xref: /openbmc/linux/drivers/spi/spi.c (revision 74be2d3b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Empty string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del operation for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 	struct spi_device	*spi;
498 
499 	if (!spi_controller_get(ctlr))
500 		return NULL;
501 
502 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 	if (!spi) {
504 		spi_controller_put(ctlr);
505 		return NULL;
506 	}
507 
508 	spi->master = spi->controller = ctlr;
509 	spi->dev.parent = &ctlr->dev;
510 	spi->dev.bus = &spi_bus_type;
511 	spi->dev.release = spidev_release;
512 	spi->cs_gpio = -ENOENT;
513 	spi->mode = ctlr->buswidth_override_bits;
514 
515 	spin_lock_init(&spi->statistics.lock);
516 
517 	device_initialize(&spi->dev);
518 	return spi;
519 }
520 EXPORT_SYMBOL_GPL(spi_alloc_device);
521 
522 static void spi_dev_set_name(struct spi_device *spi)
523 {
524 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
525 
526 	if (adev) {
527 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
528 		return;
529 	}
530 
531 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
532 		     spi->chip_select);
533 }
534 
535 static int spi_dev_check(struct device *dev, void *data)
536 {
537 	struct spi_device *spi = to_spi_device(dev);
538 	struct spi_device *new_spi = data;
539 
540 	if (spi->controller == new_spi->controller &&
541 	    spi->chip_select == new_spi->chip_select)
542 		return -EBUSY;
543 	return 0;
544 }
545 
546 /**
547  * spi_add_device - Add spi_device allocated with spi_alloc_device
548  * @spi: spi_device to register
549  *
550  * Companion function to spi_alloc_device.  Devices allocated with
551  * spi_alloc_device can be added onto the spi bus with this function.
552  *
553  * Return: 0 on success; negative errno on failure
554  */
555 int spi_add_device(struct spi_device *spi)
556 {
557 	static DEFINE_MUTEX(spi_add_lock);
558 	struct spi_controller *ctlr = spi->controller;
559 	struct device *dev = ctlr->dev.parent;
560 	int status;
561 
562 	/* Chipselects are numbered 0..max; validate. */
563 	if (spi->chip_select >= ctlr->num_chipselect) {
564 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
565 			ctlr->num_chipselect);
566 		return -EINVAL;
567 	}
568 
569 	/* Set the bus ID string */
570 	spi_dev_set_name(spi);
571 
572 	/* We need to make sure there's no other device with this
573 	 * chipselect **BEFORE** we call setup(), else we'll trash
574 	 * its configuration.  Lock against concurrent add() calls.
575 	 */
576 	mutex_lock(&spi_add_lock);
577 
578 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
579 	if (status) {
580 		dev_err(dev, "chipselect %d already in use\n",
581 				spi->chip_select);
582 		goto done;
583 	}
584 
585 	/* Descriptors take precedence */
586 	if (ctlr->cs_gpiods)
587 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
588 	else if (ctlr->cs_gpios)
589 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
590 
591 	/* Drivers may modify this initial i/o setup, but will
592 	 * normally rely on the device being setup.  Devices
593 	 * using SPI_CS_HIGH can't coexist well otherwise...
594 	 */
595 	status = spi_setup(spi);
596 	if (status < 0) {
597 		dev_err(dev, "can't setup %s, status %d\n",
598 				dev_name(&spi->dev), status);
599 		goto done;
600 	}
601 
602 	/* Device may be bound to an active driver when this returns */
603 	status = device_add(&spi->dev);
604 	if (status < 0)
605 		dev_err(dev, "can't add %s, status %d\n",
606 				dev_name(&spi->dev), status);
607 	else
608 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
609 
610 done:
611 	mutex_unlock(&spi_add_lock);
612 	return status;
613 }
614 EXPORT_SYMBOL_GPL(spi_add_device);
615 
616 /**
617  * spi_new_device - instantiate one new SPI device
618  * @ctlr: Controller to which device is connected
619  * @chip: Describes the SPI device
620  * Context: can sleep
621  *
622  * On typical mainboards, this is purely internal; and it's not needed
623  * after board init creates the hard-wired devices.  Some development
624  * platforms may not be able to use spi_register_board_info though, and
625  * this is exported so that for example a USB or parport based adapter
626  * driver could add devices (which it would learn about out-of-band).
627  *
628  * Return: the new device, or NULL.
629  */
630 struct spi_device *spi_new_device(struct spi_controller *ctlr,
631 				  struct spi_board_info *chip)
632 {
633 	struct spi_device	*proxy;
634 	int			status;
635 
636 	/* NOTE:  caller did any chip->bus_num checks necessary.
637 	 *
638 	 * Also, unless we change the return value convention to use
639 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
640 	 * suggests syslogged diagnostics are best here (ugh).
641 	 */
642 
643 	proxy = spi_alloc_device(ctlr);
644 	if (!proxy)
645 		return NULL;
646 
647 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
648 
649 	proxy->chip_select = chip->chip_select;
650 	proxy->max_speed_hz = chip->max_speed_hz;
651 	proxy->mode = chip->mode;
652 	proxy->irq = chip->irq;
653 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
654 	proxy->dev.platform_data = (void *) chip->platform_data;
655 	proxy->controller_data = chip->controller_data;
656 	proxy->controller_state = NULL;
657 
658 	if (chip->properties) {
659 		status = device_add_properties(&proxy->dev, chip->properties);
660 		if (status) {
661 			dev_err(&ctlr->dev,
662 				"failed to add properties to '%s': %d\n",
663 				chip->modalias, status);
664 			goto err_dev_put;
665 		}
666 	}
667 
668 	status = spi_add_device(proxy);
669 	if (status < 0)
670 		goto err_remove_props;
671 
672 	return proxy;
673 
674 err_remove_props:
675 	if (chip->properties)
676 		device_remove_properties(&proxy->dev);
677 err_dev_put:
678 	spi_dev_put(proxy);
679 	return NULL;
680 }
681 EXPORT_SYMBOL_GPL(spi_new_device);
682 
683 /**
684  * spi_unregister_device - unregister a single SPI device
685  * @spi: spi_device to unregister
686  *
687  * Start making the passed SPI device vanish. Normally this would be handled
688  * by spi_unregister_controller().
689  */
690 void spi_unregister_device(struct spi_device *spi)
691 {
692 	if (!spi)
693 		return;
694 
695 	if (spi->dev.of_node) {
696 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
697 		of_node_put(spi->dev.of_node);
698 	}
699 	if (ACPI_COMPANION(&spi->dev))
700 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
701 	device_unregister(&spi->dev);
702 }
703 EXPORT_SYMBOL_GPL(spi_unregister_device);
704 
705 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
706 					      struct spi_board_info *bi)
707 {
708 	struct spi_device *dev;
709 
710 	if (ctlr->bus_num != bi->bus_num)
711 		return;
712 
713 	dev = spi_new_device(ctlr, bi);
714 	if (!dev)
715 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
716 			bi->modalias);
717 }
718 
719 /**
720  * spi_register_board_info - register SPI devices for a given board
721  * @info: array of chip descriptors
722  * @n: how many descriptors are provided
723  * Context: can sleep
724  *
725  * Board-specific early init code calls this (probably during arch_initcall)
726  * with segments of the SPI device table.  Any device nodes are created later,
727  * after the relevant parent SPI controller (bus_num) is defined.  We keep
728  * this table of devices forever, so that reloading a controller driver will
729  * not make Linux forget about these hard-wired devices.
730  *
731  * Other code can also call this, e.g. a particular add-on board might provide
732  * SPI devices through its expansion connector, so code initializing that board
733  * would naturally declare its SPI devices.
734  *
735  * The board info passed can safely be __initdata ... but be careful of
736  * any embedded pointers (platform_data, etc), they're copied as-is.
737  * Device properties are deep-copied though.
738  *
739  * Return: zero on success, else a negative error code.
740  */
741 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
742 {
743 	struct boardinfo *bi;
744 	int i;
745 
746 	if (!n)
747 		return 0;
748 
749 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
750 	if (!bi)
751 		return -ENOMEM;
752 
753 	for (i = 0; i < n; i++, bi++, info++) {
754 		struct spi_controller *ctlr;
755 
756 		memcpy(&bi->board_info, info, sizeof(*info));
757 		if (info->properties) {
758 			bi->board_info.properties =
759 					property_entries_dup(info->properties);
760 			if (IS_ERR(bi->board_info.properties))
761 				return PTR_ERR(bi->board_info.properties);
762 		}
763 
764 		mutex_lock(&board_lock);
765 		list_add_tail(&bi->list, &board_list);
766 		list_for_each_entry(ctlr, &spi_controller_list, list)
767 			spi_match_controller_to_boardinfo(ctlr,
768 							  &bi->board_info);
769 		mutex_unlock(&board_lock);
770 	}
771 
772 	return 0;
773 }
774 
775 /*-------------------------------------------------------------------------*/
776 
777 static void spi_set_cs(struct spi_device *spi, bool enable)
778 {
779 	bool enable1 = enable;
780 
781 	if (!spi->controller->set_cs_timing) {
782 		if (enable1)
783 			spi_delay_exec(&spi->controller->cs_setup, NULL);
784 		else
785 			spi_delay_exec(&spi->controller->cs_hold, NULL);
786 	}
787 
788 	if (spi->mode & SPI_CS_HIGH)
789 		enable = !enable;
790 
791 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
792 		/*
793 		 * Honour the SPI_NO_CS flag and invert the enable line, as
794 		 * active low is default for SPI. Execution paths that handle
795 		 * polarity inversion in gpiolib (such as device tree) will
796 		 * enforce active high using the SPI_CS_HIGH resulting in a
797 		 * double inversion through the code above.
798 		 */
799 		if (!(spi->mode & SPI_NO_CS)) {
800 			if (spi->cs_gpiod)
801 				gpiod_set_value_cansleep(spi->cs_gpiod,
802 							 !enable);
803 			else
804 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
805 		}
806 		/* Some SPI masters need both GPIO CS & slave_select */
807 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
808 		    spi->controller->set_cs)
809 			spi->controller->set_cs(spi, !enable);
810 	} else if (spi->controller->set_cs) {
811 		spi->controller->set_cs(spi, !enable);
812 	}
813 
814 	if (!spi->controller->set_cs_timing) {
815 		if (!enable1)
816 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
817 	}
818 }
819 
820 #ifdef CONFIG_HAS_DMA
821 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
822 		struct sg_table *sgt, void *buf, size_t len,
823 		enum dma_data_direction dir)
824 {
825 	const bool vmalloced_buf = is_vmalloc_addr(buf);
826 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
827 #ifdef CONFIG_HIGHMEM
828 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
829 				(unsigned long)buf < (PKMAP_BASE +
830 					(LAST_PKMAP * PAGE_SIZE)));
831 #else
832 	const bool kmap_buf = false;
833 #endif
834 	int desc_len;
835 	int sgs;
836 	struct page *vm_page;
837 	struct scatterlist *sg;
838 	void *sg_buf;
839 	size_t min;
840 	int i, ret;
841 
842 	if (vmalloced_buf || kmap_buf) {
843 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
844 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
845 	} else if (virt_addr_valid(buf)) {
846 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
847 		sgs = DIV_ROUND_UP(len, desc_len);
848 	} else {
849 		return -EINVAL;
850 	}
851 
852 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
853 	if (ret != 0)
854 		return ret;
855 
856 	sg = &sgt->sgl[0];
857 	for (i = 0; i < sgs; i++) {
858 
859 		if (vmalloced_buf || kmap_buf) {
860 			/*
861 			 * Next scatterlist entry size is the minimum between
862 			 * the desc_len and the remaining buffer length that
863 			 * fits in a page.
864 			 */
865 			min = min_t(size_t, desc_len,
866 				    min_t(size_t, len,
867 					  PAGE_SIZE - offset_in_page(buf)));
868 			if (vmalloced_buf)
869 				vm_page = vmalloc_to_page(buf);
870 			else
871 				vm_page = kmap_to_page(buf);
872 			if (!vm_page) {
873 				sg_free_table(sgt);
874 				return -ENOMEM;
875 			}
876 			sg_set_page(sg, vm_page,
877 				    min, offset_in_page(buf));
878 		} else {
879 			min = min_t(size_t, len, desc_len);
880 			sg_buf = buf;
881 			sg_set_buf(sg, sg_buf, min);
882 		}
883 
884 		buf += min;
885 		len -= min;
886 		sg = sg_next(sg);
887 	}
888 
889 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
890 	if (!ret)
891 		ret = -ENOMEM;
892 	if (ret < 0) {
893 		sg_free_table(sgt);
894 		return ret;
895 	}
896 
897 	sgt->nents = ret;
898 
899 	return 0;
900 }
901 
902 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
903 		   struct sg_table *sgt, enum dma_data_direction dir)
904 {
905 	if (sgt->orig_nents) {
906 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
907 		sg_free_table(sgt);
908 	}
909 }
910 
911 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
912 {
913 	struct device *tx_dev, *rx_dev;
914 	struct spi_transfer *xfer;
915 	int ret;
916 
917 	if (!ctlr->can_dma)
918 		return 0;
919 
920 	if (ctlr->dma_tx)
921 		tx_dev = ctlr->dma_tx->device->dev;
922 	else
923 		tx_dev = ctlr->dev.parent;
924 
925 	if (ctlr->dma_rx)
926 		rx_dev = ctlr->dma_rx->device->dev;
927 	else
928 		rx_dev = ctlr->dev.parent;
929 
930 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
931 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
932 			continue;
933 
934 		if (xfer->tx_buf != NULL) {
935 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
936 					  (void *)xfer->tx_buf, xfer->len,
937 					  DMA_TO_DEVICE);
938 			if (ret != 0)
939 				return ret;
940 		}
941 
942 		if (xfer->rx_buf != NULL) {
943 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
944 					  xfer->rx_buf, xfer->len,
945 					  DMA_FROM_DEVICE);
946 			if (ret != 0) {
947 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
948 					      DMA_TO_DEVICE);
949 				return ret;
950 			}
951 		}
952 	}
953 
954 	ctlr->cur_msg_mapped = true;
955 
956 	return 0;
957 }
958 
959 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
960 {
961 	struct spi_transfer *xfer;
962 	struct device *tx_dev, *rx_dev;
963 
964 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
965 		return 0;
966 
967 	if (ctlr->dma_tx)
968 		tx_dev = ctlr->dma_tx->device->dev;
969 	else
970 		tx_dev = ctlr->dev.parent;
971 
972 	if (ctlr->dma_rx)
973 		rx_dev = ctlr->dma_rx->device->dev;
974 	else
975 		rx_dev = ctlr->dev.parent;
976 
977 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
978 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
979 			continue;
980 
981 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
982 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
983 	}
984 
985 	return 0;
986 }
987 #else /* !CONFIG_HAS_DMA */
988 static inline int __spi_map_msg(struct spi_controller *ctlr,
989 				struct spi_message *msg)
990 {
991 	return 0;
992 }
993 
994 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
995 				  struct spi_message *msg)
996 {
997 	return 0;
998 }
999 #endif /* !CONFIG_HAS_DMA */
1000 
1001 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1002 				struct spi_message *msg)
1003 {
1004 	struct spi_transfer *xfer;
1005 
1006 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1007 		/*
1008 		 * Restore the original value of tx_buf or rx_buf if they are
1009 		 * NULL.
1010 		 */
1011 		if (xfer->tx_buf == ctlr->dummy_tx)
1012 			xfer->tx_buf = NULL;
1013 		if (xfer->rx_buf == ctlr->dummy_rx)
1014 			xfer->rx_buf = NULL;
1015 	}
1016 
1017 	return __spi_unmap_msg(ctlr, msg);
1018 }
1019 
1020 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1021 {
1022 	struct spi_transfer *xfer;
1023 	void *tmp;
1024 	unsigned int max_tx, max_rx;
1025 
1026 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1027 		&& !(msg->spi->mode & SPI_3WIRE)) {
1028 		max_tx = 0;
1029 		max_rx = 0;
1030 
1031 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1032 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1033 			    !xfer->tx_buf)
1034 				max_tx = max(xfer->len, max_tx);
1035 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1036 			    !xfer->rx_buf)
1037 				max_rx = max(xfer->len, max_rx);
1038 		}
1039 
1040 		if (max_tx) {
1041 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1042 				       GFP_KERNEL | GFP_DMA);
1043 			if (!tmp)
1044 				return -ENOMEM;
1045 			ctlr->dummy_tx = tmp;
1046 			memset(tmp, 0, max_tx);
1047 		}
1048 
1049 		if (max_rx) {
1050 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1051 				       GFP_KERNEL | GFP_DMA);
1052 			if (!tmp)
1053 				return -ENOMEM;
1054 			ctlr->dummy_rx = tmp;
1055 		}
1056 
1057 		if (max_tx || max_rx) {
1058 			list_for_each_entry(xfer, &msg->transfers,
1059 					    transfer_list) {
1060 				if (!xfer->len)
1061 					continue;
1062 				if (!xfer->tx_buf)
1063 					xfer->tx_buf = ctlr->dummy_tx;
1064 				if (!xfer->rx_buf)
1065 					xfer->rx_buf = ctlr->dummy_rx;
1066 			}
1067 		}
1068 	}
1069 
1070 	return __spi_map_msg(ctlr, msg);
1071 }
1072 
1073 static int spi_transfer_wait(struct spi_controller *ctlr,
1074 			     struct spi_message *msg,
1075 			     struct spi_transfer *xfer)
1076 {
1077 	struct spi_statistics *statm = &ctlr->statistics;
1078 	struct spi_statistics *stats = &msg->spi->statistics;
1079 	unsigned long long ms;
1080 
1081 	if (spi_controller_is_slave(ctlr)) {
1082 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1083 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1084 			return -EINTR;
1085 		}
1086 	} else {
1087 		ms = 8LL * 1000LL * xfer->len;
1088 		do_div(ms, xfer->speed_hz);
1089 		ms += ms + 200; /* some tolerance */
1090 
1091 		if (ms > UINT_MAX)
1092 			ms = UINT_MAX;
1093 
1094 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1095 						 msecs_to_jiffies(ms));
1096 
1097 		if (ms == 0) {
1098 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1099 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1100 			dev_err(&msg->spi->dev,
1101 				"SPI transfer timed out\n");
1102 			return -ETIMEDOUT;
1103 		}
1104 	}
1105 
1106 	return 0;
1107 }
1108 
1109 static void _spi_transfer_delay_ns(u32 ns)
1110 {
1111 	if (!ns)
1112 		return;
1113 	if (ns <= 1000) {
1114 		ndelay(ns);
1115 	} else {
1116 		u32 us = DIV_ROUND_UP(ns, 1000);
1117 
1118 		if (us <= 10)
1119 			udelay(us);
1120 		else
1121 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1122 	}
1123 }
1124 
1125 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1126 {
1127 	u32 delay = _delay->value;
1128 	u32 unit = _delay->unit;
1129 	u32 hz;
1130 
1131 	if (!delay)
1132 		return 0;
1133 
1134 	switch (unit) {
1135 	case SPI_DELAY_UNIT_USECS:
1136 		delay *= 1000;
1137 		break;
1138 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1139 		break;
1140 	case SPI_DELAY_UNIT_SCK:
1141 		/* clock cycles need to be obtained from spi_transfer */
1142 		if (!xfer)
1143 			return -EINVAL;
1144 		/* if there is no effective speed know, then approximate
1145 		 * by underestimating with half the requested hz
1146 		 */
1147 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1148 		if (!hz)
1149 			return -EINVAL;
1150 		delay *= DIV_ROUND_UP(1000000000, hz);
1151 		break;
1152 	default:
1153 		return -EINVAL;
1154 	}
1155 
1156 	return delay;
1157 }
1158 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1159 
1160 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1161 {
1162 	int delay;
1163 
1164 	might_sleep();
1165 
1166 	if (!_delay)
1167 		return -EINVAL;
1168 
1169 	delay = spi_delay_to_ns(_delay, xfer);
1170 	if (delay < 0)
1171 		return delay;
1172 
1173 	_spi_transfer_delay_ns(delay);
1174 
1175 	return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(spi_delay_exec);
1178 
1179 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1180 					  struct spi_transfer *xfer)
1181 {
1182 	u32 delay = xfer->cs_change_delay.value;
1183 	u32 unit = xfer->cs_change_delay.unit;
1184 	int ret;
1185 
1186 	/* return early on "fast" mode - for everything but USECS */
1187 	if (!delay) {
1188 		if (unit == SPI_DELAY_UNIT_USECS)
1189 			_spi_transfer_delay_ns(10000);
1190 		return;
1191 	}
1192 
1193 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1194 	if (ret) {
1195 		dev_err_once(&msg->spi->dev,
1196 			     "Use of unsupported delay unit %i, using default of 10us\n",
1197 			     unit);
1198 		_spi_transfer_delay_ns(10000);
1199 	}
1200 }
1201 
1202 /*
1203  * spi_transfer_one_message - Default implementation of transfer_one_message()
1204  *
1205  * This is a standard implementation of transfer_one_message() for
1206  * drivers which implement a transfer_one() operation.  It provides
1207  * standard handling of delays and chip select management.
1208  */
1209 static int spi_transfer_one_message(struct spi_controller *ctlr,
1210 				    struct spi_message *msg)
1211 {
1212 	struct spi_transfer *xfer;
1213 	bool keep_cs = false;
1214 	int ret = 0;
1215 	struct spi_statistics *statm = &ctlr->statistics;
1216 	struct spi_statistics *stats = &msg->spi->statistics;
1217 
1218 	spi_set_cs(msg->spi, true);
1219 
1220 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1221 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1222 
1223 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1224 		trace_spi_transfer_start(msg, xfer);
1225 
1226 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1227 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1228 
1229 		if (!ctlr->ptp_sts_supported) {
1230 			xfer->ptp_sts_word_pre = 0;
1231 			ptp_read_system_prets(xfer->ptp_sts);
1232 		}
1233 
1234 		if (xfer->tx_buf || xfer->rx_buf) {
1235 			reinit_completion(&ctlr->xfer_completion);
1236 
1237 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1238 			if (ret < 0) {
1239 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1240 							       errors);
1241 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1242 							       errors);
1243 				dev_err(&msg->spi->dev,
1244 					"SPI transfer failed: %d\n", ret);
1245 				goto out;
1246 			}
1247 
1248 			if (ret > 0) {
1249 				ret = spi_transfer_wait(ctlr, msg, xfer);
1250 				if (ret < 0)
1251 					msg->status = ret;
1252 			}
1253 		} else {
1254 			if (xfer->len)
1255 				dev_err(&msg->spi->dev,
1256 					"Bufferless transfer has length %u\n",
1257 					xfer->len);
1258 		}
1259 
1260 		if (!ctlr->ptp_sts_supported) {
1261 			ptp_read_system_postts(xfer->ptp_sts);
1262 			xfer->ptp_sts_word_post = xfer->len;
1263 		}
1264 
1265 		trace_spi_transfer_stop(msg, xfer);
1266 
1267 		if (msg->status != -EINPROGRESS)
1268 			goto out;
1269 
1270 		spi_transfer_delay_exec(xfer);
1271 
1272 		if (xfer->cs_change) {
1273 			if (list_is_last(&xfer->transfer_list,
1274 					 &msg->transfers)) {
1275 				keep_cs = true;
1276 			} else {
1277 				spi_set_cs(msg->spi, false);
1278 				_spi_transfer_cs_change_delay(msg, xfer);
1279 				spi_set_cs(msg->spi, true);
1280 			}
1281 		}
1282 
1283 		msg->actual_length += xfer->len;
1284 	}
1285 
1286 out:
1287 	if (ret != 0 || !keep_cs)
1288 		spi_set_cs(msg->spi, false);
1289 
1290 	if (msg->status == -EINPROGRESS)
1291 		msg->status = ret;
1292 
1293 	if (msg->status && ctlr->handle_err)
1294 		ctlr->handle_err(ctlr, msg);
1295 
1296 	spi_res_release(ctlr, msg);
1297 
1298 	spi_finalize_current_message(ctlr);
1299 
1300 	return ret;
1301 }
1302 
1303 /**
1304  * spi_finalize_current_transfer - report completion of a transfer
1305  * @ctlr: the controller reporting completion
1306  *
1307  * Called by SPI drivers using the core transfer_one_message()
1308  * implementation to notify it that the current interrupt driven
1309  * transfer has finished and the next one may be scheduled.
1310  */
1311 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1312 {
1313 	complete(&ctlr->xfer_completion);
1314 }
1315 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1316 
1317 /**
1318  * __spi_pump_messages - function which processes spi message queue
1319  * @ctlr: controller to process queue for
1320  * @in_kthread: true if we are in the context of the message pump thread
1321  *
1322  * This function checks if there is any spi message in the queue that
1323  * needs processing and if so call out to the driver to initialize hardware
1324  * and transfer each message.
1325  *
1326  * Note that it is called both from the kthread itself and also from
1327  * inside spi_sync(); the queue extraction handling at the top of the
1328  * function should deal with this safely.
1329  */
1330 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1331 {
1332 	struct spi_transfer *xfer;
1333 	struct spi_message *msg;
1334 	bool was_busy = false;
1335 	unsigned long flags;
1336 	int ret;
1337 
1338 	/* Lock queue */
1339 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1340 
1341 	/* Make sure we are not already running a message */
1342 	if (ctlr->cur_msg) {
1343 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1344 		return;
1345 	}
1346 
1347 	/* If another context is idling the device then defer */
1348 	if (ctlr->idling) {
1349 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1350 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1351 		return;
1352 	}
1353 
1354 	/* Check if the queue is idle */
1355 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1356 		if (!ctlr->busy) {
1357 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1358 			return;
1359 		}
1360 
1361 		/* Only do teardown in the thread */
1362 		if (!in_kthread) {
1363 			kthread_queue_work(&ctlr->kworker,
1364 					   &ctlr->pump_messages);
1365 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1366 			return;
1367 		}
1368 
1369 		ctlr->busy = false;
1370 		ctlr->idling = true;
1371 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1372 
1373 		kfree(ctlr->dummy_rx);
1374 		ctlr->dummy_rx = NULL;
1375 		kfree(ctlr->dummy_tx);
1376 		ctlr->dummy_tx = NULL;
1377 		if (ctlr->unprepare_transfer_hardware &&
1378 		    ctlr->unprepare_transfer_hardware(ctlr))
1379 			dev_err(&ctlr->dev,
1380 				"failed to unprepare transfer hardware\n");
1381 		if (ctlr->auto_runtime_pm) {
1382 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1383 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1384 		}
1385 		trace_spi_controller_idle(ctlr);
1386 
1387 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1388 		ctlr->idling = false;
1389 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1390 		return;
1391 	}
1392 
1393 	/* Extract head of queue */
1394 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1395 	ctlr->cur_msg = msg;
1396 
1397 	list_del_init(&msg->queue);
1398 	if (ctlr->busy)
1399 		was_busy = true;
1400 	else
1401 		ctlr->busy = true;
1402 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1403 
1404 	mutex_lock(&ctlr->io_mutex);
1405 
1406 	if (!was_busy && ctlr->auto_runtime_pm) {
1407 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1408 		if (ret < 0) {
1409 			pm_runtime_put_noidle(ctlr->dev.parent);
1410 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1411 				ret);
1412 			mutex_unlock(&ctlr->io_mutex);
1413 			return;
1414 		}
1415 	}
1416 
1417 	if (!was_busy)
1418 		trace_spi_controller_busy(ctlr);
1419 
1420 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1421 		ret = ctlr->prepare_transfer_hardware(ctlr);
1422 		if (ret) {
1423 			dev_err(&ctlr->dev,
1424 				"failed to prepare transfer hardware: %d\n",
1425 				ret);
1426 
1427 			if (ctlr->auto_runtime_pm)
1428 				pm_runtime_put(ctlr->dev.parent);
1429 
1430 			msg->status = ret;
1431 			spi_finalize_current_message(ctlr);
1432 
1433 			mutex_unlock(&ctlr->io_mutex);
1434 			return;
1435 		}
1436 	}
1437 
1438 	trace_spi_message_start(msg);
1439 
1440 	if (ctlr->prepare_message) {
1441 		ret = ctlr->prepare_message(ctlr, msg);
1442 		if (ret) {
1443 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1444 				ret);
1445 			msg->status = ret;
1446 			spi_finalize_current_message(ctlr);
1447 			goto out;
1448 		}
1449 		ctlr->cur_msg_prepared = true;
1450 	}
1451 
1452 	ret = spi_map_msg(ctlr, msg);
1453 	if (ret) {
1454 		msg->status = ret;
1455 		spi_finalize_current_message(ctlr);
1456 		goto out;
1457 	}
1458 
1459 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1460 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1461 			xfer->ptp_sts_word_pre = 0;
1462 			ptp_read_system_prets(xfer->ptp_sts);
1463 		}
1464 	}
1465 
1466 	ret = ctlr->transfer_one_message(ctlr, msg);
1467 	if (ret) {
1468 		dev_err(&ctlr->dev,
1469 			"failed to transfer one message from queue\n");
1470 		goto out;
1471 	}
1472 
1473 out:
1474 	mutex_unlock(&ctlr->io_mutex);
1475 
1476 	/* Prod the scheduler in case transfer_one() was busy waiting */
1477 	if (!ret)
1478 		cond_resched();
1479 }
1480 
1481 /**
1482  * spi_pump_messages - kthread work function which processes spi message queue
1483  * @work: pointer to kthread work struct contained in the controller struct
1484  */
1485 static void spi_pump_messages(struct kthread_work *work)
1486 {
1487 	struct spi_controller *ctlr =
1488 		container_of(work, struct spi_controller, pump_messages);
1489 
1490 	__spi_pump_messages(ctlr, true);
1491 }
1492 
1493 /**
1494  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1495  *			    TX timestamp for the requested byte from the SPI
1496  *			    transfer. The frequency with which this function
1497  *			    must be called (once per word, once for the whole
1498  *			    transfer, once per batch of words etc) is arbitrary
1499  *			    as long as the @tx buffer offset is greater than or
1500  *			    equal to the requested byte at the time of the
1501  *			    call. The timestamp is only taken once, at the
1502  *			    first such call. It is assumed that the driver
1503  *			    advances its @tx buffer pointer monotonically.
1504  * @ctlr: Pointer to the spi_controller structure of the driver
1505  * @xfer: Pointer to the transfer being timestamped
1506  * @progress: How many words (not bytes) have been transferred so far
1507  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1508  *	      transfer, for less jitter in time measurement. Only compatible
1509  *	      with PIO drivers. If true, must follow up with
1510  *	      spi_take_timestamp_post or otherwise system will crash.
1511  *	      WARNING: for fully predictable results, the CPU frequency must
1512  *	      also be under control (governor).
1513  */
1514 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1515 			    struct spi_transfer *xfer,
1516 			    size_t progress, bool irqs_off)
1517 {
1518 	if (!xfer->ptp_sts)
1519 		return;
1520 
1521 	if (xfer->timestamped)
1522 		return;
1523 
1524 	if (progress > xfer->ptp_sts_word_pre)
1525 		return;
1526 
1527 	/* Capture the resolution of the timestamp */
1528 	xfer->ptp_sts_word_pre = progress;
1529 
1530 	if (irqs_off) {
1531 		local_irq_save(ctlr->irq_flags);
1532 		preempt_disable();
1533 	}
1534 
1535 	ptp_read_system_prets(xfer->ptp_sts);
1536 }
1537 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1538 
1539 /**
1540  * spi_take_timestamp_post - helper for drivers to collect the end of the
1541  *			     TX timestamp for the requested byte from the SPI
1542  *			     transfer. Can be called with an arbitrary
1543  *			     frequency: only the first call where @tx exceeds
1544  *			     or is equal to the requested word will be
1545  *			     timestamped.
1546  * @ctlr: Pointer to the spi_controller structure of the driver
1547  * @xfer: Pointer to the transfer being timestamped
1548  * @progress: How many words (not bytes) have been transferred so far
1549  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1550  */
1551 void spi_take_timestamp_post(struct spi_controller *ctlr,
1552 			     struct spi_transfer *xfer,
1553 			     size_t progress, bool irqs_off)
1554 {
1555 	if (!xfer->ptp_sts)
1556 		return;
1557 
1558 	if (xfer->timestamped)
1559 		return;
1560 
1561 	if (progress < xfer->ptp_sts_word_post)
1562 		return;
1563 
1564 	ptp_read_system_postts(xfer->ptp_sts);
1565 
1566 	if (irqs_off) {
1567 		local_irq_restore(ctlr->irq_flags);
1568 		preempt_enable();
1569 	}
1570 
1571 	/* Capture the resolution of the timestamp */
1572 	xfer->ptp_sts_word_post = progress;
1573 
1574 	xfer->timestamped = true;
1575 }
1576 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1577 
1578 /**
1579  * spi_set_thread_rt - set the controller to pump at realtime priority
1580  * @ctlr: controller to boost priority of
1581  *
1582  * This can be called because the controller requested realtime priority
1583  * (by setting the ->rt value before calling spi_register_controller()) or
1584  * because a device on the bus said that its transfers needed realtime
1585  * priority.
1586  *
1587  * NOTE: at the moment if any device on a bus says it needs realtime then
1588  * the thread will be at realtime priority for all transfers on that
1589  * controller.  If this eventually becomes a problem we may see if we can
1590  * find a way to boost the priority only temporarily during relevant
1591  * transfers.
1592  */
1593 static void spi_set_thread_rt(struct spi_controller *ctlr)
1594 {
1595 	struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1596 
1597 	dev_info(&ctlr->dev,
1598 		"will run message pump with realtime priority\n");
1599 	sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1600 }
1601 
1602 static int spi_init_queue(struct spi_controller *ctlr)
1603 {
1604 	ctlr->running = false;
1605 	ctlr->busy = false;
1606 
1607 	kthread_init_worker(&ctlr->kworker);
1608 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1609 					 "%s", dev_name(&ctlr->dev));
1610 	if (IS_ERR(ctlr->kworker_task)) {
1611 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1612 		return PTR_ERR(ctlr->kworker_task);
1613 	}
1614 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1615 
1616 	/*
1617 	 * Controller config will indicate if this controller should run the
1618 	 * message pump with high (realtime) priority to reduce the transfer
1619 	 * latency on the bus by minimising the delay between a transfer
1620 	 * request and the scheduling of the message pump thread. Without this
1621 	 * setting the message pump thread will remain at default priority.
1622 	 */
1623 	if (ctlr->rt)
1624 		spi_set_thread_rt(ctlr);
1625 
1626 	return 0;
1627 }
1628 
1629 /**
1630  * spi_get_next_queued_message() - called by driver to check for queued
1631  * messages
1632  * @ctlr: the controller to check for queued messages
1633  *
1634  * If there are more messages in the queue, the next message is returned from
1635  * this call.
1636  *
1637  * Return: the next message in the queue, else NULL if the queue is empty.
1638  */
1639 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1640 {
1641 	struct spi_message *next;
1642 	unsigned long flags;
1643 
1644 	/* get a pointer to the next message, if any */
1645 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1646 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1647 					queue);
1648 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1649 
1650 	return next;
1651 }
1652 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1653 
1654 /**
1655  * spi_finalize_current_message() - the current message is complete
1656  * @ctlr: the controller to return the message to
1657  *
1658  * Called by the driver to notify the core that the message in the front of the
1659  * queue is complete and can be removed from the queue.
1660  */
1661 void spi_finalize_current_message(struct spi_controller *ctlr)
1662 {
1663 	struct spi_transfer *xfer;
1664 	struct spi_message *mesg;
1665 	unsigned long flags;
1666 	int ret;
1667 
1668 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1669 	mesg = ctlr->cur_msg;
1670 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1671 
1672 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1673 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1674 			ptp_read_system_postts(xfer->ptp_sts);
1675 			xfer->ptp_sts_word_post = xfer->len;
1676 		}
1677 	}
1678 
1679 	if (unlikely(ctlr->ptp_sts_supported))
1680 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1681 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1682 
1683 	spi_unmap_msg(ctlr, mesg);
1684 
1685 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1686 		ret = ctlr->unprepare_message(ctlr, mesg);
1687 		if (ret) {
1688 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1689 				ret);
1690 		}
1691 	}
1692 
1693 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1694 	ctlr->cur_msg = NULL;
1695 	ctlr->cur_msg_prepared = false;
1696 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1697 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1698 
1699 	trace_spi_message_done(mesg);
1700 
1701 	mesg->state = NULL;
1702 	if (mesg->complete)
1703 		mesg->complete(mesg->context);
1704 }
1705 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1706 
1707 static int spi_start_queue(struct spi_controller *ctlr)
1708 {
1709 	unsigned long flags;
1710 
1711 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1712 
1713 	if (ctlr->running || ctlr->busy) {
1714 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1715 		return -EBUSY;
1716 	}
1717 
1718 	ctlr->running = true;
1719 	ctlr->cur_msg = NULL;
1720 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1721 
1722 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1723 
1724 	return 0;
1725 }
1726 
1727 static int spi_stop_queue(struct spi_controller *ctlr)
1728 {
1729 	unsigned long flags;
1730 	unsigned limit = 500;
1731 	int ret = 0;
1732 
1733 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1734 
1735 	/*
1736 	 * This is a bit lame, but is optimized for the common execution path.
1737 	 * A wait_queue on the ctlr->busy could be used, but then the common
1738 	 * execution path (pump_messages) would be required to call wake_up or
1739 	 * friends on every SPI message. Do this instead.
1740 	 */
1741 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1742 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1743 		usleep_range(10000, 11000);
1744 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1745 	}
1746 
1747 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1748 		ret = -EBUSY;
1749 	else
1750 		ctlr->running = false;
1751 
1752 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1753 
1754 	if (ret) {
1755 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1756 		return ret;
1757 	}
1758 	return ret;
1759 }
1760 
1761 static int spi_destroy_queue(struct spi_controller *ctlr)
1762 {
1763 	int ret;
1764 
1765 	ret = spi_stop_queue(ctlr);
1766 
1767 	/*
1768 	 * kthread_flush_worker will block until all work is done.
1769 	 * If the reason that stop_queue timed out is that the work will never
1770 	 * finish, then it does no good to call flush/stop thread, so
1771 	 * return anyway.
1772 	 */
1773 	if (ret) {
1774 		dev_err(&ctlr->dev, "problem destroying queue\n");
1775 		return ret;
1776 	}
1777 
1778 	kthread_flush_worker(&ctlr->kworker);
1779 	kthread_stop(ctlr->kworker_task);
1780 
1781 	return 0;
1782 }
1783 
1784 static int __spi_queued_transfer(struct spi_device *spi,
1785 				 struct spi_message *msg,
1786 				 bool need_pump)
1787 {
1788 	struct spi_controller *ctlr = spi->controller;
1789 	unsigned long flags;
1790 
1791 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1792 
1793 	if (!ctlr->running) {
1794 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1795 		return -ESHUTDOWN;
1796 	}
1797 	msg->actual_length = 0;
1798 	msg->status = -EINPROGRESS;
1799 
1800 	list_add_tail(&msg->queue, &ctlr->queue);
1801 	if (!ctlr->busy && need_pump)
1802 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1803 
1804 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1805 	return 0;
1806 }
1807 
1808 /**
1809  * spi_queued_transfer - transfer function for queued transfers
1810  * @spi: spi device which is requesting transfer
1811  * @msg: spi message which is to handled is queued to driver queue
1812  *
1813  * Return: zero on success, else a negative error code.
1814  */
1815 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1816 {
1817 	return __spi_queued_transfer(spi, msg, true);
1818 }
1819 
1820 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1821 {
1822 	int ret;
1823 
1824 	ctlr->transfer = spi_queued_transfer;
1825 	if (!ctlr->transfer_one_message)
1826 		ctlr->transfer_one_message = spi_transfer_one_message;
1827 
1828 	/* Initialize and start queue */
1829 	ret = spi_init_queue(ctlr);
1830 	if (ret) {
1831 		dev_err(&ctlr->dev, "problem initializing queue\n");
1832 		goto err_init_queue;
1833 	}
1834 	ctlr->queued = true;
1835 	ret = spi_start_queue(ctlr);
1836 	if (ret) {
1837 		dev_err(&ctlr->dev, "problem starting queue\n");
1838 		goto err_start_queue;
1839 	}
1840 
1841 	return 0;
1842 
1843 err_start_queue:
1844 	spi_destroy_queue(ctlr);
1845 err_init_queue:
1846 	return ret;
1847 }
1848 
1849 /**
1850  * spi_flush_queue - Send all pending messages in the queue from the callers'
1851  *		     context
1852  * @ctlr: controller to process queue for
1853  *
1854  * This should be used when one wants to ensure all pending messages have been
1855  * sent before doing something. Is used by the spi-mem code to make sure SPI
1856  * memory operations do not preempt regular SPI transfers that have been queued
1857  * before the spi-mem operation.
1858  */
1859 void spi_flush_queue(struct spi_controller *ctlr)
1860 {
1861 	if (ctlr->transfer == spi_queued_transfer)
1862 		__spi_pump_messages(ctlr, false);
1863 }
1864 
1865 /*-------------------------------------------------------------------------*/
1866 
1867 #if defined(CONFIG_OF)
1868 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1869 			   struct device_node *nc)
1870 {
1871 	u32 value;
1872 	int rc;
1873 
1874 	/* Mode (clock phase/polarity/etc.) */
1875 	if (of_property_read_bool(nc, "spi-cpha"))
1876 		spi->mode |= SPI_CPHA;
1877 	if (of_property_read_bool(nc, "spi-cpol"))
1878 		spi->mode |= SPI_CPOL;
1879 	if (of_property_read_bool(nc, "spi-3wire"))
1880 		spi->mode |= SPI_3WIRE;
1881 	if (of_property_read_bool(nc, "spi-lsb-first"))
1882 		spi->mode |= SPI_LSB_FIRST;
1883 	if (of_property_read_bool(nc, "spi-cs-high"))
1884 		spi->mode |= SPI_CS_HIGH;
1885 
1886 	/* Device DUAL/QUAD mode */
1887 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1888 		switch (value) {
1889 		case 1:
1890 			break;
1891 		case 2:
1892 			spi->mode |= SPI_TX_DUAL;
1893 			break;
1894 		case 4:
1895 			spi->mode |= SPI_TX_QUAD;
1896 			break;
1897 		case 8:
1898 			spi->mode |= SPI_TX_OCTAL;
1899 			break;
1900 		default:
1901 			dev_warn(&ctlr->dev,
1902 				"spi-tx-bus-width %d not supported\n",
1903 				value);
1904 			break;
1905 		}
1906 	}
1907 
1908 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1909 		switch (value) {
1910 		case 1:
1911 			break;
1912 		case 2:
1913 			spi->mode |= SPI_RX_DUAL;
1914 			break;
1915 		case 4:
1916 			spi->mode |= SPI_RX_QUAD;
1917 			break;
1918 		case 8:
1919 			spi->mode |= SPI_RX_OCTAL;
1920 			break;
1921 		default:
1922 			dev_warn(&ctlr->dev,
1923 				"spi-rx-bus-width %d not supported\n",
1924 				value);
1925 			break;
1926 		}
1927 	}
1928 
1929 	if (spi_controller_is_slave(ctlr)) {
1930 		if (!of_node_name_eq(nc, "slave")) {
1931 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1932 				nc);
1933 			return -EINVAL;
1934 		}
1935 		return 0;
1936 	}
1937 
1938 	/* Device address */
1939 	rc = of_property_read_u32(nc, "reg", &value);
1940 	if (rc) {
1941 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1942 			nc, rc);
1943 		return rc;
1944 	}
1945 	spi->chip_select = value;
1946 
1947 	/*
1948 	 * For descriptors associated with the device, polarity inversion is
1949 	 * handled in the gpiolib, so all gpio chip selects are "active high"
1950 	 * in the logical sense, the gpiolib will invert the line if need be.
1951 	 */
1952 	if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1953 	    ctlr->cs_gpiods[spi->chip_select])
1954 		spi->mode |= SPI_CS_HIGH;
1955 
1956 	/* Device speed */
1957 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
1958 		spi->max_speed_hz = value;
1959 
1960 	return 0;
1961 }
1962 
1963 static struct spi_device *
1964 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1965 {
1966 	struct spi_device *spi;
1967 	int rc;
1968 
1969 	/* Alloc an spi_device */
1970 	spi = spi_alloc_device(ctlr);
1971 	if (!spi) {
1972 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1973 		rc = -ENOMEM;
1974 		goto err_out;
1975 	}
1976 
1977 	/* Select device driver */
1978 	rc = of_modalias_node(nc, spi->modalias,
1979 				sizeof(spi->modalias));
1980 	if (rc < 0) {
1981 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1982 		goto err_out;
1983 	}
1984 
1985 	rc = of_spi_parse_dt(ctlr, spi, nc);
1986 	if (rc)
1987 		goto err_out;
1988 
1989 	/* Store a pointer to the node in the device structure */
1990 	of_node_get(nc);
1991 	spi->dev.of_node = nc;
1992 
1993 	/* Register the new device */
1994 	rc = spi_add_device(spi);
1995 	if (rc) {
1996 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1997 		goto err_of_node_put;
1998 	}
1999 
2000 	return spi;
2001 
2002 err_of_node_put:
2003 	of_node_put(nc);
2004 err_out:
2005 	spi_dev_put(spi);
2006 	return ERR_PTR(rc);
2007 }
2008 
2009 /**
2010  * of_register_spi_devices() - Register child devices onto the SPI bus
2011  * @ctlr:	Pointer to spi_controller device
2012  *
2013  * Registers an spi_device for each child node of controller node which
2014  * represents a valid SPI slave.
2015  */
2016 static void of_register_spi_devices(struct spi_controller *ctlr)
2017 {
2018 	struct spi_device *spi;
2019 	struct device_node *nc;
2020 
2021 	if (!ctlr->dev.of_node)
2022 		return;
2023 
2024 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2025 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2026 			continue;
2027 		spi = of_register_spi_device(ctlr, nc);
2028 		if (IS_ERR(spi)) {
2029 			dev_warn(&ctlr->dev,
2030 				 "Failed to create SPI device for %pOF\n", nc);
2031 			of_node_clear_flag(nc, OF_POPULATED);
2032 		}
2033 	}
2034 }
2035 #else
2036 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2037 #endif
2038 
2039 #ifdef CONFIG_ACPI
2040 struct acpi_spi_lookup {
2041 	struct spi_controller 	*ctlr;
2042 	u32			max_speed_hz;
2043 	u32			mode;
2044 	int			irq;
2045 	u8			bits_per_word;
2046 	u8			chip_select;
2047 };
2048 
2049 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2050 					    struct acpi_spi_lookup *lookup)
2051 {
2052 	const union acpi_object *obj;
2053 
2054 	if (!x86_apple_machine)
2055 		return;
2056 
2057 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2058 	    && obj->buffer.length >= 4)
2059 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2060 
2061 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2062 	    && obj->buffer.length == 8)
2063 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2064 
2065 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2066 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2067 		lookup->mode |= SPI_LSB_FIRST;
2068 
2069 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2070 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2071 		lookup->mode |= SPI_CPOL;
2072 
2073 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2074 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2075 		lookup->mode |= SPI_CPHA;
2076 }
2077 
2078 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2079 {
2080 	struct acpi_spi_lookup *lookup = data;
2081 	struct spi_controller *ctlr = lookup->ctlr;
2082 
2083 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2084 		struct acpi_resource_spi_serialbus *sb;
2085 		acpi_handle parent_handle;
2086 		acpi_status status;
2087 
2088 		sb = &ares->data.spi_serial_bus;
2089 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2090 
2091 			status = acpi_get_handle(NULL,
2092 						 sb->resource_source.string_ptr,
2093 						 &parent_handle);
2094 
2095 			if (ACPI_FAILURE(status) ||
2096 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2097 				return -ENODEV;
2098 
2099 			/*
2100 			 * ACPI DeviceSelection numbering is handled by the
2101 			 * host controller driver in Windows and can vary
2102 			 * from driver to driver. In Linux we always expect
2103 			 * 0 .. max - 1 so we need to ask the driver to
2104 			 * translate between the two schemes.
2105 			 */
2106 			if (ctlr->fw_translate_cs) {
2107 				int cs = ctlr->fw_translate_cs(ctlr,
2108 						sb->device_selection);
2109 				if (cs < 0)
2110 					return cs;
2111 				lookup->chip_select = cs;
2112 			} else {
2113 				lookup->chip_select = sb->device_selection;
2114 			}
2115 
2116 			lookup->max_speed_hz = sb->connection_speed;
2117 			lookup->bits_per_word = sb->data_bit_length;
2118 
2119 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2120 				lookup->mode |= SPI_CPHA;
2121 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2122 				lookup->mode |= SPI_CPOL;
2123 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2124 				lookup->mode |= SPI_CS_HIGH;
2125 		}
2126 	} else if (lookup->irq < 0) {
2127 		struct resource r;
2128 
2129 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2130 			lookup->irq = r.start;
2131 	}
2132 
2133 	/* Always tell the ACPI core to skip this resource */
2134 	return 1;
2135 }
2136 
2137 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2138 					    struct acpi_device *adev)
2139 {
2140 	acpi_handle parent_handle = NULL;
2141 	struct list_head resource_list;
2142 	struct acpi_spi_lookup lookup = {};
2143 	struct spi_device *spi;
2144 	int ret;
2145 
2146 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2147 	    acpi_device_enumerated(adev))
2148 		return AE_OK;
2149 
2150 	lookup.ctlr		= ctlr;
2151 	lookup.irq		= -1;
2152 
2153 	INIT_LIST_HEAD(&resource_list);
2154 	ret = acpi_dev_get_resources(adev, &resource_list,
2155 				     acpi_spi_add_resource, &lookup);
2156 	acpi_dev_free_resource_list(&resource_list);
2157 
2158 	if (ret < 0)
2159 		/* found SPI in _CRS but it points to another controller */
2160 		return AE_OK;
2161 
2162 	if (!lookup.max_speed_hz &&
2163 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2164 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2165 		/* Apple does not use _CRS but nested devices for SPI slaves */
2166 		acpi_spi_parse_apple_properties(adev, &lookup);
2167 	}
2168 
2169 	if (!lookup.max_speed_hz)
2170 		return AE_OK;
2171 
2172 	spi = spi_alloc_device(ctlr);
2173 	if (!spi) {
2174 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2175 			dev_name(&adev->dev));
2176 		return AE_NO_MEMORY;
2177 	}
2178 
2179 
2180 	ACPI_COMPANION_SET(&spi->dev, adev);
2181 	spi->max_speed_hz	= lookup.max_speed_hz;
2182 	spi->mode		|= lookup.mode;
2183 	spi->irq		= lookup.irq;
2184 	spi->bits_per_word	= lookup.bits_per_word;
2185 	spi->chip_select	= lookup.chip_select;
2186 
2187 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2188 			  sizeof(spi->modalias));
2189 
2190 	if (spi->irq < 0)
2191 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2192 
2193 	acpi_device_set_enumerated(adev);
2194 
2195 	adev->power.flags.ignore_parent = true;
2196 	if (spi_add_device(spi)) {
2197 		adev->power.flags.ignore_parent = false;
2198 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2199 			dev_name(&adev->dev));
2200 		spi_dev_put(spi);
2201 	}
2202 
2203 	return AE_OK;
2204 }
2205 
2206 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2207 				       void *data, void **return_value)
2208 {
2209 	struct spi_controller *ctlr = data;
2210 	struct acpi_device *adev;
2211 
2212 	if (acpi_bus_get_device(handle, &adev))
2213 		return AE_OK;
2214 
2215 	return acpi_register_spi_device(ctlr, adev);
2216 }
2217 
2218 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2219 
2220 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2221 {
2222 	acpi_status status;
2223 	acpi_handle handle;
2224 
2225 	handle = ACPI_HANDLE(ctlr->dev.parent);
2226 	if (!handle)
2227 		return;
2228 
2229 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2230 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2231 				     acpi_spi_add_device, NULL, ctlr, NULL);
2232 	if (ACPI_FAILURE(status))
2233 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2234 }
2235 #else
2236 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2237 #endif /* CONFIG_ACPI */
2238 
2239 static void spi_controller_release(struct device *dev)
2240 {
2241 	struct spi_controller *ctlr;
2242 
2243 	ctlr = container_of(dev, struct spi_controller, dev);
2244 	kfree(ctlr);
2245 }
2246 
2247 static struct class spi_master_class = {
2248 	.name		= "spi_master",
2249 	.owner		= THIS_MODULE,
2250 	.dev_release	= spi_controller_release,
2251 	.dev_groups	= spi_master_groups,
2252 };
2253 
2254 #ifdef CONFIG_SPI_SLAVE
2255 /**
2256  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2257  *		     controller
2258  * @spi: device used for the current transfer
2259  */
2260 int spi_slave_abort(struct spi_device *spi)
2261 {
2262 	struct spi_controller *ctlr = spi->controller;
2263 
2264 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2265 		return ctlr->slave_abort(ctlr);
2266 
2267 	return -ENOTSUPP;
2268 }
2269 EXPORT_SYMBOL_GPL(spi_slave_abort);
2270 
2271 static int match_true(struct device *dev, void *data)
2272 {
2273 	return 1;
2274 }
2275 
2276 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2277 			  char *buf)
2278 {
2279 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2280 						   dev);
2281 	struct device *child;
2282 
2283 	child = device_find_child(&ctlr->dev, NULL, match_true);
2284 	return sprintf(buf, "%s\n",
2285 		       child ? to_spi_device(child)->modalias : NULL);
2286 }
2287 
2288 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2289 			   const char *buf, size_t count)
2290 {
2291 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2292 						   dev);
2293 	struct spi_device *spi;
2294 	struct device *child;
2295 	char name[32];
2296 	int rc;
2297 
2298 	rc = sscanf(buf, "%31s", name);
2299 	if (rc != 1 || !name[0])
2300 		return -EINVAL;
2301 
2302 	child = device_find_child(&ctlr->dev, NULL, match_true);
2303 	if (child) {
2304 		/* Remove registered slave */
2305 		device_unregister(child);
2306 		put_device(child);
2307 	}
2308 
2309 	if (strcmp(name, "(null)")) {
2310 		/* Register new slave */
2311 		spi = spi_alloc_device(ctlr);
2312 		if (!spi)
2313 			return -ENOMEM;
2314 
2315 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2316 
2317 		rc = spi_add_device(spi);
2318 		if (rc) {
2319 			spi_dev_put(spi);
2320 			return rc;
2321 		}
2322 	}
2323 
2324 	return count;
2325 }
2326 
2327 static DEVICE_ATTR_RW(slave);
2328 
2329 static struct attribute *spi_slave_attrs[] = {
2330 	&dev_attr_slave.attr,
2331 	NULL,
2332 };
2333 
2334 static const struct attribute_group spi_slave_group = {
2335 	.attrs = spi_slave_attrs,
2336 };
2337 
2338 static const struct attribute_group *spi_slave_groups[] = {
2339 	&spi_controller_statistics_group,
2340 	&spi_slave_group,
2341 	NULL,
2342 };
2343 
2344 static struct class spi_slave_class = {
2345 	.name		= "spi_slave",
2346 	.owner		= THIS_MODULE,
2347 	.dev_release	= spi_controller_release,
2348 	.dev_groups	= spi_slave_groups,
2349 };
2350 #else
2351 extern struct class spi_slave_class;	/* dummy */
2352 #endif
2353 
2354 /**
2355  * __spi_alloc_controller - allocate an SPI master or slave controller
2356  * @dev: the controller, possibly using the platform_bus
2357  * @size: how much zeroed driver-private data to allocate; the pointer to this
2358  *	memory is in the driver_data field of the returned device, accessible
2359  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2360  *	drivers granting DMA access to portions of their private data need to
2361  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2362  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2363  *	slave (true) controller
2364  * Context: can sleep
2365  *
2366  * This call is used only by SPI controller drivers, which are the
2367  * only ones directly touching chip registers.  It's how they allocate
2368  * an spi_controller structure, prior to calling spi_register_controller().
2369  *
2370  * This must be called from context that can sleep.
2371  *
2372  * The caller is responsible for assigning the bus number and initializing the
2373  * controller's methods before calling spi_register_controller(); and (after
2374  * errors adding the device) calling spi_controller_put() to prevent a memory
2375  * leak.
2376  *
2377  * Return: the SPI controller structure on success, else NULL.
2378  */
2379 struct spi_controller *__spi_alloc_controller(struct device *dev,
2380 					      unsigned int size, bool slave)
2381 {
2382 	struct spi_controller	*ctlr;
2383 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2384 
2385 	if (!dev)
2386 		return NULL;
2387 
2388 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2389 	if (!ctlr)
2390 		return NULL;
2391 
2392 	device_initialize(&ctlr->dev);
2393 	ctlr->bus_num = -1;
2394 	ctlr->num_chipselect = 1;
2395 	ctlr->slave = slave;
2396 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2397 		ctlr->dev.class = &spi_slave_class;
2398 	else
2399 		ctlr->dev.class = &spi_master_class;
2400 	ctlr->dev.parent = dev;
2401 	pm_suspend_ignore_children(&ctlr->dev, true);
2402 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2403 
2404 	return ctlr;
2405 }
2406 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2407 
2408 #ifdef CONFIG_OF
2409 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2410 {
2411 	int nb, i, *cs;
2412 	struct device_node *np = ctlr->dev.of_node;
2413 
2414 	if (!np)
2415 		return 0;
2416 
2417 	nb = of_gpio_named_count(np, "cs-gpios");
2418 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2419 
2420 	/* Return error only for an incorrectly formed cs-gpios property */
2421 	if (nb == 0 || nb == -ENOENT)
2422 		return 0;
2423 	else if (nb < 0)
2424 		return nb;
2425 
2426 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2427 			  GFP_KERNEL);
2428 	ctlr->cs_gpios = cs;
2429 
2430 	if (!ctlr->cs_gpios)
2431 		return -ENOMEM;
2432 
2433 	for (i = 0; i < ctlr->num_chipselect; i++)
2434 		cs[i] = -ENOENT;
2435 
2436 	for (i = 0; i < nb; i++)
2437 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2438 
2439 	return 0;
2440 }
2441 #else
2442 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2443 {
2444 	return 0;
2445 }
2446 #endif
2447 
2448 /**
2449  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2450  * @ctlr: The SPI master to grab GPIO descriptors for
2451  */
2452 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2453 {
2454 	int nb, i;
2455 	struct gpio_desc **cs;
2456 	struct device *dev = &ctlr->dev;
2457 	unsigned long native_cs_mask = 0;
2458 	unsigned int num_cs_gpios = 0;
2459 
2460 	nb = gpiod_count(dev, "cs");
2461 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2462 
2463 	/* No GPIOs at all is fine, else return the error */
2464 	if (nb == 0 || nb == -ENOENT)
2465 		return 0;
2466 	else if (nb < 0)
2467 		return nb;
2468 
2469 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2470 			  GFP_KERNEL);
2471 	if (!cs)
2472 		return -ENOMEM;
2473 	ctlr->cs_gpiods = cs;
2474 
2475 	for (i = 0; i < nb; i++) {
2476 		/*
2477 		 * Most chipselects are active low, the inverted
2478 		 * semantics are handled by special quirks in gpiolib,
2479 		 * so initializing them GPIOD_OUT_LOW here means
2480 		 * "unasserted", in most cases this will drive the physical
2481 		 * line high.
2482 		 */
2483 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2484 						      GPIOD_OUT_LOW);
2485 		if (IS_ERR(cs[i]))
2486 			return PTR_ERR(cs[i]);
2487 
2488 		if (cs[i]) {
2489 			/*
2490 			 * If we find a CS GPIO, name it after the device and
2491 			 * chip select line.
2492 			 */
2493 			char *gpioname;
2494 
2495 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2496 						  dev_name(dev), i);
2497 			if (!gpioname)
2498 				return -ENOMEM;
2499 			gpiod_set_consumer_name(cs[i], gpioname);
2500 			num_cs_gpios++;
2501 			continue;
2502 		}
2503 
2504 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2505 			dev_err(dev, "Invalid native chip select %d\n", i);
2506 			return -EINVAL;
2507 		}
2508 		native_cs_mask |= BIT(i);
2509 	}
2510 
2511 	ctlr->unused_native_cs = ffz(native_cs_mask);
2512 	if (num_cs_gpios && ctlr->max_native_cs &&
2513 	    ctlr->unused_native_cs >= ctlr->max_native_cs) {
2514 		dev_err(dev, "No unused native chip select available\n");
2515 		return -EINVAL;
2516 	}
2517 
2518 	return 0;
2519 }
2520 
2521 static int spi_controller_check_ops(struct spi_controller *ctlr)
2522 {
2523 	/*
2524 	 * The controller may implement only the high-level SPI-memory like
2525 	 * operations if it does not support regular SPI transfers, and this is
2526 	 * valid use case.
2527 	 * If ->mem_ops is NULL, we request that at least one of the
2528 	 * ->transfer_xxx() method be implemented.
2529 	 */
2530 	if (ctlr->mem_ops) {
2531 		if (!ctlr->mem_ops->exec_op)
2532 			return -EINVAL;
2533 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2534 		   !ctlr->transfer_one_message) {
2535 		return -EINVAL;
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 /**
2542  * spi_register_controller - register SPI master or slave controller
2543  * @ctlr: initialized master, originally from spi_alloc_master() or
2544  *	spi_alloc_slave()
2545  * Context: can sleep
2546  *
2547  * SPI controllers connect to their drivers using some non-SPI bus,
2548  * such as the platform bus.  The final stage of probe() in that code
2549  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2550  *
2551  * SPI controllers use board specific (often SOC specific) bus numbers,
2552  * and board-specific addressing for SPI devices combines those numbers
2553  * with chip select numbers.  Since SPI does not directly support dynamic
2554  * device identification, boards need configuration tables telling which
2555  * chip is at which address.
2556  *
2557  * This must be called from context that can sleep.  It returns zero on
2558  * success, else a negative error code (dropping the controller's refcount).
2559  * After a successful return, the caller is responsible for calling
2560  * spi_unregister_controller().
2561  *
2562  * Return: zero on success, else a negative error code.
2563  */
2564 int spi_register_controller(struct spi_controller *ctlr)
2565 {
2566 	struct device		*dev = ctlr->dev.parent;
2567 	struct boardinfo	*bi;
2568 	int			status;
2569 	int			id, first_dynamic;
2570 
2571 	if (!dev)
2572 		return -ENODEV;
2573 
2574 	/*
2575 	 * Make sure all necessary hooks are implemented before registering
2576 	 * the SPI controller.
2577 	 */
2578 	status = spi_controller_check_ops(ctlr);
2579 	if (status)
2580 		return status;
2581 
2582 	if (ctlr->bus_num >= 0) {
2583 		/* devices with a fixed bus num must check-in with the num */
2584 		mutex_lock(&board_lock);
2585 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2586 			ctlr->bus_num + 1, GFP_KERNEL);
2587 		mutex_unlock(&board_lock);
2588 		if (WARN(id < 0, "couldn't get idr"))
2589 			return id == -ENOSPC ? -EBUSY : id;
2590 		ctlr->bus_num = id;
2591 	} else if (ctlr->dev.of_node) {
2592 		/* allocate dynamic bus number using Linux idr */
2593 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2594 		if (id >= 0) {
2595 			ctlr->bus_num = id;
2596 			mutex_lock(&board_lock);
2597 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2598 				       ctlr->bus_num + 1, GFP_KERNEL);
2599 			mutex_unlock(&board_lock);
2600 			if (WARN(id < 0, "couldn't get idr"))
2601 				return id == -ENOSPC ? -EBUSY : id;
2602 		}
2603 	}
2604 	if (ctlr->bus_num < 0) {
2605 		first_dynamic = of_alias_get_highest_id("spi");
2606 		if (first_dynamic < 0)
2607 			first_dynamic = 0;
2608 		else
2609 			first_dynamic++;
2610 
2611 		mutex_lock(&board_lock);
2612 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2613 			       0, GFP_KERNEL);
2614 		mutex_unlock(&board_lock);
2615 		if (WARN(id < 0, "couldn't get idr"))
2616 			return id;
2617 		ctlr->bus_num = id;
2618 	}
2619 	INIT_LIST_HEAD(&ctlr->queue);
2620 	spin_lock_init(&ctlr->queue_lock);
2621 	spin_lock_init(&ctlr->bus_lock_spinlock);
2622 	mutex_init(&ctlr->bus_lock_mutex);
2623 	mutex_init(&ctlr->io_mutex);
2624 	ctlr->bus_lock_flag = 0;
2625 	init_completion(&ctlr->xfer_completion);
2626 	if (!ctlr->max_dma_len)
2627 		ctlr->max_dma_len = INT_MAX;
2628 
2629 	/* register the device, then userspace will see it.
2630 	 * registration fails if the bus ID is in use.
2631 	 */
2632 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2633 
2634 	if (!spi_controller_is_slave(ctlr)) {
2635 		if (ctlr->use_gpio_descriptors) {
2636 			status = spi_get_gpio_descs(ctlr);
2637 			if (status)
2638 				goto free_bus_id;
2639 			/*
2640 			 * A controller using GPIO descriptors always
2641 			 * supports SPI_CS_HIGH if need be.
2642 			 */
2643 			ctlr->mode_bits |= SPI_CS_HIGH;
2644 		} else {
2645 			/* Legacy code path for GPIOs from DT */
2646 			status = of_spi_get_gpio_numbers(ctlr);
2647 			if (status)
2648 				goto free_bus_id;
2649 		}
2650 	}
2651 
2652 	/*
2653 	 * Even if it's just one always-selected device, there must
2654 	 * be at least one chipselect.
2655 	 */
2656 	if (!ctlr->num_chipselect) {
2657 		status = -EINVAL;
2658 		goto free_bus_id;
2659 	}
2660 
2661 	status = device_add(&ctlr->dev);
2662 	if (status < 0)
2663 		goto free_bus_id;
2664 	dev_dbg(dev, "registered %s %s\n",
2665 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2666 			dev_name(&ctlr->dev));
2667 
2668 	/*
2669 	 * If we're using a queued driver, start the queue. Note that we don't
2670 	 * need the queueing logic if the driver is only supporting high-level
2671 	 * memory operations.
2672 	 */
2673 	if (ctlr->transfer) {
2674 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2675 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2676 		status = spi_controller_initialize_queue(ctlr);
2677 		if (status) {
2678 			device_del(&ctlr->dev);
2679 			goto free_bus_id;
2680 		}
2681 	}
2682 	/* add statistics */
2683 	spin_lock_init(&ctlr->statistics.lock);
2684 
2685 	mutex_lock(&board_lock);
2686 	list_add_tail(&ctlr->list, &spi_controller_list);
2687 	list_for_each_entry(bi, &board_list, list)
2688 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2689 	mutex_unlock(&board_lock);
2690 
2691 	/* Register devices from the device tree and ACPI */
2692 	of_register_spi_devices(ctlr);
2693 	acpi_register_spi_devices(ctlr);
2694 	return status;
2695 
2696 free_bus_id:
2697 	mutex_lock(&board_lock);
2698 	idr_remove(&spi_master_idr, ctlr->bus_num);
2699 	mutex_unlock(&board_lock);
2700 	return status;
2701 }
2702 EXPORT_SYMBOL_GPL(spi_register_controller);
2703 
2704 static void devm_spi_unregister(struct device *dev, void *res)
2705 {
2706 	spi_unregister_controller(*(struct spi_controller **)res);
2707 }
2708 
2709 /**
2710  * devm_spi_register_controller - register managed SPI master or slave
2711  *	controller
2712  * @dev:    device managing SPI controller
2713  * @ctlr: initialized controller, originally from spi_alloc_master() or
2714  *	spi_alloc_slave()
2715  * Context: can sleep
2716  *
2717  * Register a SPI device as with spi_register_controller() which will
2718  * automatically be unregistered and freed.
2719  *
2720  * Return: zero on success, else a negative error code.
2721  */
2722 int devm_spi_register_controller(struct device *dev,
2723 				 struct spi_controller *ctlr)
2724 {
2725 	struct spi_controller **ptr;
2726 	int ret;
2727 
2728 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2729 	if (!ptr)
2730 		return -ENOMEM;
2731 
2732 	ret = spi_register_controller(ctlr);
2733 	if (!ret) {
2734 		*ptr = ctlr;
2735 		devres_add(dev, ptr);
2736 	} else {
2737 		devres_free(ptr);
2738 	}
2739 
2740 	return ret;
2741 }
2742 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2743 
2744 static int __unregister(struct device *dev, void *null)
2745 {
2746 	spi_unregister_device(to_spi_device(dev));
2747 	return 0;
2748 }
2749 
2750 /**
2751  * spi_unregister_controller - unregister SPI master or slave controller
2752  * @ctlr: the controller being unregistered
2753  * Context: can sleep
2754  *
2755  * This call is used only by SPI controller drivers, which are the
2756  * only ones directly touching chip registers.
2757  *
2758  * This must be called from context that can sleep.
2759  *
2760  * Note that this function also drops a reference to the controller.
2761  */
2762 void spi_unregister_controller(struct spi_controller *ctlr)
2763 {
2764 	struct spi_controller *found;
2765 	int id = ctlr->bus_num;
2766 
2767 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2768 
2769 	/* First make sure that this controller was ever added */
2770 	mutex_lock(&board_lock);
2771 	found = idr_find(&spi_master_idr, id);
2772 	mutex_unlock(&board_lock);
2773 	if (ctlr->queued) {
2774 		if (spi_destroy_queue(ctlr))
2775 			dev_err(&ctlr->dev, "queue remove failed\n");
2776 	}
2777 	mutex_lock(&board_lock);
2778 	list_del(&ctlr->list);
2779 	mutex_unlock(&board_lock);
2780 
2781 	device_unregister(&ctlr->dev);
2782 	/* free bus id */
2783 	mutex_lock(&board_lock);
2784 	if (found == ctlr)
2785 		idr_remove(&spi_master_idr, id);
2786 	mutex_unlock(&board_lock);
2787 }
2788 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2789 
2790 int spi_controller_suspend(struct spi_controller *ctlr)
2791 {
2792 	int ret;
2793 
2794 	/* Basically no-ops for non-queued controllers */
2795 	if (!ctlr->queued)
2796 		return 0;
2797 
2798 	ret = spi_stop_queue(ctlr);
2799 	if (ret)
2800 		dev_err(&ctlr->dev, "queue stop failed\n");
2801 
2802 	return ret;
2803 }
2804 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2805 
2806 int spi_controller_resume(struct spi_controller *ctlr)
2807 {
2808 	int ret;
2809 
2810 	if (!ctlr->queued)
2811 		return 0;
2812 
2813 	ret = spi_start_queue(ctlr);
2814 	if (ret)
2815 		dev_err(&ctlr->dev, "queue restart failed\n");
2816 
2817 	return ret;
2818 }
2819 EXPORT_SYMBOL_GPL(spi_controller_resume);
2820 
2821 static int __spi_controller_match(struct device *dev, const void *data)
2822 {
2823 	struct spi_controller *ctlr;
2824 	const u16 *bus_num = data;
2825 
2826 	ctlr = container_of(dev, struct spi_controller, dev);
2827 	return ctlr->bus_num == *bus_num;
2828 }
2829 
2830 /**
2831  * spi_busnum_to_master - look up master associated with bus_num
2832  * @bus_num: the master's bus number
2833  * Context: can sleep
2834  *
2835  * This call may be used with devices that are registered after
2836  * arch init time.  It returns a refcounted pointer to the relevant
2837  * spi_controller (which the caller must release), or NULL if there is
2838  * no such master registered.
2839  *
2840  * Return: the SPI master structure on success, else NULL.
2841  */
2842 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2843 {
2844 	struct device		*dev;
2845 	struct spi_controller	*ctlr = NULL;
2846 
2847 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2848 				__spi_controller_match);
2849 	if (dev)
2850 		ctlr = container_of(dev, struct spi_controller, dev);
2851 	/* reference got in class_find_device */
2852 	return ctlr;
2853 }
2854 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2855 
2856 /*-------------------------------------------------------------------------*/
2857 
2858 /* Core methods for SPI resource management */
2859 
2860 /**
2861  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2862  *                 during the processing of a spi_message while using
2863  *                 spi_transfer_one
2864  * @spi:     the spi device for which we allocate memory
2865  * @release: the release code to execute for this resource
2866  * @size:    size to alloc and return
2867  * @gfp:     GFP allocation flags
2868  *
2869  * Return: the pointer to the allocated data
2870  *
2871  * This may get enhanced in the future to allocate from a memory pool
2872  * of the @spi_device or @spi_controller to avoid repeated allocations.
2873  */
2874 void *spi_res_alloc(struct spi_device *spi,
2875 		    spi_res_release_t release,
2876 		    size_t size, gfp_t gfp)
2877 {
2878 	struct spi_res *sres;
2879 
2880 	sres = kzalloc(sizeof(*sres) + size, gfp);
2881 	if (!sres)
2882 		return NULL;
2883 
2884 	INIT_LIST_HEAD(&sres->entry);
2885 	sres->release = release;
2886 
2887 	return sres->data;
2888 }
2889 EXPORT_SYMBOL_GPL(spi_res_alloc);
2890 
2891 /**
2892  * spi_res_free - free an spi resource
2893  * @res: pointer to the custom data of a resource
2894  *
2895  */
2896 void spi_res_free(void *res)
2897 {
2898 	struct spi_res *sres = container_of(res, struct spi_res, data);
2899 
2900 	if (!res)
2901 		return;
2902 
2903 	WARN_ON(!list_empty(&sres->entry));
2904 	kfree(sres);
2905 }
2906 EXPORT_SYMBOL_GPL(spi_res_free);
2907 
2908 /**
2909  * spi_res_add - add a spi_res to the spi_message
2910  * @message: the spi message
2911  * @res:     the spi_resource
2912  */
2913 void spi_res_add(struct spi_message *message, void *res)
2914 {
2915 	struct spi_res *sres = container_of(res, struct spi_res, data);
2916 
2917 	WARN_ON(!list_empty(&sres->entry));
2918 	list_add_tail(&sres->entry, &message->resources);
2919 }
2920 EXPORT_SYMBOL_GPL(spi_res_add);
2921 
2922 /**
2923  * spi_res_release - release all spi resources for this message
2924  * @ctlr:  the @spi_controller
2925  * @message: the @spi_message
2926  */
2927 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2928 {
2929 	struct spi_res *res, *tmp;
2930 
2931 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2932 		if (res->release)
2933 			res->release(ctlr, message, res->data);
2934 
2935 		list_del(&res->entry);
2936 
2937 		kfree(res);
2938 	}
2939 }
2940 EXPORT_SYMBOL_GPL(spi_res_release);
2941 
2942 /*-------------------------------------------------------------------------*/
2943 
2944 /* Core methods for spi_message alterations */
2945 
2946 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2947 					    struct spi_message *msg,
2948 					    void *res)
2949 {
2950 	struct spi_replaced_transfers *rxfer = res;
2951 	size_t i;
2952 
2953 	/* call extra callback if requested */
2954 	if (rxfer->release)
2955 		rxfer->release(ctlr, msg, res);
2956 
2957 	/* insert replaced transfers back into the message */
2958 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2959 
2960 	/* remove the formerly inserted entries */
2961 	for (i = 0; i < rxfer->inserted; i++)
2962 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2963 }
2964 
2965 /**
2966  * spi_replace_transfers - replace transfers with several transfers
2967  *                         and register change with spi_message.resources
2968  * @msg:           the spi_message we work upon
2969  * @xfer_first:    the first spi_transfer we want to replace
2970  * @remove:        number of transfers to remove
2971  * @insert:        the number of transfers we want to insert instead
2972  * @release:       extra release code necessary in some circumstances
2973  * @extradatasize: extra data to allocate (with alignment guarantees
2974  *                 of struct @spi_transfer)
2975  * @gfp:           gfp flags
2976  *
2977  * Returns: pointer to @spi_replaced_transfers,
2978  *          PTR_ERR(...) in case of errors.
2979  */
2980 struct spi_replaced_transfers *spi_replace_transfers(
2981 	struct spi_message *msg,
2982 	struct spi_transfer *xfer_first,
2983 	size_t remove,
2984 	size_t insert,
2985 	spi_replaced_release_t release,
2986 	size_t extradatasize,
2987 	gfp_t gfp)
2988 {
2989 	struct spi_replaced_transfers *rxfer;
2990 	struct spi_transfer *xfer;
2991 	size_t i;
2992 
2993 	/* allocate the structure using spi_res */
2994 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2995 			      struct_size(rxfer, inserted_transfers, insert)
2996 			      + extradatasize,
2997 			      gfp);
2998 	if (!rxfer)
2999 		return ERR_PTR(-ENOMEM);
3000 
3001 	/* the release code to invoke before running the generic release */
3002 	rxfer->release = release;
3003 
3004 	/* assign extradata */
3005 	if (extradatasize)
3006 		rxfer->extradata =
3007 			&rxfer->inserted_transfers[insert];
3008 
3009 	/* init the replaced_transfers list */
3010 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3011 
3012 	/* assign the list_entry after which we should reinsert
3013 	 * the @replaced_transfers - it may be spi_message.messages!
3014 	 */
3015 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3016 
3017 	/* remove the requested number of transfers */
3018 	for (i = 0; i < remove; i++) {
3019 		/* if the entry after replaced_after it is msg->transfers
3020 		 * then we have been requested to remove more transfers
3021 		 * than are in the list
3022 		 */
3023 		if (rxfer->replaced_after->next == &msg->transfers) {
3024 			dev_err(&msg->spi->dev,
3025 				"requested to remove more spi_transfers than are available\n");
3026 			/* insert replaced transfers back into the message */
3027 			list_splice(&rxfer->replaced_transfers,
3028 				    rxfer->replaced_after);
3029 
3030 			/* free the spi_replace_transfer structure */
3031 			spi_res_free(rxfer);
3032 
3033 			/* and return with an error */
3034 			return ERR_PTR(-EINVAL);
3035 		}
3036 
3037 		/* remove the entry after replaced_after from list of
3038 		 * transfers and add it to list of replaced_transfers
3039 		 */
3040 		list_move_tail(rxfer->replaced_after->next,
3041 			       &rxfer->replaced_transfers);
3042 	}
3043 
3044 	/* create copy of the given xfer with identical settings
3045 	 * based on the first transfer to get removed
3046 	 */
3047 	for (i = 0; i < insert; i++) {
3048 		/* we need to run in reverse order */
3049 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3050 
3051 		/* copy all spi_transfer data */
3052 		memcpy(xfer, xfer_first, sizeof(*xfer));
3053 
3054 		/* add to list */
3055 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3056 
3057 		/* clear cs_change and delay for all but the last */
3058 		if (i) {
3059 			xfer->cs_change = false;
3060 			xfer->delay_usecs = 0;
3061 			xfer->delay.value = 0;
3062 		}
3063 	}
3064 
3065 	/* set up inserted */
3066 	rxfer->inserted = insert;
3067 
3068 	/* and register it with spi_res/spi_message */
3069 	spi_res_add(msg, rxfer);
3070 
3071 	return rxfer;
3072 }
3073 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3074 
3075 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3076 					struct spi_message *msg,
3077 					struct spi_transfer **xferp,
3078 					size_t maxsize,
3079 					gfp_t gfp)
3080 {
3081 	struct spi_transfer *xfer = *xferp, *xfers;
3082 	struct spi_replaced_transfers *srt;
3083 	size_t offset;
3084 	size_t count, i;
3085 
3086 	/* calculate how many we have to replace */
3087 	count = DIV_ROUND_UP(xfer->len, maxsize);
3088 
3089 	/* create replacement */
3090 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3091 	if (IS_ERR(srt))
3092 		return PTR_ERR(srt);
3093 	xfers = srt->inserted_transfers;
3094 
3095 	/* now handle each of those newly inserted spi_transfers
3096 	 * note that the replacements spi_transfers all are preset
3097 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3098 	 * are all identical (as well as most others)
3099 	 * so we just have to fix up len and the pointers.
3100 	 *
3101 	 * this also includes support for the depreciated
3102 	 * spi_message.is_dma_mapped interface
3103 	 */
3104 
3105 	/* the first transfer just needs the length modified, so we
3106 	 * run it outside the loop
3107 	 */
3108 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3109 
3110 	/* all the others need rx_buf/tx_buf also set */
3111 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3112 		/* update rx_buf, tx_buf and dma */
3113 		if (xfers[i].rx_buf)
3114 			xfers[i].rx_buf += offset;
3115 		if (xfers[i].rx_dma)
3116 			xfers[i].rx_dma += offset;
3117 		if (xfers[i].tx_buf)
3118 			xfers[i].tx_buf += offset;
3119 		if (xfers[i].tx_dma)
3120 			xfers[i].tx_dma += offset;
3121 
3122 		/* update length */
3123 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3124 	}
3125 
3126 	/* we set up xferp to the last entry we have inserted,
3127 	 * so that we skip those already split transfers
3128 	 */
3129 	*xferp = &xfers[count - 1];
3130 
3131 	/* increment statistics counters */
3132 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3133 				       transfers_split_maxsize);
3134 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3135 				       transfers_split_maxsize);
3136 
3137 	return 0;
3138 }
3139 
3140 /**
3141  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3142  *                              when an individual transfer exceeds a
3143  *                              certain size
3144  * @ctlr:    the @spi_controller for this transfer
3145  * @msg:   the @spi_message to transform
3146  * @maxsize:  the maximum when to apply this
3147  * @gfp: GFP allocation flags
3148  *
3149  * Return: status of transformation
3150  */
3151 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3152 				struct spi_message *msg,
3153 				size_t maxsize,
3154 				gfp_t gfp)
3155 {
3156 	struct spi_transfer *xfer;
3157 	int ret;
3158 
3159 	/* iterate over the transfer_list,
3160 	 * but note that xfer is advanced to the last transfer inserted
3161 	 * to avoid checking sizes again unnecessarily (also xfer does
3162 	 * potentiall belong to a different list by the time the
3163 	 * replacement has happened
3164 	 */
3165 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3166 		if (xfer->len > maxsize) {
3167 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3168 							   maxsize, gfp);
3169 			if (ret)
3170 				return ret;
3171 		}
3172 	}
3173 
3174 	return 0;
3175 }
3176 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3177 
3178 /*-------------------------------------------------------------------------*/
3179 
3180 /* Core methods for SPI controller protocol drivers.  Some of the
3181  * other core methods are currently defined as inline functions.
3182  */
3183 
3184 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3185 					u8 bits_per_word)
3186 {
3187 	if (ctlr->bits_per_word_mask) {
3188 		/* Only 32 bits fit in the mask */
3189 		if (bits_per_word > 32)
3190 			return -EINVAL;
3191 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3192 			return -EINVAL;
3193 	}
3194 
3195 	return 0;
3196 }
3197 
3198 /**
3199  * spi_setup - setup SPI mode and clock rate
3200  * @spi: the device whose settings are being modified
3201  * Context: can sleep, and no requests are queued to the device
3202  *
3203  * SPI protocol drivers may need to update the transfer mode if the
3204  * device doesn't work with its default.  They may likewise need
3205  * to update clock rates or word sizes from initial values.  This function
3206  * changes those settings, and must be called from a context that can sleep.
3207  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3208  * effect the next time the device is selected and data is transferred to
3209  * or from it.  When this function returns, the spi device is deselected.
3210  *
3211  * Note that this call will fail if the protocol driver specifies an option
3212  * that the underlying controller or its driver does not support.  For
3213  * example, not all hardware supports wire transfers using nine bit words,
3214  * LSB-first wire encoding, or active-high chipselects.
3215  *
3216  * Return: zero on success, else a negative error code.
3217  */
3218 int spi_setup(struct spi_device *spi)
3219 {
3220 	unsigned	bad_bits, ugly_bits;
3221 	int		status;
3222 
3223 	/* check mode to prevent that DUAL and QUAD set at the same time
3224 	 */
3225 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3226 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3227 		dev_err(&spi->dev,
3228 		"setup: can not select dual and quad at the same time\n");
3229 		return -EINVAL;
3230 	}
3231 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3232 	 */
3233 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3234 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3235 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3236 		return -EINVAL;
3237 	/* help drivers fail *cleanly* when they need options
3238 	 * that aren't supported with their current controller
3239 	 * SPI_CS_WORD has a fallback software implementation,
3240 	 * so it is ignored here.
3241 	 */
3242 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3243 	/* nothing prevents from working with active-high CS in case if it
3244 	 * is driven by GPIO.
3245 	 */
3246 	if (gpio_is_valid(spi->cs_gpio))
3247 		bad_bits &= ~SPI_CS_HIGH;
3248 	ugly_bits = bad_bits &
3249 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3250 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3251 	if (ugly_bits) {
3252 		dev_warn(&spi->dev,
3253 			 "setup: ignoring unsupported mode bits %x\n",
3254 			 ugly_bits);
3255 		spi->mode &= ~ugly_bits;
3256 		bad_bits &= ~ugly_bits;
3257 	}
3258 	if (bad_bits) {
3259 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3260 			bad_bits);
3261 		return -EINVAL;
3262 	}
3263 
3264 	if (!spi->bits_per_word)
3265 		spi->bits_per_word = 8;
3266 
3267 	status = __spi_validate_bits_per_word(spi->controller,
3268 					      spi->bits_per_word);
3269 	if (status)
3270 		return status;
3271 
3272 	if (!spi->max_speed_hz)
3273 		spi->max_speed_hz = spi->controller->max_speed_hz;
3274 
3275 	if (spi->controller->setup)
3276 		status = spi->controller->setup(spi);
3277 
3278 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3279 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3280 		if (status < 0) {
3281 			pm_runtime_put_noidle(spi->controller->dev.parent);
3282 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3283 				status);
3284 			return status;
3285 		}
3286 
3287 		/*
3288 		 * We do not want to return positive value from pm_runtime_get,
3289 		 * there are many instances of devices calling spi_setup() and
3290 		 * checking for a non-zero return value instead of a negative
3291 		 * return value.
3292 		 */
3293 		status = 0;
3294 
3295 		spi_set_cs(spi, false);
3296 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3297 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3298 	} else {
3299 		spi_set_cs(spi, false);
3300 	}
3301 
3302 	if (spi->rt && !spi->controller->rt) {
3303 		spi->controller->rt = true;
3304 		spi_set_thread_rt(spi->controller);
3305 	}
3306 
3307 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3308 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3309 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3310 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3311 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3312 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3313 			spi->bits_per_word, spi->max_speed_hz,
3314 			status);
3315 
3316 	return status;
3317 }
3318 EXPORT_SYMBOL_GPL(spi_setup);
3319 
3320 /**
3321  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3322  * @spi: the device that requires specific CS timing configuration
3323  * @setup: CS setup time specified via @spi_delay
3324  * @hold: CS hold time specified via @spi_delay
3325  * @inactive: CS inactive delay between transfers specified via @spi_delay
3326  *
3327  * Return: zero on success, else a negative error code.
3328  */
3329 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3330 		      struct spi_delay *hold, struct spi_delay *inactive)
3331 {
3332 	size_t len;
3333 
3334 	if (spi->controller->set_cs_timing)
3335 		return spi->controller->set_cs_timing(spi, setup, hold,
3336 						      inactive);
3337 
3338 	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3339 	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3340 	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3341 		dev_err(&spi->dev,
3342 			"Clock-cycle delays for CS not supported in SW mode\n");
3343 		return -ENOTSUPP;
3344 	}
3345 
3346 	len = sizeof(struct spi_delay);
3347 
3348 	/* copy delays to controller */
3349 	if (setup)
3350 		memcpy(&spi->controller->cs_setup, setup, len);
3351 	else
3352 		memset(&spi->controller->cs_setup, 0, len);
3353 
3354 	if (hold)
3355 		memcpy(&spi->controller->cs_hold, hold, len);
3356 	else
3357 		memset(&spi->controller->cs_hold, 0, len);
3358 
3359 	if (inactive)
3360 		memcpy(&spi->controller->cs_inactive, inactive, len);
3361 	else
3362 		memset(&spi->controller->cs_inactive, 0, len);
3363 
3364 	return 0;
3365 }
3366 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3367 
3368 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3369 				       struct spi_device *spi)
3370 {
3371 	int delay1, delay2;
3372 
3373 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3374 	if (delay1 < 0)
3375 		return delay1;
3376 
3377 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3378 	if (delay2 < 0)
3379 		return delay2;
3380 
3381 	if (delay1 < delay2)
3382 		memcpy(&xfer->word_delay, &spi->word_delay,
3383 		       sizeof(xfer->word_delay));
3384 
3385 	return 0;
3386 }
3387 
3388 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3389 {
3390 	struct spi_controller *ctlr = spi->controller;
3391 	struct spi_transfer *xfer;
3392 	int w_size;
3393 
3394 	if (list_empty(&message->transfers))
3395 		return -EINVAL;
3396 
3397 	/* If an SPI controller does not support toggling the CS line on each
3398 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3399 	 * for the CS line, we can emulate the CS-per-word hardware function by
3400 	 * splitting transfers into one-word transfers and ensuring that
3401 	 * cs_change is set for each transfer.
3402 	 */
3403 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3404 					  spi->cs_gpiod ||
3405 					  gpio_is_valid(spi->cs_gpio))) {
3406 		size_t maxsize;
3407 		int ret;
3408 
3409 		maxsize = (spi->bits_per_word + 7) / 8;
3410 
3411 		/* spi_split_transfers_maxsize() requires message->spi */
3412 		message->spi = spi;
3413 
3414 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3415 						  GFP_KERNEL);
3416 		if (ret)
3417 			return ret;
3418 
3419 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3420 			/* don't change cs_change on the last entry in the list */
3421 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3422 				break;
3423 			xfer->cs_change = 1;
3424 		}
3425 	}
3426 
3427 	/* Half-duplex links include original MicroWire, and ones with
3428 	 * only one data pin like SPI_3WIRE (switches direction) or where
3429 	 * either MOSI or MISO is missing.  They can also be caused by
3430 	 * software limitations.
3431 	 */
3432 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3433 	    (spi->mode & SPI_3WIRE)) {
3434 		unsigned flags = ctlr->flags;
3435 
3436 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3437 			if (xfer->rx_buf && xfer->tx_buf)
3438 				return -EINVAL;
3439 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3440 				return -EINVAL;
3441 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3442 				return -EINVAL;
3443 		}
3444 	}
3445 
3446 	/**
3447 	 * Set transfer bits_per_word and max speed as spi device default if
3448 	 * it is not set for this transfer.
3449 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3450 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3451 	 * Ensure transfer word_delay is at least as long as that required by
3452 	 * device itself.
3453 	 */
3454 	message->frame_length = 0;
3455 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3456 		xfer->effective_speed_hz = 0;
3457 		message->frame_length += xfer->len;
3458 		if (!xfer->bits_per_word)
3459 			xfer->bits_per_word = spi->bits_per_word;
3460 
3461 		if (!xfer->speed_hz)
3462 			xfer->speed_hz = spi->max_speed_hz;
3463 
3464 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3465 			xfer->speed_hz = ctlr->max_speed_hz;
3466 
3467 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3468 			return -EINVAL;
3469 
3470 		/*
3471 		 * SPI transfer length should be multiple of SPI word size
3472 		 * where SPI word size should be power-of-two multiple
3473 		 */
3474 		if (xfer->bits_per_word <= 8)
3475 			w_size = 1;
3476 		else if (xfer->bits_per_word <= 16)
3477 			w_size = 2;
3478 		else
3479 			w_size = 4;
3480 
3481 		/* No partial transfers accepted */
3482 		if (xfer->len % w_size)
3483 			return -EINVAL;
3484 
3485 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3486 		    xfer->speed_hz < ctlr->min_speed_hz)
3487 			return -EINVAL;
3488 
3489 		if (xfer->tx_buf && !xfer->tx_nbits)
3490 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3491 		if (xfer->rx_buf && !xfer->rx_nbits)
3492 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3493 		/* check transfer tx/rx_nbits:
3494 		 * 1. check the value matches one of single, dual and quad
3495 		 * 2. check tx/rx_nbits match the mode in spi_device
3496 		 */
3497 		if (xfer->tx_buf) {
3498 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3499 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3500 				xfer->tx_nbits != SPI_NBITS_QUAD)
3501 				return -EINVAL;
3502 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3503 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3504 				return -EINVAL;
3505 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3506 				!(spi->mode & SPI_TX_QUAD))
3507 				return -EINVAL;
3508 		}
3509 		/* check transfer rx_nbits */
3510 		if (xfer->rx_buf) {
3511 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3512 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3513 				xfer->rx_nbits != SPI_NBITS_QUAD)
3514 				return -EINVAL;
3515 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3516 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3517 				return -EINVAL;
3518 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3519 				!(spi->mode & SPI_RX_QUAD))
3520 				return -EINVAL;
3521 		}
3522 
3523 		if (_spi_xfer_word_delay_update(xfer, spi))
3524 			return -EINVAL;
3525 	}
3526 
3527 	message->status = -EINPROGRESS;
3528 
3529 	return 0;
3530 }
3531 
3532 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3533 {
3534 	struct spi_controller *ctlr = spi->controller;
3535 	struct spi_transfer *xfer;
3536 
3537 	/*
3538 	 * Some controllers do not support doing regular SPI transfers. Return
3539 	 * ENOTSUPP when this is the case.
3540 	 */
3541 	if (!ctlr->transfer)
3542 		return -ENOTSUPP;
3543 
3544 	message->spi = spi;
3545 
3546 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3547 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3548 
3549 	trace_spi_message_submit(message);
3550 
3551 	if (!ctlr->ptp_sts_supported) {
3552 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3553 			xfer->ptp_sts_word_pre = 0;
3554 			ptp_read_system_prets(xfer->ptp_sts);
3555 		}
3556 	}
3557 
3558 	return ctlr->transfer(spi, message);
3559 }
3560 
3561 /**
3562  * spi_async - asynchronous SPI transfer
3563  * @spi: device with which data will be exchanged
3564  * @message: describes the data transfers, including completion callback
3565  * Context: any (irqs may be blocked, etc)
3566  *
3567  * This call may be used in_irq and other contexts which can't sleep,
3568  * as well as from task contexts which can sleep.
3569  *
3570  * The completion callback is invoked in a context which can't sleep.
3571  * Before that invocation, the value of message->status is undefined.
3572  * When the callback is issued, message->status holds either zero (to
3573  * indicate complete success) or a negative error code.  After that
3574  * callback returns, the driver which issued the transfer request may
3575  * deallocate the associated memory; it's no longer in use by any SPI
3576  * core or controller driver code.
3577  *
3578  * Note that although all messages to a spi_device are handled in
3579  * FIFO order, messages may go to different devices in other orders.
3580  * Some device might be higher priority, or have various "hard" access
3581  * time requirements, for example.
3582  *
3583  * On detection of any fault during the transfer, processing of
3584  * the entire message is aborted, and the device is deselected.
3585  * Until returning from the associated message completion callback,
3586  * no other spi_message queued to that device will be processed.
3587  * (This rule applies equally to all the synchronous transfer calls,
3588  * which are wrappers around this core asynchronous primitive.)
3589  *
3590  * Return: zero on success, else a negative error code.
3591  */
3592 int spi_async(struct spi_device *spi, struct spi_message *message)
3593 {
3594 	struct spi_controller *ctlr = spi->controller;
3595 	int ret;
3596 	unsigned long flags;
3597 
3598 	ret = __spi_validate(spi, message);
3599 	if (ret != 0)
3600 		return ret;
3601 
3602 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3603 
3604 	if (ctlr->bus_lock_flag)
3605 		ret = -EBUSY;
3606 	else
3607 		ret = __spi_async(spi, message);
3608 
3609 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3610 
3611 	return ret;
3612 }
3613 EXPORT_SYMBOL_GPL(spi_async);
3614 
3615 /**
3616  * spi_async_locked - version of spi_async with exclusive bus usage
3617  * @spi: device with which data will be exchanged
3618  * @message: describes the data transfers, including completion callback
3619  * Context: any (irqs may be blocked, etc)
3620  *
3621  * This call may be used in_irq and other contexts which can't sleep,
3622  * as well as from task contexts which can sleep.
3623  *
3624  * The completion callback is invoked in a context which can't sleep.
3625  * Before that invocation, the value of message->status is undefined.
3626  * When the callback is issued, message->status holds either zero (to
3627  * indicate complete success) or a negative error code.  After that
3628  * callback returns, the driver which issued the transfer request may
3629  * deallocate the associated memory; it's no longer in use by any SPI
3630  * core or controller driver code.
3631  *
3632  * Note that although all messages to a spi_device are handled in
3633  * FIFO order, messages may go to different devices in other orders.
3634  * Some device might be higher priority, or have various "hard" access
3635  * time requirements, for example.
3636  *
3637  * On detection of any fault during the transfer, processing of
3638  * the entire message is aborted, and the device is deselected.
3639  * Until returning from the associated message completion callback,
3640  * no other spi_message queued to that device will be processed.
3641  * (This rule applies equally to all the synchronous transfer calls,
3642  * which are wrappers around this core asynchronous primitive.)
3643  *
3644  * Return: zero on success, else a negative error code.
3645  */
3646 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3647 {
3648 	struct spi_controller *ctlr = spi->controller;
3649 	int ret;
3650 	unsigned long flags;
3651 
3652 	ret = __spi_validate(spi, message);
3653 	if (ret != 0)
3654 		return ret;
3655 
3656 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3657 
3658 	ret = __spi_async(spi, message);
3659 
3660 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3661 
3662 	return ret;
3663 
3664 }
3665 EXPORT_SYMBOL_GPL(spi_async_locked);
3666 
3667 /*-------------------------------------------------------------------------*/
3668 
3669 /* Utility methods for SPI protocol drivers, layered on
3670  * top of the core.  Some other utility methods are defined as
3671  * inline functions.
3672  */
3673 
3674 static void spi_complete(void *arg)
3675 {
3676 	complete(arg);
3677 }
3678 
3679 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3680 {
3681 	DECLARE_COMPLETION_ONSTACK(done);
3682 	int status;
3683 	struct spi_controller *ctlr = spi->controller;
3684 	unsigned long flags;
3685 
3686 	status = __spi_validate(spi, message);
3687 	if (status != 0)
3688 		return status;
3689 
3690 	message->complete = spi_complete;
3691 	message->context = &done;
3692 	message->spi = spi;
3693 
3694 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3695 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3696 
3697 	/* If we're not using the legacy transfer method then we will
3698 	 * try to transfer in the calling context so special case.
3699 	 * This code would be less tricky if we could remove the
3700 	 * support for driver implemented message queues.
3701 	 */
3702 	if (ctlr->transfer == spi_queued_transfer) {
3703 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3704 
3705 		trace_spi_message_submit(message);
3706 
3707 		status = __spi_queued_transfer(spi, message, false);
3708 
3709 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3710 	} else {
3711 		status = spi_async_locked(spi, message);
3712 	}
3713 
3714 	if (status == 0) {
3715 		/* Push out the messages in the calling context if we
3716 		 * can.
3717 		 */
3718 		if (ctlr->transfer == spi_queued_transfer) {
3719 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3720 						       spi_sync_immediate);
3721 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3722 						       spi_sync_immediate);
3723 			__spi_pump_messages(ctlr, false);
3724 		}
3725 
3726 		wait_for_completion(&done);
3727 		status = message->status;
3728 	}
3729 	message->context = NULL;
3730 	return status;
3731 }
3732 
3733 /**
3734  * spi_sync - blocking/synchronous SPI data transfers
3735  * @spi: device with which data will be exchanged
3736  * @message: describes the data transfers
3737  * Context: can sleep
3738  *
3739  * This call may only be used from a context that may sleep.  The sleep
3740  * is non-interruptible, and has no timeout.  Low-overhead controller
3741  * drivers may DMA directly into and out of the message buffers.
3742  *
3743  * Note that the SPI device's chip select is active during the message,
3744  * and then is normally disabled between messages.  Drivers for some
3745  * frequently-used devices may want to minimize costs of selecting a chip,
3746  * by leaving it selected in anticipation that the next message will go
3747  * to the same chip.  (That may increase power usage.)
3748  *
3749  * Also, the caller is guaranteeing that the memory associated with the
3750  * message will not be freed before this call returns.
3751  *
3752  * Return: zero on success, else a negative error code.
3753  */
3754 int spi_sync(struct spi_device *spi, struct spi_message *message)
3755 {
3756 	int ret;
3757 
3758 	mutex_lock(&spi->controller->bus_lock_mutex);
3759 	ret = __spi_sync(spi, message);
3760 	mutex_unlock(&spi->controller->bus_lock_mutex);
3761 
3762 	return ret;
3763 }
3764 EXPORT_SYMBOL_GPL(spi_sync);
3765 
3766 /**
3767  * spi_sync_locked - version of spi_sync with exclusive bus usage
3768  * @spi: device with which data will be exchanged
3769  * @message: describes the data transfers
3770  * Context: can sleep
3771  *
3772  * This call may only be used from a context that may sleep.  The sleep
3773  * is non-interruptible, and has no timeout.  Low-overhead controller
3774  * drivers may DMA directly into and out of the message buffers.
3775  *
3776  * This call should be used by drivers that require exclusive access to the
3777  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3778  * be released by a spi_bus_unlock call when the exclusive access is over.
3779  *
3780  * Return: zero on success, else a negative error code.
3781  */
3782 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3783 {
3784 	return __spi_sync(spi, message);
3785 }
3786 EXPORT_SYMBOL_GPL(spi_sync_locked);
3787 
3788 /**
3789  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3790  * @ctlr: SPI bus master that should be locked for exclusive bus access
3791  * Context: can sleep
3792  *
3793  * This call may only be used from a context that may sleep.  The sleep
3794  * is non-interruptible, and has no timeout.
3795  *
3796  * This call should be used by drivers that require exclusive access to the
3797  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3798  * exclusive access is over. Data transfer must be done by spi_sync_locked
3799  * and spi_async_locked calls when the SPI bus lock is held.
3800  *
3801  * Return: always zero.
3802  */
3803 int spi_bus_lock(struct spi_controller *ctlr)
3804 {
3805 	unsigned long flags;
3806 
3807 	mutex_lock(&ctlr->bus_lock_mutex);
3808 
3809 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3810 	ctlr->bus_lock_flag = 1;
3811 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3812 
3813 	/* mutex remains locked until spi_bus_unlock is called */
3814 
3815 	return 0;
3816 }
3817 EXPORT_SYMBOL_GPL(spi_bus_lock);
3818 
3819 /**
3820  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3821  * @ctlr: SPI bus master that was locked for exclusive bus access
3822  * Context: can sleep
3823  *
3824  * This call may only be used from a context that may sleep.  The sleep
3825  * is non-interruptible, and has no timeout.
3826  *
3827  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3828  * call.
3829  *
3830  * Return: always zero.
3831  */
3832 int spi_bus_unlock(struct spi_controller *ctlr)
3833 {
3834 	ctlr->bus_lock_flag = 0;
3835 
3836 	mutex_unlock(&ctlr->bus_lock_mutex);
3837 
3838 	return 0;
3839 }
3840 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3841 
3842 /* portable code must never pass more than 32 bytes */
3843 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3844 
3845 static u8	*buf;
3846 
3847 /**
3848  * spi_write_then_read - SPI synchronous write followed by read
3849  * @spi: device with which data will be exchanged
3850  * @txbuf: data to be written (need not be dma-safe)
3851  * @n_tx: size of txbuf, in bytes
3852  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3853  * @n_rx: size of rxbuf, in bytes
3854  * Context: can sleep
3855  *
3856  * This performs a half duplex MicroWire style transaction with the
3857  * device, sending txbuf and then reading rxbuf.  The return value
3858  * is zero for success, else a negative errno status code.
3859  * This call may only be used from a context that may sleep.
3860  *
3861  * Parameters to this routine are always copied using a small buffer.
3862  * Performance-sensitive or bulk transfer code should instead use
3863  * spi_{async,sync}() calls with dma-safe buffers.
3864  *
3865  * Return: zero on success, else a negative error code.
3866  */
3867 int spi_write_then_read(struct spi_device *spi,
3868 		const void *txbuf, unsigned n_tx,
3869 		void *rxbuf, unsigned n_rx)
3870 {
3871 	static DEFINE_MUTEX(lock);
3872 
3873 	int			status;
3874 	struct spi_message	message;
3875 	struct spi_transfer	x[2];
3876 	u8			*local_buf;
3877 
3878 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3879 	 * copying here, (as a pure convenience thing), but we can
3880 	 * keep heap costs out of the hot path unless someone else is
3881 	 * using the pre-allocated buffer or the transfer is too large.
3882 	 */
3883 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3884 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3885 				    GFP_KERNEL | GFP_DMA);
3886 		if (!local_buf)
3887 			return -ENOMEM;
3888 	} else {
3889 		local_buf = buf;
3890 	}
3891 
3892 	spi_message_init(&message);
3893 	memset(x, 0, sizeof(x));
3894 	if (n_tx) {
3895 		x[0].len = n_tx;
3896 		spi_message_add_tail(&x[0], &message);
3897 	}
3898 	if (n_rx) {
3899 		x[1].len = n_rx;
3900 		spi_message_add_tail(&x[1], &message);
3901 	}
3902 
3903 	memcpy(local_buf, txbuf, n_tx);
3904 	x[0].tx_buf = local_buf;
3905 	x[1].rx_buf = local_buf + n_tx;
3906 
3907 	/* do the i/o */
3908 	status = spi_sync(spi, &message);
3909 	if (status == 0)
3910 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3911 
3912 	if (x[0].tx_buf == buf)
3913 		mutex_unlock(&lock);
3914 	else
3915 		kfree(local_buf);
3916 
3917 	return status;
3918 }
3919 EXPORT_SYMBOL_GPL(spi_write_then_read);
3920 
3921 /*-------------------------------------------------------------------------*/
3922 
3923 #if IS_ENABLED(CONFIG_OF)
3924 /* must call put_device() when done with returned spi_device device */
3925 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3926 {
3927 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3928 
3929 	return dev ? to_spi_device(dev) : NULL;
3930 }
3931 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3932 #endif /* IS_ENABLED(CONFIG_OF) */
3933 
3934 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3935 /* the spi controllers are not using spi_bus, so we find it with another way */
3936 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3937 {
3938 	struct device *dev;
3939 
3940 	dev = class_find_device_by_of_node(&spi_master_class, node);
3941 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3942 		dev = class_find_device_by_of_node(&spi_slave_class, node);
3943 	if (!dev)
3944 		return NULL;
3945 
3946 	/* reference got in class_find_device */
3947 	return container_of(dev, struct spi_controller, dev);
3948 }
3949 
3950 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3951 			 void *arg)
3952 {
3953 	struct of_reconfig_data *rd = arg;
3954 	struct spi_controller *ctlr;
3955 	struct spi_device *spi;
3956 
3957 	switch (of_reconfig_get_state_change(action, arg)) {
3958 	case OF_RECONFIG_CHANGE_ADD:
3959 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3960 		if (ctlr == NULL)
3961 			return NOTIFY_OK;	/* not for us */
3962 
3963 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3964 			put_device(&ctlr->dev);
3965 			return NOTIFY_OK;
3966 		}
3967 
3968 		spi = of_register_spi_device(ctlr, rd->dn);
3969 		put_device(&ctlr->dev);
3970 
3971 		if (IS_ERR(spi)) {
3972 			pr_err("%s: failed to create for '%pOF'\n",
3973 					__func__, rd->dn);
3974 			of_node_clear_flag(rd->dn, OF_POPULATED);
3975 			return notifier_from_errno(PTR_ERR(spi));
3976 		}
3977 		break;
3978 
3979 	case OF_RECONFIG_CHANGE_REMOVE:
3980 		/* already depopulated? */
3981 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3982 			return NOTIFY_OK;
3983 
3984 		/* find our device by node */
3985 		spi = of_find_spi_device_by_node(rd->dn);
3986 		if (spi == NULL)
3987 			return NOTIFY_OK;	/* no? not meant for us */
3988 
3989 		/* unregister takes one ref away */
3990 		spi_unregister_device(spi);
3991 
3992 		/* and put the reference of the find */
3993 		put_device(&spi->dev);
3994 		break;
3995 	}
3996 
3997 	return NOTIFY_OK;
3998 }
3999 
4000 static struct notifier_block spi_of_notifier = {
4001 	.notifier_call = of_spi_notify,
4002 };
4003 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4004 extern struct notifier_block spi_of_notifier;
4005 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4006 
4007 #if IS_ENABLED(CONFIG_ACPI)
4008 static int spi_acpi_controller_match(struct device *dev, const void *data)
4009 {
4010 	return ACPI_COMPANION(dev->parent) == data;
4011 }
4012 
4013 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4014 {
4015 	struct device *dev;
4016 
4017 	dev = class_find_device(&spi_master_class, NULL, adev,
4018 				spi_acpi_controller_match);
4019 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4020 		dev = class_find_device(&spi_slave_class, NULL, adev,
4021 					spi_acpi_controller_match);
4022 	if (!dev)
4023 		return NULL;
4024 
4025 	return container_of(dev, struct spi_controller, dev);
4026 }
4027 
4028 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4029 {
4030 	struct device *dev;
4031 
4032 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4033 	return to_spi_device(dev);
4034 }
4035 
4036 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4037 			   void *arg)
4038 {
4039 	struct acpi_device *adev = arg;
4040 	struct spi_controller *ctlr;
4041 	struct spi_device *spi;
4042 
4043 	switch (value) {
4044 	case ACPI_RECONFIG_DEVICE_ADD:
4045 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4046 		if (!ctlr)
4047 			break;
4048 
4049 		acpi_register_spi_device(ctlr, adev);
4050 		put_device(&ctlr->dev);
4051 		break;
4052 	case ACPI_RECONFIG_DEVICE_REMOVE:
4053 		if (!acpi_device_enumerated(adev))
4054 			break;
4055 
4056 		spi = acpi_spi_find_device_by_adev(adev);
4057 		if (!spi)
4058 			break;
4059 
4060 		spi_unregister_device(spi);
4061 		put_device(&spi->dev);
4062 		break;
4063 	}
4064 
4065 	return NOTIFY_OK;
4066 }
4067 
4068 static struct notifier_block spi_acpi_notifier = {
4069 	.notifier_call = acpi_spi_notify,
4070 };
4071 #else
4072 extern struct notifier_block spi_acpi_notifier;
4073 #endif
4074 
4075 static int __init spi_init(void)
4076 {
4077 	int	status;
4078 
4079 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4080 	if (!buf) {
4081 		status = -ENOMEM;
4082 		goto err0;
4083 	}
4084 
4085 	status = bus_register(&spi_bus_type);
4086 	if (status < 0)
4087 		goto err1;
4088 
4089 	status = class_register(&spi_master_class);
4090 	if (status < 0)
4091 		goto err2;
4092 
4093 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4094 		status = class_register(&spi_slave_class);
4095 		if (status < 0)
4096 			goto err3;
4097 	}
4098 
4099 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4100 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4101 	if (IS_ENABLED(CONFIG_ACPI))
4102 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4103 
4104 	return 0;
4105 
4106 err3:
4107 	class_unregister(&spi_master_class);
4108 err2:
4109 	bus_unregister(&spi_bus_type);
4110 err1:
4111 	kfree(buf);
4112 	buf = NULL;
4113 err0:
4114 	return status;
4115 }
4116 
4117 /* board_info is normally registered in arch_initcall(),
4118  * but even essential drivers wait till later
4119  *
4120  * REVISIT only boardinfo really needs static linking. the rest (device and
4121  * driver registration) _could_ be dynamically linked (modular) ... costs
4122  * include needing to have boardinfo data structures be much more public.
4123  */
4124 postcore_initcall(spi_init);
4125