1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Emptry string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del opertion for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /** 479 * spi_alloc_device - Allocate a new SPI device 480 * @ctlr: Controller to which device is connected 481 * Context: can sleep 482 * 483 * Allows a driver to allocate and initialize a spi_device without 484 * registering it immediately. This allows a driver to directly 485 * fill the spi_device with device parameters before calling 486 * spi_add_device() on it. 487 * 488 * Caller is responsible to call spi_add_device() on the returned 489 * spi_device structure to add it to the SPI controller. If the caller 490 * needs to discard the spi_device without adding it, then it should 491 * call spi_dev_put() on it. 492 * 493 * Return: a pointer to the new device, or NULL. 494 */ 495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 496 { 497 struct spi_device *spi; 498 499 if (!spi_controller_get(ctlr)) 500 return NULL; 501 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 503 if (!spi) { 504 spi_controller_put(ctlr); 505 return NULL; 506 } 507 508 spi->master = spi->controller = ctlr; 509 spi->dev.parent = &ctlr->dev; 510 spi->dev.bus = &spi_bus_type; 511 spi->dev.release = spidev_release; 512 spi->cs_gpio = -ENOENT; 513 514 spin_lock_init(&spi->statistics.lock); 515 516 device_initialize(&spi->dev); 517 return spi; 518 } 519 EXPORT_SYMBOL_GPL(spi_alloc_device); 520 521 static void spi_dev_set_name(struct spi_device *spi) 522 { 523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 524 525 if (adev) { 526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 527 return; 528 } 529 530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 531 spi->chip_select); 532 } 533 534 static int spi_dev_check(struct device *dev, void *data) 535 { 536 struct spi_device *spi = to_spi_device(dev); 537 struct spi_device *new_spi = data; 538 539 if (spi->controller == new_spi->controller && 540 spi->chip_select == new_spi->chip_select) 541 return -EBUSY; 542 return 0; 543 } 544 545 /** 546 * spi_add_device - Add spi_device allocated with spi_alloc_device 547 * @spi: spi_device to register 548 * 549 * Companion function to spi_alloc_device. Devices allocated with 550 * spi_alloc_device can be added onto the spi bus with this function. 551 * 552 * Return: 0 on success; negative errno on failure 553 */ 554 int spi_add_device(struct spi_device *spi) 555 { 556 static DEFINE_MUTEX(spi_add_lock); 557 struct spi_controller *ctlr = spi->controller; 558 struct device *dev = ctlr->dev.parent; 559 int status; 560 561 /* Chipselects are numbered 0..max; validate. */ 562 if (spi->chip_select >= ctlr->num_chipselect) { 563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 564 ctlr->num_chipselect); 565 return -EINVAL; 566 } 567 568 /* Set the bus ID string */ 569 spi_dev_set_name(spi); 570 571 /* We need to make sure there's no other device with this 572 * chipselect **BEFORE** we call setup(), else we'll trash 573 * its configuration. Lock against concurrent add() calls. 574 */ 575 mutex_lock(&spi_add_lock); 576 577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 578 if (status) { 579 dev_err(dev, "chipselect %d already in use\n", 580 spi->chip_select); 581 goto done; 582 } 583 584 /* Descriptors take precedence */ 585 if (ctlr->cs_gpiods) 586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 587 else if (ctlr->cs_gpios) 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 589 590 /* Drivers may modify this initial i/o setup, but will 591 * normally rely on the device being setup. Devices 592 * using SPI_CS_HIGH can't coexist well otherwise... 593 */ 594 status = spi_setup(spi); 595 if (status < 0) { 596 dev_err(dev, "can't setup %s, status %d\n", 597 dev_name(&spi->dev), status); 598 goto done; 599 } 600 601 /* Device may be bound to an active driver when this returns */ 602 status = device_add(&spi->dev); 603 if (status < 0) 604 dev_err(dev, "can't add %s, status %d\n", 605 dev_name(&spi->dev), status); 606 else 607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 608 609 done: 610 mutex_unlock(&spi_add_lock); 611 return status; 612 } 613 EXPORT_SYMBOL_GPL(spi_add_device); 614 615 /** 616 * spi_new_device - instantiate one new SPI device 617 * @ctlr: Controller to which device is connected 618 * @chip: Describes the SPI device 619 * Context: can sleep 620 * 621 * On typical mainboards, this is purely internal; and it's not needed 622 * after board init creates the hard-wired devices. Some development 623 * platforms may not be able to use spi_register_board_info though, and 624 * this is exported so that for example a USB or parport based adapter 625 * driver could add devices (which it would learn about out-of-band). 626 * 627 * Return: the new device, or NULL. 628 */ 629 struct spi_device *spi_new_device(struct spi_controller *ctlr, 630 struct spi_board_info *chip) 631 { 632 struct spi_device *proxy; 633 int status; 634 635 /* NOTE: caller did any chip->bus_num checks necessary. 636 * 637 * Also, unless we change the return value convention to use 638 * error-or-pointer (not NULL-or-pointer), troubleshootability 639 * suggests syslogged diagnostics are best here (ugh). 640 */ 641 642 proxy = spi_alloc_device(ctlr); 643 if (!proxy) 644 return NULL; 645 646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 647 648 proxy->chip_select = chip->chip_select; 649 proxy->max_speed_hz = chip->max_speed_hz; 650 proxy->mode = chip->mode; 651 proxy->irq = chip->irq; 652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 653 proxy->dev.platform_data = (void *) chip->platform_data; 654 proxy->controller_data = chip->controller_data; 655 proxy->controller_state = NULL; 656 657 if (chip->properties) { 658 status = device_add_properties(&proxy->dev, chip->properties); 659 if (status) { 660 dev_err(&ctlr->dev, 661 "failed to add properties to '%s': %d\n", 662 chip->modalias, status); 663 goto err_dev_put; 664 } 665 } 666 667 status = spi_add_device(proxy); 668 if (status < 0) 669 goto err_remove_props; 670 671 return proxy; 672 673 err_remove_props: 674 if (chip->properties) 675 device_remove_properties(&proxy->dev); 676 err_dev_put: 677 spi_dev_put(proxy); 678 return NULL; 679 } 680 EXPORT_SYMBOL_GPL(spi_new_device); 681 682 /** 683 * spi_unregister_device - unregister a single SPI device 684 * @spi: spi_device to unregister 685 * 686 * Start making the passed SPI device vanish. Normally this would be handled 687 * by spi_unregister_controller(). 688 */ 689 void spi_unregister_device(struct spi_device *spi) 690 { 691 if (!spi) 692 return; 693 694 if (spi->dev.of_node) { 695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 696 of_node_put(spi->dev.of_node); 697 } 698 if (ACPI_COMPANION(&spi->dev)) 699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 700 device_unregister(&spi->dev); 701 } 702 EXPORT_SYMBOL_GPL(spi_unregister_device); 703 704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 705 struct spi_board_info *bi) 706 { 707 struct spi_device *dev; 708 709 if (ctlr->bus_num != bi->bus_num) 710 return; 711 712 dev = spi_new_device(ctlr, bi); 713 if (!dev) 714 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 715 bi->modalias); 716 } 717 718 /** 719 * spi_register_board_info - register SPI devices for a given board 720 * @info: array of chip descriptors 721 * @n: how many descriptors are provided 722 * Context: can sleep 723 * 724 * Board-specific early init code calls this (probably during arch_initcall) 725 * with segments of the SPI device table. Any device nodes are created later, 726 * after the relevant parent SPI controller (bus_num) is defined. We keep 727 * this table of devices forever, so that reloading a controller driver will 728 * not make Linux forget about these hard-wired devices. 729 * 730 * Other code can also call this, e.g. a particular add-on board might provide 731 * SPI devices through its expansion connector, so code initializing that board 732 * would naturally declare its SPI devices. 733 * 734 * The board info passed can safely be __initdata ... but be careful of 735 * any embedded pointers (platform_data, etc), they're copied as-is. 736 * Device properties are deep-copied though. 737 * 738 * Return: zero on success, else a negative error code. 739 */ 740 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 741 { 742 struct boardinfo *bi; 743 int i; 744 745 if (!n) 746 return 0; 747 748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 749 if (!bi) 750 return -ENOMEM; 751 752 for (i = 0; i < n; i++, bi++, info++) { 753 struct spi_controller *ctlr; 754 755 memcpy(&bi->board_info, info, sizeof(*info)); 756 if (info->properties) { 757 bi->board_info.properties = 758 property_entries_dup(info->properties); 759 if (IS_ERR(bi->board_info.properties)) 760 return PTR_ERR(bi->board_info.properties); 761 } 762 763 mutex_lock(&board_lock); 764 list_add_tail(&bi->list, &board_list); 765 list_for_each_entry(ctlr, &spi_controller_list, list) 766 spi_match_controller_to_boardinfo(ctlr, 767 &bi->board_info); 768 mutex_unlock(&board_lock); 769 } 770 771 return 0; 772 } 773 774 /*-------------------------------------------------------------------------*/ 775 776 static void spi_set_cs(struct spi_device *spi, bool enable) 777 { 778 if (spi->mode & SPI_CS_HIGH) 779 enable = !enable; 780 781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 782 /* 783 * Honour the SPI_NO_CS flag and invert the enable line, as 784 * active low is default for SPI. Execution paths that handle 785 * polarity inversion in gpiolib (such as device tree) will 786 * enforce active high using the SPI_CS_HIGH resulting in a 787 * double inversion through the code above. 788 */ 789 if (!(spi->mode & SPI_NO_CS)) { 790 if (spi->cs_gpiod) 791 gpiod_set_value_cansleep(spi->cs_gpiod, 792 !enable); 793 else 794 gpio_set_value_cansleep(spi->cs_gpio, !enable); 795 } 796 /* Some SPI masters need both GPIO CS & slave_select */ 797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 798 spi->controller->set_cs) 799 spi->controller->set_cs(spi, !enable); 800 } else if (spi->controller->set_cs) { 801 spi->controller->set_cs(spi, !enable); 802 } 803 } 804 805 #ifdef CONFIG_HAS_DMA 806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 807 struct sg_table *sgt, void *buf, size_t len, 808 enum dma_data_direction dir) 809 { 810 const bool vmalloced_buf = is_vmalloc_addr(buf); 811 unsigned int max_seg_size = dma_get_max_seg_size(dev); 812 #ifdef CONFIG_HIGHMEM 813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 814 (unsigned long)buf < (PKMAP_BASE + 815 (LAST_PKMAP * PAGE_SIZE))); 816 #else 817 const bool kmap_buf = false; 818 #endif 819 int desc_len; 820 int sgs; 821 struct page *vm_page; 822 struct scatterlist *sg; 823 void *sg_buf; 824 size_t min; 825 int i, ret; 826 827 if (vmalloced_buf || kmap_buf) { 828 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 830 } else if (virt_addr_valid(buf)) { 831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 832 sgs = DIV_ROUND_UP(len, desc_len); 833 } else { 834 return -EINVAL; 835 } 836 837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 838 if (ret != 0) 839 return ret; 840 841 sg = &sgt->sgl[0]; 842 for (i = 0; i < sgs; i++) { 843 844 if (vmalloced_buf || kmap_buf) { 845 /* 846 * Next scatterlist entry size is the minimum between 847 * the desc_len and the remaining buffer length that 848 * fits in a page. 849 */ 850 min = min_t(size_t, desc_len, 851 min_t(size_t, len, 852 PAGE_SIZE - offset_in_page(buf))); 853 if (vmalloced_buf) 854 vm_page = vmalloc_to_page(buf); 855 else 856 vm_page = kmap_to_page(buf); 857 if (!vm_page) { 858 sg_free_table(sgt); 859 return -ENOMEM; 860 } 861 sg_set_page(sg, vm_page, 862 min, offset_in_page(buf)); 863 } else { 864 min = min_t(size_t, len, desc_len); 865 sg_buf = buf; 866 sg_set_buf(sg, sg_buf, min); 867 } 868 869 buf += min; 870 len -= min; 871 sg = sg_next(sg); 872 } 873 874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 875 if (!ret) 876 ret = -ENOMEM; 877 if (ret < 0) { 878 sg_free_table(sgt); 879 return ret; 880 } 881 882 sgt->nents = ret; 883 884 return 0; 885 } 886 887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 888 struct sg_table *sgt, enum dma_data_direction dir) 889 { 890 if (sgt->orig_nents) { 891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 892 sg_free_table(sgt); 893 } 894 } 895 896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 897 { 898 struct device *tx_dev, *rx_dev; 899 struct spi_transfer *xfer; 900 int ret; 901 902 if (!ctlr->can_dma) 903 return 0; 904 905 if (ctlr->dma_tx) 906 tx_dev = ctlr->dma_tx->device->dev; 907 else 908 tx_dev = ctlr->dev.parent; 909 910 if (ctlr->dma_rx) 911 rx_dev = ctlr->dma_rx->device->dev; 912 else 913 rx_dev = ctlr->dev.parent; 914 915 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 916 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 917 continue; 918 919 if (xfer->tx_buf != NULL) { 920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 921 (void *)xfer->tx_buf, xfer->len, 922 DMA_TO_DEVICE); 923 if (ret != 0) 924 return ret; 925 } 926 927 if (xfer->rx_buf != NULL) { 928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 929 xfer->rx_buf, xfer->len, 930 DMA_FROM_DEVICE); 931 if (ret != 0) { 932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 933 DMA_TO_DEVICE); 934 return ret; 935 } 936 } 937 } 938 939 ctlr->cur_msg_mapped = true; 940 941 return 0; 942 } 943 944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 945 { 946 struct spi_transfer *xfer; 947 struct device *tx_dev, *rx_dev; 948 949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 950 return 0; 951 952 if (ctlr->dma_tx) 953 tx_dev = ctlr->dma_tx->device->dev; 954 else 955 tx_dev = ctlr->dev.parent; 956 957 if (ctlr->dma_rx) 958 rx_dev = ctlr->dma_rx->device->dev; 959 else 960 rx_dev = ctlr->dev.parent; 961 962 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 963 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 964 continue; 965 966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 968 } 969 970 return 0; 971 } 972 #else /* !CONFIG_HAS_DMA */ 973 static inline int __spi_map_msg(struct spi_controller *ctlr, 974 struct spi_message *msg) 975 { 976 return 0; 977 } 978 979 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 980 struct spi_message *msg) 981 { 982 return 0; 983 } 984 #endif /* !CONFIG_HAS_DMA */ 985 986 static inline int spi_unmap_msg(struct spi_controller *ctlr, 987 struct spi_message *msg) 988 { 989 struct spi_transfer *xfer; 990 991 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 992 /* 993 * Restore the original value of tx_buf or rx_buf if they are 994 * NULL. 995 */ 996 if (xfer->tx_buf == ctlr->dummy_tx) 997 xfer->tx_buf = NULL; 998 if (xfer->rx_buf == ctlr->dummy_rx) 999 xfer->rx_buf = NULL; 1000 } 1001 1002 return __spi_unmap_msg(ctlr, msg); 1003 } 1004 1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1006 { 1007 struct spi_transfer *xfer; 1008 void *tmp; 1009 unsigned int max_tx, max_rx; 1010 1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { 1012 max_tx = 0; 1013 max_rx = 0; 1014 1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1017 !xfer->tx_buf) 1018 max_tx = max(xfer->len, max_tx); 1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1020 !xfer->rx_buf) 1021 max_rx = max(xfer->len, max_rx); 1022 } 1023 1024 if (max_tx) { 1025 tmp = krealloc(ctlr->dummy_tx, max_tx, 1026 GFP_KERNEL | GFP_DMA); 1027 if (!tmp) 1028 return -ENOMEM; 1029 ctlr->dummy_tx = tmp; 1030 memset(tmp, 0, max_tx); 1031 } 1032 1033 if (max_rx) { 1034 tmp = krealloc(ctlr->dummy_rx, max_rx, 1035 GFP_KERNEL | GFP_DMA); 1036 if (!tmp) 1037 return -ENOMEM; 1038 ctlr->dummy_rx = tmp; 1039 } 1040 1041 if (max_tx || max_rx) { 1042 list_for_each_entry(xfer, &msg->transfers, 1043 transfer_list) { 1044 if (!xfer->len) 1045 continue; 1046 if (!xfer->tx_buf) 1047 xfer->tx_buf = ctlr->dummy_tx; 1048 if (!xfer->rx_buf) 1049 xfer->rx_buf = ctlr->dummy_rx; 1050 } 1051 } 1052 } 1053 1054 return __spi_map_msg(ctlr, msg); 1055 } 1056 1057 static int spi_transfer_wait(struct spi_controller *ctlr, 1058 struct spi_message *msg, 1059 struct spi_transfer *xfer) 1060 { 1061 struct spi_statistics *statm = &ctlr->statistics; 1062 struct spi_statistics *stats = &msg->spi->statistics; 1063 unsigned long long ms = 1; 1064 1065 if (spi_controller_is_slave(ctlr)) { 1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1068 return -EINTR; 1069 } 1070 } else { 1071 ms = 8LL * 1000LL * xfer->len; 1072 do_div(ms, xfer->speed_hz); 1073 ms += ms + 200; /* some tolerance */ 1074 1075 if (ms > UINT_MAX) 1076 ms = UINT_MAX; 1077 1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1079 msecs_to_jiffies(ms)); 1080 1081 if (ms == 0) { 1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1084 dev_err(&msg->spi->dev, 1085 "SPI transfer timed out\n"); 1086 return -ETIMEDOUT; 1087 } 1088 } 1089 1090 return 0; 1091 } 1092 1093 /* 1094 * spi_transfer_one_message - Default implementation of transfer_one_message() 1095 * 1096 * This is a standard implementation of transfer_one_message() for 1097 * drivers which implement a transfer_one() operation. It provides 1098 * standard handling of delays and chip select management. 1099 */ 1100 static int spi_transfer_one_message(struct spi_controller *ctlr, 1101 struct spi_message *msg) 1102 { 1103 struct spi_transfer *xfer; 1104 bool keep_cs = false; 1105 int ret = 0; 1106 struct spi_statistics *statm = &ctlr->statistics; 1107 struct spi_statistics *stats = &msg->spi->statistics; 1108 1109 spi_set_cs(msg->spi, true); 1110 1111 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1112 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1113 1114 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1115 trace_spi_transfer_start(msg, xfer); 1116 1117 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1118 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1119 1120 if (xfer->tx_buf || xfer->rx_buf) { 1121 reinit_completion(&ctlr->xfer_completion); 1122 1123 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1124 if (ret < 0) { 1125 SPI_STATISTICS_INCREMENT_FIELD(statm, 1126 errors); 1127 SPI_STATISTICS_INCREMENT_FIELD(stats, 1128 errors); 1129 dev_err(&msg->spi->dev, 1130 "SPI transfer failed: %d\n", ret); 1131 goto out; 1132 } 1133 1134 if (ret > 0) { 1135 ret = spi_transfer_wait(ctlr, msg, xfer); 1136 if (ret < 0) 1137 msg->status = ret; 1138 } 1139 } else { 1140 if (xfer->len) 1141 dev_err(&msg->spi->dev, 1142 "Bufferless transfer has length %u\n", 1143 xfer->len); 1144 } 1145 1146 trace_spi_transfer_stop(msg, xfer); 1147 1148 if (msg->status != -EINPROGRESS) 1149 goto out; 1150 1151 if (xfer->delay_usecs) { 1152 u16 us = xfer->delay_usecs; 1153 1154 if (us <= 10) 1155 udelay(us); 1156 else 1157 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1158 } 1159 1160 if (xfer->cs_change) { 1161 if (list_is_last(&xfer->transfer_list, 1162 &msg->transfers)) { 1163 keep_cs = true; 1164 } else { 1165 spi_set_cs(msg->spi, false); 1166 udelay(10); 1167 spi_set_cs(msg->spi, true); 1168 } 1169 } 1170 1171 msg->actual_length += xfer->len; 1172 } 1173 1174 out: 1175 if (ret != 0 || !keep_cs) 1176 spi_set_cs(msg->spi, false); 1177 1178 if (msg->status == -EINPROGRESS) 1179 msg->status = ret; 1180 1181 if (msg->status && ctlr->handle_err) 1182 ctlr->handle_err(ctlr, msg); 1183 1184 spi_res_release(ctlr, msg); 1185 1186 spi_finalize_current_message(ctlr); 1187 1188 return ret; 1189 } 1190 1191 /** 1192 * spi_finalize_current_transfer - report completion of a transfer 1193 * @ctlr: the controller reporting completion 1194 * 1195 * Called by SPI drivers using the core transfer_one_message() 1196 * implementation to notify it that the current interrupt driven 1197 * transfer has finished and the next one may be scheduled. 1198 */ 1199 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1200 { 1201 complete(&ctlr->xfer_completion); 1202 } 1203 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1204 1205 /** 1206 * __spi_pump_messages - function which processes spi message queue 1207 * @ctlr: controller to process queue for 1208 * @in_kthread: true if we are in the context of the message pump thread 1209 * 1210 * This function checks if there is any spi message in the queue that 1211 * needs processing and if so call out to the driver to initialize hardware 1212 * and transfer each message. 1213 * 1214 * Note that it is called both from the kthread itself and also from 1215 * inside spi_sync(); the queue extraction handling at the top of the 1216 * function should deal with this safely. 1217 */ 1218 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1219 { 1220 unsigned long flags; 1221 bool was_busy = false; 1222 int ret; 1223 1224 /* Lock queue */ 1225 spin_lock_irqsave(&ctlr->queue_lock, flags); 1226 1227 /* Make sure we are not already running a message */ 1228 if (ctlr->cur_msg) { 1229 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1230 return; 1231 } 1232 1233 /* If another context is idling the device then defer */ 1234 if (ctlr->idling) { 1235 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1236 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1237 return; 1238 } 1239 1240 /* Check if the queue is idle */ 1241 if (list_empty(&ctlr->queue) || !ctlr->running) { 1242 if (!ctlr->busy) { 1243 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1244 return; 1245 } 1246 1247 /* Only do teardown in the thread */ 1248 if (!in_kthread) { 1249 kthread_queue_work(&ctlr->kworker, 1250 &ctlr->pump_messages); 1251 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1252 return; 1253 } 1254 1255 ctlr->busy = false; 1256 ctlr->idling = true; 1257 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1258 1259 kfree(ctlr->dummy_rx); 1260 ctlr->dummy_rx = NULL; 1261 kfree(ctlr->dummy_tx); 1262 ctlr->dummy_tx = NULL; 1263 if (ctlr->unprepare_transfer_hardware && 1264 ctlr->unprepare_transfer_hardware(ctlr)) 1265 dev_err(&ctlr->dev, 1266 "failed to unprepare transfer hardware\n"); 1267 if (ctlr->auto_runtime_pm) { 1268 pm_runtime_mark_last_busy(ctlr->dev.parent); 1269 pm_runtime_put_autosuspend(ctlr->dev.parent); 1270 } 1271 trace_spi_controller_idle(ctlr); 1272 1273 spin_lock_irqsave(&ctlr->queue_lock, flags); 1274 ctlr->idling = false; 1275 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1276 return; 1277 } 1278 1279 /* Extract head of queue */ 1280 ctlr->cur_msg = 1281 list_first_entry(&ctlr->queue, struct spi_message, queue); 1282 1283 list_del_init(&ctlr->cur_msg->queue); 1284 if (ctlr->busy) 1285 was_busy = true; 1286 else 1287 ctlr->busy = true; 1288 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1289 1290 mutex_lock(&ctlr->io_mutex); 1291 1292 if (!was_busy && ctlr->auto_runtime_pm) { 1293 ret = pm_runtime_get_sync(ctlr->dev.parent); 1294 if (ret < 0) { 1295 pm_runtime_put_noidle(ctlr->dev.parent); 1296 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1297 ret); 1298 mutex_unlock(&ctlr->io_mutex); 1299 return; 1300 } 1301 } 1302 1303 if (!was_busy) 1304 trace_spi_controller_busy(ctlr); 1305 1306 if (!was_busy && ctlr->prepare_transfer_hardware) { 1307 ret = ctlr->prepare_transfer_hardware(ctlr); 1308 if (ret) { 1309 dev_err(&ctlr->dev, 1310 "failed to prepare transfer hardware: %d\n", 1311 ret); 1312 1313 if (ctlr->auto_runtime_pm) 1314 pm_runtime_put(ctlr->dev.parent); 1315 1316 ctlr->cur_msg->status = ret; 1317 spi_finalize_current_message(ctlr); 1318 1319 mutex_unlock(&ctlr->io_mutex); 1320 return; 1321 } 1322 } 1323 1324 trace_spi_message_start(ctlr->cur_msg); 1325 1326 if (ctlr->prepare_message) { 1327 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg); 1328 if (ret) { 1329 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1330 ret); 1331 ctlr->cur_msg->status = ret; 1332 spi_finalize_current_message(ctlr); 1333 goto out; 1334 } 1335 ctlr->cur_msg_prepared = true; 1336 } 1337 1338 ret = spi_map_msg(ctlr, ctlr->cur_msg); 1339 if (ret) { 1340 ctlr->cur_msg->status = ret; 1341 spi_finalize_current_message(ctlr); 1342 goto out; 1343 } 1344 1345 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg); 1346 if (ret) { 1347 dev_err(&ctlr->dev, 1348 "failed to transfer one message from queue\n"); 1349 goto out; 1350 } 1351 1352 out: 1353 mutex_unlock(&ctlr->io_mutex); 1354 1355 /* Prod the scheduler in case transfer_one() was busy waiting */ 1356 if (!ret) 1357 cond_resched(); 1358 } 1359 1360 /** 1361 * spi_pump_messages - kthread work function which processes spi message queue 1362 * @work: pointer to kthread work struct contained in the controller struct 1363 */ 1364 static void spi_pump_messages(struct kthread_work *work) 1365 { 1366 struct spi_controller *ctlr = 1367 container_of(work, struct spi_controller, pump_messages); 1368 1369 __spi_pump_messages(ctlr, true); 1370 } 1371 1372 static int spi_init_queue(struct spi_controller *ctlr) 1373 { 1374 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1375 1376 ctlr->running = false; 1377 ctlr->busy = false; 1378 1379 kthread_init_worker(&ctlr->kworker); 1380 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, 1381 "%s", dev_name(&ctlr->dev)); 1382 if (IS_ERR(ctlr->kworker_task)) { 1383 dev_err(&ctlr->dev, "failed to create message pump task\n"); 1384 return PTR_ERR(ctlr->kworker_task); 1385 } 1386 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1387 1388 /* 1389 * Controller config will indicate if this controller should run the 1390 * message pump with high (realtime) priority to reduce the transfer 1391 * latency on the bus by minimising the delay between a transfer 1392 * request and the scheduling of the message pump thread. Without this 1393 * setting the message pump thread will remain at default priority. 1394 */ 1395 if (ctlr->rt) { 1396 dev_info(&ctlr->dev, 1397 "will run message pump with realtime priority\n"); 1398 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); 1399 } 1400 1401 return 0; 1402 } 1403 1404 /** 1405 * spi_get_next_queued_message() - called by driver to check for queued 1406 * messages 1407 * @ctlr: the controller to check for queued messages 1408 * 1409 * If there are more messages in the queue, the next message is returned from 1410 * this call. 1411 * 1412 * Return: the next message in the queue, else NULL if the queue is empty. 1413 */ 1414 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1415 { 1416 struct spi_message *next; 1417 unsigned long flags; 1418 1419 /* get a pointer to the next message, if any */ 1420 spin_lock_irqsave(&ctlr->queue_lock, flags); 1421 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1422 queue); 1423 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1424 1425 return next; 1426 } 1427 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1428 1429 /** 1430 * spi_finalize_current_message() - the current message is complete 1431 * @ctlr: the controller to return the message to 1432 * 1433 * Called by the driver to notify the core that the message in the front of the 1434 * queue is complete and can be removed from the queue. 1435 */ 1436 void spi_finalize_current_message(struct spi_controller *ctlr) 1437 { 1438 struct spi_message *mesg; 1439 unsigned long flags; 1440 int ret; 1441 1442 spin_lock_irqsave(&ctlr->queue_lock, flags); 1443 mesg = ctlr->cur_msg; 1444 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1445 1446 spi_unmap_msg(ctlr, mesg); 1447 1448 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1449 ret = ctlr->unprepare_message(ctlr, mesg); 1450 if (ret) { 1451 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1452 ret); 1453 } 1454 } 1455 1456 spin_lock_irqsave(&ctlr->queue_lock, flags); 1457 ctlr->cur_msg = NULL; 1458 ctlr->cur_msg_prepared = false; 1459 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1460 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1461 1462 trace_spi_message_done(mesg); 1463 1464 mesg->state = NULL; 1465 if (mesg->complete) 1466 mesg->complete(mesg->context); 1467 } 1468 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1469 1470 static int spi_start_queue(struct spi_controller *ctlr) 1471 { 1472 unsigned long flags; 1473 1474 spin_lock_irqsave(&ctlr->queue_lock, flags); 1475 1476 if (ctlr->running || ctlr->busy) { 1477 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1478 return -EBUSY; 1479 } 1480 1481 ctlr->running = true; 1482 ctlr->cur_msg = NULL; 1483 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1484 1485 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1486 1487 return 0; 1488 } 1489 1490 static int spi_stop_queue(struct spi_controller *ctlr) 1491 { 1492 unsigned long flags; 1493 unsigned limit = 500; 1494 int ret = 0; 1495 1496 spin_lock_irqsave(&ctlr->queue_lock, flags); 1497 1498 /* 1499 * This is a bit lame, but is optimized for the common execution path. 1500 * A wait_queue on the ctlr->busy could be used, but then the common 1501 * execution path (pump_messages) would be required to call wake_up or 1502 * friends on every SPI message. Do this instead. 1503 */ 1504 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1505 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1506 usleep_range(10000, 11000); 1507 spin_lock_irqsave(&ctlr->queue_lock, flags); 1508 } 1509 1510 if (!list_empty(&ctlr->queue) || ctlr->busy) 1511 ret = -EBUSY; 1512 else 1513 ctlr->running = false; 1514 1515 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1516 1517 if (ret) { 1518 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1519 return ret; 1520 } 1521 return ret; 1522 } 1523 1524 static int spi_destroy_queue(struct spi_controller *ctlr) 1525 { 1526 int ret; 1527 1528 ret = spi_stop_queue(ctlr); 1529 1530 /* 1531 * kthread_flush_worker will block until all work is done. 1532 * If the reason that stop_queue timed out is that the work will never 1533 * finish, then it does no good to call flush/stop thread, so 1534 * return anyway. 1535 */ 1536 if (ret) { 1537 dev_err(&ctlr->dev, "problem destroying queue\n"); 1538 return ret; 1539 } 1540 1541 kthread_flush_worker(&ctlr->kworker); 1542 kthread_stop(ctlr->kworker_task); 1543 1544 return 0; 1545 } 1546 1547 static int __spi_queued_transfer(struct spi_device *spi, 1548 struct spi_message *msg, 1549 bool need_pump) 1550 { 1551 struct spi_controller *ctlr = spi->controller; 1552 unsigned long flags; 1553 1554 spin_lock_irqsave(&ctlr->queue_lock, flags); 1555 1556 if (!ctlr->running) { 1557 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1558 return -ESHUTDOWN; 1559 } 1560 msg->actual_length = 0; 1561 msg->status = -EINPROGRESS; 1562 1563 list_add_tail(&msg->queue, &ctlr->queue); 1564 if (!ctlr->busy && need_pump) 1565 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1566 1567 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1568 return 0; 1569 } 1570 1571 /** 1572 * spi_queued_transfer - transfer function for queued transfers 1573 * @spi: spi device which is requesting transfer 1574 * @msg: spi message which is to handled is queued to driver queue 1575 * 1576 * Return: zero on success, else a negative error code. 1577 */ 1578 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1579 { 1580 return __spi_queued_transfer(spi, msg, true); 1581 } 1582 1583 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1584 { 1585 int ret; 1586 1587 ctlr->transfer = spi_queued_transfer; 1588 if (!ctlr->transfer_one_message) 1589 ctlr->transfer_one_message = spi_transfer_one_message; 1590 1591 /* Initialize and start queue */ 1592 ret = spi_init_queue(ctlr); 1593 if (ret) { 1594 dev_err(&ctlr->dev, "problem initializing queue\n"); 1595 goto err_init_queue; 1596 } 1597 ctlr->queued = true; 1598 ret = spi_start_queue(ctlr); 1599 if (ret) { 1600 dev_err(&ctlr->dev, "problem starting queue\n"); 1601 goto err_start_queue; 1602 } 1603 1604 return 0; 1605 1606 err_start_queue: 1607 spi_destroy_queue(ctlr); 1608 err_init_queue: 1609 return ret; 1610 } 1611 1612 /** 1613 * spi_flush_queue - Send all pending messages in the queue from the callers' 1614 * context 1615 * @ctlr: controller to process queue for 1616 * 1617 * This should be used when one wants to ensure all pending messages have been 1618 * sent before doing something. Is used by the spi-mem code to make sure SPI 1619 * memory operations do not preempt regular SPI transfers that have been queued 1620 * before the spi-mem operation. 1621 */ 1622 void spi_flush_queue(struct spi_controller *ctlr) 1623 { 1624 if (ctlr->transfer == spi_queued_transfer) 1625 __spi_pump_messages(ctlr, false); 1626 } 1627 1628 /*-------------------------------------------------------------------------*/ 1629 1630 #if defined(CONFIG_OF) 1631 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1632 struct device_node *nc) 1633 { 1634 u32 value; 1635 int rc; 1636 1637 /* Mode (clock phase/polarity/etc.) */ 1638 if (of_property_read_bool(nc, "spi-cpha")) 1639 spi->mode |= SPI_CPHA; 1640 if (of_property_read_bool(nc, "spi-cpol")) 1641 spi->mode |= SPI_CPOL; 1642 if (of_property_read_bool(nc, "spi-3wire")) 1643 spi->mode |= SPI_3WIRE; 1644 if (of_property_read_bool(nc, "spi-lsb-first")) 1645 spi->mode |= SPI_LSB_FIRST; 1646 1647 /* 1648 * For descriptors associated with the device, polarity inversion is 1649 * handled in the gpiolib, so all chip selects are "active high" in 1650 * the logical sense, the gpiolib will invert the line if need be. 1651 */ 1652 if (ctlr->use_gpio_descriptors) 1653 spi->mode |= SPI_CS_HIGH; 1654 else if (of_property_read_bool(nc, "spi-cs-high")) 1655 spi->mode |= SPI_CS_HIGH; 1656 1657 /* Device DUAL/QUAD mode */ 1658 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1659 switch (value) { 1660 case 1: 1661 break; 1662 case 2: 1663 spi->mode |= SPI_TX_DUAL; 1664 break; 1665 case 4: 1666 spi->mode |= SPI_TX_QUAD; 1667 break; 1668 case 8: 1669 spi->mode |= SPI_TX_OCTAL; 1670 break; 1671 default: 1672 dev_warn(&ctlr->dev, 1673 "spi-tx-bus-width %d not supported\n", 1674 value); 1675 break; 1676 } 1677 } 1678 1679 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1680 switch (value) { 1681 case 1: 1682 break; 1683 case 2: 1684 spi->mode |= SPI_RX_DUAL; 1685 break; 1686 case 4: 1687 spi->mode |= SPI_RX_QUAD; 1688 break; 1689 case 8: 1690 spi->mode |= SPI_RX_OCTAL; 1691 break; 1692 default: 1693 dev_warn(&ctlr->dev, 1694 "spi-rx-bus-width %d not supported\n", 1695 value); 1696 break; 1697 } 1698 } 1699 1700 if (spi_controller_is_slave(ctlr)) { 1701 if (!of_node_name_eq(nc, "slave")) { 1702 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1703 nc); 1704 return -EINVAL; 1705 } 1706 return 0; 1707 } 1708 1709 /* Device address */ 1710 rc = of_property_read_u32(nc, "reg", &value); 1711 if (rc) { 1712 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1713 nc, rc); 1714 return rc; 1715 } 1716 spi->chip_select = value; 1717 1718 /* Device speed */ 1719 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1720 if (rc) { 1721 dev_err(&ctlr->dev, 1722 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); 1723 return rc; 1724 } 1725 spi->max_speed_hz = value; 1726 1727 return 0; 1728 } 1729 1730 static struct spi_device * 1731 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1732 { 1733 struct spi_device *spi; 1734 int rc; 1735 1736 /* Alloc an spi_device */ 1737 spi = spi_alloc_device(ctlr); 1738 if (!spi) { 1739 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 1740 rc = -ENOMEM; 1741 goto err_out; 1742 } 1743 1744 /* Select device driver */ 1745 rc = of_modalias_node(nc, spi->modalias, 1746 sizeof(spi->modalias)); 1747 if (rc < 0) { 1748 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 1749 goto err_out; 1750 } 1751 1752 rc = of_spi_parse_dt(ctlr, spi, nc); 1753 if (rc) 1754 goto err_out; 1755 1756 /* Store a pointer to the node in the device structure */ 1757 of_node_get(nc); 1758 spi->dev.of_node = nc; 1759 1760 /* Register the new device */ 1761 rc = spi_add_device(spi); 1762 if (rc) { 1763 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 1764 goto err_of_node_put; 1765 } 1766 1767 return spi; 1768 1769 err_of_node_put: 1770 of_node_put(nc); 1771 err_out: 1772 spi_dev_put(spi); 1773 return ERR_PTR(rc); 1774 } 1775 1776 /** 1777 * of_register_spi_devices() - Register child devices onto the SPI bus 1778 * @ctlr: Pointer to spi_controller device 1779 * 1780 * Registers an spi_device for each child node of controller node which 1781 * represents a valid SPI slave. 1782 */ 1783 static void of_register_spi_devices(struct spi_controller *ctlr) 1784 { 1785 struct spi_device *spi; 1786 struct device_node *nc; 1787 1788 if (!ctlr->dev.of_node) 1789 return; 1790 1791 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 1792 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 1793 continue; 1794 spi = of_register_spi_device(ctlr, nc); 1795 if (IS_ERR(spi)) { 1796 dev_warn(&ctlr->dev, 1797 "Failed to create SPI device for %pOF\n", nc); 1798 of_node_clear_flag(nc, OF_POPULATED); 1799 } 1800 } 1801 } 1802 #else 1803 static void of_register_spi_devices(struct spi_controller *ctlr) { } 1804 #endif 1805 1806 #ifdef CONFIG_ACPI 1807 static void acpi_spi_parse_apple_properties(struct spi_device *spi) 1808 { 1809 struct acpi_device *dev = ACPI_COMPANION(&spi->dev); 1810 const union acpi_object *obj; 1811 1812 if (!x86_apple_machine) 1813 return; 1814 1815 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 1816 && obj->buffer.length >= 4) 1817 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 1818 1819 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 1820 && obj->buffer.length == 8) 1821 spi->bits_per_word = *(u64 *)obj->buffer.pointer; 1822 1823 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 1824 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 1825 spi->mode |= SPI_LSB_FIRST; 1826 1827 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 1828 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1829 spi->mode |= SPI_CPOL; 1830 1831 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 1832 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1833 spi->mode |= SPI_CPHA; 1834 } 1835 1836 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1837 { 1838 struct spi_device *spi = data; 1839 struct spi_controller *ctlr = spi->controller; 1840 1841 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1842 struct acpi_resource_spi_serialbus *sb; 1843 1844 sb = &ares->data.spi_serial_bus; 1845 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1846 /* 1847 * ACPI DeviceSelection numbering is handled by the 1848 * host controller driver in Windows and can vary 1849 * from driver to driver. In Linux we always expect 1850 * 0 .. max - 1 so we need to ask the driver to 1851 * translate between the two schemes. 1852 */ 1853 if (ctlr->fw_translate_cs) { 1854 int cs = ctlr->fw_translate_cs(ctlr, 1855 sb->device_selection); 1856 if (cs < 0) 1857 return cs; 1858 spi->chip_select = cs; 1859 } else { 1860 spi->chip_select = sb->device_selection; 1861 } 1862 1863 spi->max_speed_hz = sb->connection_speed; 1864 1865 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1866 spi->mode |= SPI_CPHA; 1867 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1868 spi->mode |= SPI_CPOL; 1869 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1870 spi->mode |= SPI_CS_HIGH; 1871 } 1872 } else if (spi->irq < 0) { 1873 struct resource r; 1874 1875 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1876 spi->irq = r.start; 1877 } 1878 1879 /* Always tell the ACPI core to skip this resource */ 1880 return 1; 1881 } 1882 1883 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 1884 struct acpi_device *adev) 1885 { 1886 struct list_head resource_list; 1887 struct spi_device *spi; 1888 int ret; 1889 1890 if (acpi_bus_get_status(adev) || !adev->status.present || 1891 acpi_device_enumerated(adev)) 1892 return AE_OK; 1893 1894 spi = spi_alloc_device(ctlr); 1895 if (!spi) { 1896 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 1897 dev_name(&adev->dev)); 1898 return AE_NO_MEMORY; 1899 } 1900 1901 ACPI_COMPANION_SET(&spi->dev, adev); 1902 spi->irq = -1; 1903 1904 INIT_LIST_HEAD(&resource_list); 1905 ret = acpi_dev_get_resources(adev, &resource_list, 1906 acpi_spi_add_resource, spi); 1907 acpi_dev_free_resource_list(&resource_list); 1908 1909 acpi_spi_parse_apple_properties(spi); 1910 1911 if (ret < 0 || !spi->max_speed_hz) { 1912 spi_dev_put(spi); 1913 return AE_OK; 1914 } 1915 1916 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 1917 sizeof(spi->modalias)); 1918 1919 if (spi->irq < 0) 1920 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 1921 1922 acpi_device_set_enumerated(adev); 1923 1924 adev->power.flags.ignore_parent = true; 1925 if (spi_add_device(spi)) { 1926 adev->power.flags.ignore_parent = false; 1927 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 1928 dev_name(&adev->dev)); 1929 spi_dev_put(spi); 1930 } 1931 1932 return AE_OK; 1933 } 1934 1935 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1936 void *data, void **return_value) 1937 { 1938 struct spi_controller *ctlr = data; 1939 struct acpi_device *adev; 1940 1941 if (acpi_bus_get_device(handle, &adev)) 1942 return AE_OK; 1943 1944 return acpi_register_spi_device(ctlr, adev); 1945 } 1946 1947 static void acpi_register_spi_devices(struct spi_controller *ctlr) 1948 { 1949 acpi_status status; 1950 acpi_handle handle; 1951 1952 handle = ACPI_HANDLE(ctlr->dev.parent); 1953 if (!handle) 1954 return; 1955 1956 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1957 acpi_spi_add_device, NULL, ctlr, NULL); 1958 if (ACPI_FAILURE(status)) 1959 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 1960 } 1961 #else 1962 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 1963 #endif /* CONFIG_ACPI */ 1964 1965 static void spi_controller_release(struct device *dev) 1966 { 1967 struct spi_controller *ctlr; 1968 1969 ctlr = container_of(dev, struct spi_controller, dev); 1970 kfree(ctlr); 1971 } 1972 1973 static struct class spi_master_class = { 1974 .name = "spi_master", 1975 .owner = THIS_MODULE, 1976 .dev_release = spi_controller_release, 1977 .dev_groups = spi_master_groups, 1978 }; 1979 1980 #ifdef CONFIG_SPI_SLAVE 1981 /** 1982 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 1983 * controller 1984 * @spi: device used for the current transfer 1985 */ 1986 int spi_slave_abort(struct spi_device *spi) 1987 { 1988 struct spi_controller *ctlr = spi->controller; 1989 1990 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 1991 return ctlr->slave_abort(ctlr); 1992 1993 return -ENOTSUPP; 1994 } 1995 EXPORT_SYMBOL_GPL(spi_slave_abort); 1996 1997 static int match_true(struct device *dev, void *data) 1998 { 1999 return 1; 2000 } 2001 2002 static ssize_t spi_slave_show(struct device *dev, 2003 struct device_attribute *attr, char *buf) 2004 { 2005 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2006 dev); 2007 struct device *child; 2008 2009 child = device_find_child(&ctlr->dev, NULL, match_true); 2010 return sprintf(buf, "%s\n", 2011 child ? to_spi_device(child)->modalias : NULL); 2012 } 2013 2014 static ssize_t spi_slave_store(struct device *dev, 2015 struct device_attribute *attr, const char *buf, 2016 size_t count) 2017 { 2018 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2019 dev); 2020 struct spi_device *spi; 2021 struct device *child; 2022 char name[32]; 2023 int rc; 2024 2025 rc = sscanf(buf, "%31s", name); 2026 if (rc != 1 || !name[0]) 2027 return -EINVAL; 2028 2029 child = device_find_child(&ctlr->dev, NULL, match_true); 2030 if (child) { 2031 /* Remove registered slave */ 2032 device_unregister(child); 2033 put_device(child); 2034 } 2035 2036 if (strcmp(name, "(null)")) { 2037 /* Register new slave */ 2038 spi = spi_alloc_device(ctlr); 2039 if (!spi) 2040 return -ENOMEM; 2041 2042 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2043 2044 rc = spi_add_device(spi); 2045 if (rc) { 2046 spi_dev_put(spi); 2047 return rc; 2048 } 2049 } 2050 2051 return count; 2052 } 2053 2054 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store); 2055 2056 static struct attribute *spi_slave_attrs[] = { 2057 &dev_attr_slave.attr, 2058 NULL, 2059 }; 2060 2061 static const struct attribute_group spi_slave_group = { 2062 .attrs = spi_slave_attrs, 2063 }; 2064 2065 static const struct attribute_group *spi_slave_groups[] = { 2066 &spi_controller_statistics_group, 2067 &spi_slave_group, 2068 NULL, 2069 }; 2070 2071 static struct class spi_slave_class = { 2072 .name = "spi_slave", 2073 .owner = THIS_MODULE, 2074 .dev_release = spi_controller_release, 2075 .dev_groups = spi_slave_groups, 2076 }; 2077 #else 2078 extern struct class spi_slave_class; /* dummy */ 2079 #endif 2080 2081 /** 2082 * __spi_alloc_controller - allocate an SPI master or slave controller 2083 * @dev: the controller, possibly using the platform_bus 2084 * @size: how much zeroed driver-private data to allocate; the pointer to this 2085 * memory is in the driver_data field of the returned device, 2086 * accessible with spi_controller_get_devdata(). 2087 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2088 * slave (true) controller 2089 * Context: can sleep 2090 * 2091 * This call is used only by SPI controller drivers, which are the 2092 * only ones directly touching chip registers. It's how they allocate 2093 * an spi_controller structure, prior to calling spi_register_controller(). 2094 * 2095 * This must be called from context that can sleep. 2096 * 2097 * The caller is responsible for assigning the bus number and initializing the 2098 * controller's methods before calling spi_register_controller(); and (after 2099 * errors adding the device) calling spi_controller_put() to prevent a memory 2100 * leak. 2101 * 2102 * Return: the SPI controller structure on success, else NULL. 2103 */ 2104 struct spi_controller *__spi_alloc_controller(struct device *dev, 2105 unsigned int size, bool slave) 2106 { 2107 struct spi_controller *ctlr; 2108 2109 if (!dev) 2110 return NULL; 2111 2112 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL); 2113 if (!ctlr) 2114 return NULL; 2115 2116 device_initialize(&ctlr->dev); 2117 ctlr->bus_num = -1; 2118 ctlr->num_chipselect = 1; 2119 ctlr->slave = slave; 2120 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2121 ctlr->dev.class = &spi_slave_class; 2122 else 2123 ctlr->dev.class = &spi_master_class; 2124 ctlr->dev.parent = dev; 2125 pm_suspend_ignore_children(&ctlr->dev, true); 2126 spi_controller_set_devdata(ctlr, &ctlr[1]); 2127 2128 return ctlr; 2129 } 2130 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2131 2132 #ifdef CONFIG_OF 2133 static int of_spi_register_master(struct spi_controller *ctlr) 2134 { 2135 int nb, i, *cs; 2136 struct device_node *np = ctlr->dev.of_node; 2137 2138 if (!np) 2139 return 0; 2140 2141 nb = of_gpio_named_count(np, "cs-gpios"); 2142 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2143 2144 /* Return error only for an incorrectly formed cs-gpios property */ 2145 if (nb == 0 || nb == -ENOENT) 2146 return 0; 2147 else if (nb < 0) 2148 return nb; 2149 2150 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2151 GFP_KERNEL); 2152 ctlr->cs_gpios = cs; 2153 2154 if (!ctlr->cs_gpios) 2155 return -ENOMEM; 2156 2157 for (i = 0; i < ctlr->num_chipselect; i++) 2158 cs[i] = -ENOENT; 2159 2160 for (i = 0; i < nb; i++) 2161 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2162 2163 return 0; 2164 } 2165 #else 2166 static int of_spi_register_master(struct spi_controller *ctlr) 2167 { 2168 return 0; 2169 } 2170 #endif 2171 2172 /** 2173 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2174 * @ctlr: The SPI master to grab GPIO descriptors for 2175 */ 2176 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2177 { 2178 int nb, i; 2179 struct gpio_desc **cs; 2180 struct device *dev = &ctlr->dev; 2181 2182 nb = gpiod_count(dev, "cs"); 2183 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2184 2185 /* No GPIOs at all is fine, else return the error */ 2186 if (nb == 0 || nb == -ENOENT) 2187 return 0; 2188 else if (nb < 0) 2189 return nb; 2190 2191 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2192 GFP_KERNEL); 2193 if (!cs) 2194 return -ENOMEM; 2195 ctlr->cs_gpiods = cs; 2196 2197 for (i = 0; i < nb; i++) { 2198 /* 2199 * Most chipselects are active low, the inverted 2200 * semantics are handled by special quirks in gpiolib, 2201 * so initializing them GPIOD_OUT_LOW here means 2202 * "unasserted", in most cases this will drive the physical 2203 * line high. 2204 */ 2205 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2206 GPIOD_OUT_LOW); 2207 if (IS_ERR(cs[i])) 2208 return PTR_ERR(cs[i]); 2209 2210 if (cs[i]) { 2211 /* 2212 * If we find a CS GPIO, name it after the device and 2213 * chip select line. 2214 */ 2215 char *gpioname; 2216 2217 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2218 dev_name(dev), i); 2219 if (!gpioname) 2220 return -ENOMEM; 2221 gpiod_set_consumer_name(cs[i], gpioname); 2222 } 2223 } 2224 2225 return 0; 2226 } 2227 2228 static int spi_controller_check_ops(struct spi_controller *ctlr) 2229 { 2230 /* 2231 * The controller may implement only the high-level SPI-memory like 2232 * operations if it does not support regular SPI transfers, and this is 2233 * valid use case. 2234 * If ->mem_ops is NULL, we request that at least one of the 2235 * ->transfer_xxx() method be implemented. 2236 */ 2237 if (ctlr->mem_ops) { 2238 if (!ctlr->mem_ops->exec_op) 2239 return -EINVAL; 2240 } else if (!ctlr->transfer && !ctlr->transfer_one && 2241 !ctlr->transfer_one_message) { 2242 return -EINVAL; 2243 } 2244 2245 return 0; 2246 } 2247 2248 /** 2249 * spi_register_controller - register SPI master or slave controller 2250 * @ctlr: initialized master, originally from spi_alloc_master() or 2251 * spi_alloc_slave() 2252 * Context: can sleep 2253 * 2254 * SPI controllers connect to their drivers using some non-SPI bus, 2255 * such as the platform bus. The final stage of probe() in that code 2256 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2257 * 2258 * SPI controllers use board specific (often SOC specific) bus numbers, 2259 * and board-specific addressing for SPI devices combines those numbers 2260 * with chip select numbers. Since SPI does not directly support dynamic 2261 * device identification, boards need configuration tables telling which 2262 * chip is at which address. 2263 * 2264 * This must be called from context that can sleep. It returns zero on 2265 * success, else a negative error code (dropping the controller's refcount). 2266 * After a successful return, the caller is responsible for calling 2267 * spi_unregister_controller(). 2268 * 2269 * Return: zero on success, else a negative error code. 2270 */ 2271 int spi_register_controller(struct spi_controller *ctlr) 2272 { 2273 struct device *dev = ctlr->dev.parent; 2274 struct boardinfo *bi; 2275 int status; 2276 int id, first_dynamic; 2277 2278 if (!dev) 2279 return -ENODEV; 2280 2281 /* 2282 * Make sure all necessary hooks are implemented before registering 2283 * the SPI controller. 2284 */ 2285 status = spi_controller_check_ops(ctlr); 2286 if (status) 2287 return status; 2288 2289 /* even if it's just one always-selected device, there must 2290 * be at least one chipselect 2291 */ 2292 if (ctlr->num_chipselect == 0) 2293 return -EINVAL; 2294 if (ctlr->bus_num >= 0) { 2295 /* devices with a fixed bus num must check-in with the num */ 2296 mutex_lock(&board_lock); 2297 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2298 ctlr->bus_num + 1, GFP_KERNEL); 2299 mutex_unlock(&board_lock); 2300 if (WARN(id < 0, "couldn't get idr")) 2301 return id == -ENOSPC ? -EBUSY : id; 2302 ctlr->bus_num = id; 2303 } else if (ctlr->dev.of_node) { 2304 /* allocate dynamic bus number using Linux idr */ 2305 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2306 if (id >= 0) { 2307 ctlr->bus_num = id; 2308 mutex_lock(&board_lock); 2309 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2310 ctlr->bus_num + 1, GFP_KERNEL); 2311 mutex_unlock(&board_lock); 2312 if (WARN(id < 0, "couldn't get idr")) 2313 return id == -ENOSPC ? -EBUSY : id; 2314 } 2315 } 2316 if (ctlr->bus_num < 0) { 2317 first_dynamic = of_alias_get_highest_id("spi"); 2318 if (first_dynamic < 0) 2319 first_dynamic = 0; 2320 else 2321 first_dynamic++; 2322 2323 mutex_lock(&board_lock); 2324 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2325 0, GFP_KERNEL); 2326 mutex_unlock(&board_lock); 2327 if (WARN(id < 0, "couldn't get idr")) 2328 return id; 2329 ctlr->bus_num = id; 2330 } 2331 INIT_LIST_HEAD(&ctlr->queue); 2332 spin_lock_init(&ctlr->queue_lock); 2333 spin_lock_init(&ctlr->bus_lock_spinlock); 2334 mutex_init(&ctlr->bus_lock_mutex); 2335 mutex_init(&ctlr->io_mutex); 2336 ctlr->bus_lock_flag = 0; 2337 init_completion(&ctlr->xfer_completion); 2338 if (!ctlr->max_dma_len) 2339 ctlr->max_dma_len = INT_MAX; 2340 2341 /* register the device, then userspace will see it. 2342 * registration fails if the bus ID is in use. 2343 */ 2344 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2345 2346 if (!spi_controller_is_slave(ctlr)) { 2347 if (ctlr->use_gpio_descriptors) { 2348 status = spi_get_gpio_descs(ctlr); 2349 if (status) 2350 return status; 2351 /* 2352 * A controller using GPIO descriptors always 2353 * supports SPI_CS_HIGH if need be. 2354 */ 2355 ctlr->mode_bits |= SPI_CS_HIGH; 2356 } else { 2357 /* Legacy code path for GPIOs from DT */ 2358 status = of_spi_register_master(ctlr); 2359 if (status) 2360 return status; 2361 } 2362 } 2363 2364 status = device_add(&ctlr->dev); 2365 if (status < 0) { 2366 /* free bus id */ 2367 mutex_lock(&board_lock); 2368 idr_remove(&spi_master_idr, ctlr->bus_num); 2369 mutex_unlock(&board_lock); 2370 goto done; 2371 } 2372 dev_dbg(dev, "registered %s %s\n", 2373 spi_controller_is_slave(ctlr) ? "slave" : "master", 2374 dev_name(&ctlr->dev)); 2375 2376 /* 2377 * If we're using a queued driver, start the queue. Note that we don't 2378 * need the queueing logic if the driver is only supporting high-level 2379 * memory operations. 2380 */ 2381 if (ctlr->transfer) { 2382 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2383 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2384 status = spi_controller_initialize_queue(ctlr); 2385 if (status) { 2386 device_del(&ctlr->dev); 2387 /* free bus id */ 2388 mutex_lock(&board_lock); 2389 idr_remove(&spi_master_idr, ctlr->bus_num); 2390 mutex_unlock(&board_lock); 2391 goto done; 2392 } 2393 } 2394 /* add statistics */ 2395 spin_lock_init(&ctlr->statistics.lock); 2396 2397 mutex_lock(&board_lock); 2398 list_add_tail(&ctlr->list, &spi_controller_list); 2399 list_for_each_entry(bi, &board_list, list) 2400 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2401 mutex_unlock(&board_lock); 2402 2403 /* Register devices from the device tree and ACPI */ 2404 of_register_spi_devices(ctlr); 2405 acpi_register_spi_devices(ctlr); 2406 done: 2407 return status; 2408 } 2409 EXPORT_SYMBOL_GPL(spi_register_controller); 2410 2411 static void devm_spi_unregister(struct device *dev, void *res) 2412 { 2413 spi_unregister_controller(*(struct spi_controller **)res); 2414 } 2415 2416 /** 2417 * devm_spi_register_controller - register managed SPI master or slave 2418 * controller 2419 * @dev: device managing SPI controller 2420 * @ctlr: initialized controller, originally from spi_alloc_master() or 2421 * spi_alloc_slave() 2422 * Context: can sleep 2423 * 2424 * Register a SPI device as with spi_register_controller() which will 2425 * automatically be unregistered and freed. 2426 * 2427 * Return: zero on success, else a negative error code. 2428 */ 2429 int devm_spi_register_controller(struct device *dev, 2430 struct spi_controller *ctlr) 2431 { 2432 struct spi_controller **ptr; 2433 int ret; 2434 2435 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2436 if (!ptr) 2437 return -ENOMEM; 2438 2439 ret = spi_register_controller(ctlr); 2440 if (!ret) { 2441 *ptr = ctlr; 2442 devres_add(dev, ptr); 2443 } else { 2444 devres_free(ptr); 2445 } 2446 2447 return ret; 2448 } 2449 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2450 2451 static int __unregister(struct device *dev, void *null) 2452 { 2453 spi_unregister_device(to_spi_device(dev)); 2454 return 0; 2455 } 2456 2457 /** 2458 * spi_unregister_controller - unregister SPI master or slave controller 2459 * @ctlr: the controller being unregistered 2460 * Context: can sleep 2461 * 2462 * This call is used only by SPI controller drivers, which are the 2463 * only ones directly touching chip registers. 2464 * 2465 * This must be called from context that can sleep. 2466 * 2467 * Note that this function also drops a reference to the controller. 2468 */ 2469 void spi_unregister_controller(struct spi_controller *ctlr) 2470 { 2471 struct spi_controller *found; 2472 int id = ctlr->bus_num; 2473 int dummy; 2474 2475 /* First make sure that this controller was ever added */ 2476 mutex_lock(&board_lock); 2477 found = idr_find(&spi_master_idr, id); 2478 mutex_unlock(&board_lock); 2479 if (ctlr->queued) { 2480 if (spi_destroy_queue(ctlr)) 2481 dev_err(&ctlr->dev, "queue remove failed\n"); 2482 } 2483 mutex_lock(&board_lock); 2484 list_del(&ctlr->list); 2485 mutex_unlock(&board_lock); 2486 2487 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister); 2488 device_unregister(&ctlr->dev); 2489 /* free bus id */ 2490 mutex_lock(&board_lock); 2491 if (found == ctlr) 2492 idr_remove(&spi_master_idr, id); 2493 mutex_unlock(&board_lock); 2494 } 2495 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2496 2497 int spi_controller_suspend(struct spi_controller *ctlr) 2498 { 2499 int ret; 2500 2501 /* Basically no-ops for non-queued controllers */ 2502 if (!ctlr->queued) 2503 return 0; 2504 2505 ret = spi_stop_queue(ctlr); 2506 if (ret) 2507 dev_err(&ctlr->dev, "queue stop failed\n"); 2508 2509 return ret; 2510 } 2511 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2512 2513 int spi_controller_resume(struct spi_controller *ctlr) 2514 { 2515 int ret; 2516 2517 if (!ctlr->queued) 2518 return 0; 2519 2520 ret = spi_start_queue(ctlr); 2521 if (ret) 2522 dev_err(&ctlr->dev, "queue restart failed\n"); 2523 2524 return ret; 2525 } 2526 EXPORT_SYMBOL_GPL(spi_controller_resume); 2527 2528 static int __spi_controller_match(struct device *dev, const void *data) 2529 { 2530 struct spi_controller *ctlr; 2531 const u16 *bus_num = data; 2532 2533 ctlr = container_of(dev, struct spi_controller, dev); 2534 return ctlr->bus_num == *bus_num; 2535 } 2536 2537 /** 2538 * spi_busnum_to_master - look up master associated with bus_num 2539 * @bus_num: the master's bus number 2540 * Context: can sleep 2541 * 2542 * This call may be used with devices that are registered after 2543 * arch init time. It returns a refcounted pointer to the relevant 2544 * spi_controller (which the caller must release), or NULL if there is 2545 * no such master registered. 2546 * 2547 * Return: the SPI master structure on success, else NULL. 2548 */ 2549 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2550 { 2551 struct device *dev; 2552 struct spi_controller *ctlr = NULL; 2553 2554 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2555 __spi_controller_match); 2556 if (dev) 2557 ctlr = container_of(dev, struct spi_controller, dev); 2558 /* reference got in class_find_device */ 2559 return ctlr; 2560 } 2561 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2562 2563 /*-------------------------------------------------------------------------*/ 2564 2565 /* Core methods for SPI resource management */ 2566 2567 /** 2568 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2569 * during the processing of a spi_message while using 2570 * spi_transfer_one 2571 * @spi: the spi device for which we allocate memory 2572 * @release: the release code to execute for this resource 2573 * @size: size to alloc and return 2574 * @gfp: GFP allocation flags 2575 * 2576 * Return: the pointer to the allocated data 2577 * 2578 * This may get enhanced in the future to allocate from a memory pool 2579 * of the @spi_device or @spi_controller to avoid repeated allocations. 2580 */ 2581 void *spi_res_alloc(struct spi_device *spi, 2582 spi_res_release_t release, 2583 size_t size, gfp_t gfp) 2584 { 2585 struct spi_res *sres; 2586 2587 sres = kzalloc(sizeof(*sres) + size, gfp); 2588 if (!sres) 2589 return NULL; 2590 2591 INIT_LIST_HEAD(&sres->entry); 2592 sres->release = release; 2593 2594 return sres->data; 2595 } 2596 EXPORT_SYMBOL_GPL(spi_res_alloc); 2597 2598 /** 2599 * spi_res_free - free an spi resource 2600 * @res: pointer to the custom data of a resource 2601 * 2602 */ 2603 void spi_res_free(void *res) 2604 { 2605 struct spi_res *sres = container_of(res, struct spi_res, data); 2606 2607 if (!res) 2608 return; 2609 2610 WARN_ON(!list_empty(&sres->entry)); 2611 kfree(sres); 2612 } 2613 EXPORT_SYMBOL_GPL(spi_res_free); 2614 2615 /** 2616 * spi_res_add - add a spi_res to the spi_message 2617 * @message: the spi message 2618 * @res: the spi_resource 2619 */ 2620 void spi_res_add(struct spi_message *message, void *res) 2621 { 2622 struct spi_res *sres = container_of(res, struct spi_res, data); 2623 2624 WARN_ON(!list_empty(&sres->entry)); 2625 list_add_tail(&sres->entry, &message->resources); 2626 } 2627 EXPORT_SYMBOL_GPL(spi_res_add); 2628 2629 /** 2630 * spi_res_release - release all spi resources for this message 2631 * @ctlr: the @spi_controller 2632 * @message: the @spi_message 2633 */ 2634 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2635 { 2636 struct spi_res *res; 2637 2638 while (!list_empty(&message->resources)) { 2639 res = list_last_entry(&message->resources, 2640 struct spi_res, entry); 2641 2642 if (res->release) 2643 res->release(ctlr, message, res->data); 2644 2645 list_del(&res->entry); 2646 2647 kfree(res); 2648 } 2649 } 2650 EXPORT_SYMBOL_GPL(spi_res_release); 2651 2652 /*-------------------------------------------------------------------------*/ 2653 2654 /* Core methods for spi_message alterations */ 2655 2656 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2657 struct spi_message *msg, 2658 void *res) 2659 { 2660 struct spi_replaced_transfers *rxfer = res; 2661 size_t i; 2662 2663 /* call extra callback if requested */ 2664 if (rxfer->release) 2665 rxfer->release(ctlr, msg, res); 2666 2667 /* insert replaced transfers back into the message */ 2668 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2669 2670 /* remove the formerly inserted entries */ 2671 for (i = 0; i < rxfer->inserted; i++) 2672 list_del(&rxfer->inserted_transfers[i].transfer_list); 2673 } 2674 2675 /** 2676 * spi_replace_transfers - replace transfers with several transfers 2677 * and register change with spi_message.resources 2678 * @msg: the spi_message we work upon 2679 * @xfer_first: the first spi_transfer we want to replace 2680 * @remove: number of transfers to remove 2681 * @insert: the number of transfers we want to insert instead 2682 * @release: extra release code necessary in some circumstances 2683 * @extradatasize: extra data to allocate (with alignment guarantees 2684 * of struct @spi_transfer) 2685 * @gfp: gfp flags 2686 * 2687 * Returns: pointer to @spi_replaced_transfers, 2688 * PTR_ERR(...) in case of errors. 2689 */ 2690 struct spi_replaced_transfers *spi_replace_transfers( 2691 struct spi_message *msg, 2692 struct spi_transfer *xfer_first, 2693 size_t remove, 2694 size_t insert, 2695 spi_replaced_release_t release, 2696 size_t extradatasize, 2697 gfp_t gfp) 2698 { 2699 struct spi_replaced_transfers *rxfer; 2700 struct spi_transfer *xfer; 2701 size_t i; 2702 2703 /* allocate the structure using spi_res */ 2704 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2705 insert * sizeof(struct spi_transfer) 2706 + sizeof(struct spi_replaced_transfers) 2707 + extradatasize, 2708 gfp); 2709 if (!rxfer) 2710 return ERR_PTR(-ENOMEM); 2711 2712 /* the release code to invoke before running the generic release */ 2713 rxfer->release = release; 2714 2715 /* assign extradata */ 2716 if (extradatasize) 2717 rxfer->extradata = 2718 &rxfer->inserted_transfers[insert]; 2719 2720 /* init the replaced_transfers list */ 2721 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2722 2723 /* assign the list_entry after which we should reinsert 2724 * the @replaced_transfers - it may be spi_message.messages! 2725 */ 2726 rxfer->replaced_after = xfer_first->transfer_list.prev; 2727 2728 /* remove the requested number of transfers */ 2729 for (i = 0; i < remove; i++) { 2730 /* if the entry after replaced_after it is msg->transfers 2731 * then we have been requested to remove more transfers 2732 * than are in the list 2733 */ 2734 if (rxfer->replaced_after->next == &msg->transfers) { 2735 dev_err(&msg->spi->dev, 2736 "requested to remove more spi_transfers than are available\n"); 2737 /* insert replaced transfers back into the message */ 2738 list_splice(&rxfer->replaced_transfers, 2739 rxfer->replaced_after); 2740 2741 /* free the spi_replace_transfer structure */ 2742 spi_res_free(rxfer); 2743 2744 /* and return with an error */ 2745 return ERR_PTR(-EINVAL); 2746 } 2747 2748 /* remove the entry after replaced_after from list of 2749 * transfers and add it to list of replaced_transfers 2750 */ 2751 list_move_tail(rxfer->replaced_after->next, 2752 &rxfer->replaced_transfers); 2753 } 2754 2755 /* create copy of the given xfer with identical settings 2756 * based on the first transfer to get removed 2757 */ 2758 for (i = 0; i < insert; i++) { 2759 /* we need to run in reverse order */ 2760 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 2761 2762 /* copy all spi_transfer data */ 2763 memcpy(xfer, xfer_first, sizeof(*xfer)); 2764 2765 /* add to list */ 2766 list_add(&xfer->transfer_list, rxfer->replaced_after); 2767 2768 /* clear cs_change and delay_usecs for all but the last */ 2769 if (i) { 2770 xfer->cs_change = false; 2771 xfer->delay_usecs = 0; 2772 } 2773 } 2774 2775 /* set up inserted */ 2776 rxfer->inserted = insert; 2777 2778 /* and register it with spi_res/spi_message */ 2779 spi_res_add(msg, rxfer); 2780 2781 return rxfer; 2782 } 2783 EXPORT_SYMBOL_GPL(spi_replace_transfers); 2784 2785 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 2786 struct spi_message *msg, 2787 struct spi_transfer **xferp, 2788 size_t maxsize, 2789 gfp_t gfp) 2790 { 2791 struct spi_transfer *xfer = *xferp, *xfers; 2792 struct spi_replaced_transfers *srt; 2793 size_t offset; 2794 size_t count, i; 2795 2796 /* calculate how many we have to replace */ 2797 count = DIV_ROUND_UP(xfer->len, maxsize); 2798 2799 /* create replacement */ 2800 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 2801 if (IS_ERR(srt)) 2802 return PTR_ERR(srt); 2803 xfers = srt->inserted_transfers; 2804 2805 /* now handle each of those newly inserted spi_transfers 2806 * note that the replacements spi_transfers all are preset 2807 * to the same values as *xferp, so tx_buf, rx_buf and len 2808 * are all identical (as well as most others) 2809 * so we just have to fix up len and the pointers. 2810 * 2811 * this also includes support for the depreciated 2812 * spi_message.is_dma_mapped interface 2813 */ 2814 2815 /* the first transfer just needs the length modified, so we 2816 * run it outside the loop 2817 */ 2818 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 2819 2820 /* all the others need rx_buf/tx_buf also set */ 2821 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 2822 /* update rx_buf, tx_buf and dma */ 2823 if (xfers[i].rx_buf) 2824 xfers[i].rx_buf += offset; 2825 if (xfers[i].rx_dma) 2826 xfers[i].rx_dma += offset; 2827 if (xfers[i].tx_buf) 2828 xfers[i].tx_buf += offset; 2829 if (xfers[i].tx_dma) 2830 xfers[i].tx_dma += offset; 2831 2832 /* update length */ 2833 xfers[i].len = min(maxsize, xfers[i].len - offset); 2834 } 2835 2836 /* we set up xferp to the last entry we have inserted, 2837 * so that we skip those already split transfers 2838 */ 2839 *xferp = &xfers[count - 1]; 2840 2841 /* increment statistics counters */ 2842 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 2843 transfers_split_maxsize); 2844 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 2845 transfers_split_maxsize); 2846 2847 return 0; 2848 } 2849 2850 /** 2851 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 2852 * when an individual transfer exceeds a 2853 * certain size 2854 * @ctlr: the @spi_controller for this transfer 2855 * @msg: the @spi_message to transform 2856 * @maxsize: the maximum when to apply this 2857 * @gfp: GFP allocation flags 2858 * 2859 * Return: status of transformation 2860 */ 2861 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 2862 struct spi_message *msg, 2863 size_t maxsize, 2864 gfp_t gfp) 2865 { 2866 struct spi_transfer *xfer; 2867 int ret; 2868 2869 /* iterate over the transfer_list, 2870 * but note that xfer is advanced to the last transfer inserted 2871 * to avoid checking sizes again unnecessarily (also xfer does 2872 * potentiall belong to a different list by the time the 2873 * replacement has happened 2874 */ 2875 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 2876 if (xfer->len > maxsize) { 2877 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 2878 maxsize, gfp); 2879 if (ret) 2880 return ret; 2881 } 2882 } 2883 2884 return 0; 2885 } 2886 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 2887 2888 /*-------------------------------------------------------------------------*/ 2889 2890 /* Core methods for SPI controller protocol drivers. Some of the 2891 * other core methods are currently defined as inline functions. 2892 */ 2893 2894 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 2895 u8 bits_per_word) 2896 { 2897 if (ctlr->bits_per_word_mask) { 2898 /* Only 32 bits fit in the mask */ 2899 if (bits_per_word > 32) 2900 return -EINVAL; 2901 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 2902 return -EINVAL; 2903 } 2904 2905 return 0; 2906 } 2907 2908 /** 2909 * spi_setup - setup SPI mode and clock rate 2910 * @spi: the device whose settings are being modified 2911 * Context: can sleep, and no requests are queued to the device 2912 * 2913 * SPI protocol drivers may need to update the transfer mode if the 2914 * device doesn't work with its default. They may likewise need 2915 * to update clock rates or word sizes from initial values. This function 2916 * changes those settings, and must be called from a context that can sleep. 2917 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 2918 * effect the next time the device is selected and data is transferred to 2919 * or from it. When this function returns, the spi device is deselected. 2920 * 2921 * Note that this call will fail if the protocol driver specifies an option 2922 * that the underlying controller or its driver does not support. For 2923 * example, not all hardware supports wire transfers using nine bit words, 2924 * LSB-first wire encoding, or active-high chipselects. 2925 * 2926 * Return: zero on success, else a negative error code. 2927 */ 2928 int spi_setup(struct spi_device *spi) 2929 { 2930 unsigned bad_bits, ugly_bits; 2931 int status; 2932 2933 /* check mode to prevent that DUAL and QUAD set at the same time 2934 */ 2935 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 2936 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 2937 dev_err(&spi->dev, 2938 "setup: can not select dual and quad at the same time\n"); 2939 return -EINVAL; 2940 } 2941 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 2942 */ 2943 if ((spi->mode & SPI_3WIRE) && (spi->mode & 2944 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 2945 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 2946 return -EINVAL; 2947 /* help drivers fail *cleanly* when they need options 2948 * that aren't supported with their current controller 2949 * SPI_CS_WORD has a fallback software implementation, 2950 * so it is ignored here. 2951 */ 2952 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 2953 /* nothing prevents from working with active-high CS in case if it 2954 * is driven by GPIO. 2955 */ 2956 if (gpio_is_valid(spi->cs_gpio)) 2957 bad_bits &= ~SPI_CS_HIGH; 2958 ugly_bits = bad_bits & 2959 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 2960 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 2961 if (ugly_bits) { 2962 dev_warn(&spi->dev, 2963 "setup: ignoring unsupported mode bits %x\n", 2964 ugly_bits); 2965 spi->mode &= ~ugly_bits; 2966 bad_bits &= ~ugly_bits; 2967 } 2968 if (bad_bits) { 2969 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 2970 bad_bits); 2971 return -EINVAL; 2972 } 2973 2974 if (!spi->bits_per_word) 2975 spi->bits_per_word = 8; 2976 2977 status = __spi_validate_bits_per_word(spi->controller, 2978 spi->bits_per_word); 2979 if (status) 2980 return status; 2981 2982 if (!spi->max_speed_hz) 2983 spi->max_speed_hz = spi->controller->max_speed_hz; 2984 2985 if (spi->controller->setup) 2986 status = spi->controller->setup(spi); 2987 2988 spi_set_cs(spi, false); 2989 2990 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 2991 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 2992 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 2993 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 2994 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 2995 (spi->mode & SPI_LOOP) ? "loopback, " : "", 2996 spi->bits_per_word, spi->max_speed_hz, 2997 status); 2998 2999 return status; 3000 } 3001 EXPORT_SYMBOL_GPL(spi_setup); 3002 3003 /** 3004 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3005 * @spi: the device that requires specific CS timing configuration 3006 * @setup: CS setup time in terms of clock count 3007 * @hold: CS hold time in terms of clock count 3008 * @inactive_dly: CS inactive delay between transfers in terms of clock count 3009 */ 3010 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold, 3011 u8 inactive_dly) 3012 { 3013 if (spi->controller->set_cs_timing) 3014 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly); 3015 } 3016 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3017 3018 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3019 { 3020 struct spi_controller *ctlr = spi->controller; 3021 struct spi_transfer *xfer; 3022 int w_size; 3023 3024 if (list_empty(&message->transfers)) 3025 return -EINVAL; 3026 3027 /* If an SPI controller does not support toggling the CS line on each 3028 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3029 * for the CS line, we can emulate the CS-per-word hardware function by 3030 * splitting transfers into one-word transfers and ensuring that 3031 * cs_change is set for each transfer. 3032 */ 3033 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3034 spi->cs_gpiod || 3035 gpio_is_valid(spi->cs_gpio))) { 3036 size_t maxsize; 3037 int ret; 3038 3039 maxsize = (spi->bits_per_word + 7) / 8; 3040 3041 /* spi_split_transfers_maxsize() requires message->spi */ 3042 message->spi = spi; 3043 3044 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3045 GFP_KERNEL); 3046 if (ret) 3047 return ret; 3048 3049 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3050 /* don't change cs_change on the last entry in the list */ 3051 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3052 break; 3053 xfer->cs_change = 1; 3054 } 3055 } 3056 3057 /* Half-duplex links include original MicroWire, and ones with 3058 * only one data pin like SPI_3WIRE (switches direction) or where 3059 * either MOSI or MISO is missing. They can also be caused by 3060 * software limitations. 3061 */ 3062 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3063 (spi->mode & SPI_3WIRE)) { 3064 unsigned flags = ctlr->flags; 3065 3066 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3067 if (xfer->rx_buf && xfer->tx_buf) 3068 return -EINVAL; 3069 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3070 return -EINVAL; 3071 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3072 return -EINVAL; 3073 } 3074 } 3075 3076 /** 3077 * Set transfer bits_per_word and max speed as spi device default if 3078 * it is not set for this transfer. 3079 * Set transfer tx_nbits and rx_nbits as single transfer default 3080 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3081 * Ensure transfer word_delay is at least as long as that required by 3082 * device itself. 3083 */ 3084 message->frame_length = 0; 3085 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3086 message->frame_length += xfer->len; 3087 if (!xfer->bits_per_word) 3088 xfer->bits_per_word = spi->bits_per_word; 3089 3090 if (!xfer->speed_hz) 3091 xfer->speed_hz = spi->max_speed_hz; 3092 3093 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3094 xfer->speed_hz = ctlr->max_speed_hz; 3095 3096 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3097 return -EINVAL; 3098 3099 /* 3100 * SPI transfer length should be multiple of SPI word size 3101 * where SPI word size should be power-of-two multiple 3102 */ 3103 if (xfer->bits_per_word <= 8) 3104 w_size = 1; 3105 else if (xfer->bits_per_word <= 16) 3106 w_size = 2; 3107 else 3108 w_size = 4; 3109 3110 /* No partial transfers accepted */ 3111 if (xfer->len % w_size) 3112 return -EINVAL; 3113 3114 if (xfer->speed_hz && ctlr->min_speed_hz && 3115 xfer->speed_hz < ctlr->min_speed_hz) 3116 return -EINVAL; 3117 3118 if (xfer->tx_buf && !xfer->tx_nbits) 3119 xfer->tx_nbits = SPI_NBITS_SINGLE; 3120 if (xfer->rx_buf && !xfer->rx_nbits) 3121 xfer->rx_nbits = SPI_NBITS_SINGLE; 3122 /* check transfer tx/rx_nbits: 3123 * 1. check the value matches one of single, dual and quad 3124 * 2. check tx/rx_nbits match the mode in spi_device 3125 */ 3126 if (xfer->tx_buf) { 3127 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3128 xfer->tx_nbits != SPI_NBITS_DUAL && 3129 xfer->tx_nbits != SPI_NBITS_QUAD) 3130 return -EINVAL; 3131 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3132 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3133 return -EINVAL; 3134 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3135 !(spi->mode & SPI_TX_QUAD)) 3136 return -EINVAL; 3137 } 3138 /* check transfer rx_nbits */ 3139 if (xfer->rx_buf) { 3140 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3141 xfer->rx_nbits != SPI_NBITS_DUAL && 3142 xfer->rx_nbits != SPI_NBITS_QUAD) 3143 return -EINVAL; 3144 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3145 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3146 return -EINVAL; 3147 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3148 !(spi->mode & SPI_RX_QUAD)) 3149 return -EINVAL; 3150 } 3151 3152 if (xfer->word_delay_usecs < spi->word_delay_usecs) 3153 xfer->word_delay_usecs = spi->word_delay_usecs; 3154 } 3155 3156 message->status = -EINPROGRESS; 3157 3158 return 0; 3159 } 3160 3161 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3162 { 3163 struct spi_controller *ctlr = spi->controller; 3164 3165 /* 3166 * Some controllers do not support doing regular SPI transfers. Return 3167 * ENOTSUPP when this is the case. 3168 */ 3169 if (!ctlr->transfer) 3170 return -ENOTSUPP; 3171 3172 message->spi = spi; 3173 3174 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3175 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3176 3177 trace_spi_message_submit(message); 3178 3179 return ctlr->transfer(spi, message); 3180 } 3181 3182 /** 3183 * spi_async - asynchronous SPI transfer 3184 * @spi: device with which data will be exchanged 3185 * @message: describes the data transfers, including completion callback 3186 * Context: any (irqs may be blocked, etc) 3187 * 3188 * This call may be used in_irq and other contexts which can't sleep, 3189 * as well as from task contexts which can sleep. 3190 * 3191 * The completion callback is invoked in a context which can't sleep. 3192 * Before that invocation, the value of message->status is undefined. 3193 * When the callback is issued, message->status holds either zero (to 3194 * indicate complete success) or a negative error code. After that 3195 * callback returns, the driver which issued the transfer request may 3196 * deallocate the associated memory; it's no longer in use by any SPI 3197 * core or controller driver code. 3198 * 3199 * Note that although all messages to a spi_device are handled in 3200 * FIFO order, messages may go to different devices in other orders. 3201 * Some device might be higher priority, or have various "hard" access 3202 * time requirements, for example. 3203 * 3204 * On detection of any fault during the transfer, processing of 3205 * the entire message is aborted, and the device is deselected. 3206 * Until returning from the associated message completion callback, 3207 * no other spi_message queued to that device will be processed. 3208 * (This rule applies equally to all the synchronous transfer calls, 3209 * which are wrappers around this core asynchronous primitive.) 3210 * 3211 * Return: zero on success, else a negative error code. 3212 */ 3213 int spi_async(struct spi_device *spi, struct spi_message *message) 3214 { 3215 struct spi_controller *ctlr = spi->controller; 3216 int ret; 3217 unsigned long flags; 3218 3219 ret = __spi_validate(spi, message); 3220 if (ret != 0) 3221 return ret; 3222 3223 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3224 3225 if (ctlr->bus_lock_flag) 3226 ret = -EBUSY; 3227 else 3228 ret = __spi_async(spi, message); 3229 3230 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3231 3232 return ret; 3233 } 3234 EXPORT_SYMBOL_GPL(spi_async); 3235 3236 /** 3237 * spi_async_locked - version of spi_async with exclusive bus usage 3238 * @spi: device with which data will be exchanged 3239 * @message: describes the data transfers, including completion callback 3240 * Context: any (irqs may be blocked, etc) 3241 * 3242 * This call may be used in_irq and other contexts which can't sleep, 3243 * as well as from task contexts which can sleep. 3244 * 3245 * The completion callback is invoked in a context which can't sleep. 3246 * Before that invocation, the value of message->status is undefined. 3247 * When the callback is issued, message->status holds either zero (to 3248 * indicate complete success) or a negative error code. After that 3249 * callback returns, the driver which issued the transfer request may 3250 * deallocate the associated memory; it's no longer in use by any SPI 3251 * core or controller driver code. 3252 * 3253 * Note that although all messages to a spi_device are handled in 3254 * FIFO order, messages may go to different devices in other orders. 3255 * Some device might be higher priority, or have various "hard" access 3256 * time requirements, for example. 3257 * 3258 * On detection of any fault during the transfer, processing of 3259 * the entire message is aborted, and the device is deselected. 3260 * Until returning from the associated message completion callback, 3261 * no other spi_message queued to that device will be processed. 3262 * (This rule applies equally to all the synchronous transfer calls, 3263 * which are wrappers around this core asynchronous primitive.) 3264 * 3265 * Return: zero on success, else a negative error code. 3266 */ 3267 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3268 { 3269 struct spi_controller *ctlr = spi->controller; 3270 int ret; 3271 unsigned long flags; 3272 3273 ret = __spi_validate(spi, message); 3274 if (ret != 0) 3275 return ret; 3276 3277 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3278 3279 ret = __spi_async(spi, message); 3280 3281 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3282 3283 return ret; 3284 3285 } 3286 EXPORT_SYMBOL_GPL(spi_async_locked); 3287 3288 /*-------------------------------------------------------------------------*/ 3289 3290 /* Utility methods for SPI protocol drivers, layered on 3291 * top of the core. Some other utility methods are defined as 3292 * inline functions. 3293 */ 3294 3295 static void spi_complete(void *arg) 3296 { 3297 complete(arg); 3298 } 3299 3300 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3301 { 3302 DECLARE_COMPLETION_ONSTACK(done); 3303 int status; 3304 struct spi_controller *ctlr = spi->controller; 3305 unsigned long flags; 3306 3307 status = __spi_validate(spi, message); 3308 if (status != 0) 3309 return status; 3310 3311 message->complete = spi_complete; 3312 message->context = &done; 3313 message->spi = spi; 3314 3315 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3316 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3317 3318 /* If we're not using the legacy transfer method then we will 3319 * try to transfer in the calling context so special case. 3320 * This code would be less tricky if we could remove the 3321 * support for driver implemented message queues. 3322 */ 3323 if (ctlr->transfer == spi_queued_transfer) { 3324 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3325 3326 trace_spi_message_submit(message); 3327 3328 status = __spi_queued_transfer(spi, message, false); 3329 3330 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3331 } else { 3332 status = spi_async_locked(spi, message); 3333 } 3334 3335 if (status == 0) { 3336 /* Push out the messages in the calling context if we 3337 * can. 3338 */ 3339 if (ctlr->transfer == spi_queued_transfer) { 3340 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3341 spi_sync_immediate); 3342 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3343 spi_sync_immediate); 3344 __spi_pump_messages(ctlr, false); 3345 } 3346 3347 wait_for_completion(&done); 3348 status = message->status; 3349 } 3350 message->context = NULL; 3351 return status; 3352 } 3353 3354 /** 3355 * spi_sync - blocking/synchronous SPI data transfers 3356 * @spi: device with which data will be exchanged 3357 * @message: describes the data transfers 3358 * Context: can sleep 3359 * 3360 * This call may only be used from a context that may sleep. The sleep 3361 * is non-interruptible, and has no timeout. Low-overhead controller 3362 * drivers may DMA directly into and out of the message buffers. 3363 * 3364 * Note that the SPI device's chip select is active during the message, 3365 * and then is normally disabled between messages. Drivers for some 3366 * frequently-used devices may want to minimize costs of selecting a chip, 3367 * by leaving it selected in anticipation that the next message will go 3368 * to the same chip. (That may increase power usage.) 3369 * 3370 * Also, the caller is guaranteeing that the memory associated with the 3371 * message will not be freed before this call returns. 3372 * 3373 * Return: zero on success, else a negative error code. 3374 */ 3375 int spi_sync(struct spi_device *spi, struct spi_message *message) 3376 { 3377 int ret; 3378 3379 mutex_lock(&spi->controller->bus_lock_mutex); 3380 ret = __spi_sync(spi, message); 3381 mutex_unlock(&spi->controller->bus_lock_mutex); 3382 3383 return ret; 3384 } 3385 EXPORT_SYMBOL_GPL(spi_sync); 3386 3387 /** 3388 * spi_sync_locked - version of spi_sync with exclusive bus usage 3389 * @spi: device with which data will be exchanged 3390 * @message: describes the data transfers 3391 * Context: can sleep 3392 * 3393 * This call may only be used from a context that may sleep. The sleep 3394 * is non-interruptible, and has no timeout. Low-overhead controller 3395 * drivers may DMA directly into and out of the message buffers. 3396 * 3397 * This call should be used by drivers that require exclusive access to the 3398 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3399 * be released by a spi_bus_unlock call when the exclusive access is over. 3400 * 3401 * Return: zero on success, else a negative error code. 3402 */ 3403 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3404 { 3405 return __spi_sync(spi, message); 3406 } 3407 EXPORT_SYMBOL_GPL(spi_sync_locked); 3408 3409 /** 3410 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3411 * @ctlr: SPI bus master that should be locked for exclusive bus access 3412 * Context: can sleep 3413 * 3414 * This call may only be used from a context that may sleep. The sleep 3415 * is non-interruptible, and has no timeout. 3416 * 3417 * This call should be used by drivers that require exclusive access to the 3418 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3419 * exclusive access is over. Data transfer must be done by spi_sync_locked 3420 * and spi_async_locked calls when the SPI bus lock is held. 3421 * 3422 * Return: always zero. 3423 */ 3424 int spi_bus_lock(struct spi_controller *ctlr) 3425 { 3426 unsigned long flags; 3427 3428 mutex_lock(&ctlr->bus_lock_mutex); 3429 3430 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3431 ctlr->bus_lock_flag = 1; 3432 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3433 3434 /* mutex remains locked until spi_bus_unlock is called */ 3435 3436 return 0; 3437 } 3438 EXPORT_SYMBOL_GPL(spi_bus_lock); 3439 3440 /** 3441 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3442 * @ctlr: SPI bus master that was locked for exclusive bus access 3443 * Context: can sleep 3444 * 3445 * This call may only be used from a context that may sleep. The sleep 3446 * is non-interruptible, and has no timeout. 3447 * 3448 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3449 * call. 3450 * 3451 * Return: always zero. 3452 */ 3453 int spi_bus_unlock(struct spi_controller *ctlr) 3454 { 3455 ctlr->bus_lock_flag = 0; 3456 3457 mutex_unlock(&ctlr->bus_lock_mutex); 3458 3459 return 0; 3460 } 3461 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3462 3463 /* portable code must never pass more than 32 bytes */ 3464 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3465 3466 static u8 *buf; 3467 3468 /** 3469 * spi_write_then_read - SPI synchronous write followed by read 3470 * @spi: device with which data will be exchanged 3471 * @txbuf: data to be written (need not be dma-safe) 3472 * @n_tx: size of txbuf, in bytes 3473 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3474 * @n_rx: size of rxbuf, in bytes 3475 * Context: can sleep 3476 * 3477 * This performs a half duplex MicroWire style transaction with the 3478 * device, sending txbuf and then reading rxbuf. The return value 3479 * is zero for success, else a negative errno status code. 3480 * This call may only be used from a context that may sleep. 3481 * 3482 * Parameters to this routine are always copied using a small buffer; 3483 * portable code should never use this for more than 32 bytes. 3484 * Performance-sensitive or bulk transfer code should instead use 3485 * spi_{async,sync}() calls with dma-safe buffers. 3486 * 3487 * Return: zero on success, else a negative error code. 3488 */ 3489 int spi_write_then_read(struct spi_device *spi, 3490 const void *txbuf, unsigned n_tx, 3491 void *rxbuf, unsigned n_rx) 3492 { 3493 static DEFINE_MUTEX(lock); 3494 3495 int status; 3496 struct spi_message message; 3497 struct spi_transfer x[2]; 3498 u8 *local_buf; 3499 3500 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3501 * copying here, (as a pure convenience thing), but we can 3502 * keep heap costs out of the hot path unless someone else is 3503 * using the pre-allocated buffer or the transfer is too large. 3504 */ 3505 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3506 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3507 GFP_KERNEL | GFP_DMA); 3508 if (!local_buf) 3509 return -ENOMEM; 3510 } else { 3511 local_buf = buf; 3512 } 3513 3514 spi_message_init(&message); 3515 memset(x, 0, sizeof(x)); 3516 if (n_tx) { 3517 x[0].len = n_tx; 3518 spi_message_add_tail(&x[0], &message); 3519 } 3520 if (n_rx) { 3521 x[1].len = n_rx; 3522 spi_message_add_tail(&x[1], &message); 3523 } 3524 3525 memcpy(local_buf, txbuf, n_tx); 3526 x[0].tx_buf = local_buf; 3527 x[1].rx_buf = local_buf + n_tx; 3528 3529 /* do the i/o */ 3530 status = spi_sync(spi, &message); 3531 if (status == 0) 3532 memcpy(rxbuf, x[1].rx_buf, n_rx); 3533 3534 if (x[0].tx_buf == buf) 3535 mutex_unlock(&lock); 3536 else 3537 kfree(local_buf); 3538 3539 return status; 3540 } 3541 EXPORT_SYMBOL_GPL(spi_write_then_read); 3542 3543 /*-------------------------------------------------------------------------*/ 3544 3545 #if IS_ENABLED(CONFIG_OF) 3546 static int __spi_of_device_match(struct device *dev, void *data) 3547 { 3548 return dev->of_node == data; 3549 } 3550 3551 /* must call put_device() when done with returned spi_device device */ 3552 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3553 { 3554 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 3555 __spi_of_device_match); 3556 return dev ? to_spi_device(dev) : NULL; 3557 } 3558 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3559 #endif /* IS_ENABLED(CONFIG_OF) */ 3560 3561 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3562 static int __spi_of_controller_match(struct device *dev, const void *data) 3563 { 3564 return dev->of_node == data; 3565 } 3566 3567 /* the spi controllers are not using spi_bus, so we find it with another way */ 3568 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3569 { 3570 struct device *dev; 3571 3572 dev = class_find_device(&spi_master_class, NULL, node, 3573 __spi_of_controller_match); 3574 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3575 dev = class_find_device(&spi_slave_class, NULL, node, 3576 __spi_of_controller_match); 3577 if (!dev) 3578 return NULL; 3579 3580 /* reference got in class_find_device */ 3581 return container_of(dev, struct spi_controller, dev); 3582 } 3583 3584 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3585 void *arg) 3586 { 3587 struct of_reconfig_data *rd = arg; 3588 struct spi_controller *ctlr; 3589 struct spi_device *spi; 3590 3591 switch (of_reconfig_get_state_change(action, arg)) { 3592 case OF_RECONFIG_CHANGE_ADD: 3593 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3594 if (ctlr == NULL) 3595 return NOTIFY_OK; /* not for us */ 3596 3597 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3598 put_device(&ctlr->dev); 3599 return NOTIFY_OK; 3600 } 3601 3602 spi = of_register_spi_device(ctlr, rd->dn); 3603 put_device(&ctlr->dev); 3604 3605 if (IS_ERR(spi)) { 3606 pr_err("%s: failed to create for '%pOF'\n", 3607 __func__, rd->dn); 3608 of_node_clear_flag(rd->dn, OF_POPULATED); 3609 return notifier_from_errno(PTR_ERR(spi)); 3610 } 3611 break; 3612 3613 case OF_RECONFIG_CHANGE_REMOVE: 3614 /* already depopulated? */ 3615 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3616 return NOTIFY_OK; 3617 3618 /* find our device by node */ 3619 spi = of_find_spi_device_by_node(rd->dn); 3620 if (spi == NULL) 3621 return NOTIFY_OK; /* no? not meant for us */ 3622 3623 /* unregister takes one ref away */ 3624 spi_unregister_device(spi); 3625 3626 /* and put the reference of the find */ 3627 put_device(&spi->dev); 3628 break; 3629 } 3630 3631 return NOTIFY_OK; 3632 } 3633 3634 static struct notifier_block spi_of_notifier = { 3635 .notifier_call = of_spi_notify, 3636 }; 3637 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3638 extern struct notifier_block spi_of_notifier; 3639 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3640 3641 #if IS_ENABLED(CONFIG_ACPI) 3642 static int spi_acpi_controller_match(struct device *dev, const void *data) 3643 { 3644 return ACPI_COMPANION(dev->parent) == data; 3645 } 3646 3647 static int spi_acpi_device_match(struct device *dev, void *data) 3648 { 3649 return ACPI_COMPANION(dev) == data; 3650 } 3651 3652 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 3653 { 3654 struct device *dev; 3655 3656 dev = class_find_device(&spi_master_class, NULL, adev, 3657 spi_acpi_controller_match); 3658 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3659 dev = class_find_device(&spi_slave_class, NULL, adev, 3660 spi_acpi_controller_match); 3661 if (!dev) 3662 return NULL; 3663 3664 return container_of(dev, struct spi_controller, dev); 3665 } 3666 3667 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 3668 { 3669 struct device *dev; 3670 3671 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match); 3672 3673 return dev ? to_spi_device(dev) : NULL; 3674 } 3675 3676 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 3677 void *arg) 3678 { 3679 struct acpi_device *adev = arg; 3680 struct spi_controller *ctlr; 3681 struct spi_device *spi; 3682 3683 switch (value) { 3684 case ACPI_RECONFIG_DEVICE_ADD: 3685 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 3686 if (!ctlr) 3687 break; 3688 3689 acpi_register_spi_device(ctlr, adev); 3690 put_device(&ctlr->dev); 3691 break; 3692 case ACPI_RECONFIG_DEVICE_REMOVE: 3693 if (!acpi_device_enumerated(adev)) 3694 break; 3695 3696 spi = acpi_spi_find_device_by_adev(adev); 3697 if (!spi) 3698 break; 3699 3700 spi_unregister_device(spi); 3701 put_device(&spi->dev); 3702 break; 3703 } 3704 3705 return NOTIFY_OK; 3706 } 3707 3708 static struct notifier_block spi_acpi_notifier = { 3709 .notifier_call = acpi_spi_notify, 3710 }; 3711 #else 3712 extern struct notifier_block spi_acpi_notifier; 3713 #endif 3714 3715 static int __init spi_init(void) 3716 { 3717 int status; 3718 3719 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 3720 if (!buf) { 3721 status = -ENOMEM; 3722 goto err0; 3723 } 3724 3725 status = bus_register(&spi_bus_type); 3726 if (status < 0) 3727 goto err1; 3728 3729 status = class_register(&spi_master_class); 3730 if (status < 0) 3731 goto err2; 3732 3733 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 3734 status = class_register(&spi_slave_class); 3735 if (status < 0) 3736 goto err3; 3737 } 3738 3739 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 3740 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 3741 if (IS_ENABLED(CONFIG_ACPI)) 3742 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 3743 3744 return 0; 3745 3746 err3: 3747 class_unregister(&spi_master_class); 3748 err2: 3749 bus_unregister(&spi_bus_type); 3750 err1: 3751 kfree(buf); 3752 buf = NULL; 3753 err0: 3754 return status; 3755 } 3756 3757 /* board_info is normally registered in arch_initcall(), 3758 * but even essential drivers wait till later 3759 * 3760 * REVISIT only boardinfo really needs static linking. the rest (device and 3761 * driver registration) _could_ be dynamically linked (modular) ... costs 3762 * include needing to have boardinfo data structures be much more public. 3763 */ 3764 postcore_initcall(spi_init); 3765 3766