xref: /openbmc/linux/drivers/spi/spi.c (revision 806b5228)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	spi_controller_put(spi->controller);
51 	kfree(spi->driver_override);
52 	kfree(spi);
53 }
54 
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 	const struct spi_device	*spi = to_spi_device(dev);
59 	int len;
60 
61 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 	if (len != -ENODEV)
63 		return len;
64 
65 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68 
69 static ssize_t driver_override_store(struct device *dev,
70 				     struct device_attribute *a,
71 				     const char *buf, size_t count)
72 {
73 	struct spi_device *spi = to_spi_device(dev);
74 	const char *end = memchr(buf, '\n', count);
75 	const size_t len = end ? end - buf : count;
76 	const char *driver_override, *old;
77 
78 	/* We need to keep extra room for a newline when displaying value */
79 	if (len >= (PAGE_SIZE - 1))
80 		return -EINVAL;
81 
82 	driver_override = kstrndup(buf, len, GFP_KERNEL);
83 	if (!driver_override)
84 		return -ENOMEM;
85 
86 	device_lock(dev);
87 	old = spi->driver_override;
88 	if (len) {
89 		spi->driver_override = driver_override;
90 	} else {
91 		/* Empty string, disable driver override */
92 		spi->driver_override = NULL;
93 		kfree(driver_override);
94 	}
95 	device_unlock(dev);
96 	kfree(old);
97 
98 	return count;
99 }
100 
101 static ssize_t driver_override_show(struct device *dev,
102 				    struct device_attribute *a, char *buf)
103 {
104 	const struct spi_device *spi = to_spi_device(dev);
105 	ssize_t len;
106 
107 	device_lock(dev);
108 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 	device_unlock(dev);
110 	return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113 
114 #define SPI_STATISTICS_ATTRS(field, file)				\
115 static ssize_t spi_controller_##field##_show(struct device *dev,	\
116 					     struct device_attribute *attr, \
117 					     char *buf)			\
118 {									\
119 	struct spi_controller *ctlr = container_of(dev,			\
120 					 struct spi_controller, dev);	\
121 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
122 }									\
123 static struct device_attribute dev_attr_spi_controller_##field = {	\
124 	.attr = { .name = file, .mode = 0444 },				\
125 	.show = spi_controller_##field##_show,				\
126 };									\
127 static ssize_t spi_device_##field##_show(struct device *dev,		\
128 					 struct device_attribute *attr,	\
129 					char *buf)			\
130 {									\
131 	struct spi_device *spi = to_spi_device(dev);			\
132 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
133 }									\
134 static struct device_attribute dev_attr_spi_device_##field = {		\
135 	.attr = { .name = file, .mode = 0444 },				\
136 	.show = spi_device_##field##_show,				\
137 }
138 
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 					    char *buf)			\
142 {									\
143 	unsigned long flags;						\
144 	ssize_t len;							\
145 	spin_lock_irqsave(&stat->lock, flags);				\
146 	len = sysfs_emit(buf, format_string "\n", stat->field);		\
147 	spin_unlock_irqrestore(&stat->lock, flags);			\
148 	return len;							\
149 }									\
150 SPI_STATISTICS_ATTRS(name, file)
151 
152 #define SPI_STATISTICS_SHOW(field, format_string)			\
153 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
154 				 field, format_string)
155 
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160 
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164 
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168 
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
170 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
171 				 "transfer_bytes_histo_" number,	\
172 				 transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190 
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192 
193 static struct attribute *spi_dev_attrs[] = {
194 	&dev_attr_modalias.attr,
195 	&dev_attr_driver_override.attr,
196 	NULL,
197 };
198 
199 static const struct attribute_group spi_dev_group = {
200 	.attrs  = spi_dev_attrs,
201 };
202 
203 static struct attribute *spi_device_statistics_attrs[] = {
204 	&dev_attr_spi_device_messages.attr,
205 	&dev_attr_spi_device_transfers.attr,
206 	&dev_attr_spi_device_errors.attr,
207 	&dev_attr_spi_device_timedout.attr,
208 	&dev_attr_spi_device_spi_sync.attr,
209 	&dev_attr_spi_device_spi_sync_immediate.attr,
210 	&dev_attr_spi_device_spi_async.attr,
211 	&dev_attr_spi_device_bytes.attr,
212 	&dev_attr_spi_device_bytes_rx.attr,
213 	&dev_attr_spi_device_bytes_tx.attr,
214 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
231 	&dev_attr_spi_device_transfers_split_maxsize.attr,
232 	NULL,
233 };
234 
235 static const struct attribute_group spi_device_statistics_group = {
236 	.name  = "statistics",
237 	.attrs  = spi_device_statistics_attrs,
238 };
239 
240 static const struct attribute_group *spi_dev_groups[] = {
241 	&spi_dev_group,
242 	&spi_device_statistics_group,
243 	NULL,
244 };
245 
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 	&dev_attr_spi_controller_messages.attr,
248 	&dev_attr_spi_controller_transfers.attr,
249 	&dev_attr_spi_controller_errors.attr,
250 	&dev_attr_spi_controller_timedout.attr,
251 	&dev_attr_spi_controller_spi_sync.attr,
252 	&dev_attr_spi_controller_spi_sync_immediate.attr,
253 	&dev_attr_spi_controller_spi_async.attr,
254 	&dev_attr_spi_controller_bytes.attr,
255 	&dev_attr_spi_controller_bytes_rx.attr,
256 	&dev_attr_spi_controller_bytes_tx.attr,
257 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
275 	NULL,
276 };
277 
278 static const struct attribute_group spi_controller_statistics_group = {
279 	.name  = "statistics",
280 	.attrs  = spi_controller_statistics_attrs,
281 };
282 
283 static const struct attribute_group *spi_master_groups[] = {
284 	&spi_controller_statistics_group,
285 	NULL,
286 };
287 
288 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 					      struct spi_transfer *xfer,
290 					      struct spi_controller *ctlr)
291 {
292 	unsigned long flags;
293 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294 
295 	if (l2len < 0)
296 		l2len = 0;
297 
298 	spin_lock_irqsave(&stats->lock, flags);
299 
300 	stats->transfers++;
301 	stats->transfer_bytes_histo[l2len]++;
302 
303 	stats->bytes += xfer->len;
304 	if ((xfer->tx_buf) &&
305 	    (xfer->tx_buf != ctlr->dummy_tx))
306 		stats->bytes_tx += xfer->len;
307 	if ((xfer->rx_buf) &&
308 	    (xfer->rx_buf != ctlr->dummy_rx))
309 		stats->bytes_rx += xfer->len;
310 
311 	spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 
314 /*
315  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316  * and the sysfs version makes coldplug work too.
317  */
318 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
319 {
320 	while (id->name[0]) {
321 		if (!strcmp(name, id->name))
322 			return id;
323 		id++;
324 	}
325 	return NULL;
326 }
327 
328 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
329 {
330 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
331 
332 	return spi_match_id(sdrv->id_table, sdev->modalias);
333 }
334 EXPORT_SYMBOL_GPL(spi_get_device_id);
335 
336 static int spi_match_device(struct device *dev, struct device_driver *drv)
337 {
338 	const struct spi_device	*spi = to_spi_device(dev);
339 	const struct spi_driver	*sdrv = to_spi_driver(drv);
340 
341 	/* Check override first, and if set, only use the named driver */
342 	if (spi->driver_override)
343 		return strcmp(spi->driver_override, drv->name) == 0;
344 
345 	/* Attempt an OF style match */
346 	if (of_driver_match_device(dev, drv))
347 		return 1;
348 
349 	/* Then try ACPI */
350 	if (acpi_driver_match_device(dev, drv))
351 		return 1;
352 
353 	if (sdrv->id_table)
354 		return !!spi_match_id(sdrv->id_table, spi->modalias);
355 
356 	return strcmp(spi->modalias, drv->name) == 0;
357 }
358 
359 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
360 {
361 	const struct spi_device		*spi = to_spi_device(dev);
362 	int rc;
363 
364 	rc = acpi_device_uevent_modalias(dev, env);
365 	if (rc != -ENODEV)
366 		return rc;
367 
368 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
369 }
370 
371 static int spi_probe(struct device *dev)
372 {
373 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
374 	struct spi_device		*spi = to_spi_device(dev);
375 	int ret;
376 
377 	ret = of_clk_set_defaults(dev->of_node, false);
378 	if (ret)
379 		return ret;
380 
381 	if (dev->of_node) {
382 		spi->irq = of_irq_get(dev->of_node, 0);
383 		if (spi->irq == -EPROBE_DEFER)
384 			return -EPROBE_DEFER;
385 		if (spi->irq < 0)
386 			spi->irq = 0;
387 	}
388 
389 	ret = dev_pm_domain_attach(dev, true);
390 	if (ret)
391 		return ret;
392 
393 	if (sdrv->probe) {
394 		ret = sdrv->probe(spi);
395 		if (ret)
396 			dev_pm_domain_detach(dev, true);
397 	}
398 
399 	return ret;
400 }
401 
402 static void spi_remove(struct device *dev)
403 {
404 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
405 
406 	if (sdrv->remove)
407 		sdrv->remove(to_spi_device(dev));
408 
409 	dev_pm_domain_detach(dev, true);
410 }
411 
412 static void spi_shutdown(struct device *dev)
413 {
414 	if (dev->driver) {
415 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
416 
417 		if (sdrv->shutdown)
418 			sdrv->shutdown(to_spi_device(dev));
419 	}
420 }
421 
422 struct bus_type spi_bus_type = {
423 	.name		= "spi",
424 	.dev_groups	= spi_dev_groups,
425 	.match		= spi_match_device,
426 	.uevent		= spi_uevent,
427 	.probe		= spi_probe,
428 	.remove		= spi_remove,
429 	.shutdown	= spi_shutdown,
430 };
431 EXPORT_SYMBOL_GPL(spi_bus_type);
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 
446 	/*
447 	 * For Really Good Reasons we use spi: modaliases not of:
448 	 * modaliases for DT so module autoloading won't work if we
449 	 * don't have a spi_device_id as well as a compatible string.
450 	 */
451 	if (sdrv->driver.of_match_table) {
452 		const struct of_device_id *of_id;
453 
454 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
455 		     of_id++) {
456 			const char *of_name;
457 
458 			/* Strip off any vendor prefix */
459 			of_name = strnchr(of_id->compatible,
460 					  sizeof(of_id->compatible), ',');
461 			if (of_name)
462 				of_name++;
463 			else
464 				of_name = of_id->compatible;
465 
466 			if (sdrv->id_table) {
467 				const struct spi_device_id *spi_id;
468 
469 				spi_id = spi_match_id(sdrv->id_table, of_name);
470 				if (spi_id)
471 					continue;
472 			} else {
473 				if (strcmp(sdrv->driver.name, of_name) == 0)
474 					continue;
475 			}
476 
477 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
478 				sdrv->driver.name, of_id->compatible);
479 		}
480 	}
481 
482 	return driver_register(&sdrv->driver);
483 }
484 EXPORT_SYMBOL_GPL(__spi_register_driver);
485 
486 /*-------------------------------------------------------------------------*/
487 
488 /*
489  * SPI devices should normally not be created by SPI device drivers; that
490  * would make them board-specific.  Similarly with SPI controller drivers.
491  * Device registration normally goes into like arch/.../mach.../board-YYY.c
492  * with other readonly (flashable) information about mainboard devices.
493  */
494 
495 struct boardinfo {
496 	struct list_head	list;
497 	struct spi_board_info	board_info;
498 };
499 
500 static LIST_HEAD(board_list);
501 static LIST_HEAD(spi_controller_list);
502 
503 /*
504  * Used to protect add/del operation for board_info list and
505  * spi_controller list, and their matching process also used
506  * to protect object of type struct idr.
507  */
508 static DEFINE_MUTEX(board_lock);
509 
510 /**
511  * spi_alloc_device - Allocate a new SPI device
512  * @ctlr: Controller to which device is connected
513  * Context: can sleep
514  *
515  * Allows a driver to allocate and initialize a spi_device without
516  * registering it immediately.  This allows a driver to directly
517  * fill the spi_device with device parameters before calling
518  * spi_add_device() on it.
519  *
520  * Caller is responsible to call spi_add_device() on the returned
521  * spi_device structure to add it to the SPI controller.  If the caller
522  * needs to discard the spi_device without adding it, then it should
523  * call spi_dev_put() on it.
524  *
525  * Return: a pointer to the new device, or NULL.
526  */
527 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
528 {
529 	struct spi_device	*spi;
530 
531 	if (!spi_controller_get(ctlr))
532 		return NULL;
533 
534 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
535 	if (!spi) {
536 		spi_controller_put(ctlr);
537 		return NULL;
538 	}
539 
540 	spi->master = spi->controller = ctlr;
541 	spi->dev.parent = &ctlr->dev;
542 	spi->dev.bus = &spi_bus_type;
543 	spi->dev.release = spidev_release;
544 	spi->mode = ctlr->buswidth_override_bits;
545 
546 	spin_lock_init(&spi->statistics.lock);
547 
548 	device_initialize(&spi->dev);
549 	return spi;
550 }
551 EXPORT_SYMBOL_GPL(spi_alloc_device);
552 
553 static void spi_dev_set_name(struct spi_device *spi)
554 {
555 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
556 
557 	if (adev) {
558 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
559 		return;
560 	}
561 
562 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
563 		     spi->chip_select);
564 }
565 
566 static int spi_dev_check(struct device *dev, void *data)
567 {
568 	struct spi_device *spi = to_spi_device(dev);
569 	struct spi_device *new_spi = data;
570 
571 	if (spi->controller == new_spi->controller &&
572 	    spi->chip_select == new_spi->chip_select)
573 		return -EBUSY;
574 	return 0;
575 }
576 
577 static void spi_cleanup(struct spi_device *spi)
578 {
579 	if (spi->controller->cleanup)
580 		spi->controller->cleanup(spi);
581 }
582 
583 static int __spi_add_device(struct spi_device *spi)
584 {
585 	struct spi_controller *ctlr = spi->controller;
586 	struct device *dev = ctlr->dev.parent;
587 	int status;
588 
589 	/*
590 	 * We need to make sure there's no other device with this
591 	 * chipselect **BEFORE** we call setup(), else we'll trash
592 	 * its configuration.
593 	 */
594 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
595 	if (status) {
596 		dev_err(dev, "chipselect %d already in use\n",
597 				spi->chip_select);
598 		return status;
599 	}
600 
601 	/* Controller may unregister concurrently */
602 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
603 	    !device_is_registered(&ctlr->dev)) {
604 		return -ENODEV;
605 	}
606 
607 	if (ctlr->cs_gpiods)
608 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
609 
610 	/*
611 	 * Drivers may modify this initial i/o setup, but will
612 	 * normally rely on the device being setup.  Devices
613 	 * using SPI_CS_HIGH can't coexist well otherwise...
614 	 */
615 	status = spi_setup(spi);
616 	if (status < 0) {
617 		dev_err(dev, "can't setup %s, status %d\n",
618 				dev_name(&spi->dev), status);
619 		return status;
620 	}
621 
622 	/* Device may be bound to an active driver when this returns */
623 	status = device_add(&spi->dev);
624 	if (status < 0) {
625 		dev_err(dev, "can't add %s, status %d\n",
626 				dev_name(&spi->dev), status);
627 		spi_cleanup(spi);
628 	} else {
629 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
630 	}
631 
632 	return status;
633 }
634 
635 /**
636  * spi_add_device - Add spi_device allocated with spi_alloc_device
637  * @spi: spi_device to register
638  *
639  * Companion function to spi_alloc_device.  Devices allocated with
640  * spi_alloc_device can be added onto the spi bus with this function.
641  *
642  * Return: 0 on success; negative errno on failure
643  */
644 int spi_add_device(struct spi_device *spi)
645 {
646 	struct spi_controller *ctlr = spi->controller;
647 	struct device *dev = ctlr->dev.parent;
648 	int status;
649 
650 	/* Chipselects are numbered 0..max; validate. */
651 	if (spi->chip_select >= ctlr->num_chipselect) {
652 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
653 			ctlr->num_chipselect);
654 		return -EINVAL;
655 	}
656 
657 	/* Set the bus ID string */
658 	spi_dev_set_name(spi);
659 
660 	mutex_lock(&ctlr->add_lock);
661 	status = __spi_add_device(spi);
662 	mutex_unlock(&ctlr->add_lock);
663 	return status;
664 }
665 EXPORT_SYMBOL_GPL(spi_add_device);
666 
667 static int spi_add_device_locked(struct spi_device *spi)
668 {
669 	struct spi_controller *ctlr = spi->controller;
670 	struct device *dev = ctlr->dev.parent;
671 
672 	/* Chipselects are numbered 0..max; validate. */
673 	if (spi->chip_select >= ctlr->num_chipselect) {
674 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
675 			ctlr->num_chipselect);
676 		return -EINVAL;
677 	}
678 
679 	/* Set the bus ID string */
680 	spi_dev_set_name(spi);
681 
682 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
683 	return __spi_add_device(spi);
684 }
685 
686 /**
687  * spi_new_device - instantiate one new SPI device
688  * @ctlr: Controller to which device is connected
689  * @chip: Describes the SPI device
690  * Context: can sleep
691  *
692  * On typical mainboards, this is purely internal; and it's not needed
693  * after board init creates the hard-wired devices.  Some development
694  * platforms may not be able to use spi_register_board_info though, and
695  * this is exported so that for example a USB or parport based adapter
696  * driver could add devices (which it would learn about out-of-band).
697  *
698  * Return: the new device, or NULL.
699  */
700 struct spi_device *spi_new_device(struct spi_controller *ctlr,
701 				  struct spi_board_info *chip)
702 {
703 	struct spi_device	*proxy;
704 	int			status;
705 
706 	/*
707 	 * NOTE:  caller did any chip->bus_num checks necessary.
708 	 *
709 	 * Also, unless we change the return value convention to use
710 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
711 	 * suggests syslogged diagnostics are best here (ugh).
712 	 */
713 
714 	proxy = spi_alloc_device(ctlr);
715 	if (!proxy)
716 		return NULL;
717 
718 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
719 
720 	proxy->chip_select = chip->chip_select;
721 	proxy->max_speed_hz = chip->max_speed_hz;
722 	proxy->mode = chip->mode;
723 	proxy->irq = chip->irq;
724 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
725 	proxy->dev.platform_data = (void *) chip->platform_data;
726 	proxy->controller_data = chip->controller_data;
727 	proxy->controller_state = NULL;
728 
729 	if (chip->swnode) {
730 		status = device_add_software_node(&proxy->dev, chip->swnode);
731 		if (status) {
732 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
733 				chip->modalias, status);
734 			goto err_dev_put;
735 		}
736 	}
737 
738 	status = spi_add_device(proxy);
739 	if (status < 0)
740 		goto err_dev_put;
741 
742 	return proxy;
743 
744 err_dev_put:
745 	device_remove_software_node(&proxy->dev);
746 	spi_dev_put(proxy);
747 	return NULL;
748 }
749 EXPORT_SYMBOL_GPL(spi_new_device);
750 
751 /**
752  * spi_unregister_device - unregister a single SPI device
753  * @spi: spi_device to unregister
754  *
755  * Start making the passed SPI device vanish. Normally this would be handled
756  * by spi_unregister_controller().
757  */
758 void spi_unregister_device(struct spi_device *spi)
759 {
760 	if (!spi)
761 		return;
762 
763 	if (spi->dev.of_node) {
764 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
765 		of_node_put(spi->dev.of_node);
766 	}
767 	if (ACPI_COMPANION(&spi->dev))
768 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
769 	device_remove_software_node(&spi->dev);
770 	device_del(&spi->dev);
771 	spi_cleanup(spi);
772 	put_device(&spi->dev);
773 }
774 EXPORT_SYMBOL_GPL(spi_unregister_device);
775 
776 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
777 					      struct spi_board_info *bi)
778 {
779 	struct spi_device *dev;
780 
781 	if (ctlr->bus_num != bi->bus_num)
782 		return;
783 
784 	dev = spi_new_device(ctlr, bi);
785 	if (!dev)
786 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
787 			bi->modalias);
788 }
789 
790 /**
791  * spi_register_board_info - register SPI devices for a given board
792  * @info: array of chip descriptors
793  * @n: how many descriptors are provided
794  * Context: can sleep
795  *
796  * Board-specific early init code calls this (probably during arch_initcall)
797  * with segments of the SPI device table.  Any device nodes are created later,
798  * after the relevant parent SPI controller (bus_num) is defined.  We keep
799  * this table of devices forever, so that reloading a controller driver will
800  * not make Linux forget about these hard-wired devices.
801  *
802  * Other code can also call this, e.g. a particular add-on board might provide
803  * SPI devices through its expansion connector, so code initializing that board
804  * would naturally declare its SPI devices.
805  *
806  * The board info passed can safely be __initdata ... but be careful of
807  * any embedded pointers (platform_data, etc), they're copied as-is.
808  *
809  * Return: zero on success, else a negative error code.
810  */
811 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
812 {
813 	struct boardinfo *bi;
814 	int i;
815 
816 	if (!n)
817 		return 0;
818 
819 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
820 	if (!bi)
821 		return -ENOMEM;
822 
823 	for (i = 0; i < n; i++, bi++, info++) {
824 		struct spi_controller *ctlr;
825 
826 		memcpy(&bi->board_info, info, sizeof(*info));
827 
828 		mutex_lock(&board_lock);
829 		list_add_tail(&bi->list, &board_list);
830 		list_for_each_entry(ctlr, &spi_controller_list, list)
831 			spi_match_controller_to_boardinfo(ctlr,
832 							  &bi->board_info);
833 		mutex_unlock(&board_lock);
834 	}
835 
836 	return 0;
837 }
838 
839 /*-------------------------------------------------------------------------*/
840 
841 /* Core methods for SPI resource management */
842 
843 /**
844  * spi_res_alloc - allocate a spi resource that is life-cycle managed
845  *                 during the processing of a spi_message while using
846  *                 spi_transfer_one
847  * @spi:     the spi device for which we allocate memory
848  * @release: the release code to execute for this resource
849  * @size:    size to alloc and return
850  * @gfp:     GFP allocation flags
851  *
852  * Return: the pointer to the allocated data
853  *
854  * This may get enhanced in the future to allocate from a memory pool
855  * of the @spi_device or @spi_controller to avoid repeated allocations.
856  */
857 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
858 			   size_t size, gfp_t gfp)
859 {
860 	struct spi_res *sres;
861 
862 	sres = kzalloc(sizeof(*sres) + size, gfp);
863 	if (!sres)
864 		return NULL;
865 
866 	INIT_LIST_HEAD(&sres->entry);
867 	sres->release = release;
868 
869 	return sres->data;
870 }
871 
872 /**
873  * spi_res_free - free an spi resource
874  * @res: pointer to the custom data of a resource
875  */
876 static void spi_res_free(void *res)
877 {
878 	struct spi_res *sres = container_of(res, struct spi_res, data);
879 
880 	if (!res)
881 		return;
882 
883 	WARN_ON(!list_empty(&sres->entry));
884 	kfree(sres);
885 }
886 
887 /**
888  * spi_res_add - add a spi_res to the spi_message
889  * @message: the spi message
890  * @res:     the spi_resource
891  */
892 static void spi_res_add(struct spi_message *message, void *res)
893 {
894 	struct spi_res *sres = container_of(res, struct spi_res, data);
895 
896 	WARN_ON(!list_empty(&sres->entry));
897 	list_add_tail(&sres->entry, &message->resources);
898 }
899 
900 /**
901  * spi_res_release - release all spi resources for this message
902  * @ctlr:  the @spi_controller
903  * @message: the @spi_message
904  */
905 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
906 {
907 	struct spi_res *res, *tmp;
908 
909 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
910 		if (res->release)
911 			res->release(ctlr, message, res->data);
912 
913 		list_del(&res->entry);
914 
915 		kfree(res);
916 	}
917 }
918 
919 /*-------------------------------------------------------------------------*/
920 
921 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
922 {
923 	bool activate = enable;
924 
925 	/*
926 	 * Avoid calling into the driver (or doing delays) if the chip select
927 	 * isn't actually changing from the last time this was called.
928 	 */
929 	if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
930 				(!enable && spi->controller->last_cs != spi->chip_select)) &&
931 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
932 		return;
933 
934 	trace_spi_set_cs(spi, activate);
935 
936 	spi->controller->last_cs = enable ? spi->chip_select : -1;
937 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
938 
939 	if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
940 		spi_delay_exec(&spi->cs_hold, NULL);
941 	}
942 
943 	if (spi->mode & SPI_CS_HIGH)
944 		enable = !enable;
945 
946 	if (spi->cs_gpiod) {
947 		if (!(spi->mode & SPI_NO_CS)) {
948 			/*
949 			 * Historically ACPI has no means of the GPIO polarity and
950 			 * thus the SPISerialBus() resource defines it on the per-chip
951 			 * basis. In order to avoid a chain of negations, the GPIO
952 			 * polarity is considered being Active High. Even for the cases
953 			 * when _DSD() is involved (in the updated versions of ACPI)
954 			 * the GPIO CS polarity must be defined Active High to avoid
955 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
956 			 * into account.
957 			 */
958 			if (has_acpi_companion(&spi->dev))
959 				gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
960 			else
961 				/* Polarity handled by GPIO library */
962 				gpiod_set_value_cansleep(spi->cs_gpiod, activate);
963 		}
964 		/* Some SPI masters need both GPIO CS & slave_select */
965 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
966 		    spi->controller->set_cs)
967 			spi->controller->set_cs(spi, !enable);
968 	} else if (spi->controller->set_cs) {
969 		spi->controller->set_cs(spi, !enable);
970 	}
971 
972 	if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
973 		if (activate)
974 			spi_delay_exec(&spi->cs_setup, NULL);
975 		else
976 			spi_delay_exec(&spi->cs_inactive, NULL);
977 	}
978 }
979 
980 #ifdef CONFIG_HAS_DMA
981 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
982 		struct sg_table *sgt, void *buf, size_t len,
983 		enum dma_data_direction dir)
984 {
985 	const bool vmalloced_buf = is_vmalloc_addr(buf);
986 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
987 #ifdef CONFIG_HIGHMEM
988 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
989 				(unsigned long)buf < (PKMAP_BASE +
990 					(LAST_PKMAP * PAGE_SIZE)));
991 #else
992 	const bool kmap_buf = false;
993 #endif
994 	int desc_len;
995 	int sgs;
996 	struct page *vm_page;
997 	struct scatterlist *sg;
998 	void *sg_buf;
999 	size_t min;
1000 	int i, ret;
1001 
1002 	if (vmalloced_buf || kmap_buf) {
1003 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1004 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1005 	} else if (virt_addr_valid(buf)) {
1006 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1007 		sgs = DIV_ROUND_UP(len, desc_len);
1008 	} else {
1009 		return -EINVAL;
1010 	}
1011 
1012 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1013 	if (ret != 0)
1014 		return ret;
1015 
1016 	sg = &sgt->sgl[0];
1017 	for (i = 0; i < sgs; i++) {
1018 
1019 		if (vmalloced_buf || kmap_buf) {
1020 			/*
1021 			 * Next scatterlist entry size is the minimum between
1022 			 * the desc_len and the remaining buffer length that
1023 			 * fits in a page.
1024 			 */
1025 			min = min_t(size_t, desc_len,
1026 				    min_t(size_t, len,
1027 					  PAGE_SIZE - offset_in_page(buf)));
1028 			if (vmalloced_buf)
1029 				vm_page = vmalloc_to_page(buf);
1030 			else
1031 				vm_page = kmap_to_page(buf);
1032 			if (!vm_page) {
1033 				sg_free_table(sgt);
1034 				return -ENOMEM;
1035 			}
1036 			sg_set_page(sg, vm_page,
1037 				    min, offset_in_page(buf));
1038 		} else {
1039 			min = min_t(size_t, len, desc_len);
1040 			sg_buf = buf;
1041 			sg_set_buf(sg, sg_buf, min);
1042 		}
1043 
1044 		buf += min;
1045 		len -= min;
1046 		sg = sg_next(sg);
1047 	}
1048 
1049 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1050 	if (!ret)
1051 		ret = -ENOMEM;
1052 	if (ret < 0) {
1053 		sg_free_table(sgt);
1054 		return ret;
1055 	}
1056 
1057 	sgt->nents = ret;
1058 
1059 	return 0;
1060 }
1061 
1062 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1063 		   struct sg_table *sgt, enum dma_data_direction dir)
1064 {
1065 	if (sgt->orig_nents) {
1066 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1067 		sg_free_table(sgt);
1068 	}
1069 }
1070 
1071 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1072 {
1073 	struct device *tx_dev, *rx_dev;
1074 	struct spi_transfer *xfer;
1075 	int ret;
1076 
1077 	if (!ctlr->can_dma)
1078 		return 0;
1079 
1080 	if (ctlr->dma_tx)
1081 		tx_dev = ctlr->dma_tx->device->dev;
1082 	else if (ctlr->dma_map_dev)
1083 		tx_dev = ctlr->dma_map_dev;
1084 	else
1085 		tx_dev = ctlr->dev.parent;
1086 
1087 	if (ctlr->dma_rx)
1088 		rx_dev = ctlr->dma_rx->device->dev;
1089 	else if (ctlr->dma_map_dev)
1090 		rx_dev = ctlr->dma_map_dev;
1091 	else
1092 		rx_dev = ctlr->dev.parent;
1093 
1094 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1095 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1096 			continue;
1097 
1098 		if (xfer->tx_buf != NULL) {
1099 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1100 					  (void *)xfer->tx_buf, xfer->len,
1101 					  DMA_TO_DEVICE);
1102 			if (ret != 0)
1103 				return ret;
1104 		}
1105 
1106 		if (xfer->rx_buf != NULL) {
1107 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1108 					  xfer->rx_buf, xfer->len,
1109 					  DMA_FROM_DEVICE);
1110 			if (ret != 0) {
1111 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1112 					      DMA_TO_DEVICE);
1113 				return ret;
1114 			}
1115 		}
1116 	}
1117 
1118 	ctlr->cur_msg_mapped = true;
1119 
1120 	return 0;
1121 }
1122 
1123 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1124 {
1125 	struct spi_transfer *xfer;
1126 	struct device *tx_dev, *rx_dev;
1127 
1128 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1129 		return 0;
1130 
1131 	if (ctlr->dma_tx)
1132 		tx_dev = ctlr->dma_tx->device->dev;
1133 	else if (ctlr->dma_map_dev)
1134 		tx_dev = ctlr->dma_map_dev;
1135 	else
1136 		tx_dev = ctlr->dev.parent;
1137 
1138 	if (ctlr->dma_rx)
1139 		rx_dev = ctlr->dma_rx->device->dev;
1140 	else if (ctlr->dma_map_dev)
1141 		rx_dev = ctlr->dma_map_dev;
1142 	else
1143 		rx_dev = ctlr->dev.parent;
1144 
1145 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1146 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1147 			continue;
1148 
1149 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1150 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1151 	}
1152 
1153 	ctlr->cur_msg_mapped = false;
1154 
1155 	return 0;
1156 }
1157 #else /* !CONFIG_HAS_DMA */
1158 static inline int __spi_map_msg(struct spi_controller *ctlr,
1159 				struct spi_message *msg)
1160 {
1161 	return 0;
1162 }
1163 
1164 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1165 				  struct spi_message *msg)
1166 {
1167 	return 0;
1168 }
1169 #endif /* !CONFIG_HAS_DMA */
1170 
1171 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1172 				struct spi_message *msg)
1173 {
1174 	struct spi_transfer *xfer;
1175 
1176 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1177 		/*
1178 		 * Restore the original value of tx_buf or rx_buf if they are
1179 		 * NULL.
1180 		 */
1181 		if (xfer->tx_buf == ctlr->dummy_tx)
1182 			xfer->tx_buf = NULL;
1183 		if (xfer->rx_buf == ctlr->dummy_rx)
1184 			xfer->rx_buf = NULL;
1185 	}
1186 
1187 	return __spi_unmap_msg(ctlr, msg);
1188 }
1189 
1190 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1191 {
1192 	struct spi_transfer *xfer;
1193 	void *tmp;
1194 	unsigned int max_tx, max_rx;
1195 
1196 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1197 		&& !(msg->spi->mode & SPI_3WIRE)) {
1198 		max_tx = 0;
1199 		max_rx = 0;
1200 
1201 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1202 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1203 			    !xfer->tx_buf)
1204 				max_tx = max(xfer->len, max_tx);
1205 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1206 			    !xfer->rx_buf)
1207 				max_rx = max(xfer->len, max_rx);
1208 		}
1209 
1210 		if (max_tx) {
1211 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1212 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1213 			if (!tmp)
1214 				return -ENOMEM;
1215 			ctlr->dummy_tx = tmp;
1216 		}
1217 
1218 		if (max_rx) {
1219 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1220 				       GFP_KERNEL | GFP_DMA);
1221 			if (!tmp)
1222 				return -ENOMEM;
1223 			ctlr->dummy_rx = tmp;
1224 		}
1225 
1226 		if (max_tx || max_rx) {
1227 			list_for_each_entry(xfer, &msg->transfers,
1228 					    transfer_list) {
1229 				if (!xfer->len)
1230 					continue;
1231 				if (!xfer->tx_buf)
1232 					xfer->tx_buf = ctlr->dummy_tx;
1233 				if (!xfer->rx_buf)
1234 					xfer->rx_buf = ctlr->dummy_rx;
1235 			}
1236 		}
1237 	}
1238 
1239 	return __spi_map_msg(ctlr, msg);
1240 }
1241 
1242 static int spi_transfer_wait(struct spi_controller *ctlr,
1243 			     struct spi_message *msg,
1244 			     struct spi_transfer *xfer)
1245 {
1246 	struct spi_statistics *statm = &ctlr->statistics;
1247 	struct spi_statistics *stats = &msg->spi->statistics;
1248 	u32 speed_hz = xfer->speed_hz;
1249 	unsigned long long ms;
1250 
1251 	if (spi_controller_is_slave(ctlr)) {
1252 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1253 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1254 			return -EINTR;
1255 		}
1256 	} else {
1257 		if (!speed_hz)
1258 			speed_hz = 100000;
1259 
1260 		/*
1261 		 * For each byte we wait for 8 cycles of the SPI clock.
1262 		 * Since speed is defined in Hz and we want milliseconds,
1263 		 * use respective multiplier, but before the division,
1264 		 * otherwise we may get 0 for short transfers.
1265 		 */
1266 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1267 		do_div(ms, speed_hz);
1268 
1269 		/*
1270 		 * Increase it twice and add 200 ms tolerance, use
1271 		 * predefined maximum in case of overflow.
1272 		 */
1273 		ms += ms + 200;
1274 		if (ms > UINT_MAX)
1275 			ms = UINT_MAX;
1276 
1277 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1278 						 msecs_to_jiffies(ms));
1279 
1280 		if (ms == 0) {
1281 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1282 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1283 			dev_err(&msg->spi->dev,
1284 				"SPI transfer timed out\n");
1285 			return -ETIMEDOUT;
1286 		}
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 static void _spi_transfer_delay_ns(u32 ns)
1293 {
1294 	if (!ns)
1295 		return;
1296 	if (ns <= NSEC_PER_USEC) {
1297 		ndelay(ns);
1298 	} else {
1299 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1300 
1301 		if (us <= 10)
1302 			udelay(us);
1303 		else
1304 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1305 	}
1306 }
1307 
1308 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1309 {
1310 	u32 delay = _delay->value;
1311 	u32 unit = _delay->unit;
1312 	u32 hz;
1313 
1314 	if (!delay)
1315 		return 0;
1316 
1317 	switch (unit) {
1318 	case SPI_DELAY_UNIT_USECS:
1319 		delay *= NSEC_PER_USEC;
1320 		break;
1321 	case SPI_DELAY_UNIT_NSECS:
1322 		/* Nothing to do here */
1323 		break;
1324 	case SPI_DELAY_UNIT_SCK:
1325 		/* clock cycles need to be obtained from spi_transfer */
1326 		if (!xfer)
1327 			return -EINVAL;
1328 		/*
1329 		 * If there is unknown effective speed, approximate it
1330 		 * by underestimating with half of the requested hz.
1331 		 */
1332 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1333 		if (!hz)
1334 			return -EINVAL;
1335 
1336 		/* Convert delay to nanoseconds */
1337 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1338 		break;
1339 	default:
1340 		return -EINVAL;
1341 	}
1342 
1343 	return delay;
1344 }
1345 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1346 
1347 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1348 {
1349 	int delay;
1350 
1351 	might_sleep();
1352 
1353 	if (!_delay)
1354 		return -EINVAL;
1355 
1356 	delay = spi_delay_to_ns(_delay, xfer);
1357 	if (delay < 0)
1358 		return delay;
1359 
1360 	_spi_transfer_delay_ns(delay);
1361 
1362 	return 0;
1363 }
1364 EXPORT_SYMBOL_GPL(spi_delay_exec);
1365 
1366 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1367 					  struct spi_transfer *xfer)
1368 {
1369 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1370 	u32 delay = xfer->cs_change_delay.value;
1371 	u32 unit = xfer->cs_change_delay.unit;
1372 	int ret;
1373 
1374 	/* return early on "fast" mode - for everything but USECS */
1375 	if (!delay) {
1376 		if (unit == SPI_DELAY_UNIT_USECS)
1377 			_spi_transfer_delay_ns(default_delay_ns);
1378 		return;
1379 	}
1380 
1381 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1382 	if (ret) {
1383 		dev_err_once(&msg->spi->dev,
1384 			     "Use of unsupported delay unit %i, using default of %luus\n",
1385 			     unit, default_delay_ns / NSEC_PER_USEC);
1386 		_spi_transfer_delay_ns(default_delay_ns);
1387 	}
1388 }
1389 
1390 /*
1391  * spi_transfer_one_message - Default implementation of transfer_one_message()
1392  *
1393  * This is a standard implementation of transfer_one_message() for
1394  * drivers which implement a transfer_one() operation.  It provides
1395  * standard handling of delays and chip select management.
1396  */
1397 static int spi_transfer_one_message(struct spi_controller *ctlr,
1398 				    struct spi_message *msg)
1399 {
1400 	struct spi_transfer *xfer;
1401 	bool keep_cs = false;
1402 	int ret = 0;
1403 	struct spi_statistics *statm = &ctlr->statistics;
1404 	struct spi_statistics *stats = &msg->spi->statistics;
1405 
1406 	spi_set_cs(msg->spi, true, false);
1407 
1408 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1409 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1410 
1411 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1412 		trace_spi_transfer_start(msg, xfer);
1413 
1414 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1415 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1416 
1417 		if (!ctlr->ptp_sts_supported) {
1418 			xfer->ptp_sts_word_pre = 0;
1419 			ptp_read_system_prets(xfer->ptp_sts);
1420 		}
1421 
1422 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1423 			reinit_completion(&ctlr->xfer_completion);
1424 
1425 fallback_pio:
1426 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1427 			if (ret < 0) {
1428 				if (ctlr->cur_msg_mapped &&
1429 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1430 					__spi_unmap_msg(ctlr, msg);
1431 					ctlr->fallback = true;
1432 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1433 					goto fallback_pio;
1434 				}
1435 
1436 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1437 							       errors);
1438 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1439 							       errors);
1440 				dev_err(&msg->spi->dev,
1441 					"SPI transfer failed: %d\n", ret);
1442 				goto out;
1443 			}
1444 
1445 			if (ret > 0) {
1446 				ret = spi_transfer_wait(ctlr, msg, xfer);
1447 				if (ret < 0)
1448 					msg->status = ret;
1449 			}
1450 		} else {
1451 			if (xfer->len)
1452 				dev_err(&msg->spi->dev,
1453 					"Bufferless transfer has length %u\n",
1454 					xfer->len);
1455 		}
1456 
1457 		if (!ctlr->ptp_sts_supported) {
1458 			ptp_read_system_postts(xfer->ptp_sts);
1459 			xfer->ptp_sts_word_post = xfer->len;
1460 		}
1461 
1462 		trace_spi_transfer_stop(msg, xfer);
1463 
1464 		if (msg->status != -EINPROGRESS)
1465 			goto out;
1466 
1467 		spi_transfer_delay_exec(xfer);
1468 
1469 		if (xfer->cs_change) {
1470 			if (list_is_last(&xfer->transfer_list,
1471 					 &msg->transfers)) {
1472 				keep_cs = true;
1473 			} else {
1474 				spi_set_cs(msg->spi, false, false);
1475 				_spi_transfer_cs_change_delay(msg, xfer);
1476 				spi_set_cs(msg->spi, true, false);
1477 			}
1478 		}
1479 
1480 		msg->actual_length += xfer->len;
1481 	}
1482 
1483 out:
1484 	if (ret != 0 || !keep_cs)
1485 		spi_set_cs(msg->spi, false, false);
1486 
1487 	if (msg->status == -EINPROGRESS)
1488 		msg->status = ret;
1489 
1490 	if (msg->status && ctlr->handle_err)
1491 		ctlr->handle_err(ctlr, msg);
1492 
1493 	spi_finalize_current_message(ctlr);
1494 
1495 	return ret;
1496 }
1497 
1498 /**
1499  * spi_finalize_current_transfer - report completion of a transfer
1500  * @ctlr: the controller reporting completion
1501  *
1502  * Called by SPI drivers using the core transfer_one_message()
1503  * implementation to notify it that the current interrupt driven
1504  * transfer has finished and the next one may be scheduled.
1505  */
1506 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1507 {
1508 	complete(&ctlr->xfer_completion);
1509 }
1510 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1511 
1512 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1513 {
1514 	if (ctlr->auto_runtime_pm) {
1515 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1516 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1517 	}
1518 }
1519 
1520 /**
1521  * __spi_pump_messages - function which processes spi message queue
1522  * @ctlr: controller to process queue for
1523  * @in_kthread: true if we are in the context of the message pump thread
1524  *
1525  * This function checks if there is any spi message in the queue that
1526  * needs processing and if so call out to the driver to initialize hardware
1527  * and transfer each message.
1528  *
1529  * Note that it is called both from the kthread itself and also from
1530  * inside spi_sync(); the queue extraction handling at the top of the
1531  * function should deal with this safely.
1532  */
1533 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1534 {
1535 	struct spi_transfer *xfer;
1536 	struct spi_message *msg;
1537 	bool was_busy = false;
1538 	unsigned long flags;
1539 	int ret;
1540 
1541 	/* Lock queue */
1542 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1543 
1544 	/* Make sure we are not already running a message */
1545 	if (ctlr->cur_msg) {
1546 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1547 		return;
1548 	}
1549 
1550 	/* If another context is idling the device then defer */
1551 	if (ctlr->idling) {
1552 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1553 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1554 		return;
1555 	}
1556 
1557 	/* Check if the queue is idle */
1558 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1559 		if (!ctlr->busy) {
1560 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1561 			return;
1562 		}
1563 
1564 		/* Defer any non-atomic teardown to the thread */
1565 		if (!in_kthread) {
1566 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1567 			    !ctlr->unprepare_transfer_hardware) {
1568 				spi_idle_runtime_pm(ctlr);
1569 				ctlr->busy = false;
1570 				trace_spi_controller_idle(ctlr);
1571 			} else {
1572 				kthread_queue_work(ctlr->kworker,
1573 						   &ctlr->pump_messages);
1574 			}
1575 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1576 			return;
1577 		}
1578 
1579 		ctlr->busy = false;
1580 		ctlr->idling = true;
1581 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1582 
1583 		kfree(ctlr->dummy_rx);
1584 		ctlr->dummy_rx = NULL;
1585 		kfree(ctlr->dummy_tx);
1586 		ctlr->dummy_tx = NULL;
1587 		if (ctlr->unprepare_transfer_hardware &&
1588 		    ctlr->unprepare_transfer_hardware(ctlr))
1589 			dev_err(&ctlr->dev,
1590 				"failed to unprepare transfer hardware\n");
1591 		spi_idle_runtime_pm(ctlr);
1592 		trace_spi_controller_idle(ctlr);
1593 
1594 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1595 		ctlr->idling = false;
1596 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1597 		return;
1598 	}
1599 
1600 	/* Extract head of queue */
1601 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1602 	ctlr->cur_msg = msg;
1603 
1604 	list_del_init(&msg->queue);
1605 	if (ctlr->busy)
1606 		was_busy = true;
1607 	else
1608 		ctlr->busy = true;
1609 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1610 
1611 	mutex_lock(&ctlr->io_mutex);
1612 
1613 	if (!was_busy && ctlr->auto_runtime_pm) {
1614 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1615 		if (ret < 0) {
1616 			pm_runtime_put_noidle(ctlr->dev.parent);
1617 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1618 				ret);
1619 			mutex_unlock(&ctlr->io_mutex);
1620 			return;
1621 		}
1622 	}
1623 
1624 	if (!was_busy)
1625 		trace_spi_controller_busy(ctlr);
1626 
1627 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1628 		ret = ctlr->prepare_transfer_hardware(ctlr);
1629 		if (ret) {
1630 			dev_err(&ctlr->dev,
1631 				"failed to prepare transfer hardware: %d\n",
1632 				ret);
1633 
1634 			if (ctlr->auto_runtime_pm)
1635 				pm_runtime_put(ctlr->dev.parent);
1636 
1637 			msg->status = ret;
1638 			spi_finalize_current_message(ctlr);
1639 
1640 			mutex_unlock(&ctlr->io_mutex);
1641 			return;
1642 		}
1643 	}
1644 
1645 	trace_spi_message_start(msg);
1646 
1647 	if (ctlr->prepare_message) {
1648 		ret = ctlr->prepare_message(ctlr, msg);
1649 		if (ret) {
1650 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1651 				ret);
1652 			msg->status = ret;
1653 			spi_finalize_current_message(ctlr);
1654 			goto out;
1655 		}
1656 		ctlr->cur_msg_prepared = true;
1657 	}
1658 
1659 	ret = spi_map_msg(ctlr, msg);
1660 	if (ret) {
1661 		msg->status = ret;
1662 		spi_finalize_current_message(ctlr);
1663 		goto out;
1664 	}
1665 
1666 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1667 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1668 			xfer->ptp_sts_word_pre = 0;
1669 			ptp_read_system_prets(xfer->ptp_sts);
1670 		}
1671 	}
1672 
1673 	ret = ctlr->transfer_one_message(ctlr, msg);
1674 	if (ret) {
1675 		dev_err(&ctlr->dev,
1676 			"failed to transfer one message from queue\n");
1677 		goto out;
1678 	}
1679 
1680 out:
1681 	mutex_unlock(&ctlr->io_mutex);
1682 
1683 	/* Prod the scheduler in case transfer_one() was busy waiting */
1684 	if (!ret)
1685 		cond_resched();
1686 }
1687 
1688 /**
1689  * spi_pump_messages - kthread work function which processes spi message queue
1690  * @work: pointer to kthread work struct contained in the controller struct
1691  */
1692 static void spi_pump_messages(struct kthread_work *work)
1693 {
1694 	struct spi_controller *ctlr =
1695 		container_of(work, struct spi_controller, pump_messages);
1696 
1697 	__spi_pump_messages(ctlr, true);
1698 }
1699 
1700 /**
1701  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1702  * @ctlr: Pointer to the spi_controller structure of the driver
1703  * @xfer: Pointer to the transfer being timestamped
1704  * @progress: How many words (not bytes) have been transferred so far
1705  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1706  *	      transfer, for less jitter in time measurement. Only compatible
1707  *	      with PIO drivers. If true, must follow up with
1708  *	      spi_take_timestamp_post or otherwise system will crash.
1709  *	      WARNING: for fully predictable results, the CPU frequency must
1710  *	      also be under control (governor).
1711  *
1712  * This is a helper for drivers to collect the beginning of the TX timestamp
1713  * for the requested byte from the SPI transfer. The frequency with which this
1714  * function must be called (once per word, once for the whole transfer, once
1715  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1716  * greater than or equal to the requested byte at the time of the call. The
1717  * timestamp is only taken once, at the first such call. It is assumed that
1718  * the driver advances its @tx buffer pointer monotonically.
1719  */
1720 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1721 			    struct spi_transfer *xfer,
1722 			    size_t progress, bool irqs_off)
1723 {
1724 	if (!xfer->ptp_sts)
1725 		return;
1726 
1727 	if (xfer->timestamped)
1728 		return;
1729 
1730 	if (progress > xfer->ptp_sts_word_pre)
1731 		return;
1732 
1733 	/* Capture the resolution of the timestamp */
1734 	xfer->ptp_sts_word_pre = progress;
1735 
1736 	if (irqs_off) {
1737 		local_irq_save(ctlr->irq_flags);
1738 		preempt_disable();
1739 	}
1740 
1741 	ptp_read_system_prets(xfer->ptp_sts);
1742 }
1743 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1744 
1745 /**
1746  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1747  * @ctlr: Pointer to the spi_controller structure of the driver
1748  * @xfer: Pointer to the transfer being timestamped
1749  * @progress: How many words (not bytes) have been transferred so far
1750  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1751  *
1752  * This is a helper for drivers to collect the end of the TX timestamp for
1753  * the requested byte from the SPI transfer. Can be called with an arbitrary
1754  * frequency: only the first call where @tx exceeds or is equal to the
1755  * requested word will be timestamped.
1756  */
1757 void spi_take_timestamp_post(struct spi_controller *ctlr,
1758 			     struct spi_transfer *xfer,
1759 			     size_t progress, bool irqs_off)
1760 {
1761 	if (!xfer->ptp_sts)
1762 		return;
1763 
1764 	if (xfer->timestamped)
1765 		return;
1766 
1767 	if (progress < xfer->ptp_sts_word_post)
1768 		return;
1769 
1770 	ptp_read_system_postts(xfer->ptp_sts);
1771 
1772 	if (irqs_off) {
1773 		local_irq_restore(ctlr->irq_flags);
1774 		preempt_enable();
1775 	}
1776 
1777 	/* Capture the resolution of the timestamp */
1778 	xfer->ptp_sts_word_post = progress;
1779 
1780 	xfer->timestamped = true;
1781 }
1782 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1783 
1784 /**
1785  * spi_set_thread_rt - set the controller to pump at realtime priority
1786  * @ctlr: controller to boost priority of
1787  *
1788  * This can be called because the controller requested realtime priority
1789  * (by setting the ->rt value before calling spi_register_controller()) or
1790  * because a device on the bus said that its transfers needed realtime
1791  * priority.
1792  *
1793  * NOTE: at the moment if any device on a bus says it needs realtime then
1794  * the thread will be at realtime priority for all transfers on that
1795  * controller.  If this eventually becomes a problem we may see if we can
1796  * find a way to boost the priority only temporarily during relevant
1797  * transfers.
1798  */
1799 static void spi_set_thread_rt(struct spi_controller *ctlr)
1800 {
1801 	dev_info(&ctlr->dev,
1802 		"will run message pump with realtime priority\n");
1803 	sched_set_fifo(ctlr->kworker->task);
1804 }
1805 
1806 static int spi_init_queue(struct spi_controller *ctlr)
1807 {
1808 	ctlr->running = false;
1809 	ctlr->busy = false;
1810 
1811 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1812 	if (IS_ERR(ctlr->kworker)) {
1813 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1814 		return PTR_ERR(ctlr->kworker);
1815 	}
1816 
1817 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1818 
1819 	/*
1820 	 * Controller config will indicate if this controller should run the
1821 	 * message pump with high (realtime) priority to reduce the transfer
1822 	 * latency on the bus by minimising the delay between a transfer
1823 	 * request and the scheduling of the message pump thread. Without this
1824 	 * setting the message pump thread will remain at default priority.
1825 	 */
1826 	if (ctlr->rt)
1827 		spi_set_thread_rt(ctlr);
1828 
1829 	return 0;
1830 }
1831 
1832 /**
1833  * spi_get_next_queued_message() - called by driver to check for queued
1834  * messages
1835  * @ctlr: the controller to check for queued messages
1836  *
1837  * If there are more messages in the queue, the next message is returned from
1838  * this call.
1839  *
1840  * Return: the next message in the queue, else NULL if the queue is empty.
1841  */
1842 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1843 {
1844 	struct spi_message *next;
1845 	unsigned long flags;
1846 
1847 	/* get a pointer to the next message, if any */
1848 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1849 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1850 					queue);
1851 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1852 
1853 	return next;
1854 }
1855 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1856 
1857 /**
1858  * spi_finalize_current_message() - the current message is complete
1859  * @ctlr: the controller to return the message to
1860  *
1861  * Called by the driver to notify the core that the message in the front of the
1862  * queue is complete and can be removed from the queue.
1863  */
1864 void spi_finalize_current_message(struct spi_controller *ctlr)
1865 {
1866 	struct spi_transfer *xfer;
1867 	struct spi_message *mesg;
1868 	unsigned long flags;
1869 	int ret;
1870 
1871 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1872 	mesg = ctlr->cur_msg;
1873 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1874 
1875 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1876 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1877 			ptp_read_system_postts(xfer->ptp_sts);
1878 			xfer->ptp_sts_word_post = xfer->len;
1879 		}
1880 	}
1881 
1882 	if (unlikely(ctlr->ptp_sts_supported))
1883 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1884 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1885 
1886 	spi_unmap_msg(ctlr, mesg);
1887 
1888 	/*
1889 	 * In the prepare_messages callback the SPI bus has the opportunity
1890 	 * to split a transfer to smaller chunks.
1891 	 *
1892 	 * Release the split transfers here since spi_map_msg() is done on
1893 	 * the split transfers.
1894 	 */
1895 	spi_res_release(ctlr, mesg);
1896 
1897 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1898 		ret = ctlr->unprepare_message(ctlr, mesg);
1899 		if (ret) {
1900 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1901 				ret);
1902 		}
1903 	}
1904 
1905 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1906 	ctlr->cur_msg = NULL;
1907 	ctlr->cur_msg_prepared = false;
1908 	ctlr->fallback = false;
1909 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1910 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1911 
1912 	trace_spi_message_done(mesg);
1913 
1914 	mesg->state = NULL;
1915 	if (mesg->complete)
1916 		mesg->complete(mesg->context);
1917 }
1918 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1919 
1920 static int spi_start_queue(struct spi_controller *ctlr)
1921 {
1922 	unsigned long flags;
1923 
1924 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1925 
1926 	if (ctlr->running || ctlr->busy) {
1927 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1928 		return -EBUSY;
1929 	}
1930 
1931 	ctlr->running = true;
1932 	ctlr->cur_msg = NULL;
1933 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1934 
1935 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1936 
1937 	return 0;
1938 }
1939 
1940 static int spi_stop_queue(struct spi_controller *ctlr)
1941 {
1942 	unsigned long flags;
1943 	unsigned limit = 500;
1944 	int ret = 0;
1945 
1946 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1947 
1948 	/*
1949 	 * This is a bit lame, but is optimized for the common execution path.
1950 	 * A wait_queue on the ctlr->busy could be used, but then the common
1951 	 * execution path (pump_messages) would be required to call wake_up or
1952 	 * friends on every SPI message. Do this instead.
1953 	 */
1954 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1955 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1956 		usleep_range(10000, 11000);
1957 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1958 	}
1959 
1960 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1961 		ret = -EBUSY;
1962 	else
1963 		ctlr->running = false;
1964 
1965 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1966 
1967 	if (ret) {
1968 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1969 		return ret;
1970 	}
1971 	return ret;
1972 }
1973 
1974 static int spi_destroy_queue(struct spi_controller *ctlr)
1975 {
1976 	int ret;
1977 
1978 	ret = spi_stop_queue(ctlr);
1979 
1980 	/*
1981 	 * kthread_flush_worker will block until all work is done.
1982 	 * If the reason that stop_queue timed out is that the work will never
1983 	 * finish, then it does no good to call flush/stop thread, so
1984 	 * return anyway.
1985 	 */
1986 	if (ret) {
1987 		dev_err(&ctlr->dev, "problem destroying queue\n");
1988 		return ret;
1989 	}
1990 
1991 	kthread_destroy_worker(ctlr->kworker);
1992 
1993 	return 0;
1994 }
1995 
1996 static int __spi_queued_transfer(struct spi_device *spi,
1997 				 struct spi_message *msg,
1998 				 bool need_pump)
1999 {
2000 	struct spi_controller *ctlr = spi->controller;
2001 	unsigned long flags;
2002 
2003 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2004 
2005 	if (!ctlr->running) {
2006 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2007 		return -ESHUTDOWN;
2008 	}
2009 	msg->actual_length = 0;
2010 	msg->status = -EINPROGRESS;
2011 
2012 	list_add_tail(&msg->queue, &ctlr->queue);
2013 	if (!ctlr->busy && need_pump)
2014 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2015 
2016 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2017 	return 0;
2018 }
2019 
2020 /**
2021  * spi_queued_transfer - transfer function for queued transfers
2022  * @spi: spi device which is requesting transfer
2023  * @msg: spi message which is to handled is queued to driver queue
2024  *
2025  * Return: zero on success, else a negative error code.
2026  */
2027 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2028 {
2029 	return __spi_queued_transfer(spi, msg, true);
2030 }
2031 
2032 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2033 {
2034 	int ret;
2035 
2036 	ctlr->transfer = spi_queued_transfer;
2037 	if (!ctlr->transfer_one_message)
2038 		ctlr->transfer_one_message = spi_transfer_one_message;
2039 
2040 	/* Initialize and start queue */
2041 	ret = spi_init_queue(ctlr);
2042 	if (ret) {
2043 		dev_err(&ctlr->dev, "problem initializing queue\n");
2044 		goto err_init_queue;
2045 	}
2046 	ctlr->queued = true;
2047 	ret = spi_start_queue(ctlr);
2048 	if (ret) {
2049 		dev_err(&ctlr->dev, "problem starting queue\n");
2050 		goto err_start_queue;
2051 	}
2052 
2053 	return 0;
2054 
2055 err_start_queue:
2056 	spi_destroy_queue(ctlr);
2057 err_init_queue:
2058 	return ret;
2059 }
2060 
2061 /**
2062  * spi_flush_queue - Send all pending messages in the queue from the callers'
2063  *		     context
2064  * @ctlr: controller to process queue for
2065  *
2066  * This should be used when one wants to ensure all pending messages have been
2067  * sent before doing something. Is used by the spi-mem code to make sure SPI
2068  * memory operations do not preempt regular SPI transfers that have been queued
2069  * before the spi-mem operation.
2070  */
2071 void spi_flush_queue(struct spi_controller *ctlr)
2072 {
2073 	if (ctlr->transfer == spi_queued_transfer)
2074 		__spi_pump_messages(ctlr, false);
2075 }
2076 
2077 /*-------------------------------------------------------------------------*/
2078 
2079 #if defined(CONFIG_OF)
2080 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2081 			   struct device_node *nc)
2082 {
2083 	u32 value;
2084 	int rc;
2085 
2086 	/* Mode (clock phase/polarity/etc.) */
2087 	if (of_property_read_bool(nc, "spi-cpha"))
2088 		spi->mode |= SPI_CPHA;
2089 	if (of_property_read_bool(nc, "spi-cpol"))
2090 		spi->mode |= SPI_CPOL;
2091 	if (of_property_read_bool(nc, "spi-3wire"))
2092 		spi->mode |= SPI_3WIRE;
2093 	if (of_property_read_bool(nc, "spi-lsb-first"))
2094 		spi->mode |= SPI_LSB_FIRST;
2095 	if (of_property_read_bool(nc, "spi-cs-high"))
2096 		spi->mode |= SPI_CS_HIGH;
2097 
2098 	/* Device DUAL/QUAD mode */
2099 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2100 		switch (value) {
2101 		case 0:
2102 			spi->mode |= SPI_NO_TX;
2103 			break;
2104 		case 1:
2105 			break;
2106 		case 2:
2107 			spi->mode |= SPI_TX_DUAL;
2108 			break;
2109 		case 4:
2110 			spi->mode |= SPI_TX_QUAD;
2111 			break;
2112 		case 8:
2113 			spi->mode |= SPI_TX_OCTAL;
2114 			break;
2115 		default:
2116 			dev_warn(&ctlr->dev,
2117 				"spi-tx-bus-width %d not supported\n",
2118 				value);
2119 			break;
2120 		}
2121 	}
2122 
2123 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2124 		switch (value) {
2125 		case 0:
2126 			spi->mode |= SPI_NO_RX;
2127 			break;
2128 		case 1:
2129 			break;
2130 		case 2:
2131 			spi->mode |= SPI_RX_DUAL;
2132 			break;
2133 		case 4:
2134 			spi->mode |= SPI_RX_QUAD;
2135 			break;
2136 		case 8:
2137 			spi->mode |= SPI_RX_OCTAL;
2138 			break;
2139 		default:
2140 			dev_warn(&ctlr->dev,
2141 				"spi-rx-bus-width %d not supported\n",
2142 				value);
2143 			break;
2144 		}
2145 	}
2146 
2147 	if (spi_controller_is_slave(ctlr)) {
2148 		if (!of_node_name_eq(nc, "slave")) {
2149 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2150 				nc);
2151 			return -EINVAL;
2152 		}
2153 		return 0;
2154 	}
2155 
2156 	/* Device address */
2157 	rc = of_property_read_u32(nc, "reg", &value);
2158 	if (rc) {
2159 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2160 			nc, rc);
2161 		return rc;
2162 	}
2163 	spi->chip_select = value;
2164 
2165 	/* Device speed */
2166 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2167 		spi->max_speed_hz = value;
2168 
2169 	return 0;
2170 }
2171 
2172 static struct spi_device *
2173 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2174 {
2175 	struct spi_device *spi;
2176 	int rc;
2177 
2178 	/* Alloc an spi_device */
2179 	spi = spi_alloc_device(ctlr);
2180 	if (!spi) {
2181 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2182 		rc = -ENOMEM;
2183 		goto err_out;
2184 	}
2185 
2186 	/* Select device driver */
2187 	rc = of_modalias_node(nc, spi->modalias,
2188 				sizeof(spi->modalias));
2189 	if (rc < 0) {
2190 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2191 		goto err_out;
2192 	}
2193 
2194 	rc = of_spi_parse_dt(ctlr, spi, nc);
2195 	if (rc)
2196 		goto err_out;
2197 
2198 	/* Store a pointer to the node in the device structure */
2199 	of_node_get(nc);
2200 	spi->dev.of_node = nc;
2201 	spi->dev.fwnode = of_fwnode_handle(nc);
2202 
2203 	/* Register the new device */
2204 	rc = spi_add_device(spi);
2205 	if (rc) {
2206 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2207 		goto err_of_node_put;
2208 	}
2209 
2210 	return spi;
2211 
2212 err_of_node_put:
2213 	of_node_put(nc);
2214 err_out:
2215 	spi_dev_put(spi);
2216 	return ERR_PTR(rc);
2217 }
2218 
2219 /**
2220  * of_register_spi_devices() - Register child devices onto the SPI bus
2221  * @ctlr:	Pointer to spi_controller device
2222  *
2223  * Registers an spi_device for each child node of controller node which
2224  * represents a valid SPI slave.
2225  */
2226 static void of_register_spi_devices(struct spi_controller *ctlr)
2227 {
2228 	struct spi_device *spi;
2229 	struct device_node *nc;
2230 
2231 	if (!ctlr->dev.of_node)
2232 		return;
2233 
2234 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2235 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2236 			continue;
2237 		spi = of_register_spi_device(ctlr, nc);
2238 		if (IS_ERR(spi)) {
2239 			dev_warn(&ctlr->dev,
2240 				 "Failed to create SPI device for %pOF\n", nc);
2241 			of_node_clear_flag(nc, OF_POPULATED);
2242 		}
2243 	}
2244 }
2245 #else
2246 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2247 #endif
2248 
2249 /**
2250  * spi_new_ancillary_device() - Register ancillary SPI device
2251  * @spi:         Pointer to the main SPI device registering the ancillary device
2252  * @chip_select: Chip Select of the ancillary device
2253  *
2254  * Register an ancillary SPI device; for example some chips have a chip-select
2255  * for normal device usage and another one for setup/firmware upload.
2256  *
2257  * This may only be called from main SPI device's probe routine.
2258  *
2259  * Return: 0 on success; negative errno on failure
2260  */
2261 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2262 					     u8 chip_select)
2263 {
2264 	struct spi_device *ancillary;
2265 	int rc = 0;
2266 
2267 	/* Alloc an spi_device */
2268 	ancillary = spi_alloc_device(spi->controller);
2269 	if (!ancillary) {
2270 		rc = -ENOMEM;
2271 		goto err_out;
2272 	}
2273 
2274 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2275 
2276 	/* Use provided chip-select for ancillary device */
2277 	ancillary->chip_select = chip_select;
2278 
2279 	/* Take over SPI mode/speed from SPI main device */
2280 	ancillary->max_speed_hz = spi->max_speed_hz;
2281 	ancillary->mode = spi->mode;
2282 
2283 	/* Register the new device */
2284 	rc = spi_add_device_locked(ancillary);
2285 	if (rc) {
2286 		dev_err(&spi->dev, "failed to register ancillary device\n");
2287 		goto err_out;
2288 	}
2289 
2290 	return ancillary;
2291 
2292 err_out:
2293 	spi_dev_put(ancillary);
2294 	return ERR_PTR(rc);
2295 }
2296 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2297 
2298 #ifdef CONFIG_ACPI
2299 struct acpi_spi_lookup {
2300 	struct spi_controller 	*ctlr;
2301 	u32			max_speed_hz;
2302 	u32			mode;
2303 	int			irq;
2304 	u8			bits_per_word;
2305 	u8			chip_select;
2306 	int			n;
2307 	int			index;
2308 };
2309 
2310 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2311 {
2312 	struct acpi_resource_spi_serialbus *sb;
2313 	int *count = data;
2314 
2315 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2316 		return 1;
2317 
2318 	sb = &ares->data.spi_serial_bus;
2319 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2320 		return 1;
2321 
2322 	*count = *count + 1;
2323 
2324 	return 1;
2325 }
2326 
2327 /**
2328  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2329  * @adev:	ACPI device
2330  *
2331  * Returns the number of SpiSerialBus resources in the ACPI-device's
2332  * resource-list; or a negative error code.
2333  */
2334 int acpi_spi_count_resources(struct acpi_device *adev)
2335 {
2336 	LIST_HEAD(r);
2337 	int count = 0;
2338 	int ret;
2339 
2340 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2341 	if (ret < 0)
2342 		return ret;
2343 
2344 	acpi_dev_free_resource_list(&r);
2345 
2346 	return count;
2347 }
2348 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2349 
2350 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2351 					    struct acpi_spi_lookup *lookup)
2352 {
2353 	const union acpi_object *obj;
2354 
2355 	if (!x86_apple_machine)
2356 		return;
2357 
2358 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2359 	    && obj->buffer.length >= 4)
2360 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2361 
2362 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2363 	    && obj->buffer.length == 8)
2364 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2365 
2366 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2367 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2368 		lookup->mode |= SPI_LSB_FIRST;
2369 
2370 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2371 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2372 		lookup->mode |= SPI_CPOL;
2373 
2374 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2375 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2376 		lookup->mode |= SPI_CPHA;
2377 }
2378 
2379 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2380 
2381 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2382 {
2383 	struct acpi_spi_lookup *lookup = data;
2384 	struct spi_controller *ctlr = lookup->ctlr;
2385 
2386 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2387 		struct acpi_resource_spi_serialbus *sb;
2388 		acpi_handle parent_handle;
2389 		acpi_status status;
2390 
2391 		sb = &ares->data.spi_serial_bus;
2392 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2393 
2394 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2395 				return 1;
2396 
2397 			if (lookup->index == -1 && !ctlr)
2398 				return -ENODEV;
2399 
2400 			status = acpi_get_handle(NULL,
2401 						 sb->resource_source.string_ptr,
2402 						 &parent_handle);
2403 
2404 			if (ACPI_FAILURE(status))
2405 				return -ENODEV;
2406 
2407 			if (ctlr) {
2408 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2409 					return -ENODEV;
2410 			} else {
2411 				struct acpi_device *adev;
2412 
2413 				adev = acpi_fetch_acpi_dev(parent_handle);
2414 				if (!adev)
2415 					return -ENODEV;
2416 
2417 				ctlr = acpi_spi_find_controller_by_adev(adev);
2418 				if (!ctlr)
2419 					return -ENODEV;
2420 
2421 				lookup->ctlr = ctlr;
2422 			}
2423 
2424 			/*
2425 			 * ACPI DeviceSelection numbering is handled by the
2426 			 * host controller driver in Windows and can vary
2427 			 * from driver to driver. In Linux we always expect
2428 			 * 0 .. max - 1 so we need to ask the driver to
2429 			 * translate between the two schemes.
2430 			 */
2431 			if (ctlr->fw_translate_cs) {
2432 				int cs = ctlr->fw_translate_cs(ctlr,
2433 						sb->device_selection);
2434 				if (cs < 0)
2435 					return cs;
2436 				lookup->chip_select = cs;
2437 			} else {
2438 				lookup->chip_select = sb->device_selection;
2439 			}
2440 
2441 			lookup->max_speed_hz = sb->connection_speed;
2442 			lookup->bits_per_word = sb->data_bit_length;
2443 
2444 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2445 				lookup->mode |= SPI_CPHA;
2446 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2447 				lookup->mode |= SPI_CPOL;
2448 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2449 				lookup->mode |= SPI_CS_HIGH;
2450 		}
2451 	} else if (lookup->irq < 0) {
2452 		struct resource r;
2453 
2454 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2455 			lookup->irq = r.start;
2456 	}
2457 
2458 	/* Always tell the ACPI core to skip this resource */
2459 	return 1;
2460 }
2461 
2462 /**
2463  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2464  * @ctlr: controller to which the spi device belongs
2465  * @adev: ACPI Device for the spi device
2466  * @index: Index of the spi resource inside the ACPI Node
2467  *
2468  * This should be used to allocate a new spi device from and ACPI Node.
2469  * The caller is responsible for calling spi_add_device to register the spi device.
2470  *
2471  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2472  * using the resource.
2473  * If index is set to -1, index is not used.
2474  * Note: If index is -1, ctlr must be set.
2475  *
2476  * Return: a pointer to the new device, or ERR_PTR on error.
2477  */
2478 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2479 					 struct acpi_device *adev,
2480 					 int index)
2481 {
2482 	acpi_handle parent_handle = NULL;
2483 	struct list_head resource_list;
2484 	struct acpi_spi_lookup lookup = {};
2485 	struct spi_device *spi;
2486 	int ret;
2487 
2488 	if (!ctlr && index == -1)
2489 		return ERR_PTR(-EINVAL);
2490 
2491 	lookup.ctlr		= ctlr;
2492 	lookup.irq		= -1;
2493 	lookup.index		= index;
2494 	lookup.n		= 0;
2495 
2496 	INIT_LIST_HEAD(&resource_list);
2497 	ret = acpi_dev_get_resources(adev, &resource_list,
2498 				     acpi_spi_add_resource, &lookup);
2499 	acpi_dev_free_resource_list(&resource_list);
2500 
2501 	if (ret < 0)
2502 		/* found SPI in _CRS but it points to another controller */
2503 		return ERR_PTR(-ENODEV);
2504 
2505 	if (!lookup.max_speed_hz &&
2506 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2507 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2508 		/* Apple does not use _CRS but nested devices for SPI slaves */
2509 		acpi_spi_parse_apple_properties(adev, &lookup);
2510 	}
2511 
2512 	if (!lookup.max_speed_hz)
2513 		return ERR_PTR(-ENODEV);
2514 
2515 	spi = spi_alloc_device(lookup.ctlr);
2516 	if (!spi) {
2517 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2518 			dev_name(&adev->dev));
2519 		return ERR_PTR(-ENOMEM);
2520 	}
2521 
2522 	ACPI_COMPANION_SET(&spi->dev, adev);
2523 	spi->max_speed_hz	= lookup.max_speed_hz;
2524 	spi->mode		|= lookup.mode;
2525 	spi->irq		= lookup.irq;
2526 	spi->bits_per_word	= lookup.bits_per_word;
2527 	spi->chip_select	= lookup.chip_select;
2528 
2529 	return spi;
2530 }
2531 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2532 
2533 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2534 					    struct acpi_device *adev)
2535 {
2536 	struct spi_device *spi;
2537 
2538 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2539 	    acpi_device_enumerated(adev))
2540 		return AE_OK;
2541 
2542 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2543 	if (IS_ERR(spi)) {
2544 		if (PTR_ERR(spi) == -ENOMEM)
2545 			return AE_NO_MEMORY;
2546 		else
2547 			return AE_OK;
2548 	}
2549 
2550 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2551 			  sizeof(spi->modalias));
2552 
2553 	if (spi->irq < 0)
2554 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2555 
2556 	acpi_device_set_enumerated(adev);
2557 
2558 	adev->power.flags.ignore_parent = true;
2559 	if (spi_add_device(spi)) {
2560 		adev->power.flags.ignore_parent = false;
2561 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2562 			dev_name(&adev->dev));
2563 		spi_dev_put(spi);
2564 	}
2565 
2566 	return AE_OK;
2567 }
2568 
2569 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2570 				       void *data, void **return_value)
2571 {
2572 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2573 	struct spi_controller *ctlr = data;
2574 
2575 	if (!adev)
2576 		return AE_OK;
2577 
2578 	return acpi_register_spi_device(ctlr, adev);
2579 }
2580 
2581 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2582 
2583 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2584 {
2585 	acpi_status status;
2586 	acpi_handle handle;
2587 
2588 	handle = ACPI_HANDLE(ctlr->dev.parent);
2589 	if (!handle)
2590 		return;
2591 
2592 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2593 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2594 				     acpi_spi_add_device, NULL, ctlr, NULL);
2595 	if (ACPI_FAILURE(status))
2596 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2597 }
2598 #else
2599 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2600 #endif /* CONFIG_ACPI */
2601 
2602 static void spi_controller_release(struct device *dev)
2603 {
2604 	struct spi_controller *ctlr;
2605 
2606 	ctlr = container_of(dev, struct spi_controller, dev);
2607 	kfree(ctlr);
2608 }
2609 
2610 static struct class spi_master_class = {
2611 	.name		= "spi_master",
2612 	.owner		= THIS_MODULE,
2613 	.dev_release	= spi_controller_release,
2614 	.dev_groups	= spi_master_groups,
2615 };
2616 
2617 #ifdef CONFIG_SPI_SLAVE
2618 /**
2619  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2620  *		     controller
2621  * @spi: device used for the current transfer
2622  */
2623 int spi_slave_abort(struct spi_device *spi)
2624 {
2625 	struct spi_controller *ctlr = spi->controller;
2626 
2627 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2628 		return ctlr->slave_abort(ctlr);
2629 
2630 	return -ENOTSUPP;
2631 }
2632 EXPORT_SYMBOL_GPL(spi_slave_abort);
2633 
2634 static int match_true(struct device *dev, void *data)
2635 {
2636 	return 1;
2637 }
2638 
2639 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2640 			  char *buf)
2641 {
2642 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2643 						   dev);
2644 	struct device *child;
2645 
2646 	child = device_find_child(&ctlr->dev, NULL, match_true);
2647 	return sprintf(buf, "%s\n",
2648 		       child ? to_spi_device(child)->modalias : NULL);
2649 }
2650 
2651 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2652 			   const char *buf, size_t count)
2653 {
2654 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2655 						   dev);
2656 	struct spi_device *spi;
2657 	struct device *child;
2658 	char name[32];
2659 	int rc;
2660 
2661 	rc = sscanf(buf, "%31s", name);
2662 	if (rc != 1 || !name[0])
2663 		return -EINVAL;
2664 
2665 	child = device_find_child(&ctlr->dev, NULL, match_true);
2666 	if (child) {
2667 		/* Remove registered slave */
2668 		device_unregister(child);
2669 		put_device(child);
2670 	}
2671 
2672 	if (strcmp(name, "(null)")) {
2673 		/* Register new slave */
2674 		spi = spi_alloc_device(ctlr);
2675 		if (!spi)
2676 			return -ENOMEM;
2677 
2678 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2679 
2680 		rc = spi_add_device(spi);
2681 		if (rc) {
2682 			spi_dev_put(spi);
2683 			return rc;
2684 		}
2685 	}
2686 
2687 	return count;
2688 }
2689 
2690 static DEVICE_ATTR_RW(slave);
2691 
2692 static struct attribute *spi_slave_attrs[] = {
2693 	&dev_attr_slave.attr,
2694 	NULL,
2695 };
2696 
2697 static const struct attribute_group spi_slave_group = {
2698 	.attrs = spi_slave_attrs,
2699 };
2700 
2701 static const struct attribute_group *spi_slave_groups[] = {
2702 	&spi_controller_statistics_group,
2703 	&spi_slave_group,
2704 	NULL,
2705 };
2706 
2707 static struct class spi_slave_class = {
2708 	.name		= "spi_slave",
2709 	.owner		= THIS_MODULE,
2710 	.dev_release	= spi_controller_release,
2711 	.dev_groups	= spi_slave_groups,
2712 };
2713 #else
2714 extern struct class spi_slave_class;	/* dummy */
2715 #endif
2716 
2717 /**
2718  * __spi_alloc_controller - allocate an SPI master or slave controller
2719  * @dev: the controller, possibly using the platform_bus
2720  * @size: how much zeroed driver-private data to allocate; the pointer to this
2721  *	memory is in the driver_data field of the returned device, accessible
2722  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2723  *	drivers granting DMA access to portions of their private data need to
2724  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2725  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2726  *	slave (true) controller
2727  * Context: can sleep
2728  *
2729  * This call is used only by SPI controller drivers, which are the
2730  * only ones directly touching chip registers.  It's how they allocate
2731  * an spi_controller structure, prior to calling spi_register_controller().
2732  *
2733  * This must be called from context that can sleep.
2734  *
2735  * The caller is responsible for assigning the bus number and initializing the
2736  * controller's methods before calling spi_register_controller(); and (after
2737  * errors adding the device) calling spi_controller_put() to prevent a memory
2738  * leak.
2739  *
2740  * Return: the SPI controller structure on success, else NULL.
2741  */
2742 struct spi_controller *__spi_alloc_controller(struct device *dev,
2743 					      unsigned int size, bool slave)
2744 {
2745 	struct spi_controller	*ctlr;
2746 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2747 
2748 	if (!dev)
2749 		return NULL;
2750 
2751 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2752 	if (!ctlr)
2753 		return NULL;
2754 
2755 	device_initialize(&ctlr->dev);
2756 	INIT_LIST_HEAD(&ctlr->queue);
2757 	spin_lock_init(&ctlr->queue_lock);
2758 	spin_lock_init(&ctlr->bus_lock_spinlock);
2759 	mutex_init(&ctlr->bus_lock_mutex);
2760 	mutex_init(&ctlr->io_mutex);
2761 	mutex_init(&ctlr->add_lock);
2762 	ctlr->bus_num = -1;
2763 	ctlr->num_chipselect = 1;
2764 	ctlr->slave = slave;
2765 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2766 		ctlr->dev.class = &spi_slave_class;
2767 	else
2768 		ctlr->dev.class = &spi_master_class;
2769 	ctlr->dev.parent = dev;
2770 	pm_suspend_ignore_children(&ctlr->dev, true);
2771 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2772 
2773 	return ctlr;
2774 }
2775 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2776 
2777 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2778 {
2779 	spi_controller_put(*(struct spi_controller **)ctlr);
2780 }
2781 
2782 /**
2783  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2784  * @dev: physical device of SPI controller
2785  * @size: how much zeroed driver-private data to allocate
2786  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2787  * Context: can sleep
2788  *
2789  * Allocate an SPI controller and automatically release a reference on it
2790  * when @dev is unbound from its driver.  Drivers are thus relieved from
2791  * having to call spi_controller_put().
2792  *
2793  * The arguments to this function are identical to __spi_alloc_controller().
2794  *
2795  * Return: the SPI controller structure on success, else NULL.
2796  */
2797 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2798 						   unsigned int size,
2799 						   bool slave)
2800 {
2801 	struct spi_controller **ptr, *ctlr;
2802 
2803 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2804 			   GFP_KERNEL);
2805 	if (!ptr)
2806 		return NULL;
2807 
2808 	ctlr = __spi_alloc_controller(dev, size, slave);
2809 	if (ctlr) {
2810 		ctlr->devm_allocated = true;
2811 		*ptr = ctlr;
2812 		devres_add(dev, ptr);
2813 	} else {
2814 		devres_free(ptr);
2815 	}
2816 
2817 	return ctlr;
2818 }
2819 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2820 
2821 /**
2822  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2823  * @ctlr: The SPI master to grab GPIO descriptors for
2824  */
2825 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2826 {
2827 	int nb, i;
2828 	struct gpio_desc **cs;
2829 	struct device *dev = &ctlr->dev;
2830 	unsigned long native_cs_mask = 0;
2831 	unsigned int num_cs_gpios = 0;
2832 
2833 	nb = gpiod_count(dev, "cs");
2834 	if (nb < 0) {
2835 		/* No GPIOs at all is fine, else return the error */
2836 		if (nb == -ENOENT)
2837 			return 0;
2838 		return nb;
2839 	}
2840 
2841 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2842 
2843 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2844 			  GFP_KERNEL);
2845 	if (!cs)
2846 		return -ENOMEM;
2847 	ctlr->cs_gpiods = cs;
2848 
2849 	for (i = 0; i < nb; i++) {
2850 		/*
2851 		 * Most chipselects are active low, the inverted
2852 		 * semantics are handled by special quirks in gpiolib,
2853 		 * so initializing them GPIOD_OUT_LOW here means
2854 		 * "unasserted", in most cases this will drive the physical
2855 		 * line high.
2856 		 */
2857 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2858 						      GPIOD_OUT_LOW);
2859 		if (IS_ERR(cs[i]))
2860 			return PTR_ERR(cs[i]);
2861 
2862 		if (cs[i]) {
2863 			/*
2864 			 * If we find a CS GPIO, name it after the device and
2865 			 * chip select line.
2866 			 */
2867 			char *gpioname;
2868 
2869 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2870 						  dev_name(dev), i);
2871 			if (!gpioname)
2872 				return -ENOMEM;
2873 			gpiod_set_consumer_name(cs[i], gpioname);
2874 			num_cs_gpios++;
2875 			continue;
2876 		}
2877 
2878 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2879 			dev_err(dev, "Invalid native chip select %d\n", i);
2880 			return -EINVAL;
2881 		}
2882 		native_cs_mask |= BIT(i);
2883 	}
2884 
2885 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2886 
2887 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2888 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2889 		dev_err(dev, "No unused native chip select available\n");
2890 		return -EINVAL;
2891 	}
2892 
2893 	return 0;
2894 }
2895 
2896 static int spi_controller_check_ops(struct spi_controller *ctlr)
2897 {
2898 	/*
2899 	 * The controller may implement only the high-level SPI-memory like
2900 	 * operations if it does not support regular SPI transfers, and this is
2901 	 * valid use case.
2902 	 * If ->mem_ops is NULL, we request that at least one of the
2903 	 * ->transfer_xxx() method be implemented.
2904 	 */
2905 	if (ctlr->mem_ops) {
2906 		if (!ctlr->mem_ops->exec_op)
2907 			return -EINVAL;
2908 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2909 		   !ctlr->transfer_one_message) {
2910 		return -EINVAL;
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 /**
2917  * spi_register_controller - register SPI master or slave controller
2918  * @ctlr: initialized master, originally from spi_alloc_master() or
2919  *	spi_alloc_slave()
2920  * Context: can sleep
2921  *
2922  * SPI controllers connect to their drivers using some non-SPI bus,
2923  * such as the platform bus.  The final stage of probe() in that code
2924  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2925  *
2926  * SPI controllers use board specific (often SOC specific) bus numbers,
2927  * and board-specific addressing for SPI devices combines those numbers
2928  * with chip select numbers.  Since SPI does not directly support dynamic
2929  * device identification, boards need configuration tables telling which
2930  * chip is at which address.
2931  *
2932  * This must be called from context that can sleep.  It returns zero on
2933  * success, else a negative error code (dropping the controller's refcount).
2934  * After a successful return, the caller is responsible for calling
2935  * spi_unregister_controller().
2936  *
2937  * Return: zero on success, else a negative error code.
2938  */
2939 int spi_register_controller(struct spi_controller *ctlr)
2940 {
2941 	struct device		*dev = ctlr->dev.parent;
2942 	struct boardinfo	*bi;
2943 	int			status;
2944 	int			id, first_dynamic;
2945 
2946 	if (!dev)
2947 		return -ENODEV;
2948 
2949 	/*
2950 	 * Make sure all necessary hooks are implemented before registering
2951 	 * the SPI controller.
2952 	 */
2953 	status = spi_controller_check_ops(ctlr);
2954 	if (status)
2955 		return status;
2956 
2957 	if (ctlr->bus_num >= 0) {
2958 		/* devices with a fixed bus num must check-in with the num */
2959 		mutex_lock(&board_lock);
2960 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2961 			ctlr->bus_num + 1, GFP_KERNEL);
2962 		mutex_unlock(&board_lock);
2963 		if (WARN(id < 0, "couldn't get idr"))
2964 			return id == -ENOSPC ? -EBUSY : id;
2965 		ctlr->bus_num = id;
2966 	} else if (ctlr->dev.of_node) {
2967 		/* allocate dynamic bus number using Linux idr */
2968 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2969 		if (id >= 0) {
2970 			ctlr->bus_num = id;
2971 			mutex_lock(&board_lock);
2972 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2973 				       ctlr->bus_num + 1, GFP_KERNEL);
2974 			mutex_unlock(&board_lock);
2975 			if (WARN(id < 0, "couldn't get idr"))
2976 				return id == -ENOSPC ? -EBUSY : id;
2977 		}
2978 	}
2979 	if (ctlr->bus_num < 0) {
2980 		first_dynamic = of_alias_get_highest_id("spi");
2981 		if (first_dynamic < 0)
2982 			first_dynamic = 0;
2983 		else
2984 			first_dynamic++;
2985 
2986 		mutex_lock(&board_lock);
2987 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2988 			       0, GFP_KERNEL);
2989 		mutex_unlock(&board_lock);
2990 		if (WARN(id < 0, "couldn't get idr"))
2991 			return id;
2992 		ctlr->bus_num = id;
2993 	}
2994 	ctlr->bus_lock_flag = 0;
2995 	init_completion(&ctlr->xfer_completion);
2996 	if (!ctlr->max_dma_len)
2997 		ctlr->max_dma_len = INT_MAX;
2998 
2999 	/*
3000 	 * Register the device, then userspace will see it.
3001 	 * Registration fails if the bus ID is in use.
3002 	 */
3003 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3004 
3005 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3006 		status = spi_get_gpio_descs(ctlr);
3007 		if (status)
3008 			goto free_bus_id;
3009 		/*
3010 		 * A controller using GPIO descriptors always
3011 		 * supports SPI_CS_HIGH if need be.
3012 		 */
3013 		ctlr->mode_bits |= SPI_CS_HIGH;
3014 	}
3015 
3016 	/*
3017 	 * Even if it's just one always-selected device, there must
3018 	 * be at least one chipselect.
3019 	 */
3020 	if (!ctlr->num_chipselect) {
3021 		status = -EINVAL;
3022 		goto free_bus_id;
3023 	}
3024 
3025 	/* setting last_cs to -1 means no chip selected */
3026 	ctlr->last_cs = -1;
3027 
3028 	status = device_add(&ctlr->dev);
3029 	if (status < 0)
3030 		goto free_bus_id;
3031 	dev_dbg(dev, "registered %s %s\n",
3032 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3033 			dev_name(&ctlr->dev));
3034 
3035 	/*
3036 	 * If we're using a queued driver, start the queue. Note that we don't
3037 	 * need the queueing logic if the driver is only supporting high-level
3038 	 * memory operations.
3039 	 */
3040 	if (ctlr->transfer) {
3041 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3042 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3043 		status = spi_controller_initialize_queue(ctlr);
3044 		if (status) {
3045 			device_del(&ctlr->dev);
3046 			goto free_bus_id;
3047 		}
3048 	}
3049 	/* add statistics */
3050 	spin_lock_init(&ctlr->statistics.lock);
3051 
3052 	mutex_lock(&board_lock);
3053 	list_add_tail(&ctlr->list, &spi_controller_list);
3054 	list_for_each_entry(bi, &board_list, list)
3055 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3056 	mutex_unlock(&board_lock);
3057 
3058 	/* Register devices from the device tree and ACPI */
3059 	of_register_spi_devices(ctlr);
3060 	acpi_register_spi_devices(ctlr);
3061 	return status;
3062 
3063 free_bus_id:
3064 	mutex_lock(&board_lock);
3065 	idr_remove(&spi_master_idr, ctlr->bus_num);
3066 	mutex_unlock(&board_lock);
3067 	return status;
3068 }
3069 EXPORT_SYMBOL_GPL(spi_register_controller);
3070 
3071 static void devm_spi_unregister(void *ctlr)
3072 {
3073 	spi_unregister_controller(ctlr);
3074 }
3075 
3076 /**
3077  * devm_spi_register_controller - register managed SPI master or slave
3078  *	controller
3079  * @dev:    device managing SPI controller
3080  * @ctlr: initialized controller, originally from spi_alloc_master() or
3081  *	spi_alloc_slave()
3082  * Context: can sleep
3083  *
3084  * Register a SPI device as with spi_register_controller() which will
3085  * automatically be unregistered and freed.
3086  *
3087  * Return: zero on success, else a negative error code.
3088  */
3089 int devm_spi_register_controller(struct device *dev,
3090 				 struct spi_controller *ctlr)
3091 {
3092 	int ret;
3093 
3094 	ret = spi_register_controller(ctlr);
3095 	if (ret)
3096 		return ret;
3097 
3098 	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
3099 }
3100 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3101 
3102 static int __unregister(struct device *dev, void *null)
3103 {
3104 	spi_unregister_device(to_spi_device(dev));
3105 	return 0;
3106 }
3107 
3108 /**
3109  * spi_unregister_controller - unregister SPI master or slave controller
3110  * @ctlr: the controller being unregistered
3111  * Context: can sleep
3112  *
3113  * This call is used only by SPI controller drivers, which are the
3114  * only ones directly touching chip registers.
3115  *
3116  * This must be called from context that can sleep.
3117  *
3118  * Note that this function also drops a reference to the controller.
3119  */
3120 void spi_unregister_controller(struct spi_controller *ctlr)
3121 {
3122 	struct spi_controller *found;
3123 	int id = ctlr->bus_num;
3124 
3125 	/* Prevent addition of new devices, unregister existing ones */
3126 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3127 		mutex_lock(&ctlr->add_lock);
3128 
3129 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3130 
3131 	/* First make sure that this controller was ever added */
3132 	mutex_lock(&board_lock);
3133 	found = idr_find(&spi_master_idr, id);
3134 	mutex_unlock(&board_lock);
3135 	if (ctlr->queued) {
3136 		if (spi_destroy_queue(ctlr))
3137 			dev_err(&ctlr->dev, "queue remove failed\n");
3138 	}
3139 	mutex_lock(&board_lock);
3140 	list_del(&ctlr->list);
3141 	mutex_unlock(&board_lock);
3142 
3143 	device_del(&ctlr->dev);
3144 
3145 	/* free bus id */
3146 	mutex_lock(&board_lock);
3147 	if (found == ctlr)
3148 		idr_remove(&spi_master_idr, id);
3149 	mutex_unlock(&board_lock);
3150 
3151 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3152 		mutex_unlock(&ctlr->add_lock);
3153 
3154 	/* Release the last reference on the controller if its driver
3155 	 * has not yet been converted to devm_spi_alloc_master/slave().
3156 	 */
3157 	if (!ctlr->devm_allocated)
3158 		put_device(&ctlr->dev);
3159 }
3160 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3161 
3162 int spi_controller_suspend(struct spi_controller *ctlr)
3163 {
3164 	int ret;
3165 
3166 	/* Basically no-ops for non-queued controllers */
3167 	if (!ctlr->queued)
3168 		return 0;
3169 
3170 	ret = spi_stop_queue(ctlr);
3171 	if (ret)
3172 		dev_err(&ctlr->dev, "queue stop failed\n");
3173 
3174 	return ret;
3175 }
3176 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3177 
3178 int spi_controller_resume(struct spi_controller *ctlr)
3179 {
3180 	int ret;
3181 
3182 	if (!ctlr->queued)
3183 		return 0;
3184 
3185 	ret = spi_start_queue(ctlr);
3186 	if (ret)
3187 		dev_err(&ctlr->dev, "queue restart failed\n");
3188 
3189 	return ret;
3190 }
3191 EXPORT_SYMBOL_GPL(spi_controller_resume);
3192 
3193 /*-------------------------------------------------------------------------*/
3194 
3195 /* Core methods for spi_message alterations */
3196 
3197 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3198 					    struct spi_message *msg,
3199 					    void *res)
3200 {
3201 	struct spi_replaced_transfers *rxfer = res;
3202 	size_t i;
3203 
3204 	/* call extra callback if requested */
3205 	if (rxfer->release)
3206 		rxfer->release(ctlr, msg, res);
3207 
3208 	/* insert replaced transfers back into the message */
3209 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3210 
3211 	/* remove the formerly inserted entries */
3212 	for (i = 0; i < rxfer->inserted; i++)
3213 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3214 }
3215 
3216 /**
3217  * spi_replace_transfers - replace transfers with several transfers
3218  *                         and register change with spi_message.resources
3219  * @msg:           the spi_message we work upon
3220  * @xfer_first:    the first spi_transfer we want to replace
3221  * @remove:        number of transfers to remove
3222  * @insert:        the number of transfers we want to insert instead
3223  * @release:       extra release code necessary in some circumstances
3224  * @extradatasize: extra data to allocate (with alignment guarantees
3225  *                 of struct @spi_transfer)
3226  * @gfp:           gfp flags
3227  *
3228  * Returns: pointer to @spi_replaced_transfers,
3229  *          PTR_ERR(...) in case of errors.
3230  */
3231 static struct spi_replaced_transfers *spi_replace_transfers(
3232 	struct spi_message *msg,
3233 	struct spi_transfer *xfer_first,
3234 	size_t remove,
3235 	size_t insert,
3236 	spi_replaced_release_t release,
3237 	size_t extradatasize,
3238 	gfp_t gfp)
3239 {
3240 	struct spi_replaced_transfers *rxfer;
3241 	struct spi_transfer *xfer;
3242 	size_t i;
3243 
3244 	/* allocate the structure using spi_res */
3245 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3246 			      struct_size(rxfer, inserted_transfers, insert)
3247 			      + extradatasize,
3248 			      gfp);
3249 	if (!rxfer)
3250 		return ERR_PTR(-ENOMEM);
3251 
3252 	/* the release code to invoke before running the generic release */
3253 	rxfer->release = release;
3254 
3255 	/* assign extradata */
3256 	if (extradatasize)
3257 		rxfer->extradata =
3258 			&rxfer->inserted_transfers[insert];
3259 
3260 	/* init the replaced_transfers list */
3261 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3262 
3263 	/*
3264 	 * Assign the list_entry after which we should reinsert
3265 	 * the @replaced_transfers - it may be spi_message.messages!
3266 	 */
3267 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3268 
3269 	/* remove the requested number of transfers */
3270 	for (i = 0; i < remove; i++) {
3271 		/*
3272 		 * If the entry after replaced_after it is msg->transfers
3273 		 * then we have been requested to remove more transfers
3274 		 * than are in the list.
3275 		 */
3276 		if (rxfer->replaced_after->next == &msg->transfers) {
3277 			dev_err(&msg->spi->dev,
3278 				"requested to remove more spi_transfers than are available\n");
3279 			/* insert replaced transfers back into the message */
3280 			list_splice(&rxfer->replaced_transfers,
3281 				    rxfer->replaced_after);
3282 
3283 			/* free the spi_replace_transfer structure */
3284 			spi_res_free(rxfer);
3285 
3286 			/* and return with an error */
3287 			return ERR_PTR(-EINVAL);
3288 		}
3289 
3290 		/*
3291 		 * Remove the entry after replaced_after from list of
3292 		 * transfers and add it to list of replaced_transfers.
3293 		 */
3294 		list_move_tail(rxfer->replaced_after->next,
3295 			       &rxfer->replaced_transfers);
3296 	}
3297 
3298 	/*
3299 	 * Create copy of the given xfer with identical settings
3300 	 * based on the first transfer to get removed.
3301 	 */
3302 	for (i = 0; i < insert; i++) {
3303 		/* we need to run in reverse order */
3304 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3305 
3306 		/* copy all spi_transfer data */
3307 		memcpy(xfer, xfer_first, sizeof(*xfer));
3308 
3309 		/* add to list */
3310 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3311 
3312 		/* clear cs_change and delay for all but the last */
3313 		if (i) {
3314 			xfer->cs_change = false;
3315 			xfer->delay.value = 0;
3316 		}
3317 	}
3318 
3319 	/* set up inserted */
3320 	rxfer->inserted = insert;
3321 
3322 	/* and register it with spi_res/spi_message */
3323 	spi_res_add(msg, rxfer);
3324 
3325 	return rxfer;
3326 }
3327 
3328 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3329 					struct spi_message *msg,
3330 					struct spi_transfer **xferp,
3331 					size_t maxsize,
3332 					gfp_t gfp)
3333 {
3334 	struct spi_transfer *xfer = *xferp, *xfers;
3335 	struct spi_replaced_transfers *srt;
3336 	size_t offset;
3337 	size_t count, i;
3338 
3339 	/* calculate how many we have to replace */
3340 	count = DIV_ROUND_UP(xfer->len, maxsize);
3341 
3342 	/* create replacement */
3343 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3344 	if (IS_ERR(srt))
3345 		return PTR_ERR(srt);
3346 	xfers = srt->inserted_transfers;
3347 
3348 	/*
3349 	 * Now handle each of those newly inserted spi_transfers.
3350 	 * Note that the replacements spi_transfers all are preset
3351 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3352 	 * are all identical (as well as most others)
3353 	 * so we just have to fix up len and the pointers.
3354 	 *
3355 	 * This also includes support for the depreciated
3356 	 * spi_message.is_dma_mapped interface.
3357 	 */
3358 
3359 	/*
3360 	 * The first transfer just needs the length modified, so we
3361 	 * run it outside the loop.
3362 	 */
3363 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3364 
3365 	/* all the others need rx_buf/tx_buf also set */
3366 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3367 		/* update rx_buf, tx_buf and dma */
3368 		if (xfers[i].rx_buf)
3369 			xfers[i].rx_buf += offset;
3370 		if (xfers[i].rx_dma)
3371 			xfers[i].rx_dma += offset;
3372 		if (xfers[i].tx_buf)
3373 			xfers[i].tx_buf += offset;
3374 		if (xfers[i].tx_dma)
3375 			xfers[i].tx_dma += offset;
3376 
3377 		/* update length */
3378 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3379 	}
3380 
3381 	/*
3382 	 * We set up xferp to the last entry we have inserted,
3383 	 * so that we skip those already split transfers.
3384 	 */
3385 	*xferp = &xfers[count - 1];
3386 
3387 	/* increment statistics counters */
3388 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3389 				       transfers_split_maxsize);
3390 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3391 				       transfers_split_maxsize);
3392 
3393 	return 0;
3394 }
3395 
3396 /**
3397  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3398  *                               when an individual transfer exceeds a
3399  *                               certain size
3400  * @ctlr:    the @spi_controller for this transfer
3401  * @msg:   the @spi_message to transform
3402  * @maxsize:  the maximum when to apply this
3403  * @gfp: GFP allocation flags
3404  *
3405  * Return: status of transformation
3406  */
3407 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3408 				struct spi_message *msg,
3409 				size_t maxsize,
3410 				gfp_t gfp)
3411 {
3412 	struct spi_transfer *xfer;
3413 	int ret;
3414 
3415 	/*
3416 	 * Iterate over the transfer_list,
3417 	 * but note that xfer is advanced to the last transfer inserted
3418 	 * to avoid checking sizes again unnecessarily (also xfer does
3419 	 * potentially belong to a different list by the time the
3420 	 * replacement has happened).
3421 	 */
3422 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3423 		if (xfer->len > maxsize) {
3424 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3425 							   maxsize, gfp);
3426 			if (ret)
3427 				return ret;
3428 		}
3429 	}
3430 
3431 	return 0;
3432 }
3433 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3434 
3435 /*-------------------------------------------------------------------------*/
3436 
3437 /* Core methods for SPI controller protocol drivers.  Some of the
3438  * other core methods are currently defined as inline functions.
3439  */
3440 
3441 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3442 					u8 bits_per_word)
3443 {
3444 	if (ctlr->bits_per_word_mask) {
3445 		/* Only 32 bits fit in the mask */
3446 		if (bits_per_word > 32)
3447 			return -EINVAL;
3448 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3449 			return -EINVAL;
3450 	}
3451 
3452 	return 0;
3453 }
3454 
3455 /**
3456  * spi_setup - setup SPI mode and clock rate
3457  * @spi: the device whose settings are being modified
3458  * Context: can sleep, and no requests are queued to the device
3459  *
3460  * SPI protocol drivers may need to update the transfer mode if the
3461  * device doesn't work with its default.  They may likewise need
3462  * to update clock rates or word sizes from initial values.  This function
3463  * changes those settings, and must be called from a context that can sleep.
3464  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3465  * effect the next time the device is selected and data is transferred to
3466  * or from it.  When this function returns, the spi device is deselected.
3467  *
3468  * Note that this call will fail if the protocol driver specifies an option
3469  * that the underlying controller or its driver does not support.  For
3470  * example, not all hardware supports wire transfers using nine bit words,
3471  * LSB-first wire encoding, or active-high chipselects.
3472  *
3473  * Return: zero on success, else a negative error code.
3474  */
3475 int spi_setup(struct spi_device *spi)
3476 {
3477 	unsigned	bad_bits, ugly_bits;
3478 	int		status;
3479 
3480 	/*
3481 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3482 	 * are set at the same time.
3483 	 */
3484 	if ((hweight_long(spi->mode &
3485 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3486 	    (hweight_long(spi->mode &
3487 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3488 		dev_err(&spi->dev,
3489 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3490 		return -EINVAL;
3491 	}
3492 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3493 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3494 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3495 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3496 		return -EINVAL;
3497 	/*
3498 	 * Help drivers fail *cleanly* when they need options
3499 	 * that aren't supported with their current controller.
3500 	 * SPI_CS_WORD has a fallback software implementation,
3501 	 * so it is ignored here.
3502 	 */
3503 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3504 				 SPI_NO_TX | SPI_NO_RX);
3505 	ugly_bits = bad_bits &
3506 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3507 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3508 	if (ugly_bits) {
3509 		dev_warn(&spi->dev,
3510 			 "setup: ignoring unsupported mode bits %x\n",
3511 			 ugly_bits);
3512 		spi->mode &= ~ugly_bits;
3513 		bad_bits &= ~ugly_bits;
3514 	}
3515 	if (bad_bits) {
3516 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3517 			bad_bits);
3518 		return -EINVAL;
3519 	}
3520 
3521 	if (!spi->bits_per_word)
3522 		spi->bits_per_word = 8;
3523 
3524 	status = __spi_validate_bits_per_word(spi->controller,
3525 					      spi->bits_per_word);
3526 	if (status)
3527 		return status;
3528 
3529 	if (spi->controller->max_speed_hz &&
3530 	    (!spi->max_speed_hz ||
3531 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3532 		spi->max_speed_hz = spi->controller->max_speed_hz;
3533 
3534 	mutex_lock(&spi->controller->io_mutex);
3535 
3536 	if (spi->controller->setup) {
3537 		status = spi->controller->setup(spi);
3538 		if (status) {
3539 			mutex_unlock(&spi->controller->io_mutex);
3540 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3541 				status);
3542 			return status;
3543 		}
3544 	}
3545 
3546 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3547 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3548 		if (status < 0) {
3549 			mutex_unlock(&spi->controller->io_mutex);
3550 			pm_runtime_put_noidle(spi->controller->dev.parent);
3551 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3552 				status);
3553 			return status;
3554 		}
3555 
3556 		/*
3557 		 * We do not want to return positive value from pm_runtime_get,
3558 		 * there are many instances of devices calling spi_setup() and
3559 		 * checking for a non-zero return value instead of a negative
3560 		 * return value.
3561 		 */
3562 		status = 0;
3563 
3564 		spi_set_cs(spi, false, true);
3565 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3566 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3567 	} else {
3568 		spi_set_cs(spi, false, true);
3569 	}
3570 
3571 	mutex_unlock(&spi->controller->io_mutex);
3572 
3573 	if (spi->rt && !spi->controller->rt) {
3574 		spi->controller->rt = true;
3575 		spi_set_thread_rt(spi->controller);
3576 	}
3577 
3578 	trace_spi_setup(spi, status);
3579 
3580 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3581 			spi->mode & SPI_MODE_X_MASK,
3582 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3583 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3584 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3585 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3586 			spi->bits_per_word, spi->max_speed_hz,
3587 			status);
3588 
3589 	return status;
3590 }
3591 EXPORT_SYMBOL_GPL(spi_setup);
3592 
3593 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3594 				       struct spi_device *spi)
3595 {
3596 	int delay1, delay2;
3597 
3598 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3599 	if (delay1 < 0)
3600 		return delay1;
3601 
3602 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3603 	if (delay2 < 0)
3604 		return delay2;
3605 
3606 	if (delay1 < delay2)
3607 		memcpy(&xfer->word_delay, &spi->word_delay,
3608 		       sizeof(xfer->word_delay));
3609 
3610 	return 0;
3611 }
3612 
3613 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3614 {
3615 	struct spi_controller *ctlr = spi->controller;
3616 	struct spi_transfer *xfer;
3617 	int w_size;
3618 
3619 	if (list_empty(&message->transfers))
3620 		return -EINVAL;
3621 
3622 	/*
3623 	 * If an SPI controller does not support toggling the CS line on each
3624 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3625 	 * for the CS line, we can emulate the CS-per-word hardware function by
3626 	 * splitting transfers into one-word transfers and ensuring that
3627 	 * cs_change is set for each transfer.
3628 	 */
3629 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3630 					  spi->cs_gpiod)) {
3631 		size_t maxsize;
3632 		int ret;
3633 
3634 		maxsize = (spi->bits_per_word + 7) / 8;
3635 
3636 		/* spi_split_transfers_maxsize() requires message->spi */
3637 		message->spi = spi;
3638 
3639 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3640 						  GFP_KERNEL);
3641 		if (ret)
3642 			return ret;
3643 
3644 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3645 			/* don't change cs_change on the last entry in the list */
3646 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3647 				break;
3648 			xfer->cs_change = 1;
3649 		}
3650 	}
3651 
3652 	/*
3653 	 * Half-duplex links include original MicroWire, and ones with
3654 	 * only one data pin like SPI_3WIRE (switches direction) or where
3655 	 * either MOSI or MISO is missing.  They can also be caused by
3656 	 * software limitations.
3657 	 */
3658 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3659 	    (spi->mode & SPI_3WIRE)) {
3660 		unsigned flags = ctlr->flags;
3661 
3662 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3663 			if (xfer->rx_buf && xfer->tx_buf)
3664 				return -EINVAL;
3665 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3666 				return -EINVAL;
3667 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3668 				return -EINVAL;
3669 		}
3670 	}
3671 
3672 	/*
3673 	 * Set transfer bits_per_word and max speed as spi device default if
3674 	 * it is not set for this transfer.
3675 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3676 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3677 	 * Ensure transfer word_delay is at least as long as that required by
3678 	 * device itself.
3679 	 */
3680 	message->frame_length = 0;
3681 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3682 		xfer->effective_speed_hz = 0;
3683 		message->frame_length += xfer->len;
3684 		if (!xfer->bits_per_word)
3685 			xfer->bits_per_word = spi->bits_per_word;
3686 
3687 		if (!xfer->speed_hz)
3688 			xfer->speed_hz = spi->max_speed_hz;
3689 
3690 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3691 			xfer->speed_hz = ctlr->max_speed_hz;
3692 
3693 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3694 			return -EINVAL;
3695 
3696 		/*
3697 		 * SPI transfer length should be multiple of SPI word size
3698 		 * where SPI word size should be power-of-two multiple.
3699 		 */
3700 		if (xfer->bits_per_word <= 8)
3701 			w_size = 1;
3702 		else if (xfer->bits_per_word <= 16)
3703 			w_size = 2;
3704 		else
3705 			w_size = 4;
3706 
3707 		/* No partial transfers accepted */
3708 		if (xfer->len % w_size)
3709 			return -EINVAL;
3710 
3711 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3712 		    xfer->speed_hz < ctlr->min_speed_hz)
3713 			return -EINVAL;
3714 
3715 		if (xfer->tx_buf && !xfer->tx_nbits)
3716 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3717 		if (xfer->rx_buf && !xfer->rx_nbits)
3718 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3719 		/*
3720 		 * Check transfer tx/rx_nbits:
3721 		 * 1. check the value matches one of single, dual and quad
3722 		 * 2. check tx/rx_nbits match the mode in spi_device
3723 		 */
3724 		if (xfer->tx_buf) {
3725 			if (spi->mode & SPI_NO_TX)
3726 				return -EINVAL;
3727 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3728 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3729 				xfer->tx_nbits != SPI_NBITS_QUAD)
3730 				return -EINVAL;
3731 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3732 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3733 				return -EINVAL;
3734 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3735 				!(spi->mode & SPI_TX_QUAD))
3736 				return -EINVAL;
3737 		}
3738 		/* check transfer rx_nbits */
3739 		if (xfer->rx_buf) {
3740 			if (spi->mode & SPI_NO_RX)
3741 				return -EINVAL;
3742 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3743 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3744 				xfer->rx_nbits != SPI_NBITS_QUAD)
3745 				return -EINVAL;
3746 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3747 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3748 				return -EINVAL;
3749 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3750 				!(spi->mode & SPI_RX_QUAD))
3751 				return -EINVAL;
3752 		}
3753 
3754 		if (_spi_xfer_word_delay_update(xfer, spi))
3755 			return -EINVAL;
3756 	}
3757 
3758 	message->status = -EINPROGRESS;
3759 
3760 	return 0;
3761 }
3762 
3763 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3764 {
3765 	struct spi_controller *ctlr = spi->controller;
3766 	struct spi_transfer *xfer;
3767 
3768 	/*
3769 	 * Some controllers do not support doing regular SPI transfers. Return
3770 	 * ENOTSUPP when this is the case.
3771 	 */
3772 	if (!ctlr->transfer)
3773 		return -ENOTSUPP;
3774 
3775 	message->spi = spi;
3776 
3777 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3778 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3779 
3780 	trace_spi_message_submit(message);
3781 
3782 	if (!ctlr->ptp_sts_supported) {
3783 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3784 			xfer->ptp_sts_word_pre = 0;
3785 			ptp_read_system_prets(xfer->ptp_sts);
3786 		}
3787 	}
3788 
3789 	return ctlr->transfer(spi, message);
3790 }
3791 
3792 /**
3793  * spi_async - asynchronous SPI transfer
3794  * @spi: device with which data will be exchanged
3795  * @message: describes the data transfers, including completion callback
3796  * Context: any (irqs may be blocked, etc)
3797  *
3798  * This call may be used in_irq and other contexts which can't sleep,
3799  * as well as from task contexts which can sleep.
3800  *
3801  * The completion callback is invoked in a context which can't sleep.
3802  * Before that invocation, the value of message->status is undefined.
3803  * When the callback is issued, message->status holds either zero (to
3804  * indicate complete success) or a negative error code.  After that
3805  * callback returns, the driver which issued the transfer request may
3806  * deallocate the associated memory; it's no longer in use by any SPI
3807  * core or controller driver code.
3808  *
3809  * Note that although all messages to a spi_device are handled in
3810  * FIFO order, messages may go to different devices in other orders.
3811  * Some device might be higher priority, or have various "hard" access
3812  * time requirements, for example.
3813  *
3814  * On detection of any fault during the transfer, processing of
3815  * the entire message is aborted, and the device is deselected.
3816  * Until returning from the associated message completion callback,
3817  * no other spi_message queued to that device will be processed.
3818  * (This rule applies equally to all the synchronous transfer calls,
3819  * which are wrappers around this core asynchronous primitive.)
3820  *
3821  * Return: zero on success, else a negative error code.
3822  */
3823 int spi_async(struct spi_device *spi, struct spi_message *message)
3824 {
3825 	struct spi_controller *ctlr = spi->controller;
3826 	int ret;
3827 	unsigned long flags;
3828 
3829 	ret = __spi_validate(spi, message);
3830 	if (ret != 0)
3831 		return ret;
3832 
3833 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3834 
3835 	if (ctlr->bus_lock_flag)
3836 		ret = -EBUSY;
3837 	else
3838 		ret = __spi_async(spi, message);
3839 
3840 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3841 
3842 	return ret;
3843 }
3844 EXPORT_SYMBOL_GPL(spi_async);
3845 
3846 /**
3847  * spi_async_locked - version of spi_async with exclusive bus usage
3848  * @spi: device with which data will be exchanged
3849  * @message: describes the data transfers, including completion callback
3850  * Context: any (irqs may be blocked, etc)
3851  *
3852  * This call may be used in_irq and other contexts which can't sleep,
3853  * as well as from task contexts which can sleep.
3854  *
3855  * The completion callback is invoked in a context which can't sleep.
3856  * Before that invocation, the value of message->status is undefined.
3857  * When the callback is issued, message->status holds either zero (to
3858  * indicate complete success) or a negative error code.  After that
3859  * callback returns, the driver which issued the transfer request may
3860  * deallocate the associated memory; it's no longer in use by any SPI
3861  * core or controller driver code.
3862  *
3863  * Note that although all messages to a spi_device are handled in
3864  * FIFO order, messages may go to different devices in other orders.
3865  * Some device might be higher priority, or have various "hard" access
3866  * time requirements, for example.
3867  *
3868  * On detection of any fault during the transfer, processing of
3869  * the entire message is aborted, and the device is deselected.
3870  * Until returning from the associated message completion callback,
3871  * no other spi_message queued to that device will be processed.
3872  * (This rule applies equally to all the synchronous transfer calls,
3873  * which are wrappers around this core asynchronous primitive.)
3874  *
3875  * Return: zero on success, else a negative error code.
3876  */
3877 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3878 {
3879 	struct spi_controller *ctlr = spi->controller;
3880 	int ret;
3881 	unsigned long flags;
3882 
3883 	ret = __spi_validate(spi, message);
3884 	if (ret != 0)
3885 		return ret;
3886 
3887 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3888 
3889 	ret = __spi_async(spi, message);
3890 
3891 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3892 
3893 	return ret;
3894 
3895 }
3896 
3897 /*-------------------------------------------------------------------------*/
3898 
3899 /*
3900  * Utility methods for SPI protocol drivers, layered on
3901  * top of the core.  Some other utility methods are defined as
3902  * inline functions.
3903  */
3904 
3905 static void spi_complete(void *arg)
3906 {
3907 	complete(arg);
3908 }
3909 
3910 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3911 {
3912 	DECLARE_COMPLETION_ONSTACK(done);
3913 	int status;
3914 	struct spi_controller *ctlr = spi->controller;
3915 	unsigned long flags;
3916 
3917 	status = __spi_validate(spi, message);
3918 	if (status != 0)
3919 		return status;
3920 
3921 	message->complete = spi_complete;
3922 	message->context = &done;
3923 	message->spi = spi;
3924 
3925 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3926 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3927 
3928 	/*
3929 	 * If we're not using the legacy transfer method then we will
3930 	 * try to transfer in the calling context so special case.
3931 	 * This code would be less tricky if we could remove the
3932 	 * support for driver implemented message queues.
3933 	 */
3934 	if (ctlr->transfer == spi_queued_transfer) {
3935 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3936 
3937 		trace_spi_message_submit(message);
3938 
3939 		status = __spi_queued_transfer(spi, message, false);
3940 
3941 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3942 	} else {
3943 		status = spi_async_locked(spi, message);
3944 	}
3945 
3946 	if (status == 0) {
3947 		/* Push out the messages in the calling context if we can */
3948 		if (ctlr->transfer == spi_queued_transfer) {
3949 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3950 						       spi_sync_immediate);
3951 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3952 						       spi_sync_immediate);
3953 			__spi_pump_messages(ctlr, false);
3954 		}
3955 
3956 		wait_for_completion(&done);
3957 		status = message->status;
3958 	}
3959 	message->context = NULL;
3960 	return status;
3961 }
3962 
3963 /**
3964  * spi_sync - blocking/synchronous SPI data transfers
3965  * @spi: device with which data will be exchanged
3966  * @message: describes the data transfers
3967  * Context: can sleep
3968  *
3969  * This call may only be used from a context that may sleep.  The sleep
3970  * is non-interruptible, and has no timeout.  Low-overhead controller
3971  * drivers may DMA directly into and out of the message buffers.
3972  *
3973  * Note that the SPI device's chip select is active during the message,
3974  * and then is normally disabled between messages.  Drivers for some
3975  * frequently-used devices may want to minimize costs of selecting a chip,
3976  * by leaving it selected in anticipation that the next message will go
3977  * to the same chip.  (That may increase power usage.)
3978  *
3979  * Also, the caller is guaranteeing that the memory associated with the
3980  * message will not be freed before this call returns.
3981  *
3982  * Return: zero on success, else a negative error code.
3983  */
3984 int spi_sync(struct spi_device *spi, struct spi_message *message)
3985 {
3986 	int ret;
3987 
3988 	mutex_lock(&spi->controller->bus_lock_mutex);
3989 	ret = __spi_sync(spi, message);
3990 	mutex_unlock(&spi->controller->bus_lock_mutex);
3991 
3992 	return ret;
3993 }
3994 EXPORT_SYMBOL_GPL(spi_sync);
3995 
3996 /**
3997  * spi_sync_locked - version of spi_sync with exclusive bus usage
3998  * @spi: device with which data will be exchanged
3999  * @message: describes the data transfers
4000  * Context: can sleep
4001  *
4002  * This call may only be used from a context that may sleep.  The sleep
4003  * is non-interruptible, and has no timeout.  Low-overhead controller
4004  * drivers may DMA directly into and out of the message buffers.
4005  *
4006  * This call should be used by drivers that require exclusive access to the
4007  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4008  * be released by a spi_bus_unlock call when the exclusive access is over.
4009  *
4010  * Return: zero on success, else a negative error code.
4011  */
4012 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4013 {
4014 	return __spi_sync(spi, message);
4015 }
4016 EXPORT_SYMBOL_GPL(spi_sync_locked);
4017 
4018 /**
4019  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4020  * @ctlr: SPI bus master that should be locked for exclusive bus access
4021  * Context: can sleep
4022  *
4023  * This call may only be used from a context that may sleep.  The sleep
4024  * is non-interruptible, and has no timeout.
4025  *
4026  * This call should be used by drivers that require exclusive access to the
4027  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4028  * exclusive access is over. Data transfer must be done by spi_sync_locked
4029  * and spi_async_locked calls when the SPI bus lock is held.
4030  *
4031  * Return: always zero.
4032  */
4033 int spi_bus_lock(struct spi_controller *ctlr)
4034 {
4035 	unsigned long flags;
4036 
4037 	mutex_lock(&ctlr->bus_lock_mutex);
4038 
4039 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4040 	ctlr->bus_lock_flag = 1;
4041 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4042 
4043 	/* mutex remains locked until spi_bus_unlock is called */
4044 
4045 	return 0;
4046 }
4047 EXPORT_SYMBOL_GPL(spi_bus_lock);
4048 
4049 /**
4050  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4051  * @ctlr: SPI bus master that was locked for exclusive bus access
4052  * Context: can sleep
4053  *
4054  * This call may only be used from a context that may sleep.  The sleep
4055  * is non-interruptible, and has no timeout.
4056  *
4057  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4058  * call.
4059  *
4060  * Return: always zero.
4061  */
4062 int spi_bus_unlock(struct spi_controller *ctlr)
4063 {
4064 	ctlr->bus_lock_flag = 0;
4065 
4066 	mutex_unlock(&ctlr->bus_lock_mutex);
4067 
4068 	return 0;
4069 }
4070 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4071 
4072 /* portable code must never pass more than 32 bytes */
4073 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4074 
4075 static u8	*buf;
4076 
4077 /**
4078  * spi_write_then_read - SPI synchronous write followed by read
4079  * @spi: device with which data will be exchanged
4080  * @txbuf: data to be written (need not be dma-safe)
4081  * @n_tx: size of txbuf, in bytes
4082  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4083  * @n_rx: size of rxbuf, in bytes
4084  * Context: can sleep
4085  *
4086  * This performs a half duplex MicroWire style transaction with the
4087  * device, sending txbuf and then reading rxbuf.  The return value
4088  * is zero for success, else a negative errno status code.
4089  * This call may only be used from a context that may sleep.
4090  *
4091  * Parameters to this routine are always copied using a small buffer.
4092  * Performance-sensitive or bulk transfer code should instead use
4093  * spi_{async,sync}() calls with dma-safe buffers.
4094  *
4095  * Return: zero on success, else a negative error code.
4096  */
4097 int spi_write_then_read(struct spi_device *spi,
4098 		const void *txbuf, unsigned n_tx,
4099 		void *rxbuf, unsigned n_rx)
4100 {
4101 	static DEFINE_MUTEX(lock);
4102 
4103 	int			status;
4104 	struct spi_message	message;
4105 	struct spi_transfer	x[2];
4106 	u8			*local_buf;
4107 
4108 	/*
4109 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4110 	 * copying here, (as a pure convenience thing), but we can
4111 	 * keep heap costs out of the hot path unless someone else is
4112 	 * using the pre-allocated buffer or the transfer is too large.
4113 	 */
4114 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4115 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4116 				    GFP_KERNEL | GFP_DMA);
4117 		if (!local_buf)
4118 			return -ENOMEM;
4119 	} else {
4120 		local_buf = buf;
4121 	}
4122 
4123 	spi_message_init(&message);
4124 	memset(x, 0, sizeof(x));
4125 	if (n_tx) {
4126 		x[0].len = n_tx;
4127 		spi_message_add_tail(&x[0], &message);
4128 	}
4129 	if (n_rx) {
4130 		x[1].len = n_rx;
4131 		spi_message_add_tail(&x[1], &message);
4132 	}
4133 
4134 	memcpy(local_buf, txbuf, n_tx);
4135 	x[0].tx_buf = local_buf;
4136 	x[1].rx_buf = local_buf + n_tx;
4137 
4138 	/* do the i/o */
4139 	status = spi_sync(spi, &message);
4140 	if (status == 0)
4141 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4142 
4143 	if (x[0].tx_buf == buf)
4144 		mutex_unlock(&lock);
4145 	else
4146 		kfree(local_buf);
4147 
4148 	return status;
4149 }
4150 EXPORT_SYMBOL_GPL(spi_write_then_read);
4151 
4152 /*-------------------------------------------------------------------------*/
4153 
4154 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4155 /* must call put_device() when done with returned spi_device device */
4156 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4157 {
4158 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4159 
4160 	return dev ? to_spi_device(dev) : NULL;
4161 }
4162 
4163 /* the spi controllers are not using spi_bus, so we find it with another way */
4164 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4165 {
4166 	struct device *dev;
4167 
4168 	dev = class_find_device_by_of_node(&spi_master_class, node);
4169 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4170 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4171 	if (!dev)
4172 		return NULL;
4173 
4174 	/* reference got in class_find_device */
4175 	return container_of(dev, struct spi_controller, dev);
4176 }
4177 
4178 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4179 			 void *arg)
4180 {
4181 	struct of_reconfig_data *rd = arg;
4182 	struct spi_controller *ctlr;
4183 	struct spi_device *spi;
4184 
4185 	switch (of_reconfig_get_state_change(action, arg)) {
4186 	case OF_RECONFIG_CHANGE_ADD:
4187 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4188 		if (ctlr == NULL)
4189 			return NOTIFY_OK;	/* not for us */
4190 
4191 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4192 			put_device(&ctlr->dev);
4193 			return NOTIFY_OK;
4194 		}
4195 
4196 		spi = of_register_spi_device(ctlr, rd->dn);
4197 		put_device(&ctlr->dev);
4198 
4199 		if (IS_ERR(spi)) {
4200 			pr_err("%s: failed to create for '%pOF'\n",
4201 					__func__, rd->dn);
4202 			of_node_clear_flag(rd->dn, OF_POPULATED);
4203 			return notifier_from_errno(PTR_ERR(spi));
4204 		}
4205 		break;
4206 
4207 	case OF_RECONFIG_CHANGE_REMOVE:
4208 		/* already depopulated? */
4209 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4210 			return NOTIFY_OK;
4211 
4212 		/* find our device by node */
4213 		spi = of_find_spi_device_by_node(rd->dn);
4214 		if (spi == NULL)
4215 			return NOTIFY_OK;	/* no? not meant for us */
4216 
4217 		/* unregister takes one ref away */
4218 		spi_unregister_device(spi);
4219 
4220 		/* and put the reference of the find */
4221 		put_device(&spi->dev);
4222 		break;
4223 	}
4224 
4225 	return NOTIFY_OK;
4226 }
4227 
4228 static struct notifier_block spi_of_notifier = {
4229 	.notifier_call = of_spi_notify,
4230 };
4231 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4232 extern struct notifier_block spi_of_notifier;
4233 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4234 
4235 #if IS_ENABLED(CONFIG_ACPI)
4236 static int spi_acpi_controller_match(struct device *dev, const void *data)
4237 {
4238 	return ACPI_COMPANION(dev->parent) == data;
4239 }
4240 
4241 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4242 {
4243 	struct device *dev;
4244 
4245 	dev = class_find_device(&spi_master_class, NULL, adev,
4246 				spi_acpi_controller_match);
4247 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4248 		dev = class_find_device(&spi_slave_class, NULL, adev,
4249 					spi_acpi_controller_match);
4250 	if (!dev)
4251 		return NULL;
4252 
4253 	return container_of(dev, struct spi_controller, dev);
4254 }
4255 
4256 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4257 {
4258 	struct device *dev;
4259 
4260 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4261 	return to_spi_device(dev);
4262 }
4263 
4264 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4265 			   void *arg)
4266 {
4267 	struct acpi_device *adev = arg;
4268 	struct spi_controller *ctlr;
4269 	struct spi_device *spi;
4270 
4271 	switch (value) {
4272 	case ACPI_RECONFIG_DEVICE_ADD:
4273 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4274 		if (!ctlr)
4275 			break;
4276 
4277 		acpi_register_spi_device(ctlr, adev);
4278 		put_device(&ctlr->dev);
4279 		break;
4280 	case ACPI_RECONFIG_DEVICE_REMOVE:
4281 		if (!acpi_device_enumerated(adev))
4282 			break;
4283 
4284 		spi = acpi_spi_find_device_by_adev(adev);
4285 		if (!spi)
4286 			break;
4287 
4288 		spi_unregister_device(spi);
4289 		put_device(&spi->dev);
4290 		break;
4291 	}
4292 
4293 	return NOTIFY_OK;
4294 }
4295 
4296 static struct notifier_block spi_acpi_notifier = {
4297 	.notifier_call = acpi_spi_notify,
4298 };
4299 #else
4300 extern struct notifier_block spi_acpi_notifier;
4301 #endif
4302 
4303 static int __init spi_init(void)
4304 {
4305 	int	status;
4306 
4307 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4308 	if (!buf) {
4309 		status = -ENOMEM;
4310 		goto err0;
4311 	}
4312 
4313 	status = bus_register(&spi_bus_type);
4314 	if (status < 0)
4315 		goto err1;
4316 
4317 	status = class_register(&spi_master_class);
4318 	if (status < 0)
4319 		goto err2;
4320 
4321 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4322 		status = class_register(&spi_slave_class);
4323 		if (status < 0)
4324 			goto err3;
4325 	}
4326 
4327 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4328 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4329 	if (IS_ENABLED(CONFIG_ACPI))
4330 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4331 
4332 	return 0;
4333 
4334 err3:
4335 	class_unregister(&spi_master_class);
4336 err2:
4337 	bus_unregister(&spi_bus_type);
4338 err1:
4339 	kfree(buf);
4340 	buf = NULL;
4341 err0:
4342 	return status;
4343 }
4344 
4345 /*
4346  * A board_info is normally registered in arch_initcall(),
4347  * but even essential drivers wait till later.
4348  *
4349  * REVISIT only boardinfo really needs static linking. The rest (device and
4350  * driver registration) _could_ be dynamically linked (modular) ... Costs
4351  * include needing to have boardinfo data structures be much more public.
4352  */
4353 postcore_initcall(spi_init);
4354