can sleep
1904  *
1905  * This call is used only by SPI master controller drivers, which are the
1906  * only ones directly touching chip registers.
1907  *
1908  * This must be called from context that can sleep.
1909  */
1910 void spi_unregister_master(struct spi_master *master)
1911 {
1912 	int dummy;
1913 
1914 	if (master->queued) {
1915 		if (spi_destroy_queue(master))
1916 			dev_err(&master->dev, "queue remove failed\n");
1917 	}
1918 
1919 	mutex_lock(&board_lock);
1920 	list_del(&master->list);
1921 	mutex_unlock(&board_lock);
1922 
1923 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1924 	device_unregister(&master->dev);
1925 }
1926 EXPORT_SYMBOL_GPL(spi_unregister_master);
1927 
1928 int spi_master_suspend(struct spi_master *master)
1929 {
1930 	int ret;
1931 
1932 	/* Basically no-ops for non-queued masters */
1933 	if (!master->queued)
1934 		return 0;
1935 
1936 	ret = spi_stop_queue(master);
1937 	if (ret)
1938 		dev_err(&master->dev, "queue stop failed\n");
1939 
1940 	return ret;
1941 }
1942 EXPORT_SYMBOL_GPL(spi_master_suspend);
1943 
1944 int spi_master_resume(struct spi_master *master)
1945 {
1946 	int ret;
1947 
1948 	if (!master->queued)
1949 		return 0;
1950 
1951 	ret = spi_start_queue(master);
1952 	if (ret)
1953 		dev_err(&master->dev, "queue restart failed\n");
1954 
1955 	return ret;
1956 }
1957 EXPORT_SYMBOL_GPL(spi_master_resume);
1958 
1959 static int __spi_master_match(struct device *dev, const void *data)
1960 {
1961 	struct spi_master *m;
1962 	const u16 *bus_num = data;
1963 
1964 	m = container_of(dev, struct spi_master, dev);
1965 	return m->bus_num == *bus_num;
1966 }
1967 
1968 /**
1969  * spi_busnum_to_master - look up master associated with bus_num
1970  * @bus_num: the master's bus number
1971  * Context: can sleep
1972  *
1973  * This call may be used with devices that are registered after
1974  * arch init time.  It returns a refcounted pointer to the relevant
1975  * spi_master (which the caller must release), or NULL if there is
1976  * no such master registered.
1977  *
1978  * Return: the SPI master structure on success, else NULL.
1979  */
1980 struct spi_master *spi_busnum_to_master(u16 bus_num)
1981 {
1982 	struct device		*dev;
1983 	struct spi_master	*master = NULL;
1984 
1985 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1986 				__spi_master_match);
1987 	if (dev)
1988 		master = container_of(dev, struct spi_master, dev);
1989 	/* reference got in class_find_device */
1990 	return master;
1991 }
1992 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1993 
1994 
1995 /*-------------------------------------------------------------------------*/
1996 
1997 /* Core methods for SPI master protocol drivers.  Some of the
1998  * other core methods are currently defined as inline functions.
1999  */
2000 
2001 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2002 {
2003 	if (master->bits_per_word_mask) {
2004 		/* Only 32 bits fit in the mask */
2005 		if (bits_per_word > 32)
2006 			return -EINVAL;
2007 		if (!(master->bits_per_word_mask &
2008 				SPI_BPW_MASK(bits_per_word)))
2009 			return -EINVAL;
2010 	}
2011 
2012 	return 0;
2013 }
2014 
2015 /**
2016  * spi_setup - setup SPI mode and clock rate
2017  * @spi: the device whose settings are being modified
2018  * Context: can sleep, and no requests are queued to the device
2019  *
2020  * SPI protocol drivers may need to update the transfer mode if the
2021  * device doesn't work with its default.  They may likewise need
2022  * to update clock rates or word sizes from initial values.  This function
2023  * changes those settings, and must be called from a context that can sleep.
2024  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2025  * effect the next time the device is selected and data is transferred to
2026  * or from it.  When this function returns, the spi device is deselected.
2027  *
2028  * Note that this call will fail if the protocol driver specifies an option
2029  * that the underlying controller or its driver does not support.  For
2030  * example, not all hardware supports wire transfers using nine bit words,
2031  * LSB-first wire encoding, or active-high chipselects.
2032  *
2033  * Return: zero on success, else a negative error code.
2034  */
2035 int spi_setup(struct spi_device *spi)
2036 {
2037 	unsigned	bad_bits, ugly_bits;
2038 	int		status;
2039 
2040 	/* check mode to prevent that DUAL and QUAD set at the same time
2041 	 */
2042 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2043 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2044 		dev_err(&spi->dev,
2045 		"setup: can not select dual and quad at the same time\n");
2046 		return -EINVAL;
2047 	}
2048 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2049 	 */
2050 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2051 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2052 		return -EINVAL;
2053 	/* help drivers fail *cleanly* when they need options
2054 	 * that aren't supported with their current master
2055 	 */
2056 	bad_bits = spi->mode & ~spi->master->mode_bits;
2057 	ugly_bits = bad_bits &
2058 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2059 	if (ugly_bits) {
2060 		dev_warn(&spi->dev,
2061 			 "setup: ignoring unsupported mode bits %x\n",
2062 			 ugly_bits);
2063 		spi->mode &= ~ugly_bits;
2064 		bad_bits &= ~ugly_bits;
2065 	}
2066 	if (bad_bits) {
2067 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2068 			bad_bits);
2069 		return -EINVAL;
2070 	}
2071 
2072 	if (!spi->bits_per_word)
2073 		spi->bits_per_word = 8;
2074 
2075 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2076 	if (status)
2077 		return status;
2078 
2079 	if (!spi->max_speed_hz)
2080 		spi->max_speed_hz = spi->master->max_speed_hz;
2081 
2082 	if (spi->master->setup)
2083 		status = spi->master->setup(spi);
2084 
2085 	spi_set_cs(spi, false);
2086 
2087 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2088 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2089 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2090 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2091 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2092 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2093 			spi->bits_per_word, spi->max_speed_hz,
2094 			status);
2095 
2096 	return status;
2097 }
2098 EXPORT_SYMBOL_GPL(spi_setup);
2099 
2100 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2101 {
2102 	struct spi_master *master = spi->master;
2103 	struct spi_transfer *xfer;
2104 	int w_size;
2105 
2106 	if (list_empty(&message->transfers))
2107 		return -EINVAL;
2108 
2109 	/* Half-duplex links include original MicroWire, and ones with
2110 	 * only one data pin like SPI_3WIRE (switches direction) or where
2111 	 * either MOSI or MISO is missing.  They can also be caused by
2112 	 * software limitations.
2113 	 */
2114 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2115 			|| (spi->mode & SPI_3WIRE)) {
2116 		unsigned flags = master->flags;
2117 
2118 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2119 			if (xfer->rx_buf && xfer->tx_buf)
2120 				return -EINVAL;
2121 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2122 				return -EINVAL;
2123 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2124 				return -EINVAL;
2125 		}
2126 	}
2127 
2128 	/**
2129 	 * Set transfer bits_per_word and max speed as spi device default if
2130 	 * it is not set for this transfer.
2131 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2132 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2133 	 */
2134 	message->frame_length = 0;
2135 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2136 		message->frame_length += xfer->len;
2137 		if (!xfer->bits_per_word)
2138 			xfer->bits_per_word = spi->bits_per_word;
2139 
2140 		if (!xfer->speed_hz)
2141 			xfer->speed_hz = spi->max_speed_hz;
2142 		if (!xfer->speed_hz)
2143 			xfer->speed_hz = master->max_speed_hz;
2144 
2145 		if (master->max_speed_hz &&
2146 		    xfer->speed_hz > master->max_speed_hz)
2147 			xfer->speed_hz = master->max_speed_hz;
2148 
2149 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2150 			return -EINVAL;
2151 
2152 		/*
2153 		 * SPI transfer length should be multiple of SPI word size
2154 		 * where SPI word size should be power-of-two multiple
2155 		 */
2156 		if (xfer->bits_per_word <= 8)
2157 			w_size = 1;
2158 		else if (xfer->bits_per_word <= 16)
2159 			w_size = 2;
2160 		else
2161 			w_size = 4;
2162 
2163 		/* No partial transfers accepted */
2164 		if (xfer->len % w_size)
2165 			return -EINVAL;
2166 
2167 		if (xfer->speed_hz && master->min_speed_hz &&
2168 		    xfer->speed_hz < master->min_speed_hz)
2169 			return -EINVAL;
2170 
2171 		if (xfer->tx_buf && !xfer->tx_nbits)
2172 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2173 		if (xfer->rx_buf && !xfer->rx_nbits)
2174 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2175 		/* check transfer tx/rx_nbits:
2176 		 * 1. check the value matches one of single, dual and quad
2177 		 * 2. check tx/rx_nbits match the mode in spi_device
2178 		 */
2179 		if (xfer->tx_buf) {
2180 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2181 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2182 				xfer->tx_nbits != SPI_NBITS_QUAD)
2183 				return -EINVAL;
2184 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2185 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2186 				return -EINVAL;
2187 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2188 				!(spi->mode & SPI_TX_QUAD))
2189 				return -EINVAL;
2190 		}
2191 		/* check transfer rx_nbits */
2192 		if (xfer->rx_buf) {
2193 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2194 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2195 				xfer->rx_nbits != SPI_NBITS_QUAD)
2196 				return -EINVAL;
2197 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2198 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2199 				return -EINVAL;
2200 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2201 				!(spi->mode & SPI_RX_QUAD))
2202 				return -EINVAL;
2203 		}
2204 	}
2205 
2206 	message->status = -EINPROGRESS;
2207 
2208 	return 0;
2209 }
2210 
2211 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2212 {
2213 	struct spi_master *master = spi->master;
2214 
2215 	message->spi = spi;
2216 
2217 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2218 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2219 
2220 	trace_spi_message_submit(message);
2221 
2222 	return master->transfer(spi, message);
2223 }
2224 
2225 /**
2226  * spi_async - asynchronous SPI transfer
2227  * @spi: device with which data will be exchanged
2228  * @message: describes the data transfers, including completion callback
2229  * Context: any (irqs may be blocked, etc)
2230  *
2231  * This call may be used in_irq and other contexts which can't sleep,
2232  * as well as from task contexts which can sleep.
2233  *
2234  * The completion callback is invoked in a context which can't sleep.
2235  * Before that invocation, the value of message->status is undefined.
2236  * When the callback is issued, message->status holds either zero (to
2237  * indicate complete success) or a negative error code.  After that
2238  * callback returns, the driver which issued the transfer request may
2239  * deallocate the associated memory; it's no longer in use by any SPI
2240  * core or controller driver code.
2241  *
2242  * Note that although all messages to a spi_device are handled in
2243  * FIFO order, messages may go to different devices in other orders.
2244  * Some device might be higher priority, or have various "hard" access
2245  * time requirements, for example.
2246  *
2247  * On detection of any fault during the transfer, processing of
2248  * the entire message is aborted, and the device is deselected.
2249  * Until returning from the associated message completion callback,
2250  * no other spi_message queued to that device will be processed.
2251  * (This rule applies equally to all the synchronous transfer calls,
2252  * which are wrappers around this core asynchronous primitive.)
2253  *
2254  * Return: zero on success, else a negative error code.
2255  */
2256 int spi_async(struct spi_device *spi, struct spi_message *message)
2257 {
2258 	struct spi_master *master = spi->master;
2259 	int ret;
2260 	unsigned long flags;
2261 
2262 	ret = __spi_validate(spi, message);
2263 	if (ret != 0)
2264 		return ret;
2265 
2266 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2267 
2268 	if (master->bus_lock_flag)
2269 		ret = -EBUSY;
2270 	else
2271 		ret = __spi_async(spi, message);
2272 
2273 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2274 
2275 	return ret;
2276 }
2277 EXPORT_SYMBOL_GPL(spi_async);
2278 
2279 /**
2280  * spi_async_locked - version of spi_async with exclusive bus usage
2281  * @spi: device with which data will be exchanged
2282  * @message: describes the data transfers, including completion callback
2283  * Context: any (irqs may be blocked, etc)
2284  *
2285  * This call may be used in_irq and other contexts which can't sleep,
2286  * as well as from task contexts which can sleep.
2287  *
2288  * The completion callback is invoked in a context which can't sleep.
2289  * Before that invocation, the value of message->status is undefined.
2290  * When the callback is issued, message->status holds either zero (to
2291  * indicate complete success) or a negative error code.  After that
2292  * callback returns, the driver which issued the transfer request may
2293  * deallocate the associated memory; it's no longer in use by any SPI
2294  * core or controller driver code.
2295  *
2296  * Note that although all messages to a spi_device are handled in
2297  * FIFO order, messages may go to different devices in other orders.
2298  * Some device might be higher priority, or have various "hard" access
2299  * time requirements, for example.
2300  *
2301  * On detection of any fault during the transfer, processing of
2302  * the entire message is aborted, and the device is deselected.
2303  * Until returning from the associated message completion callback,
2304  * no other spi_message queued to that device will be processed.
2305  * (This rule applies equally to all the synchronous transfer calls,
2306  * which are wrappers around this core asynchronous primitive.)
2307  *
2308  * Return: zero on success, else a negative error code.
2309  */
2310 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2311 {
2312 	struct spi_master *master = spi->master;
2313 	int ret;
2314 	unsigned long flags;
2315 
2316 	ret = __spi_validate(spi, message);
2317 	if (ret != 0)
2318 		return ret;
2319 
2320 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2321 
2322 	ret = __spi_async(spi, message);
2323 
2324 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2325 
2326 	return ret;
2327 
2328 }
2329 EXPORT_SYMBOL_GPL(spi_async_locked);
2330 
2331 
2332 /*-------------------------------------------------------------------------*/
2333 
2334 /* Utility methods for SPI master protocol drivers, layered on
2335  * top of the core.  Some other utility methods are defined as
2336  * inline functions.
2337  */
2338 
2339 static void spi_complete(void *arg)
2340 {
2341 	complete(arg);
2342 }
2343 
2344 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2345 		      int bus_locked)
2346 {
2347 	DECLARE_COMPLETION_ONSTACK(done);
2348 	int status;
2349 	struct spi_master *master = spi->master;
2350 	unsigned long flags;
2351 
2352 	status = __spi_validate(spi, message);
2353 	if (status != 0)
2354 		return status;
2355 
2356 	message->complete = spi_complete;
2357 	message->context = &done;
2358 	message->spi = spi;
2359 
2360 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2361 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2362 
2363 	if (!bus_locked)
2364 		mutex_lock(&master->bus_lock_mutex);
2365 
2366 	/* If we're not using the legacy transfer method then we will
2367 	 * try to transfer in the calling context so special case.
2368 	 * This code would be less tricky if we could remove the
2369 	 * support for driver implemented message queues.
2370 	 */
2371 	if (master->transfer == spi_queued_transfer) {
2372 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2373 
2374 		trace_spi_message_submit(message);
2375 
2376 		status = __spi_queued_transfer(spi, message, false);
2377 
2378 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2379 	} else {
2380 		status = spi_async_locked(spi, message);
2381 	}
2382 
2383 	if (!bus_locked)
2384 		mutex_unlock(&master->bus_lock_mutex);
2385 
2386 	if (status == 0) {
2387 		/* Push out the messages in the calling context if we
2388 		 * can.
2389 		 */
2390 		if (master->transfer == spi_queued_transfer) {
2391 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2392 						       spi_sync_immediate);
2393 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2394 						       spi_sync_immediate);
2395 			__spi_pump_messages(master, false);
2396 		}
2397 
2398 		wait_for_completion(&done);
2399 		status = message->status;
2400 	}
2401 	message->context = NULL;
2402 	return status;
2403 }
2404 
2405 /**
2406  * spi_sync - blocking/synchronous SPI data transfers
2407  * @spi: device with which data will be exchanged
2408  * @message: describes the data transfers
2409  * Context: can sleep
2410  *
2411  * This call may only be used from a context that may sleep.  The sleep
2412  * is non-interruptible, and has no timeout.  Low-overhead controller
2413  * drivers may DMA directly into and out of the message buffers.
2414  *
2415  * Note that the SPI device's chip select is active during the message,
2416  * and then is normally disabled between messages.  Drivers for some
2417  * frequently-used devices may want to minimize costs of selecting a chip,
2418  * by leaving it selected in anticipation that the next message will go
2419  * to the same chip.  (That may increase power usage.)
2420  *
2421  * Also, the caller is guaranteeing that the memory associated with the
2422  * message will not be freed before this call returns.
2423  *
2424  * Return: zero on success, else a negative error code.
2425  */
2426 int spi_sync(struct spi_device *spi, struct spi_message *message)
2427 {
2428 	return __spi_sync(spi, message, 0);
2429 }
2430 EXPORT_SYMBOL_GPL(spi_sync);
2431 
2432 /**
2433  * spi_sync_locked - version of spi_sync with exclusive bus usage
2434  * @spi: device with which data will be exchanged
2435  * @message: describes the data transfers
2436  * Context: can sleep
2437  *
2438  * This call may only be used from a context that may sleep.  The sleep
2439  * is non-interruptible, and has no timeout.  Low-overhead controller
2440  * drivers may DMA directly into and out of the message buffers.
2441  *
2442  * This call should be used by drivers that require exclusive access to the
2443  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2444  * be released by a spi_bus_unlock call when the exclusive access is over.
2445  *
2446  * Return: zero on success, else a negative error code.
2447  */
2448 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2449 {
2450 	return __spi_sync(spi, message, 1);
2451 }
2452 EXPORT_SYMBOL_GPL(spi_sync_locked);
2453 
2454 /**
2455  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2456  * @master: SPI bus master that should be locked for exclusive bus access
2457  * Context: can sleep
2458  *
2459  * This call may only be used from a context that may sleep.  The sleep
2460  * is non-interruptible, and has no timeout.
2461  *
2462  * This call should be used by drivers that require exclusive access to the
2463  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2464  * exclusive access is over. Data transfer must be done by spi_sync_locked
2465  * and spi_async_locked calls when the SPI bus lock is held.
2466  *
2467  * Return: always zero.
2468  */
2469 int spi_bus_lock(struct spi_master *master)
2470 {
2471 	unsigned long flags;
2472 
2473 	mutex_lock(&master->bus_lock_mutex);
2474 
2475 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2476 	master->bus_lock_flag = 1;
2477 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2478 
2479 	/* mutex remains locked until spi_bus_unlock is called */
2480 
2481 	return 0;
2482 }
2483 EXPORT_SYMBOL_GPL(spi_bus_lock);
2484 
2485 /**
2486  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2487  * @master: SPI bus master that was locked for exclusive bus access
2488  * Context: can sleep
2489  *
2490  * This call may only be used from a context that may sleep.  The sleep
2491  * is non-interruptible, and has no timeout.
2492  *
2493  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2494  * call.
2495  *
2496  * Return: always zero.
2497  */
2498 int spi_bus_unlock(struct spi_master *master)
2499 {
2500 	master->bus_lock_flag = 0;
2501 
2502 	mutex_unlock(&master->bus_lock_mutex);
2503 
2504 	return 0;
2505 }
2506 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2507 
2508 /* portable code must never pass more than 32 bytes */
2509 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2510 
2511 static u8	*buf;
2512 
2513 /**
2514  * spi_write_then_read - SPI synchronous write followed by read
2515  * @spi: device with which data will be exchanged
2516  * @txbuf: data to be written (need not be dma-safe)
2517  * @n_tx: size of txbuf, in bytes
2518  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2519  * @n_rx: size of rxbuf, in bytes
2520  * Context: can sleep
2521  *
2522  * This performs a half duplex MicroWire style transaction with the
2523  * device, sending txbuf and then reading rxbuf.  The return value
2524  * is zero for success, else a negative errno status code.
2525  * This call may only be used from a context that may sleep.
2526  *
2527  * Parameters to this routine are always copied using a small buffer;
2528  * portable code should never use this for more than 32 bytes.
2529  * Performance-sensitive or bulk transfer code should instead use
2530  * spi_{async,sync}() calls with dma-safe buffers.
2531  *
2532  * Return: zero on success, else a negative error code.
2533  */
2534 int spi_write_then_read(struct spi_device *spi,
2535 		const void *txbuf, unsigned n_tx,
2536 		void *rxbuf, unsigned n_rx)
2537 {
2538 	static DEFINE_MUTEX(lock);
2539 
2540 	int			status;
2541 	struct spi_message	message;
2542 	struct spi_transfer	x[2];
2543 	u8			*local_buf;
2544 
2545 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2546 	 * copying here, (as a pure convenience thing), but we can
2547 	 * keep heap costs out of the hot path unless someone else is
2548 	 * using the pre-allocated buffer or the transfer is too large.
2549 	 */
2550 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2551 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2552 				    GFP_KERNEL | GFP_DMA);
2553 		if (!local_buf)
2554 			return -ENOMEM;
2555 	} else {
2556 		local_buf = buf;
2557 	}
2558 
2559 	spi_message_init(&message);
2560 	memset(x, 0, sizeof(x));
2561 	if (n_tx) {
2562 		x[0].len = n_tx;
2563 		spi_message_add_tail(&x[0], &message);
2564 	}
2565 	if (n_rx) {
2566 		x[1].len = n_rx;
2567 		spi_message_add_tail(&x[1], &message);
2568 	}
2569 
2570 	memcpy(local_buf, txbuf, n_tx);
2571 	x[0].tx_buf = local_buf;
2572 	x[1].rx_buf = local_buf + n_tx;
2573 
2574 	/* do the i/o */
2575 	status = spi_sync(spi, &message);
2576 	if (status == 0)
2577 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2578 
2579 	if (x[0].tx_buf == buf)
2580 		mutex_unlock(&lock);
2581 	else
2582 		kfree(local_buf);
2583 
2584 	return status;
2585 }
2586 EXPORT_SYMBOL_GPL(spi_write_then_read);
2587 
2588 /*-------------------------------------------------------------------------*/
2589 
2590 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2591 static int __spi_of_device_match(struct device *dev, void *data)
2592 {
2593 	return dev->of_node == data;
2594 }
2595 
2596 /* must call put_device() when done with returned spi_device device */
2597 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2598 {
2599 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2600 						__spi_of_device_match);
2601 	return dev ? to_spi_device(dev) : NULL;
2602 }
2603 
2604 static int __spi_of_master_match(struct device *dev, const void *data)
2605 {
2606 	return dev->of_node == data;
2607 }
2608 
2609 /* the spi masters are not using spi_bus, so we find it with another way */
2610 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2611 {
2612 	struct device *dev;
2613 
2614 	dev = class_find_device(&spi_master_class, NULL, node,
2615 				__spi_of_master_match);
2616 	if (!dev)
2617 		return NULL;
2618 
2619 	/* reference got in class_find_device */
2620 	return container_of(dev, struct spi_master, dev);
2621 }
2622 
2623 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2624 			 void *arg)
2625 {
2626 	struct of_reconfig_data *rd = arg;
2627 	struct spi_master *master;
2628 	struct spi_device *spi;
2629 
2630 	switch (of_reconfig_get_state_change(action, arg)) {
2631 	case OF_RECONFIG_CHANGE_ADD:
2632 		master = of_find_spi_master_by_node(rd->dn->parent);
2633 		if (master == NULL)
2634 			return NOTIFY_OK;	/* not for us */
2635 
2636 		spi = of_register_spi_device(master, rd->dn);
2637 		put_device(&master->dev);
2638 
2639 		if (IS_ERR(spi)) {
2640 			pr_err("%s: failed to create for '%s'\n",
2641 					__func__, rd->dn->full_name);
2642 			return notifier_from_errno(PTR_ERR(spi));
2643 		}
2644 		break;
2645 
2646 	case OF_RECONFIG_CHANGE_REMOVE:
2647 		/* find our device by node */
2648 		spi = of_find_spi_device_by_node(rd->dn);
2649 		if (spi == NULL)
2650 			return NOTIFY_OK;	/* no? not meant for us */
2651 
2652 		/* unregister takes one ref away */
2653 		spi_unregister_device(spi);
2654 
2655 		/* and put the reference of the find */
2656 		put_device(&spi->dev);
2657 		break;
2658 	}
2659 
2660 	return NOTIFY_OK;
2661 }
2662 
2663 static struct notifier_block spi_of_notifier = {
2664 	.notifier_call = of_spi_notify,
2665 };
2666 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2667 extern struct notifier_block spi_of_notifier;
2668 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2669 
2670 static int __init spi_init(void)
2671 {
2672 	int	status;
2673 
2674 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2675 	if (!buf) {
2676 		status = -ENOMEM;
2677 		goto err0;
2678 	}
2679 
2680 	status = bus_register(&spi_bus_type);
2681 	if (status < 0)
2682 		goto err1;
2683 
2684 	status = class_register(&spi_master_class);
2685 	if (status < 0)
2686 		goto err2;
2687 
2688 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2689 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2690 
2691 	return 0;
2692 
2693 err2:
2694 	bus_unregister(&spi_bus_type);
2695 err1:
2696 	kfree(buf);
2697 	buf = NULL;
2698 err0:
2699 	return status;
2700 }
2701 
2702 /* board_info is normally registered in arch_initcall(),
2703  * but even essential drivers wait till later
2704  *
2705  * REVISIT only boardinfo really needs static linking. the rest (device and
2706  * driver registration) _could_ be dynamically linked (modular) ... costs
2707  * include needing to have boardinfo data structures be much more public.
2708  */
2709 postcore_initcall(spi_init);
2710 
2711