1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Emptry string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del opertion for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /** 479 * spi_alloc_device - Allocate a new SPI device 480 * @ctlr: Controller to which device is connected 481 * Context: can sleep 482 * 483 * Allows a driver to allocate and initialize a spi_device without 484 * registering it immediately. This allows a driver to directly 485 * fill the spi_device with device parameters before calling 486 * spi_add_device() on it. 487 * 488 * Caller is responsible to call spi_add_device() on the returned 489 * spi_device structure to add it to the SPI controller. If the caller 490 * needs to discard the spi_device without adding it, then it should 491 * call spi_dev_put() on it. 492 * 493 * Return: a pointer to the new device, or NULL. 494 */ 495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 496 { 497 struct spi_device *spi; 498 499 if (!spi_controller_get(ctlr)) 500 return NULL; 501 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 503 if (!spi) { 504 spi_controller_put(ctlr); 505 return NULL; 506 } 507 508 spi->master = spi->controller = ctlr; 509 spi->dev.parent = &ctlr->dev; 510 spi->dev.bus = &spi_bus_type; 511 spi->dev.release = spidev_release; 512 spi->cs_gpio = -ENOENT; 513 514 spin_lock_init(&spi->statistics.lock); 515 516 device_initialize(&spi->dev); 517 return spi; 518 } 519 EXPORT_SYMBOL_GPL(spi_alloc_device); 520 521 static void spi_dev_set_name(struct spi_device *spi) 522 { 523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 524 525 if (adev) { 526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 527 return; 528 } 529 530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 531 spi->chip_select); 532 } 533 534 static int spi_dev_check(struct device *dev, void *data) 535 { 536 struct spi_device *spi = to_spi_device(dev); 537 struct spi_device *new_spi = data; 538 539 if (spi->controller == new_spi->controller && 540 spi->chip_select == new_spi->chip_select) 541 return -EBUSY; 542 return 0; 543 } 544 545 /** 546 * spi_add_device - Add spi_device allocated with spi_alloc_device 547 * @spi: spi_device to register 548 * 549 * Companion function to spi_alloc_device. Devices allocated with 550 * spi_alloc_device can be added onto the spi bus with this function. 551 * 552 * Return: 0 on success; negative errno on failure 553 */ 554 int spi_add_device(struct spi_device *spi) 555 { 556 static DEFINE_MUTEX(spi_add_lock); 557 struct spi_controller *ctlr = spi->controller; 558 struct device *dev = ctlr->dev.parent; 559 int status; 560 561 /* Chipselects are numbered 0..max; validate. */ 562 if (spi->chip_select >= ctlr->num_chipselect) { 563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 564 ctlr->num_chipselect); 565 return -EINVAL; 566 } 567 568 /* Set the bus ID string */ 569 spi_dev_set_name(spi); 570 571 /* We need to make sure there's no other device with this 572 * chipselect **BEFORE** we call setup(), else we'll trash 573 * its configuration. Lock against concurrent add() calls. 574 */ 575 mutex_lock(&spi_add_lock); 576 577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 578 if (status) { 579 dev_err(dev, "chipselect %d already in use\n", 580 spi->chip_select); 581 goto done; 582 } 583 584 /* Descriptors take precedence */ 585 if (ctlr->cs_gpiods) 586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 587 else if (ctlr->cs_gpios) 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 589 590 /* Drivers may modify this initial i/o setup, but will 591 * normally rely on the device being setup. Devices 592 * using SPI_CS_HIGH can't coexist well otherwise... 593 */ 594 status = spi_setup(spi); 595 if (status < 0) { 596 dev_err(dev, "can't setup %s, status %d\n", 597 dev_name(&spi->dev), status); 598 goto done; 599 } 600 601 /* Device may be bound to an active driver when this returns */ 602 status = device_add(&spi->dev); 603 if (status < 0) 604 dev_err(dev, "can't add %s, status %d\n", 605 dev_name(&spi->dev), status); 606 else 607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 608 609 done: 610 mutex_unlock(&spi_add_lock); 611 return status; 612 } 613 EXPORT_SYMBOL_GPL(spi_add_device); 614 615 /** 616 * spi_new_device - instantiate one new SPI device 617 * @ctlr: Controller to which device is connected 618 * @chip: Describes the SPI device 619 * Context: can sleep 620 * 621 * On typical mainboards, this is purely internal; and it's not needed 622 * after board init creates the hard-wired devices. Some development 623 * platforms may not be able to use spi_register_board_info though, and 624 * this is exported so that for example a USB or parport based adapter 625 * driver could add devices (which it would learn about out-of-band). 626 * 627 * Return: the new device, or NULL. 628 */ 629 struct spi_device *spi_new_device(struct spi_controller *ctlr, 630 struct spi_board_info *chip) 631 { 632 struct spi_device *proxy; 633 int status; 634 635 /* NOTE: caller did any chip->bus_num checks necessary. 636 * 637 * Also, unless we change the return value convention to use 638 * error-or-pointer (not NULL-or-pointer), troubleshootability 639 * suggests syslogged diagnostics are best here (ugh). 640 */ 641 642 proxy = spi_alloc_device(ctlr); 643 if (!proxy) 644 return NULL; 645 646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 647 648 proxy->chip_select = chip->chip_select; 649 proxy->max_speed_hz = chip->max_speed_hz; 650 proxy->mode = chip->mode; 651 proxy->irq = chip->irq; 652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 653 proxy->dev.platform_data = (void *) chip->platform_data; 654 proxy->controller_data = chip->controller_data; 655 proxy->controller_state = NULL; 656 657 if (chip->properties) { 658 status = device_add_properties(&proxy->dev, chip->properties); 659 if (status) { 660 dev_err(&ctlr->dev, 661 "failed to add properties to '%s': %d\n", 662 chip->modalias, status); 663 goto err_dev_put; 664 } 665 } 666 667 status = spi_add_device(proxy); 668 if (status < 0) 669 goto err_remove_props; 670 671 return proxy; 672 673 err_remove_props: 674 if (chip->properties) 675 device_remove_properties(&proxy->dev); 676 err_dev_put: 677 spi_dev_put(proxy); 678 return NULL; 679 } 680 EXPORT_SYMBOL_GPL(spi_new_device); 681 682 /** 683 * spi_unregister_device - unregister a single SPI device 684 * @spi: spi_device to unregister 685 * 686 * Start making the passed SPI device vanish. Normally this would be handled 687 * by spi_unregister_controller(). 688 */ 689 void spi_unregister_device(struct spi_device *spi) 690 { 691 if (!spi) 692 return; 693 694 if (spi->dev.of_node) { 695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 696 of_node_put(spi->dev.of_node); 697 } 698 if (ACPI_COMPANION(&spi->dev)) 699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 700 device_unregister(&spi->dev); 701 } 702 EXPORT_SYMBOL_GPL(spi_unregister_device); 703 704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 705 struct spi_board_info *bi) 706 { 707 struct spi_device *dev; 708 709 if (ctlr->bus_num != bi->bus_num) 710 return; 711 712 dev = spi_new_device(ctlr, bi); 713 if (!dev) 714 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 715 bi->modalias); 716 } 717 718 /** 719 * spi_register_board_info - register SPI devices for a given board 720 * @info: array of chip descriptors 721 * @n: how many descriptors are provided 722 * Context: can sleep 723 * 724 * Board-specific early init code calls this (probably during arch_initcall) 725 * with segments of the SPI device table. Any device nodes are created later, 726 * after the relevant parent SPI controller (bus_num) is defined. We keep 727 * this table of devices forever, so that reloading a controller driver will 728 * not make Linux forget about these hard-wired devices. 729 * 730 * Other code can also call this, e.g. a particular add-on board might provide 731 * SPI devices through its expansion connector, so code initializing that board 732 * would naturally declare its SPI devices. 733 * 734 * The board info passed can safely be __initdata ... but be careful of 735 * any embedded pointers (platform_data, etc), they're copied as-is. 736 * Device properties are deep-copied though. 737 * 738 * Return: zero on success, else a negative error code. 739 */ 740 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 741 { 742 struct boardinfo *bi; 743 int i; 744 745 if (!n) 746 return 0; 747 748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 749 if (!bi) 750 return -ENOMEM; 751 752 for (i = 0; i < n; i++, bi++, info++) { 753 struct spi_controller *ctlr; 754 755 memcpy(&bi->board_info, info, sizeof(*info)); 756 if (info->properties) { 757 bi->board_info.properties = 758 property_entries_dup(info->properties); 759 if (IS_ERR(bi->board_info.properties)) 760 return PTR_ERR(bi->board_info.properties); 761 } 762 763 mutex_lock(&board_lock); 764 list_add_tail(&bi->list, &board_list); 765 list_for_each_entry(ctlr, &spi_controller_list, list) 766 spi_match_controller_to_boardinfo(ctlr, 767 &bi->board_info); 768 mutex_unlock(&board_lock); 769 } 770 771 return 0; 772 } 773 774 /*-------------------------------------------------------------------------*/ 775 776 static void spi_set_cs(struct spi_device *spi, bool enable) 777 { 778 if (spi->mode & SPI_CS_HIGH) 779 enable = !enable; 780 781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 782 /* 783 * Honour the SPI_NO_CS flag and invert the enable line, as 784 * active low is default for SPI. Execution paths that handle 785 * polarity inversion in gpiolib (such as device tree) will 786 * enforce active high using the SPI_CS_HIGH resulting in a 787 * double inversion through the code above. 788 */ 789 if (!(spi->mode & SPI_NO_CS)) { 790 if (spi->cs_gpiod) 791 gpiod_set_value_cansleep(spi->cs_gpiod, 792 !enable); 793 else 794 gpio_set_value_cansleep(spi->cs_gpio, !enable); 795 } 796 /* Some SPI masters need both GPIO CS & slave_select */ 797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 798 spi->controller->set_cs) 799 spi->controller->set_cs(spi, !enable); 800 } else if (spi->controller->set_cs) { 801 spi->controller->set_cs(spi, !enable); 802 } 803 } 804 805 #ifdef CONFIG_HAS_DMA 806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 807 struct sg_table *sgt, void *buf, size_t len, 808 enum dma_data_direction dir) 809 { 810 const bool vmalloced_buf = is_vmalloc_addr(buf); 811 unsigned int max_seg_size = dma_get_max_seg_size(dev); 812 #ifdef CONFIG_HIGHMEM 813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 814 (unsigned long)buf < (PKMAP_BASE + 815 (LAST_PKMAP * PAGE_SIZE))); 816 #else 817 const bool kmap_buf = false; 818 #endif 819 int desc_len; 820 int sgs; 821 struct page *vm_page; 822 struct scatterlist *sg; 823 void *sg_buf; 824 size_t min; 825 int i, ret; 826 827 if (vmalloced_buf || kmap_buf) { 828 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 830 } else if (virt_addr_valid(buf)) { 831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 832 sgs = DIV_ROUND_UP(len, desc_len); 833 } else { 834 return -EINVAL; 835 } 836 837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 838 if (ret != 0) 839 return ret; 840 841 sg = &sgt->sgl[0]; 842 for (i = 0; i < sgs; i++) { 843 844 if (vmalloced_buf || kmap_buf) { 845 /* 846 * Next scatterlist entry size is the minimum between 847 * the desc_len and the remaining buffer length that 848 * fits in a page. 849 */ 850 min = min_t(size_t, desc_len, 851 min_t(size_t, len, 852 PAGE_SIZE - offset_in_page(buf))); 853 if (vmalloced_buf) 854 vm_page = vmalloc_to_page(buf); 855 else 856 vm_page = kmap_to_page(buf); 857 if (!vm_page) { 858 sg_free_table(sgt); 859 return -ENOMEM; 860 } 861 sg_set_page(sg, vm_page, 862 min, offset_in_page(buf)); 863 } else { 864 min = min_t(size_t, len, desc_len); 865 sg_buf = buf; 866 sg_set_buf(sg, sg_buf, min); 867 } 868 869 buf += min; 870 len -= min; 871 sg = sg_next(sg); 872 } 873 874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 875 if (!ret) 876 ret = -ENOMEM; 877 if (ret < 0) { 878 sg_free_table(sgt); 879 return ret; 880 } 881 882 sgt->nents = ret; 883 884 return 0; 885 } 886 887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 888 struct sg_table *sgt, enum dma_data_direction dir) 889 { 890 if (sgt->orig_nents) { 891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 892 sg_free_table(sgt); 893 } 894 } 895 896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 897 { 898 struct device *tx_dev, *rx_dev; 899 struct spi_transfer *xfer; 900 int ret; 901 902 if (!ctlr->can_dma) 903 return 0; 904 905 if (ctlr->dma_tx) 906 tx_dev = ctlr->dma_tx->device->dev; 907 else 908 tx_dev = ctlr->dev.parent; 909 910 if (ctlr->dma_rx) 911 rx_dev = ctlr->dma_rx->device->dev; 912 else 913 rx_dev = ctlr->dev.parent; 914 915 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 916 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 917 continue; 918 919 if (xfer->tx_buf != NULL) { 920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 921 (void *)xfer->tx_buf, xfer->len, 922 DMA_TO_DEVICE); 923 if (ret != 0) 924 return ret; 925 } 926 927 if (xfer->rx_buf != NULL) { 928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 929 xfer->rx_buf, xfer->len, 930 DMA_FROM_DEVICE); 931 if (ret != 0) { 932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 933 DMA_TO_DEVICE); 934 return ret; 935 } 936 } 937 } 938 939 ctlr->cur_msg_mapped = true; 940 941 return 0; 942 } 943 944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 945 { 946 struct spi_transfer *xfer; 947 struct device *tx_dev, *rx_dev; 948 949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 950 return 0; 951 952 if (ctlr->dma_tx) 953 tx_dev = ctlr->dma_tx->device->dev; 954 else 955 tx_dev = ctlr->dev.parent; 956 957 if (ctlr->dma_rx) 958 rx_dev = ctlr->dma_rx->device->dev; 959 else 960 rx_dev = ctlr->dev.parent; 961 962 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 963 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 964 continue; 965 966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 968 } 969 970 return 0; 971 } 972 #else /* !CONFIG_HAS_DMA */ 973 static inline int __spi_map_msg(struct spi_controller *ctlr, 974 struct spi_message *msg) 975 { 976 return 0; 977 } 978 979 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 980 struct spi_message *msg) 981 { 982 return 0; 983 } 984 #endif /* !CONFIG_HAS_DMA */ 985 986 static inline int spi_unmap_msg(struct spi_controller *ctlr, 987 struct spi_message *msg) 988 { 989 struct spi_transfer *xfer; 990 991 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 992 /* 993 * Restore the original value of tx_buf or rx_buf if they are 994 * NULL. 995 */ 996 if (xfer->tx_buf == ctlr->dummy_tx) 997 xfer->tx_buf = NULL; 998 if (xfer->rx_buf == ctlr->dummy_rx) 999 xfer->rx_buf = NULL; 1000 } 1001 1002 return __spi_unmap_msg(ctlr, msg); 1003 } 1004 1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1006 { 1007 struct spi_transfer *xfer; 1008 void *tmp; 1009 unsigned int max_tx, max_rx; 1010 1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { 1012 max_tx = 0; 1013 max_rx = 0; 1014 1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1017 !xfer->tx_buf) 1018 max_tx = max(xfer->len, max_tx); 1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1020 !xfer->rx_buf) 1021 max_rx = max(xfer->len, max_rx); 1022 } 1023 1024 if (max_tx) { 1025 tmp = krealloc(ctlr->dummy_tx, max_tx, 1026 GFP_KERNEL | GFP_DMA); 1027 if (!tmp) 1028 return -ENOMEM; 1029 ctlr->dummy_tx = tmp; 1030 memset(tmp, 0, max_tx); 1031 } 1032 1033 if (max_rx) { 1034 tmp = krealloc(ctlr->dummy_rx, max_rx, 1035 GFP_KERNEL | GFP_DMA); 1036 if (!tmp) 1037 return -ENOMEM; 1038 ctlr->dummy_rx = tmp; 1039 } 1040 1041 if (max_tx || max_rx) { 1042 list_for_each_entry(xfer, &msg->transfers, 1043 transfer_list) { 1044 if (!xfer->len) 1045 continue; 1046 if (!xfer->tx_buf) 1047 xfer->tx_buf = ctlr->dummy_tx; 1048 if (!xfer->rx_buf) 1049 xfer->rx_buf = ctlr->dummy_rx; 1050 } 1051 } 1052 } 1053 1054 return __spi_map_msg(ctlr, msg); 1055 } 1056 1057 static int spi_transfer_wait(struct spi_controller *ctlr, 1058 struct spi_message *msg, 1059 struct spi_transfer *xfer) 1060 { 1061 struct spi_statistics *statm = &ctlr->statistics; 1062 struct spi_statistics *stats = &msg->spi->statistics; 1063 unsigned long long ms = 1; 1064 1065 if (spi_controller_is_slave(ctlr)) { 1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1068 return -EINTR; 1069 } 1070 } else { 1071 ms = 8LL * 1000LL * xfer->len; 1072 do_div(ms, xfer->speed_hz); 1073 ms += ms + 200; /* some tolerance */ 1074 1075 if (ms > UINT_MAX) 1076 ms = UINT_MAX; 1077 1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1079 msecs_to_jiffies(ms)); 1080 1081 if (ms == 0) { 1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1084 dev_err(&msg->spi->dev, 1085 "SPI transfer timed out\n"); 1086 return -ETIMEDOUT; 1087 } 1088 } 1089 1090 return 0; 1091 } 1092 1093 /* 1094 * spi_transfer_one_message - Default implementation of transfer_one_message() 1095 * 1096 * This is a standard implementation of transfer_one_message() for 1097 * drivers which implement a transfer_one() operation. It provides 1098 * standard handling of delays and chip select management. 1099 */ 1100 static int spi_transfer_one_message(struct spi_controller *ctlr, 1101 struct spi_message *msg) 1102 { 1103 struct spi_transfer *xfer; 1104 bool keep_cs = false; 1105 int ret = 0; 1106 struct spi_statistics *statm = &ctlr->statistics; 1107 struct spi_statistics *stats = &msg->spi->statistics; 1108 1109 spi_set_cs(msg->spi, true); 1110 1111 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1112 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1113 1114 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1115 trace_spi_transfer_start(msg, xfer); 1116 1117 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1118 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1119 1120 if (xfer->tx_buf || xfer->rx_buf) { 1121 reinit_completion(&ctlr->xfer_completion); 1122 1123 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1124 if (ret < 0) { 1125 SPI_STATISTICS_INCREMENT_FIELD(statm, 1126 errors); 1127 SPI_STATISTICS_INCREMENT_FIELD(stats, 1128 errors); 1129 dev_err(&msg->spi->dev, 1130 "SPI transfer failed: %d\n", ret); 1131 goto out; 1132 } 1133 1134 if (ret > 0) { 1135 ret = spi_transfer_wait(ctlr, msg, xfer); 1136 if (ret < 0) 1137 msg->status = ret; 1138 } 1139 } else { 1140 if (xfer->len) 1141 dev_err(&msg->spi->dev, 1142 "Bufferless transfer has length %u\n", 1143 xfer->len); 1144 } 1145 1146 trace_spi_transfer_stop(msg, xfer); 1147 1148 if (msg->status != -EINPROGRESS) 1149 goto out; 1150 1151 if (xfer->delay_usecs) { 1152 u16 us = xfer->delay_usecs; 1153 1154 if (us <= 10) 1155 udelay(us); 1156 else 1157 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1158 } 1159 1160 if (xfer->cs_change) { 1161 if (list_is_last(&xfer->transfer_list, 1162 &msg->transfers)) { 1163 keep_cs = true; 1164 } else { 1165 spi_set_cs(msg->spi, false); 1166 udelay(10); 1167 spi_set_cs(msg->spi, true); 1168 } 1169 } 1170 1171 msg->actual_length += xfer->len; 1172 } 1173 1174 out: 1175 if (ret != 0 || !keep_cs) 1176 spi_set_cs(msg->spi, false); 1177 1178 if (msg->status == -EINPROGRESS) 1179 msg->status = ret; 1180 1181 if (msg->status && ctlr->handle_err) 1182 ctlr->handle_err(ctlr, msg); 1183 1184 spi_finalize_current_message(ctlr); 1185 1186 spi_res_release(ctlr, msg); 1187 1188 return ret; 1189 } 1190 1191 /** 1192 * spi_finalize_current_transfer - report completion of a transfer 1193 * @ctlr: the controller reporting completion 1194 * 1195 * Called by SPI drivers using the core transfer_one_message() 1196 * implementation to notify it that the current interrupt driven 1197 * transfer has finished and the next one may be scheduled. 1198 */ 1199 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1200 { 1201 complete(&ctlr->xfer_completion); 1202 } 1203 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1204 1205 /** 1206 * __spi_pump_messages - function which processes spi message queue 1207 * @ctlr: controller to process queue for 1208 * @in_kthread: true if we are in the context of the message pump thread 1209 * 1210 * This function checks if there is any spi message in the queue that 1211 * needs processing and if so call out to the driver to initialize hardware 1212 * and transfer each message. 1213 * 1214 * Note that it is called both from the kthread itself and also from 1215 * inside spi_sync(); the queue extraction handling at the top of the 1216 * function should deal with this safely. 1217 */ 1218 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1219 { 1220 unsigned long flags; 1221 bool was_busy = false; 1222 int ret; 1223 1224 /* Lock queue */ 1225 spin_lock_irqsave(&ctlr->queue_lock, flags); 1226 1227 /* Make sure we are not already running a message */ 1228 if (ctlr->cur_msg) { 1229 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1230 return; 1231 } 1232 1233 /* If another context is idling the device then defer */ 1234 if (ctlr->idling) { 1235 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1236 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1237 return; 1238 } 1239 1240 /* Check if the queue is idle */ 1241 if (list_empty(&ctlr->queue) || !ctlr->running) { 1242 if (!ctlr->busy) { 1243 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1244 return; 1245 } 1246 1247 /* Only do teardown in the thread */ 1248 if (!in_kthread) { 1249 kthread_queue_work(&ctlr->kworker, 1250 &ctlr->pump_messages); 1251 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1252 return; 1253 } 1254 1255 ctlr->busy = false; 1256 ctlr->idling = true; 1257 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1258 1259 kfree(ctlr->dummy_rx); 1260 ctlr->dummy_rx = NULL; 1261 kfree(ctlr->dummy_tx); 1262 ctlr->dummy_tx = NULL; 1263 if (ctlr->unprepare_transfer_hardware && 1264 ctlr->unprepare_transfer_hardware(ctlr)) 1265 dev_err(&ctlr->dev, 1266 "failed to unprepare transfer hardware\n"); 1267 if (ctlr->auto_runtime_pm) { 1268 pm_runtime_mark_last_busy(ctlr->dev.parent); 1269 pm_runtime_put_autosuspend(ctlr->dev.parent); 1270 } 1271 trace_spi_controller_idle(ctlr); 1272 1273 spin_lock_irqsave(&ctlr->queue_lock, flags); 1274 ctlr->idling = false; 1275 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1276 return; 1277 } 1278 1279 /* Extract head of queue */ 1280 ctlr->cur_msg = 1281 list_first_entry(&ctlr->queue, struct spi_message, queue); 1282 1283 list_del_init(&ctlr->cur_msg->queue); 1284 if (ctlr->busy) 1285 was_busy = true; 1286 else 1287 ctlr->busy = true; 1288 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1289 1290 mutex_lock(&ctlr->io_mutex); 1291 1292 if (!was_busy && ctlr->auto_runtime_pm) { 1293 ret = pm_runtime_get_sync(ctlr->dev.parent); 1294 if (ret < 0) { 1295 pm_runtime_put_noidle(ctlr->dev.parent); 1296 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1297 ret); 1298 mutex_unlock(&ctlr->io_mutex); 1299 return; 1300 } 1301 } 1302 1303 if (!was_busy) 1304 trace_spi_controller_busy(ctlr); 1305 1306 if (!was_busy && ctlr->prepare_transfer_hardware) { 1307 ret = ctlr->prepare_transfer_hardware(ctlr); 1308 if (ret) { 1309 dev_err(&ctlr->dev, 1310 "failed to prepare transfer hardware\n"); 1311 1312 if (ctlr->auto_runtime_pm) 1313 pm_runtime_put(ctlr->dev.parent); 1314 mutex_unlock(&ctlr->io_mutex); 1315 return; 1316 } 1317 } 1318 1319 trace_spi_message_start(ctlr->cur_msg); 1320 1321 if (ctlr->prepare_message) { 1322 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg); 1323 if (ret) { 1324 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1325 ret); 1326 ctlr->cur_msg->status = ret; 1327 spi_finalize_current_message(ctlr); 1328 goto out; 1329 } 1330 ctlr->cur_msg_prepared = true; 1331 } 1332 1333 ret = spi_map_msg(ctlr, ctlr->cur_msg); 1334 if (ret) { 1335 ctlr->cur_msg->status = ret; 1336 spi_finalize_current_message(ctlr); 1337 goto out; 1338 } 1339 1340 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg); 1341 if (ret) { 1342 dev_err(&ctlr->dev, 1343 "failed to transfer one message from queue\n"); 1344 goto out; 1345 } 1346 1347 out: 1348 mutex_unlock(&ctlr->io_mutex); 1349 1350 /* Prod the scheduler in case transfer_one() was busy waiting */ 1351 if (!ret) 1352 cond_resched(); 1353 } 1354 1355 /** 1356 * spi_pump_messages - kthread work function which processes spi message queue 1357 * @work: pointer to kthread work struct contained in the controller struct 1358 */ 1359 static void spi_pump_messages(struct kthread_work *work) 1360 { 1361 struct spi_controller *ctlr = 1362 container_of(work, struct spi_controller, pump_messages); 1363 1364 __spi_pump_messages(ctlr, true); 1365 } 1366 1367 static int spi_init_queue(struct spi_controller *ctlr) 1368 { 1369 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1370 1371 ctlr->running = false; 1372 ctlr->busy = false; 1373 1374 kthread_init_worker(&ctlr->kworker); 1375 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, 1376 "%s", dev_name(&ctlr->dev)); 1377 if (IS_ERR(ctlr->kworker_task)) { 1378 dev_err(&ctlr->dev, "failed to create message pump task\n"); 1379 return PTR_ERR(ctlr->kworker_task); 1380 } 1381 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1382 1383 /* 1384 * Controller config will indicate if this controller should run the 1385 * message pump with high (realtime) priority to reduce the transfer 1386 * latency on the bus by minimising the delay between a transfer 1387 * request and the scheduling of the message pump thread. Without this 1388 * setting the message pump thread will remain at default priority. 1389 */ 1390 if (ctlr->rt) { 1391 dev_info(&ctlr->dev, 1392 "will run message pump with realtime priority\n"); 1393 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); 1394 } 1395 1396 return 0; 1397 } 1398 1399 /** 1400 * spi_get_next_queued_message() - called by driver to check for queued 1401 * messages 1402 * @ctlr: the controller to check for queued messages 1403 * 1404 * If there are more messages in the queue, the next message is returned from 1405 * this call. 1406 * 1407 * Return: the next message in the queue, else NULL if the queue is empty. 1408 */ 1409 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1410 { 1411 struct spi_message *next; 1412 unsigned long flags; 1413 1414 /* get a pointer to the next message, if any */ 1415 spin_lock_irqsave(&ctlr->queue_lock, flags); 1416 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1417 queue); 1418 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1419 1420 return next; 1421 } 1422 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1423 1424 /** 1425 * spi_finalize_current_message() - the current message is complete 1426 * @ctlr: the controller to return the message to 1427 * 1428 * Called by the driver to notify the core that the message in the front of the 1429 * queue is complete and can be removed from the queue. 1430 */ 1431 void spi_finalize_current_message(struct spi_controller *ctlr) 1432 { 1433 struct spi_message *mesg; 1434 unsigned long flags; 1435 int ret; 1436 1437 spin_lock_irqsave(&ctlr->queue_lock, flags); 1438 mesg = ctlr->cur_msg; 1439 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1440 1441 spi_unmap_msg(ctlr, mesg); 1442 1443 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1444 ret = ctlr->unprepare_message(ctlr, mesg); 1445 if (ret) { 1446 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1447 ret); 1448 } 1449 } 1450 1451 spin_lock_irqsave(&ctlr->queue_lock, flags); 1452 ctlr->cur_msg = NULL; 1453 ctlr->cur_msg_prepared = false; 1454 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1455 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1456 1457 trace_spi_message_done(mesg); 1458 1459 mesg->state = NULL; 1460 if (mesg->complete) 1461 mesg->complete(mesg->context); 1462 } 1463 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1464 1465 static int spi_start_queue(struct spi_controller *ctlr) 1466 { 1467 unsigned long flags; 1468 1469 spin_lock_irqsave(&ctlr->queue_lock, flags); 1470 1471 if (ctlr->running || ctlr->busy) { 1472 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1473 return -EBUSY; 1474 } 1475 1476 ctlr->running = true; 1477 ctlr->cur_msg = NULL; 1478 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1479 1480 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1481 1482 return 0; 1483 } 1484 1485 static int spi_stop_queue(struct spi_controller *ctlr) 1486 { 1487 unsigned long flags; 1488 unsigned limit = 500; 1489 int ret = 0; 1490 1491 spin_lock_irqsave(&ctlr->queue_lock, flags); 1492 1493 /* 1494 * This is a bit lame, but is optimized for the common execution path. 1495 * A wait_queue on the ctlr->busy could be used, but then the common 1496 * execution path (pump_messages) would be required to call wake_up or 1497 * friends on every SPI message. Do this instead. 1498 */ 1499 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1500 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1501 usleep_range(10000, 11000); 1502 spin_lock_irqsave(&ctlr->queue_lock, flags); 1503 } 1504 1505 if (!list_empty(&ctlr->queue) || ctlr->busy) 1506 ret = -EBUSY; 1507 else 1508 ctlr->running = false; 1509 1510 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1511 1512 if (ret) { 1513 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1514 return ret; 1515 } 1516 return ret; 1517 } 1518 1519 static int spi_destroy_queue(struct spi_controller *ctlr) 1520 { 1521 int ret; 1522 1523 ret = spi_stop_queue(ctlr); 1524 1525 /* 1526 * kthread_flush_worker will block until all work is done. 1527 * If the reason that stop_queue timed out is that the work will never 1528 * finish, then it does no good to call flush/stop thread, so 1529 * return anyway. 1530 */ 1531 if (ret) { 1532 dev_err(&ctlr->dev, "problem destroying queue\n"); 1533 return ret; 1534 } 1535 1536 kthread_flush_worker(&ctlr->kworker); 1537 kthread_stop(ctlr->kworker_task); 1538 1539 return 0; 1540 } 1541 1542 static int __spi_queued_transfer(struct spi_device *spi, 1543 struct spi_message *msg, 1544 bool need_pump) 1545 { 1546 struct spi_controller *ctlr = spi->controller; 1547 unsigned long flags; 1548 1549 spin_lock_irqsave(&ctlr->queue_lock, flags); 1550 1551 if (!ctlr->running) { 1552 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1553 return -ESHUTDOWN; 1554 } 1555 msg->actual_length = 0; 1556 msg->status = -EINPROGRESS; 1557 1558 list_add_tail(&msg->queue, &ctlr->queue); 1559 if (!ctlr->busy && need_pump) 1560 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1561 1562 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1563 return 0; 1564 } 1565 1566 /** 1567 * spi_queued_transfer - transfer function for queued transfers 1568 * @spi: spi device which is requesting transfer 1569 * @msg: spi message which is to handled is queued to driver queue 1570 * 1571 * Return: zero on success, else a negative error code. 1572 */ 1573 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1574 { 1575 return __spi_queued_transfer(spi, msg, true); 1576 } 1577 1578 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1579 { 1580 int ret; 1581 1582 ctlr->transfer = spi_queued_transfer; 1583 if (!ctlr->transfer_one_message) 1584 ctlr->transfer_one_message = spi_transfer_one_message; 1585 1586 /* Initialize and start queue */ 1587 ret = spi_init_queue(ctlr); 1588 if (ret) { 1589 dev_err(&ctlr->dev, "problem initializing queue\n"); 1590 goto err_init_queue; 1591 } 1592 ctlr->queued = true; 1593 ret = spi_start_queue(ctlr); 1594 if (ret) { 1595 dev_err(&ctlr->dev, "problem starting queue\n"); 1596 goto err_start_queue; 1597 } 1598 1599 return 0; 1600 1601 err_start_queue: 1602 spi_destroy_queue(ctlr); 1603 err_init_queue: 1604 return ret; 1605 } 1606 1607 /** 1608 * spi_flush_queue - Send all pending messages in the queue from the callers' 1609 * context 1610 * @ctlr: controller to process queue for 1611 * 1612 * This should be used when one wants to ensure all pending messages have been 1613 * sent before doing something. Is used by the spi-mem code to make sure SPI 1614 * memory operations do not preempt regular SPI transfers that have been queued 1615 * before the spi-mem operation. 1616 */ 1617 void spi_flush_queue(struct spi_controller *ctlr) 1618 { 1619 if (ctlr->transfer == spi_queued_transfer) 1620 __spi_pump_messages(ctlr, false); 1621 } 1622 1623 /*-------------------------------------------------------------------------*/ 1624 1625 #if defined(CONFIG_OF) 1626 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1627 struct device_node *nc) 1628 { 1629 u32 value; 1630 int rc; 1631 1632 /* Mode (clock phase/polarity/etc.) */ 1633 if (of_property_read_bool(nc, "spi-cpha")) 1634 spi->mode |= SPI_CPHA; 1635 if (of_property_read_bool(nc, "spi-cpol")) 1636 spi->mode |= SPI_CPOL; 1637 if (of_property_read_bool(nc, "spi-3wire")) 1638 spi->mode |= SPI_3WIRE; 1639 if (of_property_read_bool(nc, "spi-lsb-first")) 1640 spi->mode |= SPI_LSB_FIRST; 1641 1642 /* 1643 * For descriptors associated with the device, polarity inversion is 1644 * handled in the gpiolib, so all chip selects are "active high" in 1645 * the logical sense, the gpiolib will invert the line if need be. 1646 */ 1647 if (ctlr->use_gpio_descriptors) 1648 spi->mode |= SPI_CS_HIGH; 1649 else if (of_property_read_bool(nc, "spi-cs-high")) 1650 spi->mode |= SPI_CS_HIGH; 1651 1652 /* Device DUAL/QUAD mode */ 1653 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1654 switch (value) { 1655 case 1: 1656 break; 1657 case 2: 1658 spi->mode |= SPI_TX_DUAL; 1659 break; 1660 case 4: 1661 spi->mode |= SPI_TX_QUAD; 1662 break; 1663 case 8: 1664 spi->mode |= SPI_TX_OCTAL; 1665 break; 1666 default: 1667 dev_warn(&ctlr->dev, 1668 "spi-tx-bus-width %d not supported\n", 1669 value); 1670 break; 1671 } 1672 } 1673 1674 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1675 switch (value) { 1676 case 1: 1677 break; 1678 case 2: 1679 spi->mode |= SPI_RX_DUAL; 1680 break; 1681 case 4: 1682 spi->mode |= SPI_RX_QUAD; 1683 break; 1684 case 8: 1685 spi->mode |= SPI_RX_OCTAL; 1686 break; 1687 default: 1688 dev_warn(&ctlr->dev, 1689 "spi-rx-bus-width %d not supported\n", 1690 value); 1691 break; 1692 } 1693 } 1694 1695 if (spi_controller_is_slave(ctlr)) { 1696 if (!of_node_name_eq(nc, "slave")) { 1697 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1698 nc); 1699 return -EINVAL; 1700 } 1701 return 0; 1702 } 1703 1704 /* Device address */ 1705 rc = of_property_read_u32(nc, "reg", &value); 1706 if (rc) { 1707 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1708 nc, rc); 1709 return rc; 1710 } 1711 spi->chip_select = value; 1712 1713 /* Device speed */ 1714 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1715 if (rc) { 1716 dev_err(&ctlr->dev, 1717 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); 1718 return rc; 1719 } 1720 spi->max_speed_hz = value; 1721 1722 return 0; 1723 } 1724 1725 static struct spi_device * 1726 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1727 { 1728 struct spi_device *spi; 1729 int rc; 1730 1731 /* Alloc an spi_device */ 1732 spi = spi_alloc_device(ctlr); 1733 if (!spi) { 1734 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 1735 rc = -ENOMEM; 1736 goto err_out; 1737 } 1738 1739 /* Select device driver */ 1740 rc = of_modalias_node(nc, spi->modalias, 1741 sizeof(spi->modalias)); 1742 if (rc < 0) { 1743 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 1744 goto err_out; 1745 } 1746 1747 rc = of_spi_parse_dt(ctlr, spi, nc); 1748 if (rc) 1749 goto err_out; 1750 1751 /* Store a pointer to the node in the device structure */ 1752 of_node_get(nc); 1753 spi->dev.of_node = nc; 1754 1755 /* Register the new device */ 1756 rc = spi_add_device(spi); 1757 if (rc) { 1758 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 1759 goto err_of_node_put; 1760 } 1761 1762 return spi; 1763 1764 err_of_node_put: 1765 of_node_put(nc); 1766 err_out: 1767 spi_dev_put(spi); 1768 return ERR_PTR(rc); 1769 } 1770 1771 /** 1772 * of_register_spi_devices() - Register child devices onto the SPI bus 1773 * @ctlr: Pointer to spi_controller device 1774 * 1775 * Registers an spi_device for each child node of controller node which 1776 * represents a valid SPI slave. 1777 */ 1778 static void of_register_spi_devices(struct spi_controller *ctlr) 1779 { 1780 struct spi_device *spi; 1781 struct device_node *nc; 1782 1783 if (!ctlr->dev.of_node) 1784 return; 1785 1786 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 1787 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 1788 continue; 1789 spi = of_register_spi_device(ctlr, nc); 1790 if (IS_ERR(spi)) { 1791 dev_warn(&ctlr->dev, 1792 "Failed to create SPI device for %pOF\n", nc); 1793 of_node_clear_flag(nc, OF_POPULATED); 1794 } 1795 } 1796 } 1797 #else 1798 static void of_register_spi_devices(struct spi_controller *ctlr) { } 1799 #endif 1800 1801 #ifdef CONFIG_ACPI 1802 static void acpi_spi_parse_apple_properties(struct spi_device *spi) 1803 { 1804 struct acpi_device *dev = ACPI_COMPANION(&spi->dev); 1805 const union acpi_object *obj; 1806 1807 if (!x86_apple_machine) 1808 return; 1809 1810 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 1811 && obj->buffer.length >= 4) 1812 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 1813 1814 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 1815 && obj->buffer.length == 8) 1816 spi->bits_per_word = *(u64 *)obj->buffer.pointer; 1817 1818 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 1819 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 1820 spi->mode |= SPI_LSB_FIRST; 1821 1822 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 1823 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1824 spi->mode |= SPI_CPOL; 1825 1826 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 1827 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1828 spi->mode |= SPI_CPHA; 1829 } 1830 1831 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1832 { 1833 struct spi_device *spi = data; 1834 struct spi_controller *ctlr = spi->controller; 1835 1836 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1837 struct acpi_resource_spi_serialbus *sb; 1838 1839 sb = &ares->data.spi_serial_bus; 1840 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1841 /* 1842 * ACPI DeviceSelection numbering is handled by the 1843 * host controller driver in Windows and can vary 1844 * from driver to driver. In Linux we always expect 1845 * 0 .. max - 1 so we need to ask the driver to 1846 * translate between the two schemes. 1847 */ 1848 if (ctlr->fw_translate_cs) { 1849 int cs = ctlr->fw_translate_cs(ctlr, 1850 sb->device_selection); 1851 if (cs < 0) 1852 return cs; 1853 spi->chip_select = cs; 1854 } else { 1855 spi->chip_select = sb->device_selection; 1856 } 1857 1858 spi->max_speed_hz = sb->connection_speed; 1859 1860 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1861 spi->mode |= SPI_CPHA; 1862 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1863 spi->mode |= SPI_CPOL; 1864 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1865 spi->mode |= SPI_CS_HIGH; 1866 } 1867 } else if (spi->irq < 0) { 1868 struct resource r; 1869 1870 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1871 spi->irq = r.start; 1872 } 1873 1874 /* Always tell the ACPI core to skip this resource */ 1875 return 1; 1876 } 1877 1878 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 1879 struct acpi_device *adev) 1880 { 1881 struct list_head resource_list; 1882 struct spi_device *spi; 1883 int ret; 1884 1885 if (acpi_bus_get_status(adev) || !adev->status.present || 1886 acpi_device_enumerated(adev)) 1887 return AE_OK; 1888 1889 spi = spi_alloc_device(ctlr); 1890 if (!spi) { 1891 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 1892 dev_name(&adev->dev)); 1893 return AE_NO_MEMORY; 1894 } 1895 1896 ACPI_COMPANION_SET(&spi->dev, adev); 1897 spi->irq = -1; 1898 1899 INIT_LIST_HEAD(&resource_list); 1900 ret = acpi_dev_get_resources(adev, &resource_list, 1901 acpi_spi_add_resource, spi); 1902 acpi_dev_free_resource_list(&resource_list); 1903 1904 acpi_spi_parse_apple_properties(spi); 1905 1906 if (ret < 0 || !spi->max_speed_hz) { 1907 spi_dev_put(spi); 1908 return AE_OK; 1909 } 1910 1911 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 1912 sizeof(spi->modalias)); 1913 1914 if (spi->irq < 0) 1915 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 1916 1917 acpi_device_set_enumerated(adev); 1918 1919 adev->power.flags.ignore_parent = true; 1920 if (spi_add_device(spi)) { 1921 adev->power.flags.ignore_parent = false; 1922 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 1923 dev_name(&adev->dev)); 1924 spi_dev_put(spi); 1925 } 1926 1927 return AE_OK; 1928 } 1929 1930 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1931 void *data, void **return_value) 1932 { 1933 struct spi_controller *ctlr = data; 1934 struct acpi_device *adev; 1935 1936 if (acpi_bus_get_device(handle, &adev)) 1937 return AE_OK; 1938 1939 return acpi_register_spi_device(ctlr, adev); 1940 } 1941 1942 static void acpi_register_spi_devices(struct spi_controller *ctlr) 1943 { 1944 acpi_status status; 1945 acpi_handle handle; 1946 1947 handle = ACPI_HANDLE(ctlr->dev.parent); 1948 if (!handle) 1949 return; 1950 1951 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1952 acpi_spi_add_device, NULL, ctlr, NULL); 1953 if (ACPI_FAILURE(status)) 1954 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 1955 } 1956 #else 1957 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 1958 #endif /* CONFIG_ACPI */ 1959 1960 static void spi_controller_release(struct device *dev) 1961 { 1962 struct spi_controller *ctlr; 1963 1964 ctlr = container_of(dev, struct spi_controller, dev); 1965 kfree(ctlr); 1966 } 1967 1968 static struct class spi_master_class = { 1969 .name = "spi_master", 1970 .owner = THIS_MODULE, 1971 .dev_release = spi_controller_release, 1972 .dev_groups = spi_master_groups, 1973 }; 1974 1975 #ifdef CONFIG_SPI_SLAVE 1976 /** 1977 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 1978 * controller 1979 * @spi: device used for the current transfer 1980 */ 1981 int spi_slave_abort(struct spi_device *spi) 1982 { 1983 struct spi_controller *ctlr = spi->controller; 1984 1985 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 1986 return ctlr->slave_abort(ctlr); 1987 1988 return -ENOTSUPP; 1989 } 1990 EXPORT_SYMBOL_GPL(spi_slave_abort); 1991 1992 static int match_true(struct device *dev, void *data) 1993 { 1994 return 1; 1995 } 1996 1997 static ssize_t spi_slave_show(struct device *dev, 1998 struct device_attribute *attr, char *buf) 1999 { 2000 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2001 dev); 2002 struct device *child; 2003 2004 child = device_find_child(&ctlr->dev, NULL, match_true); 2005 return sprintf(buf, "%s\n", 2006 child ? to_spi_device(child)->modalias : NULL); 2007 } 2008 2009 static ssize_t spi_slave_store(struct device *dev, 2010 struct device_attribute *attr, const char *buf, 2011 size_t count) 2012 { 2013 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2014 dev); 2015 struct spi_device *spi; 2016 struct device *child; 2017 char name[32]; 2018 int rc; 2019 2020 rc = sscanf(buf, "%31s", name); 2021 if (rc != 1 || !name[0]) 2022 return -EINVAL; 2023 2024 child = device_find_child(&ctlr->dev, NULL, match_true); 2025 if (child) { 2026 /* Remove registered slave */ 2027 device_unregister(child); 2028 put_device(child); 2029 } 2030 2031 if (strcmp(name, "(null)")) { 2032 /* Register new slave */ 2033 spi = spi_alloc_device(ctlr); 2034 if (!spi) 2035 return -ENOMEM; 2036 2037 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2038 2039 rc = spi_add_device(spi); 2040 if (rc) { 2041 spi_dev_put(spi); 2042 return rc; 2043 } 2044 } 2045 2046 return count; 2047 } 2048 2049 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store); 2050 2051 static struct attribute *spi_slave_attrs[] = { 2052 &dev_attr_slave.attr, 2053 NULL, 2054 }; 2055 2056 static const struct attribute_group spi_slave_group = { 2057 .attrs = spi_slave_attrs, 2058 }; 2059 2060 static const struct attribute_group *spi_slave_groups[] = { 2061 &spi_controller_statistics_group, 2062 &spi_slave_group, 2063 NULL, 2064 }; 2065 2066 static struct class spi_slave_class = { 2067 .name = "spi_slave", 2068 .owner = THIS_MODULE, 2069 .dev_release = spi_controller_release, 2070 .dev_groups = spi_slave_groups, 2071 }; 2072 #else 2073 extern struct class spi_slave_class; /* dummy */ 2074 #endif 2075 2076 /** 2077 * __spi_alloc_controller - allocate an SPI master or slave controller 2078 * @dev: the controller, possibly using the platform_bus 2079 * @size: how much zeroed driver-private data to allocate; the pointer to this 2080 * memory is in the driver_data field of the returned device, 2081 * accessible with spi_controller_get_devdata(). 2082 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2083 * slave (true) controller 2084 * Context: can sleep 2085 * 2086 * This call is used only by SPI controller drivers, which are the 2087 * only ones directly touching chip registers. It's how they allocate 2088 * an spi_controller structure, prior to calling spi_register_controller(). 2089 * 2090 * This must be called from context that can sleep. 2091 * 2092 * The caller is responsible for assigning the bus number and initializing the 2093 * controller's methods before calling spi_register_controller(); and (after 2094 * errors adding the device) calling spi_controller_put() to prevent a memory 2095 * leak. 2096 * 2097 * Return: the SPI controller structure on success, else NULL. 2098 */ 2099 struct spi_controller *__spi_alloc_controller(struct device *dev, 2100 unsigned int size, bool slave) 2101 { 2102 struct spi_controller *ctlr; 2103 2104 if (!dev) 2105 return NULL; 2106 2107 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL); 2108 if (!ctlr) 2109 return NULL; 2110 2111 device_initialize(&ctlr->dev); 2112 ctlr->bus_num = -1; 2113 ctlr->num_chipselect = 1; 2114 ctlr->slave = slave; 2115 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2116 ctlr->dev.class = &spi_slave_class; 2117 else 2118 ctlr->dev.class = &spi_master_class; 2119 ctlr->dev.parent = dev; 2120 pm_suspend_ignore_children(&ctlr->dev, true); 2121 spi_controller_set_devdata(ctlr, &ctlr[1]); 2122 2123 return ctlr; 2124 } 2125 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2126 2127 #ifdef CONFIG_OF 2128 static int of_spi_register_master(struct spi_controller *ctlr) 2129 { 2130 int nb, i, *cs; 2131 struct device_node *np = ctlr->dev.of_node; 2132 2133 if (!np) 2134 return 0; 2135 2136 nb = of_gpio_named_count(np, "cs-gpios"); 2137 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2138 2139 /* Return error only for an incorrectly formed cs-gpios property */ 2140 if (nb == 0 || nb == -ENOENT) 2141 return 0; 2142 else if (nb < 0) 2143 return nb; 2144 2145 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2146 GFP_KERNEL); 2147 ctlr->cs_gpios = cs; 2148 2149 if (!ctlr->cs_gpios) 2150 return -ENOMEM; 2151 2152 for (i = 0; i < ctlr->num_chipselect; i++) 2153 cs[i] = -ENOENT; 2154 2155 for (i = 0; i < nb; i++) 2156 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2157 2158 return 0; 2159 } 2160 #else 2161 static int of_spi_register_master(struct spi_controller *ctlr) 2162 { 2163 return 0; 2164 } 2165 #endif 2166 2167 /** 2168 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2169 * @ctlr: The SPI master to grab GPIO descriptors for 2170 */ 2171 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2172 { 2173 int nb, i; 2174 struct gpio_desc **cs; 2175 struct device *dev = &ctlr->dev; 2176 2177 nb = gpiod_count(dev, "cs"); 2178 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2179 2180 /* No GPIOs at all is fine, else return the error */ 2181 if (nb == 0 || nb == -ENOENT) 2182 return 0; 2183 else if (nb < 0) 2184 return nb; 2185 2186 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2187 GFP_KERNEL); 2188 if (!cs) 2189 return -ENOMEM; 2190 ctlr->cs_gpiods = cs; 2191 2192 for (i = 0; i < nb; i++) { 2193 /* 2194 * Most chipselects are active low, the inverted 2195 * semantics are handled by special quirks in gpiolib, 2196 * so initializing them GPIOD_OUT_LOW here means 2197 * "unasserted", in most cases this will drive the physical 2198 * line high. 2199 */ 2200 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2201 GPIOD_OUT_LOW); 2202 if (IS_ERR(cs[i])) 2203 return PTR_ERR(cs[i]); 2204 2205 if (cs[i]) { 2206 /* 2207 * If we find a CS GPIO, name it after the device and 2208 * chip select line. 2209 */ 2210 char *gpioname; 2211 2212 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2213 dev_name(dev), i); 2214 if (!gpioname) 2215 return -ENOMEM; 2216 gpiod_set_consumer_name(cs[i], gpioname); 2217 } 2218 } 2219 2220 return 0; 2221 } 2222 2223 static int spi_controller_check_ops(struct spi_controller *ctlr) 2224 { 2225 /* 2226 * The controller may implement only the high-level SPI-memory like 2227 * operations if it does not support regular SPI transfers, and this is 2228 * valid use case. 2229 * If ->mem_ops is NULL, we request that at least one of the 2230 * ->transfer_xxx() method be implemented. 2231 */ 2232 if (ctlr->mem_ops) { 2233 if (!ctlr->mem_ops->exec_op) 2234 return -EINVAL; 2235 } else if (!ctlr->transfer && !ctlr->transfer_one && 2236 !ctlr->transfer_one_message) { 2237 return -EINVAL; 2238 } 2239 2240 return 0; 2241 } 2242 2243 /** 2244 * spi_register_controller - register SPI master or slave controller 2245 * @ctlr: initialized master, originally from spi_alloc_master() or 2246 * spi_alloc_slave() 2247 * Context: can sleep 2248 * 2249 * SPI controllers connect to their drivers using some non-SPI bus, 2250 * such as the platform bus. The final stage of probe() in that code 2251 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2252 * 2253 * SPI controllers use board specific (often SOC specific) bus numbers, 2254 * and board-specific addressing for SPI devices combines those numbers 2255 * with chip select numbers. Since SPI does not directly support dynamic 2256 * device identification, boards need configuration tables telling which 2257 * chip is at which address. 2258 * 2259 * This must be called from context that can sleep. It returns zero on 2260 * success, else a negative error code (dropping the controller's refcount). 2261 * After a successful return, the caller is responsible for calling 2262 * spi_unregister_controller(). 2263 * 2264 * Return: zero on success, else a negative error code. 2265 */ 2266 int spi_register_controller(struct spi_controller *ctlr) 2267 { 2268 struct device *dev = ctlr->dev.parent; 2269 struct boardinfo *bi; 2270 int status; 2271 int id, first_dynamic; 2272 2273 if (!dev) 2274 return -ENODEV; 2275 2276 /* 2277 * Make sure all necessary hooks are implemented before registering 2278 * the SPI controller. 2279 */ 2280 status = spi_controller_check_ops(ctlr); 2281 if (status) 2282 return status; 2283 2284 /* even if it's just one always-selected device, there must 2285 * be at least one chipselect 2286 */ 2287 if (ctlr->num_chipselect == 0) 2288 return -EINVAL; 2289 if (ctlr->bus_num >= 0) { 2290 /* devices with a fixed bus num must check-in with the num */ 2291 mutex_lock(&board_lock); 2292 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2293 ctlr->bus_num + 1, GFP_KERNEL); 2294 mutex_unlock(&board_lock); 2295 if (WARN(id < 0, "couldn't get idr")) 2296 return id == -ENOSPC ? -EBUSY : id; 2297 ctlr->bus_num = id; 2298 } else if (ctlr->dev.of_node) { 2299 /* allocate dynamic bus number using Linux idr */ 2300 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2301 if (id >= 0) { 2302 ctlr->bus_num = id; 2303 mutex_lock(&board_lock); 2304 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2305 ctlr->bus_num + 1, GFP_KERNEL); 2306 mutex_unlock(&board_lock); 2307 if (WARN(id < 0, "couldn't get idr")) 2308 return id == -ENOSPC ? -EBUSY : id; 2309 } 2310 } 2311 if (ctlr->bus_num < 0) { 2312 first_dynamic = of_alias_get_highest_id("spi"); 2313 if (first_dynamic < 0) 2314 first_dynamic = 0; 2315 else 2316 first_dynamic++; 2317 2318 mutex_lock(&board_lock); 2319 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2320 0, GFP_KERNEL); 2321 mutex_unlock(&board_lock); 2322 if (WARN(id < 0, "couldn't get idr")) 2323 return id; 2324 ctlr->bus_num = id; 2325 } 2326 INIT_LIST_HEAD(&ctlr->queue); 2327 spin_lock_init(&ctlr->queue_lock); 2328 spin_lock_init(&ctlr->bus_lock_spinlock); 2329 mutex_init(&ctlr->bus_lock_mutex); 2330 mutex_init(&ctlr->io_mutex); 2331 ctlr->bus_lock_flag = 0; 2332 init_completion(&ctlr->xfer_completion); 2333 if (!ctlr->max_dma_len) 2334 ctlr->max_dma_len = INT_MAX; 2335 2336 /* register the device, then userspace will see it. 2337 * registration fails if the bus ID is in use. 2338 */ 2339 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2340 2341 if (!spi_controller_is_slave(ctlr)) { 2342 if (ctlr->use_gpio_descriptors) { 2343 status = spi_get_gpio_descs(ctlr); 2344 if (status) 2345 return status; 2346 /* 2347 * A controller using GPIO descriptors always 2348 * supports SPI_CS_HIGH if need be. 2349 */ 2350 ctlr->mode_bits |= SPI_CS_HIGH; 2351 } else { 2352 /* Legacy code path for GPIOs from DT */ 2353 status = of_spi_register_master(ctlr); 2354 if (status) 2355 return status; 2356 } 2357 } 2358 2359 status = device_add(&ctlr->dev); 2360 if (status < 0) { 2361 /* free bus id */ 2362 mutex_lock(&board_lock); 2363 idr_remove(&spi_master_idr, ctlr->bus_num); 2364 mutex_unlock(&board_lock); 2365 goto done; 2366 } 2367 dev_dbg(dev, "registered %s %s\n", 2368 spi_controller_is_slave(ctlr) ? "slave" : "master", 2369 dev_name(&ctlr->dev)); 2370 2371 /* 2372 * If we're using a queued driver, start the queue. Note that we don't 2373 * need the queueing logic if the driver is only supporting high-level 2374 * memory operations. 2375 */ 2376 if (ctlr->transfer) { 2377 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2378 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2379 status = spi_controller_initialize_queue(ctlr); 2380 if (status) { 2381 device_del(&ctlr->dev); 2382 /* free bus id */ 2383 mutex_lock(&board_lock); 2384 idr_remove(&spi_master_idr, ctlr->bus_num); 2385 mutex_unlock(&board_lock); 2386 goto done; 2387 } 2388 } 2389 /* add statistics */ 2390 spin_lock_init(&ctlr->statistics.lock); 2391 2392 mutex_lock(&board_lock); 2393 list_add_tail(&ctlr->list, &spi_controller_list); 2394 list_for_each_entry(bi, &board_list, list) 2395 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2396 mutex_unlock(&board_lock); 2397 2398 /* Register devices from the device tree and ACPI */ 2399 of_register_spi_devices(ctlr); 2400 acpi_register_spi_devices(ctlr); 2401 done: 2402 return status; 2403 } 2404 EXPORT_SYMBOL_GPL(spi_register_controller); 2405 2406 static void devm_spi_unregister(struct device *dev, void *res) 2407 { 2408 spi_unregister_controller(*(struct spi_controller **)res); 2409 } 2410 2411 /** 2412 * devm_spi_register_controller - register managed SPI master or slave 2413 * controller 2414 * @dev: device managing SPI controller 2415 * @ctlr: initialized controller, originally from spi_alloc_master() or 2416 * spi_alloc_slave() 2417 * Context: can sleep 2418 * 2419 * Register a SPI device as with spi_register_controller() which will 2420 * automatically be unregistered and freed. 2421 * 2422 * Return: zero on success, else a negative error code. 2423 */ 2424 int devm_spi_register_controller(struct device *dev, 2425 struct spi_controller *ctlr) 2426 { 2427 struct spi_controller **ptr; 2428 int ret; 2429 2430 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2431 if (!ptr) 2432 return -ENOMEM; 2433 2434 ret = spi_register_controller(ctlr); 2435 if (!ret) { 2436 *ptr = ctlr; 2437 devres_add(dev, ptr); 2438 } else { 2439 devres_free(ptr); 2440 } 2441 2442 return ret; 2443 } 2444 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2445 2446 static int __unregister(struct device *dev, void *null) 2447 { 2448 spi_unregister_device(to_spi_device(dev)); 2449 return 0; 2450 } 2451 2452 /** 2453 * spi_unregister_controller - unregister SPI master or slave controller 2454 * @ctlr: the controller being unregistered 2455 * Context: can sleep 2456 * 2457 * This call is used only by SPI controller drivers, which are the 2458 * only ones directly touching chip registers. 2459 * 2460 * This must be called from context that can sleep. 2461 * 2462 * Note that this function also drops a reference to the controller. 2463 */ 2464 void spi_unregister_controller(struct spi_controller *ctlr) 2465 { 2466 struct spi_controller *found; 2467 int id = ctlr->bus_num; 2468 int dummy; 2469 2470 /* First make sure that this controller was ever added */ 2471 mutex_lock(&board_lock); 2472 found = idr_find(&spi_master_idr, id); 2473 mutex_unlock(&board_lock); 2474 if (ctlr->queued) { 2475 if (spi_destroy_queue(ctlr)) 2476 dev_err(&ctlr->dev, "queue remove failed\n"); 2477 } 2478 mutex_lock(&board_lock); 2479 list_del(&ctlr->list); 2480 mutex_unlock(&board_lock); 2481 2482 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister); 2483 device_unregister(&ctlr->dev); 2484 /* free bus id */ 2485 mutex_lock(&board_lock); 2486 if (found == ctlr) 2487 idr_remove(&spi_master_idr, id); 2488 mutex_unlock(&board_lock); 2489 } 2490 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2491 2492 int spi_controller_suspend(struct spi_controller *ctlr) 2493 { 2494 int ret; 2495 2496 /* Basically no-ops for non-queued controllers */ 2497 if (!ctlr->queued) 2498 return 0; 2499 2500 ret = spi_stop_queue(ctlr); 2501 if (ret) 2502 dev_err(&ctlr->dev, "queue stop failed\n"); 2503 2504 return ret; 2505 } 2506 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2507 2508 int spi_controller_resume(struct spi_controller *ctlr) 2509 { 2510 int ret; 2511 2512 if (!ctlr->queued) 2513 return 0; 2514 2515 ret = spi_start_queue(ctlr); 2516 if (ret) 2517 dev_err(&ctlr->dev, "queue restart failed\n"); 2518 2519 return ret; 2520 } 2521 EXPORT_SYMBOL_GPL(spi_controller_resume); 2522 2523 static int __spi_controller_match(struct device *dev, const void *data) 2524 { 2525 struct spi_controller *ctlr; 2526 const u16 *bus_num = data; 2527 2528 ctlr = container_of(dev, struct spi_controller, dev); 2529 return ctlr->bus_num == *bus_num; 2530 } 2531 2532 /** 2533 * spi_busnum_to_master - look up master associated with bus_num 2534 * @bus_num: the master's bus number 2535 * Context: can sleep 2536 * 2537 * This call may be used with devices that are registered after 2538 * arch init time. It returns a refcounted pointer to the relevant 2539 * spi_controller (which the caller must release), or NULL if there is 2540 * no such master registered. 2541 * 2542 * Return: the SPI master structure on success, else NULL. 2543 */ 2544 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2545 { 2546 struct device *dev; 2547 struct spi_controller *ctlr = NULL; 2548 2549 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2550 __spi_controller_match); 2551 if (dev) 2552 ctlr = container_of(dev, struct spi_controller, dev); 2553 /* reference got in class_find_device */ 2554 return ctlr; 2555 } 2556 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2557 2558 /*-------------------------------------------------------------------------*/ 2559 2560 /* Core methods for SPI resource management */ 2561 2562 /** 2563 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2564 * during the processing of a spi_message while using 2565 * spi_transfer_one 2566 * @spi: the spi device for which we allocate memory 2567 * @release: the release code to execute for this resource 2568 * @size: size to alloc and return 2569 * @gfp: GFP allocation flags 2570 * 2571 * Return: the pointer to the allocated data 2572 * 2573 * This may get enhanced in the future to allocate from a memory pool 2574 * of the @spi_device or @spi_controller to avoid repeated allocations. 2575 */ 2576 void *spi_res_alloc(struct spi_device *spi, 2577 spi_res_release_t release, 2578 size_t size, gfp_t gfp) 2579 { 2580 struct spi_res *sres; 2581 2582 sres = kzalloc(sizeof(*sres) + size, gfp); 2583 if (!sres) 2584 return NULL; 2585 2586 INIT_LIST_HEAD(&sres->entry); 2587 sres->release = release; 2588 2589 return sres->data; 2590 } 2591 EXPORT_SYMBOL_GPL(spi_res_alloc); 2592 2593 /** 2594 * spi_res_free - free an spi resource 2595 * @res: pointer to the custom data of a resource 2596 * 2597 */ 2598 void spi_res_free(void *res) 2599 { 2600 struct spi_res *sres = container_of(res, struct spi_res, data); 2601 2602 if (!res) 2603 return; 2604 2605 WARN_ON(!list_empty(&sres->entry)); 2606 kfree(sres); 2607 } 2608 EXPORT_SYMBOL_GPL(spi_res_free); 2609 2610 /** 2611 * spi_res_add - add a spi_res to the spi_message 2612 * @message: the spi message 2613 * @res: the spi_resource 2614 */ 2615 void spi_res_add(struct spi_message *message, void *res) 2616 { 2617 struct spi_res *sres = container_of(res, struct spi_res, data); 2618 2619 WARN_ON(!list_empty(&sres->entry)); 2620 list_add_tail(&sres->entry, &message->resources); 2621 } 2622 EXPORT_SYMBOL_GPL(spi_res_add); 2623 2624 /** 2625 * spi_res_release - release all spi resources for this message 2626 * @ctlr: the @spi_controller 2627 * @message: the @spi_message 2628 */ 2629 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2630 { 2631 struct spi_res *res; 2632 2633 while (!list_empty(&message->resources)) { 2634 res = list_last_entry(&message->resources, 2635 struct spi_res, entry); 2636 2637 if (res->release) 2638 res->release(ctlr, message, res->data); 2639 2640 list_del(&res->entry); 2641 2642 kfree(res); 2643 } 2644 } 2645 EXPORT_SYMBOL_GPL(spi_res_release); 2646 2647 /*-------------------------------------------------------------------------*/ 2648 2649 /* Core methods for spi_message alterations */ 2650 2651 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2652 struct spi_message *msg, 2653 void *res) 2654 { 2655 struct spi_replaced_transfers *rxfer = res; 2656 size_t i; 2657 2658 /* call extra callback if requested */ 2659 if (rxfer->release) 2660 rxfer->release(ctlr, msg, res); 2661 2662 /* insert replaced transfers back into the message */ 2663 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2664 2665 /* remove the formerly inserted entries */ 2666 for (i = 0; i < rxfer->inserted; i++) 2667 list_del(&rxfer->inserted_transfers[i].transfer_list); 2668 } 2669 2670 /** 2671 * spi_replace_transfers - replace transfers with several transfers 2672 * and register change with spi_message.resources 2673 * @msg: the spi_message we work upon 2674 * @xfer_first: the first spi_transfer we want to replace 2675 * @remove: number of transfers to remove 2676 * @insert: the number of transfers we want to insert instead 2677 * @release: extra release code necessary in some circumstances 2678 * @extradatasize: extra data to allocate (with alignment guarantees 2679 * of struct @spi_transfer) 2680 * @gfp: gfp flags 2681 * 2682 * Returns: pointer to @spi_replaced_transfers, 2683 * PTR_ERR(...) in case of errors. 2684 */ 2685 struct spi_replaced_transfers *spi_replace_transfers( 2686 struct spi_message *msg, 2687 struct spi_transfer *xfer_first, 2688 size_t remove, 2689 size_t insert, 2690 spi_replaced_release_t release, 2691 size_t extradatasize, 2692 gfp_t gfp) 2693 { 2694 struct spi_replaced_transfers *rxfer; 2695 struct spi_transfer *xfer; 2696 size_t i; 2697 2698 /* allocate the structure using spi_res */ 2699 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2700 insert * sizeof(struct spi_transfer) 2701 + sizeof(struct spi_replaced_transfers) 2702 + extradatasize, 2703 gfp); 2704 if (!rxfer) 2705 return ERR_PTR(-ENOMEM); 2706 2707 /* the release code to invoke before running the generic release */ 2708 rxfer->release = release; 2709 2710 /* assign extradata */ 2711 if (extradatasize) 2712 rxfer->extradata = 2713 &rxfer->inserted_transfers[insert]; 2714 2715 /* init the replaced_transfers list */ 2716 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2717 2718 /* assign the list_entry after which we should reinsert 2719 * the @replaced_transfers - it may be spi_message.messages! 2720 */ 2721 rxfer->replaced_after = xfer_first->transfer_list.prev; 2722 2723 /* remove the requested number of transfers */ 2724 for (i = 0; i < remove; i++) { 2725 /* if the entry after replaced_after it is msg->transfers 2726 * then we have been requested to remove more transfers 2727 * than are in the list 2728 */ 2729 if (rxfer->replaced_after->next == &msg->transfers) { 2730 dev_err(&msg->spi->dev, 2731 "requested to remove more spi_transfers than are available\n"); 2732 /* insert replaced transfers back into the message */ 2733 list_splice(&rxfer->replaced_transfers, 2734 rxfer->replaced_after); 2735 2736 /* free the spi_replace_transfer structure */ 2737 spi_res_free(rxfer); 2738 2739 /* and return with an error */ 2740 return ERR_PTR(-EINVAL); 2741 } 2742 2743 /* remove the entry after replaced_after from list of 2744 * transfers and add it to list of replaced_transfers 2745 */ 2746 list_move_tail(rxfer->replaced_after->next, 2747 &rxfer->replaced_transfers); 2748 } 2749 2750 /* create copy of the given xfer with identical settings 2751 * based on the first transfer to get removed 2752 */ 2753 for (i = 0; i < insert; i++) { 2754 /* we need to run in reverse order */ 2755 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 2756 2757 /* copy all spi_transfer data */ 2758 memcpy(xfer, xfer_first, sizeof(*xfer)); 2759 2760 /* add to list */ 2761 list_add(&xfer->transfer_list, rxfer->replaced_after); 2762 2763 /* clear cs_change and delay_usecs for all but the last */ 2764 if (i) { 2765 xfer->cs_change = false; 2766 xfer->delay_usecs = 0; 2767 } 2768 } 2769 2770 /* set up inserted */ 2771 rxfer->inserted = insert; 2772 2773 /* and register it with spi_res/spi_message */ 2774 spi_res_add(msg, rxfer); 2775 2776 return rxfer; 2777 } 2778 EXPORT_SYMBOL_GPL(spi_replace_transfers); 2779 2780 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 2781 struct spi_message *msg, 2782 struct spi_transfer **xferp, 2783 size_t maxsize, 2784 gfp_t gfp) 2785 { 2786 struct spi_transfer *xfer = *xferp, *xfers; 2787 struct spi_replaced_transfers *srt; 2788 size_t offset; 2789 size_t count, i; 2790 2791 /* calculate how many we have to replace */ 2792 count = DIV_ROUND_UP(xfer->len, maxsize); 2793 2794 /* create replacement */ 2795 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 2796 if (IS_ERR(srt)) 2797 return PTR_ERR(srt); 2798 xfers = srt->inserted_transfers; 2799 2800 /* now handle each of those newly inserted spi_transfers 2801 * note that the replacements spi_transfers all are preset 2802 * to the same values as *xferp, so tx_buf, rx_buf and len 2803 * are all identical (as well as most others) 2804 * so we just have to fix up len and the pointers. 2805 * 2806 * this also includes support for the depreciated 2807 * spi_message.is_dma_mapped interface 2808 */ 2809 2810 /* the first transfer just needs the length modified, so we 2811 * run it outside the loop 2812 */ 2813 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 2814 2815 /* all the others need rx_buf/tx_buf also set */ 2816 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 2817 /* update rx_buf, tx_buf and dma */ 2818 if (xfers[i].rx_buf) 2819 xfers[i].rx_buf += offset; 2820 if (xfers[i].rx_dma) 2821 xfers[i].rx_dma += offset; 2822 if (xfers[i].tx_buf) 2823 xfers[i].tx_buf += offset; 2824 if (xfers[i].tx_dma) 2825 xfers[i].tx_dma += offset; 2826 2827 /* update length */ 2828 xfers[i].len = min(maxsize, xfers[i].len - offset); 2829 } 2830 2831 /* we set up xferp to the last entry we have inserted, 2832 * so that we skip those already split transfers 2833 */ 2834 *xferp = &xfers[count - 1]; 2835 2836 /* increment statistics counters */ 2837 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 2838 transfers_split_maxsize); 2839 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 2840 transfers_split_maxsize); 2841 2842 return 0; 2843 } 2844 2845 /** 2846 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 2847 * when an individual transfer exceeds a 2848 * certain size 2849 * @ctlr: the @spi_controller for this transfer 2850 * @msg: the @spi_message to transform 2851 * @maxsize: the maximum when to apply this 2852 * @gfp: GFP allocation flags 2853 * 2854 * Return: status of transformation 2855 */ 2856 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 2857 struct spi_message *msg, 2858 size_t maxsize, 2859 gfp_t gfp) 2860 { 2861 struct spi_transfer *xfer; 2862 int ret; 2863 2864 /* iterate over the transfer_list, 2865 * but note that xfer is advanced to the last transfer inserted 2866 * to avoid checking sizes again unnecessarily (also xfer does 2867 * potentiall belong to a different list by the time the 2868 * replacement has happened 2869 */ 2870 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 2871 if (xfer->len > maxsize) { 2872 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 2873 maxsize, gfp); 2874 if (ret) 2875 return ret; 2876 } 2877 } 2878 2879 return 0; 2880 } 2881 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 2882 2883 /*-------------------------------------------------------------------------*/ 2884 2885 /* Core methods for SPI controller protocol drivers. Some of the 2886 * other core methods are currently defined as inline functions. 2887 */ 2888 2889 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 2890 u8 bits_per_word) 2891 { 2892 if (ctlr->bits_per_word_mask) { 2893 /* Only 32 bits fit in the mask */ 2894 if (bits_per_word > 32) 2895 return -EINVAL; 2896 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 2897 return -EINVAL; 2898 } 2899 2900 return 0; 2901 } 2902 2903 /** 2904 * spi_setup - setup SPI mode and clock rate 2905 * @spi: the device whose settings are being modified 2906 * Context: can sleep, and no requests are queued to the device 2907 * 2908 * SPI protocol drivers may need to update the transfer mode if the 2909 * device doesn't work with its default. They may likewise need 2910 * to update clock rates or word sizes from initial values. This function 2911 * changes those settings, and must be called from a context that can sleep. 2912 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 2913 * effect the next time the device is selected and data is transferred to 2914 * or from it. When this function returns, the spi device is deselected. 2915 * 2916 * Note that this call will fail if the protocol driver specifies an option 2917 * that the underlying controller or its driver does not support. For 2918 * example, not all hardware supports wire transfers using nine bit words, 2919 * LSB-first wire encoding, or active-high chipselects. 2920 * 2921 * Return: zero on success, else a negative error code. 2922 */ 2923 int spi_setup(struct spi_device *spi) 2924 { 2925 unsigned bad_bits, ugly_bits; 2926 int status; 2927 2928 /* check mode to prevent that DUAL and QUAD set at the same time 2929 */ 2930 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 2931 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 2932 dev_err(&spi->dev, 2933 "setup: can not select dual and quad at the same time\n"); 2934 return -EINVAL; 2935 } 2936 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 2937 */ 2938 if ((spi->mode & SPI_3WIRE) && (spi->mode & 2939 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 2940 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 2941 return -EINVAL; 2942 /* help drivers fail *cleanly* when they need options 2943 * that aren't supported with their current controller 2944 * SPI_CS_WORD has a fallback software implementation, 2945 * so it is ignored here. 2946 */ 2947 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 2948 /* nothing prevents from working with active-high CS in case if it 2949 * is driven by GPIO. 2950 */ 2951 if (gpio_is_valid(spi->cs_gpio)) 2952 bad_bits &= ~SPI_CS_HIGH; 2953 ugly_bits = bad_bits & 2954 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 2955 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 2956 if (ugly_bits) { 2957 dev_warn(&spi->dev, 2958 "setup: ignoring unsupported mode bits %x\n", 2959 ugly_bits); 2960 spi->mode &= ~ugly_bits; 2961 bad_bits &= ~ugly_bits; 2962 } 2963 if (bad_bits) { 2964 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 2965 bad_bits); 2966 return -EINVAL; 2967 } 2968 2969 if (!spi->bits_per_word) 2970 spi->bits_per_word = 8; 2971 2972 status = __spi_validate_bits_per_word(spi->controller, 2973 spi->bits_per_word); 2974 if (status) 2975 return status; 2976 2977 if (!spi->max_speed_hz) 2978 spi->max_speed_hz = spi->controller->max_speed_hz; 2979 2980 if (spi->controller->setup) 2981 status = spi->controller->setup(spi); 2982 2983 spi_set_cs(spi, false); 2984 2985 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 2986 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 2987 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 2988 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 2989 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 2990 (spi->mode & SPI_LOOP) ? "loopback, " : "", 2991 spi->bits_per_word, spi->max_speed_hz, 2992 status); 2993 2994 return status; 2995 } 2996 EXPORT_SYMBOL_GPL(spi_setup); 2997 2998 /** 2999 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3000 * @spi: the device that requires specific CS timing configuration 3001 * @setup: CS setup time in terms of clock count 3002 * @hold: CS hold time in terms of clock count 3003 * @inactive_dly: CS inactive delay between transfers in terms of clock count 3004 */ 3005 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold, 3006 u8 inactive_dly) 3007 { 3008 if (spi->controller->set_cs_timing) 3009 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly); 3010 } 3011 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3012 3013 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3014 { 3015 struct spi_controller *ctlr = spi->controller; 3016 struct spi_transfer *xfer; 3017 int w_size; 3018 3019 if (list_empty(&message->transfers)) 3020 return -EINVAL; 3021 3022 /* If an SPI controller does not support toggling the CS line on each 3023 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3024 * for the CS line, we can emulate the CS-per-word hardware function by 3025 * splitting transfers into one-word transfers and ensuring that 3026 * cs_change is set for each transfer. 3027 */ 3028 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3029 spi->cs_gpiod || 3030 gpio_is_valid(spi->cs_gpio))) { 3031 size_t maxsize; 3032 int ret; 3033 3034 maxsize = (spi->bits_per_word + 7) / 8; 3035 3036 /* spi_split_transfers_maxsize() requires message->spi */ 3037 message->spi = spi; 3038 3039 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3040 GFP_KERNEL); 3041 if (ret) 3042 return ret; 3043 3044 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3045 /* don't change cs_change on the last entry in the list */ 3046 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3047 break; 3048 xfer->cs_change = 1; 3049 } 3050 } 3051 3052 /* Half-duplex links include original MicroWire, and ones with 3053 * only one data pin like SPI_3WIRE (switches direction) or where 3054 * either MOSI or MISO is missing. They can also be caused by 3055 * software limitations. 3056 */ 3057 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3058 (spi->mode & SPI_3WIRE)) { 3059 unsigned flags = ctlr->flags; 3060 3061 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3062 if (xfer->rx_buf && xfer->tx_buf) 3063 return -EINVAL; 3064 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3065 return -EINVAL; 3066 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3067 return -EINVAL; 3068 } 3069 } 3070 3071 /** 3072 * Set transfer bits_per_word and max speed as spi device default if 3073 * it is not set for this transfer. 3074 * Set transfer tx_nbits and rx_nbits as single transfer default 3075 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3076 * Ensure transfer word_delay is at least as long as that required by 3077 * device itself. 3078 */ 3079 message->frame_length = 0; 3080 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3081 message->frame_length += xfer->len; 3082 if (!xfer->bits_per_word) 3083 xfer->bits_per_word = spi->bits_per_word; 3084 3085 if (!xfer->speed_hz) 3086 xfer->speed_hz = spi->max_speed_hz; 3087 3088 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3089 xfer->speed_hz = ctlr->max_speed_hz; 3090 3091 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3092 return -EINVAL; 3093 3094 /* 3095 * SPI transfer length should be multiple of SPI word size 3096 * where SPI word size should be power-of-two multiple 3097 */ 3098 if (xfer->bits_per_word <= 8) 3099 w_size = 1; 3100 else if (xfer->bits_per_word <= 16) 3101 w_size = 2; 3102 else 3103 w_size = 4; 3104 3105 /* No partial transfers accepted */ 3106 if (xfer->len % w_size) 3107 return -EINVAL; 3108 3109 if (xfer->speed_hz && ctlr->min_speed_hz && 3110 xfer->speed_hz < ctlr->min_speed_hz) 3111 return -EINVAL; 3112 3113 if (xfer->tx_buf && !xfer->tx_nbits) 3114 xfer->tx_nbits = SPI_NBITS_SINGLE; 3115 if (xfer->rx_buf && !xfer->rx_nbits) 3116 xfer->rx_nbits = SPI_NBITS_SINGLE; 3117 /* check transfer tx/rx_nbits: 3118 * 1. check the value matches one of single, dual and quad 3119 * 2. check tx/rx_nbits match the mode in spi_device 3120 */ 3121 if (xfer->tx_buf) { 3122 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3123 xfer->tx_nbits != SPI_NBITS_DUAL && 3124 xfer->tx_nbits != SPI_NBITS_QUAD) 3125 return -EINVAL; 3126 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3127 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3128 return -EINVAL; 3129 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3130 !(spi->mode & SPI_TX_QUAD)) 3131 return -EINVAL; 3132 } 3133 /* check transfer rx_nbits */ 3134 if (xfer->rx_buf) { 3135 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3136 xfer->rx_nbits != SPI_NBITS_DUAL && 3137 xfer->rx_nbits != SPI_NBITS_QUAD) 3138 return -EINVAL; 3139 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3140 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3141 return -EINVAL; 3142 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3143 !(spi->mode & SPI_RX_QUAD)) 3144 return -EINVAL; 3145 } 3146 3147 if (xfer->word_delay_usecs < spi->word_delay_usecs) 3148 xfer->word_delay_usecs = spi->word_delay_usecs; 3149 } 3150 3151 message->status = -EINPROGRESS; 3152 3153 return 0; 3154 } 3155 3156 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3157 { 3158 struct spi_controller *ctlr = spi->controller; 3159 3160 /* 3161 * Some controllers do not support doing regular SPI transfers. Return 3162 * ENOTSUPP when this is the case. 3163 */ 3164 if (!ctlr->transfer) 3165 return -ENOTSUPP; 3166 3167 message->spi = spi; 3168 3169 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3170 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3171 3172 trace_spi_message_submit(message); 3173 3174 return ctlr->transfer(spi, message); 3175 } 3176 3177 /** 3178 * spi_async - asynchronous SPI transfer 3179 * @spi: device with which data will be exchanged 3180 * @message: describes the data transfers, including completion callback 3181 * Context: any (irqs may be blocked, etc) 3182 * 3183 * This call may be used in_irq and other contexts which can't sleep, 3184 * as well as from task contexts which can sleep. 3185 * 3186 * The completion callback is invoked in a context which can't sleep. 3187 * Before that invocation, the value of message->status is undefined. 3188 * When the callback is issued, message->status holds either zero (to 3189 * indicate complete success) or a negative error code. After that 3190 * callback returns, the driver which issued the transfer request may 3191 * deallocate the associated memory; it's no longer in use by any SPI 3192 * core or controller driver code. 3193 * 3194 * Note that although all messages to a spi_device are handled in 3195 * FIFO order, messages may go to different devices in other orders. 3196 * Some device might be higher priority, or have various "hard" access 3197 * time requirements, for example. 3198 * 3199 * On detection of any fault during the transfer, processing of 3200 * the entire message is aborted, and the device is deselected. 3201 * Until returning from the associated message completion callback, 3202 * no other spi_message queued to that device will be processed. 3203 * (This rule applies equally to all the synchronous transfer calls, 3204 * which are wrappers around this core asynchronous primitive.) 3205 * 3206 * Return: zero on success, else a negative error code. 3207 */ 3208 int spi_async(struct spi_device *spi, struct spi_message *message) 3209 { 3210 struct spi_controller *ctlr = spi->controller; 3211 int ret; 3212 unsigned long flags; 3213 3214 ret = __spi_validate(spi, message); 3215 if (ret != 0) 3216 return ret; 3217 3218 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3219 3220 if (ctlr->bus_lock_flag) 3221 ret = -EBUSY; 3222 else 3223 ret = __spi_async(spi, message); 3224 3225 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3226 3227 return ret; 3228 } 3229 EXPORT_SYMBOL_GPL(spi_async); 3230 3231 /** 3232 * spi_async_locked - version of spi_async with exclusive bus usage 3233 * @spi: device with which data will be exchanged 3234 * @message: describes the data transfers, including completion callback 3235 * Context: any (irqs may be blocked, etc) 3236 * 3237 * This call may be used in_irq and other contexts which can't sleep, 3238 * as well as from task contexts which can sleep. 3239 * 3240 * The completion callback is invoked in a context which can't sleep. 3241 * Before that invocation, the value of message->status is undefined. 3242 * When the callback is issued, message->status holds either zero (to 3243 * indicate complete success) or a negative error code. After that 3244 * callback returns, the driver which issued the transfer request may 3245 * deallocate the associated memory; it's no longer in use by any SPI 3246 * core or controller driver code. 3247 * 3248 * Note that although all messages to a spi_device are handled in 3249 * FIFO order, messages may go to different devices in other orders. 3250 * Some device might be higher priority, or have various "hard" access 3251 * time requirements, for example. 3252 * 3253 * On detection of any fault during the transfer, processing of 3254 * the entire message is aborted, and the device is deselected. 3255 * Until returning from the associated message completion callback, 3256 * no other spi_message queued to that device will be processed. 3257 * (This rule applies equally to all the synchronous transfer calls, 3258 * which are wrappers around this core asynchronous primitive.) 3259 * 3260 * Return: zero on success, else a negative error code. 3261 */ 3262 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3263 { 3264 struct spi_controller *ctlr = spi->controller; 3265 int ret; 3266 unsigned long flags; 3267 3268 ret = __spi_validate(spi, message); 3269 if (ret != 0) 3270 return ret; 3271 3272 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3273 3274 ret = __spi_async(spi, message); 3275 3276 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3277 3278 return ret; 3279 3280 } 3281 EXPORT_SYMBOL_GPL(spi_async_locked); 3282 3283 /*-------------------------------------------------------------------------*/ 3284 3285 /* Utility methods for SPI protocol drivers, layered on 3286 * top of the core. Some other utility methods are defined as 3287 * inline functions. 3288 */ 3289 3290 static void spi_complete(void *arg) 3291 { 3292 complete(arg); 3293 } 3294 3295 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3296 { 3297 DECLARE_COMPLETION_ONSTACK(done); 3298 int status; 3299 struct spi_controller *ctlr = spi->controller; 3300 unsigned long flags; 3301 3302 status = __spi_validate(spi, message); 3303 if (status != 0) 3304 return status; 3305 3306 message->complete = spi_complete; 3307 message->context = &done; 3308 message->spi = spi; 3309 3310 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3311 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3312 3313 /* If we're not using the legacy transfer method then we will 3314 * try to transfer in the calling context so special case. 3315 * This code would be less tricky if we could remove the 3316 * support for driver implemented message queues. 3317 */ 3318 if (ctlr->transfer == spi_queued_transfer) { 3319 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3320 3321 trace_spi_message_submit(message); 3322 3323 status = __spi_queued_transfer(spi, message, false); 3324 3325 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3326 } else { 3327 status = spi_async_locked(spi, message); 3328 } 3329 3330 if (status == 0) { 3331 /* Push out the messages in the calling context if we 3332 * can. 3333 */ 3334 if (ctlr->transfer == spi_queued_transfer) { 3335 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3336 spi_sync_immediate); 3337 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3338 spi_sync_immediate); 3339 __spi_pump_messages(ctlr, false); 3340 } 3341 3342 wait_for_completion(&done); 3343 status = message->status; 3344 } 3345 message->context = NULL; 3346 return status; 3347 } 3348 3349 /** 3350 * spi_sync - blocking/synchronous SPI data transfers 3351 * @spi: device with which data will be exchanged 3352 * @message: describes the data transfers 3353 * Context: can sleep 3354 * 3355 * This call may only be used from a context that may sleep. The sleep 3356 * is non-interruptible, and has no timeout. Low-overhead controller 3357 * drivers may DMA directly into and out of the message buffers. 3358 * 3359 * Note that the SPI device's chip select is active during the message, 3360 * and then is normally disabled between messages. Drivers for some 3361 * frequently-used devices may want to minimize costs of selecting a chip, 3362 * by leaving it selected in anticipation that the next message will go 3363 * to the same chip. (That may increase power usage.) 3364 * 3365 * Also, the caller is guaranteeing that the memory associated with the 3366 * message will not be freed before this call returns. 3367 * 3368 * Return: zero on success, else a negative error code. 3369 */ 3370 int spi_sync(struct spi_device *spi, struct spi_message *message) 3371 { 3372 int ret; 3373 3374 mutex_lock(&spi->controller->bus_lock_mutex); 3375 ret = __spi_sync(spi, message); 3376 mutex_unlock(&spi->controller->bus_lock_mutex); 3377 3378 return ret; 3379 } 3380 EXPORT_SYMBOL_GPL(spi_sync); 3381 3382 /** 3383 * spi_sync_locked - version of spi_sync with exclusive bus usage 3384 * @spi: device with which data will be exchanged 3385 * @message: describes the data transfers 3386 * Context: can sleep 3387 * 3388 * This call may only be used from a context that may sleep. The sleep 3389 * is non-interruptible, and has no timeout. Low-overhead controller 3390 * drivers may DMA directly into and out of the message buffers. 3391 * 3392 * This call should be used by drivers that require exclusive access to the 3393 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3394 * be released by a spi_bus_unlock call when the exclusive access is over. 3395 * 3396 * Return: zero on success, else a negative error code. 3397 */ 3398 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3399 { 3400 return __spi_sync(spi, message); 3401 } 3402 EXPORT_SYMBOL_GPL(spi_sync_locked); 3403 3404 /** 3405 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3406 * @ctlr: SPI bus master that should be locked for exclusive bus access 3407 * Context: can sleep 3408 * 3409 * This call may only be used from a context that may sleep. The sleep 3410 * is non-interruptible, and has no timeout. 3411 * 3412 * This call should be used by drivers that require exclusive access to the 3413 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3414 * exclusive access is over. Data transfer must be done by spi_sync_locked 3415 * and spi_async_locked calls when the SPI bus lock is held. 3416 * 3417 * Return: always zero. 3418 */ 3419 int spi_bus_lock(struct spi_controller *ctlr) 3420 { 3421 unsigned long flags; 3422 3423 mutex_lock(&ctlr->bus_lock_mutex); 3424 3425 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3426 ctlr->bus_lock_flag = 1; 3427 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3428 3429 /* mutex remains locked until spi_bus_unlock is called */ 3430 3431 return 0; 3432 } 3433 EXPORT_SYMBOL_GPL(spi_bus_lock); 3434 3435 /** 3436 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3437 * @ctlr: SPI bus master that was locked for exclusive bus access 3438 * Context: can sleep 3439 * 3440 * This call may only be used from a context that may sleep. The sleep 3441 * is non-interruptible, and has no timeout. 3442 * 3443 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3444 * call. 3445 * 3446 * Return: always zero. 3447 */ 3448 int spi_bus_unlock(struct spi_controller *ctlr) 3449 { 3450 ctlr->bus_lock_flag = 0; 3451 3452 mutex_unlock(&ctlr->bus_lock_mutex); 3453 3454 return 0; 3455 } 3456 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3457 3458 /* portable code must never pass more than 32 bytes */ 3459 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3460 3461 static u8 *buf; 3462 3463 /** 3464 * spi_write_then_read - SPI synchronous write followed by read 3465 * @spi: device with which data will be exchanged 3466 * @txbuf: data to be written (need not be dma-safe) 3467 * @n_tx: size of txbuf, in bytes 3468 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3469 * @n_rx: size of rxbuf, in bytes 3470 * Context: can sleep 3471 * 3472 * This performs a half duplex MicroWire style transaction with the 3473 * device, sending txbuf and then reading rxbuf. The return value 3474 * is zero for success, else a negative errno status code. 3475 * This call may only be used from a context that may sleep. 3476 * 3477 * Parameters to this routine are always copied using a small buffer; 3478 * portable code should never use this for more than 32 bytes. 3479 * Performance-sensitive or bulk transfer code should instead use 3480 * spi_{async,sync}() calls with dma-safe buffers. 3481 * 3482 * Return: zero on success, else a negative error code. 3483 */ 3484 int spi_write_then_read(struct spi_device *spi, 3485 const void *txbuf, unsigned n_tx, 3486 void *rxbuf, unsigned n_rx) 3487 { 3488 static DEFINE_MUTEX(lock); 3489 3490 int status; 3491 struct spi_message message; 3492 struct spi_transfer x[2]; 3493 u8 *local_buf; 3494 3495 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3496 * copying here, (as a pure convenience thing), but we can 3497 * keep heap costs out of the hot path unless someone else is 3498 * using the pre-allocated buffer or the transfer is too large. 3499 */ 3500 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3501 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3502 GFP_KERNEL | GFP_DMA); 3503 if (!local_buf) 3504 return -ENOMEM; 3505 } else { 3506 local_buf = buf; 3507 } 3508 3509 spi_message_init(&message); 3510 memset(x, 0, sizeof(x)); 3511 if (n_tx) { 3512 x[0].len = n_tx; 3513 spi_message_add_tail(&x[0], &message); 3514 } 3515 if (n_rx) { 3516 x[1].len = n_rx; 3517 spi_message_add_tail(&x[1], &message); 3518 } 3519 3520 memcpy(local_buf, txbuf, n_tx); 3521 x[0].tx_buf = local_buf; 3522 x[1].rx_buf = local_buf + n_tx; 3523 3524 /* do the i/o */ 3525 status = spi_sync(spi, &message); 3526 if (status == 0) 3527 memcpy(rxbuf, x[1].rx_buf, n_rx); 3528 3529 if (x[0].tx_buf == buf) 3530 mutex_unlock(&lock); 3531 else 3532 kfree(local_buf); 3533 3534 return status; 3535 } 3536 EXPORT_SYMBOL_GPL(spi_write_then_read); 3537 3538 /*-------------------------------------------------------------------------*/ 3539 3540 #if IS_ENABLED(CONFIG_OF) 3541 static int __spi_of_device_match(struct device *dev, void *data) 3542 { 3543 return dev->of_node == data; 3544 } 3545 3546 /* must call put_device() when done with returned spi_device device */ 3547 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3548 { 3549 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 3550 __spi_of_device_match); 3551 return dev ? to_spi_device(dev) : NULL; 3552 } 3553 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3554 #endif /* IS_ENABLED(CONFIG_OF) */ 3555 3556 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3557 static int __spi_of_controller_match(struct device *dev, const void *data) 3558 { 3559 return dev->of_node == data; 3560 } 3561 3562 /* the spi controllers are not using spi_bus, so we find it with another way */ 3563 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3564 { 3565 struct device *dev; 3566 3567 dev = class_find_device(&spi_master_class, NULL, node, 3568 __spi_of_controller_match); 3569 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3570 dev = class_find_device(&spi_slave_class, NULL, node, 3571 __spi_of_controller_match); 3572 if (!dev) 3573 return NULL; 3574 3575 /* reference got in class_find_device */ 3576 return container_of(dev, struct spi_controller, dev); 3577 } 3578 3579 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3580 void *arg) 3581 { 3582 struct of_reconfig_data *rd = arg; 3583 struct spi_controller *ctlr; 3584 struct spi_device *spi; 3585 3586 switch (of_reconfig_get_state_change(action, arg)) { 3587 case OF_RECONFIG_CHANGE_ADD: 3588 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3589 if (ctlr == NULL) 3590 return NOTIFY_OK; /* not for us */ 3591 3592 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3593 put_device(&ctlr->dev); 3594 return NOTIFY_OK; 3595 } 3596 3597 spi = of_register_spi_device(ctlr, rd->dn); 3598 put_device(&ctlr->dev); 3599 3600 if (IS_ERR(spi)) { 3601 pr_err("%s: failed to create for '%pOF'\n", 3602 __func__, rd->dn); 3603 of_node_clear_flag(rd->dn, OF_POPULATED); 3604 return notifier_from_errno(PTR_ERR(spi)); 3605 } 3606 break; 3607 3608 case OF_RECONFIG_CHANGE_REMOVE: 3609 /* already depopulated? */ 3610 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3611 return NOTIFY_OK; 3612 3613 /* find our device by node */ 3614 spi = of_find_spi_device_by_node(rd->dn); 3615 if (spi == NULL) 3616 return NOTIFY_OK; /* no? not meant for us */ 3617 3618 /* unregister takes one ref away */ 3619 spi_unregister_device(spi); 3620 3621 /* and put the reference of the find */ 3622 put_device(&spi->dev); 3623 break; 3624 } 3625 3626 return NOTIFY_OK; 3627 } 3628 3629 static struct notifier_block spi_of_notifier = { 3630 .notifier_call = of_spi_notify, 3631 }; 3632 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3633 extern struct notifier_block spi_of_notifier; 3634 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3635 3636 #if IS_ENABLED(CONFIG_ACPI) 3637 static int spi_acpi_controller_match(struct device *dev, const void *data) 3638 { 3639 return ACPI_COMPANION(dev->parent) == data; 3640 } 3641 3642 static int spi_acpi_device_match(struct device *dev, void *data) 3643 { 3644 return ACPI_COMPANION(dev) == data; 3645 } 3646 3647 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 3648 { 3649 struct device *dev; 3650 3651 dev = class_find_device(&spi_master_class, NULL, adev, 3652 spi_acpi_controller_match); 3653 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3654 dev = class_find_device(&spi_slave_class, NULL, adev, 3655 spi_acpi_controller_match); 3656 if (!dev) 3657 return NULL; 3658 3659 return container_of(dev, struct spi_controller, dev); 3660 } 3661 3662 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 3663 { 3664 struct device *dev; 3665 3666 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match); 3667 3668 return dev ? to_spi_device(dev) : NULL; 3669 } 3670 3671 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 3672 void *arg) 3673 { 3674 struct acpi_device *adev = arg; 3675 struct spi_controller *ctlr; 3676 struct spi_device *spi; 3677 3678 switch (value) { 3679 case ACPI_RECONFIG_DEVICE_ADD: 3680 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 3681 if (!ctlr) 3682 break; 3683 3684 acpi_register_spi_device(ctlr, adev); 3685 put_device(&ctlr->dev); 3686 break; 3687 case ACPI_RECONFIG_DEVICE_REMOVE: 3688 if (!acpi_device_enumerated(adev)) 3689 break; 3690 3691 spi = acpi_spi_find_device_by_adev(adev); 3692 if (!spi) 3693 break; 3694 3695 spi_unregister_device(spi); 3696 put_device(&spi->dev); 3697 break; 3698 } 3699 3700 return NOTIFY_OK; 3701 } 3702 3703 static struct notifier_block spi_acpi_notifier = { 3704 .notifier_call = acpi_spi_notify, 3705 }; 3706 #else 3707 extern struct notifier_block spi_acpi_notifier; 3708 #endif 3709 3710 static int __init spi_init(void) 3711 { 3712 int status; 3713 3714 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 3715 if (!buf) { 3716 status = -ENOMEM; 3717 goto err0; 3718 } 3719 3720 status = bus_register(&spi_bus_type); 3721 if (status < 0) 3722 goto err1; 3723 3724 status = class_register(&spi_master_class); 3725 if (status < 0) 3726 goto err2; 3727 3728 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 3729 status = class_register(&spi_slave_class); 3730 if (status < 0) 3731 goto err3; 3732 } 3733 3734 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 3735 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 3736 if (IS_ENABLED(CONFIG_ACPI)) 3737 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 3738 3739 return 0; 3740 3741 err3: 3742 class_unregister(&spi_master_class); 3743 err2: 3744 bus_unregister(&spi_bus_type); 3745 err1: 3746 kfree(buf); 3747 buf = NULL; 3748 err0: 3749 return status; 3750 } 3751 3752 /* board_info is normally registered in arch_initcall(), 3753 * but even essential drivers wait till later 3754 * 3755 * REVISIT only boardinfo really needs static linking. the rest (device and 3756 * driver registration) _could_ be dynamically linked (modular) ... costs 3757 * include needing to have boardinfo data structures be much more public. 3758 */ 3759 postcore_initcall(spi_init); 3760 3761