xref: /openbmc/linux/drivers/spi/spi.c (revision 7dd65feb)
1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/spi/spi.h>
28 
29 
30 /* SPI bustype and spi_master class are registered after board init code
31  * provides the SPI device tables, ensuring that both are present by the
32  * time controller driver registration causes spi_devices to "enumerate".
33  */
34 static void spidev_release(struct device *dev)
35 {
36 	struct spi_device	*spi = to_spi_device(dev);
37 
38 	/* spi masters may cleanup for released devices */
39 	if (spi->master->cleanup)
40 		spi->master->cleanup(spi);
41 
42 	spi_master_put(spi->master);
43 	kfree(dev);
44 }
45 
46 static ssize_t
47 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
48 {
49 	const struct spi_device	*spi = to_spi_device(dev);
50 
51 	return sprintf(buf, "%s\n", spi->modalias);
52 }
53 
54 static struct device_attribute spi_dev_attrs[] = {
55 	__ATTR_RO(modalias),
56 	__ATTR_NULL,
57 };
58 
59 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
60  * and the sysfs version makes coldplug work too.
61  */
62 
63 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
64 						const struct spi_device *sdev)
65 {
66 	while (id->name[0]) {
67 		if (!strcmp(sdev->modalias, id->name))
68 			return id;
69 		id++;
70 	}
71 	return NULL;
72 }
73 
74 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
75 {
76 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
77 
78 	return spi_match_id(sdrv->id_table, sdev);
79 }
80 EXPORT_SYMBOL_GPL(spi_get_device_id);
81 
82 static int spi_match_device(struct device *dev, struct device_driver *drv)
83 {
84 	const struct spi_device	*spi = to_spi_device(dev);
85 	const struct spi_driver	*sdrv = to_spi_driver(drv);
86 
87 	if (sdrv->id_table)
88 		return !!spi_match_id(sdrv->id_table, spi);
89 
90 	return strcmp(spi->modalias, drv->name) == 0;
91 }
92 
93 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
94 {
95 	const struct spi_device		*spi = to_spi_device(dev);
96 
97 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
98 	return 0;
99 }
100 
101 #ifdef	CONFIG_PM
102 
103 static int spi_suspend(struct device *dev, pm_message_t message)
104 {
105 	int			value = 0;
106 	struct spi_driver	*drv = to_spi_driver(dev->driver);
107 
108 	/* suspend will stop irqs and dma; no more i/o */
109 	if (drv) {
110 		if (drv->suspend)
111 			value = drv->suspend(to_spi_device(dev), message);
112 		else
113 			dev_dbg(dev, "... can't suspend\n");
114 	}
115 	return value;
116 }
117 
118 static int spi_resume(struct device *dev)
119 {
120 	int			value = 0;
121 	struct spi_driver	*drv = to_spi_driver(dev->driver);
122 
123 	/* resume may restart the i/o queue */
124 	if (drv) {
125 		if (drv->resume)
126 			value = drv->resume(to_spi_device(dev));
127 		else
128 			dev_dbg(dev, "... can't resume\n");
129 	}
130 	return value;
131 }
132 
133 #else
134 #define spi_suspend	NULL
135 #define spi_resume	NULL
136 #endif
137 
138 struct bus_type spi_bus_type = {
139 	.name		= "spi",
140 	.dev_attrs	= spi_dev_attrs,
141 	.match		= spi_match_device,
142 	.uevent		= spi_uevent,
143 	.suspend	= spi_suspend,
144 	.resume		= spi_resume,
145 };
146 EXPORT_SYMBOL_GPL(spi_bus_type);
147 
148 
149 static int spi_drv_probe(struct device *dev)
150 {
151 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
152 
153 	return sdrv->probe(to_spi_device(dev));
154 }
155 
156 static int spi_drv_remove(struct device *dev)
157 {
158 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
159 
160 	return sdrv->remove(to_spi_device(dev));
161 }
162 
163 static void spi_drv_shutdown(struct device *dev)
164 {
165 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
166 
167 	sdrv->shutdown(to_spi_device(dev));
168 }
169 
170 /**
171  * spi_register_driver - register a SPI driver
172  * @sdrv: the driver to register
173  * Context: can sleep
174  */
175 int spi_register_driver(struct spi_driver *sdrv)
176 {
177 	sdrv->driver.bus = &spi_bus_type;
178 	if (sdrv->probe)
179 		sdrv->driver.probe = spi_drv_probe;
180 	if (sdrv->remove)
181 		sdrv->driver.remove = spi_drv_remove;
182 	if (sdrv->shutdown)
183 		sdrv->driver.shutdown = spi_drv_shutdown;
184 	return driver_register(&sdrv->driver);
185 }
186 EXPORT_SYMBOL_GPL(spi_register_driver);
187 
188 /*-------------------------------------------------------------------------*/
189 
190 /* SPI devices should normally not be created by SPI device drivers; that
191  * would make them board-specific.  Similarly with SPI master drivers.
192  * Device registration normally goes into like arch/.../mach.../board-YYY.c
193  * with other readonly (flashable) information about mainboard devices.
194  */
195 
196 struct boardinfo {
197 	struct list_head	list;
198 	unsigned		n_board_info;
199 	struct spi_board_info	board_info[0];
200 };
201 
202 static LIST_HEAD(board_list);
203 static DEFINE_MUTEX(board_lock);
204 
205 /**
206  * spi_alloc_device - Allocate a new SPI device
207  * @master: Controller to which device is connected
208  * Context: can sleep
209  *
210  * Allows a driver to allocate and initialize a spi_device without
211  * registering it immediately.  This allows a driver to directly
212  * fill the spi_device with device parameters before calling
213  * spi_add_device() on it.
214  *
215  * Caller is responsible to call spi_add_device() on the returned
216  * spi_device structure to add it to the SPI master.  If the caller
217  * needs to discard the spi_device without adding it, then it should
218  * call spi_dev_put() on it.
219  *
220  * Returns a pointer to the new device, or NULL.
221  */
222 struct spi_device *spi_alloc_device(struct spi_master *master)
223 {
224 	struct spi_device	*spi;
225 	struct device		*dev = master->dev.parent;
226 
227 	if (!spi_master_get(master))
228 		return NULL;
229 
230 	spi = kzalloc(sizeof *spi, GFP_KERNEL);
231 	if (!spi) {
232 		dev_err(dev, "cannot alloc spi_device\n");
233 		spi_master_put(master);
234 		return NULL;
235 	}
236 
237 	spi->master = master;
238 	spi->dev.parent = dev;
239 	spi->dev.bus = &spi_bus_type;
240 	spi->dev.release = spidev_release;
241 	device_initialize(&spi->dev);
242 	return spi;
243 }
244 EXPORT_SYMBOL_GPL(spi_alloc_device);
245 
246 /**
247  * spi_add_device - Add spi_device allocated with spi_alloc_device
248  * @spi: spi_device to register
249  *
250  * Companion function to spi_alloc_device.  Devices allocated with
251  * spi_alloc_device can be added onto the spi bus with this function.
252  *
253  * Returns 0 on success; negative errno on failure
254  */
255 int spi_add_device(struct spi_device *spi)
256 {
257 	static DEFINE_MUTEX(spi_add_lock);
258 	struct device *dev = spi->master->dev.parent;
259 	int status;
260 
261 	/* Chipselects are numbered 0..max; validate. */
262 	if (spi->chip_select >= spi->master->num_chipselect) {
263 		dev_err(dev, "cs%d >= max %d\n",
264 			spi->chip_select,
265 			spi->master->num_chipselect);
266 		return -EINVAL;
267 	}
268 
269 	/* Set the bus ID string */
270 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
271 			spi->chip_select);
272 
273 
274 	/* We need to make sure there's no other device with this
275 	 * chipselect **BEFORE** we call setup(), else we'll trash
276 	 * its configuration.  Lock against concurrent add() calls.
277 	 */
278 	mutex_lock(&spi_add_lock);
279 
280 	if (bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev))
281 			!= NULL) {
282 		dev_err(dev, "chipselect %d already in use\n",
283 				spi->chip_select);
284 		status = -EBUSY;
285 		goto done;
286 	}
287 
288 	/* Drivers may modify this initial i/o setup, but will
289 	 * normally rely on the device being setup.  Devices
290 	 * using SPI_CS_HIGH can't coexist well otherwise...
291 	 */
292 	status = spi_setup(spi);
293 	if (status < 0) {
294 		dev_err(dev, "can't %s %s, status %d\n",
295 				"setup", dev_name(&spi->dev), status);
296 		goto done;
297 	}
298 
299 	/* Device may be bound to an active driver when this returns */
300 	status = device_add(&spi->dev);
301 	if (status < 0)
302 		dev_err(dev, "can't %s %s, status %d\n",
303 				"add", dev_name(&spi->dev), status);
304 	else
305 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
306 
307 done:
308 	mutex_unlock(&spi_add_lock);
309 	return status;
310 }
311 EXPORT_SYMBOL_GPL(spi_add_device);
312 
313 /**
314  * spi_new_device - instantiate one new SPI device
315  * @master: Controller to which device is connected
316  * @chip: Describes the SPI device
317  * Context: can sleep
318  *
319  * On typical mainboards, this is purely internal; and it's not needed
320  * after board init creates the hard-wired devices.  Some development
321  * platforms may not be able to use spi_register_board_info though, and
322  * this is exported so that for example a USB or parport based adapter
323  * driver could add devices (which it would learn about out-of-band).
324  *
325  * Returns the new device, or NULL.
326  */
327 struct spi_device *spi_new_device(struct spi_master *master,
328 				  struct spi_board_info *chip)
329 {
330 	struct spi_device	*proxy;
331 	int			status;
332 
333 	/* NOTE:  caller did any chip->bus_num checks necessary.
334 	 *
335 	 * Also, unless we change the return value convention to use
336 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
337 	 * suggests syslogged diagnostics are best here (ugh).
338 	 */
339 
340 	proxy = spi_alloc_device(master);
341 	if (!proxy)
342 		return NULL;
343 
344 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
345 
346 	proxy->chip_select = chip->chip_select;
347 	proxy->max_speed_hz = chip->max_speed_hz;
348 	proxy->mode = chip->mode;
349 	proxy->irq = chip->irq;
350 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
351 	proxy->dev.platform_data = (void *) chip->platform_data;
352 	proxy->controller_data = chip->controller_data;
353 	proxy->controller_state = NULL;
354 
355 	status = spi_add_device(proxy);
356 	if (status < 0) {
357 		spi_dev_put(proxy);
358 		return NULL;
359 	}
360 
361 	return proxy;
362 }
363 EXPORT_SYMBOL_GPL(spi_new_device);
364 
365 /**
366  * spi_register_board_info - register SPI devices for a given board
367  * @info: array of chip descriptors
368  * @n: how many descriptors are provided
369  * Context: can sleep
370  *
371  * Board-specific early init code calls this (probably during arch_initcall)
372  * with segments of the SPI device table.  Any device nodes are created later,
373  * after the relevant parent SPI controller (bus_num) is defined.  We keep
374  * this table of devices forever, so that reloading a controller driver will
375  * not make Linux forget about these hard-wired devices.
376  *
377  * Other code can also call this, e.g. a particular add-on board might provide
378  * SPI devices through its expansion connector, so code initializing that board
379  * would naturally declare its SPI devices.
380  *
381  * The board info passed can safely be __initdata ... but be careful of
382  * any embedded pointers (platform_data, etc), they're copied as-is.
383  */
384 int __init
385 spi_register_board_info(struct spi_board_info const *info, unsigned n)
386 {
387 	struct boardinfo	*bi;
388 
389 	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
390 	if (!bi)
391 		return -ENOMEM;
392 	bi->n_board_info = n;
393 	memcpy(bi->board_info, info, n * sizeof *info);
394 
395 	mutex_lock(&board_lock);
396 	list_add_tail(&bi->list, &board_list);
397 	mutex_unlock(&board_lock);
398 	return 0;
399 }
400 
401 /* FIXME someone should add support for a __setup("spi", ...) that
402  * creates board info from kernel command lines
403  */
404 
405 static void scan_boardinfo(struct spi_master *master)
406 {
407 	struct boardinfo	*bi;
408 
409 	mutex_lock(&board_lock);
410 	list_for_each_entry(bi, &board_list, list) {
411 		struct spi_board_info	*chip = bi->board_info;
412 		unsigned		n;
413 
414 		for (n = bi->n_board_info; n > 0; n--, chip++) {
415 			if (chip->bus_num != master->bus_num)
416 				continue;
417 			/* NOTE: this relies on spi_new_device to
418 			 * issue diagnostics when given bogus inputs
419 			 */
420 			(void) spi_new_device(master, chip);
421 		}
422 	}
423 	mutex_unlock(&board_lock);
424 }
425 
426 /*-------------------------------------------------------------------------*/
427 
428 static void spi_master_release(struct device *dev)
429 {
430 	struct spi_master *master;
431 
432 	master = container_of(dev, struct spi_master, dev);
433 	kfree(master);
434 }
435 
436 static struct class spi_master_class = {
437 	.name		= "spi_master",
438 	.owner		= THIS_MODULE,
439 	.dev_release	= spi_master_release,
440 };
441 
442 
443 /**
444  * spi_alloc_master - allocate SPI master controller
445  * @dev: the controller, possibly using the platform_bus
446  * @size: how much zeroed driver-private data to allocate; the pointer to this
447  *	memory is in the driver_data field of the returned device,
448  *	accessible with spi_master_get_devdata().
449  * Context: can sleep
450  *
451  * This call is used only by SPI master controller drivers, which are the
452  * only ones directly touching chip registers.  It's how they allocate
453  * an spi_master structure, prior to calling spi_register_master().
454  *
455  * This must be called from context that can sleep.  It returns the SPI
456  * master structure on success, else NULL.
457  *
458  * The caller is responsible for assigning the bus number and initializing
459  * the master's methods before calling spi_register_master(); and (after errors
460  * adding the device) calling spi_master_put() to prevent a memory leak.
461  */
462 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
463 {
464 	struct spi_master	*master;
465 
466 	if (!dev)
467 		return NULL;
468 
469 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
470 	if (!master)
471 		return NULL;
472 
473 	device_initialize(&master->dev);
474 	master->dev.class = &spi_master_class;
475 	master->dev.parent = get_device(dev);
476 	spi_master_set_devdata(master, &master[1]);
477 
478 	return master;
479 }
480 EXPORT_SYMBOL_GPL(spi_alloc_master);
481 
482 /**
483  * spi_register_master - register SPI master controller
484  * @master: initialized master, originally from spi_alloc_master()
485  * Context: can sleep
486  *
487  * SPI master controllers connect to their drivers using some non-SPI bus,
488  * such as the platform bus.  The final stage of probe() in that code
489  * includes calling spi_register_master() to hook up to this SPI bus glue.
490  *
491  * SPI controllers use board specific (often SOC specific) bus numbers,
492  * and board-specific addressing for SPI devices combines those numbers
493  * with chip select numbers.  Since SPI does not directly support dynamic
494  * device identification, boards need configuration tables telling which
495  * chip is at which address.
496  *
497  * This must be called from context that can sleep.  It returns zero on
498  * success, else a negative error code (dropping the master's refcount).
499  * After a successful return, the caller is responsible for calling
500  * spi_unregister_master().
501  */
502 int spi_register_master(struct spi_master *master)
503 {
504 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
505 	struct device		*dev = master->dev.parent;
506 	int			status = -ENODEV;
507 	int			dynamic = 0;
508 
509 	if (!dev)
510 		return -ENODEV;
511 
512 	/* even if it's just one always-selected device, there must
513 	 * be at least one chipselect
514 	 */
515 	if (master->num_chipselect == 0)
516 		return -EINVAL;
517 
518 	/* convention:  dynamically assigned bus IDs count down from the max */
519 	if (master->bus_num < 0) {
520 		/* FIXME switch to an IDR based scheme, something like
521 		 * I2C now uses, so we can't run out of "dynamic" IDs
522 		 */
523 		master->bus_num = atomic_dec_return(&dyn_bus_id);
524 		dynamic = 1;
525 	}
526 
527 	/* register the device, then userspace will see it.
528 	 * registration fails if the bus ID is in use.
529 	 */
530 	dev_set_name(&master->dev, "spi%u", master->bus_num);
531 	status = device_add(&master->dev);
532 	if (status < 0)
533 		goto done;
534 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
535 			dynamic ? " (dynamic)" : "");
536 
537 	/* populate children from any spi device tables */
538 	scan_boardinfo(master);
539 	status = 0;
540 done:
541 	return status;
542 }
543 EXPORT_SYMBOL_GPL(spi_register_master);
544 
545 
546 static int __unregister(struct device *dev, void *master_dev)
547 {
548 	/* note: before about 2.6.14-rc1 this would corrupt memory: */
549 	if (dev != master_dev)
550 		spi_unregister_device(to_spi_device(dev));
551 	return 0;
552 }
553 
554 /**
555  * spi_unregister_master - unregister SPI master controller
556  * @master: the master being unregistered
557  * Context: can sleep
558  *
559  * This call is used only by SPI master controller drivers, which are the
560  * only ones directly touching chip registers.
561  *
562  * This must be called from context that can sleep.
563  */
564 void spi_unregister_master(struct spi_master *master)
565 {
566 	int dummy;
567 
568 	dummy = device_for_each_child(master->dev.parent, &master->dev,
569 					__unregister);
570 	device_unregister(&master->dev);
571 }
572 EXPORT_SYMBOL_GPL(spi_unregister_master);
573 
574 static int __spi_master_match(struct device *dev, void *data)
575 {
576 	struct spi_master *m;
577 	u16 *bus_num = data;
578 
579 	m = container_of(dev, struct spi_master, dev);
580 	return m->bus_num == *bus_num;
581 }
582 
583 /**
584  * spi_busnum_to_master - look up master associated with bus_num
585  * @bus_num: the master's bus number
586  * Context: can sleep
587  *
588  * This call may be used with devices that are registered after
589  * arch init time.  It returns a refcounted pointer to the relevant
590  * spi_master (which the caller must release), or NULL if there is
591  * no such master registered.
592  */
593 struct spi_master *spi_busnum_to_master(u16 bus_num)
594 {
595 	struct device		*dev;
596 	struct spi_master	*master = NULL;
597 
598 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
599 				__spi_master_match);
600 	if (dev)
601 		master = container_of(dev, struct spi_master, dev);
602 	/* reference got in class_find_device */
603 	return master;
604 }
605 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
606 
607 
608 /*-------------------------------------------------------------------------*/
609 
610 /* Core methods for SPI master protocol drivers.  Some of the
611  * other core methods are currently defined as inline functions.
612  */
613 
614 /**
615  * spi_setup - setup SPI mode and clock rate
616  * @spi: the device whose settings are being modified
617  * Context: can sleep, and no requests are queued to the device
618  *
619  * SPI protocol drivers may need to update the transfer mode if the
620  * device doesn't work with its default.  They may likewise need
621  * to update clock rates or word sizes from initial values.  This function
622  * changes those settings, and must be called from a context that can sleep.
623  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
624  * effect the next time the device is selected and data is transferred to
625  * or from it.  When this function returns, the spi device is deselected.
626  *
627  * Note that this call will fail if the protocol driver specifies an option
628  * that the underlying controller or its driver does not support.  For
629  * example, not all hardware supports wire transfers using nine bit words,
630  * LSB-first wire encoding, or active-high chipselects.
631  */
632 int spi_setup(struct spi_device *spi)
633 {
634 	unsigned	bad_bits;
635 	int		status;
636 
637 	/* help drivers fail *cleanly* when they need options
638 	 * that aren't supported with their current master
639 	 */
640 	bad_bits = spi->mode & ~spi->master->mode_bits;
641 	if (bad_bits) {
642 		dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
643 			bad_bits);
644 		return -EINVAL;
645 	}
646 
647 	if (!spi->bits_per_word)
648 		spi->bits_per_word = 8;
649 
650 	status = spi->master->setup(spi);
651 
652 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
653 				"%u bits/w, %u Hz max --> %d\n",
654 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
655 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
656 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
657 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
658 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
659 			spi->bits_per_word, spi->max_speed_hz,
660 			status);
661 
662 	return status;
663 }
664 EXPORT_SYMBOL_GPL(spi_setup);
665 
666 /**
667  * spi_async - asynchronous SPI transfer
668  * @spi: device with which data will be exchanged
669  * @message: describes the data transfers, including completion callback
670  * Context: any (irqs may be blocked, etc)
671  *
672  * This call may be used in_irq and other contexts which can't sleep,
673  * as well as from task contexts which can sleep.
674  *
675  * The completion callback is invoked in a context which can't sleep.
676  * Before that invocation, the value of message->status is undefined.
677  * When the callback is issued, message->status holds either zero (to
678  * indicate complete success) or a negative error code.  After that
679  * callback returns, the driver which issued the transfer request may
680  * deallocate the associated memory; it's no longer in use by any SPI
681  * core or controller driver code.
682  *
683  * Note that although all messages to a spi_device are handled in
684  * FIFO order, messages may go to different devices in other orders.
685  * Some device might be higher priority, or have various "hard" access
686  * time requirements, for example.
687  *
688  * On detection of any fault during the transfer, processing of
689  * the entire message is aborted, and the device is deselected.
690  * Until returning from the associated message completion callback,
691  * no other spi_message queued to that device will be processed.
692  * (This rule applies equally to all the synchronous transfer calls,
693  * which are wrappers around this core asynchronous primitive.)
694  */
695 int spi_async(struct spi_device *spi, struct spi_message *message)
696 {
697 	struct spi_master *master = spi->master;
698 
699 	/* Half-duplex links include original MicroWire, and ones with
700 	 * only one data pin like SPI_3WIRE (switches direction) or where
701 	 * either MOSI or MISO is missing.  They can also be caused by
702 	 * software limitations.
703 	 */
704 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
705 			|| (spi->mode & SPI_3WIRE)) {
706 		struct spi_transfer *xfer;
707 		unsigned flags = master->flags;
708 
709 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
710 			if (xfer->rx_buf && xfer->tx_buf)
711 				return -EINVAL;
712 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
713 				return -EINVAL;
714 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
715 				return -EINVAL;
716 		}
717 	}
718 
719 	message->spi = spi;
720 	message->status = -EINPROGRESS;
721 	return master->transfer(spi, message);
722 }
723 EXPORT_SYMBOL_GPL(spi_async);
724 
725 
726 /*-------------------------------------------------------------------------*/
727 
728 /* Utility methods for SPI master protocol drivers, layered on
729  * top of the core.  Some other utility methods are defined as
730  * inline functions.
731  */
732 
733 static void spi_complete(void *arg)
734 {
735 	complete(arg);
736 }
737 
738 /**
739  * spi_sync - blocking/synchronous SPI data transfers
740  * @spi: device with which data will be exchanged
741  * @message: describes the data transfers
742  * Context: can sleep
743  *
744  * This call may only be used from a context that may sleep.  The sleep
745  * is non-interruptible, and has no timeout.  Low-overhead controller
746  * drivers may DMA directly into and out of the message buffers.
747  *
748  * Note that the SPI device's chip select is active during the message,
749  * and then is normally disabled between messages.  Drivers for some
750  * frequently-used devices may want to minimize costs of selecting a chip,
751  * by leaving it selected in anticipation that the next message will go
752  * to the same chip.  (That may increase power usage.)
753  *
754  * Also, the caller is guaranteeing that the memory associated with the
755  * message will not be freed before this call returns.
756  *
757  * It returns zero on success, else a negative error code.
758  */
759 int spi_sync(struct spi_device *spi, struct spi_message *message)
760 {
761 	DECLARE_COMPLETION_ONSTACK(done);
762 	int status;
763 
764 	message->complete = spi_complete;
765 	message->context = &done;
766 	status = spi_async(spi, message);
767 	if (status == 0) {
768 		wait_for_completion(&done);
769 		status = message->status;
770 	}
771 	message->context = NULL;
772 	return status;
773 }
774 EXPORT_SYMBOL_GPL(spi_sync);
775 
776 /* portable code must never pass more than 32 bytes */
777 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
778 
779 static u8	*buf;
780 
781 /**
782  * spi_write_then_read - SPI synchronous write followed by read
783  * @spi: device with which data will be exchanged
784  * @txbuf: data to be written (need not be dma-safe)
785  * @n_tx: size of txbuf, in bytes
786  * @rxbuf: buffer into which data will be read (need not be dma-safe)
787  * @n_rx: size of rxbuf, in bytes
788  * Context: can sleep
789  *
790  * This performs a half duplex MicroWire style transaction with the
791  * device, sending txbuf and then reading rxbuf.  The return value
792  * is zero for success, else a negative errno status code.
793  * This call may only be used from a context that may sleep.
794  *
795  * Parameters to this routine are always copied using a small buffer;
796  * portable code should never use this for more than 32 bytes.
797  * Performance-sensitive or bulk transfer code should instead use
798  * spi_{async,sync}() calls with dma-safe buffers.
799  */
800 int spi_write_then_read(struct spi_device *spi,
801 		const u8 *txbuf, unsigned n_tx,
802 		u8 *rxbuf, unsigned n_rx)
803 {
804 	static DEFINE_MUTEX(lock);
805 
806 	int			status;
807 	struct spi_message	message;
808 	struct spi_transfer	x[2];
809 	u8			*local_buf;
810 
811 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
812 	 * (as a pure convenience thing), but we can keep heap costs
813 	 * out of the hot path ...
814 	 */
815 	if ((n_tx + n_rx) > SPI_BUFSIZ)
816 		return -EINVAL;
817 
818 	spi_message_init(&message);
819 	memset(x, 0, sizeof x);
820 	if (n_tx) {
821 		x[0].len = n_tx;
822 		spi_message_add_tail(&x[0], &message);
823 	}
824 	if (n_rx) {
825 		x[1].len = n_rx;
826 		spi_message_add_tail(&x[1], &message);
827 	}
828 
829 	/* ... unless someone else is using the pre-allocated buffer */
830 	if (!mutex_trylock(&lock)) {
831 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
832 		if (!local_buf)
833 			return -ENOMEM;
834 	} else
835 		local_buf = buf;
836 
837 	memcpy(local_buf, txbuf, n_tx);
838 	x[0].tx_buf = local_buf;
839 	x[1].rx_buf = local_buf + n_tx;
840 
841 	/* do the i/o */
842 	status = spi_sync(spi, &message);
843 	if (status == 0)
844 		memcpy(rxbuf, x[1].rx_buf, n_rx);
845 
846 	if (x[0].tx_buf == buf)
847 		mutex_unlock(&lock);
848 	else
849 		kfree(local_buf);
850 
851 	return status;
852 }
853 EXPORT_SYMBOL_GPL(spi_write_then_read);
854 
855 /*-------------------------------------------------------------------------*/
856 
857 static int __init spi_init(void)
858 {
859 	int	status;
860 
861 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
862 	if (!buf) {
863 		status = -ENOMEM;
864 		goto err0;
865 	}
866 
867 	status = bus_register(&spi_bus_type);
868 	if (status < 0)
869 		goto err1;
870 
871 	status = class_register(&spi_master_class);
872 	if (status < 0)
873 		goto err2;
874 	return 0;
875 
876 err2:
877 	bus_unregister(&spi_bus_type);
878 err1:
879 	kfree(buf);
880 	buf = NULL;
881 err0:
882 	return status;
883 }
884 
885 /* board_info is normally registered in arch_initcall(),
886  * but even essential drivers wait till later
887  *
888  * REVISIT only boardinfo really needs static linking. the rest (device and
889  * driver registration) _could_ be dynamically linked (modular) ... costs
890  * include needing to have boardinfo data structures be much more public.
891  */
892 postcore_initcall(spi_init);
893 
894