xref: /openbmc/linux/drivers/spi/spi.c (revision 6dfcd296)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 #include <linux/highmem.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44 
45 static void spidev_release(struct device *dev)
46 {
47 	struct spi_device	*spi = to_spi_device(dev);
48 
49 	/* spi masters may cleanup for released devices */
50 	if (spi->master->cleanup)
51 		spi->master->cleanup(spi);
52 
53 	spi_master_put(spi->master);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 #define SPI_STATISTICS_ATTRS(field, file)				\
72 static ssize_t spi_master_##field##_show(struct device *dev,		\
73 					 struct device_attribute *attr,	\
74 					 char *buf)			\
75 {									\
76 	struct spi_master *master = container_of(dev,			\
77 						 struct spi_master, dev); \
78 	return spi_statistics_##field##_show(&master->statistics, buf);	\
79 }									\
80 static struct device_attribute dev_attr_spi_master_##field = {		\
81 	.attr = { .name = file, .mode = S_IRUGO },			\
82 	.show = spi_master_##field##_show,				\
83 };									\
84 static ssize_t spi_device_##field##_show(struct device *dev,		\
85 					 struct device_attribute *attr,	\
86 					char *buf)			\
87 {									\
88 	struct spi_device *spi = to_spi_device(dev);			\
89 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
90 }									\
91 static struct device_attribute dev_attr_spi_device_##field = {		\
92 	.attr = { .name = file, .mode = S_IRUGO },			\
93 	.show = spi_device_##field##_show,				\
94 }
95 
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 					    char *buf)			\
99 {									\
100 	unsigned long flags;						\
101 	ssize_t len;							\
102 	spin_lock_irqsave(&stat->lock, flags);				\
103 	len = sprintf(buf, format_string, stat->field);			\
104 	spin_unlock_irqrestore(&stat->lock, flags);			\
105 	return len;							\
106 }									\
107 SPI_STATISTICS_ATTRS(name, file)
108 
109 #define SPI_STATISTICS_SHOW(field, format_string)			\
110 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
111 				 field, format_string)
112 
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117 
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121 
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125 
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
127 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
128 				 "transfer_bytes_histo_" number,	\
129 				 transfer_bytes_histo[index],  "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147 
148 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
149 
150 static struct attribute *spi_dev_attrs[] = {
151 	&dev_attr_modalias.attr,
152 	NULL,
153 };
154 
155 static const struct attribute_group spi_dev_group = {
156 	.attrs  = spi_dev_attrs,
157 };
158 
159 static struct attribute *spi_device_statistics_attrs[] = {
160 	&dev_attr_spi_device_messages.attr,
161 	&dev_attr_spi_device_transfers.attr,
162 	&dev_attr_spi_device_errors.attr,
163 	&dev_attr_spi_device_timedout.attr,
164 	&dev_attr_spi_device_spi_sync.attr,
165 	&dev_attr_spi_device_spi_sync_immediate.attr,
166 	&dev_attr_spi_device_spi_async.attr,
167 	&dev_attr_spi_device_bytes.attr,
168 	&dev_attr_spi_device_bytes_rx.attr,
169 	&dev_attr_spi_device_bytes_tx.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
186 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
187 	&dev_attr_spi_device_transfers_split_maxsize.attr,
188 	NULL,
189 };
190 
191 static const struct attribute_group spi_device_statistics_group = {
192 	.name  = "statistics",
193 	.attrs  = spi_device_statistics_attrs,
194 };
195 
196 static const struct attribute_group *spi_dev_groups[] = {
197 	&spi_dev_group,
198 	&spi_device_statistics_group,
199 	NULL,
200 };
201 
202 static struct attribute *spi_master_statistics_attrs[] = {
203 	&dev_attr_spi_master_messages.attr,
204 	&dev_attr_spi_master_transfers.attr,
205 	&dev_attr_spi_master_errors.attr,
206 	&dev_attr_spi_master_timedout.attr,
207 	&dev_attr_spi_master_spi_sync.attr,
208 	&dev_attr_spi_master_spi_sync_immediate.attr,
209 	&dev_attr_spi_master_spi_async.attr,
210 	&dev_attr_spi_master_bytes.attr,
211 	&dev_attr_spi_master_bytes_rx.attr,
212 	&dev_attr_spi_master_bytes_tx.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
226 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
227 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
228 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
229 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
230 	&dev_attr_spi_master_transfers_split_maxsize.attr,
231 	NULL,
232 };
233 
234 static const struct attribute_group spi_master_statistics_group = {
235 	.name  = "statistics",
236 	.attrs  = spi_master_statistics_attrs,
237 };
238 
239 static const struct attribute_group *spi_master_groups[] = {
240 	&spi_master_statistics_group,
241 	NULL,
242 };
243 
244 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
245 				       struct spi_transfer *xfer,
246 				       struct spi_master *master)
247 {
248 	unsigned long flags;
249 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
250 
251 	if (l2len < 0)
252 		l2len = 0;
253 
254 	spin_lock_irqsave(&stats->lock, flags);
255 
256 	stats->transfers++;
257 	stats->transfer_bytes_histo[l2len]++;
258 
259 	stats->bytes += xfer->len;
260 	if ((xfer->tx_buf) &&
261 	    (xfer->tx_buf != master->dummy_tx))
262 		stats->bytes_tx += xfer->len;
263 	if ((xfer->rx_buf) &&
264 	    (xfer->rx_buf != master->dummy_rx))
265 		stats->bytes_rx += xfer->len;
266 
267 	spin_unlock_irqrestore(&stats->lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
270 
271 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
272  * and the sysfs version makes coldplug work too.
273  */
274 
275 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
276 						const struct spi_device *sdev)
277 {
278 	while (id->name[0]) {
279 		if (!strcmp(sdev->modalias, id->name))
280 			return id;
281 		id++;
282 	}
283 	return NULL;
284 }
285 
286 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
287 {
288 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
289 
290 	return spi_match_id(sdrv->id_table, sdev);
291 }
292 EXPORT_SYMBOL_GPL(spi_get_device_id);
293 
294 static int spi_match_device(struct device *dev, struct device_driver *drv)
295 {
296 	const struct spi_device	*spi = to_spi_device(dev);
297 	const struct spi_driver	*sdrv = to_spi_driver(drv);
298 
299 	/* Attempt an OF style match */
300 	if (of_driver_match_device(dev, drv))
301 		return 1;
302 
303 	/* Then try ACPI */
304 	if (acpi_driver_match_device(dev, drv))
305 		return 1;
306 
307 	if (sdrv->id_table)
308 		return !!spi_match_id(sdrv->id_table, spi);
309 
310 	return strcmp(spi->modalias, drv->name) == 0;
311 }
312 
313 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
314 {
315 	const struct spi_device		*spi = to_spi_device(dev);
316 	int rc;
317 
318 	rc = acpi_device_uevent_modalias(dev, env);
319 	if (rc != -ENODEV)
320 		return rc;
321 
322 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
323 	return 0;
324 }
325 
326 struct bus_type spi_bus_type = {
327 	.name		= "spi",
328 	.dev_groups	= spi_dev_groups,
329 	.match		= spi_match_device,
330 	.uevent		= spi_uevent,
331 };
332 EXPORT_SYMBOL_GPL(spi_bus_type);
333 
334 
335 static int spi_drv_probe(struct device *dev)
336 {
337 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
338 	struct spi_device		*spi = to_spi_device(dev);
339 	int ret;
340 
341 	ret = of_clk_set_defaults(dev->of_node, false);
342 	if (ret)
343 		return ret;
344 
345 	if (dev->of_node) {
346 		spi->irq = of_irq_get(dev->of_node, 0);
347 		if (spi->irq == -EPROBE_DEFER)
348 			return -EPROBE_DEFER;
349 		if (spi->irq < 0)
350 			spi->irq = 0;
351 	}
352 
353 	ret = dev_pm_domain_attach(dev, true);
354 	if (ret != -EPROBE_DEFER) {
355 		ret = sdrv->probe(spi);
356 		if (ret)
357 			dev_pm_domain_detach(dev, true);
358 	}
359 
360 	return ret;
361 }
362 
363 static int spi_drv_remove(struct device *dev)
364 {
365 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
366 	int ret;
367 
368 	ret = sdrv->remove(to_spi_device(dev));
369 	dev_pm_domain_detach(dev, true);
370 
371 	return ret;
372 }
373 
374 static void spi_drv_shutdown(struct device *dev)
375 {
376 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
377 
378 	sdrv->shutdown(to_spi_device(dev));
379 }
380 
381 /**
382  * __spi_register_driver - register a SPI driver
383  * @owner: owner module of the driver to register
384  * @sdrv: the driver to register
385  * Context: can sleep
386  *
387  * Return: zero on success, else a negative error code.
388  */
389 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
390 {
391 	sdrv->driver.owner = owner;
392 	sdrv->driver.bus = &spi_bus_type;
393 	if (sdrv->probe)
394 		sdrv->driver.probe = spi_drv_probe;
395 	if (sdrv->remove)
396 		sdrv->driver.remove = spi_drv_remove;
397 	if (sdrv->shutdown)
398 		sdrv->driver.shutdown = spi_drv_shutdown;
399 	return driver_register(&sdrv->driver);
400 }
401 EXPORT_SYMBOL_GPL(__spi_register_driver);
402 
403 /*-------------------------------------------------------------------------*/
404 
405 /* SPI devices should normally not be created by SPI device drivers; that
406  * would make them board-specific.  Similarly with SPI master drivers.
407  * Device registration normally goes into like arch/.../mach.../board-YYY.c
408  * with other readonly (flashable) information about mainboard devices.
409  */
410 
411 struct boardinfo {
412 	struct list_head	list;
413 	struct spi_board_info	board_info;
414 };
415 
416 static LIST_HEAD(board_list);
417 static LIST_HEAD(spi_master_list);
418 
419 /*
420  * Used to protect add/del opertion for board_info list and
421  * spi_master list, and their matching process
422  */
423 static DEFINE_MUTEX(board_lock);
424 
425 /**
426  * spi_alloc_device - Allocate a new SPI device
427  * @master: Controller to which device is connected
428  * Context: can sleep
429  *
430  * Allows a driver to allocate and initialize a spi_device without
431  * registering it immediately.  This allows a driver to directly
432  * fill the spi_device with device parameters before calling
433  * spi_add_device() on it.
434  *
435  * Caller is responsible to call spi_add_device() on the returned
436  * spi_device structure to add it to the SPI master.  If the caller
437  * needs to discard the spi_device without adding it, then it should
438  * call spi_dev_put() on it.
439  *
440  * Return: a pointer to the new device, or NULL.
441  */
442 struct spi_device *spi_alloc_device(struct spi_master *master)
443 {
444 	struct spi_device	*spi;
445 
446 	if (!spi_master_get(master))
447 		return NULL;
448 
449 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
450 	if (!spi) {
451 		spi_master_put(master);
452 		return NULL;
453 	}
454 
455 	spi->master = master;
456 	spi->dev.parent = &master->dev;
457 	spi->dev.bus = &spi_bus_type;
458 	spi->dev.release = spidev_release;
459 	spi->cs_gpio = -ENOENT;
460 
461 	spin_lock_init(&spi->statistics.lock);
462 
463 	device_initialize(&spi->dev);
464 	return spi;
465 }
466 EXPORT_SYMBOL_GPL(spi_alloc_device);
467 
468 static void spi_dev_set_name(struct spi_device *spi)
469 {
470 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
471 
472 	if (adev) {
473 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
474 		return;
475 	}
476 
477 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
478 		     spi->chip_select);
479 }
480 
481 static int spi_dev_check(struct device *dev, void *data)
482 {
483 	struct spi_device *spi = to_spi_device(dev);
484 	struct spi_device *new_spi = data;
485 
486 	if (spi->master == new_spi->master &&
487 	    spi->chip_select == new_spi->chip_select)
488 		return -EBUSY;
489 	return 0;
490 }
491 
492 /**
493  * spi_add_device - Add spi_device allocated with spi_alloc_device
494  * @spi: spi_device to register
495  *
496  * Companion function to spi_alloc_device.  Devices allocated with
497  * spi_alloc_device can be added onto the spi bus with this function.
498  *
499  * Return: 0 on success; negative errno on failure
500  */
501 int spi_add_device(struct spi_device *spi)
502 {
503 	static DEFINE_MUTEX(spi_add_lock);
504 	struct spi_master *master = spi->master;
505 	struct device *dev = master->dev.parent;
506 	int status;
507 
508 	/* Chipselects are numbered 0..max; validate. */
509 	if (spi->chip_select >= master->num_chipselect) {
510 		dev_err(dev, "cs%d >= max %d\n",
511 			spi->chip_select,
512 			master->num_chipselect);
513 		return -EINVAL;
514 	}
515 
516 	/* Set the bus ID string */
517 	spi_dev_set_name(spi);
518 
519 	/* We need to make sure there's no other device with this
520 	 * chipselect **BEFORE** we call setup(), else we'll trash
521 	 * its configuration.  Lock against concurrent add() calls.
522 	 */
523 	mutex_lock(&spi_add_lock);
524 
525 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
526 	if (status) {
527 		dev_err(dev, "chipselect %d already in use\n",
528 				spi->chip_select);
529 		goto done;
530 	}
531 
532 	if (master->cs_gpios)
533 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
534 
535 	/* Drivers may modify this initial i/o setup, but will
536 	 * normally rely on the device being setup.  Devices
537 	 * using SPI_CS_HIGH can't coexist well otherwise...
538 	 */
539 	status = spi_setup(spi);
540 	if (status < 0) {
541 		dev_err(dev, "can't setup %s, status %d\n",
542 				dev_name(&spi->dev), status);
543 		goto done;
544 	}
545 
546 	/* Device may be bound to an active driver when this returns */
547 	status = device_add(&spi->dev);
548 	if (status < 0)
549 		dev_err(dev, "can't add %s, status %d\n",
550 				dev_name(&spi->dev), status);
551 	else
552 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
553 
554 done:
555 	mutex_unlock(&spi_add_lock);
556 	return status;
557 }
558 EXPORT_SYMBOL_GPL(spi_add_device);
559 
560 /**
561  * spi_new_device - instantiate one new SPI device
562  * @master: Controller to which device is connected
563  * @chip: Describes the SPI device
564  * Context: can sleep
565  *
566  * On typical mainboards, this is purely internal; and it's not needed
567  * after board init creates the hard-wired devices.  Some development
568  * platforms may not be able to use spi_register_board_info though, and
569  * this is exported so that for example a USB or parport based adapter
570  * driver could add devices (which it would learn about out-of-band).
571  *
572  * Return: the new device, or NULL.
573  */
574 struct spi_device *spi_new_device(struct spi_master *master,
575 				  struct spi_board_info *chip)
576 {
577 	struct spi_device	*proxy;
578 	int			status;
579 
580 	/* NOTE:  caller did any chip->bus_num checks necessary.
581 	 *
582 	 * Also, unless we change the return value convention to use
583 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
584 	 * suggests syslogged diagnostics are best here (ugh).
585 	 */
586 
587 	proxy = spi_alloc_device(master);
588 	if (!proxy)
589 		return NULL;
590 
591 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
592 
593 	proxy->chip_select = chip->chip_select;
594 	proxy->max_speed_hz = chip->max_speed_hz;
595 	proxy->mode = chip->mode;
596 	proxy->irq = chip->irq;
597 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
598 	proxy->dev.platform_data = (void *) chip->platform_data;
599 	proxy->controller_data = chip->controller_data;
600 	proxy->controller_state = NULL;
601 
602 	status = spi_add_device(proxy);
603 	if (status < 0) {
604 		spi_dev_put(proxy);
605 		return NULL;
606 	}
607 
608 	return proxy;
609 }
610 EXPORT_SYMBOL_GPL(spi_new_device);
611 
612 /**
613  * spi_unregister_device - unregister a single SPI device
614  * @spi: spi_device to unregister
615  *
616  * Start making the passed SPI device vanish. Normally this would be handled
617  * by spi_unregister_master().
618  */
619 void spi_unregister_device(struct spi_device *spi)
620 {
621 	if (!spi)
622 		return;
623 
624 	if (spi->dev.of_node)
625 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
626 	if (ACPI_COMPANION(&spi->dev))
627 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
628 	device_unregister(&spi->dev);
629 }
630 EXPORT_SYMBOL_GPL(spi_unregister_device);
631 
632 static void spi_match_master_to_boardinfo(struct spi_master *master,
633 				struct spi_board_info *bi)
634 {
635 	struct spi_device *dev;
636 
637 	if (master->bus_num != bi->bus_num)
638 		return;
639 
640 	dev = spi_new_device(master, bi);
641 	if (!dev)
642 		dev_err(master->dev.parent, "can't create new device for %s\n",
643 			bi->modalias);
644 }
645 
646 /**
647  * spi_register_board_info - register SPI devices for a given board
648  * @info: array of chip descriptors
649  * @n: how many descriptors are provided
650  * Context: can sleep
651  *
652  * Board-specific early init code calls this (probably during arch_initcall)
653  * with segments of the SPI device table.  Any device nodes are created later,
654  * after the relevant parent SPI controller (bus_num) is defined.  We keep
655  * this table of devices forever, so that reloading a controller driver will
656  * not make Linux forget about these hard-wired devices.
657  *
658  * Other code can also call this, e.g. a particular add-on board might provide
659  * SPI devices through its expansion connector, so code initializing that board
660  * would naturally declare its SPI devices.
661  *
662  * The board info passed can safely be __initdata ... but be careful of
663  * any embedded pointers (platform_data, etc), they're copied as-is.
664  *
665  * Return: zero on success, else a negative error code.
666  */
667 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
668 {
669 	struct boardinfo *bi;
670 	int i;
671 
672 	if (!n)
673 		return -EINVAL;
674 
675 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
676 	if (!bi)
677 		return -ENOMEM;
678 
679 	for (i = 0; i < n; i++, bi++, info++) {
680 		struct spi_master *master;
681 
682 		memcpy(&bi->board_info, info, sizeof(*info));
683 		mutex_lock(&board_lock);
684 		list_add_tail(&bi->list, &board_list);
685 		list_for_each_entry(master, &spi_master_list, list)
686 			spi_match_master_to_boardinfo(master, &bi->board_info);
687 		mutex_unlock(&board_lock);
688 	}
689 
690 	return 0;
691 }
692 
693 /*-------------------------------------------------------------------------*/
694 
695 static void spi_set_cs(struct spi_device *spi, bool enable)
696 {
697 	if (spi->mode & SPI_CS_HIGH)
698 		enable = !enable;
699 
700 	if (gpio_is_valid(spi->cs_gpio))
701 		gpio_set_value(spi->cs_gpio, !enable);
702 	else if (spi->master->set_cs)
703 		spi->master->set_cs(spi, !enable);
704 }
705 
706 #ifdef CONFIG_HAS_DMA
707 static int spi_map_buf(struct spi_master *master, struct device *dev,
708 		       struct sg_table *sgt, void *buf, size_t len,
709 		       enum dma_data_direction dir)
710 {
711 	const bool vmalloced_buf = is_vmalloc_addr(buf);
712 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
713 #ifdef CONFIG_HIGHMEM
714 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
715 				(unsigned long)buf < (PKMAP_BASE +
716 					(LAST_PKMAP * PAGE_SIZE)));
717 #else
718 	const bool kmap_buf = false;
719 #endif
720 	int desc_len;
721 	int sgs;
722 	struct page *vm_page;
723 	void *sg_buf;
724 	size_t min;
725 	int i, ret;
726 
727 	if (vmalloced_buf || kmap_buf) {
728 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
729 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
730 	} else if (virt_addr_valid(buf)) {
731 		desc_len = min_t(int, max_seg_size, master->max_dma_len);
732 		sgs = DIV_ROUND_UP(len, desc_len);
733 	} else {
734 		return -EINVAL;
735 	}
736 
737 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
738 	if (ret != 0)
739 		return ret;
740 
741 	for (i = 0; i < sgs; i++) {
742 
743 		if (vmalloced_buf || kmap_buf) {
744 			min = min_t(size_t,
745 				    len, desc_len - offset_in_page(buf));
746 			if (vmalloced_buf)
747 				vm_page = vmalloc_to_page(buf);
748 			else
749 				vm_page = kmap_to_page(buf);
750 			if (!vm_page) {
751 				sg_free_table(sgt);
752 				return -ENOMEM;
753 			}
754 			sg_set_page(&sgt->sgl[i], vm_page,
755 				    min, offset_in_page(buf));
756 		} else {
757 			min = min_t(size_t, len, desc_len);
758 			sg_buf = buf;
759 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
760 		}
761 
762 		buf += min;
763 		len -= min;
764 	}
765 
766 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
767 	if (!ret)
768 		ret = -ENOMEM;
769 	if (ret < 0) {
770 		sg_free_table(sgt);
771 		return ret;
772 	}
773 
774 	sgt->nents = ret;
775 
776 	return 0;
777 }
778 
779 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
780 			  struct sg_table *sgt, enum dma_data_direction dir)
781 {
782 	if (sgt->orig_nents) {
783 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
784 		sg_free_table(sgt);
785 	}
786 }
787 
788 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
789 {
790 	struct device *tx_dev, *rx_dev;
791 	struct spi_transfer *xfer;
792 	int ret;
793 
794 	if (!master->can_dma)
795 		return 0;
796 
797 	if (master->dma_tx)
798 		tx_dev = master->dma_tx->device->dev;
799 	else
800 		tx_dev = &master->dev;
801 
802 	if (master->dma_rx)
803 		rx_dev = master->dma_rx->device->dev;
804 	else
805 		rx_dev = &master->dev;
806 
807 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
808 		if (!master->can_dma(master, msg->spi, xfer))
809 			continue;
810 
811 		if (xfer->tx_buf != NULL) {
812 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
813 					  (void *)xfer->tx_buf, xfer->len,
814 					  DMA_TO_DEVICE);
815 			if (ret != 0)
816 				return ret;
817 		}
818 
819 		if (xfer->rx_buf != NULL) {
820 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
821 					  xfer->rx_buf, xfer->len,
822 					  DMA_FROM_DEVICE);
823 			if (ret != 0) {
824 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
825 					      DMA_TO_DEVICE);
826 				return ret;
827 			}
828 		}
829 	}
830 
831 	master->cur_msg_mapped = true;
832 
833 	return 0;
834 }
835 
836 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
837 {
838 	struct spi_transfer *xfer;
839 	struct device *tx_dev, *rx_dev;
840 
841 	if (!master->cur_msg_mapped || !master->can_dma)
842 		return 0;
843 
844 	if (master->dma_tx)
845 		tx_dev = master->dma_tx->device->dev;
846 	else
847 		tx_dev = &master->dev;
848 
849 	if (master->dma_rx)
850 		rx_dev = master->dma_rx->device->dev;
851 	else
852 		rx_dev = &master->dev;
853 
854 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
855 		if (!master->can_dma(master, msg->spi, xfer))
856 			continue;
857 
858 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
859 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
860 	}
861 
862 	return 0;
863 }
864 #else /* !CONFIG_HAS_DMA */
865 static inline int spi_map_buf(struct spi_master *master,
866 			      struct device *dev, struct sg_table *sgt,
867 			      void *buf, size_t len,
868 			      enum dma_data_direction dir)
869 {
870 	return -EINVAL;
871 }
872 
873 static inline void spi_unmap_buf(struct spi_master *master,
874 				 struct device *dev, struct sg_table *sgt,
875 				 enum dma_data_direction dir)
876 {
877 }
878 
879 static inline int __spi_map_msg(struct spi_master *master,
880 				struct spi_message *msg)
881 {
882 	return 0;
883 }
884 
885 static inline int __spi_unmap_msg(struct spi_master *master,
886 				  struct spi_message *msg)
887 {
888 	return 0;
889 }
890 #endif /* !CONFIG_HAS_DMA */
891 
892 static inline int spi_unmap_msg(struct spi_master *master,
893 				struct spi_message *msg)
894 {
895 	struct spi_transfer *xfer;
896 
897 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
898 		/*
899 		 * Restore the original value of tx_buf or rx_buf if they are
900 		 * NULL.
901 		 */
902 		if (xfer->tx_buf == master->dummy_tx)
903 			xfer->tx_buf = NULL;
904 		if (xfer->rx_buf == master->dummy_rx)
905 			xfer->rx_buf = NULL;
906 	}
907 
908 	return __spi_unmap_msg(master, msg);
909 }
910 
911 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
912 {
913 	struct spi_transfer *xfer;
914 	void *tmp;
915 	unsigned int max_tx, max_rx;
916 
917 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
918 		max_tx = 0;
919 		max_rx = 0;
920 
921 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
922 			if ((master->flags & SPI_MASTER_MUST_TX) &&
923 			    !xfer->tx_buf)
924 				max_tx = max(xfer->len, max_tx);
925 			if ((master->flags & SPI_MASTER_MUST_RX) &&
926 			    !xfer->rx_buf)
927 				max_rx = max(xfer->len, max_rx);
928 		}
929 
930 		if (max_tx) {
931 			tmp = krealloc(master->dummy_tx, max_tx,
932 				       GFP_KERNEL | GFP_DMA);
933 			if (!tmp)
934 				return -ENOMEM;
935 			master->dummy_tx = tmp;
936 			memset(tmp, 0, max_tx);
937 		}
938 
939 		if (max_rx) {
940 			tmp = krealloc(master->dummy_rx, max_rx,
941 				       GFP_KERNEL | GFP_DMA);
942 			if (!tmp)
943 				return -ENOMEM;
944 			master->dummy_rx = tmp;
945 		}
946 
947 		if (max_tx || max_rx) {
948 			list_for_each_entry(xfer, &msg->transfers,
949 					    transfer_list) {
950 				if (!xfer->tx_buf)
951 					xfer->tx_buf = master->dummy_tx;
952 				if (!xfer->rx_buf)
953 					xfer->rx_buf = master->dummy_rx;
954 			}
955 		}
956 	}
957 
958 	return __spi_map_msg(master, msg);
959 }
960 
961 /*
962  * spi_transfer_one_message - Default implementation of transfer_one_message()
963  *
964  * This is a standard implementation of transfer_one_message() for
965  * drivers which implement a transfer_one() operation.  It provides
966  * standard handling of delays and chip select management.
967  */
968 static int spi_transfer_one_message(struct spi_master *master,
969 				    struct spi_message *msg)
970 {
971 	struct spi_transfer *xfer;
972 	bool keep_cs = false;
973 	int ret = 0;
974 	unsigned long long ms = 1;
975 	struct spi_statistics *statm = &master->statistics;
976 	struct spi_statistics *stats = &msg->spi->statistics;
977 
978 	spi_set_cs(msg->spi, true);
979 
980 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
981 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
982 
983 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
984 		trace_spi_transfer_start(msg, xfer);
985 
986 		spi_statistics_add_transfer_stats(statm, xfer, master);
987 		spi_statistics_add_transfer_stats(stats, xfer, master);
988 
989 		if (xfer->tx_buf || xfer->rx_buf) {
990 			reinit_completion(&master->xfer_completion);
991 
992 			ret = master->transfer_one(master, msg->spi, xfer);
993 			if (ret < 0) {
994 				SPI_STATISTICS_INCREMENT_FIELD(statm,
995 							       errors);
996 				SPI_STATISTICS_INCREMENT_FIELD(stats,
997 							       errors);
998 				dev_err(&msg->spi->dev,
999 					"SPI transfer failed: %d\n", ret);
1000 				goto out;
1001 			}
1002 
1003 			if (ret > 0) {
1004 				ret = 0;
1005 				ms = 8LL * 1000LL * xfer->len;
1006 				do_div(ms, xfer->speed_hz);
1007 				ms += ms + 100; /* some tolerance */
1008 
1009 				if (ms > UINT_MAX)
1010 					ms = UINT_MAX;
1011 
1012 				ms = wait_for_completion_timeout(&master->xfer_completion,
1013 								 msecs_to_jiffies(ms));
1014 			}
1015 
1016 			if (ms == 0) {
1017 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1018 							       timedout);
1019 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1020 							       timedout);
1021 				dev_err(&msg->spi->dev,
1022 					"SPI transfer timed out\n");
1023 				msg->status = -ETIMEDOUT;
1024 			}
1025 		} else {
1026 			if (xfer->len)
1027 				dev_err(&msg->spi->dev,
1028 					"Bufferless transfer has length %u\n",
1029 					xfer->len);
1030 		}
1031 
1032 		trace_spi_transfer_stop(msg, xfer);
1033 
1034 		if (msg->status != -EINPROGRESS)
1035 			goto out;
1036 
1037 		if (xfer->delay_usecs)
1038 			udelay(xfer->delay_usecs);
1039 
1040 		if (xfer->cs_change) {
1041 			if (list_is_last(&xfer->transfer_list,
1042 					 &msg->transfers)) {
1043 				keep_cs = true;
1044 			} else {
1045 				spi_set_cs(msg->spi, false);
1046 				udelay(10);
1047 				spi_set_cs(msg->spi, true);
1048 			}
1049 		}
1050 
1051 		msg->actual_length += xfer->len;
1052 	}
1053 
1054 out:
1055 	if (ret != 0 || !keep_cs)
1056 		spi_set_cs(msg->spi, false);
1057 
1058 	if (msg->status == -EINPROGRESS)
1059 		msg->status = ret;
1060 
1061 	if (msg->status && master->handle_err)
1062 		master->handle_err(master, msg);
1063 
1064 	spi_res_release(master, msg);
1065 
1066 	spi_finalize_current_message(master);
1067 
1068 	return ret;
1069 }
1070 
1071 /**
1072  * spi_finalize_current_transfer - report completion of a transfer
1073  * @master: the master reporting completion
1074  *
1075  * Called by SPI drivers using the core transfer_one_message()
1076  * implementation to notify it that the current interrupt driven
1077  * transfer has finished and the next one may be scheduled.
1078  */
1079 void spi_finalize_current_transfer(struct spi_master *master)
1080 {
1081 	complete(&master->xfer_completion);
1082 }
1083 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1084 
1085 /**
1086  * __spi_pump_messages - function which processes spi message queue
1087  * @master: master to process queue for
1088  * @in_kthread: true if we are in the context of the message pump thread
1089  *
1090  * This function checks if there is any spi message in the queue that
1091  * needs processing and if so call out to the driver to initialize hardware
1092  * and transfer each message.
1093  *
1094  * Note that it is called both from the kthread itself and also from
1095  * inside spi_sync(); the queue extraction handling at the top of the
1096  * function should deal with this safely.
1097  */
1098 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1099 {
1100 	unsigned long flags;
1101 	bool was_busy = false;
1102 	int ret;
1103 
1104 	/* Lock queue */
1105 	spin_lock_irqsave(&master->queue_lock, flags);
1106 
1107 	/* Make sure we are not already running a message */
1108 	if (master->cur_msg) {
1109 		spin_unlock_irqrestore(&master->queue_lock, flags);
1110 		return;
1111 	}
1112 
1113 	/* If another context is idling the device then defer */
1114 	if (master->idling) {
1115 		kthread_queue_work(&master->kworker, &master->pump_messages);
1116 		spin_unlock_irqrestore(&master->queue_lock, flags);
1117 		return;
1118 	}
1119 
1120 	/* Check if the queue is idle */
1121 	if (list_empty(&master->queue) || !master->running) {
1122 		if (!master->busy) {
1123 			spin_unlock_irqrestore(&master->queue_lock, flags);
1124 			return;
1125 		}
1126 
1127 		/* Only do teardown in the thread */
1128 		if (!in_kthread) {
1129 			kthread_queue_work(&master->kworker,
1130 					   &master->pump_messages);
1131 			spin_unlock_irqrestore(&master->queue_lock, flags);
1132 			return;
1133 		}
1134 
1135 		master->busy = false;
1136 		master->idling = true;
1137 		spin_unlock_irqrestore(&master->queue_lock, flags);
1138 
1139 		kfree(master->dummy_rx);
1140 		master->dummy_rx = NULL;
1141 		kfree(master->dummy_tx);
1142 		master->dummy_tx = NULL;
1143 		if (master->unprepare_transfer_hardware &&
1144 		    master->unprepare_transfer_hardware(master))
1145 			dev_err(&master->dev,
1146 				"failed to unprepare transfer hardware\n");
1147 		if (master->auto_runtime_pm) {
1148 			pm_runtime_mark_last_busy(master->dev.parent);
1149 			pm_runtime_put_autosuspend(master->dev.parent);
1150 		}
1151 		trace_spi_master_idle(master);
1152 
1153 		spin_lock_irqsave(&master->queue_lock, flags);
1154 		master->idling = false;
1155 		spin_unlock_irqrestore(&master->queue_lock, flags);
1156 		return;
1157 	}
1158 
1159 	/* Extract head of queue */
1160 	master->cur_msg =
1161 		list_first_entry(&master->queue, struct spi_message, queue);
1162 
1163 	list_del_init(&master->cur_msg->queue);
1164 	if (master->busy)
1165 		was_busy = true;
1166 	else
1167 		master->busy = true;
1168 	spin_unlock_irqrestore(&master->queue_lock, flags);
1169 
1170 	mutex_lock(&master->io_mutex);
1171 
1172 	if (!was_busy && master->auto_runtime_pm) {
1173 		ret = pm_runtime_get_sync(master->dev.parent);
1174 		if (ret < 0) {
1175 			dev_err(&master->dev, "Failed to power device: %d\n",
1176 				ret);
1177 			mutex_unlock(&master->io_mutex);
1178 			return;
1179 		}
1180 	}
1181 
1182 	if (!was_busy)
1183 		trace_spi_master_busy(master);
1184 
1185 	if (!was_busy && master->prepare_transfer_hardware) {
1186 		ret = master->prepare_transfer_hardware(master);
1187 		if (ret) {
1188 			dev_err(&master->dev,
1189 				"failed to prepare transfer hardware\n");
1190 
1191 			if (master->auto_runtime_pm)
1192 				pm_runtime_put(master->dev.parent);
1193 			mutex_unlock(&master->io_mutex);
1194 			return;
1195 		}
1196 	}
1197 
1198 	trace_spi_message_start(master->cur_msg);
1199 
1200 	if (master->prepare_message) {
1201 		ret = master->prepare_message(master, master->cur_msg);
1202 		if (ret) {
1203 			dev_err(&master->dev,
1204 				"failed to prepare message: %d\n", ret);
1205 			master->cur_msg->status = ret;
1206 			spi_finalize_current_message(master);
1207 			goto out;
1208 		}
1209 		master->cur_msg_prepared = true;
1210 	}
1211 
1212 	ret = spi_map_msg(master, master->cur_msg);
1213 	if (ret) {
1214 		master->cur_msg->status = ret;
1215 		spi_finalize_current_message(master);
1216 		goto out;
1217 	}
1218 
1219 	ret = master->transfer_one_message(master, master->cur_msg);
1220 	if (ret) {
1221 		dev_err(&master->dev,
1222 			"failed to transfer one message from queue\n");
1223 		goto out;
1224 	}
1225 
1226 out:
1227 	mutex_unlock(&master->io_mutex);
1228 
1229 	/* Prod the scheduler in case transfer_one() was busy waiting */
1230 	if (!ret)
1231 		cond_resched();
1232 }
1233 
1234 /**
1235  * spi_pump_messages - kthread work function which processes spi message queue
1236  * @work: pointer to kthread work struct contained in the master struct
1237  */
1238 static void spi_pump_messages(struct kthread_work *work)
1239 {
1240 	struct spi_master *master =
1241 		container_of(work, struct spi_master, pump_messages);
1242 
1243 	__spi_pump_messages(master, true);
1244 }
1245 
1246 static int spi_init_queue(struct spi_master *master)
1247 {
1248 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1249 
1250 	master->running = false;
1251 	master->busy = false;
1252 
1253 	kthread_init_worker(&master->kworker);
1254 	master->kworker_task = kthread_run(kthread_worker_fn,
1255 					   &master->kworker, "%s",
1256 					   dev_name(&master->dev));
1257 	if (IS_ERR(master->kworker_task)) {
1258 		dev_err(&master->dev, "failed to create message pump task\n");
1259 		return PTR_ERR(master->kworker_task);
1260 	}
1261 	kthread_init_work(&master->pump_messages, spi_pump_messages);
1262 
1263 	/*
1264 	 * Master config will indicate if this controller should run the
1265 	 * message pump with high (realtime) priority to reduce the transfer
1266 	 * latency on the bus by minimising the delay between a transfer
1267 	 * request and the scheduling of the message pump thread. Without this
1268 	 * setting the message pump thread will remain at default priority.
1269 	 */
1270 	if (master->rt) {
1271 		dev_info(&master->dev,
1272 			"will run message pump with realtime priority\n");
1273 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 /**
1280  * spi_get_next_queued_message() - called by driver to check for queued
1281  * messages
1282  * @master: the master to check for queued messages
1283  *
1284  * If there are more messages in the queue, the next message is returned from
1285  * this call.
1286  *
1287  * Return: the next message in the queue, else NULL if the queue is empty.
1288  */
1289 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1290 {
1291 	struct spi_message *next;
1292 	unsigned long flags;
1293 
1294 	/* get a pointer to the next message, if any */
1295 	spin_lock_irqsave(&master->queue_lock, flags);
1296 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1297 					queue);
1298 	spin_unlock_irqrestore(&master->queue_lock, flags);
1299 
1300 	return next;
1301 }
1302 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1303 
1304 /**
1305  * spi_finalize_current_message() - the current message is complete
1306  * @master: the master to return the message to
1307  *
1308  * Called by the driver to notify the core that the message in the front of the
1309  * queue is complete and can be removed from the queue.
1310  */
1311 void spi_finalize_current_message(struct spi_master *master)
1312 {
1313 	struct spi_message *mesg;
1314 	unsigned long flags;
1315 	int ret;
1316 
1317 	spin_lock_irqsave(&master->queue_lock, flags);
1318 	mesg = master->cur_msg;
1319 	spin_unlock_irqrestore(&master->queue_lock, flags);
1320 
1321 	spi_unmap_msg(master, mesg);
1322 
1323 	if (master->cur_msg_prepared && master->unprepare_message) {
1324 		ret = master->unprepare_message(master, mesg);
1325 		if (ret) {
1326 			dev_err(&master->dev,
1327 				"failed to unprepare message: %d\n", ret);
1328 		}
1329 	}
1330 
1331 	spin_lock_irqsave(&master->queue_lock, flags);
1332 	master->cur_msg = NULL;
1333 	master->cur_msg_prepared = false;
1334 	kthread_queue_work(&master->kworker, &master->pump_messages);
1335 	spin_unlock_irqrestore(&master->queue_lock, flags);
1336 
1337 	trace_spi_message_done(mesg);
1338 
1339 	mesg->state = NULL;
1340 	if (mesg->complete)
1341 		mesg->complete(mesg->context);
1342 }
1343 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1344 
1345 static int spi_start_queue(struct spi_master *master)
1346 {
1347 	unsigned long flags;
1348 
1349 	spin_lock_irqsave(&master->queue_lock, flags);
1350 
1351 	if (master->running || master->busy) {
1352 		spin_unlock_irqrestore(&master->queue_lock, flags);
1353 		return -EBUSY;
1354 	}
1355 
1356 	master->running = true;
1357 	master->cur_msg = NULL;
1358 	spin_unlock_irqrestore(&master->queue_lock, flags);
1359 
1360 	kthread_queue_work(&master->kworker, &master->pump_messages);
1361 
1362 	return 0;
1363 }
1364 
1365 static int spi_stop_queue(struct spi_master *master)
1366 {
1367 	unsigned long flags;
1368 	unsigned limit = 500;
1369 	int ret = 0;
1370 
1371 	spin_lock_irqsave(&master->queue_lock, flags);
1372 
1373 	/*
1374 	 * This is a bit lame, but is optimized for the common execution path.
1375 	 * A wait_queue on the master->busy could be used, but then the common
1376 	 * execution path (pump_messages) would be required to call wake_up or
1377 	 * friends on every SPI message. Do this instead.
1378 	 */
1379 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1380 		spin_unlock_irqrestore(&master->queue_lock, flags);
1381 		usleep_range(10000, 11000);
1382 		spin_lock_irqsave(&master->queue_lock, flags);
1383 	}
1384 
1385 	if (!list_empty(&master->queue) || master->busy)
1386 		ret = -EBUSY;
1387 	else
1388 		master->running = false;
1389 
1390 	spin_unlock_irqrestore(&master->queue_lock, flags);
1391 
1392 	if (ret) {
1393 		dev_warn(&master->dev,
1394 			 "could not stop message queue\n");
1395 		return ret;
1396 	}
1397 	return ret;
1398 }
1399 
1400 static int spi_destroy_queue(struct spi_master *master)
1401 {
1402 	int ret;
1403 
1404 	ret = spi_stop_queue(master);
1405 
1406 	/*
1407 	 * kthread_flush_worker will block until all work is done.
1408 	 * If the reason that stop_queue timed out is that the work will never
1409 	 * finish, then it does no good to call flush/stop thread, so
1410 	 * return anyway.
1411 	 */
1412 	if (ret) {
1413 		dev_err(&master->dev, "problem destroying queue\n");
1414 		return ret;
1415 	}
1416 
1417 	kthread_flush_worker(&master->kworker);
1418 	kthread_stop(master->kworker_task);
1419 
1420 	return 0;
1421 }
1422 
1423 static int __spi_queued_transfer(struct spi_device *spi,
1424 				 struct spi_message *msg,
1425 				 bool need_pump)
1426 {
1427 	struct spi_master *master = spi->master;
1428 	unsigned long flags;
1429 
1430 	spin_lock_irqsave(&master->queue_lock, flags);
1431 
1432 	if (!master->running) {
1433 		spin_unlock_irqrestore(&master->queue_lock, flags);
1434 		return -ESHUTDOWN;
1435 	}
1436 	msg->actual_length = 0;
1437 	msg->status = -EINPROGRESS;
1438 
1439 	list_add_tail(&msg->queue, &master->queue);
1440 	if (!master->busy && need_pump)
1441 		kthread_queue_work(&master->kworker, &master->pump_messages);
1442 
1443 	spin_unlock_irqrestore(&master->queue_lock, flags);
1444 	return 0;
1445 }
1446 
1447 /**
1448  * spi_queued_transfer - transfer function for queued transfers
1449  * @spi: spi device which is requesting transfer
1450  * @msg: spi message which is to handled is queued to driver queue
1451  *
1452  * Return: zero on success, else a negative error code.
1453  */
1454 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1455 {
1456 	return __spi_queued_transfer(spi, msg, true);
1457 }
1458 
1459 static int spi_master_initialize_queue(struct spi_master *master)
1460 {
1461 	int ret;
1462 
1463 	master->transfer = spi_queued_transfer;
1464 	if (!master->transfer_one_message)
1465 		master->transfer_one_message = spi_transfer_one_message;
1466 
1467 	/* Initialize and start queue */
1468 	ret = spi_init_queue(master);
1469 	if (ret) {
1470 		dev_err(&master->dev, "problem initializing queue\n");
1471 		goto err_init_queue;
1472 	}
1473 	master->queued = true;
1474 	ret = spi_start_queue(master);
1475 	if (ret) {
1476 		dev_err(&master->dev, "problem starting queue\n");
1477 		goto err_start_queue;
1478 	}
1479 
1480 	return 0;
1481 
1482 err_start_queue:
1483 	spi_destroy_queue(master);
1484 err_init_queue:
1485 	return ret;
1486 }
1487 
1488 /*-------------------------------------------------------------------------*/
1489 
1490 #if defined(CONFIG_OF)
1491 static struct spi_device *
1492 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1493 {
1494 	struct spi_device *spi;
1495 	int rc;
1496 	u32 value;
1497 
1498 	/* Alloc an spi_device */
1499 	spi = spi_alloc_device(master);
1500 	if (!spi) {
1501 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1502 			nc->full_name);
1503 		rc = -ENOMEM;
1504 		goto err_out;
1505 	}
1506 
1507 	/* Select device driver */
1508 	rc = of_modalias_node(nc, spi->modalias,
1509 				sizeof(spi->modalias));
1510 	if (rc < 0) {
1511 		dev_err(&master->dev, "cannot find modalias for %s\n",
1512 			nc->full_name);
1513 		goto err_out;
1514 	}
1515 
1516 	/* Device address */
1517 	rc = of_property_read_u32(nc, "reg", &value);
1518 	if (rc) {
1519 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1520 			nc->full_name, rc);
1521 		goto err_out;
1522 	}
1523 	spi->chip_select = value;
1524 
1525 	/* Mode (clock phase/polarity/etc.) */
1526 	if (of_find_property(nc, "spi-cpha", NULL))
1527 		spi->mode |= SPI_CPHA;
1528 	if (of_find_property(nc, "spi-cpol", NULL))
1529 		spi->mode |= SPI_CPOL;
1530 	if (of_find_property(nc, "spi-cs-high", NULL))
1531 		spi->mode |= SPI_CS_HIGH;
1532 	if (of_find_property(nc, "spi-3wire", NULL))
1533 		spi->mode |= SPI_3WIRE;
1534 	if (of_find_property(nc, "spi-lsb-first", NULL))
1535 		spi->mode |= SPI_LSB_FIRST;
1536 
1537 	/* Device DUAL/QUAD mode */
1538 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1539 		switch (value) {
1540 		case 1:
1541 			break;
1542 		case 2:
1543 			spi->mode |= SPI_TX_DUAL;
1544 			break;
1545 		case 4:
1546 			spi->mode |= SPI_TX_QUAD;
1547 			break;
1548 		default:
1549 			dev_warn(&master->dev,
1550 				"spi-tx-bus-width %d not supported\n",
1551 				value);
1552 			break;
1553 		}
1554 	}
1555 
1556 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1557 		switch (value) {
1558 		case 1:
1559 			break;
1560 		case 2:
1561 			spi->mode |= SPI_RX_DUAL;
1562 			break;
1563 		case 4:
1564 			spi->mode |= SPI_RX_QUAD;
1565 			break;
1566 		default:
1567 			dev_warn(&master->dev,
1568 				"spi-rx-bus-width %d not supported\n",
1569 				value);
1570 			break;
1571 		}
1572 	}
1573 
1574 	/* Device speed */
1575 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1576 	if (rc) {
1577 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1578 			nc->full_name, rc);
1579 		goto err_out;
1580 	}
1581 	spi->max_speed_hz = value;
1582 
1583 	/* Store a pointer to the node in the device structure */
1584 	of_node_get(nc);
1585 	spi->dev.of_node = nc;
1586 
1587 	/* Register the new device */
1588 	rc = spi_add_device(spi);
1589 	if (rc) {
1590 		dev_err(&master->dev, "spi_device register error %s\n",
1591 			nc->full_name);
1592 		goto err_out;
1593 	}
1594 
1595 	return spi;
1596 
1597 err_out:
1598 	spi_dev_put(spi);
1599 	return ERR_PTR(rc);
1600 }
1601 
1602 /**
1603  * of_register_spi_devices() - Register child devices onto the SPI bus
1604  * @master:	Pointer to spi_master device
1605  *
1606  * Registers an spi_device for each child node of master node which has a 'reg'
1607  * property.
1608  */
1609 static void of_register_spi_devices(struct spi_master *master)
1610 {
1611 	struct spi_device *spi;
1612 	struct device_node *nc;
1613 
1614 	if (!master->dev.of_node)
1615 		return;
1616 
1617 	for_each_available_child_of_node(master->dev.of_node, nc) {
1618 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1619 			continue;
1620 		spi = of_register_spi_device(master, nc);
1621 		if (IS_ERR(spi))
1622 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1623 				nc->full_name);
1624 	}
1625 }
1626 #else
1627 static void of_register_spi_devices(struct spi_master *master) { }
1628 #endif
1629 
1630 #ifdef CONFIG_ACPI
1631 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1632 {
1633 	struct spi_device *spi = data;
1634 	struct spi_master *master = spi->master;
1635 
1636 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1637 		struct acpi_resource_spi_serialbus *sb;
1638 
1639 		sb = &ares->data.spi_serial_bus;
1640 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1641 			/*
1642 			 * ACPI DeviceSelection numbering is handled by the
1643 			 * host controller driver in Windows and can vary
1644 			 * from driver to driver. In Linux we always expect
1645 			 * 0 .. max - 1 so we need to ask the driver to
1646 			 * translate between the two schemes.
1647 			 */
1648 			if (master->fw_translate_cs) {
1649 				int cs = master->fw_translate_cs(master,
1650 						sb->device_selection);
1651 				if (cs < 0)
1652 					return cs;
1653 				spi->chip_select = cs;
1654 			} else {
1655 				spi->chip_select = sb->device_selection;
1656 			}
1657 
1658 			spi->max_speed_hz = sb->connection_speed;
1659 
1660 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1661 				spi->mode |= SPI_CPHA;
1662 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1663 				spi->mode |= SPI_CPOL;
1664 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1665 				spi->mode |= SPI_CS_HIGH;
1666 		}
1667 	} else if (spi->irq < 0) {
1668 		struct resource r;
1669 
1670 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1671 			spi->irq = r.start;
1672 	}
1673 
1674 	/* Always tell the ACPI core to skip this resource */
1675 	return 1;
1676 }
1677 
1678 static acpi_status acpi_register_spi_device(struct spi_master *master,
1679 					    struct acpi_device *adev)
1680 {
1681 	struct list_head resource_list;
1682 	struct spi_device *spi;
1683 	int ret;
1684 
1685 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1686 	    acpi_device_enumerated(adev))
1687 		return AE_OK;
1688 
1689 	spi = spi_alloc_device(master);
1690 	if (!spi) {
1691 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1692 			dev_name(&adev->dev));
1693 		return AE_NO_MEMORY;
1694 	}
1695 
1696 	ACPI_COMPANION_SET(&spi->dev, adev);
1697 	spi->irq = -1;
1698 
1699 	INIT_LIST_HEAD(&resource_list);
1700 	ret = acpi_dev_get_resources(adev, &resource_list,
1701 				     acpi_spi_add_resource, spi);
1702 	acpi_dev_free_resource_list(&resource_list);
1703 
1704 	if (ret < 0 || !spi->max_speed_hz) {
1705 		spi_dev_put(spi);
1706 		return AE_OK;
1707 	}
1708 
1709 	if (spi->irq < 0)
1710 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1711 
1712 	acpi_device_set_enumerated(adev);
1713 
1714 	adev->power.flags.ignore_parent = true;
1715 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1716 	if (spi_add_device(spi)) {
1717 		adev->power.flags.ignore_parent = false;
1718 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1719 			dev_name(&adev->dev));
1720 		spi_dev_put(spi);
1721 	}
1722 
1723 	return AE_OK;
1724 }
1725 
1726 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1727 				       void *data, void **return_value)
1728 {
1729 	struct spi_master *master = data;
1730 	struct acpi_device *adev;
1731 
1732 	if (acpi_bus_get_device(handle, &adev))
1733 		return AE_OK;
1734 
1735 	return acpi_register_spi_device(master, adev);
1736 }
1737 
1738 static void acpi_register_spi_devices(struct spi_master *master)
1739 {
1740 	acpi_status status;
1741 	acpi_handle handle;
1742 
1743 	handle = ACPI_HANDLE(master->dev.parent);
1744 	if (!handle)
1745 		return;
1746 
1747 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1748 				     acpi_spi_add_device, NULL,
1749 				     master, NULL);
1750 	if (ACPI_FAILURE(status))
1751 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1752 }
1753 #else
1754 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1755 #endif /* CONFIG_ACPI */
1756 
1757 static void spi_master_release(struct device *dev)
1758 {
1759 	struct spi_master *master;
1760 
1761 	master = container_of(dev, struct spi_master, dev);
1762 	kfree(master);
1763 }
1764 
1765 static struct class spi_master_class = {
1766 	.name		= "spi_master",
1767 	.owner		= THIS_MODULE,
1768 	.dev_release	= spi_master_release,
1769 	.dev_groups	= spi_master_groups,
1770 };
1771 
1772 
1773 /**
1774  * spi_alloc_master - allocate SPI master controller
1775  * @dev: the controller, possibly using the platform_bus
1776  * @size: how much zeroed driver-private data to allocate; the pointer to this
1777  *	memory is in the driver_data field of the returned device,
1778  *	accessible with spi_master_get_devdata().
1779  * Context: can sleep
1780  *
1781  * This call is used only by SPI master controller drivers, which are the
1782  * only ones directly touching chip registers.  It's how they allocate
1783  * an spi_master structure, prior to calling spi_register_master().
1784  *
1785  * This must be called from context that can sleep.
1786  *
1787  * The caller is responsible for assigning the bus number and initializing
1788  * the master's methods before calling spi_register_master(); and (after errors
1789  * adding the device) calling spi_master_put() to prevent a memory leak.
1790  *
1791  * Return: the SPI master structure on success, else NULL.
1792  */
1793 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1794 {
1795 	struct spi_master	*master;
1796 
1797 	if (!dev)
1798 		return NULL;
1799 
1800 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1801 	if (!master)
1802 		return NULL;
1803 
1804 	device_initialize(&master->dev);
1805 	master->bus_num = -1;
1806 	master->num_chipselect = 1;
1807 	master->dev.class = &spi_master_class;
1808 	master->dev.parent = dev;
1809 	pm_suspend_ignore_children(&master->dev, true);
1810 	spi_master_set_devdata(master, &master[1]);
1811 
1812 	return master;
1813 }
1814 EXPORT_SYMBOL_GPL(spi_alloc_master);
1815 
1816 #ifdef CONFIG_OF
1817 static int of_spi_register_master(struct spi_master *master)
1818 {
1819 	int nb, i, *cs;
1820 	struct device_node *np = master->dev.of_node;
1821 
1822 	if (!np)
1823 		return 0;
1824 
1825 	nb = of_gpio_named_count(np, "cs-gpios");
1826 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1827 
1828 	/* Return error only for an incorrectly formed cs-gpios property */
1829 	if (nb == 0 || nb == -ENOENT)
1830 		return 0;
1831 	else if (nb < 0)
1832 		return nb;
1833 
1834 	cs = devm_kzalloc(&master->dev,
1835 			  sizeof(int) * master->num_chipselect,
1836 			  GFP_KERNEL);
1837 	master->cs_gpios = cs;
1838 
1839 	if (!master->cs_gpios)
1840 		return -ENOMEM;
1841 
1842 	for (i = 0; i < master->num_chipselect; i++)
1843 		cs[i] = -ENOENT;
1844 
1845 	for (i = 0; i < nb; i++)
1846 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1847 
1848 	return 0;
1849 }
1850 #else
1851 static int of_spi_register_master(struct spi_master *master)
1852 {
1853 	return 0;
1854 }
1855 #endif
1856 
1857 /**
1858  * spi_register_master - register SPI master controller
1859  * @master: initialized master, originally from spi_alloc_master()
1860  * Context: can sleep
1861  *
1862  * SPI master controllers connect to their drivers using some non-SPI bus,
1863  * such as the platform bus.  The final stage of probe() in that code
1864  * includes calling spi_register_master() to hook up to this SPI bus glue.
1865  *
1866  * SPI controllers use board specific (often SOC specific) bus numbers,
1867  * and board-specific addressing for SPI devices combines those numbers
1868  * with chip select numbers.  Since SPI does not directly support dynamic
1869  * device identification, boards need configuration tables telling which
1870  * chip is at which address.
1871  *
1872  * This must be called from context that can sleep.  It returns zero on
1873  * success, else a negative error code (dropping the master's refcount).
1874  * After a successful return, the caller is responsible for calling
1875  * spi_unregister_master().
1876  *
1877  * Return: zero on success, else a negative error code.
1878  */
1879 int spi_register_master(struct spi_master *master)
1880 {
1881 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1882 	struct device		*dev = master->dev.parent;
1883 	struct boardinfo	*bi;
1884 	int			status = -ENODEV;
1885 	int			dynamic = 0;
1886 
1887 	if (!dev)
1888 		return -ENODEV;
1889 
1890 	status = of_spi_register_master(master);
1891 	if (status)
1892 		return status;
1893 
1894 	/* even if it's just one always-selected device, there must
1895 	 * be at least one chipselect
1896 	 */
1897 	if (master->num_chipselect == 0)
1898 		return -EINVAL;
1899 
1900 	if ((master->bus_num < 0) && master->dev.of_node)
1901 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1902 
1903 	/* convention:  dynamically assigned bus IDs count down from the max */
1904 	if (master->bus_num < 0) {
1905 		/* FIXME switch to an IDR based scheme, something like
1906 		 * I2C now uses, so we can't run out of "dynamic" IDs
1907 		 */
1908 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1909 		dynamic = 1;
1910 	}
1911 
1912 	INIT_LIST_HEAD(&master->queue);
1913 	spin_lock_init(&master->queue_lock);
1914 	spin_lock_init(&master->bus_lock_spinlock);
1915 	mutex_init(&master->bus_lock_mutex);
1916 	mutex_init(&master->io_mutex);
1917 	master->bus_lock_flag = 0;
1918 	init_completion(&master->xfer_completion);
1919 	if (!master->max_dma_len)
1920 		master->max_dma_len = INT_MAX;
1921 
1922 	/* register the device, then userspace will see it.
1923 	 * registration fails if the bus ID is in use.
1924 	 */
1925 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1926 	status = device_add(&master->dev);
1927 	if (status < 0)
1928 		goto done;
1929 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1930 			dynamic ? " (dynamic)" : "");
1931 
1932 	/* If we're using a queued driver, start the queue */
1933 	if (master->transfer)
1934 		dev_info(dev, "master is unqueued, this is deprecated\n");
1935 	else {
1936 		status = spi_master_initialize_queue(master);
1937 		if (status) {
1938 			device_del(&master->dev);
1939 			goto done;
1940 		}
1941 	}
1942 	/* add statistics */
1943 	spin_lock_init(&master->statistics.lock);
1944 
1945 	mutex_lock(&board_lock);
1946 	list_add_tail(&master->list, &spi_master_list);
1947 	list_for_each_entry(bi, &board_list, list)
1948 		spi_match_master_to_boardinfo(master, &bi->board_info);
1949 	mutex_unlock(&board_lock);
1950 
1951 	/* Register devices from the device tree and ACPI */
1952 	of_register_spi_devices(master);
1953 	acpi_register_spi_devices(master);
1954 done:
1955 	return status;
1956 }
1957 EXPORT_SYMBOL_GPL(spi_register_master);
1958 
1959 static void devm_spi_unregister(struct device *dev, void *res)
1960 {
1961 	spi_unregister_master(*(struct spi_master **)res);
1962 }
1963 
1964 /**
1965  * dev_spi_register_master - register managed SPI master controller
1966  * @dev:    device managing SPI master
1967  * @master: initialized master, originally from spi_alloc_master()
1968  * Context: can sleep
1969  *
1970  * Register a SPI device as with spi_register_master() which will
1971  * automatically be unregister
1972  *
1973  * Return: zero on success, else a negative error code.
1974  */
1975 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1976 {
1977 	struct spi_master **ptr;
1978 	int ret;
1979 
1980 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1981 	if (!ptr)
1982 		return -ENOMEM;
1983 
1984 	ret = spi_register_master(master);
1985 	if (!ret) {
1986 		*ptr = master;
1987 		devres_add(dev, ptr);
1988 	} else {
1989 		devres_free(ptr);
1990 	}
1991 
1992 	return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1995 
1996 static int __unregister(struct device *dev, void *null)
1997 {
1998 	spi_unregister_device(to_spi_device(dev));
1999 	return 0;
2000 }
2001 
2002 /**
2003  * spi_unregister_master - unregister SPI master controller
2004  * @master: the master being unregistered
2005  * Context: can sleep
2006  *
2007  * This call is used only by SPI master controller drivers, which are the
2008  * only ones directly touching chip registers.
2009  *
2010  * This must be called from context that can sleep.
2011  */
2012 void spi_unregister_master(struct spi_master *master)
2013 {
2014 	int dummy;
2015 
2016 	if (master->queued) {
2017 		if (spi_destroy_queue(master))
2018 			dev_err(&master->dev, "queue remove failed\n");
2019 	}
2020 
2021 	mutex_lock(&board_lock);
2022 	list_del(&master->list);
2023 	mutex_unlock(&board_lock);
2024 
2025 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
2026 	device_unregister(&master->dev);
2027 }
2028 EXPORT_SYMBOL_GPL(spi_unregister_master);
2029 
2030 int spi_master_suspend(struct spi_master *master)
2031 {
2032 	int ret;
2033 
2034 	/* Basically no-ops for non-queued masters */
2035 	if (!master->queued)
2036 		return 0;
2037 
2038 	ret = spi_stop_queue(master);
2039 	if (ret)
2040 		dev_err(&master->dev, "queue stop failed\n");
2041 
2042 	return ret;
2043 }
2044 EXPORT_SYMBOL_GPL(spi_master_suspend);
2045 
2046 int spi_master_resume(struct spi_master *master)
2047 {
2048 	int ret;
2049 
2050 	if (!master->queued)
2051 		return 0;
2052 
2053 	ret = spi_start_queue(master);
2054 	if (ret)
2055 		dev_err(&master->dev, "queue restart failed\n");
2056 
2057 	return ret;
2058 }
2059 EXPORT_SYMBOL_GPL(spi_master_resume);
2060 
2061 static int __spi_master_match(struct device *dev, const void *data)
2062 {
2063 	struct spi_master *m;
2064 	const u16 *bus_num = data;
2065 
2066 	m = container_of(dev, struct spi_master, dev);
2067 	return m->bus_num == *bus_num;
2068 }
2069 
2070 /**
2071  * spi_busnum_to_master - look up master associated with bus_num
2072  * @bus_num: the master's bus number
2073  * Context: can sleep
2074  *
2075  * This call may be used with devices that are registered after
2076  * arch init time.  It returns a refcounted pointer to the relevant
2077  * spi_master (which the caller must release), or NULL if there is
2078  * no such master registered.
2079  *
2080  * Return: the SPI master structure on success, else NULL.
2081  */
2082 struct spi_master *spi_busnum_to_master(u16 bus_num)
2083 {
2084 	struct device		*dev;
2085 	struct spi_master	*master = NULL;
2086 
2087 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2088 				__spi_master_match);
2089 	if (dev)
2090 		master = container_of(dev, struct spi_master, dev);
2091 	/* reference got in class_find_device */
2092 	return master;
2093 }
2094 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2095 
2096 /*-------------------------------------------------------------------------*/
2097 
2098 /* Core methods for SPI resource management */
2099 
2100 /**
2101  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2102  *                 during the processing of a spi_message while using
2103  *                 spi_transfer_one
2104  * @spi:     the spi device for which we allocate memory
2105  * @release: the release code to execute for this resource
2106  * @size:    size to alloc and return
2107  * @gfp:     GFP allocation flags
2108  *
2109  * Return: the pointer to the allocated data
2110  *
2111  * This may get enhanced in the future to allocate from a memory pool
2112  * of the @spi_device or @spi_master to avoid repeated allocations.
2113  */
2114 void *spi_res_alloc(struct spi_device *spi,
2115 		    spi_res_release_t release,
2116 		    size_t size, gfp_t gfp)
2117 {
2118 	struct spi_res *sres;
2119 
2120 	sres = kzalloc(sizeof(*sres) + size, gfp);
2121 	if (!sres)
2122 		return NULL;
2123 
2124 	INIT_LIST_HEAD(&sres->entry);
2125 	sres->release = release;
2126 
2127 	return sres->data;
2128 }
2129 EXPORT_SYMBOL_GPL(spi_res_alloc);
2130 
2131 /**
2132  * spi_res_free - free an spi resource
2133  * @res: pointer to the custom data of a resource
2134  *
2135  */
2136 void spi_res_free(void *res)
2137 {
2138 	struct spi_res *sres = container_of(res, struct spi_res, data);
2139 
2140 	if (!res)
2141 		return;
2142 
2143 	WARN_ON(!list_empty(&sres->entry));
2144 	kfree(sres);
2145 }
2146 EXPORT_SYMBOL_GPL(spi_res_free);
2147 
2148 /**
2149  * spi_res_add - add a spi_res to the spi_message
2150  * @message: the spi message
2151  * @res:     the spi_resource
2152  */
2153 void spi_res_add(struct spi_message *message, void *res)
2154 {
2155 	struct spi_res *sres = container_of(res, struct spi_res, data);
2156 
2157 	WARN_ON(!list_empty(&sres->entry));
2158 	list_add_tail(&sres->entry, &message->resources);
2159 }
2160 EXPORT_SYMBOL_GPL(spi_res_add);
2161 
2162 /**
2163  * spi_res_release - release all spi resources for this message
2164  * @master:  the @spi_master
2165  * @message: the @spi_message
2166  */
2167 void spi_res_release(struct spi_master *master,
2168 		     struct spi_message *message)
2169 {
2170 	struct spi_res *res;
2171 
2172 	while (!list_empty(&message->resources)) {
2173 		res = list_last_entry(&message->resources,
2174 				      struct spi_res, entry);
2175 
2176 		if (res->release)
2177 			res->release(master, message, res->data);
2178 
2179 		list_del(&res->entry);
2180 
2181 		kfree(res);
2182 	}
2183 }
2184 EXPORT_SYMBOL_GPL(spi_res_release);
2185 
2186 /*-------------------------------------------------------------------------*/
2187 
2188 /* Core methods for spi_message alterations */
2189 
2190 static void __spi_replace_transfers_release(struct spi_master *master,
2191 					    struct spi_message *msg,
2192 					    void *res)
2193 {
2194 	struct spi_replaced_transfers *rxfer = res;
2195 	size_t i;
2196 
2197 	/* call extra callback if requested */
2198 	if (rxfer->release)
2199 		rxfer->release(master, msg, res);
2200 
2201 	/* insert replaced transfers back into the message */
2202 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2203 
2204 	/* remove the formerly inserted entries */
2205 	for (i = 0; i < rxfer->inserted; i++)
2206 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2207 }
2208 
2209 /**
2210  * spi_replace_transfers - replace transfers with several transfers
2211  *                         and register change with spi_message.resources
2212  * @msg:           the spi_message we work upon
2213  * @xfer_first:    the first spi_transfer we want to replace
2214  * @remove:        number of transfers to remove
2215  * @insert:        the number of transfers we want to insert instead
2216  * @release:       extra release code necessary in some circumstances
2217  * @extradatasize: extra data to allocate (with alignment guarantees
2218  *                 of struct @spi_transfer)
2219  * @gfp:           gfp flags
2220  *
2221  * Returns: pointer to @spi_replaced_transfers,
2222  *          PTR_ERR(...) in case of errors.
2223  */
2224 struct spi_replaced_transfers *spi_replace_transfers(
2225 	struct spi_message *msg,
2226 	struct spi_transfer *xfer_first,
2227 	size_t remove,
2228 	size_t insert,
2229 	spi_replaced_release_t release,
2230 	size_t extradatasize,
2231 	gfp_t gfp)
2232 {
2233 	struct spi_replaced_transfers *rxfer;
2234 	struct spi_transfer *xfer;
2235 	size_t i;
2236 
2237 	/* allocate the structure using spi_res */
2238 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2239 			      insert * sizeof(struct spi_transfer)
2240 			      + sizeof(struct spi_replaced_transfers)
2241 			      + extradatasize,
2242 			      gfp);
2243 	if (!rxfer)
2244 		return ERR_PTR(-ENOMEM);
2245 
2246 	/* the release code to invoke before running the generic release */
2247 	rxfer->release = release;
2248 
2249 	/* assign extradata */
2250 	if (extradatasize)
2251 		rxfer->extradata =
2252 			&rxfer->inserted_transfers[insert];
2253 
2254 	/* init the replaced_transfers list */
2255 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2256 
2257 	/* assign the list_entry after which we should reinsert
2258 	 * the @replaced_transfers - it may be spi_message.messages!
2259 	 */
2260 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2261 
2262 	/* remove the requested number of transfers */
2263 	for (i = 0; i < remove; i++) {
2264 		/* if the entry after replaced_after it is msg->transfers
2265 		 * then we have been requested to remove more transfers
2266 		 * than are in the list
2267 		 */
2268 		if (rxfer->replaced_after->next == &msg->transfers) {
2269 			dev_err(&msg->spi->dev,
2270 				"requested to remove more spi_transfers than are available\n");
2271 			/* insert replaced transfers back into the message */
2272 			list_splice(&rxfer->replaced_transfers,
2273 				    rxfer->replaced_after);
2274 
2275 			/* free the spi_replace_transfer structure */
2276 			spi_res_free(rxfer);
2277 
2278 			/* and return with an error */
2279 			return ERR_PTR(-EINVAL);
2280 		}
2281 
2282 		/* remove the entry after replaced_after from list of
2283 		 * transfers and add it to list of replaced_transfers
2284 		 */
2285 		list_move_tail(rxfer->replaced_after->next,
2286 			       &rxfer->replaced_transfers);
2287 	}
2288 
2289 	/* create copy of the given xfer with identical settings
2290 	 * based on the first transfer to get removed
2291 	 */
2292 	for (i = 0; i < insert; i++) {
2293 		/* we need to run in reverse order */
2294 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2295 
2296 		/* copy all spi_transfer data */
2297 		memcpy(xfer, xfer_first, sizeof(*xfer));
2298 
2299 		/* add to list */
2300 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2301 
2302 		/* clear cs_change and delay_usecs for all but the last */
2303 		if (i) {
2304 			xfer->cs_change = false;
2305 			xfer->delay_usecs = 0;
2306 		}
2307 	}
2308 
2309 	/* set up inserted */
2310 	rxfer->inserted = insert;
2311 
2312 	/* and register it with spi_res/spi_message */
2313 	spi_res_add(msg, rxfer);
2314 
2315 	return rxfer;
2316 }
2317 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2318 
2319 static int __spi_split_transfer_maxsize(struct spi_master *master,
2320 					struct spi_message *msg,
2321 					struct spi_transfer **xferp,
2322 					size_t maxsize,
2323 					gfp_t gfp)
2324 {
2325 	struct spi_transfer *xfer = *xferp, *xfers;
2326 	struct spi_replaced_transfers *srt;
2327 	size_t offset;
2328 	size_t count, i;
2329 
2330 	/* warn once about this fact that we are splitting a transfer */
2331 	dev_warn_once(&msg->spi->dev,
2332 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2333 		      xfer->len, maxsize);
2334 
2335 	/* calculate how many we have to replace */
2336 	count = DIV_ROUND_UP(xfer->len, maxsize);
2337 
2338 	/* create replacement */
2339 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2340 	if (IS_ERR(srt))
2341 		return PTR_ERR(srt);
2342 	xfers = srt->inserted_transfers;
2343 
2344 	/* now handle each of those newly inserted spi_transfers
2345 	 * note that the replacements spi_transfers all are preset
2346 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2347 	 * are all identical (as well as most others)
2348 	 * so we just have to fix up len and the pointers.
2349 	 *
2350 	 * this also includes support for the depreciated
2351 	 * spi_message.is_dma_mapped interface
2352 	 */
2353 
2354 	/* the first transfer just needs the length modified, so we
2355 	 * run it outside the loop
2356 	 */
2357 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2358 
2359 	/* all the others need rx_buf/tx_buf also set */
2360 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2361 		/* update rx_buf, tx_buf and dma */
2362 		if (xfers[i].rx_buf)
2363 			xfers[i].rx_buf += offset;
2364 		if (xfers[i].rx_dma)
2365 			xfers[i].rx_dma += offset;
2366 		if (xfers[i].tx_buf)
2367 			xfers[i].tx_buf += offset;
2368 		if (xfers[i].tx_dma)
2369 			xfers[i].tx_dma += offset;
2370 
2371 		/* update length */
2372 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2373 	}
2374 
2375 	/* we set up xferp to the last entry we have inserted,
2376 	 * so that we skip those already split transfers
2377 	 */
2378 	*xferp = &xfers[count - 1];
2379 
2380 	/* increment statistics counters */
2381 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2382 				       transfers_split_maxsize);
2383 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2384 				       transfers_split_maxsize);
2385 
2386 	return 0;
2387 }
2388 
2389 /**
2390  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2391  *                              when an individual transfer exceeds a
2392  *                              certain size
2393  * @master:    the @spi_master for this transfer
2394  * @msg:   the @spi_message to transform
2395  * @maxsize:  the maximum when to apply this
2396  * @gfp: GFP allocation flags
2397  *
2398  * Return: status of transformation
2399  */
2400 int spi_split_transfers_maxsize(struct spi_master *master,
2401 				struct spi_message *msg,
2402 				size_t maxsize,
2403 				gfp_t gfp)
2404 {
2405 	struct spi_transfer *xfer;
2406 	int ret;
2407 
2408 	/* iterate over the transfer_list,
2409 	 * but note that xfer is advanced to the last transfer inserted
2410 	 * to avoid checking sizes again unnecessarily (also xfer does
2411 	 * potentiall belong to a different list by the time the
2412 	 * replacement has happened
2413 	 */
2414 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2415 		if (xfer->len > maxsize) {
2416 			ret = __spi_split_transfer_maxsize(
2417 				master, msg, &xfer, maxsize, gfp);
2418 			if (ret)
2419 				return ret;
2420 		}
2421 	}
2422 
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2426 
2427 /*-------------------------------------------------------------------------*/
2428 
2429 /* Core methods for SPI master protocol drivers.  Some of the
2430  * other core methods are currently defined as inline functions.
2431  */
2432 
2433 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2434 {
2435 	if (master->bits_per_word_mask) {
2436 		/* Only 32 bits fit in the mask */
2437 		if (bits_per_word > 32)
2438 			return -EINVAL;
2439 		if (!(master->bits_per_word_mask &
2440 				SPI_BPW_MASK(bits_per_word)))
2441 			return -EINVAL;
2442 	}
2443 
2444 	return 0;
2445 }
2446 
2447 /**
2448  * spi_setup - setup SPI mode and clock rate
2449  * @spi: the device whose settings are being modified
2450  * Context: can sleep, and no requests are queued to the device
2451  *
2452  * SPI protocol drivers may need to update the transfer mode if the
2453  * device doesn't work with its default.  They may likewise need
2454  * to update clock rates or word sizes from initial values.  This function
2455  * changes those settings, and must be called from a context that can sleep.
2456  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2457  * effect the next time the device is selected and data is transferred to
2458  * or from it.  When this function returns, the spi device is deselected.
2459  *
2460  * Note that this call will fail if the protocol driver specifies an option
2461  * that the underlying controller or its driver does not support.  For
2462  * example, not all hardware supports wire transfers using nine bit words,
2463  * LSB-first wire encoding, or active-high chipselects.
2464  *
2465  * Return: zero on success, else a negative error code.
2466  */
2467 int spi_setup(struct spi_device *spi)
2468 {
2469 	unsigned	bad_bits, ugly_bits;
2470 	int		status;
2471 
2472 	/* check mode to prevent that DUAL and QUAD set at the same time
2473 	 */
2474 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2475 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2476 		dev_err(&spi->dev,
2477 		"setup: can not select dual and quad at the same time\n");
2478 		return -EINVAL;
2479 	}
2480 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2481 	 */
2482 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2483 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2484 		return -EINVAL;
2485 	/* help drivers fail *cleanly* when they need options
2486 	 * that aren't supported with their current master
2487 	 */
2488 	bad_bits = spi->mode & ~spi->master->mode_bits;
2489 	ugly_bits = bad_bits &
2490 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2491 	if (ugly_bits) {
2492 		dev_warn(&spi->dev,
2493 			 "setup: ignoring unsupported mode bits %x\n",
2494 			 ugly_bits);
2495 		spi->mode &= ~ugly_bits;
2496 		bad_bits &= ~ugly_bits;
2497 	}
2498 	if (bad_bits) {
2499 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2500 			bad_bits);
2501 		return -EINVAL;
2502 	}
2503 
2504 	if (!spi->bits_per_word)
2505 		spi->bits_per_word = 8;
2506 
2507 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2508 	if (status)
2509 		return status;
2510 
2511 	if (!spi->max_speed_hz)
2512 		spi->max_speed_hz = spi->master->max_speed_hz;
2513 
2514 	if (spi->master->setup)
2515 		status = spi->master->setup(spi);
2516 
2517 	spi_set_cs(spi, false);
2518 
2519 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2520 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2521 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2522 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2523 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2524 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2525 			spi->bits_per_word, spi->max_speed_hz,
2526 			status);
2527 
2528 	return status;
2529 }
2530 EXPORT_SYMBOL_GPL(spi_setup);
2531 
2532 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2533 {
2534 	struct spi_master *master = spi->master;
2535 	struct spi_transfer *xfer;
2536 	int w_size;
2537 
2538 	if (list_empty(&message->transfers))
2539 		return -EINVAL;
2540 
2541 	/* Half-duplex links include original MicroWire, and ones with
2542 	 * only one data pin like SPI_3WIRE (switches direction) or where
2543 	 * either MOSI or MISO is missing.  They can also be caused by
2544 	 * software limitations.
2545 	 */
2546 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2547 			|| (spi->mode & SPI_3WIRE)) {
2548 		unsigned flags = master->flags;
2549 
2550 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2551 			if (xfer->rx_buf && xfer->tx_buf)
2552 				return -EINVAL;
2553 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2554 				return -EINVAL;
2555 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2556 				return -EINVAL;
2557 		}
2558 	}
2559 
2560 	/**
2561 	 * Set transfer bits_per_word and max speed as spi device default if
2562 	 * it is not set for this transfer.
2563 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2564 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2565 	 */
2566 	message->frame_length = 0;
2567 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2568 		message->frame_length += xfer->len;
2569 		if (!xfer->bits_per_word)
2570 			xfer->bits_per_word = spi->bits_per_word;
2571 
2572 		if (!xfer->speed_hz)
2573 			xfer->speed_hz = spi->max_speed_hz;
2574 		if (!xfer->speed_hz)
2575 			xfer->speed_hz = master->max_speed_hz;
2576 
2577 		if (master->max_speed_hz &&
2578 		    xfer->speed_hz > master->max_speed_hz)
2579 			xfer->speed_hz = master->max_speed_hz;
2580 
2581 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2582 			return -EINVAL;
2583 
2584 		/*
2585 		 * SPI transfer length should be multiple of SPI word size
2586 		 * where SPI word size should be power-of-two multiple
2587 		 */
2588 		if (xfer->bits_per_word <= 8)
2589 			w_size = 1;
2590 		else if (xfer->bits_per_word <= 16)
2591 			w_size = 2;
2592 		else
2593 			w_size = 4;
2594 
2595 		/* No partial transfers accepted */
2596 		if (xfer->len % w_size)
2597 			return -EINVAL;
2598 
2599 		if (xfer->speed_hz && master->min_speed_hz &&
2600 		    xfer->speed_hz < master->min_speed_hz)
2601 			return -EINVAL;
2602 
2603 		if (xfer->tx_buf && !xfer->tx_nbits)
2604 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2605 		if (xfer->rx_buf && !xfer->rx_nbits)
2606 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2607 		/* check transfer tx/rx_nbits:
2608 		 * 1. check the value matches one of single, dual and quad
2609 		 * 2. check tx/rx_nbits match the mode in spi_device
2610 		 */
2611 		if (xfer->tx_buf) {
2612 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2613 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2614 				xfer->tx_nbits != SPI_NBITS_QUAD)
2615 				return -EINVAL;
2616 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2617 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2618 				return -EINVAL;
2619 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2620 				!(spi->mode & SPI_TX_QUAD))
2621 				return -EINVAL;
2622 		}
2623 		/* check transfer rx_nbits */
2624 		if (xfer->rx_buf) {
2625 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2626 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2627 				xfer->rx_nbits != SPI_NBITS_QUAD)
2628 				return -EINVAL;
2629 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2630 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2631 				return -EINVAL;
2632 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2633 				!(spi->mode & SPI_RX_QUAD))
2634 				return -EINVAL;
2635 		}
2636 	}
2637 
2638 	message->status = -EINPROGRESS;
2639 
2640 	return 0;
2641 }
2642 
2643 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2644 {
2645 	struct spi_master *master = spi->master;
2646 
2647 	message->spi = spi;
2648 
2649 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2650 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2651 
2652 	trace_spi_message_submit(message);
2653 
2654 	return master->transfer(spi, message);
2655 }
2656 
2657 /**
2658  * spi_async - asynchronous SPI transfer
2659  * @spi: device with which data will be exchanged
2660  * @message: describes the data transfers, including completion callback
2661  * Context: any (irqs may be blocked, etc)
2662  *
2663  * This call may be used in_irq and other contexts which can't sleep,
2664  * as well as from task contexts which can sleep.
2665  *
2666  * The completion callback is invoked in a context which can't sleep.
2667  * Before that invocation, the value of message->status is undefined.
2668  * When the callback is issued, message->status holds either zero (to
2669  * indicate complete success) or a negative error code.  After that
2670  * callback returns, the driver which issued the transfer request may
2671  * deallocate the associated memory; it's no longer in use by any SPI
2672  * core or controller driver code.
2673  *
2674  * Note that although all messages to a spi_device are handled in
2675  * FIFO order, messages may go to different devices in other orders.
2676  * Some device might be higher priority, or have various "hard" access
2677  * time requirements, for example.
2678  *
2679  * On detection of any fault during the transfer, processing of
2680  * the entire message is aborted, and the device is deselected.
2681  * Until returning from the associated message completion callback,
2682  * no other spi_message queued to that device will be processed.
2683  * (This rule applies equally to all the synchronous transfer calls,
2684  * which are wrappers around this core asynchronous primitive.)
2685  *
2686  * Return: zero on success, else a negative error code.
2687  */
2688 int spi_async(struct spi_device *spi, struct spi_message *message)
2689 {
2690 	struct spi_master *master = spi->master;
2691 	int ret;
2692 	unsigned long flags;
2693 
2694 	ret = __spi_validate(spi, message);
2695 	if (ret != 0)
2696 		return ret;
2697 
2698 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2699 
2700 	if (master->bus_lock_flag)
2701 		ret = -EBUSY;
2702 	else
2703 		ret = __spi_async(spi, message);
2704 
2705 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2706 
2707 	return ret;
2708 }
2709 EXPORT_SYMBOL_GPL(spi_async);
2710 
2711 /**
2712  * spi_async_locked - version of spi_async with exclusive bus usage
2713  * @spi: device with which data will be exchanged
2714  * @message: describes the data transfers, including completion callback
2715  * Context: any (irqs may be blocked, etc)
2716  *
2717  * This call may be used in_irq and other contexts which can't sleep,
2718  * as well as from task contexts which can sleep.
2719  *
2720  * The completion callback is invoked in a context which can't sleep.
2721  * Before that invocation, the value of message->status is undefined.
2722  * When the callback is issued, message->status holds either zero (to
2723  * indicate complete success) or a negative error code.  After that
2724  * callback returns, the driver which issued the transfer request may
2725  * deallocate the associated memory; it's no longer in use by any SPI
2726  * core or controller driver code.
2727  *
2728  * Note that although all messages to a spi_device are handled in
2729  * FIFO order, messages may go to different devices in other orders.
2730  * Some device might be higher priority, or have various "hard" access
2731  * time requirements, for example.
2732  *
2733  * On detection of any fault during the transfer, processing of
2734  * the entire message is aborted, and the device is deselected.
2735  * Until returning from the associated message completion callback,
2736  * no other spi_message queued to that device will be processed.
2737  * (This rule applies equally to all the synchronous transfer calls,
2738  * which are wrappers around this core asynchronous primitive.)
2739  *
2740  * Return: zero on success, else a negative error code.
2741  */
2742 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2743 {
2744 	struct spi_master *master = spi->master;
2745 	int ret;
2746 	unsigned long flags;
2747 
2748 	ret = __spi_validate(spi, message);
2749 	if (ret != 0)
2750 		return ret;
2751 
2752 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2753 
2754 	ret = __spi_async(spi, message);
2755 
2756 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2757 
2758 	return ret;
2759 
2760 }
2761 EXPORT_SYMBOL_GPL(spi_async_locked);
2762 
2763 
2764 int spi_flash_read(struct spi_device *spi,
2765 		   struct spi_flash_read_message *msg)
2766 
2767 {
2768 	struct spi_master *master = spi->master;
2769 	struct device *rx_dev = NULL;
2770 	int ret;
2771 
2772 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2773 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2774 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2775 		return -EINVAL;
2776 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2777 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2778 	    !(spi->mode & SPI_TX_QUAD))
2779 		return -EINVAL;
2780 	if (msg->data_nbits == SPI_NBITS_DUAL &&
2781 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2782 		return -EINVAL;
2783 	if (msg->data_nbits == SPI_NBITS_QUAD &&
2784 	    !(spi->mode &  SPI_RX_QUAD))
2785 		return -EINVAL;
2786 
2787 	if (master->auto_runtime_pm) {
2788 		ret = pm_runtime_get_sync(master->dev.parent);
2789 		if (ret < 0) {
2790 			dev_err(&master->dev, "Failed to power device: %d\n",
2791 				ret);
2792 			return ret;
2793 		}
2794 	}
2795 
2796 	mutex_lock(&master->bus_lock_mutex);
2797 	mutex_lock(&master->io_mutex);
2798 	if (master->dma_rx) {
2799 		rx_dev = master->dma_rx->device->dev;
2800 		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2801 				  msg->buf, msg->len,
2802 				  DMA_FROM_DEVICE);
2803 		if (!ret)
2804 			msg->cur_msg_mapped = true;
2805 	}
2806 	ret = master->spi_flash_read(spi, msg);
2807 	if (msg->cur_msg_mapped)
2808 		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2809 			      DMA_FROM_DEVICE);
2810 	mutex_unlock(&master->io_mutex);
2811 	mutex_unlock(&master->bus_lock_mutex);
2812 
2813 	if (master->auto_runtime_pm)
2814 		pm_runtime_put(master->dev.parent);
2815 
2816 	return ret;
2817 }
2818 EXPORT_SYMBOL_GPL(spi_flash_read);
2819 
2820 /*-------------------------------------------------------------------------*/
2821 
2822 /* Utility methods for SPI master protocol drivers, layered on
2823  * top of the core.  Some other utility methods are defined as
2824  * inline functions.
2825  */
2826 
2827 static void spi_complete(void *arg)
2828 {
2829 	complete(arg);
2830 }
2831 
2832 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2833 {
2834 	DECLARE_COMPLETION_ONSTACK(done);
2835 	int status;
2836 	struct spi_master *master = spi->master;
2837 	unsigned long flags;
2838 
2839 	status = __spi_validate(spi, message);
2840 	if (status != 0)
2841 		return status;
2842 
2843 	message->complete = spi_complete;
2844 	message->context = &done;
2845 	message->spi = spi;
2846 
2847 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2848 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2849 
2850 	/* If we're not using the legacy transfer method then we will
2851 	 * try to transfer in the calling context so special case.
2852 	 * This code would be less tricky if we could remove the
2853 	 * support for driver implemented message queues.
2854 	 */
2855 	if (master->transfer == spi_queued_transfer) {
2856 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2857 
2858 		trace_spi_message_submit(message);
2859 
2860 		status = __spi_queued_transfer(spi, message, false);
2861 
2862 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2863 	} else {
2864 		status = spi_async_locked(spi, message);
2865 	}
2866 
2867 	if (status == 0) {
2868 		/* Push out the messages in the calling context if we
2869 		 * can.
2870 		 */
2871 		if (master->transfer == spi_queued_transfer) {
2872 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2873 						       spi_sync_immediate);
2874 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2875 						       spi_sync_immediate);
2876 			__spi_pump_messages(master, false);
2877 		}
2878 
2879 		wait_for_completion(&done);
2880 		status = message->status;
2881 	}
2882 	message->context = NULL;
2883 	return status;
2884 }
2885 
2886 /**
2887  * spi_sync - blocking/synchronous SPI data transfers
2888  * @spi: device with which data will be exchanged
2889  * @message: describes the data transfers
2890  * Context: can sleep
2891  *
2892  * This call may only be used from a context that may sleep.  The sleep
2893  * is non-interruptible, and has no timeout.  Low-overhead controller
2894  * drivers may DMA directly into and out of the message buffers.
2895  *
2896  * Note that the SPI device's chip select is active during the message,
2897  * and then is normally disabled between messages.  Drivers for some
2898  * frequently-used devices may want to minimize costs of selecting a chip,
2899  * by leaving it selected in anticipation that the next message will go
2900  * to the same chip.  (That may increase power usage.)
2901  *
2902  * Also, the caller is guaranteeing that the memory associated with the
2903  * message will not be freed before this call returns.
2904  *
2905  * Return: zero on success, else a negative error code.
2906  */
2907 int spi_sync(struct spi_device *spi, struct spi_message *message)
2908 {
2909 	int ret;
2910 
2911 	mutex_lock(&spi->master->bus_lock_mutex);
2912 	ret = __spi_sync(spi, message);
2913 	mutex_unlock(&spi->master->bus_lock_mutex);
2914 
2915 	return ret;
2916 }
2917 EXPORT_SYMBOL_GPL(spi_sync);
2918 
2919 /**
2920  * spi_sync_locked - version of spi_sync with exclusive bus usage
2921  * @spi: device with which data will be exchanged
2922  * @message: describes the data transfers
2923  * Context: can sleep
2924  *
2925  * This call may only be used from a context that may sleep.  The sleep
2926  * is non-interruptible, and has no timeout.  Low-overhead controller
2927  * drivers may DMA directly into and out of the message buffers.
2928  *
2929  * This call should be used by drivers that require exclusive access to the
2930  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2931  * be released by a spi_bus_unlock call when the exclusive access is over.
2932  *
2933  * Return: zero on success, else a negative error code.
2934  */
2935 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2936 {
2937 	return __spi_sync(spi, message);
2938 }
2939 EXPORT_SYMBOL_GPL(spi_sync_locked);
2940 
2941 /**
2942  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2943  * @master: SPI bus master that should be locked for exclusive bus access
2944  * Context: can sleep
2945  *
2946  * This call may only be used from a context that may sleep.  The sleep
2947  * is non-interruptible, and has no timeout.
2948  *
2949  * This call should be used by drivers that require exclusive access to the
2950  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2951  * exclusive access is over. Data transfer must be done by spi_sync_locked
2952  * and spi_async_locked calls when the SPI bus lock is held.
2953  *
2954  * Return: always zero.
2955  */
2956 int spi_bus_lock(struct spi_master *master)
2957 {
2958 	unsigned long flags;
2959 
2960 	mutex_lock(&master->bus_lock_mutex);
2961 
2962 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2963 	master->bus_lock_flag = 1;
2964 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2965 
2966 	/* mutex remains locked until spi_bus_unlock is called */
2967 
2968 	return 0;
2969 }
2970 EXPORT_SYMBOL_GPL(spi_bus_lock);
2971 
2972 /**
2973  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2974  * @master: SPI bus master that was locked for exclusive bus access
2975  * Context: can sleep
2976  *
2977  * This call may only be used from a context that may sleep.  The sleep
2978  * is non-interruptible, and has no timeout.
2979  *
2980  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2981  * call.
2982  *
2983  * Return: always zero.
2984  */
2985 int spi_bus_unlock(struct spi_master *master)
2986 {
2987 	master->bus_lock_flag = 0;
2988 
2989 	mutex_unlock(&master->bus_lock_mutex);
2990 
2991 	return 0;
2992 }
2993 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2994 
2995 /* portable code must never pass more than 32 bytes */
2996 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2997 
2998 static u8	*buf;
2999 
3000 /**
3001  * spi_write_then_read - SPI synchronous write followed by read
3002  * @spi: device with which data will be exchanged
3003  * @txbuf: data to be written (need not be dma-safe)
3004  * @n_tx: size of txbuf, in bytes
3005  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3006  * @n_rx: size of rxbuf, in bytes
3007  * Context: can sleep
3008  *
3009  * This performs a half duplex MicroWire style transaction with the
3010  * device, sending txbuf and then reading rxbuf.  The return value
3011  * is zero for success, else a negative errno status code.
3012  * This call may only be used from a context that may sleep.
3013  *
3014  * Parameters to this routine are always copied using a small buffer;
3015  * portable code should never use this for more than 32 bytes.
3016  * Performance-sensitive or bulk transfer code should instead use
3017  * spi_{async,sync}() calls with dma-safe buffers.
3018  *
3019  * Return: zero on success, else a negative error code.
3020  */
3021 int spi_write_then_read(struct spi_device *spi,
3022 		const void *txbuf, unsigned n_tx,
3023 		void *rxbuf, unsigned n_rx)
3024 {
3025 	static DEFINE_MUTEX(lock);
3026 
3027 	int			status;
3028 	struct spi_message	message;
3029 	struct spi_transfer	x[2];
3030 	u8			*local_buf;
3031 
3032 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3033 	 * copying here, (as a pure convenience thing), but we can
3034 	 * keep heap costs out of the hot path unless someone else is
3035 	 * using the pre-allocated buffer or the transfer is too large.
3036 	 */
3037 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3038 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3039 				    GFP_KERNEL | GFP_DMA);
3040 		if (!local_buf)
3041 			return -ENOMEM;
3042 	} else {
3043 		local_buf = buf;
3044 	}
3045 
3046 	spi_message_init(&message);
3047 	memset(x, 0, sizeof(x));
3048 	if (n_tx) {
3049 		x[0].len = n_tx;
3050 		spi_message_add_tail(&x[0], &message);
3051 	}
3052 	if (n_rx) {
3053 		x[1].len = n_rx;
3054 		spi_message_add_tail(&x[1], &message);
3055 	}
3056 
3057 	memcpy(local_buf, txbuf, n_tx);
3058 	x[0].tx_buf = local_buf;
3059 	x[1].rx_buf = local_buf + n_tx;
3060 
3061 	/* do the i/o */
3062 	status = spi_sync(spi, &message);
3063 	if (status == 0)
3064 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3065 
3066 	if (x[0].tx_buf == buf)
3067 		mutex_unlock(&lock);
3068 	else
3069 		kfree(local_buf);
3070 
3071 	return status;
3072 }
3073 EXPORT_SYMBOL_GPL(spi_write_then_read);
3074 
3075 /*-------------------------------------------------------------------------*/
3076 
3077 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3078 static int __spi_of_device_match(struct device *dev, void *data)
3079 {
3080 	return dev->of_node == data;
3081 }
3082 
3083 /* must call put_device() when done with returned spi_device device */
3084 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3085 {
3086 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3087 						__spi_of_device_match);
3088 	return dev ? to_spi_device(dev) : NULL;
3089 }
3090 
3091 static int __spi_of_master_match(struct device *dev, const void *data)
3092 {
3093 	return dev->of_node == data;
3094 }
3095 
3096 /* the spi masters are not using spi_bus, so we find it with another way */
3097 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3098 {
3099 	struct device *dev;
3100 
3101 	dev = class_find_device(&spi_master_class, NULL, node,
3102 				__spi_of_master_match);
3103 	if (!dev)
3104 		return NULL;
3105 
3106 	/* reference got in class_find_device */
3107 	return container_of(dev, struct spi_master, dev);
3108 }
3109 
3110 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3111 			 void *arg)
3112 {
3113 	struct of_reconfig_data *rd = arg;
3114 	struct spi_master *master;
3115 	struct spi_device *spi;
3116 
3117 	switch (of_reconfig_get_state_change(action, arg)) {
3118 	case OF_RECONFIG_CHANGE_ADD:
3119 		master = of_find_spi_master_by_node(rd->dn->parent);
3120 		if (master == NULL)
3121 			return NOTIFY_OK;	/* not for us */
3122 
3123 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3124 			put_device(&master->dev);
3125 			return NOTIFY_OK;
3126 		}
3127 
3128 		spi = of_register_spi_device(master, rd->dn);
3129 		put_device(&master->dev);
3130 
3131 		if (IS_ERR(spi)) {
3132 			pr_err("%s: failed to create for '%s'\n",
3133 					__func__, rd->dn->full_name);
3134 			return notifier_from_errno(PTR_ERR(spi));
3135 		}
3136 		break;
3137 
3138 	case OF_RECONFIG_CHANGE_REMOVE:
3139 		/* already depopulated? */
3140 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3141 			return NOTIFY_OK;
3142 
3143 		/* find our device by node */
3144 		spi = of_find_spi_device_by_node(rd->dn);
3145 		if (spi == NULL)
3146 			return NOTIFY_OK;	/* no? not meant for us */
3147 
3148 		/* unregister takes one ref away */
3149 		spi_unregister_device(spi);
3150 
3151 		/* and put the reference of the find */
3152 		put_device(&spi->dev);
3153 		break;
3154 	}
3155 
3156 	return NOTIFY_OK;
3157 }
3158 
3159 static struct notifier_block spi_of_notifier = {
3160 	.notifier_call = of_spi_notify,
3161 };
3162 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3163 extern struct notifier_block spi_of_notifier;
3164 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3165 
3166 #if IS_ENABLED(CONFIG_ACPI)
3167 static int spi_acpi_master_match(struct device *dev, const void *data)
3168 {
3169 	return ACPI_COMPANION(dev->parent) == data;
3170 }
3171 
3172 static int spi_acpi_device_match(struct device *dev, void *data)
3173 {
3174 	return ACPI_COMPANION(dev) == data;
3175 }
3176 
3177 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3178 {
3179 	struct device *dev;
3180 
3181 	dev = class_find_device(&spi_master_class, NULL, adev,
3182 				spi_acpi_master_match);
3183 	if (!dev)
3184 		return NULL;
3185 
3186 	return container_of(dev, struct spi_master, dev);
3187 }
3188 
3189 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3190 {
3191 	struct device *dev;
3192 
3193 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3194 
3195 	return dev ? to_spi_device(dev) : NULL;
3196 }
3197 
3198 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3199 			   void *arg)
3200 {
3201 	struct acpi_device *adev = arg;
3202 	struct spi_master *master;
3203 	struct spi_device *spi;
3204 
3205 	switch (value) {
3206 	case ACPI_RECONFIG_DEVICE_ADD:
3207 		master = acpi_spi_find_master_by_adev(adev->parent);
3208 		if (!master)
3209 			break;
3210 
3211 		acpi_register_spi_device(master, adev);
3212 		put_device(&master->dev);
3213 		break;
3214 	case ACPI_RECONFIG_DEVICE_REMOVE:
3215 		if (!acpi_device_enumerated(adev))
3216 			break;
3217 
3218 		spi = acpi_spi_find_device_by_adev(adev);
3219 		if (!spi)
3220 			break;
3221 
3222 		spi_unregister_device(spi);
3223 		put_device(&spi->dev);
3224 		break;
3225 	}
3226 
3227 	return NOTIFY_OK;
3228 }
3229 
3230 static struct notifier_block spi_acpi_notifier = {
3231 	.notifier_call = acpi_spi_notify,
3232 };
3233 #else
3234 extern struct notifier_block spi_acpi_notifier;
3235 #endif
3236 
3237 static int __init spi_init(void)
3238 {
3239 	int	status;
3240 
3241 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3242 	if (!buf) {
3243 		status = -ENOMEM;
3244 		goto err0;
3245 	}
3246 
3247 	status = bus_register(&spi_bus_type);
3248 	if (status < 0)
3249 		goto err1;
3250 
3251 	status = class_register(&spi_master_class);
3252 	if (status < 0)
3253 		goto err2;
3254 
3255 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3256 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3257 	if (IS_ENABLED(CONFIG_ACPI))
3258 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3259 
3260 	return 0;
3261 
3262 err2:
3263 	bus_unregister(&spi_bus_type);
3264 err1:
3265 	kfree(buf);
3266 	buf = NULL;
3267 err0:
3268 	return status;
3269 }
3270 
3271 /* board_info is normally registered in arch_initcall(),
3272  * but even essential drivers wait till later
3273  *
3274  * REVISIT only boardinfo really needs static linking. the rest (device and
3275  * driver registration) _could_ be dynamically linked (modular) ... costs
3276  * include needing to have boardinfo data structures be much more public.
3277  */
3278 postcore_initcall(spi_init);
3279 
3280