1 /* 2 * spi.c - SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/cache.h> 25 #include <linux/mutex.h> 26 #include <linux/mod_devicetable.h> 27 #include <linux/spi/spi.h> 28 29 30 /* SPI bustype and spi_master class are registered after board init code 31 * provides the SPI device tables, ensuring that both are present by the 32 * time controller driver registration causes spi_devices to "enumerate". 33 */ 34 static void spidev_release(struct device *dev) 35 { 36 struct spi_device *spi = to_spi_device(dev); 37 38 /* spi masters may cleanup for released devices */ 39 if (spi->master->cleanup) 40 spi->master->cleanup(spi); 41 42 spi_master_put(spi->master); 43 kfree(dev); 44 } 45 46 static ssize_t 47 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 48 { 49 const struct spi_device *spi = to_spi_device(dev); 50 51 return sprintf(buf, "%s\n", spi->modalias); 52 } 53 54 static struct device_attribute spi_dev_attrs[] = { 55 __ATTR_RO(modalias), 56 __ATTR_NULL, 57 }; 58 59 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 60 * and the sysfs version makes coldplug work too. 61 */ 62 63 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 64 const struct spi_device *sdev) 65 { 66 while (id->name[0]) { 67 if (!strcmp(sdev->modalias, id->name)) 68 return id; 69 id++; 70 } 71 return NULL; 72 } 73 74 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 75 { 76 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 77 78 return spi_match_id(sdrv->id_table, sdev); 79 } 80 EXPORT_SYMBOL_GPL(spi_get_device_id); 81 82 static int spi_match_device(struct device *dev, struct device_driver *drv) 83 { 84 const struct spi_device *spi = to_spi_device(dev); 85 const struct spi_driver *sdrv = to_spi_driver(drv); 86 87 if (sdrv->id_table) 88 return !!spi_match_id(sdrv->id_table, spi); 89 90 return strcmp(spi->modalias, drv->name) == 0; 91 } 92 93 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 94 { 95 const struct spi_device *spi = to_spi_device(dev); 96 97 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 98 return 0; 99 } 100 101 #ifdef CONFIG_PM 102 103 static int spi_suspend(struct device *dev, pm_message_t message) 104 { 105 int value = 0; 106 struct spi_driver *drv = to_spi_driver(dev->driver); 107 108 /* suspend will stop irqs and dma; no more i/o */ 109 if (drv) { 110 if (drv->suspend) 111 value = drv->suspend(to_spi_device(dev), message); 112 else 113 dev_dbg(dev, "... can't suspend\n"); 114 } 115 return value; 116 } 117 118 static int spi_resume(struct device *dev) 119 { 120 int value = 0; 121 struct spi_driver *drv = to_spi_driver(dev->driver); 122 123 /* resume may restart the i/o queue */ 124 if (drv) { 125 if (drv->resume) 126 value = drv->resume(to_spi_device(dev)); 127 else 128 dev_dbg(dev, "... can't resume\n"); 129 } 130 return value; 131 } 132 133 #else 134 #define spi_suspend NULL 135 #define spi_resume NULL 136 #endif 137 138 struct bus_type spi_bus_type = { 139 .name = "spi", 140 .dev_attrs = spi_dev_attrs, 141 .match = spi_match_device, 142 .uevent = spi_uevent, 143 .suspend = spi_suspend, 144 .resume = spi_resume, 145 }; 146 EXPORT_SYMBOL_GPL(spi_bus_type); 147 148 149 static int spi_drv_probe(struct device *dev) 150 { 151 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 152 153 return sdrv->probe(to_spi_device(dev)); 154 } 155 156 static int spi_drv_remove(struct device *dev) 157 { 158 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 159 160 return sdrv->remove(to_spi_device(dev)); 161 } 162 163 static void spi_drv_shutdown(struct device *dev) 164 { 165 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 166 167 sdrv->shutdown(to_spi_device(dev)); 168 } 169 170 /** 171 * spi_register_driver - register a SPI driver 172 * @sdrv: the driver to register 173 * Context: can sleep 174 */ 175 int spi_register_driver(struct spi_driver *sdrv) 176 { 177 sdrv->driver.bus = &spi_bus_type; 178 if (sdrv->probe) 179 sdrv->driver.probe = spi_drv_probe; 180 if (sdrv->remove) 181 sdrv->driver.remove = spi_drv_remove; 182 if (sdrv->shutdown) 183 sdrv->driver.shutdown = spi_drv_shutdown; 184 return driver_register(&sdrv->driver); 185 } 186 EXPORT_SYMBOL_GPL(spi_register_driver); 187 188 /*-------------------------------------------------------------------------*/ 189 190 /* SPI devices should normally not be created by SPI device drivers; that 191 * would make them board-specific. Similarly with SPI master drivers. 192 * Device registration normally goes into like arch/.../mach.../board-YYY.c 193 * with other readonly (flashable) information about mainboard devices. 194 */ 195 196 struct boardinfo { 197 struct list_head list; 198 unsigned n_board_info; 199 struct spi_board_info board_info[0]; 200 }; 201 202 static LIST_HEAD(board_list); 203 static DEFINE_MUTEX(board_lock); 204 205 /** 206 * spi_alloc_device - Allocate a new SPI device 207 * @master: Controller to which device is connected 208 * Context: can sleep 209 * 210 * Allows a driver to allocate and initialize a spi_device without 211 * registering it immediately. This allows a driver to directly 212 * fill the spi_device with device parameters before calling 213 * spi_add_device() on it. 214 * 215 * Caller is responsible to call spi_add_device() on the returned 216 * spi_device structure to add it to the SPI master. If the caller 217 * needs to discard the spi_device without adding it, then it should 218 * call spi_dev_put() on it. 219 * 220 * Returns a pointer to the new device, or NULL. 221 */ 222 struct spi_device *spi_alloc_device(struct spi_master *master) 223 { 224 struct spi_device *spi; 225 struct device *dev = master->dev.parent; 226 227 if (!spi_master_get(master)) 228 return NULL; 229 230 spi = kzalloc(sizeof *spi, GFP_KERNEL); 231 if (!spi) { 232 dev_err(dev, "cannot alloc spi_device\n"); 233 spi_master_put(master); 234 return NULL; 235 } 236 237 spi->master = master; 238 spi->dev.parent = dev; 239 spi->dev.bus = &spi_bus_type; 240 spi->dev.release = spidev_release; 241 device_initialize(&spi->dev); 242 return spi; 243 } 244 EXPORT_SYMBOL_GPL(spi_alloc_device); 245 246 /** 247 * spi_add_device - Add spi_device allocated with spi_alloc_device 248 * @spi: spi_device to register 249 * 250 * Companion function to spi_alloc_device. Devices allocated with 251 * spi_alloc_device can be added onto the spi bus with this function. 252 * 253 * Returns 0 on success; negative errno on failure 254 */ 255 int spi_add_device(struct spi_device *spi) 256 { 257 static DEFINE_MUTEX(spi_add_lock); 258 struct device *dev = spi->master->dev.parent; 259 int status; 260 261 /* Chipselects are numbered 0..max; validate. */ 262 if (spi->chip_select >= spi->master->num_chipselect) { 263 dev_err(dev, "cs%d >= max %d\n", 264 spi->chip_select, 265 spi->master->num_chipselect); 266 return -EINVAL; 267 } 268 269 /* Set the bus ID string */ 270 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 271 spi->chip_select); 272 273 274 /* We need to make sure there's no other device with this 275 * chipselect **BEFORE** we call setup(), else we'll trash 276 * its configuration. Lock against concurrent add() calls. 277 */ 278 mutex_lock(&spi_add_lock); 279 280 if (bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev)) 281 != NULL) { 282 dev_err(dev, "chipselect %d already in use\n", 283 spi->chip_select); 284 status = -EBUSY; 285 goto done; 286 } 287 288 /* Drivers may modify this initial i/o setup, but will 289 * normally rely on the device being setup. Devices 290 * using SPI_CS_HIGH can't coexist well otherwise... 291 */ 292 status = spi_setup(spi); 293 if (status < 0) { 294 dev_err(dev, "can't %s %s, status %d\n", 295 "setup", dev_name(&spi->dev), status); 296 goto done; 297 } 298 299 /* Device may be bound to an active driver when this returns */ 300 status = device_add(&spi->dev); 301 if (status < 0) 302 dev_err(dev, "can't %s %s, status %d\n", 303 "add", dev_name(&spi->dev), status); 304 else 305 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 306 307 done: 308 mutex_unlock(&spi_add_lock); 309 return status; 310 } 311 EXPORT_SYMBOL_GPL(spi_add_device); 312 313 /** 314 * spi_new_device - instantiate one new SPI device 315 * @master: Controller to which device is connected 316 * @chip: Describes the SPI device 317 * Context: can sleep 318 * 319 * On typical mainboards, this is purely internal; and it's not needed 320 * after board init creates the hard-wired devices. Some development 321 * platforms may not be able to use spi_register_board_info though, and 322 * this is exported so that for example a USB or parport based adapter 323 * driver could add devices (which it would learn about out-of-band). 324 * 325 * Returns the new device, or NULL. 326 */ 327 struct spi_device *spi_new_device(struct spi_master *master, 328 struct spi_board_info *chip) 329 { 330 struct spi_device *proxy; 331 int status; 332 333 /* NOTE: caller did any chip->bus_num checks necessary. 334 * 335 * Also, unless we change the return value convention to use 336 * error-or-pointer (not NULL-or-pointer), troubleshootability 337 * suggests syslogged diagnostics are best here (ugh). 338 */ 339 340 proxy = spi_alloc_device(master); 341 if (!proxy) 342 return NULL; 343 344 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 345 346 proxy->chip_select = chip->chip_select; 347 proxy->max_speed_hz = chip->max_speed_hz; 348 proxy->mode = chip->mode; 349 proxy->irq = chip->irq; 350 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 351 proxy->dev.platform_data = (void *) chip->platform_data; 352 proxy->controller_data = chip->controller_data; 353 proxy->controller_state = NULL; 354 355 status = spi_add_device(proxy); 356 if (status < 0) { 357 spi_dev_put(proxy); 358 return NULL; 359 } 360 361 return proxy; 362 } 363 EXPORT_SYMBOL_GPL(spi_new_device); 364 365 /** 366 * spi_register_board_info - register SPI devices for a given board 367 * @info: array of chip descriptors 368 * @n: how many descriptors are provided 369 * Context: can sleep 370 * 371 * Board-specific early init code calls this (probably during arch_initcall) 372 * with segments of the SPI device table. Any device nodes are created later, 373 * after the relevant parent SPI controller (bus_num) is defined. We keep 374 * this table of devices forever, so that reloading a controller driver will 375 * not make Linux forget about these hard-wired devices. 376 * 377 * Other code can also call this, e.g. a particular add-on board might provide 378 * SPI devices through its expansion connector, so code initializing that board 379 * would naturally declare its SPI devices. 380 * 381 * The board info passed can safely be __initdata ... but be careful of 382 * any embedded pointers (platform_data, etc), they're copied as-is. 383 */ 384 int __init 385 spi_register_board_info(struct spi_board_info const *info, unsigned n) 386 { 387 struct boardinfo *bi; 388 389 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL); 390 if (!bi) 391 return -ENOMEM; 392 bi->n_board_info = n; 393 memcpy(bi->board_info, info, n * sizeof *info); 394 395 mutex_lock(&board_lock); 396 list_add_tail(&bi->list, &board_list); 397 mutex_unlock(&board_lock); 398 return 0; 399 } 400 401 /* FIXME someone should add support for a __setup("spi", ...) that 402 * creates board info from kernel command lines 403 */ 404 405 static void scan_boardinfo(struct spi_master *master) 406 { 407 struct boardinfo *bi; 408 409 mutex_lock(&board_lock); 410 list_for_each_entry(bi, &board_list, list) { 411 struct spi_board_info *chip = bi->board_info; 412 unsigned n; 413 414 for (n = bi->n_board_info; n > 0; n--, chip++) { 415 if (chip->bus_num != master->bus_num) 416 continue; 417 /* NOTE: this relies on spi_new_device to 418 * issue diagnostics when given bogus inputs 419 */ 420 (void) spi_new_device(master, chip); 421 } 422 } 423 mutex_unlock(&board_lock); 424 } 425 426 /*-------------------------------------------------------------------------*/ 427 428 static void spi_master_release(struct device *dev) 429 { 430 struct spi_master *master; 431 432 master = container_of(dev, struct spi_master, dev); 433 kfree(master); 434 } 435 436 static struct class spi_master_class = { 437 .name = "spi_master", 438 .owner = THIS_MODULE, 439 .dev_release = spi_master_release, 440 }; 441 442 443 /** 444 * spi_alloc_master - allocate SPI master controller 445 * @dev: the controller, possibly using the platform_bus 446 * @size: how much zeroed driver-private data to allocate; the pointer to this 447 * memory is in the driver_data field of the returned device, 448 * accessible with spi_master_get_devdata(). 449 * Context: can sleep 450 * 451 * This call is used only by SPI master controller drivers, which are the 452 * only ones directly touching chip registers. It's how they allocate 453 * an spi_master structure, prior to calling spi_register_master(). 454 * 455 * This must be called from context that can sleep. It returns the SPI 456 * master structure on success, else NULL. 457 * 458 * The caller is responsible for assigning the bus number and initializing 459 * the master's methods before calling spi_register_master(); and (after errors 460 * adding the device) calling spi_master_put() to prevent a memory leak. 461 */ 462 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 463 { 464 struct spi_master *master; 465 466 if (!dev) 467 return NULL; 468 469 master = kzalloc(size + sizeof *master, GFP_KERNEL); 470 if (!master) 471 return NULL; 472 473 device_initialize(&master->dev); 474 master->dev.class = &spi_master_class; 475 master->dev.parent = get_device(dev); 476 spi_master_set_devdata(master, &master[1]); 477 478 return master; 479 } 480 EXPORT_SYMBOL_GPL(spi_alloc_master); 481 482 /** 483 * spi_register_master - register SPI master controller 484 * @master: initialized master, originally from spi_alloc_master() 485 * Context: can sleep 486 * 487 * SPI master controllers connect to their drivers using some non-SPI bus, 488 * such as the platform bus. The final stage of probe() in that code 489 * includes calling spi_register_master() to hook up to this SPI bus glue. 490 * 491 * SPI controllers use board specific (often SOC specific) bus numbers, 492 * and board-specific addressing for SPI devices combines those numbers 493 * with chip select numbers. Since SPI does not directly support dynamic 494 * device identification, boards need configuration tables telling which 495 * chip is at which address. 496 * 497 * This must be called from context that can sleep. It returns zero on 498 * success, else a negative error code (dropping the master's refcount). 499 * After a successful return, the caller is responsible for calling 500 * spi_unregister_master(). 501 */ 502 int spi_register_master(struct spi_master *master) 503 { 504 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 505 struct device *dev = master->dev.parent; 506 int status = -ENODEV; 507 int dynamic = 0; 508 509 if (!dev) 510 return -ENODEV; 511 512 /* even if it's just one always-selected device, there must 513 * be at least one chipselect 514 */ 515 if (master->num_chipselect == 0) 516 return -EINVAL; 517 518 /* convention: dynamically assigned bus IDs count down from the max */ 519 if (master->bus_num < 0) { 520 /* FIXME switch to an IDR based scheme, something like 521 * I2C now uses, so we can't run out of "dynamic" IDs 522 */ 523 master->bus_num = atomic_dec_return(&dyn_bus_id); 524 dynamic = 1; 525 } 526 527 /* register the device, then userspace will see it. 528 * registration fails if the bus ID is in use. 529 */ 530 dev_set_name(&master->dev, "spi%u", master->bus_num); 531 status = device_add(&master->dev); 532 if (status < 0) 533 goto done; 534 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 535 dynamic ? " (dynamic)" : ""); 536 537 /* populate children from any spi device tables */ 538 scan_boardinfo(master); 539 status = 0; 540 done: 541 return status; 542 } 543 EXPORT_SYMBOL_GPL(spi_register_master); 544 545 546 static int __unregister(struct device *dev, void *master_dev) 547 { 548 /* note: before about 2.6.14-rc1 this would corrupt memory: */ 549 if (dev != master_dev) 550 spi_unregister_device(to_spi_device(dev)); 551 return 0; 552 } 553 554 /** 555 * spi_unregister_master - unregister SPI master controller 556 * @master: the master being unregistered 557 * Context: can sleep 558 * 559 * This call is used only by SPI master controller drivers, which are the 560 * only ones directly touching chip registers. 561 * 562 * This must be called from context that can sleep. 563 */ 564 void spi_unregister_master(struct spi_master *master) 565 { 566 int dummy; 567 568 dummy = device_for_each_child(master->dev.parent, &master->dev, 569 __unregister); 570 device_unregister(&master->dev); 571 } 572 EXPORT_SYMBOL_GPL(spi_unregister_master); 573 574 static int __spi_master_match(struct device *dev, void *data) 575 { 576 struct spi_master *m; 577 u16 *bus_num = data; 578 579 m = container_of(dev, struct spi_master, dev); 580 return m->bus_num == *bus_num; 581 } 582 583 /** 584 * spi_busnum_to_master - look up master associated with bus_num 585 * @bus_num: the master's bus number 586 * Context: can sleep 587 * 588 * This call may be used with devices that are registered after 589 * arch init time. It returns a refcounted pointer to the relevant 590 * spi_master (which the caller must release), or NULL if there is 591 * no such master registered. 592 */ 593 struct spi_master *spi_busnum_to_master(u16 bus_num) 594 { 595 struct device *dev; 596 struct spi_master *master = NULL; 597 598 dev = class_find_device(&spi_master_class, NULL, &bus_num, 599 __spi_master_match); 600 if (dev) 601 master = container_of(dev, struct spi_master, dev); 602 /* reference got in class_find_device */ 603 return master; 604 } 605 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 606 607 608 /*-------------------------------------------------------------------------*/ 609 610 /* Core methods for SPI master protocol drivers. Some of the 611 * other core methods are currently defined as inline functions. 612 */ 613 614 /** 615 * spi_setup - setup SPI mode and clock rate 616 * @spi: the device whose settings are being modified 617 * Context: can sleep, and no requests are queued to the device 618 * 619 * SPI protocol drivers may need to update the transfer mode if the 620 * device doesn't work with its default. They may likewise need 621 * to update clock rates or word sizes from initial values. This function 622 * changes those settings, and must be called from a context that can sleep. 623 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 624 * effect the next time the device is selected and data is transferred to 625 * or from it. When this function returns, the spi device is deselected. 626 * 627 * Note that this call will fail if the protocol driver specifies an option 628 * that the underlying controller or its driver does not support. For 629 * example, not all hardware supports wire transfers using nine bit words, 630 * LSB-first wire encoding, or active-high chipselects. 631 */ 632 int spi_setup(struct spi_device *spi) 633 { 634 unsigned bad_bits; 635 int status; 636 637 /* help drivers fail *cleanly* when they need options 638 * that aren't supported with their current master 639 */ 640 bad_bits = spi->mode & ~spi->master->mode_bits; 641 if (bad_bits) { 642 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n", 643 bad_bits); 644 return -EINVAL; 645 } 646 647 if (!spi->bits_per_word) 648 spi->bits_per_word = 8; 649 650 status = spi->master->setup(spi); 651 652 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s" 653 "%u bits/w, %u Hz max --> %d\n", 654 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 655 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 656 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 657 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 658 (spi->mode & SPI_LOOP) ? "loopback, " : "", 659 spi->bits_per_word, spi->max_speed_hz, 660 status); 661 662 return status; 663 } 664 EXPORT_SYMBOL_GPL(spi_setup); 665 666 /** 667 * spi_async - asynchronous SPI transfer 668 * @spi: device with which data will be exchanged 669 * @message: describes the data transfers, including completion callback 670 * Context: any (irqs may be blocked, etc) 671 * 672 * This call may be used in_irq and other contexts which can't sleep, 673 * as well as from task contexts which can sleep. 674 * 675 * The completion callback is invoked in a context which can't sleep. 676 * Before that invocation, the value of message->status is undefined. 677 * When the callback is issued, message->status holds either zero (to 678 * indicate complete success) or a negative error code. After that 679 * callback returns, the driver which issued the transfer request may 680 * deallocate the associated memory; it's no longer in use by any SPI 681 * core or controller driver code. 682 * 683 * Note that although all messages to a spi_device are handled in 684 * FIFO order, messages may go to different devices in other orders. 685 * Some device might be higher priority, or have various "hard" access 686 * time requirements, for example. 687 * 688 * On detection of any fault during the transfer, processing of 689 * the entire message is aborted, and the device is deselected. 690 * Until returning from the associated message completion callback, 691 * no other spi_message queued to that device will be processed. 692 * (This rule applies equally to all the synchronous transfer calls, 693 * which are wrappers around this core asynchronous primitive.) 694 */ 695 int spi_async(struct spi_device *spi, struct spi_message *message) 696 { 697 struct spi_master *master = spi->master; 698 699 /* Half-duplex links include original MicroWire, and ones with 700 * only one data pin like SPI_3WIRE (switches direction) or where 701 * either MOSI or MISO is missing. They can also be caused by 702 * software limitations. 703 */ 704 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 705 || (spi->mode & SPI_3WIRE)) { 706 struct spi_transfer *xfer; 707 unsigned flags = master->flags; 708 709 list_for_each_entry(xfer, &message->transfers, transfer_list) { 710 if (xfer->rx_buf && xfer->tx_buf) 711 return -EINVAL; 712 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 713 return -EINVAL; 714 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 715 return -EINVAL; 716 } 717 } 718 719 message->spi = spi; 720 message->status = -EINPROGRESS; 721 return master->transfer(spi, message); 722 } 723 EXPORT_SYMBOL_GPL(spi_async); 724 725 726 /*-------------------------------------------------------------------------*/ 727 728 /* Utility methods for SPI master protocol drivers, layered on 729 * top of the core. Some other utility methods are defined as 730 * inline functions. 731 */ 732 733 static void spi_complete(void *arg) 734 { 735 complete(arg); 736 } 737 738 /** 739 * spi_sync - blocking/synchronous SPI data transfers 740 * @spi: device with which data will be exchanged 741 * @message: describes the data transfers 742 * Context: can sleep 743 * 744 * This call may only be used from a context that may sleep. The sleep 745 * is non-interruptible, and has no timeout. Low-overhead controller 746 * drivers may DMA directly into and out of the message buffers. 747 * 748 * Note that the SPI device's chip select is active during the message, 749 * and then is normally disabled between messages. Drivers for some 750 * frequently-used devices may want to minimize costs of selecting a chip, 751 * by leaving it selected in anticipation that the next message will go 752 * to the same chip. (That may increase power usage.) 753 * 754 * Also, the caller is guaranteeing that the memory associated with the 755 * message will not be freed before this call returns. 756 * 757 * It returns zero on success, else a negative error code. 758 */ 759 int spi_sync(struct spi_device *spi, struct spi_message *message) 760 { 761 DECLARE_COMPLETION_ONSTACK(done); 762 int status; 763 764 message->complete = spi_complete; 765 message->context = &done; 766 status = spi_async(spi, message); 767 if (status == 0) { 768 wait_for_completion(&done); 769 status = message->status; 770 } 771 message->context = NULL; 772 return status; 773 } 774 EXPORT_SYMBOL_GPL(spi_sync); 775 776 /* portable code must never pass more than 32 bytes */ 777 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 778 779 static u8 *buf; 780 781 /** 782 * spi_write_then_read - SPI synchronous write followed by read 783 * @spi: device with which data will be exchanged 784 * @txbuf: data to be written (need not be dma-safe) 785 * @n_tx: size of txbuf, in bytes 786 * @rxbuf: buffer into which data will be read (need not be dma-safe) 787 * @n_rx: size of rxbuf, in bytes 788 * Context: can sleep 789 * 790 * This performs a half duplex MicroWire style transaction with the 791 * device, sending txbuf and then reading rxbuf. The return value 792 * is zero for success, else a negative errno status code. 793 * This call may only be used from a context that may sleep. 794 * 795 * Parameters to this routine are always copied using a small buffer; 796 * portable code should never use this for more than 32 bytes. 797 * Performance-sensitive or bulk transfer code should instead use 798 * spi_{async,sync}() calls with dma-safe buffers. 799 */ 800 int spi_write_then_read(struct spi_device *spi, 801 const u8 *txbuf, unsigned n_tx, 802 u8 *rxbuf, unsigned n_rx) 803 { 804 static DEFINE_MUTEX(lock); 805 806 int status; 807 struct spi_message message; 808 struct spi_transfer x[2]; 809 u8 *local_buf; 810 811 /* Use preallocated DMA-safe buffer. We can't avoid copying here, 812 * (as a pure convenience thing), but we can keep heap costs 813 * out of the hot path ... 814 */ 815 if ((n_tx + n_rx) > SPI_BUFSIZ) 816 return -EINVAL; 817 818 spi_message_init(&message); 819 memset(x, 0, sizeof x); 820 if (n_tx) { 821 x[0].len = n_tx; 822 spi_message_add_tail(&x[0], &message); 823 } 824 if (n_rx) { 825 x[1].len = n_rx; 826 spi_message_add_tail(&x[1], &message); 827 } 828 829 /* ... unless someone else is using the pre-allocated buffer */ 830 if (!mutex_trylock(&lock)) { 831 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 832 if (!local_buf) 833 return -ENOMEM; 834 } else 835 local_buf = buf; 836 837 memcpy(local_buf, txbuf, n_tx); 838 x[0].tx_buf = local_buf; 839 x[1].rx_buf = local_buf + n_tx; 840 841 /* do the i/o */ 842 status = spi_sync(spi, &message); 843 if (status == 0) 844 memcpy(rxbuf, x[1].rx_buf, n_rx); 845 846 if (x[0].tx_buf == buf) 847 mutex_unlock(&lock); 848 else 849 kfree(local_buf); 850 851 return status; 852 } 853 EXPORT_SYMBOL_GPL(spi_write_then_read); 854 855 /*-------------------------------------------------------------------------*/ 856 857 static int __init spi_init(void) 858 { 859 int status; 860 861 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 862 if (!buf) { 863 status = -ENOMEM; 864 goto err0; 865 } 866 867 status = bus_register(&spi_bus_type); 868 if (status < 0) 869 goto err1; 870 871 status = class_register(&spi_master_class); 872 if (status < 0) 873 goto err2; 874 return 0; 875 876 err2: 877 bus_unregister(&spi_bus_type); 878 err1: 879 kfree(buf); 880 buf = NULL; 881 err0: 882 return status; 883 } 884 885 /* board_info is normally registered in arch_initcall(), 886 * but even essential drivers wait till later 887 * 888 * REVISIT only boardinfo really needs static linking. the rest (device and 889 * driver registration) _could_ be dynamically linked (modular) ... costs 890 * include needing to have boardinfo data structures be much more public. 891 */ 892 postcore_initcall(spi_init); 893 894