1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 static int spi_probe(struct device *dev) 378 { 379 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 380 struct spi_device *spi = to_spi_device(dev); 381 int ret; 382 383 ret = of_clk_set_defaults(dev->of_node, false); 384 if (ret) 385 return ret; 386 387 if (dev->of_node) { 388 spi->irq = of_irq_get(dev->of_node, 0); 389 if (spi->irq == -EPROBE_DEFER) 390 return -EPROBE_DEFER; 391 if (spi->irq < 0) 392 spi->irq = 0; 393 } 394 395 ret = dev_pm_domain_attach(dev, true); 396 if (ret) 397 return ret; 398 399 if (sdrv->probe) { 400 ret = sdrv->probe(spi); 401 if (ret) 402 dev_pm_domain_detach(dev, true); 403 } 404 405 return ret; 406 } 407 408 static int spi_remove(struct device *dev) 409 { 410 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 411 412 if (sdrv->remove) { 413 int ret; 414 415 ret = sdrv->remove(to_spi_device(dev)); 416 if (ret) 417 dev_warn(dev, 418 "Failed to unbind driver (%pe), ignoring\n", 419 ERR_PTR(ret)); 420 } 421 422 dev_pm_domain_detach(dev, true); 423 424 return 0; 425 } 426 427 static void spi_shutdown(struct device *dev) 428 { 429 if (dev->driver) { 430 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 431 432 if (sdrv->shutdown) 433 sdrv->shutdown(to_spi_device(dev)); 434 } 435 } 436 437 struct bus_type spi_bus_type = { 438 .name = "spi", 439 .dev_groups = spi_dev_groups, 440 .match = spi_match_device, 441 .uevent = spi_uevent, 442 .probe = spi_probe, 443 .remove = spi_remove, 444 .shutdown = spi_shutdown, 445 }; 446 EXPORT_SYMBOL_GPL(spi_bus_type); 447 448 /** 449 * __spi_register_driver - register a SPI driver 450 * @owner: owner module of the driver to register 451 * @sdrv: the driver to register 452 * Context: can sleep 453 * 454 * Return: zero on success, else a negative error code. 455 */ 456 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 457 { 458 sdrv->driver.owner = owner; 459 sdrv->driver.bus = &spi_bus_type; 460 return driver_register(&sdrv->driver); 461 } 462 EXPORT_SYMBOL_GPL(__spi_register_driver); 463 464 /*-------------------------------------------------------------------------*/ 465 466 /* SPI devices should normally not be created by SPI device drivers; that 467 * would make them board-specific. Similarly with SPI controller drivers. 468 * Device registration normally goes into like arch/.../mach.../board-YYY.c 469 * with other readonly (flashable) information about mainboard devices. 470 */ 471 472 struct boardinfo { 473 struct list_head list; 474 struct spi_board_info board_info; 475 }; 476 477 static LIST_HEAD(board_list); 478 static LIST_HEAD(spi_controller_list); 479 480 /* 481 * Used to protect add/del operation for board_info list and 482 * spi_controller list, and their matching process 483 * also used to protect object of type struct idr 484 */ 485 static DEFINE_MUTEX(board_lock); 486 487 /* 488 * Prevents addition of devices with same chip select and 489 * addition of devices below an unregistering controller. 490 */ 491 static DEFINE_MUTEX(spi_add_lock); 492 493 /** 494 * spi_alloc_device - Allocate a new SPI device 495 * @ctlr: Controller to which device is connected 496 * Context: can sleep 497 * 498 * Allows a driver to allocate and initialize a spi_device without 499 * registering it immediately. This allows a driver to directly 500 * fill the spi_device with device parameters before calling 501 * spi_add_device() on it. 502 * 503 * Caller is responsible to call spi_add_device() on the returned 504 * spi_device structure to add it to the SPI controller. If the caller 505 * needs to discard the spi_device without adding it, then it should 506 * call spi_dev_put() on it. 507 * 508 * Return: a pointer to the new device, or NULL. 509 */ 510 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 511 { 512 struct spi_device *spi; 513 514 if (!spi_controller_get(ctlr)) 515 return NULL; 516 517 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 518 if (!spi) { 519 spi_controller_put(ctlr); 520 return NULL; 521 } 522 523 spi->master = spi->controller = ctlr; 524 spi->dev.parent = &ctlr->dev; 525 spi->dev.bus = &spi_bus_type; 526 spi->dev.release = spidev_release; 527 spi->cs_gpio = -ENOENT; 528 spi->mode = ctlr->buswidth_override_bits; 529 530 spin_lock_init(&spi->statistics.lock); 531 532 device_initialize(&spi->dev); 533 return spi; 534 } 535 EXPORT_SYMBOL_GPL(spi_alloc_device); 536 537 static void spi_dev_set_name(struct spi_device *spi) 538 { 539 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 540 541 if (adev) { 542 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 543 return; 544 } 545 546 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 547 spi->chip_select); 548 } 549 550 static int spi_dev_check(struct device *dev, void *data) 551 { 552 struct spi_device *spi = to_spi_device(dev); 553 struct spi_device *new_spi = data; 554 555 if (spi->controller == new_spi->controller && 556 spi->chip_select == new_spi->chip_select) 557 return -EBUSY; 558 return 0; 559 } 560 561 /** 562 * spi_add_device - Add spi_device allocated with spi_alloc_device 563 * @spi: spi_device to register 564 * 565 * Companion function to spi_alloc_device. Devices allocated with 566 * spi_alloc_device can be added onto the spi bus with this function. 567 * 568 * Return: 0 on success; negative errno on failure 569 */ 570 int spi_add_device(struct spi_device *spi) 571 { 572 struct spi_controller *ctlr = spi->controller; 573 struct device *dev = ctlr->dev.parent; 574 int status; 575 576 /* Chipselects are numbered 0..max; validate. */ 577 if (spi->chip_select >= ctlr->num_chipselect) { 578 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 579 ctlr->num_chipselect); 580 return -EINVAL; 581 } 582 583 /* Set the bus ID string */ 584 spi_dev_set_name(spi); 585 586 /* We need to make sure there's no other device with this 587 * chipselect **BEFORE** we call setup(), else we'll trash 588 * its configuration. Lock against concurrent add() calls. 589 */ 590 mutex_lock(&spi_add_lock); 591 592 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 593 if (status) { 594 dev_err(dev, "chipselect %d already in use\n", 595 spi->chip_select); 596 goto done; 597 } 598 599 /* Controller may unregister concurrently */ 600 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 601 !device_is_registered(&ctlr->dev)) { 602 status = -ENODEV; 603 goto done; 604 } 605 606 /* Descriptors take precedence */ 607 if (ctlr->cs_gpiods) 608 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 609 else if (ctlr->cs_gpios) 610 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 611 612 /* Drivers may modify this initial i/o setup, but will 613 * normally rely on the device being setup. Devices 614 * using SPI_CS_HIGH can't coexist well otherwise... 615 */ 616 status = spi_setup(spi); 617 if (status < 0) { 618 dev_err(dev, "can't setup %s, status %d\n", 619 dev_name(&spi->dev), status); 620 goto done; 621 } 622 623 /* Device may be bound to an active driver when this returns */ 624 status = device_add(&spi->dev); 625 if (status < 0) 626 dev_err(dev, "can't add %s, status %d\n", 627 dev_name(&spi->dev), status); 628 else 629 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 630 631 done: 632 mutex_unlock(&spi_add_lock); 633 return status; 634 } 635 EXPORT_SYMBOL_GPL(spi_add_device); 636 637 /** 638 * spi_new_device - instantiate one new SPI device 639 * @ctlr: Controller to which device is connected 640 * @chip: Describes the SPI device 641 * Context: can sleep 642 * 643 * On typical mainboards, this is purely internal; and it's not needed 644 * after board init creates the hard-wired devices. Some development 645 * platforms may not be able to use spi_register_board_info though, and 646 * this is exported so that for example a USB or parport based adapter 647 * driver could add devices (which it would learn about out-of-band). 648 * 649 * Return: the new device, or NULL. 650 */ 651 struct spi_device *spi_new_device(struct spi_controller *ctlr, 652 struct spi_board_info *chip) 653 { 654 struct spi_device *proxy; 655 int status; 656 657 /* NOTE: caller did any chip->bus_num checks necessary. 658 * 659 * Also, unless we change the return value convention to use 660 * error-or-pointer (not NULL-or-pointer), troubleshootability 661 * suggests syslogged diagnostics are best here (ugh). 662 */ 663 664 proxy = spi_alloc_device(ctlr); 665 if (!proxy) 666 return NULL; 667 668 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 669 670 proxy->chip_select = chip->chip_select; 671 proxy->max_speed_hz = chip->max_speed_hz; 672 proxy->mode = chip->mode; 673 proxy->irq = chip->irq; 674 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 675 proxy->dev.platform_data = (void *) chip->platform_data; 676 proxy->controller_data = chip->controller_data; 677 proxy->controller_state = NULL; 678 679 if (chip->properties) { 680 status = device_add_properties(&proxy->dev, chip->properties); 681 if (status) { 682 dev_err(&ctlr->dev, 683 "failed to add properties to '%s': %d\n", 684 chip->modalias, status); 685 goto err_dev_put; 686 } 687 } 688 689 status = spi_add_device(proxy); 690 if (status < 0) 691 goto err_remove_props; 692 693 return proxy; 694 695 err_remove_props: 696 if (chip->properties) 697 device_remove_properties(&proxy->dev); 698 err_dev_put: 699 spi_dev_put(proxy); 700 return NULL; 701 } 702 EXPORT_SYMBOL_GPL(spi_new_device); 703 704 /** 705 * spi_unregister_device - unregister a single SPI device 706 * @spi: spi_device to unregister 707 * 708 * Start making the passed SPI device vanish. Normally this would be handled 709 * by spi_unregister_controller(). 710 */ 711 void spi_unregister_device(struct spi_device *spi) 712 { 713 if (!spi) 714 return; 715 716 if (spi->dev.of_node) { 717 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 718 of_node_put(spi->dev.of_node); 719 } 720 if (ACPI_COMPANION(&spi->dev)) 721 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 722 device_unregister(&spi->dev); 723 } 724 EXPORT_SYMBOL_GPL(spi_unregister_device); 725 726 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 727 struct spi_board_info *bi) 728 { 729 struct spi_device *dev; 730 731 if (ctlr->bus_num != bi->bus_num) 732 return; 733 734 dev = spi_new_device(ctlr, bi); 735 if (!dev) 736 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 737 bi->modalias); 738 } 739 740 /** 741 * spi_register_board_info - register SPI devices for a given board 742 * @info: array of chip descriptors 743 * @n: how many descriptors are provided 744 * Context: can sleep 745 * 746 * Board-specific early init code calls this (probably during arch_initcall) 747 * with segments of the SPI device table. Any device nodes are created later, 748 * after the relevant parent SPI controller (bus_num) is defined. We keep 749 * this table of devices forever, so that reloading a controller driver will 750 * not make Linux forget about these hard-wired devices. 751 * 752 * Other code can also call this, e.g. a particular add-on board might provide 753 * SPI devices through its expansion connector, so code initializing that board 754 * would naturally declare its SPI devices. 755 * 756 * The board info passed can safely be __initdata ... but be careful of 757 * any embedded pointers (platform_data, etc), they're copied as-is. 758 * Device properties are deep-copied though. 759 * 760 * Return: zero on success, else a negative error code. 761 */ 762 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 763 { 764 struct boardinfo *bi; 765 int i; 766 767 if (!n) 768 return 0; 769 770 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 771 if (!bi) 772 return -ENOMEM; 773 774 for (i = 0; i < n; i++, bi++, info++) { 775 struct spi_controller *ctlr; 776 777 memcpy(&bi->board_info, info, sizeof(*info)); 778 if (info->properties) { 779 bi->board_info.properties = 780 property_entries_dup(info->properties); 781 if (IS_ERR(bi->board_info.properties)) 782 return PTR_ERR(bi->board_info.properties); 783 } 784 785 mutex_lock(&board_lock); 786 list_add_tail(&bi->list, &board_list); 787 list_for_each_entry(ctlr, &spi_controller_list, list) 788 spi_match_controller_to_boardinfo(ctlr, 789 &bi->board_info); 790 mutex_unlock(&board_lock); 791 } 792 793 return 0; 794 } 795 796 /*-------------------------------------------------------------------------*/ 797 798 static void spi_set_cs(struct spi_device *spi, bool enable) 799 { 800 bool enable1 = enable; 801 802 /* 803 * Avoid calling into the driver (or doing delays) if the chip select 804 * isn't actually changing from the last time this was called. 805 */ 806 if ((spi->controller->last_cs_enable == enable) && 807 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 808 return; 809 810 spi->controller->last_cs_enable = enable; 811 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 812 813 if (!spi->controller->set_cs_timing) { 814 if (enable1) 815 spi_delay_exec(&spi->controller->cs_setup, NULL); 816 else 817 spi_delay_exec(&spi->controller->cs_hold, NULL); 818 } 819 820 if (spi->mode & SPI_CS_HIGH) 821 enable = !enable; 822 823 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 824 if (!(spi->mode & SPI_NO_CS)) { 825 if (spi->cs_gpiod) 826 /* polarity handled by gpiolib */ 827 gpiod_set_value_cansleep(spi->cs_gpiod, 828 enable1); 829 else 830 /* 831 * invert the enable line, as active low is 832 * default for SPI. 833 */ 834 gpio_set_value_cansleep(spi->cs_gpio, !enable); 835 } 836 /* Some SPI masters need both GPIO CS & slave_select */ 837 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 838 spi->controller->set_cs) 839 spi->controller->set_cs(spi, !enable); 840 } else if (spi->controller->set_cs) { 841 spi->controller->set_cs(spi, !enable); 842 } 843 844 if (!spi->controller->set_cs_timing) { 845 if (!enable1) 846 spi_delay_exec(&spi->controller->cs_inactive, NULL); 847 } 848 } 849 850 #ifdef CONFIG_HAS_DMA 851 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 852 struct sg_table *sgt, void *buf, size_t len, 853 enum dma_data_direction dir) 854 { 855 const bool vmalloced_buf = is_vmalloc_addr(buf); 856 unsigned int max_seg_size = dma_get_max_seg_size(dev); 857 #ifdef CONFIG_HIGHMEM 858 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 859 (unsigned long)buf < (PKMAP_BASE + 860 (LAST_PKMAP * PAGE_SIZE))); 861 #else 862 const bool kmap_buf = false; 863 #endif 864 int desc_len; 865 int sgs; 866 struct page *vm_page; 867 struct scatterlist *sg; 868 void *sg_buf; 869 size_t min; 870 int i, ret; 871 872 if (vmalloced_buf || kmap_buf) { 873 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 874 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 875 } else if (virt_addr_valid(buf)) { 876 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 877 sgs = DIV_ROUND_UP(len, desc_len); 878 } else { 879 return -EINVAL; 880 } 881 882 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 883 if (ret != 0) 884 return ret; 885 886 sg = &sgt->sgl[0]; 887 for (i = 0; i < sgs; i++) { 888 889 if (vmalloced_buf || kmap_buf) { 890 /* 891 * Next scatterlist entry size is the minimum between 892 * the desc_len and the remaining buffer length that 893 * fits in a page. 894 */ 895 min = min_t(size_t, desc_len, 896 min_t(size_t, len, 897 PAGE_SIZE - offset_in_page(buf))); 898 if (vmalloced_buf) 899 vm_page = vmalloc_to_page(buf); 900 else 901 vm_page = kmap_to_page(buf); 902 if (!vm_page) { 903 sg_free_table(sgt); 904 return -ENOMEM; 905 } 906 sg_set_page(sg, vm_page, 907 min, offset_in_page(buf)); 908 } else { 909 min = min_t(size_t, len, desc_len); 910 sg_buf = buf; 911 sg_set_buf(sg, sg_buf, min); 912 } 913 914 buf += min; 915 len -= min; 916 sg = sg_next(sg); 917 } 918 919 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 920 if (!ret) 921 ret = -ENOMEM; 922 if (ret < 0) { 923 sg_free_table(sgt); 924 return ret; 925 } 926 927 sgt->nents = ret; 928 929 return 0; 930 } 931 932 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 933 struct sg_table *sgt, enum dma_data_direction dir) 934 { 935 if (sgt->orig_nents) { 936 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 937 sg_free_table(sgt); 938 } 939 } 940 941 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 942 { 943 struct device *tx_dev, *rx_dev; 944 struct spi_transfer *xfer; 945 int ret; 946 947 if (!ctlr->can_dma) 948 return 0; 949 950 if (ctlr->dma_tx) 951 tx_dev = ctlr->dma_tx->device->dev; 952 else 953 tx_dev = ctlr->dev.parent; 954 955 if (ctlr->dma_rx) 956 rx_dev = ctlr->dma_rx->device->dev; 957 else 958 rx_dev = ctlr->dev.parent; 959 960 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 961 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 962 continue; 963 964 if (xfer->tx_buf != NULL) { 965 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 966 (void *)xfer->tx_buf, xfer->len, 967 DMA_TO_DEVICE); 968 if (ret != 0) 969 return ret; 970 } 971 972 if (xfer->rx_buf != NULL) { 973 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 974 xfer->rx_buf, xfer->len, 975 DMA_FROM_DEVICE); 976 if (ret != 0) { 977 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 978 DMA_TO_DEVICE); 979 return ret; 980 } 981 } 982 } 983 984 ctlr->cur_msg_mapped = true; 985 986 return 0; 987 } 988 989 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 990 { 991 struct spi_transfer *xfer; 992 struct device *tx_dev, *rx_dev; 993 994 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 995 return 0; 996 997 if (ctlr->dma_tx) 998 tx_dev = ctlr->dma_tx->device->dev; 999 else 1000 tx_dev = ctlr->dev.parent; 1001 1002 if (ctlr->dma_rx) 1003 rx_dev = ctlr->dma_rx->device->dev; 1004 else 1005 rx_dev = ctlr->dev.parent; 1006 1007 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1008 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1009 continue; 1010 1011 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1012 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1013 } 1014 1015 ctlr->cur_msg_mapped = false; 1016 1017 return 0; 1018 } 1019 #else /* !CONFIG_HAS_DMA */ 1020 static inline int __spi_map_msg(struct spi_controller *ctlr, 1021 struct spi_message *msg) 1022 { 1023 return 0; 1024 } 1025 1026 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1027 struct spi_message *msg) 1028 { 1029 return 0; 1030 } 1031 #endif /* !CONFIG_HAS_DMA */ 1032 1033 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1034 struct spi_message *msg) 1035 { 1036 struct spi_transfer *xfer; 1037 1038 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1039 /* 1040 * Restore the original value of tx_buf or rx_buf if they are 1041 * NULL. 1042 */ 1043 if (xfer->tx_buf == ctlr->dummy_tx) 1044 xfer->tx_buf = NULL; 1045 if (xfer->rx_buf == ctlr->dummy_rx) 1046 xfer->rx_buf = NULL; 1047 } 1048 1049 return __spi_unmap_msg(ctlr, msg); 1050 } 1051 1052 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1053 { 1054 struct spi_transfer *xfer; 1055 void *tmp; 1056 unsigned int max_tx, max_rx; 1057 1058 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1059 && !(msg->spi->mode & SPI_3WIRE)) { 1060 max_tx = 0; 1061 max_rx = 0; 1062 1063 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1064 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1065 !xfer->tx_buf) 1066 max_tx = max(xfer->len, max_tx); 1067 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1068 !xfer->rx_buf) 1069 max_rx = max(xfer->len, max_rx); 1070 } 1071 1072 if (max_tx) { 1073 tmp = krealloc(ctlr->dummy_tx, max_tx, 1074 GFP_KERNEL | GFP_DMA); 1075 if (!tmp) 1076 return -ENOMEM; 1077 ctlr->dummy_tx = tmp; 1078 memset(tmp, 0, max_tx); 1079 } 1080 1081 if (max_rx) { 1082 tmp = krealloc(ctlr->dummy_rx, max_rx, 1083 GFP_KERNEL | GFP_DMA); 1084 if (!tmp) 1085 return -ENOMEM; 1086 ctlr->dummy_rx = tmp; 1087 } 1088 1089 if (max_tx || max_rx) { 1090 list_for_each_entry(xfer, &msg->transfers, 1091 transfer_list) { 1092 if (!xfer->len) 1093 continue; 1094 if (!xfer->tx_buf) 1095 xfer->tx_buf = ctlr->dummy_tx; 1096 if (!xfer->rx_buf) 1097 xfer->rx_buf = ctlr->dummy_rx; 1098 } 1099 } 1100 } 1101 1102 return __spi_map_msg(ctlr, msg); 1103 } 1104 1105 static int spi_transfer_wait(struct spi_controller *ctlr, 1106 struct spi_message *msg, 1107 struct spi_transfer *xfer) 1108 { 1109 struct spi_statistics *statm = &ctlr->statistics; 1110 struct spi_statistics *stats = &msg->spi->statistics; 1111 unsigned long long ms; 1112 1113 if (spi_controller_is_slave(ctlr)) { 1114 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1115 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1116 return -EINTR; 1117 } 1118 } else { 1119 ms = 8LL * 1000LL * xfer->len; 1120 do_div(ms, xfer->speed_hz); 1121 ms += ms + 200; /* some tolerance */ 1122 1123 if (ms > UINT_MAX) 1124 ms = UINT_MAX; 1125 1126 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1127 msecs_to_jiffies(ms)); 1128 1129 if (ms == 0) { 1130 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1131 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1132 dev_err(&msg->spi->dev, 1133 "SPI transfer timed out\n"); 1134 return -ETIMEDOUT; 1135 } 1136 } 1137 1138 return 0; 1139 } 1140 1141 static void _spi_transfer_delay_ns(u32 ns) 1142 { 1143 if (!ns) 1144 return; 1145 if (ns <= 1000) { 1146 ndelay(ns); 1147 } else { 1148 u32 us = DIV_ROUND_UP(ns, 1000); 1149 1150 if (us <= 10) 1151 udelay(us); 1152 else 1153 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1154 } 1155 } 1156 1157 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1158 { 1159 u32 delay = _delay->value; 1160 u32 unit = _delay->unit; 1161 u32 hz; 1162 1163 if (!delay) 1164 return 0; 1165 1166 switch (unit) { 1167 case SPI_DELAY_UNIT_USECS: 1168 delay *= 1000; 1169 break; 1170 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1171 break; 1172 case SPI_DELAY_UNIT_SCK: 1173 /* clock cycles need to be obtained from spi_transfer */ 1174 if (!xfer) 1175 return -EINVAL; 1176 /* if there is no effective speed know, then approximate 1177 * by underestimating with half the requested hz 1178 */ 1179 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1180 if (!hz) 1181 return -EINVAL; 1182 delay *= DIV_ROUND_UP(1000000000, hz); 1183 break; 1184 default: 1185 return -EINVAL; 1186 } 1187 1188 return delay; 1189 } 1190 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1191 1192 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1193 { 1194 int delay; 1195 1196 might_sleep(); 1197 1198 if (!_delay) 1199 return -EINVAL; 1200 1201 delay = spi_delay_to_ns(_delay, xfer); 1202 if (delay < 0) 1203 return delay; 1204 1205 _spi_transfer_delay_ns(delay); 1206 1207 return 0; 1208 } 1209 EXPORT_SYMBOL_GPL(spi_delay_exec); 1210 1211 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1212 struct spi_transfer *xfer) 1213 { 1214 u32 delay = xfer->cs_change_delay.value; 1215 u32 unit = xfer->cs_change_delay.unit; 1216 int ret; 1217 1218 /* return early on "fast" mode - for everything but USECS */ 1219 if (!delay) { 1220 if (unit == SPI_DELAY_UNIT_USECS) 1221 _spi_transfer_delay_ns(10000); 1222 return; 1223 } 1224 1225 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1226 if (ret) { 1227 dev_err_once(&msg->spi->dev, 1228 "Use of unsupported delay unit %i, using default of 10us\n", 1229 unit); 1230 _spi_transfer_delay_ns(10000); 1231 } 1232 } 1233 1234 /* 1235 * spi_transfer_one_message - Default implementation of transfer_one_message() 1236 * 1237 * This is a standard implementation of transfer_one_message() for 1238 * drivers which implement a transfer_one() operation. It provides 1239 * standard handling of delays and chip select management. 1240 */ 1241 static int spi_transfer_one_message(struct spi_controller *ctlr, 1242 struct spi_message *msg) 1243 { 1244 struct spi_transfer *xfer; 1245 bool keep_cs = false; 1246 int ret = 0; 1247 struct spi_statistics *statm = &ctlr->statistics; 1248 struct spi_statistics *stats = &msg->spi->statistics; 1249 1250 spi_set_cs(msg->spi, true); 1251 1252 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1253 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1254 1255 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1256 trace_spi_transfer_start(msg, xfer); 1257 1258 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1259 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1260 1261 if (!ctlr->ptp_sts_supported) { 1262 xfer->ptp_sts_word_pre = 0; 1263 ptp_read_system_prets(xfer->ptp_sts); 1264 } 1265 1266 if (xfer->tx_buf || xfer->rx_buf) { 1267 reinit_completion(&ctlr->xfer_completion); 1268 1269 fallback_pio: 1270 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1271 if (ret < 0) { 1272 if (ctlr->cur_msg_mapped && 1273 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1274 __spi_unmap_msg(ctlr, msg); 1275 ctlr->fallback = true; 1276 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1277 goto fallback_pio; 1278 } 1279 1280 SPI_STATISTICS_INCREMENT_FIELD(statm, 1281 errors); 1282 SPI_STATISTICS_INCREMENT_FIELD(stats, 1283 errors); 1284 dev_err(&msg->spi->dev, 1285 "SPI transfer failed: %d\n", ret); 1286 goto out; 1287 } 1288 1289 if (ret > 0) { 1290 ret = spi_transfer_wait(ctlr, msg, xfer); 1291 if (ret < 0) 1292 msg->status = ret; 1293 } 1294 } else { 1295 if (xfer->len) 1296 dev_err(&msg->spi->dev, 1297 "Bufferless transfer has length %u\n", 1298 xfer->len); 1299 } 1300 1301 if (!ctlr->ptp_sts_supported) { 1302 ptp_read_system_postts(xfer->ptp_sts); 1303 xfer->ptp_sts_word_post = xfer->len; 1304 } 1305 1306 trace_spi_transfer_stop(msg, xfer); 1307 1308 if (msg->status != -EINPROGRESS) 1309 goto out; 1310 1311 spi_transfer_delay_exec(xfer); 1312 1313 if (xfer->cs_change) { 1314 if (list_is_last(&xfer->transfer_list, 1315 &msg->transfers)) { 1316 keep_cs = true; 1317 } else { 1318 spi_set_cs(msg->spi, false); 1319 _spi_transfer_cs_change_delay(msg, xfer); 1320 spi_set_cs(msg->spi, true); 1321 } 1322 } 1323 1324 msg->actual_length += xfer->len; 1325 } 1326 1327 out: 1328 if (ret != 0 || !keep_cs) 1329 spi_set_cs(msg->spi, false); 1330 1331 if (msg->status == -EINPROGRESS) 1332 msg->status = ret; 1333 1334 if (msg->status && ctlr->handle_err) 1335 ctlr->handle_err(ctlr, msg); 1336 1337 spi_finalize_current_message(ctlr); 1338 1339 return ret; 1340 } 1341 1342 /** 1343 * spi_finalize_current_transfer - report completion of a transfer 1344 * @ctlr: the controller reporting completion 1345 * 1346 * Called by SPI drivers using the core transfer_one_message() 1347 * implementation to notify it that the current interrupt driven 1348 * transfer has finished and the next one may be scheduled. 1349 */ 1350 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1351 { 1352 complete(&ctlr->xfer_completion); 1353 } 1354 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1355 1356 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1357 { 1358 if (ctlr->auto_runtime_pm) { 1359 pm_runtime_mark_last_busy(ctlr->dev.parent); 1360 pm_runtime_put_autosuspend(ctlr->dev.parent); 1361 } 1362 } 1363 1364 /** 1365 * __spi_pump_messages - function which processes spi message queue 1366 * @ctlr: controller to process queue for 1367 * @in_kthread: true if we are in the context of the message pump thread 1368 * 1369 * This function checks if there is any spi message in the queue that 1370 * needs processing and if so call out to the driver to initialize hardware 1371 * and transfer each message. 1372 * 1373 * Note that it is called both from the kthread itself and also from 1374 * inside spi_sync(); the queue extraction handling at the top of the 1375 * function should deal with this safely. 1376 */ 1377 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1378 { 1379 struct spi_transfer *xfer; 1380 struct spi_message *msg; 1381 bool was_busy = false; 1382 unsigned long flags; 1383 int ret; 1384 1385 /* Lock queue */ 1386 spin_lock_irqsave(&ctlr->queue_lock, flags); 1387 1388 /* Make sure we are not already running a message */ 1389 if (ctlr->cur_msg) { 1390 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1391 return; 1392 } 1393 1394 /* If another context is idling the device then defer */ 1395 if (ctlr->idling) { 1396 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1397 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1398 return; 1399 } 1400 1401 /* Check if the queue is idle */ 1402 if (list_empty(&ctlr->queue) || !ctlr->running) { 1403 if (!ctlr->busy) { 1404 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1405 return; 1406 } 1407 1408 /* Defer any non-atomic teardown to the thread */ 1409 if (!in_kthread) { 1410 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1411 !ctlr->unprepare_transfer_hardware) { 1412 spi_idle_runtime_pm(ctlr); 1413 ctlr->busy = false; 1414 trace_spi_controller_idle(ctlr); 1415 } else { 1416 kthread_queue_work(ctlr->kworker, 1417 &ctlr->pump_messages); 1418 } 1419 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1420 return; 1421 } 1422 1423 ctlr->busy = false; 1424 ctlr->idling = true; 1425 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1426 1427 kfree(ctlr->dummy_rx); 1428 ctlr->dummy_rx = NULL; 1429 kfree(ctlr->dummy_tx); 1430 ctlr->dummy_tx = NULL; 1431 if (ctlr->unprepare_transfer_hardware && 1432 ctlr->unprepare_transfer_hardware(ctlr)) 1433 dev_err(&ctlr->dev, 1434 "failed to unprepare transfer hardware\n"); 1435 spi_idle_runtime_pm(ctlr); 1436 trace_spi_controller_idle(ctlr); 1437 1438 spin_lock_irqsave(&ctlr->queue_lock, flags); 1439 ctlr->idling = false; 1440 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1441 return; 1442 } 1443 1444 /* Extract head of queue */ 1445 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1446 ctlr->cur_msg = msg; 1447 1448 list_del_init(&msg->queue); 1449 if (ctlr->busy) 1450 was_busy = true; 1451 else 1452 ctlr->busy = true; 1453 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1454 1455 mutex_lock(&ctlr->io_mutex); 1456 1457 if (!was_busy && ctlr->auto_runtime_pm) { 1458 ret = pm_runtime_get_sync(ctlr->dev.parent); 1459 if (ret < 0) { 1460 pm_runtime_put_noidle(ctlr->dev.parent); 1461 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1462 ret); 1463 mutex_unlock(&ctlr->io_mutex); 1464 return; 1465 } 1466 } 1467 1468 if (!was_busy) 1469 trace_spi_controller_busy(ctlr); 1470 1471 if (!was_busy && ctlr->prepare_transfer_hardware) { 1472 ret = ctlr->prepare_transfer_hardware(ctlr); 1473 if (ret) { 1474 dev_err(&ctlr->dev, 1475 "failed to prepare transfer hardware: %d\n", 1476 ret); 1477 1478 if (ctlr->auto_runtime_pm) 1479 pm_runtime_put(ctlr->dev.parent); 1480 1481 msg->status = ret; 1482 spi_finalize_current_message(ctlr); 1483 1484 mutex_unlock(&ctlr->io_mutex); 1485 return; 1486 } 1487 } 1488 1489 trace_spi_message_start(msg); 1490 1491 if (ctlr->prepare_message) { 1492 ret = ctlr->prepare_message(ctlr, msg); 1493 if (ret) { 1494 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1495 ret); 1496 msg->status = ret; 1497 spi_finalize_current_message(ctlr); 1498 goto out; 1499 } 1500 ctlr->cur_msg_prepared = true; 1501 } 1502 1503 ret = spi_map_msg(ctlr, msg); 1504 if (ret) { 1505 msg->status = ret; 1506 spi_finalize_current_message(ctlr); 1507 goto out; 1508 } 1509 1510 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1511 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1512 xfer->ptp_sts_word_pre = 0; 1513 ptp_read_system_prets(xfer->ptp_sts); 1514 } 1515 } 1516 1517 ret = ctlr->transfer_one_message(ctlr, msg); 1518 if (ret) { 1519 dev_err(&ctlr->dev, 1520 "failed to transfer one message from queue\n"); 1521 goto out; 1522 } 1523 1524 out: 1525 mutex_unlock(&ctlr->io_mutex); 1526 1527 /* Prod the scheduler in case transfer_one() was busy waiting */ 1528 if (!ret) 1529 cond_resched(); 1530 } 1531 1532 /** 1533 * spi_pump_messages - kthread work function which processes spi message queue 1534 * @work: pointer to kthread work struct contained in the controller struct 1535 */ 1536 static void spi_pump_messages(struct kthread_work *work) 1537 { 1538 struct spi_controller *ctlr = 1539 container_of(work, struct spi_controller, pump_messages); 1540 1541 __spi_pump_messages(ctlr, true); 1542 } 1543 1544 /** 1545 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1546 * TX timestamp for the requested byte from the SPI 1547 * transfer. The frequency with which this function 1548 * must be called (once per word, once for the whole 1549 * transfer, once per batch of words etc) is arbitrary 1550 * as long as the @tx buffer offset is greater than or 1551 * equal to the requested byte at the time of the 1552 * call. The timestamp is only taken once, at the 1553 * first such call. It is assumed that the driver 1554 * advances its @tx buffer pointer monotonically. 1555 * @ctlr: Pointer to the spi_controller structure of the driver 1556 * @xfer: Pointer to the transfer being timestamped 1557 * @progress: How many words (not bytes) have been transferred so far 1558 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1559 * transfer, for less jitter in time measurement. Only compatible 1560 * with PIO drivers. If true, must follow up with 1561 * spi_take_timestamp_post or otherwise system will crash. 1562 * WARNING: for fully predictable results, the CPU frequency must 1563 * also be under control (governor). 1564 */ 1565 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1566 struct spi_transfer *xfer, 1567 size_t progress, bool irqs_off) 1568 { 1569 if (!xfer->ptp_sts) 1570 return; 1571 1572 if (xfer->timestamped) 1573 return; 1574 1575 if (progress > xfer->ptp_sts_word_pre) 1576 return; 1577 1578 /* Capture the resolution of the timestamp */ 1579 xfer->ptp_sts_word_pre = progress; 1580 1581 if (irqs_off) { 1582 local_irq_save(ctlr->irq_flags); 1583 preempt_disable(); 1584 } 1585 1586 ptp_read_system_prets(xfer->ptp_sts); 1587 } 1588 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1589 1590 /** 1591 * spi_take_timestamp_post - helper for drivers to collect the end of the 1592 * TX timestamp for the requested byte from the SPI 1593 * transfer. Can be called with an arbitrary 1594 * frequency: only the first call where @tx exceeds 1595 * or is equal to the requested word will be 1596 * timestamped. 1597 * @ctlr: Pointer to the spi_controller structure of the driver 1598 * @xfer: Pointer to the transfer being timestamped 1599 * @progress: How many words (not bytes) have been transferred so far 1600 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1601 */ 1602 void spi_take_timestamp_post(struct spi_controller *ctlr, 1603 struct spi_transfer *xfer, 1604 size_t progress, bool irqs_off) 1605 { 1606 if (!xfer->ptp_sts) 1607 return; 1608 1609 if (xfer->timestamped) 1610 return; 1611 1612 if (progress < xfer->ptp_sts_word_post) 1613 return; 1614 1615 ptp_read_system_postts(xfer->ptp_sts); 1616 1617 if (irqs_off) { 1618 local_irq_restore(ctlr->irq_flags); 1619 preempt_enable(); 1620 } 1621 1622 /* Capture the resolution of the timestamp */ 1623 xfer->ptp_sts_word_post = progress; 1624 1625 xfer->timestamped = true; 1626 } 1627 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1628 1629 /** 1630 * spi_set_thread_rt - set the controller to pump at realtime priority 1631 * @ctlr: controller to boost priority of 1632 * 1633 * This can be called because the controller requested realtime priority 1634 * (by setting the ->rt value before calling spi_register_controller()) or 1635 * because a device on the bus said that its transfers needed realtime 1636 * priority. 1637 * 1638 * NOTE: at the moment if any device on a bus says it needs realtime then 1639 * the thread will be at realtime priority for all transfers on that 1640 * controller. If this eventually becomes a problem we may see if we can 1641 * find a way to boost the priority only temporarily during relevant 1642 * transfers. 1643 */ 1644 static void spi_set_thread_rt(struct spi_controller *ctlr) 1645 { 1646 dev_info(&ctlr->dev, 1647 "will run message pump with realtime priority\n"); 1648 sched_set_fifo(ctlr->kworker->task); 1649 } 1650 1651 static int spi_init_queue(struct spi_controller *ctlr) 1652 { 1653 ctlr->running = false; 1654 ctlr->busy = false; 1655 1656 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1657 if (IS_ERR(ctlr->kworker)) { 1658 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1659 return PTR_ERR(ctlr->kworker); 1660 } 1661 1662 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1663 1664 /* 1665 * Controller config will indicate if this controller should run the 1666 * message pump with high (realtime) priority to reduce the transfer 1667 * latency on the bus by minimising the delay between a transfer 1668 * request and the scheduling of the message pump thread. Without this 1669 * setting the message pump thread will remain at default priority. 1670 */ 1671 if (ctlr->rt) 1672 spi_set_thread_rt(ctlr); 1673 1674 return 0; 1675 } 1676 1677 /** 1678 * spi_get_next_queued_message() - called by driver to check for queued 1679 * messages 1680 * @ctlr: the controller to check for queued messages 1681 * 1682 * If there are more messages in the queue, the next message is returned from 1683 * this call. 1684 * 1685 * Return: the next message in the queue, else NULL if the queue is empty. 1686 */ 1687 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1688 { 1689 struct spi_message *next; 1690 unsigned long flags; 1691 1692 /* get a pointer to the next message, if any */ 1693 spin_lock_irqsave(&ctlr->queue_lock, flags); 1694 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1695 queue); 1696 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1697 1698 return next; 1699 } 1700 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1701 1702 /** 1703 * spi_finalize_current_message() - the current message is complete 1704 * @ctlr: the controller to return the message to 1705 * 1706 * Called by the driver to notify the core that the message in the front of the 1707 * queue is complete and can be removed from the queue. 1708 */ 1709 void spi_finalize_current_message(struct spi_controller *ctlr) 1710 { 1711 struct spi_transfer *xfer; 1712 struct spi_message *mesg; 1713 unsigned long flags; 1714 int ret; 1715 1716 spin_lock_irqsave(&ctlr->queue_lock, flags); 1717 mesg = ctlr->cur_msg; 1718 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1719 1720 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1721 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1722 ptp_read_system_postts(xfer->ptp_sts); 1723 xfer->ptp_sts_word_post = xfer->len; 1724 } 1725 } 1726 1727 if (unlikely(ctlr->ptp_sts_supported)) 1728 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1729 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1730 1731 spi_unmap_msg(ctlr, mesg); 1732 1733 /* In the prepare_messages callback the spi bus has the opportunity to 1734 * split a transfer to smaller chunks. 1735 * Release splited transfers here since spi_map_msg is done on the 1736 * splited transfers. 1737 */ 1738 spi_res_release(ctlr, mesg); 1739 1740 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1741 ret = ctlr->unprepare_message(ctlr, mesg); 1742 if (ret) { 1743 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1744 ret); 1745 } 1746 } 1747 1748 spin_lock_irqsave(&ctlr->queue_lock, flags); 1749 ctlr->cur_msg = NULL; 1750 ctlr->cur_msg_prepared = false; 1751 ctlr->fallback = false; 1752 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1753 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1754 1755 trace_spi_message_done(mesg); 1756 1757 mesg->state = NULL; 1758 if (mesg->complete) 1759 mesg->complete(mesg->context); 1760 } 1761 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1762 1763 static int spi_start_queue(struct spi_controller *ctlr) 1764 { 1765 unsigned long flags; 1766 1767 spin_lock_irqsave(&ctlr->queue_lock, flags); 1768 1769 if (ctlr->running || ctlr->busy) { 1770 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1771 return -EBUSY; 1772 } 1773 1774 ctlr->running = true; 1775 ctlr->cur_msg = NULL; 1776 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1777 1778 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1779 1780 return 0; 1781 } 1782 1783 static int spi_stop_queue(struct spi_controller *ctlr) 1784 { 1785 unsigned long flags; 1786 unsigned limit = 500; 1787 int ret = 0; 1788 1789 spin_lock_irqsave(&ctlr->queue_lock, flags); 1790 1791 /* 1792 * This is a bit lame, but is optimized for the common execution path. 1793 * A wait_queue on the ctlr->busy could be used, but then the common 1794 * execution path (pump_messages) would be required to call wake_up or 1795 * friends on every SPI message. Do this instead. 1796 */ 1797 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1798 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1799 usleep_range(10000, 11000); 1800 spin_lock_irqsave(&ctlr->queue_lock, flags); 1801 } 1802 1803 if (!list_empty(&ctlr->queue) || ctlr->busy) 1804 ret = -EBUSY; 1805 else 1806 ctlr->running = false; 1807 1808 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1809 1810 if (ret) { 1811 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1812 return ret; 1813 } 1814 return ret; 1815 } 1816 1817 static int spi_destroy_queue(struct spi_controller *ctlr) 1818 { 1819 int ret; 1820 1821 ret = spi_stop_queue(ctlr); 1822 1823 /* 1824 * kthread_flush_worker will block until all work is done. 1825 * If the reason that stop_queue timed out is that the work will never 1826 * finish, then it does no good to call flush/stop thread, so 1827 * return anyway. 1828 */ 1829 if (ret) { 1830 dev_err(&ctlr->dev, "problem destroying queue\n"); 1831 return ret; 1832 } 1833 1834 kthread_destroy_worker(ctlr->kworker); 1835 1836 return 0; 1837 } 1838 1839 static int __spi_queued_transfer(struct spi_device *spi, 1840 struct spi_message *msg, 1841 bool need_pump) 1842 { 1843 struct spi_controller *ctlr = spi->controller; 1844 unsigned long flags; 1845 1846 spin_lock_irqsave(&ctlr->queue_lock, flags); 1847 1848 if (!ctlr->running) { 1849 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1850 return -ESHUTDOWN; 1851 } 1852 msg->actual_length = 0; 1853 msg->status = -EINPROGRESS; 1854 1855 list_add_tail(&msg->queue, &ctlr->queue); 1856 if (!ctlr->busy && need_pump) 1857 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1858 1859 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1860 return 0; 1861 } 1862 1863 /** 1864 * spi_queued_transfer - transfer function for queued transfers 1865 * @spi: spi device which is requesting transfer 1866 * @msg: spi message which is to handled is queued to driver queue 1867 * 1868 * Return: zero on success, else a negative error code. 1869 */ 1870 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1871 { 1872 return __spi_queued_transfer(spi, msg, true); 1873 } 1874 1875 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1876 { 1877 int ret; 1878 1879 ctlr->transfer = spi_queued_transfer; 1880 if (!ctlr->transfer_one_message) 1881 ctlr->transfer_one_message = spi_transfer_one_message; 1882 1883 /* Initialize and start queue */ 1884 ret = spi_init_queue(ctlr); 1885 if (ret) { 1886 dev_err(&ctlr->dev, "problem initializing queue\n"); 1887 goto err_init_queue; 1888 } 1889 ctlr->queued = true; 1890 ret = spi_start_queue(ctlr); 1891 if (ret) { 1892 dev_err(&ctlr->dev, "problem starting queue\n"); 1893 goto err_start_queue; 1894 } 1895 1896 return 0; 1897 1898 err_start_queue: 1899 spi_destroy_queue(ctlr); 1900 err_init_queue: 1901 return ret; 1902 } 1903 1904 /** 1905 * spi_flush_queue - Send all pending messages in the queue from the callers' 1906 * context 1907 * @ctlr: controller to process queue for 1908 * 1909 * This should be used when one wants to ensure all pending messages have been 1910 * sent before doing something. Is used by the spi-mem code to make sure SPI 1911 * memory operations do not preempt regular SPI transfers that have been queued 1912 * before the spi-mem operation. 1913 */ 1914 void spi_flush_queue(struct spi_controller *ctlr) 1915 { 1916 if (ctlr->transfer == spi_queued_transfer) 1917 __spi_pump_messages(ctlr, false); 1918 } 1919 1920 /*-------------------------------------------------------------------------*/ 1921 1922 #if defined(CONFIG_OF) 1923 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1924 struct device_node *nc) 1925 { 1926 u32 value; 1927 int rc; 1928 1929 /* Mode (clock phase/polarity/etc.) */ 1930 if (of_property_read_bool(nc, "spi-cpha")) 1931 spi->mode |= SPI_CPHA; 1932 if (of_property_read_bool(nc, "spi-cpol")) 1933 spi->mode |= SPI_CPOL; 1934 if (of_property_read_bool(nc, "spi-3wire")) 1935 spi->mode |= SPI_3WIRE; 1936 if (of_property_read_bool(nc, "spi-lsb-first")) 1937 spi->mode |= SPI_LSB_FIRST; 1938 if (of_property_read_bool(nc, "spi-cs-high")) 1939 spi->mode |= SPI_CS_HIGH; 1940 1941 /* Device DUAL/QUAD mode */ 1942 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1943 switch (value) { 1944 case 1: 1945 break; 1946 case 2: 1947 spi->mode |= SPI_TX_DUAL; 1948 break; 1949 case 4: 1950 spi->mode |= SPI_TX_QUAD; 1951 break; 1952 case 8: 1953 spi->mode |= SPI_TX_OCTAL; 1954 break; 1955 default: 1956 dev_warn(&ctlr->dev, 1957 "spi-tx-bus-width %d not supported\n", 1958 value); 1959 break; 1960 } 1961 } 1962 1963 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1964 switch (value) { 1965 case 1: 1966 break; 1967 case 2: 1968 spi->mode |= SPI_RX_DUAL; 1969 break; 1970 case 4: 1971 spi->mode |= SPI_RX_QUAD; 1972 break; 1973 case 8: 1974 spi->mode |= SPI_RX_OCTAL; 1975 break; 1976 default: 1977 dev_warn(&ctlr->dev, 1978 "spi-rx-bus-width %d not supported\n", 1979 value); 1980 break; 1981 } 1982 } 1983 1984 if (spi_controller_is_slave(ctlr)) { 1985 if (!of_node_name_eq(nc, "slave")) { 1986 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1987 nc); 1988 return -EINVAL; 1989 } 1990 return 0; 1991 } 1992 1993 /* Device address */ 1994 rc = of_property_read_u32(nc, "reg", &value); 1995 if (rc) { 1996 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1997 nc, rc); 1998 return rc; 1999 } 2000 spi->chip_select = value; 2001 2002 /* Device speed */ 2003 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2004 spi->max_speed_hz = value; 2005 2006 return 0; 2007 } 2008 2009 static struct spi_device * 2010 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2011 { 2012 struct spi_device *spi; 2013 int rc; 2014 2015 /* Alloc an spi_device */ 2016 spi = spi_alloc_device(ctlr); 2017 if (!spi) { 2018 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2019 rc = -ENOMEM; 2020 goto err_out; 2021 } 2022 2023 /* Select device driver */ 2024 rc = of_modalias_node(nc, spi->modalias, 2025 sizeof(spi->modalias)); 2026 if (rc < 0) { 2027 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2028 goto err_out; 2029 } 2030 2031 rc = of_spi_parse_dt(ctlr, spi, nc); 2032 if (rc) 2033 goto err_out; 2034 2035 /* Store a pointer to the node in the device structure */ 2036 of_node_get(nc); 2037 spi->dev.of_node = nc; 2038 2039 /* Register the new device */ 2040 rc = spi_add_device(spi); 2041 if (rc) { 2042 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2043 goto err_of_node_put; 2044 } 2045 2046 return spi; 2047 2048 err_of_node_put: 2049 of_node_put(nc); 2050 err_out: 2051 spi_dev_put(spi); 2052 return ERR_PTR(rc); 2053 } 2054 2055 /** 2056 * of_register_spi_devices() - Register child devices onto the SPI bus 2057 * @ctlr: Pointer to spi_controller device 2058 * 2059 * Registers an spi_device for each child node of controller node which 2060 * represents a valid SPI slave. 2061 */ 2062 static void of_register_spi_devices(struct spi_controller *ctlr) 2063 { 2064 struct spi_device *spi; 2065 struct device_node *nc; 2066 2067 if (!ctlr->dev.of_node) 2068 return; 2069 2070 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2071 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2072 continue; 2073 spi = of_register_spi_device(ctlr, nc); 2074 if (IS_ERR(spi)) { 2075 dev_warn(&ctlr->dev, 2076 "Failed to create SPI device for %pOF\n", nc); 2077 of_node_clear_flag(nc, OF_POPULATED); 2078 } 2079 } 2080 } 2081 #else 2082 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2083 #endif 2084 2085 #ifdef CONFIG_ACPI 2086 struct acpi_spi_lookup { 2087 struct spi_controller *ctlr; 2088 u32 max_speed_hz; 2089 u32 mode; 2090 int irq; 2091 u8 bits_per_word; 2092 u8 chip_select; 2093 }; 2094 2095 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2096 struct acpi_spi_lookup *lookup) 2097 { 2098 const union acpi_object *obj; 2099 2100 if (!x86_apple_machine) 2101 return; 2102 2103 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2104 && obj->buffer.length >= 4) 2105 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2106 2107 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2108 && obj->buffer.length == 8) 2109 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2110 2111 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2112 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2113 lookup->mode |= SPI_LSB_FIRST; 2114 2115 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2116 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2117 lookup->mode |= SPI_CPOL; 2118 2119 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2120 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2121 lookup->mode |= SPI_CPHA; 2122 } 2123 2124 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2125 { 2126 struct acpi_spi_lookup *lookup = data; 2127 struct spi_controller *ctlr = lookup->ctlr; 2128 2129 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2130 struct acpi_resource_spi_serialbus *sb; 2131 acpi_handle parent_handle; 2132 acpi_status status; 2133 2134 sb = &ares->data.spi_serial_bus; 2135 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2136 2137 status = acpi_get_handle(NULL, 2138 sb->resource_source.string_ptr, 2139 &parent_handle); 2140 2141 if (ACPI_FAILURE(status) || 2142 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2143 return -ENODEV; 2144 2145 /* 2146 * ACPI DeviceSelection numbering is handled by the 2147 * host controller driver in Windows and can vary 2148 * from driver to driver. In Linux we always expect 2149 * 0 .. max - 1 so we need to ask the driver to 2150 * translate between the two schemes. 2151 */ 2152 if (ctlr->fw_translate_cs) { 2153 int cs = ctlr->fw_translate_cs(ctlr, 2154 sb->device_selection); 2155 if (cs < 0) 2156 return cs; 2157 lookup->chip_select = cs; 2158 } else { 2159 lookup->chip_select = sb->device_selection; 2160 } 2161 2162 lookup->max_speed_hz = sb->connection_speed; 2163 lookup->bits_per_word = sb->data_bit_length; 2164 2165 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2166 lookup->mode |= SPI_CPHA; 2167 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2168 lookup->mode |= SPI_CPOL; 2169 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2170 lookup->mode |= SPI_CS_HIGH; 2171 } 2172 } else if (lookup->irq < 0) { 2173 struct resource r; 2174 2175 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2176 lookup->irq = r.start; 2177 } 2178 2179 /* Always tell the ACPI core to skip this resource */ 2180 return 1; 2181 } 2182 2183 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2184 struct acpi_device *adev) 2185 { 2186 acpi_handle parent_handle = NULL; 2187 struct list_head resource_list; 2188 struct acpi_spi_lookup lookup = {}; 2189 struct spi_device *spi; 2190 int ret; 2191 2192 if (acpi_bus_get_status(adev) || !adev->status.present || 2193 acpi_device_enumerated(adev)) 2194 return AE_OK; 2195 2196 lookup.ctlr = ctlr; 2197 lookup.irq = -1; 2198 2199 INIT_LIST_HEAD(&resource_list); 2200 ret = acpi_dev_get_resources(adev, &resource_list, 2201 acpi_spi_add_resource, &lookup); 2202 acpi_dev_free_resource_list(&resource_list); 2203 2204 if (ret < 0) 2205 /* found SPI in _CRS but it points to another controller */ 2206 return AE_OK; 2207 2208 if (!lookup.max_speed_hz && 2209 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 2210 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2211 /* Apple does not use _CRS but nested devices for SPI slaves */ 2212 acpi_spi_parse_apple_properties(adev, &lookup); 2213 } 2214 2215 if (!lookup.max_speed_hz) 2216 return AE_OK; 2217 2218 spi = spi_alloc_device(ctlr); 2219 if (!spi) { 2220 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2221 dev_name(&adev->dev)); 2222 return AE_NO_MEMORY; 2223 } 2224 2225 2226 ACPI_COMPANION_SET(&spi->dev, adev); 2227 spi->max_speed_hz = lookup.max_speed_hz; 2228 spi->mode |= lookup.mode; 2229 spi->irq = lookup.irq; 2230 spi->bits_per_word = lookup.bits_per_word; 2231 spi->chip_select = lookup.chip_select; 2232 2233 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2234 sizeof(spi->modalias)); 2235 2236 if (spi->irq < 0) 2237 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2238 2239 acpi_device_set_enumerated(adev); 2240 2241 adev->power.flags.ignore_parent = true; 2242 if (spi_add_device(spi)) { 2243 adev->power.flags.ignore_parent = false; 2244 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2245 dev_name(&adev->dev)); 2246 spi_dev_put(spi); 2247 } 2248 2249 return AE_OK; 2250 } 2251 2252 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2253 void *data, void **return_value) 2254 { 2255 struct spi_controller *ctlr = data; 2256 struct acpi_device *adev; 2257 2258 if (acpi_bus_get_device(handle, &adev)) 2259 return AE_OK; 2260 2261 return acpi_register_spi_device(ctlr, adev); 2262 } 2263 2264 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2265 2266 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2267 { 2268 acpi_status status; 2269 acpi_handle handle; 2270 2271 handle = ACPI_HANDLE(ctlr->dev.parent); 2272 if (!handle) 2273 return; 2274 2275 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2276 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2277 acpi_spi_add_device, NULL, ctlr, NULL); 2278 if (ACPI_FAILURE(status)) 2279 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2280 } 2281 #else 2282 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2283 #endif /* CONFIG_ACPI */ 2284 2285 static void spi_controller_release(struct device *dev) 2286 { 2287 struct spi_controller *ctlr; 2288 2289 ctlr = container_of(dev, struct spi_controller, dev); 2290 kfree(ctlr); 2291 } 2292 2293 static struct class spi_master_class = { 2294 .name = "spi_master", 2295 .owner = THIS_MODULE, 2296 .dev_release = spi_controller_release, 2297 .dev_groups = spi_master_groups, 2298 }; 2299 2300 #ifdef CONFIG_SPI_SLAVE 2301 /** 2302 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2303 * controller 2304 * @spi: device used for the current transfer 2305 */ 2306 int spi_slave_abort(struct spi_device *spi) 2307 { 2308 struct spi_controller *ctlr = spi->controller; 2309 2310 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2311 return ctlr->slave_abort(ctlr); 2312 2313 return -ENOTSUPP; 2314 } 2315 EXPORT_SYMBOL_GPL(spi_slave_abort); 2316 2317 static int match_true(struct device *dev, void *data) 2318 { 2319 return 1; 2320 } 2321 2322 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2323 char *buf) 2324 { 2325 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2326 dev); 2327 struct device *child; 2328 2329 child = device_find_child(&ctlr->dev, NULL, match_true); 2330 return sprintf(buf, "%s\n", 2331 child ? to_spi_device(child)->modalias : NULL); 2332 } 2333 2334 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2335 const char *buf, size_t count) 2336 { 2337 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2338 dev); 2339 struct spi_device *spi; 2340 struct device *child; 2341 char name[32]; 2342 int rc; 2343 2344 rc = sscanf(buf, "%31s", name); 2345 if (rc != 1 || !name[0]) 2346 return -EINVAL; 2347 2348 child = device_find_child(&ctlr->dev, NULL, match_true); 2349 if (child) { 2350 /* Remove registered slave */ 2351 device_unregister(child); 2352 put_device(child); 2353 } 2354 2355 if (strcmp(name, "(null)")) { 2356 /* Register new slave */ 2357 spi = spi_alloc_device(ctlr); 2358 if (!spi) 2359 return -ENOMEM; 2360 2361 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2362 2363 rc = spi_add_device(spi); 2364 if (rc) { 2365 spi_dev_put(spi); 2366 return rc; 2367 } 2368 } 2369 2370 return count; 2371 } 2372 2373 static DEVICE_ATTR_RW(slave); 2374 2375 static struct attribute *spi_slave_attrs[] = { 2376 &dev_attr_slave.attr, 2377 NULL, 2378 }; 2379 2380 static const struct attribute_group spi_slave_group = { 2381 .attrs = spi_slave_attrs, 2382 }; 2383 2384 static const struct attribute_group *spi_slave_groups[] = { 2385 &spi_controller_statistics_group, 2386 &spi_slave_group, 2387 NULL, 2388 }; 2389 2390 static struct class spi_slave_class = { 2391 .name = "spi_slave", 2392 .owner = THIS_MODULE, 2393 .dev_release = spi_controller_release, 2394 .dev_groups = spi_slave_groups, 2395 }; 2396 #else 2397 extern struct class spi_slave_class; /* dummy */ 2398 #endif 2399 2400 /** 2401 * __spi_alloc_controller - allocate an SPI master or slave controller 2402 * @dev: the controller, possibly using the platform_bus 2403 * @size: how much zeroed driver-private data to allocate; the pointer to this 2404 * memory is in the driver_data field of the returned device, accessible 2405 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2406 * drivers granting DMA access to portions of their private data need to 2407 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2408 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2409 * slave (true) controller 2410 * Context: can sleep 2411 * 2412 * This call is used only by SPI controller drivers, which are the 2413 * only ones directly touching chip registers. It's how they allocate 2414 * an spi_controller structure, prior to calling spi_register_controller(). 2415 * 2416 * This must be called from context that can sleep. 2417 * 2418 * The caller is responsible for assigning the bus number and initializing the 2419 * controller's methods before calling spi_register_controller(); and (after 2420 * errors adding the device) calling spi_controller_put() to prevent a memory 2421 * leak. 2422 * 2423 * Return: the SPI controller structure on success, else NULL. 2424 */ 2425 struct spi_controller *__spi_alloc_controller(struct device *dev, 2426 unsigned int size, bool slave) 2427 { 2428 struct spi_controller *ctlr; 2429 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2430 2431 if (!dev) 2432 return NULL; 2433 2434 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2435 if (!ctlr) 2436 return NULL; 2437 2438 device_initialize(&ctlr->dev); 2439 ctlr->bus_num = -1; 2440 ctlr->num_chipselect = 1; 2441 ctlr->slave = slave; 2442 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2443 ctlr->dev.class = &spi_slave_class; 2444 else 2445 ctlr->dev.class = &spi_master_class; 2446 ctlr->dev.parent = dev; 2447 pm_suspend_ignore_children(&ctlr->dev, true); 2448 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2449 2450 return ctlr; 2451 } 2452 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2453 2454 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2455 { 2456 spi_controller_put(*(struct spi_controller **)ctlr); 2457 } 2458 2459 /** 2460 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2461 * @dev: physical device of SPI controller 2462 * @size: how much zeroed driver-private data to allocate 2463 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2464 * Context: can sleep 2465 * 2466 * Allocate an SPI controller and automatically release a reference on it 2467 * when @dev is unbound from its driver. Drivers are thus relieved from 2468 * having to call spi_controller_put(). 2469 * 2470 * The arguments to this function are identical to __spi_alloc_controller(). 2471 * 2472 * Return: the SPI controller structure on success, else NULL. 2473 */ 2474 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2475 unsigned int size, 2476 bool slave) 2477 { 2478 struct spi_controller **ptr, *ctlr; 2479 2480 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2481 GFP_KERNEL); 2482 if (!ptr) 2483 return NULL; 2484 2485 ctlr = __spi_alloc_controller(dev, size, slave); 2486 if (ctlr) { 2487 *ptr = ctlr; 2488 devres_add(dev, ptr); 2489 } else { 2490 devres_free(ptr); 2491 } 2492 2493 return ctlr; 2494 } 2495 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2496 2497 #ifdef CONFIG_OF 2498 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2499 { 2500 int nb, i, *cs; 2501 struct device_node *np = ctlr->dev.of_node; 2502 2503 if (!np) 2504 return 0; 2505 2506 nb = of_gpio_named_count(np, "cs-gpios"); 2507 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2508 2509 /* Return error only for an incorrectly formed cs-gpios property */ 2510 if (nb == 0 || nb == -ENOENT) 2511 return 0; 2512 else if (nb < 0) 2513 return nb; 2514 2515 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2516 GFP_KERNEL); 2517 ctlr->cs_gpios = cs; 2518 2519 if (!ctlr->cs_gpios) 2520 return -ENOMEM; 2521 2522 for (i = 0; i < ctlr->num_chipselect; i++) 2523 cs[i] = -ENOENT; 2524 2525 for (i = 0; i < nb; i++) 2526 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2527 2528 return 0; 2529 } 2530 #else 2531 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2532 { 2533 return 0; 2534 } 2535 #endif 2536 2537 /** 2538 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2539 * @ctlr: The SPI master to grab GPIO descriptors for 2540 */ 2541 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2542 { 2543 int nb, i; 2544 struct gpio_desc **cs; 2545 struct device *dev = &ctlr->dev; 2546 unsigned long native_cs_mask = 0; 2547 unsigned int num_cs_gpios = 0; 2548 2549 nb = gpiod_count(dev, "cs"); 2550 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2551 2552 /* No GPIOs at all is fine, else return the error */ 2553 if (nb == 0 || nb == -ENOENT) 2554 return 0; 2555 else if (nb < 0) 2556 return nb; 2557 2558 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2559 GFP_KERNEL); 2560 if (!cs) 2561 return -ENOMEM; 2562 ctlr->cs_gpiods = cs; 2563 2564 for (i = 0; i < nb; i++) { 2565 /* 2566 * Most chipselects are active low, the inverted 2567 * semantics are handled by special quirks in gpiolib, 2568 * so initializing them GPIOD_OUT_LOW here means 2569 * "unasserted", in most cases this will drive the physical 2570 * line high. 2571 */ 2572 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2573 GPIOD_OUT_LOW); 2574 if (IS_ERR(cs[i])) 2575 return PTR_ERR(cs[i]); 2576 2577 if (cs[i]) { 2578 /* 2579 * If we find a CS GPIO, name it after the device and 2580 * chip select line. 2581 */ 2582 char *gpioname; 2583 2584 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2585 dev_name(dev), i); 2586 if (!gpioname) 2587 return -ENOMEM; 2588 gpiod_set_consumer_name(cs[i], gpioname); 2589 num_cs_gpios++; 2590 continue; 2591 } 2592 2593 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2594 dev_err(dev, "Invalid native chip select %d\n", i); 2595 return -EINVAL; 2596 } 2597 native_cs_mask |= BIT(i); 2598 } 2599 2600 ctlr->unused_native_cs = ffz(native_cs_mask); 2601 if (num_cs_gpios && ctlr->max_native_cs && 2602 ctlr->unused_native_cs >= ctlr->max_native_cs) { 2603 dev_err(dev, "No unused native chip select available\n"); 2604 return -EINVAL; 2605 } 2606 2607 return 0; 2608 } 2609 2610 static int spi_controller_check_ops(struct spi_controller *ctlr) 2611 { 2612 /* 2613 * The controller may implement only the high-level SPI-memory like 2614 * operations if it does not support regular SPI transfers, and this is 2615 * valid use case. 2616 * If ->mem_ops is NULL, we request that at least one of the 2617 * ->transfer_xxx() method be implemented. 2618 */ 2619 if (ctlr->mem_ops) { 2620 if (!ctlr->mem_ops->exec_op) 2621 return -EINVAL; 2622 } else if (!ctlr->transfer && !ctlr->transfer_one && 2623 !ctlr->transfer_one_message) { 2624 return -EINVAL; 2625 } 2626 2627 return 0; 2628 } 2629 2630 /** 2631 * spi_register_controller - register SPI master or slave controller 2632 * @ctlr: initialized master, originally from spi_alloc_master() or 2633 * spi_alloc_slave() 2634 * Context: can sleep 2635 * 2636 * SPI controllers connect to their drivers using some non-SPI bus, 2637 * such as the platform bus. The final stage of probe() in that code 2638 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2639 * 2640 * SPI controllers use board specific (often SOC specific) bus numbers, 2641 * and board-specific addressing for SPI devices combines those numbers 2642 * with chip select numbers. Since SPI does not directly support dynamic 2643 * device identification, boards need configuration tables telling which 2644 * chip is at which address. 2645 * 2646 * This must be called from context that can sleep. It returns zero on 2647 * success, else a negative error code (dropping the controller's refcount). 2648 * After a successful return, the caller is responsible for calling 2649 * spi_unregister_controller(). 2650 * 2651 * Return: zero on success, else a negative error code. 2652 */ 2653 int spi_register_controller(struct spi_controller *ctlr) 2654 { 2655 struct device *dev = ctlr->dev.parent; 2656 struct boardinfo *bi; 2657 int status; 2658 int id, first_dynamic; 2659 2660 if (!dev) 2661 return -ENODEV; 2662 2663 /* 2664 * Make sure all necessary hooks are implemented before registering 2665 * the SPI controller. 2666 */ 2667 status = spi_controller_check_ops(ctlr); 2668 if (status) 2669 return status; 2670 2671 if (ctlr->bus_num >= 0) { 2672 /* devices with a fixed bus num must check-in with the num */ 2673 mutex_lock(&board_lock); 2674 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2675 ctlr->bus_num + 1, GFP_KERNEL); 2676 mutex_unlock(&board_lock); 2677 if (WARN(id < 0, "couldn't get idr")) 2678 return id == -ENOSPC ? -EBUSY : id; 2679 ctlr->bus_num = id; 2680 } else if (ctlr->dev.of_node) { 2681 /* allocate dynamic bus number using Linux idr */ 2682 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2683 if (id >= 0) { 2684 ctlr->bus_num = id; 2685 mutex_lock(&board_lock); 2686 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2687 ctlr->bus_num + 1, GFP_KERNEL); 2688 mutex_unlock(&board_lock); 2689 if (WARN(id < 0, "couldn't get idr")) 2690 return id == -ENOSPC ? -EBUSY : id; 2691 } 2692 } 2693 if (ctlr->bus_num < 0) { 2694 first_dynamic = of_alias_get_highest_id("spi"); 2695 if (first_dynamic < 0) 2696 first_dynamic = 0; 2697 else 2698 first_dynamic++; 2699 2700 mutex_lock(&board_lock); 2701 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2702 0, GFP_KERNEL); 2703 mutex_unlock(&board_lock); 2704 if (WARN(id < 0, "couldn't get idr")) 2705 return id; 2706 ctlr->bus_num = id; 2707 } 2708 INIT_LIST_HEAD(&ctlr->queue); 2709 spin_lock_init(&ctlr->queue_lock); 2710 spin_lock_init(&ctlr->bus_lock_spinlock); 2711 mutex_init(&ctlr->bus_lock_mutex); 2712 mutex_init(&ctlr->io_mutex); 2713 ctlr->bus_lock_flag = 0; 2714 init_completion(&ctlr->xfer_completion); 2715 if (!ctlr->max_dma_len) 2716 ctlr->max_dma_len = INT_MAX; 2717 2718 /* register the device, then userspace will see it. 2719 * registration fails if the bus ID is in use. 2720 */ 2721 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2722 2723 if (!spi_controller_is_slave(ctlr)) { 2724 if (ctlr->use_gpio_descriptors) { 2725 status = spi_get_gpio_descs(ctlr); 2726 if (status) 2727 goto free_bus_id; 2728 /* 2729 * A controller using GPIO descriptors always 2730 * supports SPI_CS_HIGH if need be. 2731 */ 2732 ctlr->mode_bits |= SPI_CS_HIGH; 2733 } else { 2734 /* Legacy code path for GPIOs from DT */ 2735 status = of_spi_get_gpio_numbers(ctlr); 2736 if (status) 2737 goto free_bus_id; 2738 } 2739 } 2740 2741 /* 2742 * Even if it's just one always-selected device, there must 2743 * be at least one chipselect. 2744 */ 2745 if (!ctlr->num_chipselect) { 2746 status = -EINVAL; 2747 goto free_bus_id; 2748 } 2749 2750 status = device_add(&ctlr->dev); 2751 if (status < 0) 2752 goto free_bus_id; 2753 dev_dbg(dev, "registered %s %s\n", 2754 spi_controller_is_slave(ctlr) ? "slave" : "master", 2755 dev_name(&ctlr->dev)); 2756 2757 /* 2758 * If we're using a queued driver, start the queue. Note that we don't 2759 * need the queueing logic if the driver is only supporting high-level 2760 * memory operations. 2761 */ 2762 if (ctlr->transfer) { 2763 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2764 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2765 status = spi_controller_initialize_queue(ctlr); 2766 if (status) { 2767 device_del(&ctlr->dev); 2768 goto free_bus_id; 2769 } 2770 } 2771 /* add statistics */ 2772 spin_lock_init(&ctlr->statistics.lock); 2773 2774 mutex_lock(&board_lock); 2775 list_add_tail(&ctlr->list, &spi_controller_list); 2776 list_for_each_entry(bi, &board_list, list) 2777 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2778 mutex_unlock(&board_lock); 2779 2780 /* Register devices from the device tree and ACPI */ 2781 of_register_spi_devices(ctlr); 2782 acpi_register_spi_devices(ctlr); 2783 return status; 2784 2785 free_bus_id: 2786 mutex_lock(&board_lock); 2787 idr_remove(&spi_master_idr, ctlr->bus_num); 2788 mutex_unlock(&board_lock); 2789 return status; 2790 } 2791 EXPORT_SYMBOL_GPL(spi_register_controller); 2792 2793 static void devm_spi_unregister(struct device *dev, void *res) 2794 { 2795 spi_unregister_controller(*(struct spi_controller **)res); 2796 } 2797 2798 /** 2799 * devm_spi_register_controller - register managed SPI master or slave 2800 * controller 2801 * @dev: device managing SPI controller 2802 * @ctlr: initialized controller, originally from spi_alloc_master() or 2803 * spi_alloc_slave() 2804 * Context: can sleep 2805 * 2806 * Register a SPI device as with spi_register_controller() which will 2807 * automatically be unregistered and freed. 2808 * 2809 * Return: zero on success, else a negative error code. 2810 */ 2811 int devm_spi_register_controller(struct device *dev, 2812 struct spi_controller *ctlr) 2813 { 2814 struct spi_controller **ptr; 2815 int ret; 2816 2817 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2818 if (!ptr) 2819 return -ENOMEM; 2820 2821 ret = spi_register_controller(ctlr); 2822 if (!ret) { 2823 *ptr = ctlr; 2824 devres_add(dev, ptr); 2825 } else { 2826 devres_free(ptr); 2827 } 2828 2829 return ret; 2830 } 2831 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2832 2833 static int devm_spi_match_controller(struct device *dev, void *res, void *ctlr) 2834 { 2835 return *(struct spi_controller **)res == ctlr; 2836 } 2837 2838 static int __unregister(struct device *dev, void *null) 2839 { 2840 spi_unregister_device(to_spi_device(dev)); 2841 return 0; 2842 } 2843 2844 /** 2845 * spi_unregister_controller - unregister SPI master or slave controller 2846 * @ctlr: the controller being unregistered 2847 * Context: can sleep 2848 * 2849 * This call is used only by SPI controller drivers, which are the 2850 * only ones directly touching chip registers. 2851 * 2852 * This must be called from context that can sleep. 2853 * 2854 * Note that this function also drops a reference to the controller. 2855 */ 2856 void spi_unregister_controller(struct spi_controller *ctlr) 2857 { 2858 struct spi_controller *found; 2859 int id = ctlr->bus_num; 2860 2861 /* Prevent addition of new devices, unregister existing ones */ 2862 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2863 mutex_lock(&spi_add_lock); 2864 2865 device_for_each_child(&ctlr->dev, NULL, __unregister); 2866 2867 /* First make sure that this controller was ever added */ 2868 mutex_lock(&board_lock); 2869 found = idr_find(&spi_master_idr, id); 2870 mutex_unlock(&board_lock); 2871 if (ctlr->queued) { 2872 if (spi_destroy_queue(ctlr)) 2873 dev_err(&ctlr->dev, "queue remove failed\n"); 2874 } 2875 mutex_lock(&board_lock); 2876 list_del(&ctlr->list); 2877 mutex_unlock(&board_lock); 2878 2879 device_del(&ctlr->dev); 2880 2881 /* Release the last reference on the controller if its driver 2882 * has not yet been converted to devm_spi_alloc_master/slave(). 2883 */ 2884 if (!devres_find(ctlr->dev.parent, devm_spi_release_controller, 2885 devm_spi_match_controller, ctlr)) 2886 put_device(&ctlr->dev); 2887 2888 /* free bus id */ 2889 mutex_lock(&board_lock); 2890 if (found == ctlr) 2891 idr_remove(&spi_master_idr, id); 2892 mutex_unlock(&board_lock); 2893 2894 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2895 mutex_unlock(&spi_add_lock); 2896 } 2897 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2898 2899 int spi_controller_suspend(struct spi_controller *ctlr) 2900 { 2901 int ret; 2902 2903 /* Basically no-ops for non-queued controllers */ 2904 if (!ctlr->queued) 2905 return 0; 2906 2907 ret = spi_stop_queue(ctlr); 2908 if (ret) 2909 dev_err(&ctlr->dev, "queue stop failed\n"); 2910 2911 return ret; 2912 } 2913 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2914 2915 int spi_controller_resume(struct spi_controller *ctlr) 2916 { 2917 int ret; 2918 2919 if (!ctlr->queued) 2920 return 0; 2921 2922 ret = spi_start_queue(ctlr); 2923 if (ret) 2924 dev_err(&ctlr->dev, "queue restart failed\n"); 2925 2926 return ret; 2927 } 2928 EXPORT_SYMBOL_GPL(spi_controller_resume); 2929 2930 static int __spi_controller_match(struct device *dev, const void *data) 2931 { 2932 struct spi_controller *ctlr; 2933 const u16 *bus_num = data; 2934 2935 ctlr = container_of(dev, struct spi_controller, dev); 2936 return ctlr->bus_num == *bus_num; 2937 } 2938 2939 /** 2940 * spi_busnum_to_master - look up master associated with bus_num 2941 * @bus_num: the master's bus number 2942 * Context: can sleep 2943 * 2944 * This call may be used with devices that are registered after 2945 * arch init time. It returns a refcounted pointer to the relevant 2946 * spi_controller (which the caller must release), or NULL if there is 2947 * no such master registered. 2948 * 2949 * Return: the SPI master structure on success, else NULL. 2950 */ 2951 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2952 { 2953 struct device *dev; 2954 struct spi_controller *ctlr = NULL; 2955 2956 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2957 __spi_controller_match); 2958 if (dev) 2959 ctlr = container_of(dev, struct spi_controller, dev); 2960 /* reference got in class_find_device */ 2961 return ctlr; 2962 } 2963 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2964 2965 /*-------------------------------------------------------------------------*/ 2966 2967 /* Core methods for SPI resource management */ 2968 2969 /** 2970 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2971 * during the processing of a spi_message while using 2972 * spi_transfer_one 2973 * @spi: the spi device for which we allocate memory 2974 * @release: the release code to execute for this resource 2975 * @size: size to alloc and return 2976 * @gfp: GFP allocation flags 2977 * 2978 * Return: the pointer to the allocated data 2979 * 2980 * This may get enhanced in the future to allocate from a memory pool 2981 * of the @spi_device or @spi_controller to avoid repeated allocations. 2982 */ 2983 void *spi_res_alloc(struct spi_device *spi, 2984 spi_res_release_t release, 2985 size_t size, gfp_t gfp) 2986 { 2987 struct spi_res *sres; 2988 2989 sres = kzalloc(sizeof(*sres) + size, gfp); 2990 if (!sres) 2991 return NULL; 2992 2993 INIT_LIST_HEAD(&sres->entry); 2994 sres->release = release; 2995 2996 return sres->data; 2997 } 2998 EXPORT_SYMBOL_GPL(spi_res_alloc); 2999 3000 /** 3001 * spi_res_free - free an spi resource 3002 * @res: pointer to the custom data of a resource 3003 * 3004 */ 3005 void spi_res_free(void *res) 3006 { 3007 struct spi_res *sres = container_of(res, struct spi_res, data); 3008 3009 if (!res) 3010 return; 3011 3012 WARN_ON(!list_empty(&sres->entry)); 3013 kfree(sres); 3014 } 3015 EXPORT_SYMBOL_GPL(spi_res_free); 3016 3017 /** 3018 * spi_res_add - add a spi_res to the spi_message 3019 * @message: the spi message 3020 * @res: the spi_resource 3021 */ 3022 void spi_res_add(struct spi_message *message, void *res) 3023 { 3024 struct spi_res *sres = container_of(res, struct spi_res, data); 3025 3026 WARN_ON(!list_empty(&sres->entry)); 3027 list_add_tail(&sres->entry, &message->resources); 3028 } 3029 EXPORT_SYMBOL_GPL(spi_res_add); 3030 3031 /** 3032 * spi_res_release - release all spi resources for this message 3033 * @ctlr: the @spi_controller 3034 * @message: the @spi_message 3035 */ 3036 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 3037 { 3038 struct spi_res *res, *tmp; 3039 3040 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 3041 if (res->release) 3042 res->release(ctlr, message, res->data); 3043 3044 list_del(&res->entry); 3045 3046 kfree(res); 3047 } 3048 } 3049 EXPORT_SYMBOL_GPL(spi_res_release); 3050 3051 /*-------------------------------------------------------------------------*/ 3052 3053 /* Core methods for spi_message alterations */ 3054 3055 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3056 struct spi_message *msg, 3057 void *res) 3058 { 3059 struct spi_replaced_transfers *rxfer = res; 3060 size_t i; 3061 3062 /* call extra callback if requested */ 3063 if (rxfer->release) 3064 rxfer->release(ctlr, msg, res); 3065 3066 /* insert replaced transfers back into the message */ 3067 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3068 3069 /* remove the formerly inserted entries */ 3070 for (i = 0; i < rxfer->inserted; i++) 3071 list_del(&rxfer->inserted_transfers[i].transfer_list); 3072 } 3073 3074 /** 3075 * spi_replace_transfers - replace transfers with several transfers 3076 * and register change with spi_message.resources 3077 * @msg: the spi_message we work upon 3078 * @xfer_first: the first spi_transfer we want to replace 3079 * @remove: number of transfers to remove 3080 * @insert: the number of transfers we want to insert instead 3081 * @release: extra release code necessary in some circumstances 3082 * @extradatasize: extra data to allocate (with alignment guarantees 3083 * of struct @spi_transfer) 3084 * @gfp: gfp flags 3085 * 3086 * Returns: pointer to @spi_replaced_transfers, 3087 * PTR_ERR(...) in case of errors. 3088 */ 3089 struct spi_replaced_transfers *spi_replace_transfers( 3090 struct spi_message *msg, 3091 struct spi_transfer *xfer_first, 3092 size_t remove, 3093 size_t insert, 3094 spi_replaced_release_t release, 3095 size_t extradatasize, 3096 gfp_t gfp) 3097 { 3098 struct spi_replaced_transfers *rxfer; 3099 struct spi_transfer *xfer; 3100 size_t i; 3101 3102 /* allocate the structure using spi_res */ 3103 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3104 struct_size(rxfer, inserted_transfers, insert) 3105 + extradatasize, 3106 gfp); 3107 if (!rxfer) 3108 return ERR_PTR(-ENOMEM); 3109 3110 /* the release code to invoke before running the generic release */ 3111 rxfer->release = release; 3112 3113 /* assign extradata */ 3114 if (extradatasize) 3115 rxfer->extradata = 3116 &rxfer->inserted_transfers[insert]; 3117 3118 /* init the replaced_transfers list */ 3119 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3120 3121 /* assign the list_entry after which we should reinsert 3122 * the @replaced_transfers - it may be spi_message.messages! 3123 */ 3124 rxfer->replaced_after = xfer_first->transfer_list.prev; 3125 3126 /* remove the requested number of transfers */ 3127 for (i = 0; i < remove; i++) { 3128 /* if the entry after replaced_after it is msg->transfers 3129 * then we have been requested to remove more transfers 3130 * than are in the list 3131 */ 3132 if (rxfer->replaced_after->next == &msg->transfers) { 3133 dev_err(&msg->spi->dev, 3134 "requested to remove more spi_transfers than are available\n"); 3135 /* insert replaced transfers back into the message */ 3136 list_splice(&rxfer->replaced_transfers, 3137 rxfer->replaced_after); 3138 3139 /* free the spi_replace_transfer structure */ 3140 spi_res_free(rxfer); 3141 3142 /* and return with an error */ 3143 return ERR_PTR(-EINVAL); 3144 } 3145 3146 /* remove the entry after replaced_after from list of 3147 * transfers and add it to list of replaced_transfers 3148 */ 3149 list_move_tail(rxfer->replaced_after->next, 3150 &rxfer->replaced_transfers); 3151 } 3152 3153 /* create copy of the given xfer with identical settings 3154 * based on the first transfer to get removed 3155 */ 3156 for (i = 0; i < insert; i++) { 3157 /* we need to run in reverse order */ 3158 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3159 3160 /* copy all spi_transfer data */ 3161 memcpy(xfer, xfer_first, sizeof(*xfer)); 3162 3163 /* add to list */ 3164 list_add(&xfer->transfer_list, rxfer->replaced_after); 3165 3166 /* clear cs_change and delay for all but the last */ 3167 if (i) { 3168 xfer->cs_change = false; 3169 xfer->delay_usecs = 0; 3170 xfer->delay.value = 0; 3171 } 3172 } 3173 3174 /* set up inserted */ 3175 rxfer->inserted = insert; 3176 3177 /* and register it with spi_res/spi_message */ 3178 spi_res_add(msg, rxfer); 3179 3180 return rxfer; 3181 } 3182 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3183 3184 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3185 struct spi_message *msg, 3186 struct spi_transfer **xferp, 3187 size_t maxsize, 3188 gfp_t gfp) 3189 { 3190 struct spi_transfer *xfer = *xferp, *xfers; 3191 struct spi_replaced_transfers *srt; 3192 size_t offset; 3193 size_t count, i; 3194 3195 /* calculate how many we have to replace */ 3196 count = DIV_ROUND_UP(xfer->len, maxsize); 3197 3198 /* create replacement */ 3199 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3200 if (IS_ERR(srt)) 3201 return PTR_ERR(srt); 3202 xfers = srt->inserted_transfers; 3203 3204 /* now handle each of those newly inserted spi_transfers 3205 * note that the replacements spi_transfers all are preset 3206 * to the same values as *xferp, so tx_buf, rx_buf and len 3207 * are all identical (as well as most others) 3208 * so we just have to fix up len and the pointers. 3209 * 3210 * this also includes support for the depreciated 3211 * spi_message.is_dma_mapped interface 3212 */ 3213 3214 /* the first transfer just needs the length modified, so we 3215 * run it outside the loop 3216 */ 3217 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3218 3219 /* all the others need rx_buf/tx_buf also set */ 3220 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3221 /* update rx_buf, tx_buf and dma */ 3222 if (xfers[i].rx_buf) 3223 xfers[i].rx_buf += offset; 3224 if (xfers[i].rx_dma) 3225 xfers[i].rx_dma += offset; 3226 if (xfers[i].tx_buf) 3227 xfers[i].tx_buf += offset; 3228 if (xfers[i].tx_dma) 3229 xfers[i].tx_dma += offset; 3230 3231 /* update length */ 3232 xfers[i].len = min(maxsize, xfers[i].len - offset); 3233 } 3234 3235 /* we set up xferp to the last entry we have inserted, 3236 * so that we skip those already split transfers 3237 */ 3238 *xferp = &xfers[count - 1]; 3239 3240 /* increment statistics counters */ 3241 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3242 transfers_split_maxsize); 3243 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3244 transfers_split_maxsize); 3245 3246 return 0; 3247 } 3248 3249 /** 3250 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3251 * when an individual transfer exceeds a 3252 * certain size 3253 * @ctlr: the @spi_controller for this transfer 3254 * @msg: the @spi_message to transform 3255 * @maxsize: the maximum when to apply this 3256 * @gfp: GFP allocation flags 3257 * 3258 * Return: status of transformation 3259 */ 3260 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3261 struct spi_message *msg, 3262 size_t maxsize, 3263 gfp_t gfp) 3264 { 3265 struct spi_transfer *xfer; 3266 int ret; 3267 3268 /* iterate over the transfer_list, 3269 * but note that xfer is advanced to the last transfer inserted 3270 * to avoid checking sizes again unnecessarily (also xfer does 3271 * potentiall belong to a different list by the time the 3272 * replacement has happened 3273 */ 3274 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3275 if (xfer->len > maxsize) { 3276 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3277 maxsize, gfp); 3278 if (ret) 3279 return ret; 3280 } 3281 } 3282 3283 return 0; 3284 } 3285 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3286 3287 /*-------------------------------------------------------------------------*/ 3288 3289 /* Core methods for SPI controller protocol drivers. Some of the 3290 * other core methods are currently defined as inline functions. 3291 */ 3292 3293 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3294 u8 bits_per_word) 3295 { 3296 if (ctlr->bits_per_word_mask) { 3297 /* Only 32 bits fit in the mask */ 3298 if (bits_per_word > 32) 3299 return -EINVAL; 3300 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3301 return -EINVAL; 3302 } 3303 3304 return 0; 3305 } 3306 3307 /** 3308 * spi_setup - setup SPI mode and clock rate 3309 * @spi: the device whose settings are being modified 3310 * Context: can sleep, and no requests are queued to the device 3311 * 3312 * SPI protocol drivers may need to update the transfer mode if the 3313 * device doesn't work with its default. They may likewise need 3314 * to update clock rates or word sizes from initial values. This function 3315 * changes those settings, and must be called from a context that can sleep. 3316 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3317 * effect the next time the device is selected and data is transferred to 3318 * or from it. When this function returns, the spi device is deselected. 3319 * 3320 * Note that this call will fail if the protocol driver specifies an option 3321 * that the underlying controller or its driver does not support. For 3322 * example, not all hardware supports wire transfers using nine bit words, 3323 * LSB-first wire encoding, or active-high chipselects. 3324 * 3325 * Return: zero on success, else a negative error code. 3326 */ 3327 int spi_setup(struct spi_device *spi) 3328 { 3329 unsigned bad_bits, ugly_bits; 3330 int status; 3331 3332 /* check mode to prevent that DUAL and QUAD set at the same time 3333 */ 3334 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3335 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3336 dev_err(&spi->dev, 3337 "setup: can not select dual and quad at the same time\n"); 3338 return -EINVAL; 3339 } 3340 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3341 */ 3342 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3343 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3344 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3345 return -EINVAL; 3346 /* help drivers fail *cleanly* when they need options 3347 * that aren't supported with their current controller 3348 * SPI_CS_WORD has a fallback software implementation, 3349 * so it is ignored here. 3350 */ 3351 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3352 /* nothing prevents from working with active-high CS in case if it 3353 * is driven by GPIO. 3354 */ 3355 if (gpio_is_valid(spi->cs_gpio)) 3356 bad_bits &= ~SPI_CS_HIGH; 3357 ugly_bits = bad_bits & 3358 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3359 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3360 if (ugly_bits) { 3361 dev_warn(&spi->dev, 3362 "setup: ignoring unsupported mode bits %x\n", 3363 ugly_bits); 3364 spi->mode &= ~ugly_bits; 3365 bad_bits &= ~ugly_bits; 3366 } 3367 if (bad_bits) { 3368 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3369 bad_bits); 3370 return -EINVAL; 3371 } 3372 3373 if (!spi->bits_per_word) 3374 spi->bits_per_word = 8; 3375 3376 status = __spi_validate_bits_per_word(spi->controller, 3377 spi->bits_per_word); 3378 if (status) 3379 return status; 3380 3381 if (!spi->max_speed_hz || 3382 spi->max_speed_hz > spi->controller->max_speed_hz) 3383 spi->max_speed_hz = spi->controller->max_speed_hz; 3384 3385 mutex_lock(&spi->controller->io_mutex); 3386 3387 if (spi->controller->setup) 3388 status = spi->controller->setup(spi); 3389 3390 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3391 status = pm_runtime_get_sync(spi->controller->dev.parent); 3392 if (status < 0) { 3393 mutex_unlock(&spi->controller->io_mutex); 3394 pm_runtime_put_noidle(spi->controller->dev.parent); 3395 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3396 status); 3397 return status; 3398 } 3399 3400 /* 3401 * We do not want to return positive value from pm_runtime_get, 3402 * there are many instances of devices calling spi_setup() and 3403 * checking for a non-zero return value instead of a negative 3404 * return value. 3405 */ 3406 status = 0; 3407 3408 spi_set_cs(spi, false); 3409 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3410 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3411 } else { 3412 spi_set_cs(spi, false); 3413 } 3414 3415 mutex_unlock(&spi->controller->io_mutex); 3416 3417 if (spi->rt && !spi->controller->rt) { 3418 spi->controller->rt = true; 3419 spi_set_thread_rt(spi->controller); 3420 } 3421 3422 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3423 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3424 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3425 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3426 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3427 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3428 spi->bits_per_word, spi->max_speed_hz, 3429 status); 3430 3431 return status; 3432 } 3433 EXPORT_SYMBOL_GPL(spi_setup); 3434 3435 /** 3436 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3437 * @spi: the device that requires specific CS timing configuration 3438 * @setup: CS setup time specified via @spi_delay 3439 * @hold: CS hold time specified via @spi_delay 3440 * @inactive: CS inactive delay between transfers specified via @spi_delay 3441 * 3442 * Return: zero on success, else a negative error code. 3443 */ 3444 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3445 struct spi_delay *hold, struct spi_delay *inactive) 3446 { 3447 size_t len; 3448 3449 if (spi->controller->set_cs_timing) 3450 return spi->controller->set_cs_timing(spi, setup, hold, 3451 inactive); 3452 3453 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3454 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3455 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3456 dev_err(&spi->dev, 3457 "Clock-cycle delays for CS not supported in SW mode\n"); 3458 return -ENOTSUPP; 3459 } 3460 3461 len = sizeof(struct spi_delay); 3462 3463 /* copy delays to controller */ 3464 if (setup) 3465 memcpy(&spi->controller->cs_setup, setup, len); 3466 else 3467 memset(&spi->controller->cs_setup, 0, len); 3468 3469 if (hold) 3470 memcpy(&spi->controller->cs_hold, hold, len); 3471 else 3472 memset(&spi->controller->cs_hold, 0, len); 3473 3474 if (inactive) 3475 memcpy(&spi->controller->cs_inactive, inactive, len); 3476 else 3477 memset(&spi->controller->cs_inactive, 0, len); 3478 3479 return 0; 3480 } 3481 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3482 3483 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3484 struct spi_device *spi) 3485 { 3486 int delay1, delay2; 3487 3488 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3489 if (delay1 < 0) 3490 return delay1; 3491 3492 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3493 if (delay2 < 0) 3494 return delay2; 3495 3496 if (delay1 < delay2) 3497 memcpy(&xfer->word_delay, &spi->word_delay, 3498 sizeof(xfer->word_delay)); 3499 3500 return 0; 3501 } 3502 3503 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3504 { 3505 struct spi_controller *ctlr = spi->controller; 3506 struct spi_transfer *xfer; 3507 int w_size; 3508 3509 if (list_empty(&message->transfers)) 3510 return -EINVAL; 3511 3512 /* If an SPI controller does not support toggling the CS line on each 3513 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3514 * for the CS line, we can emulate the CS-per-word hardware function by 3515 * splitting transfers into one-word transfers and ensuring that 3516 * cs_change is set for each transfer. 3517 */ 3518 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3519 spi->cs_gpiod || 3520 gpio_is_valid(spi->cs_gpio))) { 3521 size_t maxsize; 3522 int ret; 3523 3524 maxsize = (spi->bits_per_word + 7) / 8; 3525 3526 /* spi_split_transfers_maxsize() requires message->spi */ 3527 message->spi = spi; 3528 3529 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3530 GFP_KERNEL); 3531 if (ret) 3532 return ret; 3533 3534 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3535 /* don't change cs_change on the last entry in the list */ 3536 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3537 break; 3538 xfer->cs_change = 1; 3539 } 3540 } 3541 3542 /* Half-duplex links include original MicroWire, and ones with 3543 * only one data pin like SPI_3WIRE (switches direction) or where 3544 * either MOSI or MISO is missing. They can also be caused by 3545 * software limitations. 3546 */ 3547 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3548 (spi->mode & SPI_3WIRE)) { 3549 unsigned flags = ctlr->flags; 3550 3551 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3552 if (xfer->rx_buf && xfer->tx_buf) 3553 return -EINVAL; 3554 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3555 return -EINVAL; 3556 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3557 return -EINVAL; 3558 } 3559 } 3560 3561 /** 3562 * Set transfer bits_per_word and max speed as spi device default if 3563 * it is not set for this transfer. 3564 * Set transfer tx_nbits and rx_nbits as single transfer default 3565 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3566 * Ensure transfer word_delay is at least as long as that required by 3567 * device itself. 3568 */ 3569 message->frame_length = 0; 3570 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3571 xfer->effective_speed_hz = 0; 3572 message->frame_length += xfer->len; 3573 if (!xfer->bits_per_word) 3574 xfer->bits_per_word = spi->bits_per_word; 3575 3576 if (!xfer->speed_hz) 3577 xfer->speed_hz = spi->max_speed_hz; 3578 3579 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3580 xfer->speed_hz = ctlr->max_speed_hz; 3581 3582 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3583 return -EINVAL; 3584 3585 /* 3586 * SPI transfer length should be multiple of SPI word size 3587 * where SPI word size should be power-of-two multiple 3588 */ 3589 if (xfer->bits_per_word <= 8) 3590 w_size = 1; 3591 else if (xfer->bits_per_word <= 16) 3592 w_size = 2; 3593 else 3594 w_size = 4; 3595 3596 /* No partial transfers accepted */ 3597 if (xfer->len % w_size) 3598 return -EINVAL; 3599 3600 if (xfer->speed_hz && ctlr->min_speed_hz && 3601 xfer->speed_hz < ctlr->min_speed_hz) 3602 return -EINVAL; 3603 3604 if (xfer->tx_buf && !xfer->tx_nbits) 3605 xfer->tx_nbits = SPI_NBITS_SINGLE; 3606 if (xfer->rx_buf && !xfer->rx_nbits) 3607 xfer->rx_nbits = SPI_NBITS_SINGLE; 3608 /* check transfer tx/rx_nbits: 3609 * 1. check the value matches one of single, dual and quad 3610 * 2. check tx/rx_nbits match the mode in spi_device 3611 */ 3612 if (xfer->tx_buf) { 3613 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3614 xfer->tx_nbits != SPI_NBITS_DUAL && 3615 xfer->tx_nbits != SPI_NBITS_QUAD) 3616 return -EINVAL; 3617 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3618 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3619 return -EINVAL; 3620 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3621 !(spi->mode & SPI_TX_QUAD)) 3622 return -EINVAL; 3623 } 3624 /* check transfer rx_nbits */ 3625 if (xfer->rx_buf) { 3626 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3627 xfer->rx_nbits != SPI_NBITS_DUAL && 3628 xfer->rx_nbits != SPI_NBITS_QUAD) 3629 return -EINVAL; 3630 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3631 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3632 return -EINVAL; 3633 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3634 !(spi->mode & SPI_RX_QUAD)) 3635 return -EINVAL; 3636 } 3637 3638 if (_spi_xfer_word_delay_update(xfer, spi)) 3639 return -EINVAL; 3640 } 3641 3642 message->status = -EINPROGRESS; 3643 3644 return 0; 3645 } 3646 3647 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3648 { 3649 struct spi_controller *ctlr = spi->controller; 3650 struct spi_transfer *xfer; 3651 3652 /* 3653 * Some controllers do not support doing regular SPI transfers. Return 3654 * ENOTSUPP when this is the case. 3655 */ 3656 if (!ctlr->transfer) 3657 return -ENOTSUPP; 3658 3659 message->spi = spi; 3660 3661 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3662 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3663 3664 trace_spi_message_submit(message); 3665 3666 if (!ctlr->ptp_sts_supported) { 3667 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3668 xfer->ptp_sts_word_pre = 0; 3669 ptp_read_system_prets(xfer->ptp_sts); 3670 } 3671 } 3672 3673 return ctlr->transfer(spi, message); 3674 } 3675 3676 /** 3677 * spi_async - asynchronous SPI transfer 3678 * @spi: device with which data will be exchanged 3679 * @message: describes the data transfers, including completion callback 3680 * Context: any (irqs may be blocked, etc) 3681 * 3682 * This call may be used in_irq and other contexts which can't sleep, 3683 * as well as from task contexts which can sleep. 3684 * 3685 * The completion callback is invoked in a context which can't sleep. 3686 * Before that invocation, the value of message->status is undefined. 3687 * When the callback is issued, message->status holds either zero (to 3688 * indicate complete success) or a negative error code. After that 3689 * callback returns, the driver which issued the transfer request may 3690 * deallocate the associated memory; it's no longer in use by any SPI 3691 * core or controller driver code. 3692 * 3693 * Note that although all messages to a spi_device are handled in 3694 * FIFO order, messages may go to different devices in other orders. 3695 * Some device might be higher priority, or have various "hard" access 3696 * time requirements, for example. 3697 * 3698 * On detection of any fault during the transfer, processing of 3699 * the entire message is aborted, and the device is deselected. 3700 * Until returning from the associated message completion callback, 3701 * no other spi_message queued to that device will be processed. 3702 * (This rule applies equally to all the synchronous transfer calls, 3703 * which are wrappers around this core asynchronous primitive.) 3704 * 3705 * Return: zero on success, else a negative error code. 3706 */ 3707 int spi_async(struct spi_device *spi, struct spi_message *message) 3708 { 3709 struct spi_controller *ctlr = spi->controller; 3710 int ret; 3711 unsigned long flags; 3712 3713 ret = __spi_validate(spi, message); 3714 if (ret != 0) 3715 return ret; 3716 3717 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3718 3719 if (ctlr->bus_lock_flag) 3720 ret = -EBUSY; 3721 else 3722 ret = __spi_async(spi, message); 3723 3724 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3725 3726 return ret; 3727 } 3728 EXPORT_SYMBOL_GPL(spi_async); 3729 3730 /** 3731 * spi_async_locked - version of spi_async with exclusive bus usage 3732 * @spi: device with which data will be exchanged 3733 * @message: describes the data transfers, including completion callback 3734 * Context: any (irqs may be blocked, etc) 3735 * 3736 * This call may be used in_irq and other contexts which can't sleep, 3737 * as well as from task contexts which can sleep. 3738 * 3739 * The completion callback is invoked in a context which can't sleep. 3740 * Before that invocation, the value of message->status is undefined. 3741 * When the callback is issued, message->status holds either zero (to 3742 * indicate complete success) or a negative error code. After that 3743 * callback returns, the driver which issued the transfer request may 3744 * deallocate the associated memory; it's no longer in use by any SPI 3745 * core or controller driver code. 3746 * 3747 * Note that although all messages to a spi_device are handled in 3748 * FIFO order, messages may go to different devices in other orders. 3749 * Some device might be higher priority, or have various "hard" access 3750 * time requirements, for example. 3751 * 3752 * On detection of any fault during the transfer, processing of 3753 * the entire message is aborted, and the device is deselected. 3754 * Until returning from the associated message completion callback, 3755 * no other spi_message queued to that device will be processed. 3756 * (This rule applies equally to all the synchronous transfer calls, 3757 * which are wrappers around this core asynchronous primitive.) 3758 * 3759 * Return: zero on success, else a negative error code. 3760 */ 3761 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3762 { 3763 struct spi_controller *ctlr = spi->controller; 3764 int ret; 3765 unsigned long flags; 3766 3767 ret = __spi_validate(spi, message); 3768 if (ret != 0) 3769 return ret; 3770 3771 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3772 3773 ret = __spi_async(spi, message); 3774 3775 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3776 3777 return ret; 3778 3779 } 3780 EXPORT_SYMBOL_GPL(spi_async_locked); 3781 3782 /*-------------------------------------------------------------------------*/ 3783 3784 /* Utility methods for SPI protocol drivers, layered on 3785 * top of the core. Some other utility methods are defined as 3786 * inline functions. 3787 */ 3788 3789 static void spi_complete(void *arg) 3790 { 3791 complete(arg); 3792 } 3793 3794 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3795 { 3796 DECLARE_COMPLETION_ONSTACK(done); 3797 int status; 3798 struct spi_controller *ctlr = spi->controller; 3799 unsigned long flags; 3800 3801 status = __spi_validate(spi, message); 3802 if (status != 0) 3803 return status; 3804 3805 message->complete = spi_complete; 3806 message->context = &done; 3807 message->spi = spi; 3808 3809 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3810 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3811 3812 /* If we're not using the legacy transfer method then we will 3813 * try to transfer in the calling context so special case. 3814 * This code would be less tricky if we could remove the 3815 * support for driver implemented message queues. 3816 */ 3817 if (ctlr->transfer == spi_queued_transfer) { 3818 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3819 3820 trace_spi_message_submit(message); 3821 3822 status = __spi_queued_transfer(spi, message, false); 3823 3824 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3825 } else { 3826 status = spi_async_locked(spi, message); 3827 } 3828 3829 if (status == 0) { 3830 /* Push out the messages in the calling context if we 3831 * can. 3832 */ 3833 if (ctlr->transfer == spi_queued_transfer) { 3834 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3835 spi_sync_immediate); 3836 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3837 spi_sync_immediate); 3838 __spi_pump_messages(ctlr, false); 3839 } 3840 3841 wait_for_completion(&done); 3842 status = message->status; 3843 } 3844 message->context = NULL; 3845 return status; 3846 } 3847 3848 /** 3849 * spi_sync - blocking/synchronous SPI data transfers 3850 * @spi: device with which data will be exchanged 3851 * @message: describes the data transfers 3852 * Context: can sleep 3853 * 3854 * This call may only be used from a context that may sleep. The sleep 3855 * is non-interruptible, and has no timeout. Low-overhead controller 3856 * drivers may DMA directly into and out of the message buffers. 3857 * 3858 * Note that the SPI device's chip select is active during the message, 3859 * and then is normally disabled between messages. Drivers for some 3860 * frequently-used devices may want to minimize costs of selecting a chip, 3861 * by leaving it selected in anticipation that the next message will go 3862 * to the same chip. (That may increase power usage.) 3863 * 3864 * Also, the caller is guaranteeing that the memory associated with the 3865 * message will not be freed before this call returns. 3866 * 3867 * Return: zero on success, else a negative error code. 3868 */ 3869 int spi_sync(struct spi_device *spi, struct spi_message *message) 3870 { 3871 int ret; 3872 3873 mutex_lock(&spi->controller->bus_lock_mutex); 3874 ret = __spi_sync(spi, message); 3875 mutex_unlock(&spi->controller->bus_lock_mutex); 3876 3877 return ret; 3878 } 3879 EXPORT_SYMBOL_GPL(spi_sync); 3880 3881 /** 3882 * spi_sync_locked - version of spi_sync with exclusive bus usage 3883 * @spi: device with which data will be exchanged 3884 * @message: describes the data transfers 3885 * Context: can sleep 3886 * 3887 * This call may only be used from a context that may sleep. The sleep 3888 * is non-interruptible, and has no timeout. Low-overhead controller 3889 * drivers may DMA directly into and out of the message buffers. 3890 * 3891 * This call should be used by drivers that require exclusive access to the 3892 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3893 * be released by a spi_bus_unlock call when the exclusive access is over. 3894 * 3895 * Return: zero on success, else a negative error code. 3896 */ 3897 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3898 { 3899 return __spi_sync(spi, message); 3900 } 3901 EXPORT_SYMBOL_GPL(spi_sync_locked); 3902 3903 /** 3904 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3905 * @ctlr: SPI bus master that should be locked for exclusive bus access 3906 * Context: can sleep 3907 * 3908 * This call may only be used from a context that may sleep. The sleep 3909 * is non-interruptible, and has no timeout. 3910 * 3911 * This call should be used by drivers that require exclusive access to the 3912 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3913 * exclusive access is over. Data transfer must be done by spi_sync_locked 3914 * and spi_async_locked calls when the SPI bus lock is held. 3915 * 3916 * Return: always zero. 3917 */ 3918 int spi_bus_lock(struct spi_controller *ctlr) 3919 { 3920 unsigned long flags; 3921 3922 mutex_lock(&ctlr->bus_lock_mutex); 3923 3924 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3925 ctlr->bus_lock_flag = 1; 3926 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3927 3928 /* mutex remains locked until spi_bus_unlock is called */ 3929 3930 return 0; 3931 } 3932 EXPORT_SYMBOL_GPL(spi_bus_lock); 3933 3934 /** 3935 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3936 * @ctlr: SPI bus master that was locked for exclusive bus access 3937 * Context: can sleep 3938 * 3939 * This call may only be used from a context that may sleep. The sleep 3940 * is non-interruptible, and has no timeout. 3941 * 3942 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3943 * call. 3944 * 3945 * Return: always zero. 3946 */ 3947 int spi_bus_unlock(struct spi_controller *ctlr) 3948 { 3949 ctlr->bus_lock_flag = 0; 3950 3951 mutex_unlock(&ctlr->bus_lock_mutex); 3952 3953 return 0; 3954 } 3955 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3956 3957 /* portable code must never pass more than 32 bytes */ 3958 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3959 3960 static u8 *buf; 3961 3962 /** 3963 * spi_write_then_read - SPI synchronous write followed by read 3964 * @spi: device with which data will be exchanged 3965 * @txbuf: data to be written (need not be dma-safe) 3966 * @n_tx: size of txbuf, in bytes 3967 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3968 * @n_rx: size of rxbuf, in bytes 3969 * Context: can sleep 3970 * 3971 * This performs a half duplex MicroWire style transaction with the 3972 * device, sending txbuf and then reading rxbuf. The return value 3973 * is zero for success, else a negative errno status code. 3974 * This call may only be used from a context that may sleep. 3975 * 3976 * Parameters to this routine are always copied using a small buffer. 3977 * Performance-sensitive or bulk transfer code should instead use 3978 * spi_{async,sync}() calls with dma-safe buffers. 3979 * 3980 * Return: zero on success, else a negative error code. 3981 */ 3982 int spi_write_then_read(struct spi_device *spi, 3983 const void *txbuf, unsigned n_tx, 3984 void *rxbuf, unsigned n_rx) 3985 { 3986 static DEFINE_MUTEX(lock); 3987 3988 int status; 3989 struct spi_message message; 3990 struct spi_transfer x[2]; 3991 u8 *local_buf; 3992 3993 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3994 * copying here, (as a pure convenience thing), but we can 3995 * keep heap costs out of the hot path unless someone else is 3996 * using the pre-allocated buffer or the transfer is too large. 3997 */ 3998 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3999 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4000 GFP_KERNEL | GFP_DMA); 4001 if (!local_buf) 4002 return -ENOMEM; 4003 } else { 4004 local_buf = buf; 4005 } 4006 4007 spi_message_init(&message); 4008 memset(x, 0, sizeof(x)); 4009 if (n_tx) { 4010 x[0].len = n_tx; 4011 spi_message_add_tail(&x[0], &message); 4012 } 4013 if (n_rx) { 4014 x[1].len = n_rx; 4015 spi_message_add_tail(&x[1], &message); 4016 } 4017 4018 memcpy(local_buf, txbuf, n_tx); 4019 x[0].tx_buf = local_buf; 4020 x[1].rx_buf = local_buf + n_tx; 4021 4022 /* do the i/o */ 4023 status = spi_sync(spi, &message); 4024 if (status == 0) 4025 memcpy(rxbuf, x[1].rx_buf, n_rx); 4026 4027 if (x[0].tx_buf == buf) 4028 mutex_unlock(&lock); 4029 else 4030 kfree(local_buf); 4031 4032 return status; 4033 } 4034 EXPORT_SYMBOL_GPL(spi_write_then_read); 4035 4036 /*-------------------------------------------------------------------------*/ 4037 4038 #if IS_ENABLED(CONFIG_OF) 4039 /* must call put_device() when done with returned spi_device device */ 4040 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4041 { 4042 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4043 4044 return dev ? to_spi_device(dev) : NULL; 4045 } 4046 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 4047 #endif /* IS_ENABLED(CONFIG_OF) */ 4048 4049 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4050 /* the spi controllers are not using spi_bus, so we find it with another way */ 4051 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4052 { 4053 struct device *dev; 4054 4055 dev = class_find_device_by_of_node(&spi_master_class, node); 4056 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4057 dev = class_find_device_by_of_node(&spi_slave_class, node); 4058 if (!dev) 4059 return NULL; 4060 4061 /* reference got in class_find_device */ 4062 return container_of(dev, struct spi_controller, dev); 4063 } 4064 4065 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4066 void *arg) 4067 { 4068 struct of_reconfig_data *rd = arg; 4069 struct spi_controller *ctlr; 4070 struct spi_device *spi; 4071 4072 switch (of_reconfig_get_state_change(action, arg)) { 4073 case OF_RECONFIG_CHANGE_ADD: 4074 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4075 if (ctlr == NULL) 4076 return NOTIFY_OK; /* not for us */ 4077 4078 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4079 put_device(&ctlr->dev); 4080 return NOTIFY_OK; 4081 } 4082 4083 spi = of_register_spi_device(ctlr, rd->dn); 4084 put_device(&ctlr->dev); 4085 4086 if (IS_ERR(spi)) { 4087 pr_err("%s: failed to create for '%pOF'\n", 4088 __func__, rd->dn); 4089 of_node_clear_flag(rd->dn, OF_POPULATED); 4090 return notifier_from_errno(PTR_ERR(spi)); 4091 } 4092 break; 4093 4094 case OF_RECONFIG_CHANGE_REMOVE: 4095 /* already depopulated? */ 4096 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4097 return NOTIFY_OK; 4098 4099 /* find our device by node */ 4100 spi = of_find_spi_device_by_node(rd->dn); 4101 if (spi == NULL) 4102 return NOTIFY_OK; /* no? not meant for us */ 4103 4104 /* unregister takes one ref away */ 4105 spi_unregister_device(spi); 4106 4107 /* and put the reference of the find */ 4108 put_device(&spi->dev); 4109 break; 4110 } 4111 4112 return NOTIFY_OK; 4113 } 4114 4115 static struct notifier_block spi_of_notifier = { 4116 .notifier_call = of_spi_notify, 4117 }; 4118 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4119 extern struct notifier_block spi_of_notifier; 4120 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4121 4122 #if IS_ENABLED(CONFIG_ACPI) 4123 static int spi_acpi_controller_match(struct device *dev, const void *data) 4124 { 4125 return ACPI_COMPANION(dev->parent) == data; 4126 } 4127 4128 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4129 { 4130 struct device *dev; 4131 4132 dev = class_find_device(&spi_master_class, NULL, adev, 4133 spi_acpi_controller_match); 4134 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4135 dev = class_find_device(&spi_slave_class, NULL, adev, 4136 spi_acpi_controller_match); 4137 if (!dev) 4138 return NULL; 4139 4140 return container_of(dev, struct spi_controller, dev); 4141 } 4142 4143 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4144 { 4145 struct device *dev; 4146 4147 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4148 return to_spi_device(dev); 4149 } 4150 4151 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4152 void *arg) 4153 { 4154 struct acpi_device *adev = arg; 4155 struct spi_controller *ctlr; 4156 struct spi_device *spi; 4157 4158 switch (value) { 4159 case ACPI_RECONFIG_DEVICE_ADD: 4160 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4161 if (!ctlr) 4162 break; 4163 4164 acpi_register_spi_device(ctlr, adev); 4165 put_device(&ctlr->dev); 4166 break; 4167 case ACPI_RECONFIG_DEVICE_REMOVE: 4168 if (!acpi_device_enumerated(adev)) 4169 break; 4170 4171 spi = acpi_spi_find_device_by_adev(adev); 4172 if (!spi) 4173 break; 4174 4175 spi_unregister_device(spi); 4176 put_device(&spi->dev); 4177 break; 4178 } 4179 4180 return NOTIFY_OK; 4181 } 4182 4183 static struct notifier_block spi_acpi_notifier = { 4184 .notifier_call = acpi_spi_notify, 4185 }; 4186 #else 4187 extern struct notifier_block spi_acpi_notifier; 4188 #endif 4189 4190 static int __init spi_init(void) 4191 { 4192 int status; 4193 4194 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4195 if (!buf) { 4196 status = -ENOMEM; 4197 goto err0; 4198 } 4199 4200 status = bus_register(&spi_bus_type); 4201 if (status < 0) 4202 goto err1; 4203 4204 status = class_register(&spi_master_class); 4205 if (status < 0) 4206 goto err2; 4207 4208 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4209 status = class_register(&spi_slave_class); 4210 if (status < 0) 4211 goto err3; 4212 } 4213 4214 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4215 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4216 if (IS_ENABLED(CONFIG_ACPI)) 4217 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4218 4219 return 0; 4220 4221 err3: 4222 class_unregister(&spi_master_class); 4223 err2: 4224 bus_unregister(&spi_bus_type); 4225 err1: 4226 kfree(buf); 4227 buf = NULL; 4228 err0: 4229 return status; 4230 } 4231 4232 /* board_info is normally registered in arch_initcall(), 4233 * but even essential drivers wait till later 4234 * 4235 * REVISIT only boardinfo really needs static linking. the rest (device and 4236 * driver registration) _could_ be dynamically linked (modular) ... costs 4237 * include needing to have boardinfo data structures be much more public. 4238 */ 4239 postcore_initcall(spi_init); 4240