xref: /openbmc/linux/drivers/spi/spi.c (revision 82ced6fd)
1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/spi/spi.h>
27 
28 
29 /* SPI bustype and spi_master class are registered after board init code
30  * provides the SPI device tables, ensuring that both are present by the
31  * time controller driver registration causes spi_devices to "enumerate".
32  */
33 static void spidev_release(struct device *dev)
34 {
35 	struct spi_device	*spi = to_spi_device(dev);
36 
37 	/* spi masters may cleanup for released devices */
38 	if (spi->master->cleanup)
39 		spi->master->cleanup(spi);
40 
41 	spi_master_put(spi->master);
42 	kfree(dev);
43 }
44 
45 static ssize_t
46 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
47 {
48 	const struct spi_device	*spi = to_spi_device(dev);
49 
50 	return sprintf(buf, "%s\n", spi->modalias);
51 }
52 
53 static struct device_attribute spi_dev_attrs[] = {
54 	__ATTR_RO(modalias),
55 	__ATTR_NULL,
56 };
57 
58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
59  * and the sysfs version makes coldplug work too.
60  */
61 
62 static int spi_match_device(struct device *dev, struct device_driver *drv)
63 {
64 	const struct spi_device	*spi = to_spi_device(dev);
65 
66 	return strcmp(spi->modalias, drv->name) == 0;
67 }
68 
69 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
70 {
71 	const struct spi_device		*spi = to_spi_device(dev);
72 
73 	add_uevent_var(env, "MODALIAS=%s", spi->modalias);
74 	return 0;
75 }
76 
77 #ifdef	CONFIG_PM
78 
79 static int spi_suspend(struct device *dev, pm_message_t message)
80 {
81 	int			value = 0;
82 	struct spi_driver	*drv = to_spi_driver(dev->driver);
83 
84 	/* suspend will stop irqs and dma; no more i/o */
85 	if (drv) {
86 		if (drv->suspend)
87 			value = drv->suspend(to_spi_device(dev), message);
88 		else
89 			dev_dbg(dev, "... can't suspend\n");
90 	}
91 	return value;
92 }
93 
94 static int spi_resume(struct device *dev)
95 {
96 	int			value = 0;
97 	struct spi_driver	*drv = to_spi_driver(dev->driver);
98 
99 	/* resume may restart the i/o queue */
100 	if (drv) {
101 		if (drv->resume)
102 			value = drv->resume(to_spi_device(dev));
103 		else
104 			dev_dbg(dev, "... can't resume\n");
105 	}
106 	return value;
107 }
108 
109 #else
110 #define spi_suspend	NULL
111 #define spi_resume	NULL
112 #endif
113 
114 struct bus_type spi_bus_type = {
115 	.name		= "spi",
116 	.dev_attrs	= spi_dev_attrs,
117 	.match		= spi_match_device,
118 	.uevent		= spi_uevent,
119 	.suspend	= spi_suspend,
120 	.resume		= spi_resume,
121 };
122 EXPORT_SYMBOL_GPL(spi_bus_type);
123 
124 
125 static int spi_drv_probe(struct device *dev)
126 {
127 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
128 
129 	return sdrv->probe(to_spi_device(dev));
130 }
131 
132 static int spi_drv_remove(struct device *dev)
133 {
134 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
135 
136 	return sdrv->remove(to_spi_device(dev));
137 }
138 
139 static void spi_drv_shutdown(struct device *dev)
140 {
141 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
142 
143 	sdrv->shutdown(to_spi_device(dev));
144 }
145 
146 /**
147  * spi_register_driver - register a SPI driver
148  * @sdrv: the driver to register
149  * Context: can sleep
150  */
151 int spi_register_driver(struct spi_driver *sdrv)
152 {
153 	sdrv->driver.bus = &spi_bus_type;
154 	if (sdrv->probe)
155 		sdrv->driver.probe = spi_drv_probe;
156 	if (sdrv->remove)
157 		sdrv->driver.remove = spi_drv_remove;
158 	if (sdrv->shutdown)
159 		sdrv->driver.shutdown = spi_drv_shutdown;
160 	return driver_register(&sdrv->driver);
161 }
162 EXPORT_SYMBOL_GPL(spi_register_driver);
163 
164 /*-------------------------------------------------------------------------*/
165 
166 /* SPI devices should normally not be created by SPI device drivers; that
167  * would make them board-specific.  Similarly with SPI master drivers.
168  * Device registration normally goes into like arch/.../mach.../board-YYY.c
169  * with other readonly (flashable) information about mainboard devices.
170  */
171 
172 struct boardinfo {
173 	struct list_head	list;
174 	unsigned		n_board_info;
175 	struct spi_board_info	board_info[0];
176 };
177 
178 static LIST_HEAD(board_list);
179 static DEFINE_MUTEX(board_lock);
180 
181 /**
182  * spi_alloc_device - Allocate a new SPI device
183  * @master: Controller to which device is connected
184  * Context: can sleep
185  *
186  * Allows a driver to allocate and initialize a spi_device without
187  * registering it immediately.  This allows a driver to directly
188  * fill the spi_device with device parameters before calling
189  * spi_add_device() on it.
190  *
191  * Caller is responsible to call spi_add_device() on the returned
192  * spi_device structure to add it to the SPI master.  If the caller
193  * needs to discard the spi_device without adding it, then it should
194  * call spi_dev_put() on it.
195  *
196  * Returns a pointer to the new device, or NULL.
197  */
198 struct spi_device *spi_alloc_device(struct spi_master *master)
199 {
200 	struct spi_device	*spi;
201 	struct device		*dev = master->dev.parent;
202 
203 	if (!spi_master_get(master))
204 		return NULL;
205 
206 	spi = kzalloc(sizeof *spi, GFP_KERNEL);
207 	if (!spi) {
208 		dev_err(dev, "cannot alloc spi_device\n");
209 		spi_master_put(master);
210 		return NULL;
211 	}
212 
213 	spi->master = master;
214 	spi->dev.parent = dev;
215 	spi->dev.bus = &spi_bus_type;
216 	spi->dev.release = spidev_release;
217 	device_initialize(&spi->dev);
218 	return spi;
219 }
220 EXPORT_SYMBOL_GPL(spi_alloc_device);
221 
222 /**
223  * spi_add_device - Add spi_device allocated with spi_alloc_device
224  * @spi: spi_device to register
225  *
226  * Companion function to spi_alloc_device.  Devices allocated with
227  * spi_alloc_device can be added onto the spi bus with this function.
228  *
229  * Returns 0 on success; negative errno on failure
230  */
231 int spi_add_device(struct spi_device *spi)
232 {
233 	static DEFINE_MUTEX(spi_add_lock);
234 	struct device *dev = spi->master->dev.parent;
235 	int status;
236 
237 	/* Chipselects are numbered 0..max; validate. */
238 	if (spi->chip_select >= spi->master->num_chipselect) {
239 		dev_err(dev, "cs%d >= max %d\n",
240 			spi->chip_select,
241 			spi->master->num_chipselect);
242 		return -EINVAL;
243 	}
244 
245 	/* Set the bus ID string */
246 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
247 			spi->chip_select);
248 
249 
250 	/* We need to make sure there's no other device with this
251 	 * chipselect **BEFORE** we call setup(), else we'll trash
252 	 * its configuration.  Lock against concurrent add() calls.
253 	 */
254 	mutex_lock(&spi_add_lock);
255 
256 	if (bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev))
257 			!= NULL) {
258 		dev_err(dev, "chipselect %d already in use\n",
259 				spi->chip_select);
260 		status = -EBUSY;
261 		goto done;
262 	}
263 
264 	/* Drivers may modify this initial i/o setup, but will
265 	 * normally rely on the device being setup.  Devices
266 	 * using SPI_CS_HIGH can't coexist well otherwise...
267 	 */
268 	status = spi->master->setup(spi);
269 	if (status < 0) {
270 		dev_err(dev, "can't %s %s, status %d\n",
271 				"setup", dev_name(&spi->dev), status);
272 		goto done;
273 	}
274 
275 	/* Device may be bound to an active driver when this returns */
276 	status = device_add(&spi->dev);
277 	if (status < 0)
278 		dev_err(dev, "can't %s %s, status %d\n",
279 				"add", dev_name(&spi->dev), status);
280 	else
281 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
282 
283 done:
284 	mutex_unlock(&spi_add_lock);
285 	return status;
286 }
287 EXPORT_SYMBOL_GPL(spi_add_device);
288 
289 /**
290  * spi_new_device - instantiate one new SPI device
291  * @master: Controller to which device is connected
292  * @chip: Describes the SPI device
293  * Context: can sleep
294  *
295  * On typical mainboards, this is purely internal; and it's not needed
296  * after board init creates the hard-wired devices.  Some development
297  * platforms may not be able to use spi_register_board_info though, and
298  * this is exported so that for example a USB or parport based adapter
299  * driver could add devices (which it would learn about out-of-band).
300  *
301  * Returns the new device, or NULL.
302  */
303 struct spi_device *spi_new_device(struct spi_master *master,
304 				  struct spi_board_info *chip)
305 {
306 	struct spi_device	*proxy;
307 	int			status;
308 
309 	/* NOTE:  caller did any chip->bus_num checks necessary.
310 	 *
311 	 * Also, unless we change the return value convention to use
312 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
313 	 * suggests syslogged diagnostics are best here (ugh).
314 	 */
315 
316 	proxy = spi_alloc_device(master);
317 	if (!proxy)
318 		return NULL;
319 
320 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
321 
322 	proxy->chip_select = chip->chip_select;
323 	proxy->max_speed_hz = chip->max_speed_hz;
324 	proxy->mode = chip->mode;
325 	proxy->irq = chip->irq;
326 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
327 	proxy->dev.platform_data = (void *) chip->platform_data;
328 	proxy->controller_data = chip->controller_data;
329 	proxy->controller_state = NULL;
330 
331 	status = spi_add_device(proxy);
332 	if (status < 0) {
333 		spi_dev_put(proxy);
334 		return NULL;
335 	}
336 
337 	return proxy;
338 }
339 EXPORT_SYMBOL_GPL(spi_new_device);
340 
341 /**
342  * spi_register_board_info - register SPI devices for a given board
343  * @info: array of chip descriptors
344  * @n: how many descriptors are provided
345  * Context: can sleep
346  *
347  * Board-specific early init code calls this (probably during arch_initcall)
348  * with segments of the SPI device table.  Any device nodes are created later,
349  * after the relevant parent SPI controller (bus_num) is defined.  We keep
350  * this table of devices forever, so that reloading a controller driver will
351  * not make Linux forget about these hard-wired devices.
352  *
353  * Other code can also call this, e.g. a particular add-on board might provide
354  * SPI devices through its expansion connector, so code initializing that board
355  * would naturally declare its SPI devices.
356  *
357  * The board info passed can safely be __initdata ... but be careful of
358  * any embedded pointers (platform_data, etc), they're copied as-is.
359  */
360 int __init
361 spi_register_board_info(struct spi_board_info const *info, unsigned n)
362 {
363 	struct boardinfo	*bi;
364 
365 	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
366 	if (!bi)
367 		return -ENOMEM;
368 	bi->n_board_info = n;
369 	memcpy(bi->board_info, info, n * sizeof *info);
370 
371 	mutex_lock(&board_lock);
372 	list_add_tail(&bi->list, &board_list);
373 	mutex_unlock(&board_lock);
374 	return 0;
375 }
376 
377 /* FIXME someone should add support for a __setup("spi", ...) that
378  * creates board info from kernel command lines
379  */
380 
381 static void scan_boardinfo(struct spi_master *master)
382 {
383 	struct boardinfo	*bi;
384 
385 	mutex_lock(&board_lock);
386 	list_for_each_entry(bi, &board_list, list) {
387 		struct spi_board_info	*chip = bi->board_info;
388 		unsigned		n;
389 
390 		for (n = bi->n_board_info; n > 0; n--, chip++) {
391 			if (chip->bus_num != master->bus_num)
392 				continue;
393 			/* NOTE: this relies on spi_new_device to
394 			 * issue diagnostics when given bogus inputs
395 			 */
396 			(void) spi_new_device(master, chip);
397 		}
398 	}
399 	mutex_unlock(&board_lock);
400 }
401 
402 /*-------------------------------------------------------------------------*/
403 
404 static void spi_master_release(struct device *dev)
405 {
406 	struct spi_master *master;
407 
408 	master = container_of(dev, struct spi_master, dev);
409 	kfree(master);
410 }
411 
412 static struct class spi_master_class = {
413 	.name		= "spi_master",
414 	.owner		= THIS_MODULE,
415 	.dev_release	= spi_master_release,
416 };
417 
418 
419 /**
420  * spi_alloc_master - allocate SPI master controller
421  * @dev: the controller, possibly using the platform_bus
422  * @size: how much zeroed driver-private data to allocate; the pointer to this
423  *	memory is in the driver_data field of the returned device,
424  *	accessible with spi_master_get_devdata().
425  * Context: can sleep
426  *
427  * This call is used only by SPI master controller drivers, which are the
428  * only ones directly touching chip registers.  It's how they allocate
429  * an spi_master structure, prior to calling spi_register_master().
430  *
431  * This must be called from context that can sleep.  It returns the SPI
432  * master structure on success, else NULL.
433  *
434  * The caller is responsible for assigning the bus number and initializing
435  * the master's methods before calling spi_register_master(); and (after errors
436  * adding the device) calling spi_master_put() to prevent a memory leak.
437  */
438 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
439 {
440 	struct spi_master	*master;
441 
442 	if (!dev)
443 		return NULL;
444 
445 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
446 	if (!master)
447 		return NULL;
448 
449 	device_initialize(&master->dev);
450 	master->dev.class = &spi_master_class;
451 	master->dev.parent = get_device(dev);
452 	spi_master_set_devdata(master, &master[1]);
453 
454 	return master;
455 }
456 EXPORT_SYMBOL_GPL(spi_alloc_master);
457 
458 /**
459  * spi_register_master - register SPI master controller
460  * @master: initialized master, originally from spi_alloc_master()
461  * Context: can sleep
462  *
463  * SPI master controllers connect to their drivers using some non-SPI bus,
464  * such as the platform bus.  The final stage of probe() in that code
465  * includes calling spi_register_master() to hook up to this SPI bus glue.
466  *
467  * SPI controllers use board specific (often SOC specific) bus numbers,
468  * and board-specific addressing for SPI devices combines those numbers
469  * with chip select numbers.  Since SPI does not directly support dynamic
470  * device identification, boards need configuration tables telling which
471  * chip is at which address.
472  *
473  * This must be called from context that can sleep.  It returns zero on
474  * success, else a negative error code (dropping the master's refcount).
475  * After a successful return, the caller is responsible for calling
476  * spi_unregister_master().
477  */
478 int spi_register_master(struct spi_master *master)
479 {
480 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
481 	struct device		*dev = master->dev.parent;
482 	int			status = -ENODEV;
483 	int			dynamic = 0;
484 
485 	if (!dev)
486 		return -ENODEV;
487 
488 	/* even if it's just one always-selected device, there must
489 	 * be at least one chipselect
490 	 */
491 	if (master->num_chipselect == 0)
492 		return -EINVAL;
493 
494 	/* convention:  dynamically assigned bus IDs count down from the max */
495 	if (master->bus_num < 0) {
496 		/* FIXME switch to an IDR based scheme, something like
497 		 * I2C now uses, so we can't run out of "dynamic" IDs
498 		 */
499 		master->bus_num = atomic_dec_return(&dyn_bus_id);
500 		dynamic = 1;
501 	}
502 
503 	/* register the device, then userspace will see it.
504 	 * registration fails if the bus ID is in use.
505 	 */
506 	dev_set_name(&master->dev, "spi%u", master->bus_num);
507 	status = device_add(&master->dev);
508 	if (status < 0)
509 		goto done;
510 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
511 			dynamic ? " (dynamic)" : "");
512 
513 	/* populate children from any spi device tables */
514 	scan_boardinfo(master);
515 	status = 0;
516 done:
517 	return status;
518 }
519 EXPORT_SYMBOL_GPL(spi_register_master);
520 
521 
522 static int __unregister(struct device *dev, void *master_dev)
523 {
524 	/* note: before about 2.6.14-rc1 this would corrupt memory: */
525 	if (dev != master_dev)
526 		spi_unregister_device(to_spi_device(dev));
527 	return 0;
528 }
529 
530 /**
531  * spi_unregister_master - unregister SPI master controller
532  * @master: the master being unregistered
533  * Context: can sleep
534  *
535  * This call is used only by SPI master controller drivers, which are the
536  * only ones directly touching chip registers.
537  *
538  * This must be called from context that can sleep.
539  */
540 void spi_unregister_master(struct spi_master *master)
541 {
542 	int dummy;
543 
544 	dummy = device_for_each_child(master->dev.parent, &master->dev,
545 					__unregister);
546 	device_unregister(&master->dev);
547 }
548 EXPORT_SYMBOL_GPL(spi_unregister_master);
549 
550 static int __spi_master_match(struct device *dev, void *data)
551 {
552 	struct spi_master *m;
553 	u16 *bus_num = data;
554 
555 	m = container_of(dev, struct spi_master, dev);
556 	return m->bus_num == *bus_num;
557 }
558 
559 /**
560  * spi_busnum_to_master - look up master associated with bus_num
561  * @bus_num: the master's bus number
562  * Context: can sleep
563  *
564  * This call may be used with devices that are registered after
565  * arch init time.  It returns a refcounted pointer to the relevant
566  * spi_master (which the caller must release), or NULL if there is
567  * no such master registered.
568  */
569 struct spi_master *spi_busnum_to_master(u16 bus_num)
570 {
571 	struct device		*dev;
572 	struct spi_master	*master = NULL;
573 
574 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
575 				__spi_master_match);
576 	if (dev)
577 		master = container_of(dev, struct spi_master, dev);
578 	/* reference got in class_find_device */
579 	return master;
580 }
581 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
582 
583 
584 /*-------------------------------------------------------------------------*/
585 
586 static void spi_complete(void *arg)
587 {
588 	complete(arg);
589 }
590 
591 /**
592  * spi_sync - blocking/synchronous SPI data transfers
593  * @spi: device with which data will be exchanged
594  * @message: describes the data transfers
595  * Context: can sleep
596  *
597  * This call may only be used from a context that may sleep.  The sleep
598  * is non-interruptible, and has no timeout.  Low-overhead controller
599  * drivers may DMA directly into and out of the message buffers.
600  *
601  * Note that the SPI device's chip select is active during the message,
602  * and then is normally disabled between messages.  Drivers for some
603  * frequently-used devices may want to minimize costs of selecting a chip,
604  * by leaving it selected in anticipation that the next message will go
605  * to the same chip.  (That may increase power usage.)
606  *
607  * Also, the caller is guaranteeing that the memory associated with the
608  * message will not be freed before this call returns.
609  *
610  * It returns zero on success, else a negative error code.
611  */
612 int spi_sync(struct spi_device *spi, struct spi_message *message)
613 {
614 	DECLARE_COMPLETION_ONSTACK(done);
615 	int status;
616 
617 	message->complete = spi_complete;
618 	message->context = &done;
619 	status = spi_async(spi, message);
620 	if (status == 0) {
621 		wait_for_completion(&done);
622 		status = message->status;
623 	}
624 	message->context = NULL;
625 	return status;
626 }
627 EXPORT_SYMBOL_GPL(spi_sync);
628 
629 /* portable code must never pass more than 32 bytes */
630 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
631 
632 static u8	*buf;
633 
634 /**
635  * spi_write_then_read - SPI synchronous write followed by read
636  * @spi: device with which data will be exchanged
637  * @txbuf: data to be written (need not be dma-safe)
638  * @n_tx: size of txbuf, in bytes
639  * @rxbuf: buffer into which data will be read
640  * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
641  * Context: can sleep
642  *
643  * This performs a half duplex MicroWire style transaction with the
644  * device, sending txbuf and then reading rxbuf.  The return value
645  * is zero for success, else a negative errno status code.
646  * This call may only be used from a context that may sleep.
647  *
648  * Parameters to this routine are always copied using a small buffer;
649  * portable code should never use this for more than 32 bytes.
650  * Performance-sensitive or bulk transfer code should instead use
651  * spi_{async,sync}() calls with dma-safe buffers.
652  */
653 int spi_write_then_read(struct spi_device *spi,
654 		const u8 *txbuf, unsigned n_tx,
655 		u8 *rxbuf, unsigned n_rx)
656 {
657 	static DEFINE_MUTEX(lock);
658 
659 	int			status;
660 	struct spi_message	message;
661 	struct spi_transfer	x[2];
662 	u8			*local_buf;
663 
664 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
665 	 * (as a pure convenience thing), but we can keep heap costs
666 	 * out of the hot path ...
667 	 */
668 	if ((n_tx + n_rx) > SPI_BUFSIZ)
669 		return -EINVAL;
670 
671 	spi_message_init(&message);
672 	memset(x, 0, sizeof x);
673 	if (n_tx) {
674 		x[0].len = n_tx;
675 		spi_message_add_tail(&x[0], &message);
676 	}
677 	if (n_rx) {
678 		x[1].len = n_rx;
679 		spi_message_add_tail(&x[1], &message);
680 	}
681 
682 	/* ... unless someone else is using the pre-allocated buffer */
683 	if (!mutex_trylock(&lock)) {
684 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
685 		if (!local_buf)
686 			return -ENOMEM;
687 	} else
688 		local_buf = buf;
689 
690 	memcpy(local_buf, txbuf, n_tx);
691 	x[0].tx_buf = local_buf;
692 	x[1].rx_buf = local_buf + n_tx;
693 
694 	/* do the i/o */
695 	status = spi_sync(spi, &message);
696 	if (status == 0)
697 		memcpy(rxbuf, x[1].rx_buf, n_rx);
698 
699 	if (x[0].tx_buf == buf)
700 		mutex_unlock(&lock);
701 	else
702 		kfree(local_buf);
703 
704 	return status;
705 }
706 EXPORT_SYMBOL_GPL(spi_write_then_read);
707 
708 /*-------------------------------------------------------------------------*/
709 
710 static int __init spi_init(void)
711 {
712 	int	status;
713 
714 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
715 	if (!buf) {
716 		status = -ENOMEM;
717 		goto err0;
718 	}
719 
720 	status = bus_register(&spi_bus_type);
721 	if (status < 0)
722 		goto err1;
723 
724 	status = class_register(&spi_master_class);
725 	if (status < 0)
726 		goto err2;
727 	return 0;
728 
729 err2:
730 	bus_unregister(&spi_bus_type);
731 err1:
732 	kfree(buf);
733 	buf = NULL;
734 err0:
735 	return status;
736 }
737 
738 /* board_info is normally registered in arch_initcall(),
739  * but even essential drivers wait till later
740  *
741  * REVISIT only boardinfo really needs static linking. the rest (device and
742  * driver registration) _could_ be dynamically linked (modular) ... costs
743  * include needing to have boardinfo data structures be much more public.
744  */
745 postcore_initcall(spi_init);
746 
747