1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/cache.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/mutex.h> 25 #include <linux/of_device.h> 26 #include <linux/of_irq.h> 27 #include <linux/clk/clk-conf.h> 28 #include <linux/slab.h> 29 #include <linux/mod_devicetable.h> 30 #include <linux/spi/spi.h> 31 #include <linux/of_gpio.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/pm_domain.h> 34 #include <linux/export.h> 35 #include <linux/sched/rt.h> 36 #include <linux/delay.h> 37 #include <linux/kthread.h> 38 #include <linux/ioport.h> 39 #include <linux/acpi.h> 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/spi.h> 43 44 static void spidev_release(struct device *dev) 45 { 46 struct spi_device *spi = to_spi_device(dev); 47 48 /* spi masters may cleanup for released devices */ 49 if (spi->master->cleanup) 50 spi->master->cleanup(spi); 51 52 spi_master_put(spi->master); 53 kfree(spi); 54 } 55 56 static ssize_t 57 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 58 { 59 const struct spi_device *spi = to_spi_device(dev); 60 int len; 61 62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 63 if (len != -ENODEV) 64 return len; 65 66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 67 } 68 static DEVICE_ATTR_RO(modalias); 69 70 #define SPI_STATISTICS_ATTRS(field, file) \ 71 static ssize_t spi_master_##field##_show(struct device *dev, \ 72 struct device_attribute *attr, \ 73 char *buf) \ 74 { \ 75 struct spi_master *master = container_of(dev, \ 76 struct spi_master, dev); \ 77 return spi_statistics_##field##_show(&master->statistics, buf); \ 78 } \ 79 static struct device_attribute dev_attr_spi_master_##field = { \ 80 .attr = { .name = file, .mode = S_IRUGO }, \ 81 .show = spi_master_##field##_show, \ 82 }; \ 83 static ssize_t spi_device_##field##_show(struct device *dev, \ 84 struct device_attribute *attr, \ 85 char *buf) \ 86 { \ 87 struct spi_device *spi = to_spi_device(dev); \ 88 return spi_statistics_##field##_show(&spi->statistics, buf); \ 89 } \ 90 static struct device_attribute dev_attr_spi_device_##field = { \ 91 .attr = { .name = file, .mode = S_IRUGO }, \ 92 .show = spi_device_##field##_show, \ 93 } 94 95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 97 char *buf) \ 98 { \ 99 unsigned long flags; \ 100 ssize_t len; \ 101 spin_lock_irqsave(&stat->lock, flags); \ 102 len = sprintf(buf, format_string, stat->field); \ 103 spin_unlock_irqrestore(&stat->lock, flags); \ 104 return len; \ 105 } \ 106 SPI_STATISTICS_ATTRS(name, file) 107 108 #define SPI_STATISTICS_SHOW(field, format_string) \ 109 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 110 field, format_string) 111 112 SPI_STATISTICS_SHOW(messages, "%lu"); 113 SPI_STATISTICS_SHOW(transfers, "%lu"); 114 SPI_STATISTICS_SHOW(errors, "%lu"); 115 SPI_STATISTICS_SHOW(timedout, "%lu"); 116 117 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 119 SPI_STATISTICS_SHOW(spi_async, "%lu"); 120 121 SPI_STATISTICS_SHOW(bytes, "%llu"); 122 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 123 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 124 125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 126 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 127 "transfer_bytes_histo_" number, \ 128 transfer_bytes_histo[index], "%lu") 129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 146 147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 148 149 static struct attribute *spi_dev_attrs[] = { 150 &dev_attr_modalias.attr, 151 NULL, 152 }; 153 154 static const struct attribute_group spi_dev_group = { 155 .attrs = spi_dev_attrs, 156 }; 157 158 static struct attribute *spi_device_statistics_attrs[] = { 159 &dev_attr_spi_device_messages.attr, 160 &dev_attr_spi_device_transfers.attr, 161 &dev_attr_spi_device_errors.attr, 162 &dev_attr_spi_device_timedout.attr, 163 &dev_attr_spi_device_spi_sync.attr, 164 &dev_attr_spi_device_spi_sync_immediate.attr, 165 &dev_attr_spi_device_spi_async.attr, 166 &dev_attr_spi_device_bytes.attr, 167 &dev_attr_spi_device_bytes_rx.attr, 168 &dev_attr_spi_device_bytes_tx.attr, 169 &dev_attr_spi_device_transfer_bytes_histo0.attr, 170 &dev_attr_spi_device_transfer_bytes_histo1.attr, 171 &dev_attr_spi_device_transfer_bytes_histo2.attr, 172 &dev_attr_spi_device_transfer_bytes_histo3.attr, 173 &dev_attr_spi_device_transfer_bytes_histo4.attr, 174 &dev_attr_spi_device_transfer_bytes_histo5.attr, 175 &dev_attr_spi_device_transfer_bytes_histo6.attr, 176 &dev_attr_spi_device_transfer_bytes_histo7.attr, 177 &dev_attr_spi_device_transfer_bytes_histo8.attr, 178 &dev_attr_spi_device_transfer_bytes_histo9.attr, 179 &dev_attr_spi_device_transfer_bytes_histo10.attr, 180 &dev_attr_spi_device_transfer_bytes_histo11.attr, 181 &dev_attr_spi_device_transfer_bytes_histo12.attr, 182 &dev_attr_spi_device_transfer_bytes_histo13.attr, 183 &dev_attr_spi_device_transfer_bytes_histo14.attr, 184 &dev_attr_spi_device_transfer_bytes_histo15.attr, 185 &dev_attr_spi_device_transfer_bytes_histo16.attr, 186 &dev_attr_spi_device_transfers_split_maxsize.attr, 187 NULL, 188 }; 189 190 static const struct attribute_group spi_device_statistics_group = { 191 .name = "statistics", 192 .attrs = spi_device_statistics_attrs, 193 }; 194 195 static const struct attribute_group *spi_dev_groups[] = { 196 &spi_dev_group, 197 &spi_device_statistics_group, 198 NULL, 199 }; 200 201 static struct attribute *spi_master_statistics_attrs[] = { 202 &dev_attr_spi_master_messages.attr, 203 &dev_attr_spi_master_transfers.attr, 204 &dev_attr_spi_master_errors.attr, 205 &dev_attr_spi_master_timedout.attr, 206 &dev_attr_spi_master_spi_sync.attr, 207 &dev_attr_spi_master_spi_sync_immediate.attr, 208 &dev_attr_spi_master_spi_async.attr, 209 &dev_attr_spi_master_bytes.attr, 210 &dev_attr_spi_master_bytes_rx.attr, 211 &dev_attr_spi_master_bytes_tx.attr, 212 &dev_attr_spi_master_transfer_bytes_histo0.attr, 213 &dev_attr_spi_master_transfer_bytes_histo1.attr, 214 &dev_attr_spi_master_transfer_bytes_histo2.attr, 215 &dev_attr_spi_master_transfer_bytes_histo3.attr, 216 &dev_attr_spi_master_transfer_bytes_histo4.attr, 217 &dev_attr_spi_master_transfer_bytes_histo5.attr, 218 &dev_attr_spi_master_transfer_bytes_histo6.attr, 219 &dev_attr_spi_master_transfer_bytes_histo7.attr, 220 &dev_attr_spi_master_transfer_bytes_histo8.attr, 221 &dev_attr_spi_master_transfer_bytes_histo9.attr, 222 &dev_attr_spi_master_transfer_bytes_histo10.attr, 223 &dev_attr_spi_master_transfer_bytes_histo11.attr, 224 &dev_attr_spi_master_transfer_bytes_histo12.attr, 225 &dev_attr_spi_master_transfer_bytes_histo13.attr, 226 &dev_attr_spi_master_transfer_bytes_histo14.attr, 227 &dev_attr_spi_master_transfer_bytes_histo15.attr, 228 &dev_attr_spi_master_transfer_bytes_histo16.attr, 229 &dev_attr_spi_master_transfers_split_maxsize.attr, 230 NULL, 231 }; 232 233 static const struct attribute_group spi_master_statistics_group = { 234 .name = "statistics", 235 .attrs = spi_master_statistics_attrs, 236 }; 237 238 static const struct attribute_group *spi_master_groups[] = { 239 &spi_master_statistics_group, 240 NULL, 241 }; 242 243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 244 struct spi_transfer *xfer, 245 struct spi_master *master) 246 { 247 unsigned long flags; 248 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 249 250 if (l2len < 0) 251 l2len = 0; 252 253 spin_lock_irqsave(&stats->lock, flags); 254 255 stats->transfers++; 256 stats->transfer_bytes_histo[l2len]++; 257 258 stats->bytes += xfer->len; 259 if ((xfer->tx_buf) && 260 (xfer->tx_buf != master->dummy_tx)) 261 stats->bytes_tx += xfer->len; 262 if ((xfer->rx_buf) && 263 (xfer->rx_buf != master->dummy_rx)) 264 stats->bytes_rx += xfer->len; 265 266 spin_unlock_irqrestore(&stats->lock, flags); 267 } 268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 269 270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 271 * and the sysfs version makes coldplug work too. 272 */ 273 274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 275 const struct spi_device *sdev) 276 { 277 while (id->name[0]) { 278 if (!strcmp(sdev->modalias, id->name)) 279 return id; 280 id++; 281 } 282 return NULL; 283 } 284 285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 286 { 287 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 288 289 return spi_match_id(sdrv->id_table, sdev); 290 } 291 EXPORT_SYMBOL_GPL(spi_get_device_id); 292 293 static int spi_match_device(struct device *dev, struct device_driver *drv) 294 { 295 const struct spi_device *spi = to_spi_device(dev); 296 const struct spi_driver *sdrv = to_spi_driver(drv); 297 298 /* Attempt an OF style match */ 299 if (of_driver_match_device(dev, drv)) 300 return 1; 301 302 /* Then try ACPI */ 303 if (acpi_driver_match_device(dev, drv)) 304 return 1; 305 306 if (sdrv->id_table) 307 return !!spi_match_id(sdrv->id_table, spi); 308 309 return strcmp(spi->modalias, drv->name) == 0; 310 } 311 312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 313 { 314 const struct spi_device *spi = to_spi_device(dev); 315 int rc; 316 317 rc = acpi_device_uevent_modalias(dev, env); 318 if (rc != -ENODEV) 319 return rc; 320 321 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 322 return 0; 323 } 324 325 struct bus_type spi_bus_type = { 326 .name = "spi", 327 .dev_groups = spi_dev_groups, 328 .match = spi_match_device, 329 .uevent = spi_uevent, 330 }; 331 EXPORT_SYMBOL_GPL(spi_bus_type); 332 333 334 static int spi_drv_probe(struct device *dev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 337 struct spi_device *spi = to_spi_device(dev); 338 int ret; 339 340 ret = of_clk_set_defaults(dev->of_node, false); 341 if (ret) 342 return ret; 343 344 if (dev->of_node) { 345 spi->irq = of_irq_get(dev->of_node, 0); 346 if (spi->irq == -EPROBE_DEFER) 347 return -EPROBE_DEFER; 348 if (spi->irq < 0) 349 spi->irq = 0; 350 } 351 352 ret = dev_pm_domain_attach(dev, true); 353 if (ret != -EPROBE_DEFER) { 354 ret = sdrv->probe(spi); 355 if (ret) 356 dev_pm_domain_detach(dev, true); 357 } 358 359 return ret; 360 } 361 362 static int spi_drv_remove(struct device *dev) 363 { 364 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 365 int ret; 366 367 ret = sdrv->remove(to_spi_device(dev)); 368 dev_pm_domain_detach(dev, true); 369 370 return ret; 371 } 372 373 static void spi_drv_shutdown(struct device *dev) 374 { 375 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 376 377 sdrv->shutdown(to_spi_device(dev)); 378 } 379 380 /** 381 * __spi_register_driver - register a SPI driver 382 * @owner: owner module of the driver to register 383 * @sdrv: the driver to register 384 * Context: can sleep 385 * 386 * Return: zero on success, else a negative error code. 387 */ 388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 389 { 390 sdrv->driver.owner = owner; 391 sdrv->driver.bus = &spi_bus_type; 392 if (sdrv->probe) 393 sdrv->driver.probe = spi_drv_probe; 394 if (sdrv->remove) 395 sdrv->driver.remove = spi_drv_remove; 396 if (sdrv->shutdown) 397 sdrv->driver.shutdown = spi_drv_shutdown; 398 return driver_register(&sdrv->driver); 399 } 400 EXPORT_SYMBOL_GPL(__spi_register_driver); 401 402 /*-------------------------------------------------------------------------*/ 403 404 /* SPI devices should normally not be created by SPI device drivers; that 405 * would make them board-specific. Similarly with SPI master drivers. 406 * Device registration normally goes into like arch/.../mach.../board-YYY.c 407 * with other readonly (flashable) information about mainboard devices. 408 */ 409 410 struct boardinfo { 411 struct list_head list; 412 struct spi_board_info board_info; 413 }; 414 415 static LIST_HEAD(board_list); 416 static LIST_HEAD(spi_master_list); 417 418 /* 419 * Used to protect add/del opertion for board_info list and 420 * spi_master list, and their matching process 421 */ 422 static DEFINE_MUTEX(board_lock); 423 424 /** 425 * spi_alloc_device - Allocate a new SPI device 426 * @master: Controller to which device is connected 427 * Context: can sleep 428 * 429 * Allows a driver to allocate and initialize a spi_device without 430 * registering it immediately. This allows a driver to directly 431 * fill the spi_device with device parameters before calling 432 * spi_add_device() on it. 433 * 434 * Caller is responsible to call spi_add_device() on the returned 435 * spi_device structure to add it to the SPI master. If the caller 436 * needs to discard the spi_device without adding it, then it should 437 * call spi_dev_put() on it. 438 * 439 * Return: a pointer to the new device, or NULL. 440 */ 441 struct spi_device *spi_alloc_device(struct spi_master *master) 442 { 443 struct spi_device *spi; 444 445 if (!spi_master_get(master)) 446 return NULL; 447 448 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 449 if (!spi) { 450 spi_master_put(master); 451 return NULL; 452 } 453 454 spi->master = master; 455 spi->dev.parent = &master->dev; 456 spi->dev.bus = &spi_bus_type; 457 spi->dev.release = spidev_release; 458 spi->cs_gpio = -ENOENT; 459 460 spin_lock_init(&spi->statistics.lock); 461 462 device_initialize(&spi->dev); 463 return spi; 464 } 465 EXPORT_SYMBOL_GPL(spi_alloc_device); 466 467 static void spi_dev_set_name(struct spi_device *spi) 468 { 469 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 470 471 if (adev) { 472 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 473 return; 474 } 475 476 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 477 spi->chip_select); 478 } 479 480 static int spi_dev_check(struct device *dev, void *data) 481 { 482 struct spi_device *spi = to_spi_device(dev); 483 struct spi_device *new_spi = data; 484 485 if (spi->master == new_spi->master && 486 spi->chip_select == new_spi->chip_select) 487 return -EBUSY; 488 return 0; 489 } 490 491 /** 492 * spi_add_device - Add spi_device allocated with spi_alloc_device 493 * @spi: spi_device to register 494 * 495 * Companion function to spi_alloc_device. Devices allocated with 496 * spi_alloc_device can be added onto the spi bus with this function. 497 * 498 * Return: 0 on success; negative errno on failure 499 */ 500 int spi_add_device(struct spi_device *spi) 501 { 502 static DEFINE_MUTEX(spi_add_lock); 503 struct spi_master *master = spi->master; 504 struct device *dev = master->dev.parent; 505 int status; 506 507 /* Chipselects are numbered 0..max; validate. */ 508 if (spi->chip_select >= master->num_chipselect) { 509 dev_err(dev, "cs%d >= max %d\n", 510 spi->chip_select, 511 master->num_chipselect); 512 return -EINVAL; 513 } 514 515 /* Set the bus ID string */ 516 spi_dev_set_name(spi); 517 518 /* We need to make sure there's no other device with this 519 * chipselect **BEFORE** we call setup(), else we'll trash 520 * its configuration. Lock against concurrent add() calls. 521 */ 522 mutex_lock(&spi_add_lock); 523 524 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 525 if (status) { 526 dev_err(dev, "chipselect %d already in use\n", 527 spi->chip_select); 528 goto done; 529 } 530 531 if (master->cs_gpios) 532 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 533 534 /* Drivers may modify this initial i/o setup, but will 535 * normally rely on the device being setup. Devices 536 * using SPI_CS_HIGH can't coexist well otherwise... 537 */ 538 status = spi_setup(spi); 539 if (status < 0) { 540 dev_err(dev, "can't setup %s, status %d\n", 541 dev_name(&spi->dev), status); 542 goto done; 543 } 544 545 /* Device may be bound to an active driver when this returns */ 546 status = device_add(&spi->dev); 547 if (status < 0) 548 dev_err(dev, "can't add %s, status %d\n", 549 dev_name(&spi->dev), status); 550 else 551 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 552 553 done: 554 mutex_unlock(&spi_add_lock); 555 return status; 556 } 557 EXPORT_SYMBOL_GPL(spi_add_device); 558 559 /** 560 * spi_new_device - instantiate one new SPI device 561 * @master: Controller to which device is connected 562 * @chip: Describes the SPI device 563 * Context: can sleep 564 * 565 * On typical mainboards, this is purely internal; and it's not needed 566 * after board init creates the hard-wired devices. Some development 567 * platforms may not be able to use spi_register_board_info though, and 568 * this is exported so that for example a USB or parport based adapter 569 * driver could add devices (which it would learn about out-of-band). 570 * 571 * Return: the new device, or NULL. 572 */ 573 struct spi_device *spi_new_device(struct spi_master *master, 574 struct spi_board_info *chip) 575 { 576 struct spi_device *proxy; 577 int status; 578 579 /* NOTE: caller did any chip->bus_num checks necessary. 580 * 581 * Also, unless we change the return value convention to use 582 * error-or-pointer (not NULL-or-pointer), troubleshootability 583 * suggests syslogged diagnostics are best here (ugh). 584 */ 585 586 proxy = spi_alloc_device(master); 587 if (!proxy) 588 return NULL; 589 590 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 591 592 proxy->chip_select = chip->chip_select; 593 proxy->max_speed_hz = chip->max_speed_hz; 594 proxy->mode = chip->mode; 595 proxy->irq = chip->irq; 596 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 597 proxy->dev.platform_data = (void *) chip->platform_data; 598 proxy->controller_data = chip->controller_data; 599 proxy->controller_state = NULL; 600 601 status = spi_add_device(proxy); 602 if (status < 0) { 603 spi_dev_put(proxy); 604 return NULL; 605 } 606 607 return proxy; 608 } 609 EXPORT_SYMBOL_GPL(spi_new_device); 610 611 /** 612 * spi_unregister_device - unregister a single SPI device 613 * @spi: spi_device to unregister 614 * 615 * Start making the passed SPI device vanish. Normally this would be handled 616 * by spi_unregister_master(). 617 */ 618 void spi_unregister_device(struct spi_device *spi) 619 { 620 if (!spi) 621 return; 622 623 if (spi->dev.of_node) 624 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 625 device_unregister(&spi->dev); 626 } 627 EXPORT_SYMBOL_GPL(spi_unregister_device); 628 629 static void spi_match_master_to_boardinfo(struct spi_master *master, 630 struct spi_board_info *bi) 631 { 632 struct spi_device *dev; 633 634 if (master->bus_num != bi->bus_num) 635 return; 636 637 dev = spi_new_device(master, bi); 638 if (!dev) 639 dev_err(master->dev.parent, "can't create new device for %s\n", 640 bi->modalias); 641 } 642 643 /** 644 * spi_register_board_info - register SPI devices for a given board 645 * @info: array of chip descriptors 646 * @n: how many descriptors are provided 647 * Context: can sleep 648 * 649 * Board-specific early init code calls this (probably during arch_initcall) 650 * with segments of the SPI device table. Any device nodes are created later, 651 * after the relevant parent SPI controller (bus_num) is defined. We keep 652 * this table of devices forever, so that reloading a controller driver will 653 * not make Linux forget about these hard-wired devices. 654 * 655 * Other code can also call this, e.g. a particular add-on board might provide 656 * SPI devices through its expansion connector, so code initializing that board 657 * would naturally declare its SPI devices. 658 * 659 * The board info passed can safely be __initdata ... but be careful of 660 * any embedded pointers (platform_data, etc), they're copied as-is. 661 * 662 * Return: zero on success, else a negative error code. 663 */ 664 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 665 { 666 struct boardinfo *bi; 667 int i; 668 669 if (!n) 670 return -EINVAL; 671 672 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 673 if (!bi) 674 return -ENOMEM; 675 676 for (i = 0; i < n; i++, bi++, info++) { 677 struct spi_master *master; 678 679 memcpy(&bi->board_info, info, sizeof(*info)); 680 mutex_lock(&board_lock); 681 list_add_tail(&bi->list, &board_list); 682 list_for_each_entry(master, &spi_master_list, list) 683 spi_match_master_to_boardinfo(master, &bi->board_info); 684 mutex_unlock(&board_lock); 685 } 686 687 return 0; 688 } 689 690 /*-------------------------------------------------------------------------*/ 691 692 static void spi_set_cs(struct spi_device *spi, bool enable) 693 { 694 if (spi->mode & SPI_CS_HIGH) 695 enable = !enable; 696 697 if (gpio_is_valid(spi->cs_gpio)) 698 gpio_set_value(spi->cs_gpio, !enable); 699 else if (spi->master->set_cs) 700 spi->master->set_cs(spi, !enable); 701 } 702 703 #ifdef CONFIG_HAS_DMA 704 static int spi_map_buf(struct spi_master *master, struct device *dev, 705 struct sg_table *sgt, void *buf, size_t len, 706 enum dma_data_direction dir) 707 { 708 const bool vmalloced_buf = is_vmalloc_addr(buf); 709 unsigned int max_seg_size = dma_get_max_seg_size(dev); 710 int desc_len; 711 int sgs; 712 struct page *vm_page; 713 void *sg_buf; 714 size_t min; 715 int i, ret; 716 717 if (vmalloced_buf) { 718 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 719 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 720 } else if (virt_addr_valid(buf)) { 721 desc_len = min_t(int, max_seg_size, master->max_dma_len); 722 sgs = DIV_ROUND_UP(len, desc_len); 723 } else { 724 return -EINVAL; 725 } 726 727 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 728 if (ret != 0) 729 return ret; 730 731 for (i = 0; i < sgs; i++) { 732 733 if (vmalloced_buf) { 734 min = min_t(size_t, 735 len, desc_len - offset_in_page(buf)); 736 vm_page = vmalloc_to_page(buf); 737 if (!vm_page) { 738 sg_free_table(sgt); 739 return -ENOMEM; 740 } 741 sg_set_page(&sgt->sgl[i], vm_page, 742 min, offset_in_page(buf)); 743 } else { 744 min = min_t(size_t, len, desc_len); 745 sg_buf = buf; 746 sg_set_buf(&sgt->sgl[i], sg_buf, min); 747 } 748 749 buf += min; 750 len -= min; 751 } 752 753 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 754 if (!ret) 755 ret = -ENOMEM; 756 if (ret < 0) { 757 sg_free_table(sgt); 758 return ret; 759 } 760 761 sgt->nents = ret; 762 763 return 0; 764 } 765 766 static void spi_unmap_buf(struct spi_master *master, struct device *dev, 767 struct sg_table *sgt, enum dma_data_direction dir) 768 { 769 if (sgt->orig_nents) { 770 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 771 sg_free_table(sgt); 772 } 773 } 774 775 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg) 776 { 777 struct device *tx_dev, *rx_dev; 778 struct spi_transfer *xfer; 779 int ret; 780 781 if (!master->can_dma) 782 return 0; 783 784 if (master->dma_tx) 785 tx_dev = master->dma_tx->device->dev; 786 else 787 tx_dev = &master->dev; 788 789 if (master->dma_rx) 790 rx_dev = master->dma_rx->device->dev; 791 else 792 rx_dev = &master->dev; 793 794 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 795 if (!master->can_dma(master, msg->spi, xfer)) 796 continue; 797 798 if (xfer->tx_buf != NULL) { 799 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg, 800 (void *)xfer->tx_buf, xfer->len, 801 DMA_TO_DEVICE); 802 if (ret != 0) 803 return ret; 804 } 805 806 if (xfer->rx_buf != NULL) { 807 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg, 808 xfer->rx_buf, xfer->len, 809 DMA_FROM_DEVICE); 810 if (ret != 0) { 811 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, 812 DMA_TO_DEVICE); 813 return ret; 814 } 815 } 816 } 817 818 master->cur_msg_mapped = true; 819 820 return 0; 821 } 822 823 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg) 824 { 825 struct spi_transfer *xfer; 826 struct device *tx_dev, *rx_dev; 827 828 if (!master->cur_msg_mapped || !master->can_dma) 829 return 0; 830 831 if (master->dma_tx) 832 tx_dev = master->dma_tx->device->dev; 833 else 834 tx_dev = &master->dev; 835 836 if (master->dma_rx) 837 rx_dev = master->dma_rx->device->dev; 838 else 839 rx_dev = &master->dev; 840 841 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 842 if (!master->can_dma(master, msg->spi, xfer)) 843 continue; 844 845 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 846 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 847 } 848 849 return 0; 850 } 851 #else /* !CONFIG_HAS_DMA */ 852 static inline int __spi_map_msg(struct spi_master *master, 853 struct spi_message *msg) 854 { 855 return 0; 856 } 857 858 static inline int __spi_unmap_msg(struct spi_master *master, 859 struct spi_message *msg) 860 { 861 return 0; 862 } 863 #endif /* !CONFIG_HAS_DMA */ 864 865 static inline int spi_unmap_msg(struct spi_master *master, 866 struct spi_message *msg) 867 { 868 struct spi_transfer *xfer; 869 870 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 871 /* 872 * Restore the original value of tx_buf or rx_buf if they are 873 * NULL. 874 */ 875 if (xfer->tx_buf == master->dummy_tx) 876 xfer->tx_buf = NULL; 877 if (xfer->rx_buf == master->dummy_rx) 878 xfer->rx_buf = NULL; 879 } 880 881 return __spi_unmap_msg(master, msg); 882 } 883 884 static int spi_map_msg(struct spi_master *master, struct spi_message *msg) 885 { 886 struct spi_transfer *xfer; 887 void *tmp; 888 unsigned int max_tx, max_rx; 889 890 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) { 891 max_tx = 0; 892 max_rx = 0; 893 894 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 895 if ((master->flags & SPI_MASTER_MUST_TX) && 896 !xfer->tx_buf) 897 max_tx = max(xfer->len, max_tx); 898 if ((master->flags & SPI_MASTER_MUST_RX) && 899 !xfer->rx_buf) 900 max_rx = max(xfer->len, max_rx); 901 } 902 903 if (max_tx) { 904 tmp = krealloc(master->dummy_tx, max_tx, 905 GFP_KERNEL | GFP_DMA); 906 if (!tmp) 907 return -ENOMEM; 908 master->dummy_tx = tmp; 909 memset(tmp, 0, max_tx); 910 } 911 912 if (max_rx) { 913 tmp = krealloc(master->dummy_rx, max_rx, 914 GFP_KERNEL | GFP_DMA); 915 if (!tmp) 916 return -ENOMEM; 917 master->dummy_rx = tmp; 918 } 919 920 if (max_tx || max_rx) { 921 list_for_each_entry(xfer, &msg->transfers, 922 transfer_list) { 923 if (!xfer->tx_buf) 924 xfer->tx_buf = master->dummy_tx; 925 if (!xfer->rx_buf) 926 xfer->rx_buf = master->dummy_rx; 927 } 928 } 929 } 930 931 return __spi_map_msg(master, msg); 932 } 933 934 /* 935 * spi_transfer_one_message - Default implementation of transfer_one_message() 936 * 937 * This is a standard implementation of transfer_one_message() for 938 * drivers which implement a transfer_one() operation. It provides 939 * standard handling of delays and chip select management. 940 */ 941 static int spi_transfer_one_message(struct spi_master *master, 942 struct spi_message *msg) 943 { 944 struct spi_transfer *xfer; 945 bool keep_cs = false; 946 int ret = 0; 947 unsigned long ms = 1; 948 struct spi_statistics *statm = &master->statistics; 949 struct spi_statistics *stats = &msg->spi->statistics; 950 951 spi_set_cs(msg->spi, true); 952 953 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 954 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 955 956 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 957 trace_spi_transfer_start(msg, xfer); 958 959 spi_statistics_add_transfer_stats(statm, xfer, master); 960 spi_statistics_add_transfer_stats(stats, xfer, master); 961 962 if (xfer->tx_buf || xfer->rx_buf) { 963 reinit_completion(&master->xfer_completion); 964 965 ret = master->transfer_one(master, msg->spi, xfer); 966 if (ret < 0) { 967 SPI_STATISTICS_INCREMENT_FIELD(statm, 968 errors); 969 SPI_STATISTICS_INCREMENT_FIELD(stats, 970 errors); 971 dev_err(&msg->spi->dev, 972 "SPI transfer failed: %d\n", ret); 973 goto out; 974 } 975 976 if (ret > 0) { 977 ret = 0; 978 ms = xfer->len * 8 * 1000 / xfer->speed_hz; 979 ms += ms + 100; /* some tolerance */ 980 981 ms = wait_for_completion_timeout(&master->xfer_completion, 982 msecs_to_jiffies(ms)); 983 } 984 985 if (ms == 0) { 986 SPI_STATISTICS_INCREMENT_FIELD(statm, 987 timedout); 988 SPI_STATISTICS_INCREMENT_FIELD(stats, 989 timedout); 990 dev_err(&msg->spi->dev, 991 "SPI transfer timed out\n"); 992 msg->status = -ETIMEDOUT; 993 } 994 } else { 995 if (xfer->len) 996 dev_err(&msg->spi->dev, 997 "Bufferless transfer has length %u\n", 998 xfer->len); 999 } 1000 1001 trace_spi_transfer_stop(msg, xfer); 1002 1003 if (msg->status != -EINPROGRESS) 1004 goto out; 1005 1006 if (xfer->delay_usecs) 1007 udelay(xfer->delay_usecs); 1008 1009 if (xfer->cs_change) { 1010 if (list_is_last(&xfer->transfer_list, 1011 &msg->transfers)) { 1012 keep_cs = true; 1013 } else { 1014 spi_set_cs(msg->spi, false); 1015 udelay(10); 1016 spi_set_cs(msg->spi, true); 1017 } 1018 } 1019 1020 msg->actual_length += xfer->len; 1021 } 1022 1023 out: 1024 if (ret != 0 || !keep_cs) 1025 spi_set_cs(msg->spi, false); 1026 1027 if (msg->status == -EINPROGRESS) 1028 msg->status = ret; 1029 1030 if (msg->status && master->handle_err) 1031 master->handle_err(master, msg); 1032 1033 spi_res_release(master, msg); 1034 1035 spi_finalize_current_message(master); 1036 1037 return ret; 1038 } 1039 1040 /** 1041 * spi_finalize_current_transfer - report completion of a transfer 1042 * @master: the master reporting completion 1043 * 1044 * Called by SPI drivers using the core transfer_one_message() 1045 * implementation to notify it that the current interrupt driven 1046 * transfer has finished and the next one may be scheduled. 1047 */ 1048 void spi_finalize_current_transfer(struct spi_master *master) 1049 { 1050 complete(&master->xfer_completion); 1051 } 1052 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1053 1054 /** 1055 * __spi_pump_messages - function which processes spi message queue 1056 * @master: master to process queue for 1057 * @in_kthread: true if we are in the context of the message pump thread 1058 * @bus_locked: true if the bus mutex is held when calling this function 1059 * 1060 * This function checks if there is any spi message in the queue that 1061 * needs processing and if so call out to the driver to initialize hardware 1062 * and transfer each message. 1063 * 1064 * Note that it is called both from the kthread itself and also from 1065 * inside spi_sync(); the queue extraction handling at the top of the 1066 * function should deal with this safely. 1067 */ 1068 static void __spi_pump_messages(struct spi_master *master, bool in_kthread, 1069 bool bus_locked) 1070 { 1071 unsigned long flags; 1072 bool was_busy = false; 1073 int ret; 1074 1075 /* Lock queue */ 1076 spin_lock_irqsave(&master->queue_lock, flags); 1077 1078 /* Make sure we are not already running a message */ 1079 if (master->cur_msg) { 1080 spin_unlock_irqrestore(&master->queue_lock, flags); 1081 return; 1082 } 1083 1084 /* If another context is idling the device then defer */ 1085 if (master->idling) { 1086 queue_kthread_work(&master->kworker, &master->pump_messages); 1087 spin_unlock_irqrestore(&master->queue_lock, flags); 1088 return; 1089 } 1090 1091 /* Check if the queue is idle */ 1092 if (list_empty(&master->queue) || !master->running) { 1093 if (!master->busy) { 1094 spin_unlock_irqrestore(&master->queue_lock, flags); 1095 return; 1096 } 1097 1098 /* Only do teardown in the thread */ 1099 if (!in_kthread) { 1100 queue_kthread_work(&master->kworker, 1101 &master->pump_messages); 1102 spin_unlock_irqrestore(&master->queue_lock, flags); 1103 return; 1104 } 1105 1106 master->busy = false; 1107 master->idling = true; 1108 spin_unlock_irqrestore(&master->queue_lock, flags); 1109 1110 kfree(master->dummy_rx); 1111 master->dummy_rx = NULL; 1112 kfree(master->dummy_tx); 1113 master->dummy_tx = NULL; 1114 if (master->unprepare_transfer_hardware && 1115 master->unprepare_transfer_hardware(master)) 1116 dev_err(&master->dev, 1117 "failed to unprepare transfer hardware\n"); 1118 if (master->auto_runtime_pm) { 1119 pm_runtime_mark_last_busy(master->dev.parent); 1120 pm_runtime_put_autosuspend(master->dev.parent); 1121 } 1122 trace_spi_master_idle(master); 1123 1124 spin_lock_irqsave(&master->queue_lock, flags); 1125 master->idling = false; 1126 spin_unlock_irqrestore(&master->queue_lock, flags); 1127 return; 1128 } 1129 1130 /* Extract head of queue */ 1131 master->cur_msg = 1132 list_first_entry(&master->queue, struct spi_message, queue); 1133 1134 list_del_init(&master->cur_msg->queue); 1135 if (master->busy) 1136 was_busy = true; 1137 else 1138 master->busy = true; 1139 spin_unlock_irqrestore(&master->queue_lock, flags); 1140 1141 if (!was_busy && master->auto_runtime_pm) { 1142 ret = pm_runtime_get_sync(master->dev.parent); 1143 if (ret < 0) { 1144 dev_err(&master->dev, "Failed to power device: %d\n", 1145 ret); 1146 return; 1147 } 1148 } 1149 1150 if (!was_busy) 1151 trace_spi_master_busy(master); 1152 1153 if (!was_busy && master->prepare_transfer_hardware) { 1154 ret = master->prepare_transfer_hardware(master); 1155 if (ret) { 1156 dev_err(&master->dev, 1157 "failed to prepare transfer hardware\n"); 1158 1159 if (master->auto_runtime_pm) 1160 pm_runtime_put(master->dev.parent); 1161 return; 1162 } 1163 } 1164 1165 if (!bus_locked) 1166 mutex_lock(&master->bus_lock_mutex); 1167 1168 trace_spi_message_start(master->cur_msg); 1169 1170 if (master->prepare_message) { 1171 ret = master->prepare_message(master, master->cur_msg); 1172 if (ret) { 1173 dev_err(&master->dev, 1174 "failed to prepare message: %d\n", ret); 1175 master->cur_msg->status = ret; 1176 spi_finalize_current_message(master); 1177 goto out; 1178 } 1179 master->cur_msg_prepared = true; 1180 } 1181 1182 ret = spi_map_msg(master, master->cur_msg); 1183 if (ret) { 1184 master->cur_msg->status = ret; 1185 spi_finalize_current_message(master); 1186 goto out; 1187 } 1188 1189 ret = master->transfer_one_message(master, master->cur_msg); 1190 if (ret) { 1191 dev_err(&master->dev, 1192 "failed to transfer one message from queue\n"); 1193 goto out; 1194 } 1195 1196 out: 1197 if (!bus_locked) 1198 mutex_unlock(&master->bus_lock_mutex); 1199 1200 /* Prod the scheduler in case transfer_one() was busy waiting */ 1201 if (!ret) 1202 cond_resched(); 1203 } 1204 1205 /** 1206 * spi_pump_messages - kthread work function which processes spi message queue 1207 * @work: pointer to kthread work struct contained in the master struct 1208 */ 1209 static void spi_pump_messages(struct kthread_work *work) 1210 { 1211 struct spi_master *master = 1212 container_of(work, struct spi_master, pump_messages); 1213 1214 __spi_pump_messages(master, true, master->bus_lock_flag); 1215 } 1216 1217 static int spi_init_queue(struct spi_master *master) 1218 { 1219 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1220 1221 master->running = false; 1222 master->busy = false; 1223 1224 init_kthread_worker(&master->kworker); 1225 master->kworker_task = kthread_run(kthread_worker_fn, 1226 &master->kworker, "%s", 1227 dev_name(&master->dev)); 1228 if (IS_ERR(master->kworker_task)) { 1229 dev_err(&master->dev, "failed to create message pump task\n"); 1230 return PTR_ERR(master->kworker_task); 1231 } 1232 init_kthread_work(&master->pump_messages, spi_pump_messages); 1233 1234 /* 1235 * Master config will indicate if this controller should run the 1236 * message pump with high (realtime) priority to reduce the transfer 1237 * latency on the bus by minimising the delay between a transfer 1238 * request and the scheduling of the message pump thread. Without this 1239 * setting the message pump thread will remain at default priority. 1240 */ 1241 if (master->rt) { 1242 dev_info(&master->dev, 1243 "will run message pump with realtime priority\n"); 1244 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 1245 } 1246 1247 return 0; 1248 } 1249 1250 /** 1251 * spi_get_next_queued_message() - called by driver to check for queued 1252 * messages 1253 * @master: the master to check for queued messages 1254 * 1255 * If there are more messages in the queue, the next message is returned from 1256 * this call. 1257 * 1258 * Return: the next message in the queue, else NULL if the queue is empty. 1259 */ 1260 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 1261 { 1262 struct spi_message *next; 1263 unsigned long flags; 1264 1265 /* get a pointer to the next message, if any */ 1266 spin_lock_irqsave(&master->queue_lock, flags); 1267 next = list_first_entry_or_null(&master->queue, struct spi_message, 1268 queue); 1269 spin_unlock_irqrestore(&master->queue_lock, flags); 1270 1271 return next; 1272 } 1273 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1274 1275 /** 1276 * spi_finalize_current_message() - the current message is complete 1277 * @master: the master to return the message to 1278 * 1279 * Called by the driver to notify the core that the message in the front of the 1280 * queue is complete and can be removed from the queue. 1281 */ 1282 void spi_finalize_current_message(struct spi_master *master) 1283 { 1284 struct spi_message *mesg; 1285 unsigned long flags; 1286 int ret; 1287 1288 spin_lock_irqsave(&master->queue_lock, flags); 1289 mesg = master->cur_msg; 1290 spin_unlock_irqrestore(&master->queue_lock, flags); 1291 1292 spi_unmap_msg(master, mesg); 1293 1294 if (master->cur_msg_prepared && master->unprepare_message) { 1295 ret = master->unprepare_message(master, mesg); 1296 if (ret) { 1297 dev_err(&master->dev, 1298 "failed to unprepare message: %d\n", ret); 1299 } 1300 } 1301 1302 spin_lock_irqsave(&master->queue_lock, flags); 1303 master->cur_msg = NULL; 1304 master->cur_msg_prepared = false; 1305 queue_kthread_work(&master->kworker, &master->pump_messages); 1306 spin_unlock_irqrestore(&master->queue_lock, flags); 1307 1308 trace_spi_message_done(mesg); 1309 1310 mesg->state = NULL; 1311 if (mesg->complete) 1312 mesg->complete(mesg->context); 1313 } 1314 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1315 1316 static int spi_start_queue(struct spi_master *master) 1317 { 1318 unsigned long flags; 1319 1320 spin_lock_irqsave(&master->queue_lock, flags); 1321 1322 if (master->running || master->busy) { 1323 spin_unlock_irqrestore(&master->queue_lock, flags); 1324 return -EBUSY; 1325 } 1326 1327 master->running = true; 1328 master->cur_msg = NULL; 1329 spin_unlock_irqrestore(&master->queue_lock, flags); 1330 1331 queue_kthread_work(&master->kworker, &master->pump_messages); 1332 1333 return 0; 1334 } 1335 1336 static int spi_stop_queue(struct spi_master *master) 1337 { 1338 unsigned long flags; 1339 unsigned limit = 500; 1340 int ret = 0; 1341 1342 spin_lock_irqsave(&master->queue_lock, flags); 1343 1344 /* 1345 * This is a bit lame, but is optimized for the common execution path. 1346 * A wait_queue on the master->busy could be used, but then the common 1347 * execution path (pump_messages) would be required to call wake_up or 1348 * friends on every SPI message. Do this instead. 1349 */ 1350 while ((!list_empty(&master->queue) || master->busy) && limit--) { 1351 spin_unlock_irqrestore(&master->queue_lock, flags); 1352 usleep_range(10000, 11000); 1353 spin_lock_irqsave(&master->queue_lock, flags); 1354 } 1355 1356 if (!list_empty(&master->queue) || master->busy) 1357 ret = -EBUSY; 1358 else 1359 master->running = false; 1360 1361 spin_unlock_irqrestore(&master->queue_lock, flags); 1362 1363 if (ret) { 1364 dev_warn(&master->dev, 1365 "could not stop message queue\n"); 1366 return ret; 1367 } 1368 return ret; 1369 } 1370 1371 static int spi_destroy_queue(struct spi_master *master) 1372 { 1373 int ret; 1374 1375 ret = spi_stop_queue(master); 1376 1377 /* 1378 * flush_kthread_worker will block until all work is done. 1379 * If the reason that stop_queue timed out is that the work will never 1380 * finish, then it does no good to call flush/stop thread, so 1381 * return anyway. 1382 */ 1383 if (ret) { 1384 dev_err(&master->dev, "problem destroying queue\n"); 1385 return ret; 1386 } 1387 1388 flush_kthread_worker(&master->kworker); 1389 kthread_stop(master->kworker_task); 1390 1391 return 0; 1392 } 1393 1394 static int __spi_queued_transfer(struct spi_device *spi, 1395 struct spi_message *msg, 1396 bool need_pump) 1397 { 1398 struct spi_master *master = spi->master; 1399 unsigned long flags; 1400 1401 spin_lock_irqsave(&master->queue_lock, flags); 1402 1403 if (!master->running) { 1404 spin_unlock_irqrestore(&master->queue_lock, flags); 1405 return -ESHUTDOWN; 1406 } 1407 msg->actual_length = 0; 1408 msg->status = -EINPROGRESS; 1409 1410 list_add_tail(&msg->queue, &master->queue); 1411 if (!master->busy && need_pump) 1412 queue_kthread_work(&master->kworker, &master->pump_messages); 1413 1414 spin_unlock_irqrestore(&master->queue_lock, flags); 1415 return 0; 1416 } 1417 1418 /** 1419 * spi_queued_transfer - transfer function for queued transfers 1420 * @spi: spi device which is requesting transfer 1421 * @msg: spi message which is to handled is queued to driver queue 1422 * 1423 * Return: zero on success, else a negative error code. 1424 */ 1425 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1426 { 1427 return __spi_queued_transfer(spi, msg, true); 1428 } 1429 1430 static int spi_master_initialize_queue(struct spi_master *master) 1431 { 1432 int ret; 1433 1434 master->transfer = spi_queued_transfer; 1435 if (!master->transfer_one_message) 1436 master->transfer_one_message = spi_transfer_one_message; 1437 1438 /* Initialize and start queue */ 1439 ret = spi_init_queue(master); 1440 if (ret) { 1441 dev_err(&master->dev, "problem initializing queue\n"); 1442 goto err_init_queue; 1443 } 1444 master->queued = true; 1445 ret = spi_start_queue(master); 1446 if (ret) { 1447 dev_err(&master->dev, "problem starting queue\n"); 1448 goto err_start_queue; 1449 } 1450 1451 return 0; 1452 1453 err_start_queue: 1454 spi_destroy_queue(master); 1455 err_init_queue: 1456 return ret; 1457 } 1458 1459 /*-------------------------------------------------------------------------*/ 1460 1461 #if defined(CONFIG_OF) 1462 static struct spi_device * 1463 of_register_spi_device(struct spi_master *master, struct device_node *nc) 1464 { 1465 struct spi_device *spi; 1466 int rc; 1467 u32 value; 1468 1469 /* Alloc an spi_device */ 1470 spi = spi_alloc_device(master); 1471 if (!spi) { 1472 dev_err(&master->dev, "spi_device alloc error for %s\n", 1473 nc->full_name); 1474 rc = -ENOMEM; 1475 goto err_out; 1476 } 1477 1478 /* Select device driver */ 1479 rc = of_modalias_node(nc, spi->modalias, 1480 sizeof(spi->modalias)); 1481 if (rc < 0) { 1482 dev_err(&master->dev, "cannot find modalias for %s\n", 1483 nc->full_name); 1484 goto err_out; 1485 } 1486 1487 /* Device address */ 1488 rc = of_property_read_u32(nc, "reg", &value); 1489 if (rc) { 1490 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", 1491 nc->full_name, rc); 1492 goto err_out; 1493 } 1494 spi->chip_select = value; 1495 1496 /* Mode (clock phase/polarity/etc.) */ 1497 if (of_find_property(nc, "spi-cpha", NULL)) 1498 spi->mode |= SPI_CPHA; 1499 if (of_find_property(nc, "spi-cpol", NULL)) 1500 spi->mode |= SPI_CPOL; 1501 if (of_find_property(nc, "spi-cs-high", NULL)) 1502 spi->mode |= SPI_CS_HIGH; 1503 if (of_find_property(nc, "spi-3wire", NULL)) 1504 spi->mode |= SPI_3WIRE; 1505 if (of_find_property(nc, "spi-lsb-first", NULL)) 1506 spi->mode |= SPI_LSB_FIRST; 1507 1508 /* Device DUAL/QUAD mode */ 1509 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1510 switch (value) { 1511 case 1: 1512 break; 1513 case 2: 1514 spi->mode |= SPI_TX_DUAL; 1515 break; 1516 case 4: 1517 spi->mode |= SPI_TX_QUAD; 1518 break; 1519 default: 1520 dev_warn(&master->dev, 1521 "spi-tx-bus-width %d not supported\n", 1522 value); 1523 break; 1524 } 1525 } 1526 1527 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1528 switch (value) { 1529 case 1: 1530 break; 1531 case 2: 1532 spi->mode |= SPI_RX_DUAL; 1533 break; 1534 case 4: 1535 spi->mode |= SPI_RX_QUAD; 1536 break; 1537 default: 1538 dev_warn(&master->dev, 1539 "spi-rx-bus-width %d not supported\n", 1540 value); 1541 break; 1542 } 1543 } 1544 1545 /* Device speed */ 1546 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1547 if (rc) { 1548 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", 1549 nc->full_name, rc); 1550 goto err_out; 1551 } 1552 spi->max_speed_hz = value; 1553 1554 /* Store a pointer to the node in the device structure */ 1555 of_node_get(nc); 1556 spi->dev.of_node = nc; 1557 1558 /* Register the new device */ 1559 rc = spi_add_device(spi); 1560 if (rc) { 1561 dev_err(&master->dev, "spi_device register error %s\n", 1562 nc->full_name); 1563 goto err_out; 1564 } 1565 1566 return spi; 1567 1568 err_out: 1569 spi_dev_put(spi); 1570 return ERR_PTR(rc); 1571 } 1572 1573 /** 1574 * of_register_spi_devices() - Register child devices onto the SPI bus 1575 * @master: Pointer to spi_master device 1576 * 1577 * Registers an spi_device for each child node of master node which has a 'reg' 1578 * property. 1579 */ 1580 static void of_register_spi_devices(struct spi_master *master) 1581 { 1582 struct spi_device *spi; 1583 struct device_node *nc; 1584 1585 if (!master->dev.of_node) 1586 return; 1587 1588 for_each_available_child_of_node(master->dev.of_node, nc) { 1589 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 1590 continue; 1591 spi = of_register_spi_device(master, nc); 1592 if (IS_ERR(spi)) 1593 dev_warn(&master->dev, "Failed to create SPI device for %s\n", 1594 nc->full_name); 1595 } 1596 } 1597 #else 1598 static void of_register_spi_devices(struct spi_master *master) { } 1599 #endif 1600 1601 #ifdef CONFIG_ACPI 1602 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1603 { 1604 struct spi_device *spi = data; 1605 struct spi_master *master = spi->master; 1606 1607 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1608 struct acpi_resource_spi_serialbus *sb; 1609 1610 sb = &ares->data.spi_serial_bus; 1611 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1612 /* 1613 * ACPI DeviceSelection numbering is handled by the 1614 * host controller driver in Windows and can vary 1615 * from driver to driver. In Linux we always expect 1616 * 0 .. max - 1 so we need to ask the driver to 1617 * translate between the two schemes. 1618 */ 1619 if (master->fw_translate_cs) { 1620 int cs = master->fw_translate_cs(master, 1621 sb->device_selection); 1622 if (cs < 0) 1623 return cs; 1624 spi->chip_select = cs; 1625 } else { 1626 spi->chip_select = sb->device_selection; 1627 } 1628 1629 spi->max_speed_hz = sb->connection_speed; 1630 1631 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1632 spi->mode |= SPI_CPHA; 1633 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1634 spi->mode |= SPI_CPOL; 1635 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1636 spi->mode |= SPI_CS_HIGH; 1637 } 1638 } else if (spi->irq < 0) { 1639 struct resource r; 1640 1641 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1642 spi->irq = r.start; 1643 } 1644 1645 /* Always tell the ACPI core to skip this resource */ 1646 return 1; 1647 } 1648 1649 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1650 void *data, void **return_value) 1651 { 1652 struct spi_master *master = data; 1653 struct list_head resource_list; 1654 struct acpi_device *adev; 1655 struct spi_device *spi; 1656 int ret; 1657 1658 if (acpi_bus_get_device(handle, &adev)) 1659 return AE_OK; 1660 if (acpi_bus_get_status(adev) || !adev->status.present) 1661 return AE_OK; 1662 1663 spi = spi_alloc_device(master); 1664 if (!spi) { 1665 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 1666 dev_name(&adev->dev)); 1667 return AE_NO_MEMORY; 1668 } 1669 1670 ACPI_COMPANION_SET(&spi->dev, adev); 1671 spi->irq = -1; 1672 1673 INIT_LIST_HEAD(&resource_list); 1674 ret = acpi_dev_get_resources(adev, &resource_list, 1675 acpi_spi_add_resource, spi); 1676 acpi_dev_free_resource_list(&resource_list); 1677 1678 if (ret < 0 || !spi->max_speed_hz) { 1679 spi_dev_put(spi); 1680 return AE_OK; 1681 } 1682 1683 if (spi->irq < 0) 1684 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 1685 1686 adev->power.flags.ignore_parent = true; 1687 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); 1688 if (spi_add_device(spi)) { 1689 adev->power.flags.ignore_parent = false; 1690 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 1691 dev_name(&adev->dev)); 1692 spi_dev_put(spi); 1693 } 1694 1695 return AE_OK; 1696 } 1697 1698 static void acpi_register_spi_devices(struct spi_master *master) 1699 { 1700 acpi_status status; 1701 acpi_handle handle; 1702 1703 handle = ACPI_HANDLE(master->dev.parent); 1704 if (!handle) 1705 return; 1706 1707 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1708 acpi_spi_add_device, NULL, 1709 master, NULL); 1710 if (ACPI_FAILURE(status)) 1711 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 1712 } 1713 #else 1714 static inline void acpi_register_spi_devices(struct spi_master *master) {} 1715 #endif /* CONFIG_ACPI */ 1716 1717 static void spi_master_release(struct device *dev) 1718 { 1719 struct spi_master *master; 1720 1721 master = container_of(dev, struct spi_master, dev); 1722 kfree(master); 1723 } 1724 1725 static struct class spi_master_class = { 1726 .name = "spi_master", 1727 .owner = THIS_MODULE, 1728 .dev_release = spi_master_release, 1729 .dev_groups = spi_master_groups, 1730 }; 1731 1732 1733 /** 1734 * spi_alloc_master - allocate SPI master controller 1735 * @dev: the controller, possibly using the platform_bus 1736 * @size: how much zeroed driver-private data to allocate; the pointer to this 1737 * memory is in the driver_data field of the returned device, 1738 * accessible with spi_master_get_devdata(). 1739 * Context: can sleep 1740 * 1741 * This call is used only by SPI master controller drivers, which are the 1742 * only ones directly touching chip registers. It's how they allocate 1743 * an spi_master structure, prior to calling spi_register_master(). 1744 * 1745 * This must be called from context that can sleep. 1746 * 1747 * The caller is responsible for assigning the bus number and initializing 1748 * the master's methods before calling spi_register_master(); and (after errors 1749 * adding the device) calling spi_master_put() to prevent a memory leak. 1750 * 1751 * Return: the SPI master structure on success, else NULL. 1752 */ 1753 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1754 { 1755 struct spi_master *master; 1756 1757 if (!dev) 1758 return NULL; 1759 1760 master = kzalloc(size + sizeof(*master), GFP_KERNEL); 1761 if (!master) 1762 return NULL; 1763 1764 device_initialize(&master->dev); 1765 master->bus_num = -1; 1766 master->num_chipselect = 1; 1767 master->dev.class = &spi_master_class; 1768 master->dev.parent = dev; 1769 pm_suspend_ignore_children(&master->dev, true); 1770 spi_master_set_devdata(master, &master[1]); 1771 1772 return master; 1773 } 1774 EXPORT_SYMBOL_GPL(spi_alloc_master); 1775 1776 #ifdef CONFIG_OF 1777 static int of_spi_register_master(struct spi_master *master) 1778 { 1779 int nb, i, *cs; 1780 struct device_node *np = master->dev.of_node; 1781 1782 if (!np) 1783 return 0; 1784 1785 nb = of_gpio_named_count(np, "cs-gpios"); 1786 master->num_chipselect = max_t(int, nb, master->num_chipselect); 1787 1788 /* Return error only for an incorrectly formed cs-gpios property */ 1789 if (nb == 0 || nb == -ENOENT) 1790 return 0; 1791 else if (nb < 0) 1792 return nb; 1793 1794 cs = devm_kzalloc(&master->dev, 1795 sizeof(int) * master->num_chipselect, 1796 GFP_KERNEL); 1797 master->cs_gpios = cs; 1798 1799 if (!master->cs_gpios) 1800 return -ENOMEM; 1801 1802 for (i = 0; i < master->num_chipselect; i++) 1803 cs[i] = -ENOENT; 1804 1805 for (i = 0; i < nb; i++) 1806 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1807 1808 return 0; 1809 } 1810 #else 1811 static int of_spi_register_master(struct spi_master *master) 1812 { 1813 return 0; 1814 } 1815 #endif 1816 1817 /** 1818 * spi_register_master - register SPI master controller 1819 * @master: initialized master, originally from spi_alloc_master() 1820 * Context: can sleep 1821 * 1822 * SPI master controllers connect to their drivers using some non-SPI bus, 1823 * such as the platform bus. The final stage of probe() in that code 1824 * includes calling spi_register_master() to hook up to this SPI bus glue. 1825 * 1826 * SPI controllers use board specific (often SOC specific) bus numbers, 1827 * and board-specific addressing for SPI devices combines those numbers 1828 * with chip select numbers. Since SPI does not directly support dynamic 1829 * device identification, boards need configuration tables telling which 1830 * chip is at which address. 1831 * 1832 * This must be called from context that can sleep. It returns zero on 1833 * success, else a negative error code (dropping the master's refcount). 1834 * After a successful return, the caller is responsible for calling 1835 * spi_unregister_master(). 1836 * 1837 * Return: zero on success, else a negative error code. 1838 */ 1839 int spi_register_master(struct spi_master *master) 1840 { 1841 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1842 struct device *dev = master->dev.parent; 1843 struct boardinfo *bi; 1844 int status = -ENODEV; 1845 int dynamic = 0; 1846 1847 if (!dev) 1848 return -ENODEV; 1849 1850 status = of_spi_register_master(master); 1851 if (status) 1852 return status; 1853 1854 /* even if it's just one always-selected device, there must 1855 * be at least one chipselect 1856 */ 1857 if (master->num_chipselect == 0) 1858 return -EINVAL; 1859 1860 if ((master->bus_num < 0) && master->dev.of_node) 1861 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1862 1863 /* convention: dynamically assigned bus IDs count down from the max */ 1864 if (master->bus_num < 0) { 1865 /* FIXME switch to an IDR based scheme, something like 1866 * I2C now uses, so we can't run out of "dynamic" IDs 1867 */ 1868 master->bus_num = atomic_dec_return(&dyn_bus_id); 1869 dynamic = 1; 1870 } 1871 1872 INIT_LIST_HEAD(&master->queue); 1873 spin_lock_init(&master->queue_lock); 1874 spin_lock_init(&master->bus_lock_spinlock); 1875 mutex_init(&master->bus_lock_mutex); 1876 master->bus_lock_flag = 0; 1877 init_completion(&master->xfer_completion); 1878 if (!master->max_dma_len) 1879 master->max_dma_len = INT_MAX; 1880 1881 /* register the device, then userspace will see it. 1882 * registration fails if the bus ID is in use. 1883 */ 1884 dev_set_name(&master->dev, "spi%u", master->bus_num); 1885 status = device_add(&master->dev); 1886 if (status < 0) 1887 goto done; 1888 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1889 dynamic ? " (dynamic)" : ""); 1890 1891 /* If we're using a queued driver, start the queue */ 1892 if (master->transfer) 1893 dev_info(dev, "master is unqueued, this is deprecated\n"); 1894 else { 1895 status = spi_master_initialize_queue(master); 1896 if (status) { 1897 device_del(&master->dev); 1898 goto done; 1899 } 1900 } 1901 /* add statistics */ 1902 spin_lock_init(&master->statistics.lock); 1903 1904 mutex_lock(&board_lock); 1905 list_add_tail(&master->list, &spi_master_list); 1906 list_for_each_entry(bi, &board_list, list) 1907 spi_match_master_to_boardinfo(master, &bi->board_info); 1908 mutex_unlock(&board_lock); 1909 1910 /* Register devices from the device tree and ACPI */ 1911 of_register_spi_devices(master); 1912 acpi_register_spi_devices(master); 1913 done: 1914 return status; 1915 } 1916 EXPORT_SYMBOL_GPL(spi_register_master); 1917 1918 static void devm_spi_unregister(struct device *dev, void *res) 1919 { 1920 spi_unregister_master(*(struct spi_master **)res); 1921 } 1922 1923 /** 1924 * dev_spi_register_master - register managed SPI master controller 1925 * @dev: device managing SPI master 1926 * @master: initialized master, originally from spi_alloc_master() 1927 * Context: can sleep 1928 * 1929 * Register a SPI device as with spi_register_master() which will 1930 * automatically be unregister 1931 * 1932 * Return: zero on success, else a negative error code. 1933 */ 1934 int devm_spi_register_master(struct device *dev, struct spi_master *master) 1935 { 1936 struct spi_master **ptr; 1937 int ret; 1938 1939 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 1940 if (!ptr) 1941 return -ENOMEM; 1942 1943 ret = spi_register_master(master); 1944 if (!ret) { 1945 *ptr = master; 1946 devres_add(dev, ptr); 1947 } else { 1948 devres_free(ptr); 1949 } 1950 1951 return ret; 1952 } 1953 EXPORT_SYMBOL_GPL(devm_spi_register_master); 1954 1955 static int __unregister(struct device *dev, void *null) 1956 { 1957 spi_unregister_device(to_spi_device(dev)); 1958 return 0; 1959 } 1960 1961 /** 1962 * spi_unregister_master - unregister SPI master controller 1963 * @master: the master being unregistered 1964 * Context: can sleep 1965 * 1966 * This call is used only by SPI master controller drivers, which are the 1967 * only ones directly touching chip registers. 1968 * 1969 * This must be called from context that can sleep. 1970 */ 1971 void spi_unregister_master(struct spi_master *master) 1972 { 1973 int dummy; 1974 1975 if (master->queued) { 1976 if (spi_destroy_queue(master)) 1977 dev_err(&master->dev, "queue remove failed\n"); 1978 } 1979 1980 mutex_lock(&board_lock); 1981 list_del(&master->list); 1982 mutex_unlock(&board_lock); 1983 1984 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1985 device_unregister(&master->dev); 1986 } 1987 EXPORT_SYMBOL_GPL(spi_unregister_master); 1988 1989 int spi_master_suspend(struct spi_master *master) 1990 { 1991 int ret; 1992 1993 /* Basically no-ops for non-queued masters */ 1994 if (!master->queued) 1995 return 0; 1996 1997 ret = spi_stop_queue(master); 1998 if (ret) 1999 dev_err(&master->dev, "queue stop failed\n"); 2000 2001 return ret; 2002 } 2003 EXPORT_SYMBOL_GPL(spi_master_suspend); 2004 2005 int spi_master_resume(struct spi_master *master) 2006 { 2007 int ret; 2008 2009 if (!master->queued) 2010 return 0; 2011 2012 ret = spi_start_queue(master); 2013 if (ret) 2014 dev_err(&master->dev, "queue restart failed\n"); 2015 2016 return ret; 2017 } 2018 EXPORT_SYMBOL_GPL(spi_master_resume); 2019 2020 static int __spi_master_match(struct device *dev, const void *data) 2021 { 2022 struct spi_master *m; 2023 const u16 *bus_num = data; 2024 2025 m = container_of(dev, struct spi_master, dev); 2026 return m->bus_num == *bus_num; 2027 } 2028 2029 /** 2030 * spi_busnum_to_master - look up master associated with bus_num 2031 * @bus_num: the master's bus number 2032 * Context: can sleep 2033 * 2034 * This call may be used with devices that are registered after 2035 * arch init time. It returns a refcounted pointer to the relevant 2036 * spi_master (which the caller must release), or NULL if there is 2037 * no such master registered. 2038 * 2039 * Return: the SPI master structure on success, else NULL. 2040 */ 2041 struct spi_master *spi_busnum_to_master(u16 bus_num) 2042 { 2043 struct device *dev; 2044 struct spi_master *master = NULL; 2045 2046 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2047 __spi_master_match); 2048 if (dev) 2049 master = container_of(dev, struct spi_master, dev); 2050 /* reference got in class_find_device */ 2051 return master; 2052 } 2053 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2054 2055 /*-------------------------------------------------------------------------*/ 2056 2057 /* Core methods for SPI resource management */ 2058 2059 /** 2060 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2061 * during the processing of a spi_message while using 2062 * spi_transfer_one 2063 * @spi: the spi device for which we allocate memory 2064 * @release: the release code to execute for this resource 2065 * @size: size to alloc and return 2066 * @gfp: GFP allocation flags 2067 * 2068 * Return: the pointer to the allocated data 2069 * 2070 * This may get enhanced in the future to allocate from a memory pool 2071 * of the @spi_device or @spi_master to avoid repeated allocations. 2072 */ 2073 void *spi_res_alloc(struct spi_device *spi, 2074 spi_res_release_t release, 2075 size_t size, gfp_t gfp) 2076 { 2077 struct spi_res *sres; 2078 2079 sres = kzalloc(sizeof(*sres) + size, gfp); 2080 if (!sres) 2081 return NULL; 2082 2083 INIT_LIST_HEAD(&sres->entry); 2084 sres->release = release; 2085 2086 return sres->data; 2087 } 2088 EXPORT_SYMBOL_GPL(spi_res_alloc); 2089 2090 /** 2091 * spi_res_free - free an spi resource 2092 * @res: pointer to the custom data of a resource 2093 * 2094 */ 2095 void spi_res_free(void *res) 2096 { 2097 struct spi_res *sres = container_of(res, struct spi_res, data); 2098 2099 if (!res) 2100 return; 2101 2102 WARN_ON(!list_empty(&sres->entry)); 2103 kfree(sres); 2104 } 2105 EXPORT_SYMBOL_GPL(spi_res_free); 2106 2107 /** 2108 * spi_res_add - add a spi_res to the spi_message 2109 * @message: the spi message 2110 * @res: the spi_resource 2111 */ 2112 void spi_res_add(struct spi_message *message, void *res) 2113 { 2114 struct spi_res *sres = container_of(res, struct spi_res, data); 2115 2116 WARN_ON(!list_empty(&sres->entry)); 2117 list_add_tail(&sres->entry, &message->resources); 2118 } 2119 EXPORT_SYMBOL_GPL(spi_res_add); 2120 2121 /** 2122 * spi_res_release - release all spi resources for this message 2123 * @master: the @spi_master 2124 * @message: the @spi_message 2125 */ 2126 void spi_res_release(struct spi_master *master, 2127 struct spi_message *message) 2128 { 2129 struct spi_res *res; 2130 2131 while (!list_empty(&message->resources)) { 2132 res = list_last_entry(&message->resources, 2133 struct spi_res, entry); 2134 2135 if (res->release) 2136 res->release(master, message, res->data); 2137 2138 list_del(&res->entry); 2139 2140 kfree(res); 2141 } 2142 } 2143 EXPORT_SYMBOL_GPL(spi_res_release); 2144 2145 /*-------------------------------------------------------------------------*/ 2146 2147 /* Core methods for spi_message alterations */ 2148 2149 static void __spi_replace_transfers_release(struct spi_master *master, 2150 struct spi_message *msg, 2151 void *res) 2152 { 2153 struct spi_replaced_transfers *rxfer = res; 2154 size_t i; 2155 2156 /* call extra callback if requested */ 2157 if (rxfer->release) 2158 rxfer->release(master, msg, res); 2159 2160 /* insert replaced transfers back into the message */ 2161 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2162 2163 /* remove the formerly inserted entries */ 2164 for (i = 0; i < rxfer->inserted; i++) 2165 list_del(&rxfer->inserted_transfers[i].transfer_list); 2166 } 2167 2168 /** 2169 * spi_replace_transfers - replace transfers with several transfers 2170 * and register change with spi_message.resources 2171 * @msg: the spi_message we work upon 2172 * @xfer_first: the first spi_transfer we want to replace 2173 * @remove: number of transfers to remove 2174 * @insert: the number of transfers we want to insert instead 2175 * @release: extra release code necessary in some circumstances 2176 * @extradatasize: extra data to allocate (with alignment guarantees 2177 * of struct @spi_transfer) 2178 * @gfp: gfp flags 2179 * 2180 * Returns: pointer to @spi_replaced_transfers, 2181 * PTR_ERR(...) in case of errors. 2182 */ 2183 struct spi_replaced_transfers *spi_replace_transfers( 2184 struct spi_message *msg, 2185 struct spi_transfer *xfer_first, 2186 size_t remove, 2187 size_t insert, 2188 spi_replaced_release_t release, 2189 size_t extradatasize, 2190 gfp_t gfp) 2191 { 2192 struct spi_replaced_transfers *rxfer; 2193 struct spi_transfer *xfer; 2194 size_t i; 2195 2196 /* allocate the structure using spi_res */ 2197 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2198 insert * sizeof(struct spi_transfer) 2199 + sizeof(struct spi_replaced_transfers) 2200 + extradatasize, 2201 gfp); 2202 if (!rxfer) 2203 return ERR_PTR(-ENOMEM); 2204 2205 /* the release code to invoke before running the generic release */ 2206 rxfer->release = release; 2207 2208 /* assign extradata */ 2209 if (extradatasize) 2210 rxfer->extradata = 2211 &rxfer->inserted_transfers[insert]; 2212 2213 /* init the replaced_transfers list */ 2214 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2215 2216 /* assign the list_entry after which we should reinsert 2217 * the @replaced_transfers - it may be spi_message.messages! 2218 */ 2219 rxfer->replaced_after = xfer_first->transfer_list.prev; 2220 2221 /* remove the requested number of transfers */ 2222 for (i = 0; i < remove; i++) { 2223 /* if the entry after replaced_after it is msg->transfers 2224 * then we have been requested to remove more transfers 2225 * than are in the list 2226 */ 2227 if (rxfer->replaced_after->next == &msg->transfers) { 2228 dev_err(&msg->spi->dev, 2229 "requested to remove more spi_transfers than are available\n"); 2230 /* insert replaced transfers back into the message */ 2231 list_splice(&rxfer->replaced_transfers, 2232 rxfer->replaced_after); 2233 2234 /* free the spi_replace_transfer structure */ 2235 spi_res_free(rxfer); 2236 2237 /* and return with an error */ 2238 return ERR_PTR(-EINVAL); 2239 } 2240 2241 /* remove the entry after replaced_after from list of 2242 * transfers and add it to list of replaced_transfers 2243 */ 2244 list_move_tail(rxfer->replaced_after->next, 2245 &rxfer->replaced_transfers); 2246 } 2247 2248 /* create copy of the given xfer with identical settings 2249 * based on the first transfer to get removed 2250 */ 2251 for (i = 0; i < insert; i++) { 2252 /* we need to run in reverse order */ 2253 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 2254 2255 /* copy all spi_transfer data */ 2256 memcpy(xfer, xfer_first, sizeof(*xfer)); 2257 2258 /* add to list */ 2259 list_add(&xfer->transfer_list, rxfer->replaced_after); 2260 2261 /* clear cs_change and delay_usecs for all but the last */ 2262 if (i) { 2263 xfer->cs_change = false; 2264 xfer->delay_usecs = 0; 2265 } 2266 } 2267 2268 /* set up inserted */ 2269 rxfer->inserted = insert; 2270 2271 /* and register it with spi_res/spi_message */ 2272 spi_res_add(msg, rxfer); 2273 2274 return rxfer; 2275 } 2276 EXPORT_SYMBOL_GPL(spi_replace_transfers); 2277 2278 static int __spi_split_transfer_maxsize(struct spi_master *master, 2279 struct spi_message *msg, 2280 struct spi_transfer **xferp, 2281 size_t maxsize, 2282 gfp_t gfp) 2283 { 2284 struct spi_transfer *xfer = *xferp, *xfers; 2285 struct spi_replaced_transfers *srt; 2286 size_t offset; 2287 size_t count, i; 2288 2289 /* warn once about this fact that we are splitting a transfer */ 2290 dev_warn_once(&msg->spi->dev, 2291 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n", 2292 xfer->len, maxsize); 2293 2294 /* calculate how many we have to replace */ 2295 count = DIV_ROUND_UP(xfer->len, maxsize); 2296 2297 /* create replacement */ 2298 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 2299 if (IS_ERR(srt)) 2300 return PTR_ERR(srt); 2301 xfers = srt->inserted_transfers; 2302 2303 /* now handle each of those newly inserted spi_transfers 2304 * note that the replacements spi_transfers all are preset 2305 * to the same values as *xferp, so tx_buf, rx_buf and len 2306 * are all identical (as well as most others) 2307 * so we just have to fix up len and the pointers. 2308 * 2309 * this also includes support for the depreciated 2310 * spi_message.is_dma_mapped interface 2311 */ 2312 2313 /* the first transfer just needs the length modified, so we 2314 * run it outside the loop 2315 */ 2316 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 2317 2318 /* all the others need rx_buf/tx_buf also set */ 2319 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 2320 /* update rx_buf, tx_buf and dma */ 2321 if (xfers[i].rx_buf) 2322 xfers[i].rx_buf += offset; 2323 if (xfers[i].rx_dma) 2324 xfers[i].rx_dma += offset; 2325 if (xfers[i].tx_buf) 2326 xfers[i].tx_buf += offset; 2327 if (xfers[i].tx_dma) 2328 xfers[i].tx_dma += offset; 2329 2330 /* update length */ 2331 xfers[i].len = min(maxsize, xfers[i].len - offset); 2332 } 2333 2334 /* we set up xferp to the last entry we have inserted, 2335 * so that we skip those already split transfers 2336 */ 2337 *xferp = &xfers[count - 1]; 2338 2339 /* increment statistics counters */ 2340 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, 2341 transfers_split_maxsize); 2342 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 2343 transfers_split_maxsize); 2344 2345 return 0; 2346 } 2347 2348 /** 2349 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 2350 * when an individual transfer exceeds a 2351 * certain size 2352 * @master: the @spi_master for this transfer 2353 * @msg: the @spi_message to transform 2354 * @maxsize: the maximum when to apply this 2355 * @gfp: GFP allocation flags 2356 * 2357 * Return: status of transformation 2358 */ 2359 int spi_split_transfers_maxsize(struct spi_master *master, 2360 struct spi_message *msg, 2361 size_t maxsize, 2362 gfp_t gfp) 2363 { 2364 struct spi_transfer *xfer; 2365 int ret; 2366 2367 /* iterate over the transfer_list, 2368 * but note that xfer is advanced to the last transfer inserted 2369 * to avoid checking sizes again unnecessarily (also xfer does 2370 * potentiall belong to a different list by the time the 2371 * replacement has happened 2372 */ 2373 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 2374 if (xfer->len > maxsize) { 2375 ret = __spi_split_transfer_maxsize( 2376 master, msg, &xfer, maxsize, gfp); 2377 if (ret) 2378 return ret; 2379 } 2380 } 2381 2382 return 0; 2383 } 2384 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 2385 2386 /*-------------------------------------------------------------------------*/ 2387 2388 /* Core methods for SPI master protocol drivers. Some of the 2389 * other core methods are currently defined as inline functions. 2390 */ 2391 2392 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word) 2393 { 2394 if (master->bits_per_word_mask) { 2395 /* Only 32 bits fit in the mask */ 2396 if (bits_per_word > 32) 2397 return -EINVAL; 2398 if (!(master->bits_per_word_mask & 2399 SPI_BPW_MASK(bits_per_word))) 2400 return -EINVAL; 2401 } 2402 2403 return 0; 2404 } 2405 2406 /** 2407 * spi_setup - setup SPI mode and clock rate 2408 * @spi: the device whose settings are being modified 2409 * Context: can sleep, and no requests are queued to the device 2410 * 2411 * SPI protocol drivers may need to update the transfer mode if the 2412 * device doesn't work with its default. They may likewise need 2413 * to update clock rates or word sizes from initial values. This function 2414 * changes those settings, and must be called from a context that can sleep. 2415 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 2416 * effect the next time the device is selected and data is transferred to 2417 * or from it. When this function returns, the spi device is deselected. 2418 * 2419 * Note that this call will fail if the protocol driver specifies an option 2420 * that the underlying controller or its driver does not support. For 2421 * example, not all hardware supports wire transfers using nine bit words, 2422 * LSB-first wire encoding, or active-high chipselects. 2423 * 2424 * Return: zero on success, else a negative error code. 2425 */ 2426 int spi_setup(struct spi_device *spi) 2427 { 2428 unsigned bad_bits, ugly_bits; 2429 int status; 2430 2431 /* check mode to prevent that DUAL and QUAD set at the same time 2432 */ 2433 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 2434 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 2435 dev_err(&spi->dev, 2436 "setup: can not select dual and quad at the same time\n"); 2437 return -EINVAL; 2438 } 2439 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 2440 */ 2441 if ((spi->mode & SPI_3WIRE) && (spi->mode & 2442 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 2443 return -EINVAL; 2444 /* help drivers fail *cleanly* when they need options 2445 * that aren't supported with their current master 2446 */ 2447 bad_bits = spi->mode & ~spi->master->mode_bits; 2448 ugly_bits = bad_bits & 2449 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); 2450 if (ugly_bits) { 2451 dev_warn(&spi->dev, 2452 "setup: ignoring unsupported mode bits %x\n", 2453 ugly_bits); 2454 spi->mode &= ~ugly_bits; 2455 bad_bits &= ~ugly_bits; 2456 } 2457 if (bad_bits) { 2458 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 2459 bad_bits); 2460 return -EINVAL; 2461 } 2462 2463 if (!spi->bits_per_word) 2464 spi->bits_per_word = 8; 2465 2466 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word); 2467 if (status) 2468 return status; 2469 2470 if (!spi->max_speed_hz) 2471 spi->max_speed_hz = spi->master->max_speed_hz; 2472 2473 if (spi->master->setup) 2474 status = spi->master->setup(spi); 2475 2476 spi_set_cs(spi, false); 2477 2478 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 2479 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 2480 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 2481 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 2482 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 2483 (spi->mode & SPI_LOOP) ? "loopback, " : "", 2484 spi->bits_per_word, spi->max_speed_hz, 2485 status); 2486 2487 return status; 2488 } 2489 EXPORT_SYMBOL_GPL(spi_setup); 2490 2491 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 2492 { 2493 struct spi_master *master = spi->master; 2494 struct spi_transfer *xfer; 2495 int w_size; 2496 2497 if (list_empty(&message->transfers)) 2498 return -EINVAL; 2499 2500 /* Half-duplex links include original MicroWire, and ones with 2501 * only one data pin like SPI_3WIRE (switches direction) or where 2502 * either MOSI or MISO is missing. They can also be caused by 2503 * software limitations. 2504 */ 2505 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 2506 || (spi->mode & SPI_3WIRE)) { 2507 unsigned flags = master->flags; 2508 2509 list_for_each_entry(xfer, &message->transfers, transfer_list) { 2510 if (xfer->rx_buf && xfer->tx_buf) 2511 return -EINVAL; 2512 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 2513 return -EINVAL; 2514 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 2515 return -EINVAL; 2516 } 2517 } 2518 2519 /** 2520 * Set transfer bits_per_word and max speed as spi device default if 2521 * it is not set for this transfer. 2522 * Set transfer tx_nbits and rx_nbits as single transfer default 2523 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 2524 */ 2525 message->frame_length = 0; 2526 list_for_each_entry(xfer, &message->transfers, transfer_list) { 2527 message->frame_length += xfer->len; 2528 if (!xfer->bits_per_word) 2529 xfer->bits_per_word = spi->bits_per_word; 2530 2531 if (!xfer->speed_hz) 2532 xfer->speed_hz = spi->max_speed_hz; 2533 if (!xfer->speed_hz) 2534 xfer->speed_hz = master->max_speed_hz; 2535 2536 if (master->max_speed_hz && 2537 xfer->speed_hz > master->max_speed_hz) 2538 xfer->speed_hz = master->max_speed_hz; 2539 2540 if (__spi_validate_bits_per_word(master, xfer->bits_per_word)) 2541 return -EINVAL; 2542 2543 /* 2544 * SPI transfer length should be multiple of SPI word size 2545 * where SPI word size should be power-of-two multiple 2546 */ 2547 if (xfer->bits_per_word <= 8) 2548 w_size = 1; 2549 else if (xfer->bits_per_word <= 16) 2550 w_size = 2; 2551 else 2552 w_size = 4; 2553 2554 /* No partial transfers accepted */ 2555 if (xfer->len % w_size) 2556 return -EINVAL; 2557 2558 if (xfer->speed_hz && master->min_speed_hz && 2559 xfer->speed_hz < master->min_speed_hz) 2560 return -EINVAL; 2561 2562 if (xfer->tx_buf && !xfer->tx_nbits) 2563 xfer->tx_nbits = SPI_NBITS_SINGLE; 2564 if (xfer->rx_buf && !xfer->rx_nbits) 2565 xfer->rx_nbits = SPI_NBITS_SINGLE; 2566 /* check transfer tx/rx_nbits: 2567 * 1. check the value matches one of single, dual and quad 2568 * 2. check tx/rx_nbits match the mode in spi_device 2569 */ 2570 if (xfer->tx_buf) { 2571 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 2572 xfer->tx_nbits != SPI_NBITS_DUAL && 2573 xfer->tx_nbits != SPI_NBITS_QUAD) 2574 return -EINVAL; 2575 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 2576 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 2577 return -EINVAL; 2578 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 2579 !(spi->mode & SPI_TX_QUAD)) 2580 return -EINVAL; 2581 } 2582 /* check transfer rx_nbits */ 2583 if (xfer->rx_buf) { 2584 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 2585 xfer->rx_nbits != SPI_NBITS_DUAL && 2586 xfer->rx_nbits != SPI_NBITS_QUAD) 2587 return -EINVAL; 2588 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 2589 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 2590 return -EINVAL; 2591 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 2592 !(spi->mode & SPI_RX_QUAD)) 2593 return -EINVAL; 2594 } 2595 } 2596 2597 message->status = -EINPROGRESS; 2598 2599 return 0; 2600 } 2601 2602 static int __spi_async(struct spi_device *spi, struct spi_message *message) 2603 { 2604 struct spi_master *master = spi->master; 2605 2606 message->spi = spi; 2607 2608 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async); 2609 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 2610 2611 trace_spi_message_submit(message); 2612 2613 return master->transfer(spi, message); 2614 } 2615 2616 /** 2617 * spi_async - asynchronous SPI transfer 2618 * @spi: device with which data will be exchanged 2619 * @message: describes the data transfers, including completion callback 2620 * Context: any (irqs may be blocked, etc) 2621 * 2622 * This call may be used in_irq and other contexts which can't sleep, 2623 * as well as from task contexts which can sleep. 2624 * 2625 * The completion callback is invoked in a context which can't sleep. 2626 * Before that invocation, the value of message->status is undefined. 2627 * When the callback is issued, message->status holds either zero (to 2628 * indicate complete success) or a negative error code. After that 2629 * callback returns, the driver which issued the transfer request may 2630 * deallocate the associated memory; it's no longer in use by any SPI 2631 * core or controller driver code. 2632 * 2633 * Note that although all messages to a spi_device are handled in 2634 * FIFO order, messages may go to different devices in other orders. 2635 * Some device might be higher priority, or have various "hard" access 2636 * time requirements, for example. 2637 * 2638 * On detection of any fault during the transfer, processing of 2639 * the entire message is aborted, and the device is deselected. 2640 * Until returning from the associated message completion callback, 2641 * no other spi_message queued to that device will be processed. 2642 * (This rule applies equally to all the synchronous transfer calls, 2643 * which are wrappers around this core asynchronous primitive.) 2644 * 2645 * Return: zero on success, else a negative error code. 2646 */ 2647 int spi_async(struct spi_device *spi, struct spi_message *message) 2648 { 2649 struct spi_master *master = spi->master; 2650 int ret; 2651 unsigned long flags; 2652 2653 ret = __spi_validate(spi, message); 2654 if (ret != 0) 2655 return ret; 2656 2657 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2658 2659 if (master->bus_lock_flag) 2660 ret = -EBUSY; 2661 else 2662 ret = __spi_async(spi, message); 2663 2664 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2665 2666 return ret; 2667 } 2668 EXPORT_SYMBOL_GPL(spi_async); 2669 2670 /** 2671 * spi_async_locked - version of spi_async with exclusive bus usage 2672 * @spi: device with which data will be exchanged 2673 * @message: describes the data transfers, including completion callback 2674 * Context: any (irqs may be blocked, etc) 2675 * 2676 * This call may be used in_irq and other contexts which can't sleep, 2677 * as well as from task contexts which can sleep. 2678 * 2679 * The completion callback is invoked in a context which can't sleep. 2680 * Before that invocation, the value of message->status is undefined. 2681 * When the callback is issued, message->status holds either zero (to 2682 * indicate complete success) or a negative error code. After that 2683 * callback returns, the driver which issued the transfer request may 2684 * deallocate the associated memory; it's no longer in use by any SPI 2685 * core or controller driver code. 2686 * 2687 * Note that although all messages to a spi_device are handled in 2688 * FIFO order, messages may go to different devices in other orders. 2689 * Some device might be higher priority, or have various "hard" access 2690 * time requirements, for example. 2691 * 2692 * On detection of any fault during the transfer, processing of 2693 * the entire message is aborted, and the device is deselected. 2694 * Until returning from the associated message completion callback, 2695 * no other spi_message queued to that device will be processed. 2696 * (This rule applies equally to all the synchronous transfer calls, 2697 * which are wrappers around this core asynchronous primitive.) 2698 * 2699 * Return: zero on success, else a negative error code. 2700 */ 2701 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 2702 { 2703 struct spi_master *master = spi->master; 2704 int ret; 2705 unsigned long flags; 2706 2707 ret = __spi_validate(spi, message); 2708 if (ret != 0) 2709 return ret; 2710 2711 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2712 2713 ret = __spi_async(spi, message); 2714 2715 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2716 2717 return ret; 2718 2719 } 2720 EXPORT_SYMBOL_GPL(spi_async_locked); 2721 2722 2723 int spi_flash_read(struct spi_device *spi, 2724 struct spi_flash_read_message *msg) 2725 2726 { 2727 struct spi_master *master = spi->master; 2728 int ret; 2729 2730 if ((msg->opcode_nbits == SPI_NBITS_DUAL || 2731 msg->addr_nbits == SPI_NBITS_DUAL) && 2732 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 2733 return -EINVAL; 2734 if ((msg->opcode_nbits == SPI_NBITS_QUAD || 2735 msg->addr_nbits == SPI_NBITS_QUAD) && 2736 !(spi->mode & SPI_TX_QUAD)) 2737 return -EINVAL; 2738 if (msg->data_nbits == SPI_NBITS_DUAL && 2739 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 2740 return -EINVAL; 2741 if (msg->data_nbits == SPI_NBITS_QUAD && 2742 !(spi->mode & SPI_RX_QUAD)) 2743 return -EINVAL; 2744 2745 if (master->auto_runtime_pm) { 2746 ret = pm_runtime_get_sync(master->dev.parent); 2747 if (ret < 0) { 2748 dev_err(&master->dev, "Failed to power device: %d\n", 2749 ret); 2750 return ret; 2751 } 2752 } 2753 mutex_lock(&master->bus_lock_mutex); 2754 ret = master->spi_flash_read(spi, msg); 2755 mutex_unlock(&master->bus_lock_mutex); 2756 if (master->auto_runtime_pm) 2757 pm_runtime_put(master->dev.parent); 2758 2759 return ret; 2760 } 2761 EXPORT_SYMBOL_GPL(spi_flash_read); 2762 2763 /*-------------------------------------------------------------------------*/ 2764 2765 /* Utility methods for SPI master protocol drivers, layered on 2766 * top of the core. Some other utility methods are defined as 2767 * inline functions. 2768 */ 2769 2770 static void spi_complete(void *arg) 2771 { 2772 complete(arg); 2773 } 2774 2775 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 2776 int bus_locked) 2777 { 2778 DECLARE_COMPLETION_ONSTACK(done); 2779 int status; 2780 struct spi_master *master = spi->master; 2781 unsigned long flags; 2782 2783 status = __spi_validate(spi, message); 2784 if (status != 0) 2785 return status; 2786 2787 message->complete = spi_complete; 2788 message->context = &done; 2789 message->spi = spi; 2790 2791 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync); 2792 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 2793 2794 if (!bus_locked) 2795 mutex_lock(&master->bus_lock_mutex); 2796 2797 /* If we're not using the legacy transfer method then we will 2798 * try to transfer in the calling context so special case. 2799 * This code would be less tricky if we could remove the 2800 * support for driver implemented message queues. 2801 */ 2802 if (master->transfer == spi_queued_transfer) { 2803 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2804 2805 trace_spi_message_submit(message); 2806 2807 status = __spi_queued_transfer(spi, message, false); 2808 2809 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2810 } else { 2811 status = spi_async_locked(spi, message); 2812 } 2813 2814 if (!bus_locked) 2815 mutex_unlock(&master->bus_lock_mutex); 2816 2817 if (status == 0) { 2818 /* Push out the messages in the calling context if we 2819 * can. 2820 */ 2821 if (master->transfer == spi_queued_transfer) { 2822 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, 2823 spi_sync_immediate); 2824 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 2825 spi_sync_immediate); 2826 __spi_pump_messages(master, false, bus_locked); 2827 } 2828 2829 wait_for_completion(&done); 2830 status = message->status; 2831 } 2832 message->context = NULL; 2833 return status; 2834 } 2835 2836 /** 2837 * spi_sync - blocking/synchronous SPI data transfers 2838 * @spi: device with which data will be exchanged 2839 * @message: describes the data transfers 2840 * Context: can sleep 2841 * 2842 * This call may only be used from a context that may sleep. The sleep 2843 * is non-interruptible, and has no timeout. Low-overhead controller 2844 * drivers may DMA directly into and out of the message buffers. 2845 * 2846 * Note that the SPI device's chip select is active during the message, 2847 * and then is normally disabled between messages. Drivers for some 2848 * frequently-used devices may want to minimize costs of selecting a chip, 2849 * by leaving it selected in anticipation that the next message will go 2850 * to the same chip. (That may increase power usage.) 2851 * 2852 * Also, the caller is guaranteeing that the memory associated with the 2853 * message will not be freed before this call returns. 2854 * 2855 * Return: zero on success, else a negative error code. 2856 */ 2857 int spi_sync(struct spi_device *spi, struct spi_message *message) 2858 { 2859 return __spi_sync(spi, message, spi->master->bus_lock_flag); 2860 } 2861 EXPORT_SYMBOL_GPL(spi_sync); 2862 2863 /** 2864 * spi_sync_locked - version of spi_sync with exclusive bus usage 2865 * @spi: device with which data will be exchanged 2866 * @message: describes the data transfers 2867 * Context: can sleep 2868 * 2869 * This call may only be used from a context that may sleep. The sleep 2870 * is non-interruptible, and has no timeout. Low-overhead controller 2871 * drivers may DMA directly into and out of the message buffers. 2872 * 2873 * This call should be used by drivers that require exclusive access to the 2874 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 2875 * be released by a spi_bus_unlock call when the exclusive access is over. 2876 * 2877 * Return: zero on success, else a negative error code. 2878 */ 2879 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 2880 { 2881 return __spi_sync(spi, message, 1); 2882 } 2883 EXPORT_SYMBOL_GPL(spi_sync_locked); 2884 2885 /** 2886 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 2887 * @master: SPI bus master that should be locked for exclusive bus access 2888 * Context: can sleep 2889 * 2890 * This call may only be used from a context that may sleep. The sleep 2891 * is non-interruptible, and has no timeout. 2892 * 2893 * This call should be used by drivers that require exclusive access to the 2894 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 2895 * exclusive access is over. Data transfer must be done by spi_sync_locked 2896 * and spi_async_locked calls when the SPI bus lock is held. 2897 * 2898 * Return: always zero. 2899 */ 2900 int spi_bus_lock(struct spi_master *master) 2901 { 2902 unsigned long flags; 2903 2904 mutex_lock(&master->bus_lock_mutex); 2905 2906 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2907 master->bus_lock_flag = 1; 2908 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2909 2910 /* mutex remains locked until spi_bus_unlock is called */ 2911 2912 return 0; 2913 } 2914 EXPORT_SYMBOL_GPL(spi_bus_lock); 2915 2916 /** 2917 * spi_bus_unlock - release the lock for exclusive SPI bus usage 2918 * @master: SPI bus master that was locked for exclusive bus access 2919 * Context: can sleep 2920 * 2921 * This call may only be used from a context that may sleep. The sleep 2922 * is non-interruptible, and has no timeout. 2923 * 2924 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 2925 * call. 2926 * 2927 * Return: always zero. 2928 */ 2929 int spi_bus_unlock(struct spi_master *master) 2930 { 2931 master->bus_lock_flag = 0; 2932 2933 mutex_unlock(&master->bus_lock_mutex); 2934 2935 return 0; 2936 } 2937 EXPORT_SYMBOL_GPL(spi_bus_unlock); 2938 2939 /* portable code must never pass more than 32 bytes */ 2940 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 2941 2942 static u8 *buf; 2943 2944 /** 2945 * spi_write_then_read - SPI synchronous write followed by read 2946 * @spi: device with which data will be exchanged 2947 * @txbuf: data to be written (need not be dma-safe) 2948 * @n_tx: size of txbuf, in bytes 2949 * @rxbuf: buffer into which data will be read (need not be dma-safe) 2950 * @n_rx: size of rxbuf, in bytes 2951 * Context: can sleep 2952 * 2953 * This performs a half duplex MicroWire style transaction with the 2954 * device, sending txbuf and then reading rxbuf. The return value 2955 * is zero for success, else a negative errno status code. 2956 * This call may only be used from a context that may sleep. 2957 * 2958 * Parameters to this routine are always copied using a small buffer; 2959 * portable code should never use this for more than 32 bytes. 2960 * Performance-sensitive or bulk transfer code should instead use 2961 * spi_{async,sync}() calls with dma-safe buffers. 2962 * 2963 * Return: zero on success, else a negative error code. 2964 */ 2965 int spi_write_then_read(struct spi_device *spi, 2966 const void *txbuf, unsigned n_tx, 2967 void *rxbuf, unsigned n_rx) 2968 { 2969 static DEFINE_MUTEX(lock); 2970 2971 int status; 2972 struct spi_message message; 2973 struct spi_transfer x[2]; 2974 u8 *local_buf; 2975 2976 /* Use preallocated DMA-safe buffer if we can. We can't avoid 2977 * copying here, (as a pure convenience thing), but we can 2978 * keep heap costs out of the hot path unless someone else is 2979 * using the pre-allocated buffer or the transfer is too large. 2980 */ 2981 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 2982 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 2983 GFP_KERNEL | GFP_DMA); 2984 if (!local_buf) 2985 return -ENOMEM; 2986 } else { 2987 local_buf = buf; 2988 } 2989 2990 spi_message_init(&message); 2991 memset(x, 0, sizeof(x)); 2992 if (n_tx) { 2993 x[0].len = n_tx; 2994 spi_message_add_tail(&x[0], &message); 2995 } 2996 if (n_rx) { 2997 x[1].len = n_rx; 2998 spi_message_add_tail(&x[1], &message); 2999 } 3000 3001 memcpy(local_buf, txbuf, n_tx); 3002 x[0].tx_buf = local_buf; 3003 x[1].rx_buf = local_buf + n_tx; 3004 3005 /* do the i/o */ 3006 status = spi_sync(spi, &message); 3007 if (status == 0) 3008 memcpy(rxbuf, x[1].rx_buf, n_rx); 3009 3010 if (x[0].tx_buf == buf) 3011 mutex_unlock(&lock); 3012 else 3013 kfree(local_buf); 3014 3015 return status; 3016 } 3017 EXPORT_SYMBOL_GPL(spi_write_then_read); 3018 3019 /*-------------------------------------------------------------------------*/ 3020 3021 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3022 static int __spi_of_device_match(struct device *dev, void *data) 3023 { 3024 return dev->of_node == data; 3025 } 3026 3027 /* must call put_device() when done with returned spi_device device */ 3028 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3029 { 3030 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 3031 __spi_of_device_match); 3032 return dev ? to_spi_device(dev) : NULL; 3033 } 3034 3035 static int __spi_of_master_match(struct device *dev, const void *data) 3036 { 3037 return dev->of_node == data; 3038 } 3039 3040 /* the spi masters are not using spi_bus, so we find it with another way */ 3041 static struct spi_master *of_find_spi_master_by_node(struct device_node *node) 3042 { 3043 struct device *dev; 3044 3045 dev = class_find_device(&spi_master_class, NULL, node, 3046 __spi_of_master_match); 3047 if (!dev) 3048 return NULL; 3049 3050 /* reference got in class_find_device */ 3051 return container_of(dev, struct spi_master, dev); 3052 } 3053 3054 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3055 void *arg) 3056 { 3057 struct of_reconfig_data *rd = arg; 3058 struct spi_master *master; 3059 struct spi_device *spi; 3060 3061 switch (of_reconfig_get_state_change(action, arg)) { 3062 case OF_RECONFIG_CHANGE_ADD: 3063 master = of_find_spi_master_by_node(rd->dn->parent); 3064 if (master == NULL) 3065 return NOTIFY_OK; /* not for us */ 3066 3067 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3068 put_device(&master->dev); 3069 return NOTIFY_OK; 3070 } 3071 3072 spi = of_register_spi_device(master, rd->dn); 3073 put_device(&master->dev); 3074 3075 if (IS_ERR(spi)) { 3076 pr_err("%s: failed to create for '%s'\n", 3077 __func__, rd->dn->full_name); 3078 return notifier_from_errno(PTR_ERR(spi)); 3079 } 3080 break; 3081 3082 case OF_RECONFIG_CHANGE_REMOVE: 3083 /* already depopulated? */ 3084 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3085 return NOTIFY_OK; 3086 3087 /* find our device by node */ 3088 spi = of_find_spi_device_by_node(rd->dn); 3089 if (spi == NULL) 3090 return NOTIFY_OK; /* no? not meant for us */ 3091 3092 /* unregister takes one ref away */ 3093 spi_unregister_device(spi); 3094 3095 /* and put the reference of the find */ 3096 put_device(&spi->dev); 3097 break; 3098 } 3099 3100 return NOTIFY_OK; 3101 } 3102 3103 static struct notifier_block spi_of_notifier = { 3104 .notifier_call = of_spi_notify, 3105 }; 3106 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3107 extern struct notifier_block spi_of_notifier; 3108 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3109 3110 static int __init spi_init(void) 3111 { 3112 int status; 3113 3114 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 3115 if (!buf) { 3116 status = -ENOMEM; 3117 goto err0; 3118 } 3119 3120 status = bus_register(&spi_bus_type); 3121 if (status < 0) 3122 goto err1; 3123 3124 status = class_register(&spi_master_class); 3125 if (status < 0) 3126 goto err2; 3127 3128 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 3129 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 3130 3131 return 0; 3132 3133 err2: 3134 bus_unregister(&spi_bus_type); 3135 err1: 3136 kfree(buf); 3137 buf = NULL; 3138 err0: 3139 return status; 3140 } 3141 3142 /* board_info is normally registered in arch_initcall(), 3143 * but even essential drivers wait till later 3144 * 3145 * REVISIT only boardinfo really needs static linking. the rest (device and 3146 * driver registration) _could_ be dynamically linked (modular) ... costs 3147 * include needing to have boardinfo data structures be much more public. 3148 */ 3149 postcore_initcall(spi_init); 3150 3151