1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/kmod.h> 20 #include <linux/device.h> 21 #include <linux/init.h> 22 #include <linux/cache.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/dmaengine.h> 25 #include <linux/mutex.h> 26 #include <linux/of_device.h> 27 #include <linux/of_irq.h> 28 #include <linux/clk/clk-conf.h> 29 #include <linux/slab.h> 30 #include <linux/mod_devicetable.h> 31 #include <linux/spi/spi.h> 32 #include <linux/of_gpio.h> 33 #include <linux/pm_runtime.h> 34 #include <linux/pm_domain.h> 35 #include <linux/export.h> 36 #include <linux/sched/rt.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/ioport.h> 40 #include <linux/acpi.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/spi.h> 44 45 static void spidev_release(struct device *dev) 46 { 47 struct spi_device *spi = to_spi_device(dev); 48 49 /* spi masters may cleanup for released devices */ 50 if (spi->master->cleanup) 51 spi->master->cleanup(spi); 52 53 spi_master_put(spi->master); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static struct attribute *spi_dev_attrs[] = { 72 &dev_attr_modalias.attr, 73 NULL, 74 }; 75 ATTRIBUTE_GROUPS(spi_dev); 76 77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 78 * and the sysfs version makes coldplug work too. 79 */ 80 81 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 82 const struct spi_device *sdev) 83 { 84 while (id->name[0]) { 85 if (!strcmp(sdev->modalias, id->name)) 86 return id; 87 id++; 88 } 89 return NULL; 90 } 91 92 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 93 { 94 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 95 96 return spi_match_id(sdrv->id_table, sdev); 97 } 98 EXPORT_SYMBOL_GPL(spi_get_device_id); 99 100 static int spi_match_device(struct device *dev, struct device_driver *drv) 101 { 102 const struct spi_device *spi = to_spi_device(dev); 103 const struct spi_driver *sdrv = to_spi_driver(drv); 104 105 /* Attempt an OF style match */ 106 if (of_driver_match_device(dev, drv)) 107 return 1; 108 109 /* Then try ACPI */ 110 if (acpi_driver_match_device(dev, drv)) 111 return 1; 112 113 if (sdrv->id_table) 114 return !!spi_match_id(sdrv->id_table, spi); 115 116 return strcmp(spi->modalias, drv->name) == 0; 117 } 118 119 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 120 { 121 const struct spi_device *spi = to_spi_device(dev); 122 int rc; 123 124 rc = acpi_device_uevent_modalias(dev, env); 125 if (rc != -ENODEV) 126 return rc; 127 128 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 129 return 0; 130 } 131 132 #ifdef CONFIG_PM_SLEEP 133 static int spi_legacy_suspend(struct device *dev, pm_message_t message) 134 { 135 int value = 0; 136 struct spi_driver *drv = to_spi_driver(dev->driver); 137 138 /* suspend will stop irqs and dma; no more i/o */ 139 if (drv) { 140 if (drv->suspend) 141 value = drv->suspend(to_spi_device(dev), message); 142 else 143 dev_dbg(dev, "... can't suspend\n"); 144 } 145 return value; 146 } 147 148 static int spi_legacy_resume(struct device *dev) 149 { 150 int value = 0; 151 struct spi_driver *drv = to_spi_driver(dev->driver); 152 153 /* resume may restart the i/o queue */ 154 if (drv) { 155 if (drv->resume) 156 value = drv->resume(to_spi_device(dev)); 157 else 158 dev_dbg(dev, "... can't resume\n"); 159 } 160 return value; 161 } 162 163 static int spi_pm_suspend(struct device *dev) 164 { 165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 166 167 if (pm) 168 return pm_generic_suspend(dev); 169 else 170 return spi_legacy_suspend(dev, PMSG_SUSPEND); 171 } 172 173 static int spi_pm_resume(struct device *dev) 174 { 175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 176 177 if (pm) 178 return pm_generic_resume(dev); 179 else 180 return spi_legacy_resume(dev); 181 } 182 183 static int spi_pm_freeze(struct device *dev) 184 { 185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 186 187 if (pm) 188 return pm_generic_freeze(dev); 189 else 190 return spi_legacy_suspend(dev, PMSG_FREEZE); 191 } 192 193 static int spi_pm_thaw(struct device *dev) 194 { 195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 196 197 if (pm) 198 return pm_generic_thaw(dev); 199 else 200 return spi_legacy_resume(dev); 201 } 202 203 static int spi_pm_poweroff(struct device *dev) 204 { 205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 206 207 if (pm) 208 return pm_generic_poweroff(dev); 209 else 210 return spi_legacy_suspend(dev, PMSG_HIBERNATE); 211 } 212 213 static int spi_pm_restore(struct device *dev) 214 { 215 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 216 217 if (pm) 218 return pm_generic_restore(dev); 219 else 220 return spi_legacy_resume(dev); 221 } 222 #else 223 #define spi_pm_suspend NULL 224 #define spi_pm_resume NULL 225 #define spi_pm_freeze NULL 226 #define spi_pm_thaw NULL 227 #define spi_pm_poweroff NULL 228 #define spi_pm_restore NULL 229 #endif 230 231 static const struct dev_pm_ops spi_pm = { 232 .suspend = spi_pm_suspend, 233 .resume = spi_pm_resume, 234 .freeze = spi_pm_freeze, 235 .thaw = spi_pm_thaw, 236 .poweroff = spi_pm_poweroff, 237 .restore = spi_pm_restore, 238 SET_RUNTIME_PM_OPS( 239 pm_generic_runtime_suspend, 240 pm_generic_runtime_resume, 241 NULL 242 ) 243 }; 244 245 struct bus_type spi_bus_type = { 246 .name = "spi", 247 .dev_groups = spi_dev_groups, 248 .match = spi_match_device, 249 .uevent = spi_uevent, 250 .pm = &spi_pm, 251 }; 252 EXPORT_SYMBOL_GPL(spi_bus_type); 253 254 255 static int spi_drv_probe(struct device *dev) 256 { 257 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 258 int ret; 259 260 ret = of_clk_set_defaults(dev->of_node, false); 261 if (ret) 262 return ret; 263 264 ret = dev_pm_domain_attach(dev, true); 265 if (ret != -EPROBE_DEFER) { 266 ret = sdrv->probe(to_spi_device(dev)); 267 if (ret) 268 dev_pm_domain_detach(dev, true); 269 } 270 271 return ret; 272 } 273 274 static int spi_drv_remove(struct device *dev) 275 { 276 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 277 int ret; 278 279 ret = sdrv->remove(to_spi_device(dev)); 280 dev_pm_domain_detach(dev, true); 281 282 return ret; 283 } 284 285 static void spi_drv_shutdown(struct device *dev) 286 { 287 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 288 289 sdrv->shutdown(to_spi_device(dev)); 290 } 291 292 /** 293 * spi_register_driver - register a SPI driver 294 * @sdrv: the driver to register 295 * Context: can sleep 296 */ 297 int spi_register_driver(struct spi_driver *sdrv) 298 { 299 sdrv->driver.bus = &spi_bus_type; 300 if (sdrv->probe) 301 sdrv->driver.probe = spi_drv_probe; 302 if (sdrv->remove) 303 sdrv->driver.remove = spi_drv_remove; 304 if (sdrv->shutdown) 305 sdrv->driver.shutdown = spi_drv_shutdown; 306 return driver_register(&sdrv->driver); 307 } 308 EXPORT_SYMBOL_GPL(spi_register_driver); 309 310 /*-------------------------------------------------------------------------*/ 311 312 /* SPI devices should normally not be created by SPI device drivers; that 313 * would make them board-specific. Similarly with SPI master drivers. 314 * Device registration normally goes into like arch/.../mach.../board-YYY.c 315 * with other readonly (flashable) information about mainboard devices. 316 */ 317 318 struct boardinfo { 319 struct list_head list; 320 struct spi_board_info board_info; 321 }; 322 323 static LIST_HEAD(board_list); 324 static LIST_HEAD(spi_master_list); 325 326 /* 327 * Used to protect add/del opertion for board_info list and 328 * spi_master list, and their matching process 329 */ 330 static DEFINE_MUTEX(board_lock); 331 332 /** 333 * spi_alloc_device - Allocate a new SPI device 334 * @master: Controller to which device is connected 335 * Context: can sleep 336 * 337 * Allows a driver to allocate and initialize a spi_device without 338 * registering it immediately. This allows a driver to directly 339 * fill the spi_device with device parameters before calling 340 * spi_add_device() on it. 341 * 342 * Caller is responsible to call spi_add_device() on the returned 343 * spi_device structure to add it to the SPI master. If the caller 344 * needs to discard the spi_device without adding it, then it should 345 * call spi_dev_put() on it. 346 * 347 * Returns a pointer to the new device, or NULL. 348 */ 349 struct spi_device *spi_alloc_device(struct spi_master *master) 350 { 351 struct spi_device *spi; 352 353 if (!spi_master_get(master)) 354 return NULL; 355 356 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 357 if (!spi) { 358 spi_master_put(master); 359 return NULL; 360 } 361 362 spi->master = master; 363 spi->dev.parent = &master->dev; 364 spi->dev.bus = &spi_bus_type; 365 spi->dev.release = spidev_release; 366 spi->cs_gpio = -ENOENT; 367 device_initialize(&spi->dev); 368 return spi; 369 } 370 EXPORT_SYMBOL_GPL(spi_alloc_device); 371 372 static void spi_dev_set_name(struct spi_device *spi) 373 { 374 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 375 376 if (adev) { 377 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 378 return; 379 } 380 381 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 382 spi->chip_select); 383 } 384 385 static int spi_dev_check(struct device *dev, void *data) 386 { 387 struct spi_device *spi = to_spi_device(dev); 388 struct spi_device *new_spi = data; 389 390 if (spi->master == new_spi->master && 391 spi->chip_select == new_spi->chip_select) 392 return -EBUSY; 393 return 0; 394 } 395 396 /** 397 * spi_add_device - Add spi_device allocated with spi_alloc_device 398 * @spi: spi_device to register 399 * 400 * Companion function to spi_alloc_device. Devices allocated with 401 * spi_alloc_device can be added onto the spi bus with this function. 402 * 403 * Returns 0 on success; negative errno on failure 404 */ 405 int spi_add_device(struct spi_device *spi) 406 { 407 static DEFINE_MUTEX(spi_add_lock); 408 struct spi_master *master = spi->master; 409 struct device *dev = master->dev.parent; 410 int status; 411 412 /* Chipselects are numbered 0..max; validate. */ 413 if (spi->chip_select >= master->num_chipselect) { 414 dev_err(dev, "cs%d >= max %d\n", 415 spi->chip_select, 416 master->num_chipselect); 417 return -EINVAL; 418 } 419 420 /* Set the bus ID string */ 421 spi_dev_set_name(spi); 422 423 /* We need to make sure there's no other device with this 424 * chipselect **BEFORE** we call setup(), else we'll trash 425 * its configuration. Lock against concurrent add() calls. 426 */ 427 mutex_lock(&spi_add_lock); 428 429 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 430 if (status) { 431 dev_err(dev, "chipselect %d already in use\n", 432 spi->chip_select); 433 goto done; 434 } 435 436 if (master->cs_gpios) 437 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 438 439 /* Drivers may modify this initial i/o setup, but will 440 * normally rely on the device being setup. Devices 441 * using SPI_CS_HIGH can't coexist well otherwise... 442 */ 443 status = spi_setup(spi); 444 if (status < 0) { 445 dev_err(dev, "can't setup %s, status %d\n", 446 dev_name(&spi->dev), status); 447 goto done; 448 } 449 450 /* Device may be bound to an active driver when this returns */ 451 status = device_add(&spi->dev); 452 if (status < 0) 453 dev_err(dev, "can't add %s, status %d\n", 454 dev_name(&spi->dev), status); 455 else 456 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 457 458 done: 459 mutex_unlock(&spi_add_lock); 460 return status; 461 } 462 EXPORT_SYMBOL_GPL(spi_add_device); 463 464 /** 465 * spi_new_device - instantiate one new SPI device 466 * @master: Controller to which device is connected 467 * @chip: Describes the SPI device 468 * Context: can sleep 469 * 470 * On typical mainboards, this is purely internal; and it's not needed 471 * after board init creates the hard-wired devices. Some development 472 * platforms may not be able to use spi_register_board_info though, and 473 * this is exported so that for example a USB or parport based adapter 474 * driver could add devices (which it would learn about out-of-band). 475 * 476 * Returns the new device, or NULL. 477 */ 478 struct spi_device *spi_new_device(struct spi_master *master, 479 struct spi_board_info *chip) 480 { 481 struct spi_device *proxy; 482 int status; 483 484 /* NOTE: caller did any chip->bus_num checks necessary. 485 * 486 * Also, unless we change the return value convention to use 487 * error-or-pointer (not NULL-or-pointer), troubleshootability 488 * suggests syslogged diagnostics are best here (ugh). 489 */ 490 491 proxy = spi_alloc_device(master); 492 if (!proxy) 493 return NULL; 494 495 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 496 497 proxy->chip_select = chip->chip_select; 498 proxy->max_speed_hz = chip->max_speed_hz; 499 proxy->mode = chip->mode; 500 proxy->irq = chip->irq; 501 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 502 proxy->dev.platform_data = (void *) chip->platform_data; 503 proxy->controller_data = chip->controller_data; 504 proxy->controller_state = NULL; 505 506 status = spi_add_device(proxy); 507 if (status < 0) { 508 spi_dev_put(proxy); 509 return NULL; 510 } 511 512 return proxy; 513 } 514 EXPORT_SYMBOL_GPL(spi_new_device); 515 516 static void spi_match_master_to_boardinfo(struct spi_master *master, 517 struct spi_board_info *bi) 518 { 519 struct spi_device *dev; 520 521 if (master->bus_num != bi->bus_num) 522 return; 523 524 dev = spi_new_device(master, bi); 525 if (!dev) 526 dev_err(master->dev.parent, "can't create new device for %s\n", 527 bi->modalias); 528 } 529 530 /** 531 * spi_register_board_info - register SPI devices for a given board 532 * @info: array of chip descriptors 533 * @n: how many descriptors are provided 534 * Context: can sleep 535 * 536 * Board-specific early init code calls this (probably during arch_initcall) 537 * with segments of the SPI device table. Any device nodes are created later, 538 * after the relevant parent SPI controller (bus_num) is defined. We keep 539 * this table of devices forever, so that reloading a controller driver will 540 * not make Linux forget about these hard-wired devices. 541 * 542 * Other code can also call this, e.g. a particular add-on board might provide 543 * SPI devices through its expansion connector, so code initializing that board 544 * would naturally declare its SPI devices. 545 * 546 * The board info passed can safely be __initdata ... but be careful of 547 * any embedded pointers (platform_data, etc), they're copied as-is. 548 */ 549 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 550 { 551 struct boardinfo *bi; 552 int i; 553 554 if (!n) 555 return -EINVAL; 556 557 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 558 if (!bi) 559 return -ENOMEM; 560 561 for (i = 0; i < n; i++, bi++, info++) { 562 struct spi_master *master; 563 564 memcpy(&bi->board_info, info, sizeof(*info)); 565 mutex_lock(&board_lock); 566 list_add_tail(&bi->list, &board_list); 567 list_for_each_entry(master, &spi_master_list, list) 568 spi_match_master_to_boardinfo(master, &bi->board_info); 569 mutex_unlock(&board_lock); 570 } 571 572 return 0; 573 } 574 575 /*-------------------------------------------------------------------------*/ 576 577 static void spi_set_cs(struct spi_device *spi, bool enable) 578 { 579 if (spi->mode & SPI_CS_HIGH) 580 enable = !enable; 581 582 if (spi->cs_gpio >= 0) 583 gpio_set_value(spi->cs_gpio, !enable); 584 else if (spi->master->set_cs) 585 spi->master->set_cs(spi, !enable); 586 } 587 588 #ifdef CONFIG_HAS_DMA 589 static int spi_map_buf(struct spi_master *master, struct device *dev, 590 struct sg_table *sgt, void *buf, size_t len, 591 enum dma_data_direction dir) 592 { 593 const bool vmalloced_buf = is_vmalloc_addr(buf); 594 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len; 595 const int sgs = DIV_ROUND_UP(len, desc_len); 596 struct page *vm_page; 597 void *sg_buf; 598 size_t min; 599 int i, ret; 600 601 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 602 if (ret != 0) 603 return ret; 604 605 for (i = 0; i < sgs; i++) { 606 min = min_t(size_t, len, desc_len); 607 608 if (vmalloced_buf) { 609 vm_page = vmalloc_to_page(buf); 610 if (!vm_page) { 611 sg_free_table(sgt); 612 return -ENOMEM; 613 } 614 sg_set_page(&sgt->sgl[i], vm_page, 615 min, offset_in_page(buf)); 616 } else { 617 sg_buf = buf; 618 sg_set_buf(&sgt->sgl[i], sg_buf, min); 619 } 620 621 622 buf += min; 623 len -= min; 624 } 625 626 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 627 if (!ret) 628 ret = -ENOMEM; 629 if (ret < 0) { 630 sg_free_table(sgt); 631 return ret; 632 } 633 634 sgt->nents = ret; 635 636 return 0; 637 } 638 639 static void spi_unmap_buf(struct spi_master *master, struct device *dev, 640 struct sg_table *sgt, enum dma_data_direction dir) 641 { 642 if (sgt->orig_nents) { 643 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 644 sg_free_table(sgt); 645 } 646 } 647 648 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg) 649 { 650 struct device *tx_dev, *rx_dev; 651 struct spi_transfer *xfer; 652 int ret; 653 654 if (!master->can_dma) 655 return 0; 656 657 tx_dev = master->dma_tx->device->dev; 658 rx_dev = master->dma_rx->device->dev; 659 660 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 661 if (!master->can_dma(master, msg->spi, xfer)) 662 continue; 663 664 if (xfer->tx_buf != NULL) { 665 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg, 666 (void *)xfer->tx_buf, xfer->len, 667 DMA_TO_DEVICE); 668 if (ret != 0) 669 return ret; 670 } 671 672 if (xfer->rx_buf != NULL) { 673 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg, 674 xfer->rx_buf, xfer->len, 675 DMA_FROM_DEVICE); 676 if (ret != 0) { 677 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, 678 DMA_TO_DEVICE); 679 return ret; 680 } 681 } 682 } 683 684 master->cur_msg_mapped = true; 685 686 return 0; 687 } 688 689 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg) 690 { 691 struct spi_transfer *xfer; 692 struct device *tx_dev, *rx_dev; 693 694 if (!master->cur_msg_mapped || !master->can_dma) 695 return 0; 696 697 tx_dev = master->dma_tx->device->dev; 698 rx_dev = master->dma_rx->device->dev; 699 700 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 701 if (!master->can_dma(master, msg->spi, xfer)) 702 continue; 703 704 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 705 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 706 } 707 708 return 0; 709 } 710 #else /* !CONFIG_HAS_DMA */ 711 static inline int __spi_map_msg(struct spi_master *master, 712 struct spi_message *msg) 713 { 714 return 0; 715 } 716 717 static inline int spi_unmap_msg(struct spi_master *master, 718 struct spi_message *msg) 719 { 720 return 0; 721 } 722 #endif /* !CONFIG_HAS_DMA */ 723 724 static int spi_map_msg(struct spi_master *master, struct spi_message *msg) 725 { 726 struct spi_transfer *xfer; 727 void *tmp; 728 unsigned int max_tx, max_rx; 729 730 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) { 731 max_tx = 0; 732 max_rx = 0; 733 734 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 735 if ((master->flags & SPI_MASTER_MUST_TX) && 736 !xfer->tx_buf) 737 max_tx = max(xfer->len, max_tx); 738 if ((master->flags & SPI_MASTER_MUST_RX) && 739 !xfer->rx_buf) 740 max_rx = max(xfer->len, max_rx); 741 } 742 743 if (max_tx) { 744 tmp = krealloc(master->dummy_tx, max_tx, 745 GFP_KERNEL | GFP_DMA); 746 if (!tmp) 747 return -ENOMEM; 748 master->dummy_tx = tmp; 749 memset(tmp, 0, max_tx); 750 } 751 752 if (max_rx) { 753 tmp = krealloc(master->dummy_rx, max_rx, 754 GFP_KERNEL | GFP_DMA); 755 if (!tmp) 756 return -ENOMEM; 757 master->dummy_rx = tmp; 758 } 759 760 if (max_tx || max_rx) { 761 list_for_each_entry(xfer, &msg->transfers, 762 transfer_list) { 763 if (!xfer->tx_buf) 764 xfer->tx_buf = master->dummy_tx; 765 if (!xfer->rx_buf) 766 xfer->rx_buf = master->dummy_rx; 767 } 768 } 769 } 770 771 return __spi_map_msg(master, msg); 772 } 773 774 /* 775 * spi_transfer_one_message - Default implementation of transfer_one_message() 776 * 777 * This is a standard implementation of transfer_one_message() for 778 * drivers which impelment a transfer_one() operation. It provides 779 * standard handling of delays and chip select management. 780 */ 781 static int spi_transfer_one_message(struct spi_master *master, 782 struct spi_message *msg) 783 { 784 struct spi_transfer *xfer; 785 bool keep_cs = false; 786 int ret = 0; 787 unsigned long ms = 1; 788 789 spi_set_cs(msg->spi, true); 790 791 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 792 trace_spi_transfer_start(msg, xfer); 793 794 if (xfer->tx_buf || xfer->rx_buf) { 795 reinit_completion(&master->xfer_completion); 796 797 ret = master->transfer_one(master, msg->spi, xfer); 798 if (ret < 0) { 799 dev_err(&msg->spi->dev, 800 "SPI transfer failed: %d\n", ret); 801 goto out; 802 } 803 804 if (ret > 0) { 805 ret = 0; 806 ms = xfer->len * 8 * 1000 / xfer->speed_hz; 807 ms += ms + 100; /* some tolerance */ 808 809 ms = wait_for_completion_timeout(&master->xfer_completion, 810 msecs_to_jiffies(ms)); 811 } 812 813 if (ms == 0) { 814 dev_err(&msg->spi->dev, 815 "SPI transfer timed out\n"); 816 msg->status = -ETIMEDOUT; 817 } 818 } else { 819 if (xfer->len) 820 dev_err(&msg->spi->dev, 821 "Bufferless transfer has length %u\n", 822 xfer->len); 823 } 824 825 trace_spi_transfer_stop(msg, xfer); 826 827 if (msg->status != -EINPROGRESS) 828 goto out; 829 830 if (xfer->delay_usecs) 831 udelay(xfer->delay_usecs); 832 833 if (xfer->cs_change) { 834 if (list_is_last(&xfer->transfer_list, 835 &msg->transfers)) { 836 keep_cs = true; 837 } else { 838 spi_set_cs(msg->spi, false); 839 udelay(10); 840 spi_set_cs(msg->spi, true); 841 } 842 } 843 844 msg->actual_length += xfer->len; 845 } 846 847 out: 848 if (ret != 0 || !keep_cs) 849 spi_set_cs(msg->spi, false); 850 851 if (msg->status == -EINPROGRESS) 852 msg->status = ret; 853 854 spi_finalize_current_message(master); 855 856 return ret; 857 } 858 859 /** 860 * spi_finalize_current_transfer - report completion of a transfer 861 * @master: the master reporting completion 862 * 863 * Called by SPI drivers using the core transfer_one_message() 864 * implementation to notify it that the current interrupt driven 865 * transfer has finished and the next one may be scheduled. 866 */ 867 void spi_finalize_current_transfer(struct spi_master *master) 868 { 869 complete(&master->xfer_completion); 870 } 871 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 872 873 /** 874 * __spi_pump_messages - function which processes spi message queue 875 * @master: master to process queue for 876 * @in_kthread: true if we are in the context of the message pump thread 877 * 878 * This function checks if there is any spi message in the queue that 879 * needs processing and if so call out to the driver to initialize hardware 880 * and transfer each message. 881 * 882 * Note that it is called both from the kthread itself and also from 883 * inside spi_sync(); the queue extraction handling at the top of the 884 * function should deal with this safely. 885 */ 886 static void __spi_pump_messages(struct spi_master *master, bool in_kthread) 887 { 888 unsigned long flags; 889 bool was_busy = false; 890 int ret; 891 892 /* Lock queue */ 893 spin_lock_irqsave(&master->queue_lock, flags); 894 895 /* Make sure we are not already running a message */ 896 if (master->cur_msg) { 897 spin_unlock_irqrestore(&master->queue_lock, flags); 898 return; 899 } 900 901 /* If another context is idling the device then defer */ 902 if (master->idling) { 903 queue_kthread_work(&master->kworker, &master->pump_messages); 904 spin_unlock_irqrestore(&master->queue_lock, flags); 905 return; 906 } 907 908 /* Check if the queue is idle */ 909 if (list_empty(&master->queue) || !master->running) { 910 if (!master->busy) { 911 spin_unlock_irqrestore(&master->queue_lock, flags); 912 return; 913 } 914 915 /* Only do teardown in the thread */ 916 if (!in_kthread) { 917 queue_kthread_work(&master->kworker, 918 &master->pump_messages); 919 spin_unlock_irqrestore(&master->queue_lock, flags); 920 return; 921 } 922 923 master->busy = false; 924 master->idling = true; 925 spin_unlock_irqrestore(&master->queue_lock, flags); 926 927 kfree(master->dummy_rx); 928 master->dummy_rx = NULL; 929 kfree(master->dummy_tx); 930 master->dummy_tx = NULL; 931 if (master->unprepare_transfer_hardware && 932 master->unprepare_transfer_hardware(master)) 933 dev_err(&master->dev, 934 "failed to unprepare transfer hardware\n"); 935 if (master->auto_runtime_pm) { 936 pm_runtime_mark_last_busy(master->dev.parent); 937 pm_runtime_put_autosuspend(master->dev.parent); 938 } 939 trace_spi_master_idle(master); 940 941 spin_lock_irqsave(&master->queue_lock, flags); 942 master->idling = false; 943 spin_unlock_irqrestore(&master->queue_lock, flags); 944 return; 945 } 946 947 /* Extract head of queue */ 948 master->cur_msg = 949 list_first_entry(&master->queue, struct spi_message, queue); 950 951 list_del_init(&master->cur_msg->queue); 952 if (master->busy) 953 was_busy = true; 954 else 955 master->busy = true; 956 spin_unlock_irqrestore(&master->queue_lock, flags); 957 958 if (!was_busy && master->auto_runtime_pm) { 959 ret = pm_runtime_get_sync(master->dev.parent); 960 if (ret < 0) { 961 dev_err(&master->dev, "Failed to power device: %d\n", 962 ret); 963 return; 964 } 965 } 966 967 if (!was_busy) 968 trace_spi_master_busy(master); 969 970 if (!was_busy && master->prepare_transfer_hardware) { 971 ret = master->prepare_transfer_hardware(master); 972 if (ret) { 973 dev_err(&master->dev, 974 "failed to prepare transfer hardware\n"); 975 976 if (master->auto_runtime_pm) 977 pm_runtime_put(master->dev.parent); 978 return; 979 } 980 } 981 982 trace_spi_message_start(master->cur_msg); 983 984 if (master->prepare_message) { 985 ret = master->prepare_message(master, master->cur_msg); 986 if (ret) { 987 dev_err(&master->dev, 988 "failed to prepare message: %d\n", ret); 989 master->cur_msg->status = ret; 990 spi_finalize_current_message(master); 991 return; 992 } 993 master->cur_msg_prepared = true; 994 } 995 996 ret = spi_map_msg(master, master->cur_msg); 997 if (ret) { 998 master->cur_msg->status = ret; 999 spi_finalize_current_message(master); 1000 return; 1001 } 1002 1003 ret = master->transfer_one_message(master, master->cur_msg); 1004 if (ret) { 1005 dev_err(&master->dev, 1006 "failed to transfer one message from queue\n"); 1007 return; 1008 } 1009 } 1010 1011 /** 1012 * spi_pump_messages - kthread work function which processes spi message queue 1013 * @work: pointer to kthread work struct contained in the master struct 1014 */ 1015 static void spi_pump_messages(struct kthread_work *work) 1016 { 1017 struct spi_master *master = 1018 container_of(work, struct spi_master, pump_messages); 1019 1020 __spi_pump_messages(master, true); 1021 } 1022 1023 static int spi_init_queue(struct spi_master *master) 1024 { 1025 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1026 1027 master->running = false; 1028 master->busy = false; 1029 1030 init_kthread_worker(&master->kworker); 1031 master->kworker_task = kthread_run(kthread_worker_fn, 1032 &master->kworker, "%s", 1033 dev_name(&master->dev)); 1034 if (IS_ERR(master->kworker_task)) { 1035 dev_err(&master->dev, "failed to create message pump task\n"); 1036 return PTR_ERR(master->kworker_task); 1037 } 1038 init_kthread_work(&master->pump_messages, spi_pump_messages); 1039 1040 /* 1041 * Master config will indicate if this controller should run the 1042 * message pump with high (realtime) priority to reduce the transfer 1043 * latency on the bus by minimising the delay between a transfer 1044 * request and the scheduling of the message pump thread. Without this 1045 * setting the message pump thread will remain at default priority. 1046 */ 1047 if (master->rt) { 1048 dev_info(&master->dev, 1049 "will run message pump with realtime priority\n"); 1050 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 1051 } 1052 1053 return 0; 1054 } 1055 1056 /** 1057 * spi_get_next_queued_message() - called by driver to check for queued 1058 * messages 1059 * @master: the master to check for queued messages 1060 * 1061 * If there are more messages in the queue, the next message is returned from 1062 * this call. 1063 */ 1064 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 1065 { 1066 struct spi_message *next; 1067 unsigned long flags; 1068 1069 /* get a pointer to the next message, if any */ 1070 spin_lock_irqsave(&master->queue_lock, flags); 1071 next = list_first_entry_or_null(&master->queue, struct spi_message, 1072 queue); 1073 spin_unlock_irqrestore(&master->queue_lock, flags); 1074 1075 return next; 1076 } 1077 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1078 1079 /** 1080 * spi_finalize_current_message() - the current message is complete 1081 * @master: the master to return the message to 1082 * 1083 * Called by the driver to notify the core that the message in the front of the 1084 * queue is complete and can be removed from the queue. 1085 */ 1086 void spi_finalize_current_message(struct spi_master *master) 1087 { 1088 struct spi_message *mesg; 1089 unsigned long flags; 1090 int ret; 1091 1092 spin_lock_irqsave(&master->queue_lock, flags); 1093 mesg = master->cur_msg; 1094 master->cur_msg = NULL; 1095 1096 queue_kthread_work(&master->kworker, &master->pump_messages); 1097 spin_unlock_irqrestore(&master->queue_lock, flags); 1098 1099 spi_unmap_msg(master, mesg); 1100 1101 if (master->cur_msg_prepared && master->unprepare_message) { 1102 ret = master->unprepare_message(master, mesg); 1103 if (ret) { 1104 dev_err(&master->dev, 1105 "failed to unprepare message: %d\n", ret); 1106 } 1107 } 1108 master->cur_msg_prepared = false; 1109 1110 mesg->state = NULL; 1111 if (mesg->complete) 1112 mesg->complete(mesg->context); 1113 1114 trace_spi_message_done(mesg); 1115 } 1116 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1117 1118 static int spi_start_queue(struct spi_master *master) 1119 { 1120 unsigned long flags; 1121 1122 spin_lock_irqsave(&master->queue_lock, flags); 1123 1124 if (master->running || master->busy) { 1125 spin_unlock_irqrestore(&master->queue_lock, flags); 1126 return -EBUSY; 1127 } 1128 1129 master->running = true; 1130 master->cur_msg = NULL; 1131 spin_unlock_irqrestore(&master->queue_lock, flags); 1132 1133 queue_kthread_work(&master->kworker, &master->pump_messages); 1134 1135 return 0; 1136 } 1137 1138 static int spi_stop_queue(struct spi_master *master) 1139 { 1140 unsigned long flags; 1141 unsigned limit = 500; 1142 int ret = 0; 1143 1144 spin_lock_irqsave(&master->queue_lock, flags); 1145 1146 /* 1147 * This is a bit lame, but is optimized for the common execution path. 1148 * A wait_queue on the master->busy could be used, but then the common 1149 * execution path (pump_messages) would be required to call wake_up or 1150 * friends on every SPI message. Do this instead. 1151 */ 1152 while ((!list_empty(&master->queue) || master->busy) && limit--) { 1153 spin_unlock_irqrestore(&master->queue_lock, flags); 1154 usleep_range(10000, 11000); 1155 spin_lock_irqsave(&master->queue_lock, flags); 1156 } 1157 1158 if (!list_empty(&master->queue) || master->busy) 1159 ret = -EBUSY; 1160 else 1161 master->running = false; 1162 1163 spin_unlock_irqrestore(&master->queue_lock, flags); 1164 1165 if (ret) { 1166 dev_warn(&master->dev, 1167 "could not stop message queue\n"); 1168 return ret; 1169 } 1170 return ret; 1171 } 1172 1173 static int spi_destroy_queue(struct spi_master *master) 1174 { 1175 int ret; 1176 1177 ret = spi_stop_queue(master); 1178 1179 /* 1180 * flush_kthread_worker will block until all work is done. 1181 * If the reason that stop_queue timed out is that the work will never 1182 * finish, then it does no good to call flush/stop thread, so 1183 * return anyway. 1184 */ 1185 if (ret) { 1186 dev_err(&master->dev, "problem destroying queue\n"); 1187 return ret; 1188 } 1189 1190 flush_kthread_worker(&master->kworker); 1191 kthread_stop(master->kworker_task); 1192 1193 return 0; 1194 } 1195 1196 static int __spi_queued_transfer(struct spi_device *spi, 1197 struct spi_message *msg, 1198 bool need_pump) 1199 { 1200 struct spi_master *master = spi->master; 1201 unsigned long flags; 1202 1203 spin_lock_irqsave(&master->queue_lock, flags); 1204 1205 if (!master->running) { 1206 spin_unlock_irqrestore(&master->queue_lock, flags); 1207 return -ESHUTDOWN; 1208 } 1209 msg->actual_length = 0; 1210 msg->status = -EINPROGRESS; 1211 1212 list_add_tail(&msg->queue, &master->queue); 1213 if (!master->busy && need_pump) 1214 queue_kthread_work(&master->kworker, &master->pump_messages); 1215 1216 spin_unlock_irqrestore(&master->queue_lock, flags); 1217 return 0; 1218 } 1219 1220 /** 1221 * spi_queued_transfer - transfer function for queued transfers 1222 * @spi: spi device which is requesting transfer 1223 * @msg: spi message which is to handled is queued to driver queue 1224 */ 1225 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1226 { 1227 return __spi_queued_transfer(spi, msg, true); 1228 } 1229 1230 static int spi_master_initialize_queue(struct spi_master *master) 1231 { 1232 int ret; 1233 1234 master->transfer = spi_queued_transfer; 1235 if (!master->transfer_one_message) 1236 master->transfer_one_message = spi_transfer_one_message; 1237 1238 /* Initialize and start queue */ 1239 ret = spi_init_queue(master); 1240 if (ret) { 1241 dev_err(&master->dev, "problem initializing queue\n"); 1242 goto err_init_queue; 1243 } 1244 master->queued = true; 1245 ret = spi_start_queue(master); 1246 if (ret) { 1247 dev_err(&master->dev, "problem starting queue\n"); 1248 goto err_start_queue; 1249 } 1250 1251 return 0; 1252 1253 err_start_queue: 1254 spi_destroy_queue(master); 1255 err_init_queue: 1256 return ret; 1257 } 1258 1259 /*-------------------------------------------------------------------------*/ 1260 1261 #if defined(CONFIG_OF) 1262 static struct spi_device * 1263 of_register_spi_device(struct spi_master *master, struct device_node *nc) 1264 { 1265 struct spi_device *spi; 1266 int rc; 1267 u32 value; 1268 1269 /* Alloc an spi_device */ 1270 spi = spi_alloc_device(master); 1271 if (!spi) { 1272 dev_err(&master->dev, "spi_device alloc error for %s\n", 1273 nc->full_name); 1274 rc = -ENOMEM; 1275 goto err_out; 1276 } 1277 1278 /* Select device driver */ 1279 rc = of_modalias_node(nc, spi->modalias, 1280 sizeof(spi->modalias)); 1281 if (rc < 0) { 1282 dev_err(&master->dev, "cannot find modalias for %s\n", 1283 nc->full_name); 1284 goto err_out; 1285 } 1286 1287 /* Device address */ 1288 rc = of_property_read_u32(nc, "reg", &value); 1289 if (rc) { 1290 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", 1291 nc->full_name, rc); 1292 goto err_out; 1293 } 1294 spi->chip_select = value; 1295 1296 /* Mode (clock phase/polarity/etc.) */ 1297 if (of_find_property(nc, "spi-cpha", NULL)) 1298 spi->mode |= SPI_CPHA; 1299 if (of_find_property(nc, "spi-cpol", NULL)) 1300 spi->mode |= SPI_CPOL; 1301 if (of_find_property(nc, "spi-cs-high", NULL)) 1302 spi->mode |= SPI_CS_HIGH; 1303 if (of_find_property(nc, "spi-3wire", NULL)) 1304 spi->mode |= SPI_3WIRE; 1305 if (of_find_property(nc, "spi-lsb-first", NULL)) 1306 spi->mode |= SPI_LSB_FIRST; 1307 1308 /* Device DUAL/QUAD mode */ 1309 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1310 switch (value) { 1311 case 1: 1312 break; 1313 case 2: 1314 spi->mode |= SPI_TX_DUAL; 1315 break; 1316 case 4: 1317 spi->mode |= SPI_TX_QUAD; 1318 break; 1319 default: 1320 dev_warn(&master->dev, 1321 "spi-tx-bus-width %d not supported\n", 1322 value); 1323 break; 1324 } 1325 } 1326 1327 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1328 switch (value) { 1329 case 1: 1330 break; 1331 case 2: 1332 spi->mode |= SPI_RX_DUAL; 1333 break; 1334 case 4: 1335 spi->mode |= SPI_RX_QUAD; 1336 break; 1337 default: 1338 dev_warn(&master->dev, 1339 "spi-rx-bus-width %d not supported\n", 1340 value); 1341 break; 1342 } 1343 } 1344 1345 /* Device speed */ 1346 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1347 if (rc) { 1348 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", 1349 nc->full_name, rc); 1350 goto err_out; 1351 } 1352 spi->max_speed_hz = value; 1353 1354 /* IRQ */ 1355 spi->irq = irq_of_parse_and_map(nc, 0); 1356 1357 /* Store a pointer to the node in the device structure */ 1358 of_node_get(nc); 1359 spi->dev.of_node = nc; 1360 1361 /* Register the new device */ 1362 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias); 1363 rc = spi_add_device(spi); 1364 if (rc) { 1365 dev_err(&master->dev, "spi_device register error %s\n", 1366 nc->full_name); 1367 goto err_out; 1368 } 1369 1370 return spi; 1371 1372 err_out: 1373 spi_dev_put(spi); 1374 return ERR_PTR(rc); 1375 } 1376 1377 /** 1378 * of_register_spi_devices() - Register child devices onto the SPI bus 1379 * @master: Pointer to spi_master device 1380 * 1381 * Registers an spi_device for each child node of master node which has a 'reg' 1382 * property. 1383 */ 1384 static void of_register_spi_devices(struct spi_master *master) 1385 { 1386 struct spi_device *spi; 1387 struct device_node *nc; 1388 1389 if (!master->dev.of_node) 1390 return; 1391 1392 for_each_available_child_of_node(master->dev.of_node, nc) { 1393 spi = of_register_spi_device(master, nc); 1394 if (IS_ERR(spi)) 1395 dev_warn(&master->dev, "Failed to create SPI device for %s\n", 1396 nc->full_name); 1397 } 1398 } 1399 #else 1400 static void of_register_spi_devices(struct spi_master *master) { } 1401 #endif 1402 1403 #ifdef CONFIG_ACPI 1404 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1405 { 1406 struct spi_device *spi = data; 1407 1408 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1409 struct acpi_resource_spi_serialbus *sb; 1410 1411 sb = &ares->data.spi_serial_bus; 1412 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1413 spi->chip_select = sb->device_selection; 1414 spi->max_speed_hz = sb->connection_speed; 1415 1416 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1417 spi->mode |= SPI_CPHA; 1418 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1419 spi->mode |= SPI_CPOL; 1420 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1421 spi->mode |= SPI_CS_HIGH; 1422 } 1423 } else if (spi->irq < 0) { 1424 struct resource r; 1425 1426 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1427 spi->irq = r.start; 1428 } 1429 1430 /* Always tell the ACPI core to skip this resource */ 1431 return 1; 1432 } 1433 1434 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1435 void *data, void **return_value) 1436 { 1437 struct spi_master *master = data; 1438 struct list_head resource_list; 1439 struct acpi_device *adev; 1440 struct spi_device *spi; 1441 int ret; 1442 1443 if (acpi_bus_get_device(handle, &adev)) 1444 return AE_OK; 1445 if (acpi_bus_get_status(adev) || !adev->status.present) 1446 return AE_OK; 1447 1448 spi = spi_alloc_device(master); 1449 if (!spi) { 1450 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 1451 dev_name(&adev->dev)); 1452 return AE_NO_MEMORY; 1453 } 1454 1455 ACPI_COMPANION_SET(&spi->dev, adev); 1456 spi->irq = -1; 1457 1458 INIT_LIST_HEAD(&resource_list); 1459 ret = acpi_dev_get_resources(adev, &resource_list, 1460 acpi_spi_add_resource, spi); 1461 acpi_dev_free_resource_list(&resource_list); 1462 1463 if (ret < 0 || !spi->max_speed_hz) { 1464 spi_dev_put(spi); 1465 return AE_OK; 1466 } 1467 1468 adev->power.flags.ignore_parent = true; 1469 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); 1470 if (spi_add_device(spi)) { 1471 adev->power.flags.ignore_parent = false; 1472 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 1473 dev_name(&adev->dev)); 1474 spi_dev_put(spi); 1475 } 1476 1477 return AE_OK; 1478 } 1479 1480 static void acpi_register_spi_devices(struct spi_master *master) 1481 { 1482 acpi_status status; 1483 acpi_handle handle; 1484 1485 handle = ACPI_HANDLE(master->dev.parent); 1486 if (!handle) 1487 return; 1488 1489 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1490 acpi_spi_add_device, NULL, 1491 master, NULL); 1492 if (ACPI_FAILURE(status)) 1493 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 1494 } 1495 #else 1496 static inline void acpi_register_spi_devices(struct spi_master *master) {} 1497 #endif /* CONFIG_ACPI */ 1498 1499 static void spi_master_release(struct device *dev) 1500 { 1501 struct spi_master *master; 1502 1503 master = container_of(dev, struct spi_master, dev); 1504 kfree(master); 1505 } 1506 1507 static struct class spi_master_class = { 1508 .name = "spi_master", 1509 .owner = THIS_MODULE, 1510 .dev_release = spi_master_release, 1511 }; 1512 1513 1514 1515 /** 1516 * spi_alloc_master - allocate SPI master controller 1517 * @dev: the controller, possibly using the platform_bus 1518 * @size: how much zeroed driver-private data to allocate; the pointer to this 1519 * memory is in the driver_data field of the returned device, 1520 * accessible with spi_master_get_devdata(). 1521 * Context: can sleep 1522 * 1523 * This call is used only by SPI master controller drivers, which are the 1524 * only ones directly touching chip registers. It's how they allocate 1525 * an spi_master structure, prior to calling spi_register_master(). 1526 * 1527 * This must be called from context that can sleep. It returns the SPI 1528 * master structure on success, else NULL. 1529 * 1530 * The caller is responsible for assigning the bus number and initializing 1531 * the master's methods before calling spi_register_master(); and (after errors 1532 * adding the device) calling spi_master_put() and kfree() to prevent a memory 1533 * leak. 1534 */ 1535 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1536 { 1537 struct spi_master *master; 1538 1539 if (!dev) 1540 return NULL; 1541 1542 master = kzalloc(size + sizeof(*master), GFP_KERNEL); 1543 if (!master) 1544 return NULL; 1545 1546 device_initialize(&master->dev); 1547 master->bus_num = -1; 1548 master->num_chipselect = 1; 1549 master->dev.class = &spi_master_class; 1550 master->dev.parent = get_device(dev); 1551 spi_master_set_devdata(master, &master[1]); 1552 1553 return master; 1554 } 1555 EXPORT_SYMBOL_GPL(spi_alloc_master); 1556 1557 #ifdef CONFIG_OF 1558 static int of_spi_register_master(struct spi_master *master) 1559 { 1560 int nb, i, *cs; 1561 struct device_node *np = master->dev.of_node; 1562 1563 if (!np) 1564 return 0; 1565 1566 nb = of_gpio_named_count(np, "cs-gpios"); 1567 master->num_chipselect = max_t(int, nb, master->num_chipselect); 1568 1569 /* Return error only for an incorrectly formed cs-gpios property */ 1570 if (nb == 0 || nb == -ENOENT) 1571 return 0; 1572 else if (nb < 0) 1573 return nb; 1574 1575 cs = devm_kzalloc(&master->dev, 1576 sizeof(int) * master->num_chipselect, 1577 GFP_KERNEL); 1578 master->cs_gpios = cs; 1579 1580 if (!master->cs_gpios) 1581 return -ENOMEM; 1582 1583 for (i = 0; i < master->num_chipselect; i++) 1584 cs[i] = -ENOENT; 1585 1586 for (i = 0; i < nb; i++) 1587 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1588 1589 return 0; 1590 } 1591 #else 1592 static int of_spi_register_master(struct spi_master *master) 1593 { 1594 return 0; 1595 } 1596 #endif 1597 1598 /** 1599 * spi_register_master - register SPI master controller 1600 * @master: initialized master, originally from spi_alloc_master() 1601 * Context: can sleep 1602 * 1603 * SPI master controllers connect to their drivers using some non-SPI bus, 1604 * such as the platform bus. The final stage of probe() in that code 1605 * includes calling spi_register_master() to hook up to this SPI bus glue. 1606 * 1607 * SPI controllers use board specific (often SOC specific) bus numbers, 1608 * and board-specific addressing for SPI devices combines those numbers 1609 * with chip select numbers. Since SPI does not directly support dynamic 1610 * device identification, boards need configuration tables telling which 1611 * chip is at which address. 1612 * 1613 * This must be called from context that can sleep. It returns zero on 1614 * success, else a negative error code (dropping the master's refcount). 1615 * After a successful return, the caller is responsible for calling 1616 * spi_unregister_master(). 1617 */ 1618 int spi_register_master(struct spi_master *master) 1619 { 1620 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1621 struct device *dev = master->dev.parent; 1622 struct boardinfo *bi; 1623 int status = -ENODEV; 1624 int dynamic = 0; 1625 1626 if (!dev) 1627 return -ENODEV; 1628 1629 status = of_spi_register_master(master); 1630 if (status) 1631 return status; 1632 1633 /* even if it's just one always-selected device, there must 1634 * be at least one chipselect 1635 */ 1636 if (master->num_chipselect == 0) 1637 return -EINVAL; 1638 1639 if ((master->bus_num < 0) && master->dev.of_node) 1640 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1641 1642 /* convention: dynamically assigned bus IDs count down from the max */ 1643 if (master->bus_num < 0) { 1644 /* FIXME switch to an IDR based scheme, something like 1645 * I2C now uses, so we can't run out of "dynamic" IDs 1646 */ 1647 master->bus_num = atomic_dec_return(&dyn_bus_id); 1648 dynamic = 1; 1649 } 1650 1651 INIT_LIST_HEAD(&master->queue); 1652 spin_lock_init(&master->queue_lock); 1653 spin_lock_init(&master->bus_lock_spinlock); 1654 mutex_init(&master->bus_lock_mutex); 1655 master->bus_lock_flag = 0; 1656 init_completion(&master->xfer_completion); 1657 if (!master->max_dma_len) 1658 master->max_dma_len = INT_MAX; 1659 1660 /* register the device, then userspace will see it. 1661 * registration fails if the bus ID is in use. 1662 */ 1663 dev_set_name(&master->dev, "spi%u", master->bus_num); 1664 status = device_add(&master->dev); 1665 if (status < 0) 1666 goto done; 1667 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1668 dynamic ? " (dynamic)" : ""); 1669 1670 /* If we're using a queued driver, start the queue */ 1671 if (master->transfer) 1672 dev_info(dev, "master is unqueued, this is deprecated\n"); 1673 else { 1674 status = spi_master_initialize_queue(master); 1675 if (status) { 1676 device_del(&master->dev); 1677 goto done; 1678 } 1679 } 1680 1681 mutex_lock(&board_lock); 1682 list_add_tail(&master->list, &spi_master_list); 1683 list_for_each_entry(bi, &board_list, list) 1684 spi_match_master_to_boardinfo(master, &bi->board_info); 1685 mutex_unlock(&board_lock); 1686 1687 /* Register devices from the device tree and ACPI */ 1688 of_register_spi_devices(master); 1689 acpi_register_spi_devices(master); 1690 done: 1691 return status; 1692 } 1693 EXPORT_SYMBOL_GPL(spi_register_master); 1694 1695 static void devm_spi_unregister(struct device *dev, void *res) 1696 { 1697 spi_unregister_master(*(struct spi_master **)res); 1698 } 1699 1700 /** 1701 * dev_spi_register_master - register managed SPI master controller 1702 * @dev: device managing SPI master 1703 * @master: initialized master, originally from spi_alloc_master() 1704 * Context: can sleep 1705 * 1706 * Register a SPI device as with spi_register_master() which will 1707 * automatically be unregister 1708 */ 1709 int devm_spi_register_master(struct device *dev, struct spi_master *master) 1710 { 1711 struct spi_master **ptr; 1712 int ret; 1713 1714 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 1715 if (!ptr) 1716 return -ENOMEM; 1717 1718 ret = spi_register_master(master); 1719 if (!ret) { 1720 *ptr = master; 1721 devres_add(dev, ptr); 1722 } else { 1723 devres_free(ptr); 1724 } 1725 1726 return ret; 1727 } 1728 EXPORT_SYMBOL_GPL(devm_spi_register_master); 1729 1730 static int __unregister(struct device *dev, void *null) 1731 { 1732 spi_unregister_device(to_spi_device(dev)); 1733 return 0; 1734 } 1735 1736 /** 1737 * spi_unregister_master - unregister SPI master controller 1738 * @master: the master being unregistered 1739 * Context: can sleep 1740 * 1741 * This call is used only by SPI master controller drivers, which are the 1742 * only ones directly touching chip registers. 1743 * 1744 * This must be called from context that can sleep. 1745 */ 1746 void spi_unregister_master(struct spi_master *master) 1747 { 1748 int dummy; 1749 1750 if (master->queued) { 1751 if (spi_destroy_queue(master)) 1752 dev_err(&master->dev, "queue remove failed\n"); 1753 } 1754 1755 mutex_lock(&board_lock); 1756 list_del(&master->list); 1757 mutex_unlock(&board_lock); 1758 1759 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1760 device_unregister(&master->dev); 1761 } 1762 EXPORT_SYMBOL_GPL(spi_unregister_master); 1763 1764 int spi_master_suspend(struct spi_master *master) 1765 { 1766 int ret; 1767 1768 /* Basically no-ops for non-queued masters */ 1769 if (!master->queued) 1770 return 0; 1771 1772 ret = spi_stop_queue(master); 1773 if (ret) 1774 dev_err(&master->dev, "queue stop failed\n"); 1775 1776 return ret; 1777 } 1778 EXPORT_SYMBOL_GPL(spi_master_suspend); 1779 1780 int spi_master_resume(struct spi_master *master) 1781 { 1782 int ret; 1783 1784 if (!master->queued) 1785 return 0; 1786 1787 ret = spi_start_queue(master); 1788 if (ret) 1789 dev_err(&master->dev, "queue restart failed\n"); 1790 1791 return ret; 1792 } 1793 EXPORT_SYMBOL_GPL(spi_master_resume); 1794 1795 static int __spi_master_match(struct device *dev, const void *data) 1796 { 1797 struct spi_master *m; 1798 const u16 *bus_num = data; 1799 1800 m = container_of(dev, struct spi_master, dev); 1801 return m->bus_num == *bus_num; 1802 } 1803 1804 /** 1805 * spi_busnum_to_master - look up master associated with bus_num 1806 * @bus_num: the master's bus number 1807 * Context: can sleep 1808 * 1809 * This call may be used with devices that are registered after 1810 * arch init time. It returns a refcounted pointer to the relevant 1811 * spi_master (which the caller must release), or NULL if there is 1812 * no such master registered. 1813 */ 1814 struct spi_master *spi_busnum_to_master(u16 bus_num) 1815 { 1816 struct device *dev; 1817 struct spi_master *master = NULL; 1818 1819 dev = class_find_device(&spi_master_class, NULL, &bus_num, 1820 __spi_master_match); 1821 if (dev) 1822 master = container_of(dev, struct spi_master, dev); 1823 /* reference got in class_find_device */ 1824 return master; 1825 } 1826 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 1827 1828 1829 /*-------------------------------------------------------------------------*/ 1830 1831 /* Core methods for SPI master protocol drivers. Some of the 1832 * other core methods are currently defined as inline functions. 1833 */ 1834 1835 /** 1836 * spi_setup - setup SPI mode and clock rate 1837 * @spi: the device whose settings are being modified 1838 * Context: can sleep, and no requests are queued to the device 1839 * 1840 * SPI protocol drivers may need to update the transfer mode if the 1841 * device doesn't work with its default. They may likewise need 1842 * to update clock rates or word sizes from initial values. This function 1843 * changes those settings, and must be called from a context that can sleep. 1844 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 1845 * effect the next time the device is selected and data is transferred to 1846 * or from it. When this function returns, the spi device is deselected. 1847 * 1848 * Note that this call will fail if the protocol driver specifies an option 1849 * that the underlying controller or its driver does not support. For 1850 * example, not all hardware supports wire transfers using nine bit words, 1851 * LSB-first wire encoding, or active-high chipselects. 1852 */ 1853 int spi_setup(struct spi_device *spi) 1854 { 1855 unsigned bad_bits, ugly_bits; 1856 int status = 0; 1857 1858 /* check mode to prevent that DUAL and QUAD set at the same time 1859 */ 1860 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 1861 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 1862 dev_err(&spi->dev, 1863 "setup: can not select dual and quad at the same time\n"); 1864 return -EINVAL; 1865 } 1866 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 1867 */ 1868 if ((spi->mode & SPI_3WIRE) && (spi->mode & 1869 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 1870 return -EINVAL; 1871 /* help drivers fail *cleanly* when they need options 1872 * that aren't supported with their current master 1873 */ 1874 bad_bits = spi->mode & ~spi->master->mode_bits; 1875 ugly_bits = bad_bits & 1876 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); 1877 if (ugly_bits) { 1878 dev_warn(&spi->dev, 1879 "setup: ignoring unsupported mode bits %x\n", 1880 ugly_bits); 1881 spi->mode &= ~ugly_bits; 1882 bad_bits &= ~ugly_bits; 1883 } 1884 if (bad_bits) { 1885 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 1886 bad_bits); 1887 return -EINVAL; 1888 } 1889 1890 if (!spi->bits_per_word) 1891 spi->bits_per_word = 8; 1892 1893 if (!spi->max_speed_hz) 1894 spi->max_speed_hz = spi->master->max_speed_hz; 1895 1896 if (spi->master->setup) 1897 status = spi->master->setup(spi); 1898 1899 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 1900 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 1901 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 1902 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 1903 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 1904 (spi->mode & SPI_LOOP) ? "loopback, " : "", 1905 spi->bits_per_word, spi->max_speed_hz, 1906 status); 1907 1908 return status; 1909 } 1910 EXPORT_SYMBOL_GPL(spi_setup); 1911 1912 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 1913 { 1914 struct spi_master *master = spi->master; 1915 struct spi_transfer *xfer; 1916 int w_size; 1917 1918 if (list_empty(&message->transfers)) 1919 return -EINVAL; 1920 1921 /* Half-duplex links include original MicroWire, and ones with 1922 * only one data pin like SPI_3WIRE (switches direction) or where 1923 * either MOSI or MISO is missing. They can also be caused by 1924 * software limitations. 1925 */ 1926 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 1927 || (spi->mode & SPI_3WIRE)) { 1928 unsigned flags = master->flags; 1929 1930 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1931 if (xfer->rx_buf && xfer->tx_buf) 1932 return -EINVAL; 1933 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 1934 return -EINVAL; 1935 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 1936 return -EINVAL; 1937 } 1938 } 1939 1940 /** 1941 * Set transfer bits_per_word and max speed as spi device default if 1942 * it is not set for this transfer. 1943 * Set transfer tx_nbits and rx_nbits as single transfer default 1944 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 1945 */ 1946 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1947 message->frame_length += xfer->len; 1948 if (!xfer->bits_per_word) 1949 xfer->bits_per_word = spi->bits_per_word; 1950 1951 if (!xfer->speed_hz) 1952 xfer->speed_hz = spi->max_speed_hz; 1953 1954 if (master->max_speed_hz && 1955 xfer->speed_hz > master->max_speed_hz) 1956 xfer->speed_hz = master->max_speed_hz; 1957 1958 if (master->bits_per_word_mask) { 1959 /* Only 32 bits fit in the mask */ 1960 if (xfer->bits_per_word > 32) 1961 return -EINVAL; 1962 if (!(master->bits_per_word_mask & 1963 BIT(xfer->bits_per_word - 1))) 1964 return -EINVAL; 1965 } 1966 1967 /* 1968 * SPI transfer length should be multiple of SPI word size 1969 * where SPI word size should be power-of-two multiple 1970 */ 1971 if (xfer->bits_per_word <= 8) 1972 w_size = 1; 1973 else if (xfer->bits_per_word <= 16) 1974 w_size = 2; 1975 else 1976 w_size = 4; 1977 1978 /* No partial transfers accepted */ 1979 if (xfer->len % w_size) 1980 return -EINVAL; 1981 1982 if (xfer->speed_hz && master->min_speed_hz && 1983 xfer->speed_hz < master->min_speed_hz) 1984 return -EINVAL; 1985 1986 if (xfer->tx_buf && !xfer->tx_nbits) 1987 xfer->tx_nbits = SPI_NBITS_SINGLE; 1988 if (xfer->rx_buf && !xfer->rx_nbits) 1989 xfer->rx_nbits = SPI_NBITS_SINGLE; 1990 /* check transfer tx/rx_nbits: 1991 * 1. check the value matches one of single, dual and quad 1992 * 2. check tx/rx_nbits match the mode in spi_device 1993 */ 1994 if (xfer->tx_buf) { 1995 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 1996 xfer->tx_nbits != SPI_NBITS_DUAL && 1997 xfer->tx_nbits != SPI_NBITS_QUAD) 1998 return -EINVAL; 1999 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 2000 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 2001 return -EINVAL; 2002 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 2003 !(spi->mode & SPI_TX_QUAD)) 2004 return -EINVAL; 2005 } 2006 /* check transfer rx_nbits */ 2007 if (xfer->rx_buf) { 2008 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 2009 xfer->rx_nbits != SPI_NBITS_DUAL && 2010 xfer->rx_nbits != SPI_NBITS_QUAD) 2011 return -EINVAL; 2012 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 2013 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 2014 return -EINVAL; 2015 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 2016 !(spi->mode & SPI_RX_QUAD)) 2017 return -EINVAL; 2018 } 2019 } 2020 2021 message->status = -EINPROGRESS; 2022 2023 return 0; 2024 } 2025 2026 static int __spi_async(struct spi_device *spi, struct spi_message *message) 2027 { 2028 struct spi_master *master = spi->master; 2029 2030 message->spi = spi; 2031 2032 trace_spi_message_submit(message); 2033 2034 return master->transfer(spi, message); 2035 } 2036 2037 /** 2038 * spi_async - asynchronous SPI transfer 2039 * @spi: device with which data will be exchanged 2040 * @message: describes the data transfers, including completion callback 2041 * Context: any (irqs may be blocked, etc) 2042 * 2043 * This call may be used in_irq and other contexts which can't sleep, 2044 * as well as from task contexts which can sleep. 2045 * 2046 * The completion callback is invoked in a context which can't sleep. 2047 * Before that invocation, the value of message->status is undefined. 2048 * When the callback is issued, message->status holds either zero (to 2049 * indicate complete success) or a negative error code. After that 2050 * callback returns, the driver which issued the transfer request may 2051 * deallocate the associated memory; it's no longer in use by any SPI 2052 * core or controller driver code. 2053 * 2054 * Note that although all messages to a spi_device are handled in 2055 * FIFO order, messages may go to different devices in other orders. 2056 * Some device might be higher priority, or have various "hard" access 2057 * time requirements, for example. 2058 * 2059 * On detection of any fault during the transfer, processing of 2060 * the entire message is aborted, and the device is deselected. 2061 * Until returning from the associated message completion callback, 2062 * no other spi_message queued to that device will be processed. 2063 * (This rule applies equally to all the synchronous transfer calls, 2064 * which are wrappers around this core asynchronous primitive.) 2065 */ 2066 int spi_async(struct spi_device *spi, struct spi_message *message) 2067 { 2068 struct spi_master *master = spi->master; 2069 int ret; 2070 unsigned long flags; 2071 2072 ret = __spi_validate(spi, message); 2073 if (ret != 0) 2074 return ret; 2075 2076 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2077 2078 if (master->bus_lock_flag) 2079 ret = -EBUSY; 2080 else 2081 ret = __spi_async(spi, message); 2082 2083 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2084 2085 return ret; 2086 } 2087 EXPORT_SYMBOL_GPL(spi_async); 2088 2089 /** 2090 * spi_async_locked - version of spi_async with exclusive bus usage 2091 * @spi: device with which data will be exchanged 2092 * @message: describes the data transfers, including completion callback 2093 * Context: any (irqs may be blocked, etc) 2094 * 2095 * This call may be used in_irq and other contexts which can't sleep, 2096 * as well as from task contexts which can sleep. 2097 * 2098 * The completion callback is invoked in a context which can't sleep. 2099 * Before that invocation, the value of message->status is undefined. 2100 * When the callback is issued, message->status holds either zero (to 2101 * indicate complete success) or a negative error code. After that 2102 * callback returns, the driver which issued the transfer request may 2103 * deallocate the associated memory; it's no longer in use by any SPI 2104 * core or controller driver code. 2105 * 2106 * Note that although all messages to a spi_device are handled in 2107 * FIFO order, messages may go to different devices in other orders. 2108 * Some device might be higher priority, or have various "hard" access 2109 * time requirements, for example. 2110 * 2111 * On detection of any fault during the transfer, processing of 2112 * the entire message is aborted, and the device is deselected. 2113 * Until returning from the associated message completion callback, 2114 * no other spi_message queued to that device will be processed. 2115 * (This rule applies equally to all the synchronous transfer calls, 2116 * which are wrappers around this core asynchronous primitive.) 2117 */ 2118 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 2119 { 2120 struct spi_master *master = spi->master; 2121 int ret; 2122 unsigned long flags; 2123 2124 ret = __spi_validate(spi, message); 2125 if (ret != 0) 2126 return ret; 2127 2128 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2129 2130 ret = __spi_async(spi, message); 2131 2132 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2133 2134 return ret; 2135 2136 } 2137 EXPORT_SYMBOL_GPL(spi_async_locked); 2138 2139 2140 /*-------------------------------------------------------------------------*/ 2141 2142 /* Utility methods for SPI master protocol drivers, layered on 2143 * top of the core. Some other utility methods are defined as 2144 * inline functions. 2145 */ 2146 2147 static void spi_complete(void *arg) 2148 { 2149 complete(arg); 2150 } 2151 2152 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 2153 int bus_locked) 2154 { 2155 DECLARE_COMPLETION_ONSTACK(done); 2156 int status; 2157 struct spi_master *master = spi->master; 2158 unsigned long flags; 2159 2160 status = __spi_validate(spi, message); 2161 if (status != 0) 2162 return status; 2163 2164 message->complete = spi_complete; 2165 message->context = &done; 2166 message->spi = spi; 2167 2168 if (!bus_locked) 2169 mutex_lock(&master->bus_lock_mutex); 2170 2171 /* If we're not using the legacy transfer method then we will 2172 * try to transfer in the calling context so special case. 2173 * This code would be less tricky if we could remove the 2174 * support for driver implemented message queues. 2175 */ 2176 if (master->transfer == spi_queued_transfer) { 2177 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2178 2179 trace_spi_message_submit(message); 2180 2181 status = __spi_queued_transfer(spi, message, false); 2182 2183 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2184 } else { 2185 status = spi_async_locked(spi, message); 2186 } 2187 2188 if (!bus_locked) 2189 mutex_unlock(&master->bus_lock_mutex); 2190 2191 if (status == 0) { 2192 /* Push out the messages in the calling context if we 2193 * can. 2194 */ 2195 if (master->transfer == spi_queued_transfer) 2196 __spi_pump_messages(master, false); 2197 2198 wait_for_completion(&done); 2199 status = message->status; 2200 } 2201 message->context = NULL; 2202 return status; 2203 } 2204 2205 /** 2206 * spi_sync - blocking/synchronous SPI data transfers 2207 * @spi: device with which data will be exchanged 2208 * @message: describes the data transfers 2209 * Context: can sleep 2210 * 2211 * This call may only be used from a context that may sleep. The sleep 2212 * is non-interruptible, and has no timeout. Low-overhead controller 2213 * drivers may DMA directly into and out of the message buffers. 2214 * 2215 * Note that the SPI device's chip select is active during the message, 2216 * and then is normally disabled between messages. Drivers for some 2217 * frequently-used devices may want to minimize costs of selecting a chip, 2218 * by leaving it selected in anticipation that the next message will go 2219 * to the same chip. (That may increase power usage.) 2220 * 2221 * Also, the caller is guaranteeing that the memory associated with the 2222 * message will not be freed before this call returns. 2223 * 2224 * It returns zero on success, else a negative error code. 2225 */ 2226 int spi_sync(struct spi_device *spi, struct spi_message *message) 2227 { 2228 return __spi_sync(spi, message, 0); 2229 } 2230 EXPORT_SYMBOL_GPL(spi_sync); 2231 2232 /** 2233 * spi_sync_locked - version of spi_sync with exclusive bus usage 2234 * @spi: device with which data will be exchanged 2235 * @message: describes the data transfers 2236 * Context: can sleep 2237 * 2238 * This call may only be used from a context that may sleep. The sleep 2239 * is non-interruptible, and has no timeout. Low-overhead controller 2240 * drivers may DMA directly into and out of the message buffers. 2241 * 2242 * This call should be used by drivers that require exclusive access to the 2243 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 2244 * be released by a spi_bus_unlock call when the exclusive access is over. 2245 * 2246 * It returns zero on success, else a negative error code. 2247 */ 2248 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 2249 { 2250 return __spi_sync(spi, message, 1); 2251 } 2252 EXPORT_SYMBOL_GPL(spi_sync_locked); 2253 2254 /** 2255 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 2256 * @master: SPI bus master that should be locked for exclusive bus access 2257 * Context: can sleep 2258 * 2259 * This call may only be used from a context that may sleep. The sleep 2260 * is non-interruptible, and has no timeout. 2261 * 2262 * This call should be used by drivers that require exclusive access to the 2263 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 2264 * exclusive access is over. Data transfer must be done by spi_sync_locked 2265 * and spi_async_locked calls when the SPI bus lock is held. 2266 * 2267 * It returns zero on success, else a negative error code. 2268 */ 2269 int spi_bus_lock(struct spi_master *master) 2270 { 2271 unsigned long flags; 2272 2273 mutex_lock(&master->bus_lock_mutex); 2274 2275 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2276 master->bus_lock_flag = 1; 2277 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2278 2279 /* mutex remains locked until spi_bus_unlock is called */ 2280 2281 return 0; 2282 } 2283 EXPORT_SYMBOL_GPL(spi_bus_lock); 2284 2285 /** 2286 * spi_bus_unlock - release the lock for exclusive SPI bus usage 2287 * @master: SPI bus master that was locked for exclusive bus access 2288 * Context: can sleep 2289 * 2290 * This call may only be used from a context that may sleep. The sleep 2291 * is non-interruptible, and has no timeout. 2292 * 2293 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 2294 * call. 2295 * 2296 * It returns zero on success, else a negative error code. 2297 */ 2298 int spi_bus_unlock(struct spi_master *master) 2299 { 2300 master->bus_lock_flag = 0; 2301 2302 mutex_unlock(&master->bus_lock_mutex); 2303 2304 return 0; 2305 } 2306 EXPORT_SYMBOL_GPL(spi_bus_unlock); 2307 2308 /* portable code must never pass more than 32 bytes */ 2309 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 2310 2311 static u8 *buf; 2312 2313 /** 2314 * spi_write_then_read - SPI synchronous write followed by read 2315 * @spi: device with which data will be exchanged 2316 * @txbuf: data to be written (need not be dma-safe) 2317 * @n_tx: size of txbuf, in bytes 2318 * @rxbuf: buffer into which data will be read (need not be dma-safe) 2319 * @n_rx: size of rxbuf, in bytes 2320 * Context: can sleep 2321 * 2322 * This performs a half duplex MicroWire style transaction with the 2323 * device, sending txbuf and then reading rxbuf. The return value 2324 * is zero for success, else a negative errno status code. 2325 * This call may only be used from a context that may sleep. 2326 * 2327 * Parameters to this routine are always copied using a small buffer; 2328 * portable code should never use this for more than 32 bytes. 2329 * Performance-sensitive or bulk transfer code should instead use 2330 * spi_{async,sync}() calls with dma-safe buffers. 2331 */ 2332 int spi_write_then_read(struct spi_device *spi, 2333 const void *txbuf, unsigned n_tx, 2334 void *rxbuf, unsigned n_rx) 2335 { 2336 static DEFINE_MUTEX(lock); 2337 2338 int status; 2339 struct spi_message message; 2340 struct spi_transfer x[2]; 2341 u8 *local_buf; 2342 2343 /* Use preallocated DMA-safe buffer if we can. We can't avoid 2344 * copying here, (as a pure convenience thing), but we can 2345 * keep heap costs out of the hot path unless someone else is 2346 * using the pre-allocated buffer or the transfer is too large. 2347 */ 2348 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 2349 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 2350 GFP_KERNEL | GFP_DMA); 2351 if (!local_buf) 2352 return -ENOMEM; 2353 } else { 2354 local_buf = buf; 2355 } 2356 2357 spi_message_init(&message); 2358 memset(x, 0, sizeof(x)); 2359 if (n_tx) { 2360 x[0].len = n_tx; 2361 spi_message_add_tail(&x[0], &message); 2362 } 2363 if (n_rx) { 2364 x[1].len = n_rx; 2365 spi_message_add_tail(&x[1], &message); 2366 } 2367 2368 memcpy(local_buf, txbuf, n_tx); 2369 x[0].tx_buf = local_buf; 2370 x[1].rx_buf = local_buf + n_tx; 2371 2372 /* do the i/o */ 2373 status = spi_sync(spi, &message); 2374 if (status == 0) 2375 memcpy(rxbuf, x[1].rx_buf, n_rx); 2376 2377 if (x[0].tx_buf == buf) 2378 mutex_unlock(&lock); 2379 else 2380 kfree(local_buf); 2381 2382 return status; 2383 } 2384 EXPORT_SYMBOL_GPL(spi_write_then_read); 2385 2386 /*-------------------------------------------------------------------------*/ 2387 2388 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 2389 static int __spi_of_device_match(struct device *dev, void *data) 2390 { 2391 return dev->of_node == data; 2392 } 2393 2394 /* must call put_device() when done with returned spi_device device */ 2395 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 2396 { 2397 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 2398 __spi_of_device_match); 2399 return dev ? to_spi_device(dev) : NULL; 2400 } 2401 2402 static int __spi_of_master_match(struct device *dev, const void *data) 2403 { 2404 return dev->of_node == data; 2405 } 2406 2407 /* the spi masters are not using spi_bus, so we find it with another way */ 2408 static struct spi_master *of_find_spi_master_by_node(struct device_node *node) 2409 { 2410 struct device *dev; 2411 2412 dev = class_find_device(&spi_master_class, NULL, node, 2413 __spi_of_master_match); 2414 if (!dev) 2415 return NULL; 2416 2417 /* reference got in class_find_device */ 2418 return container_of(dev, struct spi_master, dev); 2419 } 2420 2421 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 2422 void *arg) 2423 { 2424 struct of_reconfig_data *rd = arg; 2425 struct spi_master *master; 2426 struct spi_device *spi; 2427 2428 switch (of_reconfig_get_state_change(action, arg)) { 2429 case OF_RECONFIG_CHANGE_ADD: 2430 master = of_find_spi_master_by_node(rd->dn->parent); 2431 if (master == NULL) 2432 return NOTIFY_OK; /* not for us */ 2433 2434 spi = of_register_spi_device(master, rd->dn); 2435 put_device(&master->dev); 2436 2437 if (IS_ERR(spi)) { 2438 pr_err("%s: failed to create for '%s'\n", 2439 __func__, rd->dn->full_name); 2440 return notifier_from_errno(PTR_ERR(spi)); 2441 } 2442 break; 2443 2444 case OF_RECONFIG_CHANGE_REMOVE: 2445 /* find our device by node */ 2446 spi = of_find_spi_device_by_node(rd->dn); 2447 if (spi == NULL) 2448 return NOTIFY_OK; /* no? not meant for us */ 2449 2450 /* unregister takes one ref away */ 2451 spi_unregister_device(spi); 2452 2453 /* and put the reference of the find */ 2454 put_device(&spi->dev); 2455 break; 2456 } 2457 2458 return NOTIFY_OK; 2459 } 2460 2461 static struct notifier_block spi_of_notifier = { 2462 .notifier_call = of_spi_notify, 2463 }; 2464 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 2465 extern struct notifier_block spi_of_notifier; 2466 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 2467 2468 static int __init spi_init(void) 2469 { 2470 int status; 2471 2472 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 2473 if (!buf) { 2474 status = -ENOMEM; 2475 goto err0; 2476 } 2477 2478 status = bus_register(&spi_bus_type); 2479 if (status < 0) 2480 goto err1; 2481 2482 status = class_register(&spi_master_class); 2483 if (status < 0) 2484 goto err2; 2485 2486 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 2487 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 2488 2489 return 0; 2490 2491 err2: 2492 bus_unregister(&spi_bus_type); 2493 err1: 2494 kfree(buf); 2495 buf = NULL; 2496 err0: 2497 return status; 2498 } 2499 2500 /* board_info is normally registered in arch_initcall(), 2501 * but even essential drivers wait till later 2502 * 2503 * REVISIT only boardinfo really needs static linking. the rest (device and 2504 * driver registration) _could_ be dynamically linked (modular) ... costs 2505 * include needing to have boardinfo data structures be much more public. 2506 */ 2507 postcore_initcall(spi_init); 2508 2509