xref: /openbmc/linux/drivers/spi/spi.c (revision 66127f0d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 				   char *buf, size_t offset)
122 {
123 	u64 val = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i) {
127 		const struct spi_statistics *pcpu_stats;
128 		u64_stats_t *field;
129 		unsigned int start;
130 		u64 inc;
131 
132 		pcpu_stats = per_cpu_ptr(stat, i);
133 		field = (void *)pcpu_stats + offset;
134 		do {
135 			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 			inc = u64_stats_read(field);
137 		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 		val += inc;
139 	}
140 	return sysfs_emit(buf, "%llu\n", val);
141 }
142 
143 #define SPI_STATISTICS_ATTRS(field, file)				\
144 static ssize_t spi_controller_##field##_show(struct device *dev,	\
145 					     struct device_attribute *attr, \
146 					     char *buf)			\
147 {									\
148 	struct spi_controller *ctlr = container_of(dev,			\
149 					 struct spi_controller, dev);	\
150 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }									\
152 static struct device_attribute dev_attr_spi_controller_##field = {	\
153 	.attr = { .name = file, .mode = 0444 },				\
154 	.show = spi_controller_##field##_show,				\
155 };									\
156 static ssize_t spi_device_##field##_show(struct device *dev,		\
157 					 struct device_attribute *attr,	\
158 					char *buf)			\
159 {									\
160 	struct spi_device *spi = to_spi_device(dev);			\
161 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }									\
163 static struct device_attribute dev_attr_spi_device_##field = {		\
164 	.attr = { .name = file, .mode = 0444 },				\
165 	.show = spi_device_##field##_show,				\
166 }
167 
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 					    char *buf)			\
171 {									\
172 	return spi_emit_pcpu_stats(stat, buf,				\
173 			offsetof(struct spi_statistics, field));	\
174 }									\
175 SPI_STATISTICS_ATTRS(name, file)
176 
177 #define SPI_STATISTICS_SHOW(field)					\
178 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
179 				 field)
180 
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185 
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189 
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193 
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
195 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
196 				 "transfer_bytes_histo_" number,	\
197 				 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215 
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217 
218 static struct attribute *spi_dev_attrs[] = {
219 	&dev_attr_modalias.attr,
220 	&dev_attr_driver_override.attr,
221 	NULL,
222 };
223 
224 static const struct attribute_group spi_dev_group = {
225 	.attrs  = spi_dev_attrs,
226 };
227 
228 static struct attribute *spi_device_statistics_attrs[] = {
229 	&dev_attr_spi_device_messages.attr,
230 	&dev_attr_spi_device_transfers.attr,
231 	&dev_attr_spi_device_errors.attr,
232 	&dev_attr_spi_device_timedout.attr,
233 	&dev_attr_spi_device_spi_sync.attr,
234 	&dev_attr_spi_device_spi_sync_immediate.attr,
235 	&dev_attr_spi_device_spi_async.attr,
236 	&dev_attr_spi_device_bytes.attr,
237 	&dev_attr_spi_device_bytes_rx.attr,
238 	&dev_attr_spi_device_bytes_tx.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
255 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
256 	&dev_attr_spi_device_transfers_split_maxsize.attr,
257 	NULL,
258 };
259 
260 static const struct attribute_group spi_device_statistics_group = {
261 	.name  = "statistics",
262 	.attrs  = spi_device_statistics_attrs,
263 };
264 
265 static const struct attribute_group *spi_dev_groups[] = {
266 	&spi_dev_group,
267 	&spi_device_statistics_group,
268 	NULL,
269 };
270 
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 	&dev_attr_spi_controller_messages.attr,
273 	&dev_attr_spi_controller_transfers.attr,
274 	&dev_attr_spi_controller_errors.attr,
275 	&dev_attr_spi_controller_timedout.attr,
276 	&dev_attr_spi_controller_spi_sync.attr,
277 	&dev_attr_spi_controller_spi_sync_immediate.attr,
278 	&dev_attr_spi_controller_spi_async.attr,
279 	&dev_attr_spi_controller_bytes.attr,
280 	&dev_attr_spi_controller_bytes_rx.attr,
281 	&dev_attr_spi_controller_bytes_tx.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
300 	NULL,
301 };
302 
303 static const struct attribute_group spi_controller_statistics_group = {
304 	.name  = "statistics",
305 	.attrs  = spi_controller_statistics_attrs,
306 };
307 
308 static const struct attribute_group *spi_master_groups[] = {
309 	&spi_controller_statistics_group,
310 	NULL,
311 };
312 
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 					      struct spi_transfer *xfer,
315 					      struct spi_controller *ctlr)
316 {
317 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 	struct spi_statistics *stats;
319 
320 	if (l2len < 0)
321 		l2len = 0;
322 
323 	get_cpu();
324 	stats = this_cpu_ptr(pcpu_stats);
325 	u64_stats_update_begin(&stats->syncp);
326 
327 	u64_stats_inc(&stats->transfers);
328 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329 
330 	u64_stats_add(&stats->bytes, xfer->len);
331 	if ((xfer->tx_buf) &&
332 	    (xfer->tx_buf != ctlr->dummy_tx))
333 		u64_stats_add(&stats->bytes_tx, xfer->len);
334 	if ((xfer->rx_buf) &&
335 	    (xfer->rx_buf != ctlr->dummy_rx))
336 		u64_stats_add(&stats->bytes_rx, xfer->len);
337 
338 	u64_stats_update_end(&stats->syncp);
339 	put_cpu();
340 }
341 
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348 	while (id->name[0]) {
349 		if (!strcmp(name, id->name))
350 			return id;
351 		id++;
352 	}
353 	return NULL;
354 }
355 
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359 
360 	return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363 
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366 	const void *match;
367 
368 	match = device_get_match_data(&sdev->dev);
369 	if (match)
370 		return match;
371 
372 	return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375 
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378 	const struct spi_device	*spi = to_spi_device(dev);
379 	const struct spi_driver	*sdrv = to_spi_driver(drv);
380 
381 	/* Check override first, and if set, only use the named driver */
382 	if (spi->driver_override)
383 		return strcmp(spi->driver_override, drv->name) == 0;
384 
385 	/* Attempt an OF style match */
386 	if (of_driver_match_device(dev, drv))
387 		return 1;
388 
389 	/* Then try ACPI */
390 	if (acpi_driver_match_device(dev, drv))
391 		return 1;
392 
393 	if (sdrv->id_table)
394 		return !!spi_match_id(sdrv->id_table, spi->modalias);
395 
396 	return strcmp(spi->modalias, drv->name) == 0;
397 }
398 
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401 	const struct spi_device		*spi = to_spi_device(dev);
402 	int rc;
403 
404 	rc = acpi_device_uevent_modalias(dev, env);
405 	if (rc != -ENODEV)
406 		return rc;
407 
408 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410 
411 static int spi_probe(struct device *dev)
412 {
413 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
414 	struct spi_device		*spi = to_spi_device(dev);
415 	int ret;
416 
417 	ret = of_clk_set_defaults(dev->of_node, false);
418 	if (ret)
419 		return ret;
420 
421 	if (dev->of_node) {
422 		spi->irq = of_irq_get(dev->of_node, 0);
423 		if (spi->irq == -EPROBE_DEFER)
424 			return -EPROBE_DEFER;
425 		if (spi->irq < 0)
426 			spi->irq = 0;
427 	}
428 
429 	if (has_acpi_companion(dev) && spi->irq < 0) {
430 		struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
431 
432 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
433 		if (spi->irq == -EPROBE_DEFER)
434 			return -EPROBE_DEFER;
435 		if (spi->irq < 0)
436 			spi->irq = 0;
437 	}
438 
439 	ret = dev_pm_domain_attach(dev, true);
440 	if (ret)
441 		return ret;
442 
443 	if (sdrv->probe) {
444 		ret = sdrv->probe(spi);
445 		if (ret)
446 			dev_pm_domain_detach(dev, true);
447 	}
448 
449 	return ret;
450 }
451 
452 static void spi_remove(struct device *dev)
453 {
454 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
455 
456 	if (sdrv->remove)
457 		sdrv->remove(to_spi_device(dev));
458 
459 	dev_pm_domain_detach(dev, true);
460 }
461 
462 static void spi_shutdown(struct device *dev)
463 {
464 	if (dev->driver) {
465 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
466 
467 		if (sdrv->shutdown)
468 			sdrv->shutdown(to_spi_device(dev));
469 	}
470 }
471 
472 struct bus_type spi_bus_type = {
473 	.name		= "spi",
474 	.dev_groups	= spi_dev_groups,
475 	.match		= spi_match_device,
476 	.uevent		= spi_uevent,
477 	.probe		= spi_probe,
478 	.remove		= spi_remove,
479 	.shutdown	= spi_shutdown,
480 };
481 EXPORT_SYMBOL_GPL(spi_bus_type);
482 
483 /**
484  * __spi_register_driver - register a SPI driver
485  * @owner: owner module of the driver to register
486  * @sdrv: the driver to register
487  * Context: can sleep
488  *
489  * Return: zero on success, else a negative error code.
490  */
491 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
492 {
493 	sdrv->driver.owner = owner;
494 	sdrv->driver.bus = &spi_bus_type;
495 
496 	/*
497 	 * For Really Good Reasons we use spi: modaliases not of:
498 	 * modaliases for DT so module autoloading won't work if we
499 	 * don't have a spi_device_id as well as a compatible string.
500 	 */
501 	if (sdrv->driver.of_match_table) {
502 		const struct of_device_id *of_id;
503 
504 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
505 		     of_id++) {
506 			const char *of_name;
507 
508 			/* Strip off any vendor prefix */
509 			of_name = strnchr(of_id->compatible,
510 					  sizeof(of_id->compatible), ',');
511 			if (of_name)
512 				of_name++;
513 			else
514 				of_name = of_id->compatible;
515 
516 			if (sdrv->id_table) {
517 				const struct spi_device_id *spi_id;
518 
519 				spi_id = spi_match_id(sdrv->id_table, of_name);
520 				if (spi_id)
521 					continue;
522 			} else {
523 				if (strcmp(sdrv->driver.name, of_name) == 0)
524 					continue;
525 			}
526 
527 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
528 				sdrv->driver.name, of_id->compatible);
529 		}
530 	}
531 
532 	return driver_register(&sdrv->driver);
533 }
534 EXPORT_SYMBOL_GPL(__spi_register_driver);
535 
536 /*-------------------------------------------------------------------------*/
537 
538 /*
539  * SPI devices should normally not be created by SPI device drivers; that
540  * would make them board-specific.  Similarly with SPI controller drivers.
541  * Device registration normally goes into like arch/.../mach.../board-YYY.c
542  * with other readonly (flashable) information about mainboard devices.
543  */
544 
545 struct boardinfo {
546 	struct list_head	list;
547 	struct spi_board_info	board_info;
548 };
549 
550 static LIST_HEAD(board_list);
551 static LIST_HEAD(spi_controller_list);
552 
553 /*
554  * Used to protect add/del operation for board_info list and
555  * spi_controller list, and their matching process also used
556  * to protect object of type struct idr.
557  */
558 static DEFINE_MUTEX(board_lock);
559 
560 /**
561  * spi_alloc_device - Allocate a new SPI device
562  * @ctlr: Controller to which device is connected
563  * Context: can sleep
564  *
565  * Allows a driver to allocate and initialize a spi_device without
566  * registering it immediately.  This allows a driver to directly
567  * fill the spi_device with device parameters before calling
568  * spi_add_device() on it.
569  *
570  * Caller is responsible to call spi_add_device() on the returned
571  * spi_device structure to add it to the SPI controller.  If the caller
572  * needs to discard the spi_device without adding it, then it should
573  * call spi_dev_put() on it.
574  *
575  * Return: a pointer to the new device, or NULL.
576  */
577 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
578 {
579 	struct spi_device	*spi;
580 
581 	if (!spi_controller_get(ctlr))
582 		return NULL;
583 
584 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
585 	if (!spi) {
586 		spi_controller_put(ctlr);
587 		return NULL;
588 	}
589 
590 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
591 	if (!spi->pcpu_statistics) {
592 		kfree(spi);
593 		spi_controller_put(ctlr);
594 		return NULL;
595 	}
596 
597 	spi->master = spi->controller = ctlr;
598 	spi->dev.parent = &ctlr->dev;
599 	spi->dev.bus = &spi_bus_type;
600 	spi->dev.release = spidev_release;
601 	spi->mode = ctlr->buswidth_override_bits;
602 
603 	device_initialize(&spi->dev);
604 	return spi;
605 }
606 EXPORT_SYMBOL_GPL(spi_alloc_device);
607 
608 static void spi_dev_set_name(struct spi_device *spi)
609 {
610 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
611 
612 	if (adev) {
613 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
614 		return;
615 	}
616 
617 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
618 		     spi_get_chipselect(spi, 0));
619 }
620 
621 static int spi_dev_check(struct device *dev, void *data)
622 {
623 	struct spi_device *spi = to_spi_device(dev);
624 	struct spi_device *new_spi = data;
625 
626 	if (spi->controller == new_spi->controller &&
627 	    spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
628 		return -EBUSY;
629 	return 0;
630 }
631 
632 static void spi_cleanup(struct spi_device *spi)
633 {
634 	if (spi->controller->cleanup)
635 		spi->controller->cleanup(spi);
636 }
637 
638 static int __spi_add_device(struct spi_device *spi)
639 {
640 	struct spi_controller *ctlr = spi->controller;
641 	struct device *dev = ctlr->dev.parent;
642 	int status;
643 
644 	/* Chipselects are numbered 0..max; validate. */
645 	if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
646 		dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
647 			ctlr->num_chipselect);
648 		return -EINVAL;
649 	}
650 
651 	/* Set the bus ID string */
652 	spi_dev_set_name(spi);
653 
654 	/*
655 	 * We need to make sure there's no other device with this
656 	 * chipselect **BEFORE** we call setup(), else we'll trash
657 	 * its configuration.
658 	 */
659 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
660 	if (status) {
661 		dev_err(dev, "chipselect %d already in use\n",
662 				spi_get_chipselect(spi, 0));
663 		return status;
664 	}
665 
666 	/* Controller may unregister concurrently */
667 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
668 	    !device_is_registered(&ctlr->dev)) {
669 		return -ENODEV;
670 	}
671 
672 	if (ctlr->cs_gpiods)
673 		spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
674 
675 	/*
676 	 * Drivers may modify this initial i/o setup, but will
677 	 * normally rely on the device being setup.  Devices
678 	 * using SPI_CS_HIGH can't coexist well otherwise...
679 	 */
680 	status = spi_setup(spi);
681 	if (status < 0) {
682 		dev_err(dev, "can't setup %s, status %d\n",
683 				dev_name(&spi->dev), status);
684 		return status;
685 	}
686 
687 	/* Device may be bound to an active driver when this returns */
688 	status = device_add(&spi->dev);
689 	if (status < 0) {
690 		dev_err(dev, "can't add %s, status %d\n",
691 				dev_name(&spi->dev), status);
692 		spi_cleanup(spi);
693 	} else {
694 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
695 	}
696 
697 	return status;
698 }
699 
700 /**
701  * spi_add_device - Add spi_device allocated with spi_alloc_device
702  * @spi: spi_device to register
703  *
704  * Companion function to spi_alloc_device.  Devices allocated with
705  * spi_alloc_device can be added onto the SPI bus with this function.
706  *
707  * Return: 0 on success; negative errno on failure
708  */
709 int spi_add_device(struct spi_device *spi)
710 {
711 	struct spi_controller *ctlr = spi->controller;
712 	int status;
713 
714 	mutex_lock(&ctlr->add_lock);
715 	status = __spi_add_device(spi);
716 	mutex_unlock(&ctlr->add_lock);
717 	return status;
718 }
719 EXPORT_SYMBOL_GPL(spi_add_device);
720 
721 /**
722  * spi_new_device - instantiate one new SPI device
723  * @ctlr: Controller to which device is connected
724  * @chip: Describes the SPI device
725  * Context: can sleep
726  *
727  * On typical mainboards, this is purely internal; and it's not needed
728  * after board init creates the hard-wired devices.  Some development
729  * platforms may not be able to use spi_register_board_info though, and
730  * this is exported so that for example a USB or parport based adapter
731  * driver could add devices (which it would learn about out-of-band).
732  *
733  * Return: the new device, or NULL.
734  */
735 struct spi_device *spi_new_device(struct spi_controller *ctlr,
736 				  struct spi_board_info *chip)
737 {
738 	struct spi_device	*proxy;
739 	int			status;
740 
741 	/*
742 	 * NOTE:  caller did any chip->bus_num checks necessary.
743 	 *
744 	 * Also, unless we change the return value convention to use
745 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
746 	 * suggests syslogged diagnostics are best here (ugh).
747 	 */
748 
749 	proxy = spi_alloc_device(ctlr);
750 	if (!proxy)
751 		return NULL;
752 
753 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
754 
755 	spi_set_chipselect(proxy, 0, chip->chip_select);
756 	proxy->max_speed_hz = chip->max_speed_hz;
757 	proxy->mode = chip->mode;
758 	proxy->irq = chip->irq;
759 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
760 	proxy->dev.platform_data = (void *) chip->platform_data;
761 	proxy->controller_data = chip->controller_data;
762 	proxy->controller_state = NULL;
763 
764 	if (chip->swnode) {
765 		status = device_add_software_node(&proxy->dev, chip->swnode);
766 		if (status) {
767 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
768 				chip->modalias, status);
769 			goto err_dev_put;
770 		}
771 	}
772 
773 	status = spi_add_device(proxy);
774 	if (status < 0)
775 		goto err_dev_put;
776 
777 	return proxy;
778 
779 err_dev_put:
780 	device_remove_software_node(&proxy->dev);
781 	spi_dev_put(proxy);
782 	return NULL;
783 }
784 EXPORT_SYMBOL_GPL(spi_new_device);
785 
786 /**
787  * spi_unregister_device - unregister a single SPI device
788  * @spi: spi_device to unregister
789  *
790  * Start making the passed SPI device vanish. Normally this would be handled
791  * by spi_unregister_controller().
792  */
793 void spi_unregister_device(struct spi_device *spi)
794 {
795 	if (!spi)
796 		return;
797 
798 	if (spi->dev.of_node) {
799 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
800 		of_node_put(spi->dev.of_node);
801 	}
802 	if (ACPI_COMPANION(&spi->dev))
803 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
804 	device_remove_software_node(&spi->dev);
805 	device_del(&spi->dev);
806 	spi_cleanup(spi);
807 	put_device(&spi->dev);
808 }
809 EXPORT_SYMBOL_GPL(spi_unregister_device);
810 
811 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
812 					      struct spi_board_info *bi)
813 {
814 	struct spi_device *dev;
815 
816 	if (ctlr->bus_num != bi->bus_num)
817 		return;
818 
819 	dev = spi_new_device(ctlr, bi);
820 	if (!dev)
821 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
822 			bi->modalias);
823 }
824 
825 /**
826  * spi_register_board_info - register SPI devices for a given board
827  * @info: array of chip descriptors
828  * @n: how many descriptors are provided
829  * Context: can sleep
830  *
831  * Board-specific early init code calls this (probably during arch_initcall)
832  * with segments of the SPI device table.  Any device nodes are created later,
833  * after the relevant parent SPI controller (bus_num) is defined.  We keep
834  * this table of devices forever, so that reloading a controller driver will
835  * not make Linux forget about these hard-wired devices.
836  *
837  * Other code can also call this, e.g. a particular add-on board might provide
838  * SPI devices through its expansion connector, so code initializing that board
839  * would naturally declare its SPI devices.
840  *
841  * The board info passed can safely be __initdata ... but be careful of
842  * any embedded pointers (platform_data, etc), they're copied as-is.
843  *
844  * Return: zero on success, else a negative error code.
845  */
846 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
847 {
848 	struct boardinfo *bi;
849 	int i;
850 
851 	if (!n)
852 		return 0;
853 
854 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
855 	if (!bi)
856 		return -ENOMEM;
857 
858 	for (i = 0; i < n; i++, bi++, info++) {
859 		struct spi_controller *ctlr;
860 
861 		memcpy(&bi->board_info, info, sizeof(*info));
862 
863 		mutex_lock(&board_lock);
864 		list_add_tail(&bi->list, &board_list);
865 		list_for_each_entry(ctlr, &spi_controller_list, list)
866 			spi_match_controller_to_boardinfo(ctlr,
867 							  &bi->board_info);
868 		mutex_unlock(&board_lock);
869 	}
870 
871 	return 0;
872 }
873 
874 /*-------------------------------------------------------------------------*/
875 
876 /* Core methods for SPI resource management */
877 
878 /**
879  * spi_res_alloc - allocate a spi resource that is life-cycle managed
880  *                 during the processing of a spi_message while using
881  *                 spi_transfer_one
882  * @spi:     the SPI device for which we allocate memory
883  * @release: the release code to execute for this resource
884  * @size:    size to alloc and return
885  * @gfp:     GFP allocation flags
886  *
887  * Return: the pointer to the allocated data
888  *
889  * This may get enhanced in the future to allocate from a memory pool
890  * of the @spi_device or @spi_controller to avoid repeated allocations.
891  */
892 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
893 			   size_t size, gfp_t gfp)
894 {
895 	struct spi_res *sres;
896 
897 	sres = kzalloc(sizeof(*sres) + size, gfp);
898 	if (!sres)
899 		return NULL;
900 
901 	INIT_LIST_HEAD(&sres->entry);
902 	sres->release = release;
903 
904 	return sres->data;
905 }
906 
907 /**
908  * spi_res_free - free an SPI resource
909  * @res: pointer to the custom data of a resource
910  */
911 static void spi_res_free(void *res)
912 {
913 	struct spi_res *sres = container_of(res, struct spi_res, data);
914 
915 	if (!res)
916 		return;
917 
918 	WARN_ON(!list_empty(&sres->entry));
919 	kfree(sres);
920 }
921 
922 /**
923  * spi_res_add - add a spi_res to the spi_message
924  * @message: the SPI message
925  * @res:     the spi_resource
926  */
927 static void spi_res_add(struct spi_message *message, void *res)
928 {
929 	struct spi_res *sres = container_of(res, struct spi_res, data);
930 
931 	WARN_ON(!list_empty(&sres->entry));
932 	list_add_tail(&sres->entry, &message->resources);
933 }
934 
935 /**
936  * spi_res_release - release all SPI resources for this message
937  * @ctlr:  the @spi_controller
938  * @message: the @spi_message
939  */
940 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
941 {
942 	struct spi_res *res, *tmp;
943 
944 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
945 		if (res->release)
946 			res->release(ctlr, message, res->data);
947 
948 		list_del(&res->entry);
949 
950 		kfree(res);
951 	}
952 }
953 
954 /*-------------------------------------------------------------------------*/
955 
956 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
957 {
958 	bool activate = enable;
959 
960 	/*
961 	 * Avoid calling into the driver (or doing delays) if the chip select
962 	 * isn't actually changing from the last time this was called.
963 	 */
964 	if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
965 		       (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
966 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
967 		return;
968 
969 	trace_spi_set_cs(spi, activate);
970 
971 	spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
972 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
973 
974 	if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
975 		spi_delay_exec(&spi->cs_hold, NULL);
976 
977 	if (spi->mode & SPI_CS_HIGH)
978 		enable = !enable;
979 
980 	if (spi_get_csgpiod(spi, 0)) {
981 		if (!(spi->mode & SPI_NO_CS)) {
982 			/*
983 			 * Historically ACPI has no means of the GPIO polarity and
984 			 * thus the SPISerialBus() resource defines it on the per-chip
985 			 * basis. In order to avoid a chain of negations, the GPIO
986 			 * polarity is considered being Active High. Even for the cases
987 			 * when _DSD() is involved (in the updated versions of ACPI)
988 			 * the GPIO CS polarity must be defined Active High to avoid
989 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
990 			 * into account.
991 			 */
992 			if (has_acpi_companion(&spi->dev))
993 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
994 			else
995 				/* Polarity handled by GPIO library */
996 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
997 		}
998 		/* Some SPI masters need both GPIO CS & slave_select */
999 		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1000 		    spi->controller->set_cs)
1001 			spi->controller->set_cs(spi, !enable);
1002 	} else if (spi->controller->set_cs) {
1003 		spi->controller->set_cs(spi, !enable);
1004 	}
1005 
1006 	if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
1007 		if (activate)
1008 			spi_delay_exec(&spi->cs_setup, NULL);
1009 		else
1010 			spi_delay_exec(&spi->cs_inactive, NULL);
1011 	}
1012 }
1013 
1014 #ifdef CONFIG_HAS_DMA
1015 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1016 			     struct sg_table *sgt, void *buf, size_t len,
1017 			     enum dma_data_direction dir, unsigned long attrs)
1018 {
1019 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1020 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1021 #ifdef CONFIG_HIGHMEM
1022 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1023 				(unsigned long)buf < (PKMAP_BASE +
1024 					(LAST_PKMAP * PAGE_SIZE)));
1025 #else
1026 	const bool kmap_buf = false;
1027 #endif
1028 	int desc_len;
1029 	int sgs;
1030 	struct page *vm_page;
1031 	struct scatterlist *sg;
1032 	void *sg_buf;
1033 	size_t min;
1034 	int i, ret;
1035 
1036 	if (vmalloced_buf || kmap_buf) {
1037 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1038 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1039 	} else if (virt_addr_valid(buf)) {
1040 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1041 		sgs = DIV_ROUND_UP(len, desc_len);
1042 	} else {
1043 		return -EINVAL;
1044 	}
1045 
1046 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1047 	if (ret != 0)
1048 		return ret;
1049 
1050 	sg = &sgt->sgl[0];
1051 	for (i = 0; i < sgs; i++) {
1052 
1053 		if (vmalloced_buf || kmap_buf) {
1054 			/*
1055 			 * Next scatterlist entry size is the minimum between
1056 			 * the desc_len and the remaining buffer length that
1057 			 * fits in a page.
1058 			 */
1059 			min = min_t(size_t, desc_len,
1060 				    min_t(size_t, len,
1061 					  PAGE_SIZE - offset_in_page(buf)));
1062 			if (vmalloced_buf)
1063 				vm_page = vmalloc_to_page(buf);
1064 			else
1065 				vm_page = kmap_to_page(buf);
1066 			if (!vm_page) {
1067 				sg_free_table(sgt);
1068 				return -ENOMEM;
1069 			}
1070 			sg_set_page(sg, vm_page,
1071 				    min, offset_in_page(buf));
1072 		} else {
1073 			min = min_t(size_t, len, desc_len);
1074 			sg_buf = buf;
1075 			sg_set_buf(sg, sg_buf, min);
1076 		}
1077 
1078 		buf += min;
1079 		len -= min;
1080 		sg = sg_next(sg);
1081 	}
1082 
1083 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1084 	if (ret < 0) {
1085 		sg_free_table(sgt);
1086 		return ret;
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1093 		struct sg_table *sgt, void *buf, size_t len,
1094 		enum dma_data_direction dir)
1095 {
1096 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1097 }
1098 
1099 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1100 				struct device *dev, struct sg_table *sgt,
1101 				enum dma_data_direction dir,
1102 				unsigned long attrs)
1103 {
1104 	if (sgt->orig_nents) {
1105 		dma_unmap_sgtable(dev, sgt, dir, attrs);
1106 		sg_free_table(sgt);
1107 		sgt->orig_nents = 0;
1108 		sgt->nents = 0;
1109 	}
1110 }
1111 
1112 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1113 		   struct sg_table *sgt, enum dma_data_direction dir)
1114 {
1115 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1116 }
1117 
1118 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1119 {
1120 	struct device *tx_dev, *rx_dev;
1121 	struct spi_transfer *xfer;
1122 	int ret;
1123 
1124 	if (!ctlr->can_dma)
1125 		return 0;
1126 
1127 	if (ctlr->dma_tx)
1128 		tx_dev = ctlr->dma_tx->device->dev;
1129 	else if (ctlr->dma_map_dev)
1130 		tx_dev = ctlr->dma_map_dev;
1131 	else
1132 		tx_dev = ctlr->dev.parent;
1133 
1134 	if (ctlr->dma_rx)
1135 		rx_dev = ctlr->dma_rx->device->dev;
1136 	else if (ctlr->dma_map_dev)
1137 		rx_dev = ctlr->dma_map_dev;
1138 	else
1139 		rx_dev = ctlr->dev.parent;
1140 
1141 	ret = -ENOMSG;
1142 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1143 		/* The sync is done before each transfer. */
1144 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1145 
1146 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1147 			continue;
1148 
1149 		if (xfer->tx_buf != NULL) {
1150 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1151 						(void *)xfer->tx_buf,
1152 						xfer->len, DMA_TO_DEVICE,
1153 						attrs);
1154 			if (ret != 0)
1155 				return ret;
1156 		}
1157 
1158 		if (xfer->rx_buf != NULL) {
1159 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1160 						xfer->rx_buf, xfer->len,
1161 						DMA_FROM_DEVICE, attrs);
1162 			if (ret != 0) {
1163 				spi_unmap_buf_attrs(ctlr, tx_dev,
1164 						&xfer->tx_sg, DMA_TO_DEVICE,
1165 						attrs);
1166 
1167 				return ret;
1168 			}
1169 		}
1170 	}
1171 	/* No transfer has been mapped, bail out with success */
1172 	if (ret)
1173 		return 0;
1174 
1175 	ctlr->cur_rx_dma_dev = rx_dev;
1176 	ctlr->cur_tx_dma_dev = tx_dev;
1177 	ctlr->cur_msg_mapped = true;
1178 
1179 	return 0;
1180 }
1181 
1182 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1183 {
1184 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1185 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1186 	struct spi_transfer *xfer;
1187 
1188 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1189 		return 0;
1190 
1191 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1192 		/* The sync has already been done after each transfer. */
1193 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1194 
1195 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1196 			continue;
1197 
1198 		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1199 				    DMA_FROM_DEVICE, attrs);
1200 		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1201 				    DMA_TO_DEVICE, attrs);
1202 	}
1203 
1204 	ctlr->cur_msg_mapped = false;
1205 
1206 	return 0;
1207 }
1208 
1209 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1210 				    struct spi_transfer *xfer)
1211 {
1212 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1213 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1214 
1215 	if (!ctlr->cur_msg_mapped)
1216 		return;
1217 
1218 	if (xfer->tx_sg.orig_nents)
1219 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1220 	if (xfer->rx_sg.orig_nents)
1221 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1222 }
1223 
1224 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1225 				 struct spi_transfer *xfer)
1226 {
1227 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1228 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1229 
1230 	if (!ctlr->cur_msg_mapped)
1231 		return;
1232 
1233 	if (xfer->rx_sg.orig_nents)
1234 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1235 	if (xfer->tx_sg.orig_nents)
1236 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1237 }
1238 #else /* !CONFIG_HAS_DMA */
1239 static inline int __spi_map_msg(struct spi_controller *ctlr,
1240 				struct spi_message *msg)
1241 {
1242 	return 0;
1243 }
1244 
1245 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1246 				  struct spi_message *msg)
1247 {
1248 	return 0;
1249 }
1250 
1251 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1252 				    struct spi_transfer *xfer)
1253 {
1254 }
1255 
1256 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1257 				 struct spi_transfer *xfer)
1258 {
1259 }
1260 #endif /* !CONFIG_HAS_DMA */
1261 
1262 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1263 				struct spi_message *msg)
1264 {
1265 	struct spi_transfer *xfer;
1266 
1267 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1268 		/*
1269 		 * Restore the original value of tx_buf or rx_buf if they are
1270 		 * NULL.
1271 		 */
1272 		if (xfer->tx_buf == ctlr->dummy_tx)
1273 			xfer->tx_buf = NULL;
1274 		if (xfer->rx_buf == ctlr->dummy_rx)
1275 			xfer->rx_buf = NULL;
1276 	}
1277 
1278 	return __spi_unmap_msg(ctlr, msg);
1279 }
1280 
1281 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1282 {
1283 	struct spi_transfer *xfer;
1284 	void *tmp;
1285 	unsigned int max_tx, max_rx;
1286 
1287 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1288 		&& !(msg->spi->mode & SPI_3WIRE)) {
1289 		max_tx = 0;
1290 		max_rx = 0;
1291 
1292 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1293 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1294 			    !xfer->tx_buf)
1295 				max_tx = max(xfer->len, max_tx);
1296 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1297 			    !xfer->rx_buf)
1298 				max_rx = max(xfer->len, max_rx);
1299 		}
1300 
1301 		if (max_tx) {
1302 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1303 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1304 			if (!tmp)
1305 				return -ENOMEM;
1306 			ctlr->dummy_tx = tmp;
1307 		}
1308 
1309 		if (max_rx) {
1310 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1311 				       GFP_KERNEL | GFP_DMA);
1312 			if (!tmp)
1313 				return -ENOMEM;
1314 			ctlr->dummy_rx = tmp;
1315 		}
1316 
1317 		if (max_tx || max_rx) {
1318 			list_for_each_entry(xfer, &msg->transfers,
1319 					    transfer_list) {
1320 				if (!xfer->len)
1321 					continue;
1322 				if (!xfer->tx_buf)
1323 					xfer->tx_buf = ctlr->dummy_tx;
1324 				if (!xfer->rx_buf)
1325 					xfer->rx_buf = ctlr->dummy_rx;
1326 			}
1327 		}
1328 	}
1329 
1330 	return __spi_map_msg(ctlr, msg);
1331 }
1332 
1333 static int spi_transfer_wait(struct spi_controller *ctlr,
1334 			     struct spi_message *msg,
1335 			     struct spi_transfer *xfer)
1336 {
1337 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1338 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1339 	u32 speed_hz = xfer->speed_hz;
1340 	unsigned long long ms;
1341 
1342 	if (spi_controller_is_slave(ctlr)) {
1343 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1344 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1345 			return -EINTR;
1346 		}
1347 	} else {
1348 		if (!speed_hz)
1349 			speed_hz = 100000;
1350 
1351 		/*
1352 		 * For each byte we wait for 8 cycles of the SPI clock.
1353 		 * Since speed is defined in Hz and we want milliseconds,
1354 		 * use respective multiplier, but before the division,
1355 		 * otherwise we may get 0 for short transfers.
1356 		 */
1357 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1358 		do_div(ms, speed_hz);
1359 
1360 		/*
1361 		 * Increase it twice and add 200 ms tolerance, use
1362 		 * predefined maximum in case of overflow.
1363 		 */
1364 		ms += ms + 200;
1365 		if (ms > UINT_MAX)
1366 			ms = UINT_MAX;
1367 
1368 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1369 						 msecs_to_jiffies(ms));
1370 
1371 		if (ms == 0) {
1372 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1373 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1374 			dev_err(&msg->spi->dev,
1375 				"SPI transfer timed out\n");
1376 			return -ETIMEDOUT;
1377 		}
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 static void _spi_transfer_delay_ns(u32 ns)
1384 {
1385 	if (!ns)
1386 		return;
1387 	if (ns <= NSEC_PER_USEC) {
1388 		ndelay(ns);
1389 	} else {
1390 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1391 
1392 		if (us <= 10)
1393 			udelay(us);
1394 		else
1395 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1396 	}
1397 }
1398 
1399 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1400 {
1401 	u32 delay = _delay->value;
1402 	u32 unit = _delay->unit;
1403 	u32 hz;
1404 
1405 	if (!delay)
1406 		return 0;
1407 
1408 	switch (unit) {
1409 	case SPI_DELAY_UNIT_USECS:
1410 		delay *= NSEC_PER_USEC;
1411 		break;
1412 	case SPI_DELAY_UNIT_NSECS:
1413 		/* Nothing to do here */
1414 		break;
1415 	case SPI_DELAY_UNIT_SCK:
1416 		/* Clock cycles need to be obtained from spi_transfer */
1417 		if (!xfer)
1418 			return -EINVAL;
1419 		/*
1420 		 * If there is unknown effective speed, approximate it
1421 		 * by underestimating with half of the requested Hz.
1422 		 */
1423 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1424 		if (!hz)
1425 			return -EINVAL;
1426 
1427 		/* Convert delay to nanoseconds */
1428 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1429 		break;
1430 	default:
1431 		return -EINVAL;
1432 	}
1433 
1434 	return delay;
1435 }
1436 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1437 
1438 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1439 {
1440 	int delay;
1441 
1442 	might_sleep();
1443 
1444 	if (!_delay)
1445 		return -EINVAL;
1446 
1447 	delay = spi_delay_to_ns(_delay, xfer);
1448 	if (delay < 0)
1449 		return delay;
1450 
1451 	_spi_transfer_delay_ns(delay);
1452 
1453 	return 0;
1454 }
1455 EXPORT_SYMBOL_GPL(spi_delay_exec);
1456 
1457 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1458 					  struct spi_transfer *xfer)
1459 {
1460 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1461 	u32 delay = xfer->cs_change_delay.value;
1462 	u32 unit = xfer->cs_change_delay.unit;
1463 	int ret;
1464 
1465 	/* Return early on "fast" mode - for everything but USECS */
1466 	if (!delay) {
1467 		if (unit == SPI_DELAY_UNIT_USECS)
1468 			_spi_transfer_delay_ns(default_delay_ns);
1469 		return;
1470 	}
1471 
1472 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1473 	if (ret) {
1474 		dev_err_once(&msg->spi->dev,
1475 			     "Use of unsupported delay unit %i, using default of %luus\n",
1476 			     unit, default_delay_ns / NSEC_PER_USEC);
1477 		_spi_transfer_delay_ns(default_delay_ns);
1478 	}
1479 }
1480 
1481 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1482 						  struct spi_transfer *xfer)
1483 {
1484 	_spi_transfer_cs_change_delay(msg, xfer);
1485 }
1486 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1487 
1488 /*
1489  * spi_transfer_one_message - Default implementation of transfer_one_message()
1490  *
1491  * This is a standard implementation of transfer_one_message() for
1492  * drivers which implement a transfer_one() operation.  It provides
1493  * standard handling of delays and chip select management.
1494  */
1495 static int spi_transfer_one_message(struct spi_controller *ctlr,
1496 				    struct spi_message *msg)
1497 {
1498 	struct spi_transfer *xfer;
1499 	bool keep_cs = false;
1500 	int ret = 0;
1501 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1502 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1503 
1504 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1505 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1506 
1507 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1508 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1509 
1510 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1511 		trace_spi_transfer_start(msg, xfer);
1512 
1513 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1514 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1515 
1516 		if (!ctlr->ptp_sts_supported) {
1517 			xfer->ptp_sts_word_pre = 0;
1518 			ptp_read_system_prets(xfer->ptp_sts);
1519 		}
1520 
1521 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1522 			reinit_completion(&ctlr->xfer_completion);
1523 
1524 fallback_pio:
1525 			spi_dma_sync_for_device(ctlr, xfer);
1526 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1527 			if (ret < 0) {
1528 				spi_dma_sync_for_cpu(ctlr, xfer);
1529 
1530 				if (ctlr->cur_msg_mapped &&
1531 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1532 					__spi_unmap_msg(ctlr, msg);
1533 					ctlr->fallback = true;
1534 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1535 					goto fallback_pio;
1536 				}
1537 
1538 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1539 							       errors);
1540 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1541 							       errors);
1542 				dev_err(&msg->spi->dev,
1543 					"SPI transfer failed: %d\n", ret);
1544 				goto out;
1545 			}
1546 
1547 			if (ret > 0) {
1548 				ret = spi_transfer_wait(ctlr, msg, xfer);
1549 				if (ret < 0)
1550 					msg->status = ret;
1551 			}
1552 
1553 			spi_dma_sync_for_cpu(ctlr, xfer);
1554 		} else {
1555 			if (xfer->len)
1556 				dev_err(&msg->spi->dev,
1557 					"Bufferless transfer has length %u\n",
1558 					xfer->len);
1559 		}
1560 
1561 		if (!ctlr->ptp_sts_supported) {
1562 			ptp_read_system_postts(xfer->ptp_sts);
1563 			xfer->ptp_sts_word_post = xfer->len;
1564 		}
1565 
1566 		trace_spi_transfer_stop(msg, xfer);
1567 
1568 		if (msg->status != -EINPROGRESS)
1569 			goto out;
1570 
1571 		spi_transfer_delay_exec(xfer);
1572 
1573 		if (xfer->cs_change) {
1574 			if (list_is_last(&xfer->transfer_list,
1575 					 &msg->transfers)) {
1576 				keep_cs = true;
1577 			} else {
1578 				if (!xfer->cs_off)
1579 					spi_set_cs(msg->spi, false, false);
1580 				_spi_transfer_cs_change_delay(msg, xfer);
1581 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1582 					spi_set_cs(msg->spi, true, false);
1583 			}
1584 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1585 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1586 			spi_set_cs(msg->spi, xfer->cs_off, false);
1587 		}
1588 
1589 		msg->actual_length += xfer->len;
1590 	}
1591 
1592 out:
1593 	if (ret != 0 || !keep_cs)
1594 		spi_set_cs(msg->spi, false, false);
1595 
1596 	if (msg->status == -EINPROGRESS)
1597 		msg->status = ret;
1598 
1599 	if (msg->status && ctlr->handle_err)
1600 		ctlr->handle_err(ctlr, msg);
1601 
1602 	spi_finalize_current_message(ctlr);
1603 
1604 	return ret;
1605 }
1606 
1607 /**
1608  * spi_finalize_current_transfer - report completion of a transfer
1609  * @ctlr: the controller reporting completion
1610  *
1611  * Called by SPI drivers using the core transfer_one_message()
1612  * implementation to notify it that the current interrupt driven
1613  * transfer has finished and the next one may be scheduled.
1614  */
1615 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1616 {
1617 	complete(&ctlr->xfer_completion);
1618 }
1619 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1620 
1621 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1622 {
1623 	if (ctlr->auto_runtime_pm) {
1624 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1625 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1626 	}
1627 }
1628 
1629 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1630 		struct spi_message *msg, bool was_busy)
1631 {
1632 	struct spi_transfer *xfer;
1633 	int ret;
1634 
1635 	if (!was_busy && ctlr->auto_runtime_pm) {
1636 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1637 		if (ret < 0) {
1638 			pm_runtime_put_noidle(ctlr->dev.parent);
1639 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1640 				ret);
1641 
1642 			msg->status = ret;
1643 			spi_finalize_current_message(ctlr);
1644 
1645 			return ret;
1646 		}
1647 	}
1648 
1649 	if (!was_busy)
1650 		trace_spi_controller_busy(ctlr);
1651 
1652 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1653 		ret = ctlr->prepare_transfer_hardware(ctlr);
1654 		if (ret) {
1655 			dev_err(&ctlr->dev,
1656 				"failed to prepare transfer hardware: %d\n",
1657 				ret);
1658 
1659 			if (ctlr->auto_runtime_pm)
1660 				pm_runtime_put(ctlr->dev.parent);
1661 
1662 			msg->status = ret;
1663 			spi_finalize_current_message(ctlr);
1664 
1665 			return ret;
1666 		}
1667 	}
1668 
1669 	trace_spi_message_start(msg);
1670 
1671 	ret = spi_split_transfers_maxsize(ctlr, msg,
1672 					  spi_max_transfer_size(msg->spi),
1673 					  GFP_KERNEL | GFP_DMA);
1674 	if (ret) {
1675 		msg->status = ret;
1676 		spi_finalize_current_message(ctlr);
1677 		return ret;
1678 	}
1679 
1680 	if (ctlr->prepare_message) {
1681 		ret = ctlr->prepare_message(ctlr, msg);
1682 		if (ret) {
1683 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1684 				ret);
1685 			msg->status = ret;
1686 			spi_finalize_current_message(ctlr);
1687 			return ret;
1688 		}
1689 		msg->prepared = true;
1690 	}
1691 
1692 	ret = spi_map_msg(ctlr, msg);
1693 	if (ret) {
1694 		msg->status = ret;
1695 		spi_finalize_current_message(ctlr);
1696 		return ret;
1697 	}
1698 
1699 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1700 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1701 			xfer->ptp_sts_word_pre = 0;
1702 			ptp_read_system_prets(xfer->ptp_sts);
1703 		}
1704 	}
1705 
1706 	/*
1707 	 * Drivers implementation of transfer_one_message() must arrange for
1708 	 * spi_finalize_current_message() to get called. Most drivers will do
1709 	 * this in the calling context, but some don't. For those cases, a
1710 	 * completion is used to guarantee that this function does not return
1711 	 * until spi_finalize_current_message() is done accessing
1712 	 * ctlr->cur_msg.
1713 	 * Use of the following two flags enable to opportunistically skip the
1714 	 * use of the completion since its use involves expensive spin locks.
1715 	 * In case of a race with the context that calls
1716 	 * spi_finalize_current_message() the completion will always be used,
1717 	 * due to strict ordering of these flags using barriers.
1718 	 */
1719 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1720 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1721 	reinit_completion(&ctlr->cur_msg_completion);
1722 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1723 
1724 	ret = ctlr->transfer_one_message(ctlr, msg);
1725 	if (ret) {
1726 		dev_err(&ctlr->dev,
1727 			"failed to transfer one message from queue\n");
1728 		return ret;
1729 	}
1730 
1731 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1732 	smp_mb(); /* See spi_finalize_current_message()... */
1733 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1734 		wait_for_completion(&ctlr->cur_msg_completion);
1735 
1736 	return 0;
1737 }
1738 
1739 /**
1740  * __spi_pump_messages - function which processes SPI message queue
1741  * @ctlr: controller to process queue for
1742  * @in_kthread: true if we are in the context of the message pump thread
1743  *
1744  * This function checks if there is any SPI message in the queue that
1745  * needs processing and if so call out to the driver to initialize hardware
1746  * and transfer each message.
1747  *
1748  * Note that it is called both from the kthread itself and also from
1749  * inside spi_sync(); the queue extraction handling at the top of the
1750  * function should deal with this safely.
1751  */
1752 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1753 {
1754 	struct spi_message *msg;
1755 	bool was_busy = false;
1756 	unsigned long flags;
1757 	int ret;
1758 
1759 	/* Take the I/O mutex */
1760 	mutex_lock(&ctlr->io_mutex);
1761 
1762 	/* Lock queue */
1763 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1764 
1765 	/* Make sure we are not already running a message */
1766 	if (ctlr->cur_msg)
1767 		goto out_unlock;
1768 
1769 	/* Check if the queue is idle */
1770 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1771 		if (!ctlr->busy)
1772 			goto out_unlock;
1773 
1774 		/* Defer any non-atomic teardown to the thread */
1775 		if (!in_kthread) {
1776 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1777 			    !ctlr->unprepare_transfer_hardware) {
1778 				spi_idle_runtime_pm(ctlr);
1779 				ctlr->busy = false;
1780 				ctlr->queue_empty = true;
1781 				trace_spi_controller_idle(ctlr);
1782 			} else {
1783 				kthread_queue_work(ctlr->kworker,
1784 						   &ctlr->pump_messages);
1785 			}
1786 			goto out_unlock;
1787 		}
1788 
1789 		ctlr->busy = false;
1790 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1791 
1792 		kfree(ctlr->dummy_rx);
1793 		ctlr->dummy_rx = NULL;
1794 		kfree(ctlr->dummy_tx);
1795 		ctlr->dummy_tx = NULL;
1796 		if (ctlr->unprepare_transfer_hardware &&
1797 		    ctlr->unprepare_transfer_hardware(ctlr))
1798 			dev_err(&ctlr->dev,
1799 				"failed to unprepare transfer hardware\n");
1800 		spi_idle_runtime_pm(ctlr);
1801 		trace_spi_controller_idle(ctlr);
1802 
1803 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1804 		ctlr->queue_empty = true;
1805 		goto out_unlock;
1806 	}
1807 
1808 	/* Extract head of queue */
1809 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1810 	ctlr->cur_msg = msg;
1811 
1812 	list_del_init(&msg->queue);
1813 	if (ctlr->busy)
1814 		was_busy = true;
1815 	else
1816 		ctlr->busy = true;
1817 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1818 
1819 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1820 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1821 
1822 	ctlr->cur_msg = NULL;
1823 	ctlr->fallback = false;
1824 
1825 	mutex_unlock(&ctlr->io_mutex);
1826 
1827 	/* Prod the scheduler in case transfer_one() was busy waiting */
1828 	if (!ret)
1829 		cond_resched();
1830 	return;
1831 
1832 out_unlock:
1833 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1834 	mutex_unlock(&ctlr->io_mutex);
1835 }
1836 
1837 /**
1838  * spi_pump_messages - kthread work function which processes spi message queue
1839  * @work: pointer to kthread work struct contained in the controller struct
1840  */
1841 static void spi_pump_messages(struct kthread_work *work)
1842 {
1843 	struct spi_controller *ctlr =
1844 		container_of(work, struct spi_controller, pump_messages);
1845 
1846 	__spi_pump_messages(ctlr, true);
1847 }
1848 
1849 /**
1850  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1851  * @ctlr: Pointer to the spi_controller structure of the driver
1852  * @xfer: Pointer to the transfer being timestamped
1853  * @progress: How many words (not bytes) have been transferred so far
1854  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1855  *	      transfer, for less jitter in time measurement. Only compatible
1856  *	      with PIO drivers. If true, must follow up with
1857  *	      spi_take_timestamp_post or otherwise system will crash.
1858  *	      WARNING: for fully predictable results, the CPU frequency must
1859  *	      also be under control (governor).
1860  *
1861  * This is a helper for drivers to collect the beginning of the TX timestamp
1862  * for the requested byte from the SPI transfer. The frequency with which this
1863  * function must be called (once per word, once for the whole transfer, once
1864  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1865  * greater than or equal to the requested byte at the time of the call. The
1866  * timestamp is only taken once, at the first such call. It is assumed that
1867  * the driver advances its @tx buffer pointer monotonically.
1868  */
1869 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1870 			    struct spi_transfer *xfer,
1871 			    size_t progress, bool irqs_off)
1872 {
1873 	if (!xfer->ptp_sts)
1874 		return;
1875 
1876 	if (xfer->timestamped)
1877 		return;
1878 
1879 	if (progress > xfer->ptp_sts_word_pre)
1880 		return;
1881 
1882 	/* Capture the resolution of the timestamp */
1883 	xfer->ptp_sts_word_pre = progress;
1884 
1885 	if (irqs_off) {
1886 		local_irq_save(ctlr->irq_flags);
1887 		preempt_disable();
1888 	}
1889 
1890 	ptp_read_system_prets(xfer->ptp_sts);
1891 }
1892 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1893 
1894 /**
1895  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1896  * @ctlr: Pointer to the spi_controller structure of the driver
1897  * @xfer: Pointer to the transfer being timestamped
1898  * @progress: How many words (not bytes) have been transferred so far
1899  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1900  *
1901  * This is a helper for drivers to collect the end of the TX timestamp for
1902  * the requested byte from the SPI transfer. Can be called with an arbitrary
1903  * frequency: only the first call where @tx exceeds or is equal to the
1904  * requested word will be timestamped.
1905  */
1906 void spi_take_timestamp_post(struct spi_controller *ctlr,
1907 			     struct spi_transfer *xfer,
1908 			     size_t progress, bool irqs_off)
1909 {
1910 	if (!xfer->ptp_sts)
1911 		return;
1912 
1913 	if (xfer->timestamped)
1914 		return;
1915 
1916 	if (progress < xfer->ptp_sts_word_post)
1917 		return;
1918 
1919 	ptp_read_system_postts(xfer->ptp_sts);
1920 
1921 	if (irqs_off) {
1922 		local_irq_restore(ctlr->irq_flags);
1923 		preempt_enable();
1924 	}
1925 
1926 	/* Capture the resolution of the timestamp */
1927 	xfer->ptp_sts_word_post = progress;
1928 
1929 	xfer->timestamped = 1;
1930 }
1931 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1932 
1933 /**
1934  * spi_set_thread_rt - set the controller to pump at realtime priority
1935  * @ctlr: controller to boost priority of
1936  *
1937  * This can be called because the controller requested realtime priority
1938  * (by setting the ->rt value before calling spi_register_controller()) or
1939  * because a device on the bus said that its transfers needed realtime
1940  * priority.
1941  *
1942  * NOTE: at the moment if any device on a bus says it needs realtime then
1943  * the thread will be at realtime priority for all transfers on that
1944  * controller.  If this eventually becomes a problem we may see if we can
1945  * find a way to boost the priority only temporarily during relevant
1946  * transfers.
1947  */
1948 static void spi_set_thread_rt(struct spi_controller *ctlr)
1949 {
1950 	dev_info(&ctlr->dev,
1951 		"will run message pump with realtime priority\n");
1952 	sched_set_fifo(ctlr->kworker->task);
1953 }
1954 
1955 static int spi_init_queue(struct spi_controller *ctlr)
1956 {
1957 	ctlr->running = false;
1958 	ctlr->busy = false;
1959 	ctlr->queue_empty = true;
1960 
1961 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1962 	if (IS_ERR(ctlr->kworker)) {
1963 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1964 		return PTR_ERR(ctlr->kworker);
1965 	}
1966 
1967 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1968 
1969 	/*
1970 	 * Controller config will indicate if this controller should run the
1971 	 * message pump with high (realtime) priority to reduce the transfer
1972 	 * latency on the bus by minimising the delay between a transfer
1973 	 * request and the scheduling of the message pump thread. Without this
1974 	 * setting the message pump thread will remain at default priority.
1975 	 */
1976 	if (ctlr->rt)
1977 		spi_set_thread_rt(ctlr);
1978 
1979 	return 0;
1980 }
1981 
1982 /**
1983  * spi_get_next_queued_message() - called by driver to check for queued
1984  * messages
1985  * @ctlr: the controller to check for queued messages
1986  *
1987  * If there are more messages in the queue, the next message is returned from
1988  * this call.
1989  *
1990  * Return: the next message in the queue, else NULL if the queue is empty.
1991  */
1992 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1993 {
1994 	struct spi_message *next;
1995 	unsigned long flags;
1996 
1997 	/* Get a pointer to the next message, if any */
1998 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1999 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2000 					queue);
2001 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2002 
2003 	return next;
2004 }
2005 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2006 
2007 /**
2008  * spi_finalize_current_message() - the current message is complete
2009  * @ctlr: the controller to return the message to
2010  *
2011  * Called by the driver to notify the core that the message in the front of the
2012  * queue is complete and can be removed from the queue.
2013  */
2014 void spi_finalize_current_message(struct spi_controller *ctlr)
2015 {
2016 	struct spi_transfer *xfer;
2017 	struct spi_message *mesg;
2018 	int ret;
2019 
2020 	mesg = ctlr->cur_msg;
2021 
2022 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2023 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2024 			ptp_read_system_postts(xfer->ptp_sts);
2025 			xfer->ptp_sts_word_post = xfer->len;
2026 		}
2027 	}
2028 
2029 	if (unlikely(ctlr->ptp_sts_supported))
2030 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2031 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2032 
2033 	spi_unmap_msg(ctlr, mesg);
2034 
2035 	/*
2036 	 * In the prepare_messages callback the SPI bus has the opportunity
2037 	 * to split a transfer to smaller chunks.
2038 	 *
2039 	 * Release the split transfers here since spi_map_msg() is done on
2040 	 * the split transfers.
2041 	 */
2042 	spi_res_release(ctlr, mesg);
2043 
2044 	if (mesg->prepared && ctlr->unprepare_message) {
2045 		ret = ctlr->unprepare_message(ctlr, mesg);
2046 		if (ret) {
2047 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2048 				ret);
2049 		}
2050 	}
2051 
2052 	mesg->prepared = false;
2053 
2054 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2055 	smp_mb(); /* See __spi_pump_transfer_message()... */
2056 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2057 		complete(&ctlr->cur_msg_completion);
2058 
2059 	trace_spi_message_done(mesg);
2060 
2061 	mesg->state = NULL;
2062 	if (mesg->complete)
2063 		mesg->complete(mesg->context);
2064 }
2065 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2066 
2067 static int spi_start_queue(struct spi_controller *ctlr)
2068 {
2069 	unsigned long flags;
2070 
2071 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2072 
2073 	if (ctlr->running || ctlr->busy) {
2074 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2075 		return -EBUSY;
2076 	}
2077 
2078 	ctlr->running = true;
2079 	ctlr->cur_msg = NULL;
2080 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2081 
2082 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2083 
2084 	return 0;
2085 }
2086 
2087 static int spi_stop_queue(struct spi_controller *ctlr)
2088 {
2089 	unsigned long flags;
2090 	unsigned limit = 500;
2091 	int ret = 0;
2092 
2093 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2094 
2095 	/*
2096 	 * This is a bit lame, but is optimized for the common execution path.
2097 	 * A wait_queue on the ctlr->busy could be used, but then the common
2098 	 * execution path (pump_messages) would be required to call wake_up or
2099 	 * friends on every SPI message. Do this instead.
2100 	 */
2101 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2102 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2103 		usleep_range(10000, 11000);
2104 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2105 	}
2106 
2107 	if (!list_empty(&ctlr->queue) || ctlr->busy)
2108 		ret = -EBUSY;
2109 	else
2110 		ctlr->running = false;
2111 
2112 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2113 
2114 	if (ret) {
2115 		dev_warn(&ctlr->dev, "could not stop message queue\n");
2116 		return ret;
2117 	}
2118 	return ret;
2119 }
2120 
2121 static int spi_destroy_queue(struct spi_controller *ctlr)
2122 {
2123 	int ret;
2124 
2125 	ret = spi_stop_queue(ctlr);
2126 
2127 	/*
2128 	 * kthread_flush_worker will block until all work is done.
2129 	 * If the reason that stop_queue timed out is that the work will never
2130 	 * finish, then it does no good to call flush/stop thread, so
2131 	 * return anyway.
2132 	 */
2133 	if (ret) {
2134 		dev_err(&ctlr->dev, "problem destroying queue\n");
2135 		return ret;
2136 	}
2137 
2138 	kthread_destroy_worker(ctlr->kworker);
2139 
2140 	return 0;
2141 }
2142 
2143 static int __spi_queued_transfer(struct spi_device *spi,
2144 				 struct spi_message *msg,
2145 				 bool need_pump)
2146 {
2147 	struct spi_controller *ctlr = spi->controller;
2148 	unsigned long flags;
2149 
2150 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2151 
2152 	if (!ctlr->running) {
2153 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2154 		return -ESHUTDOWN;
2155 	}
2156 	msg->actual_length = 0;
2157 	msg->status = -EINPROGRESS;
2158 
2159 	list_add_tail(&msg->queue, &ctlr->queue);
2160 	ctlr->queue_empty = false;
2161 	if (!ctlr->busy && need_pump)
2162 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2163 
2164 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2165 	return 0;
2166 }
2167 
2168 /**
2169  * spi_queued_transfer - transfer function for queued transfers
2170  * @spi: SPI device which is requesting transfer
2171  * @msg: SPI message which is to handled is queued to driver queue
2172  *
2173  * Return: zero on success, else a negative error code.
2174  */
2175 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2176 {
2177 	return __spi_queued_transfer(spi, msg, true);
2178 }
2179 
2180 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2181 {
2182 	int ret;
2183 
2184 	ctlr->transfer = spi_queued_transfer;
2185 	if (!ctlr->transfer_one_message)
2186 		ctlr->transfer_one_message = spi_transfer_one_message;
2187 
2188 	/* Initialize and start queue */
2189 	ret = spi_init_queue(ctlr);
2190 	if (ret) {
2191 		dev_err(&ctlr->dev, "problem initializing queue\n");
2192 		goto err_init_queue;
2193 	}
2194 	ctlr->queued = true;
2195 	ret = spi_start_queue(ctlr);
2196 	if (ret) {
2197 		dev_err(&ctlr->dev, "problem starting queue\n");
2198 		goto err_start_queue;
2199 	}
2200 
2201 	return 0;
2202 
2203 err_start_queue:
2204 	spi_destroy_queue(ctlr);
2205 err_init_queue:
2206 	return ret;
2207 }
2208 
2209 /**
2210  * spi_flush_queue - Send all pending messages in the queue from the callers'
2211  *		     context
2212  * @ctlr: controller to process queue for
2213  *
2214  * This should be used when one wants to ensure all pending messages have been
2215  * sent before doing something. Is used by the spi-mem code to make sure SPI
2216  * memory operations do not preempt regular SPI transfers that have been queued
2217  * before the spi-mem operation.
2218  */
2219 void spi_flush_queue(struct spi_controller *ctlr)
2220 {
2221 	if (ctlr->transfer == spi_queued_transfer)
2222 		__spi_pump_messages(ctlr, false);
2223 }
2224 
2225 /*-------------------------------------------------------------------------*/
2226 
2227 #if defined(CONFIG_OF)
2228 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2229 				     struct spi_delay *delay, const char *prop)
2230 {
2231 	u32 value;
2232 
2233 	if (!of_property_read_u32(nc, prop, &value)) {
2234 		if (value > U16_MAX) {
2235 			delay->value = DIV_ROUND_UP(value, 1000);
2236 			delay->unit = SPI_DELAY_UNIT_USECS;
2237 		} else {
2238 			delay->value = value;
2239 			delay->unit = SPI_DELAY_UNIT_NSECS;
2240 		}
2241 	}
2242 }
2243 
2244 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2245 			   struct device_node *nc)
2246 {
2247 	u32 value;
2248 	int rc;
2249 
2250 	/* Mode (clock phase/polarity/etc.) */
2251 	if (of_property_read_bool(nc, "spi-cpha"))
2252 		spi->mode |= SPI_CPHA;
2253 	if (of_property_read_bool(nc, "spi-cpol"))
2254 		spi->mode |= SPI_CPOL;
2255 	if (of_property_read_bool(nc, "spi-3wire"))
2256 		spi->mode |= SPI_3WIRE;
2257 	if (of_property_read_bool(nc, "spi-lsb-first"))
2258 		spi->mode |= SPI_LSB_FIRST;
2259 	if (of_property_read_bool(nc, "spi-cs-high"))
2260 		spi->mode |= SPI_CS_HIGH;
2261 
2262 	/* Device DUAL/QUAD mode */
2263 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2264 		switch (value) {
2265 		case 0:
2266 			spi->mode |= SPI_NO_TX;
2267 			break;
2268 		case 1:
2269 			break;
2270 		case 2:
2271 			spi->mode |= SPI_TX_DUAL;
2272 			break;
2273 		case 4:
2274 			spi->mode |= SPI_TX_QUAD;
2275 			break;
2276 		case 8:
2277 			spi->mode |= SPI_TX_OCTAL;
2278 			break;
2279 		default:
2280 			dev_warn(&ctlr->dev,
2281 				"spi-tx-bus-width %d not supported\n",
2282 				value);
2283 			break;
2284 		}
2285 	}
2286 
2287 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2288 		switch (value) {
2289 		case 0:
2290 			spi->mode |= SPI_NO_RX;
2291 			break;
2292 		case 1:
2293 			break;
2294 		case 2:
2295 			spi->mode |= SPI_RX_DUAL;
2296 			break;
2297 		case 4:
2298 			spi->mode |= SPI_RX_QUAD;
2299 			break;
2300 		case 8:
2301 			spi->mode |= SPI_RX_OCTAL;
2302 			break;
2303 		default:
2304 			dev_warn(&ctlr->dev,
2305 				"spi-rx-bus-width %d not supported\n",
2306 				value);
2307 			break;
2308 		}
2309 	}
2310 
2311 	if (spi_controller_is_slave(ctlr)) {
2312 		if (!of_node_name_eq(nc, "slave")) {
2313 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2314 				nc);
2315 			return -EINVAL;
2316 		}
2317 		return 0;
2318 	}
2319 
2320 	/* Device address */
2321 	rc = of_property_read_u32(nc, "reg", &value);
2322 	if (rc) {
2323 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2324 			nc, rc);
2325 		return rc;
2326 	}
2327 	spi_set_chipselect(spi, 0, value);
2328 
2329 	/* Device speed */
2330 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2331 		spi->max_speed_hz = value;
2332 
2333 	/* Device CS delays */
2334 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2335 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2336 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2337 
2338 	return 0;
2339 }
2340 
2341 static struct spi_device *
2342 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2343 {
2344 	struct spi_device *spi;
2345 	int rc;
2346 
2347 	/* Alloc an spi_device */
2348 	spi = spi_alloc_device(ctlr);
2349 	if (!spi) {
2350 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2351 		rc = -ENOMEM;
2352 		goto err_out;
2353 	}
2354 
2355 	/* Select device driver */
2356 	rc = of_alias_from_compatible(nc, spi->modalias,
2357 				      sizeof(spi->modalias));
2358 	if (rc < 0) {
2359 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2360 		goto err_out;
2361 	}
2362 
2363 	rc = of_spi_parse_dt(ctlr, spi, nc);
2364 	if (rc)
2365 		goto err_out;
2366 
2367 	/* Store a pointer to the node in the device structure */
2368 	of_node_get(nc);
2369 
2370 	device_set_node(&spi->dev, of_fwnode_handle(nc));
2371 
2372 	/* Register the new device */
2373 	rc = spi_add_device(spi);
2374 	if (rc) {
2375 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2376 		goto err_of_node_put;
2377 	}
2378 
2379 	return spi;
2380 
2381 err_of_node_put:
2382 	of_node_put(nc);
2383 err_out:
2384 	spi_dev_put(spi);
2385 	return ERR_PTR(rc);
2386 }
2387 
2388 /**
2389  * of_register_spi_devices() - Register child devices onto the SPI bus
2390  * @ctlr:	Pointer to spi_controller device
2391  *
2392  * Registers an spi_device for each child node of controller node which
2393  * represents a valid SPI slave.
2394  */
2395 static void of_register_spi_devices(struct spi_controller *ctlr)
2396 {
2397 	struct spi_device *spi;
2398 	struct device_node *nc;
2399 
2400 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2401 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2402 			continue;
2403 		spi = of_register_spi_device(ctlr, nc);
2404 		if (IS_ERR(spi)) {
2405 			dev_warn(&ctlr->dev,
2406 				 "Failed to create SPI device for %pOF\n", nc);
2407 			of_node_clear_flag(nc, OF_POPULATED);
2408 		}
2409 	}
2410 }
2411 #else
2412 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2413 #endif
2414 
2415 /**
2416  * spi_new_ancillary_device() - Register ancillary SPI device
2417  * @spi:         Pointer to the main SPI device registering the ancillary device
2418  * @chip_select: Chip Select of the ancillary device
2419  *
2420  * Register an ancillary SPI device; for example some chips have a chip-select
2421  * for normal device usage and another one for setup/firmware upload.
2422  *
2423  * This may only be called from main SPI device's probe routine.
2424  *
2425  * Return: 0 on success; negative errno on failure
2426  */
2427 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2428 					     u8 chip_select)
2429 {
2430 	struct spi_controller *ctlr = spi->controller;
2431 	struct spi_device *ancillary;
2432 	int rc = 0;
2433 
2434 	/* Alloc an spi_device */
2435 	ancillary = spi_alloc_device(ctlr);
2436 	if (!ancillary) {
2437 		rc = -ENOMEM;
2438 		goto err_out;
2439 	}
2440 
2441 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2442 
2443 	/* Use provided chip-select for ancillary device */
2444 	spi_set_chipselect(ancillary, 0, chip_select);
2445 
2446 	/* Take over SPI mode/speed from SPI main device */
2447 	ancillary->max_speed_hz = spi->max_speed_hz;
2448 	ancillary->mode = spi->mode;
2449 
2450 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2451 
2452 	/* Register the new device */
2453 	rc = __spi_add_device(ancillary);
2454 	if (rc) {
2455 		dev_err(&spi->dev, "failed to register ancillary device\n");
2456 		goto err_out;
2457 	}
2458 
2459 	return ancillary;
2460 
2461 err_out:
2462 	spi_dev_put(ancillary);
2463 	return ERR_PTR(rc);
2464 }
2465 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2466 
2467 #ifdef CONFIG_ACPI
2468 struct acpi_spi_lookup {
2469 	struct spi_controller 	*ctlr;
2470 	u32			max_speed_hz;
2471 	u32			mode;
2472 	int			irq;
2473 	u8			bits_per_word;
2474 	u8			chip_select;
2475 	int			n;
2476 	int			index;
2477 };
2478 
2479 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2480 {
2481 	struct acpi_resource_spi_serialbus *sb;
2482 	int *count = data;
2483 
2484 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2485 		return 1;
2486 
2487 	sb = &ares->data.spi_serial_bus;
2488 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2489 		return 1;
2490 
2491 	*count = *count + 1;
2492 
2493 	return 1;
2494 }
2495 
2496 /**
2497  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2498  * @adev:	ACPI device
2499  *
2500  * Return: the number of SpiSerialBus resources in the ACPI-device's
2501  * resource-list; or a negative error code.
2502  */
2503 int acpi_spi_count_resources(struct acpi_device *adev)
2504 {
2505 	LIST_HEAD(r);
2506 	int count = 0;
2507 	int ret;
2508 
2509 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2510 	if (ret < 0)
2511 		return ret;
2512 
2513 	acpi_dev_free_resource_list(&r);
2514 
2515 	return count;
2516 }
2517 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2518 
2519 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2520 					    struct acpi_spi_lookup *lookup)
2521 {
2522 	const union acpi_object *obj;
2523 
2524 	if (!x86_apple_machine)
2525 		return;
2526 
2527 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2528 	    && obj->buffer.length >= 4)
2529 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2530 
2531 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2532 	    && obj->buffer.length == 8)
2533 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2534 
2535 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2536 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2537 		lookup->mode |= SPI_LSB_FIRST;
2538 
2539 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2540 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2541 		lookup->mode |= SPI_CPOL;
2542 
2543 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2544 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2545 		lookup->mode |= SPI_CPHA;
2546 }
2547 
2548 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2549 
2550 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2551 {
2552 	struct acpi_spi_lookup *lookup = data;
2553 	struct spi_controller *ctlr = lookup->ctlr;
2554 
2555 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2556 		struct acpi_resource_spi_serialbus *sb;
2557 		acpi_handle parent_handle;
2558 		acpi_status status;
2559 
2560 		sb = &ares->data.spi_serial_bus;
2561 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2562 
2563 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2564 				return 1;
2565 
2566 			status = acpi_get_handle(NULL,
2567 						 sb->resource_source.string_ptr,
2568 						 &parent_handle);
2569 
2570 			if (ACPI_FAILURE(status))
2571 				return -ENODEV;
2572 
2573 			if (ctlr) {
2574 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2575 					return -ENODEV;
2576 			} else {
2577 				struct acpi_device *adev;
2578 
2579 				adev = acpi_fetch_acpi_dev(parent_handle);
2580 				if (!adev)
2581 					return -ENODEV;
2582 
2583 				ctlr = acpi_spi_find_controller_by_adev(adev);
2584 				if (!ctlr)
2585 					return -EPROBE_DEFER;
2586 
2587 				lookup->ctlr = ctlr;
2588 			}
2589 
2590 			/*
2591 			 * ACPI DeviceSelection numbering is handled by the
2592 			 * host controller driver in Windows and can vary
2593 			 * from driver to driver. In Linux we always expect
2594 			 * 0 .. max - 1 so we need to ask the driver to
2595 			 * translate between the two schemes.
2596 			 */
2597 			if (ctlr->fw_translate_cs) {
2598 				int cs = ctlr->fw_translate_cs(ctlr,
2599 						sb->device_selection);
2600 				if (cs < 0)
2601 					return cs;
2602 				lookup->chip_select = cs;
2603 			} else {
2604 				lookup->chip_select = sb->device_selection;
2605 			}
2606 
2607 			lookup->max_speed_hz = sb->connection_speed;
2608 			lookup->bits_per_word = sb->data_bit_length;
2609 
2610 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2611 				lookup->mode |= SPI_CPHA;
2612 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2613 				lookup->mode |= SPI_CPOL;
2614 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2615 				lookup->mode |= SPI_CS_HIGH;
2616 		}
2617 	} else if (lookup->irq < 0) {
2618 		struct resource r;
2619 
2620 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2621 			lookup->irq = r.start;
2622 	}
2623 
2624 	/* Always tell the ACPI core to skip this resource */
2625 	return 1;
2626 }
2627 
2628 /**
2629  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2630  * @ctlr: controller to which the spi device belongs
2631  * @adev: ACPI Device for the spi device
2632  * @index: Index of the spi resource inside the ACPI Node
2633  *
2634  * This should be used to allocate a new SPI device from and ACPI Device node.
2635  * The caller is responsible for calling spi_add_device to register the SPI device.
2636  *
2637  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2638  * using the resource.
2639  * If index is set to -1, index is not used.
2640  * Note: If index is -1, ctlr must be set.
2641  *
2642  * Return: a pointer to the new device, or ERR_PTR on error.
2643  */
2644 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2645 					 struct acpi_device *adev,
2646 					 int index)
2647 {
2648 	acpi_handle parent_handle = NULL;
2649 	struct list_head resource_list;
2650 	struct acpi_spi_lookup lookup = {};
2651 	struct spi_device *spi;
2652 	int ret;
2653 
2654 	if (!ctlr && index == -1)
2655 		return ERR_PTR(-EINVAL);
2656 
2657 	lookup.ctlr		= ctlr;
2658 	lookup.irq		= -1;
2659 	lookup.index		= index;
2660 	lookup.n		= 0;
2661 
2662 	INIT_LIST_HEAD(&resource_list);
2663 	ret = acpi_dev_get_resources(adev, &resource_list,
2664 				     acpi_spi_add_resource, &lookup);
2665 	acpi_dev_free_resource_list(&resource_list);
2666 
2667 	if (ret < 0)
2668 		/* Found SPI in _CRS but it points to another controller */
2669 		return ERR_PTR(ret);
2670 
2671 	if (!lookup.max_speed_hz &&
2672 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2673 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2674 		/* Apple does not use _CRS but nested devices for SPI slaves */
2675 		acpi_spi_parse_apple_properties(adev, &lookup);
2676 	}
2677 
2678 	if (!lookup.max_speed_hz)
2679 		return ERR_PTR(-ENODEV);
2680 
2681 	spi = spi_alloc_device(lookup.ctlr);
2682 	if (!spi) {
2683 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2684 			dev_name(&adev->dev));
2685 		return ERR_PTR(-ENOMEM);
2686 	}
2687 
2688 	ACPI_COMPANION_SET(&spi->dev, adev);
2689 	spi->max_speed_hz	= lookup.max_speed_hz;
2690 	spi->mode		|= lookup.mode;
2691 	spi->irq		= lookup.irq;
2692 	spi->bits_per_word	= lookup.bits_per_word;
2693 	spi_set_chipselect(spi, 0, lookup.chip_select);
2694 
2695 	return spi;
2696 }
2697 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2698 
2699 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2700 					    struct acpi_device *adev)
2701 {
2702 	struct spi_device *spi;
2703 
2704 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2705 	    acpi_device_enumerated(adev))
2706 		return AE_OK;
2707 
2708 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2709 	if (IS_ERR(spi)) {
2710 		if (PTR_ERR(spi) == -ENOMEM)
2711 			return AE_NO_MEMORY;
2712 		else
2713 			return AE_OK;
2714 	}
2715 
2716 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2717 			  sizeof(spi->modalias));
2718 
2719 	acpi_device_set_enumerated(adev);
2720 
2721 	adev->power.flags.ignore_parent = true;
2722 	if (spi_add_device(spi)) {
2723 		adev->power.flags.ignore_parent = false;
2724 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2725 			dev_name(&adev->dev));
2726 		spi_dev_put(spi);
2727 	}
2728 
2729 	return AE_OK;
2730 }
2731 
2732 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2733 				       void *data, void **return_value)
2734 {
2735 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2736 	struct spi_controller *ctlr = data;
2737 
2738 	if (!adev)
2739 		return AE_OK;
2740 
2741 	return acpi_register_spi_device(ctlr, adev);
2742 }
2743 
2744 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2745 
2746 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2747 {
2748 	acpi_status status;
2749 	acpi_handle handle;
2750 
2751 	handle = ACPI_HANDLE(ctlr->dev.parent);
2752 	if (!handle)
2753 		return;
2754 
2755 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2756 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2757 				     acpi_spi_add_device, NULL, ctlr, NULL);
2758 	if (ACPI_FAILURE(status))
2759 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2760 }
2761 #else
2762 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2763 #endif /* CONFIG_ACPI */
2764 
2765 static void spi_controller_release(struct device *dev)
2766 {
2767 	struct spi_controller *ctlr;
2768 
2769 	ctlr = container_of(dev, struct spi_controller, dev);
2770 	kfree(ctlr);
2771 }
2772 
2773 static struct class spi_master_class = {
2774 	.name		= "spi_master",
2775 	.dev_release	= spi_controller_release,
2776 	.dev_groups	= spi_master_groups,
2777 };
2778 
2779 #ifdef CONFIG_SPI_SLAVE
2780 /**
2781  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2782  *		     controller
2783  * @spi: device used for the current transfer
2784  */
2785 int spi_slave_abort(struct spi_device *spi)
2786 {
2787 	struct spi_controller *ctlr = spi->controller;
2788 
2789 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2790 		return ctlr->slave_abort(ctlr);
2791 
2792 	return -ENOTSUPP;
2793 }
2794 EXPORT_SYMBOL_GPL(spi_slave_abort);
2795 
2796 int spi_target_abort(struct spi_device *spi)
2797 {
2798 	struct spi_controller *ctlr = spi->controller;
2799 
2800 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2801 		return ctlr->target_abort(ctlr);
2802 
2803 	return -ENOTSUPP;
2804 }
2805 EXPORT_SYMBOL_GPL(spi_target_abort);
2806 
2807 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2808 			  char *buf)
2809 {
2810 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2811 						   dev);
2812 	struct device *child;
2813 
2814 	child = device_find_any_child(&ctlr->dev);
2815 	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2816 }
2817 
2818 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2819 			   const char *buf, size_t count)
2820 {
2821 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2822 						   dev);
2823 	struct spi_device *spi;
2824 	struct device *child;
2825 	char name[32];
2826 	int rc;
2827 
2828 	rc = sscanf(buf, "%31s", name);
2829 	if (rc != 1 || !name[0])
2830 		return -EINVAL;
2831 
2832 	child = device_find_any_child(&ctlr->dev);
2833 	if (child) {
2834 		/* Remove registered slave */
2835 		device_unregister(child);
2836 		put_device(child);
2837 	}
2838 
2839 	if (strcmp(name, "(null)")) {
2840 		/* Register new slave */
2841 		spi = spi_alloc_device(ctlr);
2842 		if (!spi)
2843 			return -ENOMEM;
2844 
2845 		strscpy(spi->modalias, name, sizeof(spi->modalias));
2846 
2847 		rc = spi_add_device(spi);
2848 		if (rc) {
2849 			spi_dev_put(spi);
2850 			return rc;
2851 		}
2852 	}
2853 
2854 	return count;
2855 }
2856 
2857 static DEVICE_ATTR_RW(slave);
2858 
2859 static struct attribute *spi_slave_attrs[] = {
2860 	&dev_attr_slave.attr,
2861 	NULL,
2862 };
2863 
2864 static const struct attribute_group spi_slave_group = {
2865 	.attrs = spi_slave_attrs,
2866 };
2867 
2868 static const struct attribute_group *spi_slave_groups[] = {
2869 	&spi_controller_statistics_group,
2870 	&spi_slave_group,
2871 	NULL,
2872 };
2873 
2874 static struct class spi_slave_class = {
2875 	.name		= "spi_slave",
2876 	.dev_release	= spi_controller_release,
2877 	.dev_groups	= spi_slave_groups,
2878 };
2879 #else
2880 extern struct class spi_slave_class;	/* dummy */
2881 #endif
2882 
2883 /**
2884  * __spi_alloc_controller - allocate an SPI master or slave controller
2885  * @dev: the controller, possibly using the platform_bus
2886  * @size: how much zeroed driver-private data to allocate; the pointer to this
2887  *	memory is in the driver_data field of the returned device, accessible
2888  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2889  *	drivers granting DMA access to portions of their private data need to
2890  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2891  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2892  *	slave (true) controller
2893  * Context: can sleep
2894  *
2895  * This call is used only by SPI controller drivers, which are the
2896  * only ones directly touching chip registers.  It's how they allocate
2897  * an spi_controller structure, prior to calling spi_register_controller().
2898  *
2899  * This must be called from context that can sleep.
2900  *
2901  * The caller is responsible for assigning the bus number and initializing the
2902  * controller's methods before calling spi_register_controller(); and (after
2903  * errors adding the device) calling spi_controller_put() to prevent a memory
2904  * leak.
2905  *
2906  * Return: the SPI controller structure on success, else NULL.
2907  */
2908 struct spi_controller *__spi_alloc_controller(struct device *dev,
2909 					      unsigned int size, bool slave)
2910 {
2911 	struct spi_controller	*ctlr;
2912 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2913 
2914 	if (!dev)
2915 		return NULL;
2916 
2917 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2918 	if (!ctlr)
2919 		return NULL;
2920 
2921 	device_initialize(&ctlr->dev);
2922 	INIT_LIST_HEAD(&ctlr->queue);
2923 	spin_lock_init(&ctlr->queue_lock);
2924 	spin_lock_init(&ctlr->bus_lock_spinlock);
2925 	mutex_init(&ctlr->bus_lock_mutex);
2926 	mutex_init(&ctlr->io_mutex);
2927 	mutex_init(&ctlr->add_lock);
2928 	ctlr->bus_num = -1;
2929 	ctlr->num_chipselect = 1;
2930 	ctlr->slave = slave;
2931 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2932 		ctlr->dev.class = &spi_slave_class;
2933 	else
2934 		ctlr->dev.class = &spi_master_class;
2935 	ctlr->dev.parent = dev;
2936 	pm_suspend_ignore_children(&ctlr->dev, true);
2937 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2938 
2939 	return ctlr;
2940 }
2941 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2942 
2943 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2944 {
2945 	spi_controller_put(*(struct spi_controller **)ctlr);
2946 }
2947 
2948 /**
2949  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2950  * @dev: physical device of SPI controller
2951  * @size: how much zeroed driver-private data to allocate
2952  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2953  * Context: can sleep
2954  *
2955  * Allocate an SPI controller and automatically release a reference on it
2956  * when @dev is unbound from its driver.  Drivers are thus relieved from
2957  * having to call spi_controller_put().
2958  *
2959  * The arguments to this function are identical to __spi_alloc_controller().
2960  *
2961  * Return: the SPI controller structure on success, else NULL.
2962  */
2963 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2964 						   unsigned int size,
2965 						   bool slave)
2966 {
2967 	struct spi_controller **ptr, *ctlr;
2968 
2969 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2970 			   GFP_KERNEL);
2971 	if (!ptr)
2972 		return NULL;
2973 
2974 	ctlr = __spi_alloc_controller(dev, size, slave);
2975 	if (ctlr) {
2976 		ctlr->devm_allocated = true;
2977 		*ptr = ctlr;
2978 		devres_add(dev, ptr);
2979 	} else {
2980 		devres_free(ptr);
2981 	}
2982 
2983 	return ctlr;
2984 }
2985 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2986 
2987 /**
2988  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2989  * @ctlr: The SPI master to grab GPIO descriptors for
2990  */
2991 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2992 {
2993 	int nb, i;
2994 	struct gpio_desc **cs;
2995 	struct device *dev = &ctlr->dev;
2996 	unsigned long native_cs_mask = 0;
2997 	unsigned int num_cs_gpios = 0;
2998 
2999 	nb = gpiod_count(dev, "cs");
3000 	if (nb < 0) {
3001 		/* No GPIOs at all is fine, else return the error */
3002 		if (nb == -ENOENT)
3003 			return 0;
3004 		return nb;
3005 	}
3006 
3007 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3008 
3009 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3010 			  GFP_KERNEL);
3011 	if (!cs)
3012 		return -ENOMEM;
3013 	ctlr->cs_gpiods = cs;
3014 
3015 	for (i = 0; i < nb; i++) {
3016 		/*
3017 		 * Most chipselects are active low, the inverted
3018 		 * semantics are handled by special quirks in gpiolib,
3019 		 * so initializing them GPIOD_OUT_LOW here means
3020 		 * "unasserted", in most cases this will drive the physical
3021 		 * line high.
3022 		 */
3023 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3024 						      GPIOD_OUT_LOW);
3025 		if (IS_ERR(cs[i]))
3026 			return PTR_ERR(cs[i]);
3027 
3028 		if (cs[i]) {
3029 			/*
3030 			 * If we find a CS GPIO, name it after the device and
3031 			 * chip select line.
3032 			 */
3033 			char *gpioname;
3034 
3035 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3036 						  dev_name(dev), i);
3037 			if (!gpioname)
3038 				return -ENOMEM;
3039 			gpiod_set_consumer_name(cs[i], gpioname);
3040 			num_cs_gpios++;
3041 			continue;
3042 		}
3043 
3044 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3045 			dev_err(dev, "Invalid native chip select %d\n", i);
3046 			return -EINVAL;
3047 		}
3048 		native_cs_mask |= BIT(i);
3049 	}
3050 
3051 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3052 
3053 	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3054 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3055 		dev_err(dev, "No unused native chip select available\n");
3056 		return -EINVAL;
3057 	}
3058 
3059 	return 0;
3060 }
3061 
3062 static int spi_controller_check_ops(struct spi_controller *ctlr)
3063 {
3064 	/*
3065 	 * The controller may implement only the high-level SPI-memory like
3066 	 * operations if it does not support regular SPI transfers, and this is
3067 	 * valid use case.
3068 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3069 	 * one of the ->transfer_xxx() method be implemented.
3070 	 */
3071 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3072 		if (!ctlr->transfer && !ctlr->transfer_one &&
3073 		   !ctlr->transfer_one_message) {
3074 			return -EINVAL;
3075 		}
3076 	}
3077 
3078 	return 0;
3079 }
3080 
3081 /* Allocate dynamic bus number using Linux idr */
3082 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3083 {
3084 	int id;
3085 
3086 	mutex_lock(&board_lock);
3087 	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3088 	mutex_unlock(&board_lock);
3089 	if (WARN(id < 0, "couldn't get idr"))
3090 		return id == -ENOSPC ? -EBUSY : id;
3091 	ctlr->bus_num = id;
3092 	return 0;
3093 }
3094 
3095 /**
3096  * spi_register_controller - register SPI master or slave controller
3097  * @ctlr: initialized master, originally from spi_alloc_master() or
3098  *	spi_alloc_slave()
3099  * Context: can sleep
3100  *
3101  * SPI controllers connect to their drivers using some non-SPI bus,
3102  * such as the platform bus.  The final stage of probe() in that code
3103  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3104  *
3105  * SPI controllers use board specific (often SOC specific) bus numbers,
3106  * and board-specific addressing for SPI devices combines those numbers
3107  * with chip select numbers.  Since SPI does not directly support dynamic
3108  * device identification, boards need configuration tables telling which
3109  * chip is at which address.
3110  *
3111  * This must be called from context that can sleep.  It returns zero on
3112  * success, else a negative error code (dropping the controller's refcount).
3113  * After a successful return, the caller is responsible for calling
3114  * spi_unregister_controller().
3115  *
3116  * Return: zero on success, else a negative error code.
3117  */
3118 int spi_register_controller(struct spi_controller *ctlr)
3119 {
3120 	struct device		*dev = ctlr->dev.parent;
3121 	struct boardinfo	*bi;
3122 	int			first_dynamic;
3123 	int			status;
3124 
3125 	if (!dev)
3126 		return -ENODEV;
3127 
3128 	/*
3129 	 * Make sure all necessary hooks are implemented before registering
3130 	 * the SPI controller.
3131 	 */
3132 	status = spi_controller_check_ops(ctlr);
3133 	if (status)
3134 		return status;
3135 
3136 	if (ctlr->bus_num < 0)
3137 		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3138 	if (ctlr->bus_num >= 0) {
3139 		/* Devices with a fixed bus num must check-in with the num */
3140 		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3141 		if (status)
3142 			return status;
3143 	}
3144 	if (ctlr->bus_num < 0) {
3145 		first_dynamic = of_alias_get_highest_id("spi");
3146 		if (first_dynamic < 0)
3147 			first_dynamic = 0;
3148 		else
3149 			first_dynamic++;
3150 
3151 		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3152 		if (status)
3153 			return status;
3154 	}
3155 	ctlr->bus_lock_flag = 0;
3156 	init_completion(&ctlr->xfer_completion);
3157 	init_completion(&ctlr->cur_msg_completion);
3158 	if (!ctlr->max_dma_len)
3159 		ctlr->max_dma_len = INT_MAX;
3160 
3161 	/*
3162 	 * Register the device, then userspace will see it.
3163 	 * Registration fails if the bus ID is in use.
3164 	 */
3165 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3166 
3167 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3168 		status = spi_get_gpio_descs(ctlr);
3169 		if (status)
3170 			goto free_bus_id;
3171 		/*
3172 		 * A controller using GPIO descriptors always
3173 		 * supports SPI_CS_HIGH if need be.
3174 		 */
3175 		ctlr->mode_bits |= SPI_CS_HIGH;
3176 	}
3177 
3178 	/*
3179 	 * Even if it's just one always-selected device, there must
3180 	 * be at least one chipselect.
3181 	 */
3182 	if (!ctlr->num_chipselect) {
3183 		status = -EINVAL;
3184 		goto free_bus_id;
3185 	}
3186 
3187 	/* Setting last_cs to -1 means no chip selected */
3188 	ctlr->last_cs = -1;
3189 
3190 	status = device_add(&ctlr->dev);
3191 	if (status < 0)
3192 		goto free_bus_id;
3193 	dev_dbg(dev, "registered %s %s\n",
3194 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3195 			dev_name(&ctlr->dev));
3196 
3197 	/*
3198 	 * If we're using a queued driver, start the queue. Note that we don't
3199 	 * need the queueing logic if the driver is only supporting high-level
3200 	 * memory operations.
3201 	 */
3202 	if (ctlr->transfer) {
3203 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3204 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3205 		status = spi_controller_initialize_queue(ctlr);
3206 		if (status) {
3207 			device_del(&ctlr->dev);
3208 			goto free_bus_id;
3209 		}
3210 	}
3211 	/* Add statistics */
3212 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3213 	if (!ctlr->pcpu_statistics) {
3214 		dev_err(dev, "Error allocating per-cpu statistics\n");
3215 		status = -ENOMEM;
3216 		goto destroy_queue;
3217 	}
3218 
3219 	mutex_lock(&board_lock);
3220 	list_add_tail(&ctlr->list, &spi_controller_list);
3221 	list_for_each_entry(bi, &board_list, list)
3222 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3223 	mutex_unlock(&board_lock);
3224 
3225 	/* Register devices from the device tree and ACPI */
3226 	of_register_spi_devices(ctlr);
3227 	acpi_register_spi_devices(ctlr);
3228 	return status;
3229 
3230 destroy_queue:
3231 	spi_destroy_queue(ctlr);
3232 free_bus_id:
3233 	mutex_lock(&board_lock);
3234 	idr_remove(&spi_master_idr, ctlr->bus_num);
3235 	mutex_unlock(&board_lock);
3236 	return status;
3237 }
3238 EXPORT_SYMBOL_GPL(spi_register_controller);
3239 
3240 static void devm_spi_unregister(struct device *dev, void *res)
3241 {
3242 	spi_unregister_controller(*(struct spi_controller **)res);
3243 }
3244 
3245 /**
3246  * devm_spi_register_controller - register managed SPI master or slave
3247  *	controller
3248  * @dev:    device managing SPI controller
3249  * @ctlr: initialized controller, originally from spi_alloc_master() or
3250  *	spi_alloc_slave()
3251  * Context: can sleep
3252  *
3253  * Register a SPI device as with spi_register_controller() which will
3254  * automatically be unregistered and freed.
3255  *
3256  * Return: zero on success, else a negative error code.
3257  */
3258 int devm_spi_register_controller(struct device *dev,
3259 				 struct spi_controller *ctlr)
3260 {
3261 	struct spi_controller **ptr;
3262 	int ret;
3263 
3264 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3265 	if (!ptr)
3266 		return -ENOMEM;
3267 
3268 	ret = spi_register_controller(ctlr);
3269 	if (!ret) {
3270 		*ptr = ctlr;
3271 		devres_add(dev, ptr);
3272 	} else {
3273 		devres_free(ptr);
3274 	}
3275 
3276 	return ret;
3277 }
3278 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3279 
3280 static int __unregister(struct device *dev, void *null)
3281 {
3282 	spi_unregister_device(to_spi_device(dev));
3283 	return 0;
3284 }
3285 
3286 /**
3287  * spi_unregister_controller - unregister SPI master or slave controller
3288  * @ctlr: the controller being unregistered
3289  * Context: can sleep
3290  *
3291  * This call is used only by SPI controller drivers, which are the
3292  * only ones directly touching chip registers.
3293  *
3294  * This must be called from context that can sleep.
3295  *
3296  * Note that this function also drops a reference to the controller.
3297  */
3298 void spi_unregister_controller(struct spi_controller *ctlr)
3299 {
3300 	struct spi_controller *found;
3301 	int id = ctlr->bus_num;
3302 
3303 	/* Prevent addition of new devices, unregister existing ones */
3304 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3305 		mutex_lock(&ctlr->add_lock);
3306 
3307 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3308 
3309 	/* First make sure that this controller was ever added */
3310 	mutex_lock(&board_lock);
3311 	found = idr_find(&spi_master_idr, id);
3312 	mutex_unlock(&board_lock);
3313 	if (ctlr->queued) {
3314 		if (spi_destroy_queue(ctlr))
3315 			dev_err(&ctlr->dev, "queue remove failed\n");
3316 	}
3317 	mutex_lock(&board_lock);
3318 	list_del(&ctlr->list);
3319 	mutex_unlock(&board_lock);
3320 
3321 	device_del(&ctlr->dev);
3322 
3323 	/* Free bus id */
3324 	mutex_lock(&board_lock);
3325 	if (found == ctlr)
3326 		idr_remove(&spi_master_idr, id);
3327 	mutex_unlock(&board_lock);
3328 
3329 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3330 		mutex_unlock(&ctlr->add_lock);
3331 
3332 	/*
3333 	 * Release the last reference on the controller if its driver
3334 	 * has not yet been converted to devm_spi_alloc_master/slave().
3335 	 */
3336 	if (!ctlr->devm_allocated)
3337 		put_device(&ctlr->dev);
3338 }
3339 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3340 
3341 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3342 {
3343 	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3344 }
3345 
3346 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3347 {
3348 	mutex_lock(&ctlr->bus_lock_mutex);
3349 	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3350 	mutex_unlock(&ctlr->bus_lock_mutex);
3351 }
3352 
3353 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3354 {
3355 	mutex_lock(&ctlr->bus_lock_mutex);
3356 	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3357 	mutex_unlock(&ctlr->bus_lock_mutex);
3358 }
3359 
3360 int spi_controller_suspend(struct spi_controller *ctlr)
3361 {
3362 	int ret = 0;
3363 
3364 	/* Basically no-ops for non-queued controllers */
3365 	if (ctlr->queued) {
3366 		ret = spi_stop_queue(ctlr);
3367 		if (ret)
3368 			dev_err(&ctlr->dev, "queue stop failed\n");
3369 	}
3370 
3371 	__spi_mark_suspended(ctlr);
3372 	return ret;
3373 }
3374 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3375 
3376 int spi_controller_resume(struct spi_controller *ctlr)
3377 {
3378 	int ret = 0;
3379 
3380 	__spi_mark_resumed(ctlr);
3381 
3382 	if (ctlr->queued) {
3383 		ret = spi_start_queue(ctlr);
3384 		if (ret)
3385 			dev_err(&ctlr->dev, "queue restart failed\n");
3386 	}
3387 	return ret;
3388 }
3389 EXPORT_SYMBOL_GPL(spi_controller_resume);
3390 
3391 /*-------------------------------------------------------------------------*/
3392 
3393 /* Core methods for spi_message alterations */
3394 
3395 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3396 					    struct spi_message *msg,
3397 					    void *res)
3398 {
3399 	struct spi_replaced_transfers *rxfer = res;
3400 	size_t i;
3401 
3402 	/* Call extra callback if requested */
3403 	if (rxfer->release)
3404 		rxfer->release(ctlr, msg, res);
3405 
3406 	/* Insert replaced transfers back into the message */
3407 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3408 
3409 	/* Remove the formerly inserted entries */
3410 	for (i = 0; i < rxfer->inserted; i++)
3411 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3412 }
3413 
3414 /**
3415  * spi_replace_transfers - replace transfers with several transfers
3416  *                         and register change with spi_message.resources
3417  * @msg:           the spi_message we work upon
3418  * @xfer_first:    the first spi_transfer we want to replace
3419  * @remove:        number of transfers to remove
3420  * @insert:        the number of transfers we want to insert instead
3421  * @release:       extra release code necessary in some circumstances
3422  * @extradatasize: extra data to allocate (with alignment guarantees
3423  *                 of struct @spi_transfer)
3424  * @gfp:           gfp flags
3425  *
3426  * Returns: pointer to @spi_replaced_transfers,
3427  *          PTR_ERR(...) in case of errors.
3428  */
3429 static struct spi_replaced_transfers *spi_replace_transfers(
3430 	struct spi_message *msg,
3431 	struct spi_transfer *xfer_first,
3432 	size_t remove,
3433 	size_t insert,
3434 	spi_replaced_release_t release,
3435 	size_t extradatasize,
3436 	gfp_t gfp)
3437 {
3438 	struct spi_replaced_transfers *rxfer;
3439 	struct spi_transfer *xfer;
3440 	size_t i;
3441 
3442 	/* Allocate the structure using spi_res */
3443 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3444 			      struct_size(rxfer, inserted_transfers, insert)
3445 			      + extradatasize,
3446 			      gfp);
3447 	if (!rxfer)
3448 		return ERR_PTR(-ENOMEM);
3449 
3450 	/* The release code to invoke before running the generic release */
3451 	rxfer->release = release;
3452 
3453 	/* Assign extradata */
3454 	if (extradatasize)
3455 		rxfer->extradata =
3456 			&rxfer->inserted_transfers[insert];
3457 
3458 	/* Init the replaced_transfers list */
3459 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3460 
3461 	/*
3462 	 * Assign the list_entry after which we should reinsert
3463 	 * the @replaced_transfers - it may be spi_message.messages!
3464 	 */
3465 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3466 
3467 	/* Remove the requested number of transfers */
3468 	for (i = 0; i < remove; i++) {
3469 		/*
3470 		 * If the entry after replaced_after it is msg->transfers
3471 		 * then we have been requested to remove more transfers
3472 		 * than are in the list.
3473 		 */
3474 		if (rxfer->replaced_after->next == &msg->transfers) {
3475 			dev_err(&msg->spi->dev,
3476 				"requested to remove more spi_transfers than are available\n");
3477 			/* Insert replaced transfers back into the message */
3478 			list_splice(&rxfer->replaced_transfers,
3479 				    rxfer->replaced_after);
3480 
3481 			/* Free the spi_replace_transfer structure... */
3482 			spi_res_free(rxfer);
3483 
3484 			/* ...and return with an error */
3485 			return ERR_PTR(-EINVAL);
3486 		}
3487 
3488 		/*
3489 		 * Remove the entry after replaced_after from list of
3490 		 * transfers and add it to list of replaced_transfers.
3491 		 */
3492 		list_move_tail(rxfer->replaced_after->next,
3493 			       &rxfer->replaced_transfers);
3494 	}
3495 
3496 	/*
3497 	 * Create copy of the given xfer with identical settings
3498 	 * based on the first transfer to get removed.
3499 	 */
3500 	for (i = 0; i < insert; i++) {
3501 		/* We need to run in reverse order */
3502 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3503 
3504 		/* Copy all spi_transfer data */
3505 		memcpy(xfer, xfer_first, sizeof(*xfer));
3506 
3507 		/* Add to list */
3508 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3509 
3510 		/* Clear cs_change and delay for all but the last */
3511 		if (i) {
3512 			xfer->cs_change = false;
3513 			xfer->delay.value = 0;
3514 		}
3515 	}
3516 
3517 	/* Set up inserted... */
3518 	rxfer->inserted = insert;
3519 
3520 	/* ...and register it with spi_res/spi_message */
3521 	spi_res_add(msg, rxfer);
3522 
3523 	return rxfer;
3524 }
3525 
3526 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3527 					struct spi_message *msg,
3528 					struct spi_transfer **xferp,
3529 					size_t maxsize,
3530 					gfp_t gfp)
3531 {
3532 	struct spi_transfer *xfer = *xferp, *xfers;
3533 	struct spi_replaced_transfers *srt;
3534 	size_t offset;
3535 	size_t count, i;
3536 
3537 	/* Calculate how many we have to replace */
3538 	count = DIV_ROUND_UP(xfer->len, maxsize);
3539 
3540 	/* Create replacement */
3541 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3542 	if (IS_ERR(srt))
3543 		return PTR_ERR(srt);
3544 	xfers = srt->inserted_transfers;
3545 
3546 	/*
3547 	 * Now handle each of those newly inserted spi_transfers.
3548 	 * Note that the replacements spi_transfers all are preset
3549 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3550 	 * are all identical (as well as most others)
3551 	 * so we just have to fix up len and the pointers.
3552 	 *
3553 	 * This also includes support for the depreciated
3554 	 * spi_message.is_dma_mapped interface.
3555 	 */
3556 
3557 	/*
3558 	 * The first transfer just needs the length modified, so we
3559 	 * run it outside the loop.
3560 	 */
3561 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3562 
3563 	/* All the others need rx_buf/tx_buf also set */
3564 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3565 		/* Update rx_buf, tx_buf and DMA */
3566 		if (xfers[i].rx_buf)
3567 			xfers[i].rx_buf += offset;
3568 		if (xfers[i].rx_dma)
3569 			xfers[i].rx_dma += offset;
3570 		if (xfers[i].tx_buf)
3571 			xfers[i].tx_buf += offset;
3572 		if (xfers[i].tx_dma)
3573 			xfers[i].tx_dma += offset;
3574 
3575 		/* Update length */
3576 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3577 	}
3578 
3579 	/*
3580 	 * We set up xferp to the last entry we have inserted,
3581 	 * so that we skip those already split transfers.
3582 	 */
3583 	*xferp = &xfers[count - 1];
3584 
3585 	/* Increment statistics counters */
3586 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3587 				       transfers_split_maxsize);
3588 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3589 				       transfers_split_maxsize);
3590 
3591 	return 0;
3592 }
3593 
3594 /**
3595  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3596  *                               when an individual transfer exceeds a
3597  *                               certain size
3598  * @ctlr:    the @spi_controller for this transfer
3599  * @msg:   the @spi_message to transform
3600  * @maxsize:  the maximum when to apply this
3601  * @gfp: GFP allocation flags
3602  *
3603  * Return: status of transformation
3604  */
3605 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3606 				struct spi_message *msg,
3607 				size_t maxsize,
3608 				gfp_t gfp)
3609 {
3610 	struct spi_transfer *xfer;
3611 	int ret;
3612 
3613 	/*
3614 	 * Iterate over the transfer_list,
3615 	 * but note that xfer is advanced to the last transfer inserted
3616 	 * to avoid checking sizes again unnecessarily (also xfer does
3617 	 * potentially belong to a different list by the time the
3618 	 * replacement has happened).
3619 	 */
3620 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3621 		if (xfer->len > maxsize) {
3622 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3623 							   maxsize, gfp);
3624 			if (ret)
3625 				return ret;
3626 		}
3627 	}
3628 
3629 	return 0;
3630 }
3631 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3632 
3633 
3634 /**
3635  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3636  *                                when an individual transfer exceeds a
3637  *                                certain number of SPI words
3638  * @ctlr:     the @spi_controller for this transfer
3639  * @msg:      the @spi_message to transform
3640  * @maxwords: the number of words to limit each transfer to
3641  * @gfp:      GFP allocation flags
3642  *
3643  * Return: status of transformation
3644  */
3645 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3646 				 struct spi_message *msg,
3647 				 size_t maxwords,
3648 				 gfp_t gfp)
3649 {
3650 	struct spi_transfer *xfer;
3651 
3652 	/*
3653 	 * Iterate over the transfer_list,
3654 	 * but note that xfer is advanced to the last transfer inserted
3655 	 * to avoid checking sizes again unnecessarily (also xfer does
3656 	 * potentially belong to a different list by the time the
3657 	 * replacement has happened).
3658 	 */
3659 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3660 		size_t maxsize;
3661 		int ret;
3662 
3663 		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3664 		if (xfer->len > maxsize) {
3665 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3666 							   maxsize, gfp);
3667 			if (ret)
3668 				return ret;
3669 		}
3670 	}
3671 
3672 	return 0;
3673 }
3674 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3675 
3676 /*-------------------------------------------------------------------------*/
3677 
3678 /*
3679  * Core methods for SPI controller protocol drivers. Some of the
3680  * other core methods are currently defined as inline functions.
3681  */
3682 
3683 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3684 					u8 bits_per_word)
3685 {
3686 	if (ctlr->bits_per_word_mask) {
3687 		/* Only 32 bits fit in the mask */
3688 		if (bits_per_word > 32)
3689 			return -EINVAL;
3690 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3691 			return -EINVAL;
3692 	}
3693 
3694 	return 0;
3695 }
3696 
3697 /**
3698  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3699  * @spi: the device that requires specific CS timing configuration
3700  *
3701  * Return: zero on success, else a negative error code.
3702  */
3703 static int spi_set_cs_timing(struct spi_device *spi)
3704 {
3705 	struct device *parent = spi->controller->dev.parent;
3706 	int status = 0;
3707 
3708 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3709 		if (spi->controller->auto_runtime_pm) {
3710 			status = pm_runtime_get_sync(parent);
3711 			if (status < 0) {
3712 				pm_runtime_put_noidle(parent);
3713 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3714 					status);
3715 				return status;
3716 			}
3717 
3718 			status = spi->controller->set_cs_timing(spi);
3719 			pm_runtime_mark_last_busy(parent);
3720 			pm_runtime_put_autosuspend(parent);
3721 		} else {
3722 			status = spi->controller->set_cs_timing(spi);
3723 		}
3724 	}
3725 	return status;
3726 }
3727 
3728 /**
3729  * spi_setup - setup SPI mode and clock rate
3730  * @spi: the device whose settings are being modified
3731  * Context: can sleep, and no requests are queued to the device
3732  *
3733  * SPI protocol drivers may need to update the transfer mode if the
3734  * device doesn't work with its default.  They may likewise need
3735  * to update clock rates or word sizes from initial values.  This function
3736  * changes those settings, and must be called from a context that can sleep.
3737  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3738  * effect the next time the device is selected and data is transferred to
3739  * or from it.  When this function returns, the SPI device is deselected.
3740  *
3741  * Note that this call will fail if the protocol driver specifies an option
3742  * that the underlying controller or its driver does not support.  For
3743  * example, not all hardware supports wire transfers using nine bit words,
3744  * LSB-first wire encoding, or active-high chipselects.
3745  *
3746  * Return: zero on success, else a negative error code.
3747  */
3748 int spi_setup(struct spi_device *spi)
3749 {
3750 	unsigned	bad_bits, ugly_bits;
3751 	int		status = 0;
3752 
3753 	/*
3754 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3755 	 * are set at the same time.
3756 	 */
3757 	if ((hweight_long(spi->mode &
3758 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3759 	    (hweight_long(spi->mode &
3760 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3761 		dev_err(&spi->dev,
3762 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3763 		return -EINVAL;
3764 	}
3765 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3766 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3767 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3768 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3769 		return -EINVAL;
3770 	/*
3771 	 * Help drivers fail *cleanly* when they need options
3772 	 * that aren't supported with their current controller.
3773 	 * SPI_CS_WORD has a fallback software implementation,
3774 	 * so it is ignored here.
3775 	 */
3776 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3777 				 SPI_NO_TX | SPI_NO_RX);
3778 	ugly_bits = bad_bits &
3779 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3780 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3781 	if (ugly_bits) {
3782 		dev_warn(&spi->dev,
3783 			 "setup: ignoring unsupported mode bits %x\n",
3784 			 ugly_bits);
3785 		spi->mode &= ~ugly_bits;
3786 		bad_bits &= ~ugly_bits;
3787 	}
3788 	if (bad_bits) {
3789 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3790 			bad_bits);
3791 		return -EINVAL;
3792 	}
3793 
3794 	if (!spi->bits_per_word) {
3795 		spi->bits_per_word = 8;
3796 	} else {
3797 		/*
3798 		 * Some controllers may not support the default 8 bits-per-word
3799 		 * so only perform the check when this is explicitly provided.
3800 		 */
3801 		status = __spi_validate_bits_per_word(spi->controller,
3802 						      spi->bits_per_word);
3803 		if (status)
3804 			return status;
3805 	}
3806 
3807 	if (spi->controller->max_speed_hz &&
3808 	    (!spi->max_speed_hz ||
3809 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3810 		spi->max_speed_hz = spi->controller->max_speed_hz;
3811 
3812 	mutex_lock(&spi->controller->io_mutex);
3813 
3814 	if (spi->controller->setup) {
3815 		status = spi->controller->setup(spi);
3816 		if (status) {
3817 			mutex_unlock(&spi->controller->io_mutex);
3818 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3819 				status);
3820 			return status;
3821 		}
3822 	}
3823 
3824 	status = spi_set_cs_timing(spi);
3825 	if (status) {
3826 		mutex_unlock(&spi->controller->io_mutex);
3827 		return status;
3828 	}
3829 
3830 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3831 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3832 		if (status < 0) {
3833 			mutex_unlock(&spi->controller->io_mutex);
3834 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3835 				status);
3836 			return status;
3837 		}
3838 
3839 		/*
3840 		 * We do not want to return positive value from pm_runtime_get,
3841 		 * there are many instances of devices calling spi_setup() and
3842 		 * checking for a non-zero return value instead of a negative
3843 		 * return value.
3844 		 */
3845 		status = 0;
3846 
3847 		spi_set_cs(spi, false, true);
3848 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3849 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3850 	} else {
3851 		spi_set_cs(spi, false, true);
3852 	}
3853 
3854 	mutex_unlock(&spi->controller->io_mutex);
3855 
3856 	if (spi->rt && !spi->controller->rt) {
3857 		spi->controller->rt = true;
3858 		spi_set_thread_rt(spi->controller);
3859 	}
3860 
3861 	trace_spi_setup(spi, status);
3862 
3863 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3864 			spi->mode & SPI_MODE_X_MASK,
3865 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3866 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3867 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3868 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3869 			spi->bits_per_word, spi->max_speed_hz,
3870 			status);
3871 
3872 	return status;
3873 }
3874 EXPORT_SYMBOL_GPL(spi_setup);
3875 
3876 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3877 				       struct spi_device *spi)
3878 {
3879 	int delay1, delay2;
3880 
3881 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3882 	if (delay1 < 0)
3883 		return delay1;
3884 
3885 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3886 	if (delay2 < 0)
3887 		return delay2;
3888 
3889 	if (delay1 < delay2)
3890 		memcpy(&xfer->word_delay, &spi->word_delay,
3891 		       sizeof(xfer->word_delay));
3892 
3893 	return 0;
3894 }
3895 
3896 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3897 {
3898 	struct spi_controller *ctlr = spi->controller;
3899 	struct spi_transfer *xfer;
3900 	int w_size;
3901 
3902 	if (list_empty(&message->transfers))
3903 		return -EINVAL;
3904 
3905 	/*
3906 	 * If an SPI controller does not support toggling the CS line on each
3907 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3908 	 * for the CS line, we can emulate the CS-per-word hardware function by
3909 	 * splitting transfers into one-word transfers and ensuring that
3910 	 * cs_change is set for each transfer.
3911 	 */
3912 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3913 					  spi_get_csgpiod(spi, 0))) {
3914 		size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
3915 		int ret;
3916 
3917 		/* spi_split_transfers_maxsize() requires message->spi */
3918 		message->spi = spi;
3919 
3920 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3921 						  GFP_KERNEL);
3922 		if (ret)
3923 			return ret;
3924 
3925 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3926 			/* Don't change cs_change on the last entry in the list */
3927 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3928 				break;
3929 			xfer->cs_change = 1;
3930 		}
3931 	}
3932 
3933 	/*
3934 	 * Half-duplex links include original MicroWire, and ones with
3935 	 * only one data pin like SPI_3WIRE (switches direction) or where
3936 	 * either MOSI or MISO is missing.  They can also be caused by
3937 	 * software limitations.
3938 	 */
3939 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3940 	    (spi->mode & SPI_3WIRE)) {
3941 		unsigned flags = ctlr->flags;
3942 
3943 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3944 			if (xfer->rx_buf && xfer->tx_buf)
3945 				return -EINVAL;
3946 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3947 				return -EINVAL;
3948 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3949 				return -EINVAL;
3950 		}
3951 	}
3952 
3953 	/*
3954 	 * Set transfer bits_per_word and max speed as spi device default if
3955 	 * it is not set for this transfer.
3956 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3957 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3958 	 * Ensure transfer word_delay is at least as long as that required by
3959 	 * device itself.
3960 	 */
3961 	message->frame_length = 0;
3962 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3963 		xfer->effective_speed_hz = 0;
3964 		message->frame_length += xfer->len;
3965 		if (!xfer->bits_per_word)
3966 			xfer->bits_per_word = spi->bits_per_word;
3967 
3968 		if (!xfer->speed_hz)
3969 			xfer->speed_hz = spi->max_speed_hz;
3970 
3971 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3972 			xfer->speed_hz = ctlr->max_speed_hz;
3973 
3974 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3975 			return -EINVAL;
3976 
3977 		/*
3978 		 * SPI transfer length should be multiple of SPI word size
3979 		 * where SPI word size should be power-of-two multiple.
3980 		 */
3981 		if (xfer->bits_per_word <= 8)
3982 			w_size = 1;
3983 		else if (xfer->bits_per_word <= 16)
3984 			w_size = 2;
3985 		else
3986 			w_size = 4;
3987 
3988 		/* No partial transfers accepted */
3989 		if (xfer->len % w_size)
3990 			return -EINVAL;
3991 
3992 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3993 		    xfer->speed_hz < ctlr->min_speed_hz)
3994 			return -EINVAL;
3995 
3996 		if (xfer->tx_buf && !xfer->tx_nbits)
3997 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3998 		if (xfer->rx_buf && !xfer->rx_nbits)
3999 			xfer->rx_nbits = SPI_NBITS_SINGLE;
4000 		/*
4001 		 * Check transfer tx/rx_nbits:
4002 		 * 1. check the value matches one of single, dual and quad
4003 		 * 2. check tx/rx_nbits match the mode in spi_device
4004 		 */
4005 		if (xfer->tx_buf) {
4006 			if (spi->mode & SPI_NO_TX)
4007 				return -EINVAL;
4008 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4009 				xfer->tx_nbits != SPI_NBITS_DUAL &&
4010 				xfer->tx_nbits != SPI_NBITS_QUAD &&
4011 				xfer->tx_nbits != SPI_NBITS_OCTAL)
4012 				return -EINVAL;
4013 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4014 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4015 				return -EINVAL;
4016 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4017 				!(spi->mode & SPI_TX_QUAD))
4018 				return -EINVAL;
4019 		}
4020 		/* Check transfer rx_nbits */
4021 		if (xfer->rx_buf) {
4022 			if (spi->mode & SPI_NO_RX)
4023 				return -EINVAL;
4024 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4025 				xfer->rx_nbits != SPI_NBITS_DUAL &&
4026 				xfer->rx_nbits != SPI_NBITS_QUAD &&
4027 				xfer->rx_nbits != SPI_NBITS_OCTAL)
4028 				return -EINVAL;
4029 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4030 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4031 				return -EINVAL;
4032 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4033 				!(spi->mode & SPI_RX_QUAD))
4034 				return -EINVAL;
4035 		}
4036 
4037 		if (_spi_xfer_word_delay_update(xfer, spi))
4038 			return -EINVAL;
4039 	}
4040 
4041 	message->status = -EINPROGRESS;
4042 
4043 	return 0;
4044 }
4045 
4046 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4047 {
4048 	struct spi_controller *ctlr = spi->controller;
4049 	struct spi_transfer *xfer;
4050 
4051 	/*
4052 	 * Some controllers do not support doing regular SPI transfers. Return
4053 	 * ENOTSUPP when this is the case.
4054 	 */
4055 	if (!ctlr->transfer)
4056 		return -ENOTSUPP;
4057 
4058 	message->spi = spi;
4059 
4060 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4061 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4062 
4063 	trace_spi_message_submit(message);
4064 
4065 	if (!ctlr->ptp_sts_supported) {
4066 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4067 			xfer->ptp_sts_word_pre = 0;
4068 			ptp_read_system_prets(xfer->ptp_sts);
4069 		}
4070 	}
4071 
4072 	return ctlr->transfer(spi, message);
4073 }
4074 
4075 /**
4076  * spi_async - asynchronous SPI transfer
4077  * @spi: device with which data will be exchanged
4078  * @message: describes the data transfers, including completion callback
4079  * Context: any (IRQs may be blocked, etc)
4080  *
4081  * This call may be used in_irq and other contexts which can't sleep,
4082  * as well as from task contexts which can sleep.
4083  *
4084  * The completion callback is invoked in a context which can't sleep.
4085  * Before that invocation, the value of message->status is undefined.
4086  * When the callback is issued, message->status holds either zero (to
4087  * indicate complete success) or a negative error code.  After that
4088  * callback returns, the driver which issued the transfer request may
4089  * deallocate the associated memory; it's no longer in use by any SPI
4090  * core or controller driver code.
4091  *
4092  * Note that although all messages to a spi_device are handled in
4093  * FIFO order, messages may go to different devices in other orders.
4094  * Some device might be higher priority, or have various "hard" access
4095  * time requirements, for example.
4096  *
4097  * On detection of any fault during the transfer, processing of
4098  * the entire message is aborted, and the device is deselected.
4099  * Until returning from the associated message completion callback,
4100  * no other spi_message queued to that device will be processed.
4101  * (This rule applies equally to all the synchronous transfer calls,
4102  * which are wrappers around this core asynchronous primitive.)
4103  *
4104  * Return: zero on success, else a negative error code.
4105  */
4106 int spi_async(struct spi_device *spi, struct spi_message *message)
4107 {
4108 	struct spi_controller *ctlr = spi->controller;
4109 	int ret;
4110 	unsigned long flags;
4111 
4112 	ret = __spi_validate(spi, message);
4113 	if (ret != 0)
4114 		return ret;
4115 
4116 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4117 
4118 	if (ctlr->bus_lock_flag)
4119 		ret = -EBUSY;
4120 	else
4121 		ret = __spi_async(spi, message);
4122 
4123 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4124 
4125 	return ret;
4126 }
4127 EXPORT_SYMBOL_GPL(spi_async);
4128 
4129 /**
4130  * spi_async_locked - version of spi_async with exclusive bus usage
4131  * @spi: device with which data will be exchanged
4132  * @message: describes the data transfers, including completion callback
4133  * Context: any (IRQs may be blocked, etc)
4134  *
4135  * This call may be used in_irq and other contexts which can't sleep,
4136  * as well as from task contexts which can sleep.
4137  *
4138  * The completion callback is invoked in a context which can't sleep.
4139  * Before that invocation, the value of message->status is undefined.
4140  * When the callback is issued, message->status holds either zero (to
4141  * indicate complete success) or a negative error code.  After that
4142  * callback returns, the driver which issued the transfer request may
4143  * deallocate the associated memory; it's no longer in use by any SPI
4144  * core or controller driver code.
4145  *
4146  * Note that although all messages to a spi_device are handled in
4147  * FIFO order, messages may go to different devices in other orders.
4148  * Some device might be higher priority, or have various "hard" access
4149  * time requirements, for example.
4150  *
4151  * On detection of any fault during the transfer, processing of
4152  * the entire message is aborted, and the device is deselected.
4153  * Until returning from the associated message completion callback,
4154  * no other spi_message queued to that device will be processed.
4155  * (This rule applies equally to all the synchronous transfer calls,
4156  * which are wrappers around this core asynchronous primitive.)
4157  *
4158  * Return: zero on success, else a negative error code.
4159  */
4160 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4161 {
4162 	struct spi_controller *ctlr = spi->controller;
4163 	int ret;
4164 	unsigned long flags;
4165 
4166 	ret = __spi_validate(spi, message);
4167 	if (ret != 0)
4168 		return ret;
4169 
4170 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4171 
4172 	ret = __spi_async(spi, message);
4173 
4174 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4175 
4176 	return ret;
4177 
4178 }
4179 
4180 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4181 {
4182 	bool was_busy;
4183 	int ret;
4184 
4185 	mutex_lock(&ctlr->io_mutex);
4186 
4187 	was_busy = ctlr->busy;
4188 
4189 	ctlr->cur_msg = msg;
4190 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4191 	if (ret)
4192 		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4193 	ctlr->cur_msg = NULL;
4194 	ctlr->fallback = false;
4195 
4196 	if (!was_busy) {
4197 		kfree(ctlr->dummy_rx);
4198 		ctlr->dummy_rx = NULL;
4199 		kfree(ctlr->dummy_tx);
4200 		ctlr->dummy_tx = NULL;
4201 		if (ctlr->unprepare_transfer_hardware &&
4202 		    ctlr->unprepare_transfer_hardware(ctlr))
4203 			dev_err(&ctlr->dev,
4204 				"failed to unprepare transfer hardware\n");
4205 		spi_idle_runtime_pm(ctlr);
4206 	}
4207 
4208 	mutex_unlock(&ctlr->io_mutex);
4209 }
4210 
4211 /*-------------------------------------------------------------------------*/
4212 
4213 /*
4214  * Utility methods for SPI protocol drivers, layered on
4215  * top of the core.  Some other utility methods are defined as
4216  * inline functions.
4217  */
4218 
4219 static void spi_complete(void *arg)
4220 {
4221 	complete(arg);
4222 }
4223 
4224 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4225 {
4226 	DECLARE_COMPLETION_ONSTACK(done);
4227 	int status;
4228 	struct spi_controller *ctlr = spi->controller;
4229 
4230 	if (__spi_check_suspended(ctlr)) {
4231 		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4232 		return -ESHUTDOWN;
4233 	}
4234 
4235 	status = __spi_validate(spi, message);
4236 	if (status != 0)
4237 		return status;
4238 
4239 	message->spi = spi;
4240 
4241 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4242 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4243 
4244 	/*
4245 	 * Checking queue_empty here only guarantees async/sync message
4246 	 * ordering when coming from the same context. It does not need to
4247 	 * guard against reentrancy from a different context. The io_mutex
4248 	 * will catch those cases.
4249 	 */
4250 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4251 		message->actual_length = 0;
4252 		message->status = -EINPROGRESS;
4253 
4254 		trace_spi_message_submit(message);
4255 
4256 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4257 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4258 
4259 		__spi_transfer_message_noqueue(ctlr, message);
4260 
4261 		return message->status;
4262 	}
4263 
4264 	/*
4265 	 * There are messages in the async queue that could have originated
4266 	 * from the same context, so we need to preserve ordering.
4267 	 * Therefor we send the message to the async queue and wait until they
4268 	 * are completed.
4269 	 */
4270 	message->complete = spi_complete;
4271 	message->context = &done;
4272 	status = spi_async_locked(spi, message);
4273 	if (status == 0) {
4274 		wait_for_completion(&done);
4275 		status = message->status;
4276 	}
4277 	message->complete = NULL;
4278 	message->context = NULL;
4279 
4280 	return status;
4281 }
4282 
4283 /**
4284  * spi_sync - blocking/synchronous SPI data transfers
4285  * @spi: device with which data will be exchanged
4286  * @message: describes the data transfers
4287  * Context: can sleep
4288  *
4289  * This call may only be used from a context that may sleep.  The sleep
4290  * is non-interruptible, and has no timeout.  Low-overhead controller
4291  * drivers may DMA directly into and out of the message buffers.
4292  *
4293  * Note that the SPI device's chip select is active during the message,
4294  * and then is normally disabled between messages.  Drivers for some
4295  * frequently-used devices may want to minimize costs of selecting a chip,
4296  * by leaving it selected in anticipation that the next message will go
4297  * to the same chip.  (That may increase power usage.)
4298  *
4299  * Also, the caller is guaranteeing that the memory associated with the
4300  * message will not be freed before this call returns.
4301  *
4302  * Return: zero on success, else a negative error code.
4303  */
4304 int spi_sync(struct spi_device *spi, struct spi_message *message)
4305 {
4306 	int ret;
4307 
4308 	mutex_lock(&spi->controller->bus_lock_mutex);
4309 	ret = __spi_sync(spi, message);
4310 	mutex_unlock(&spi->controller->bus_lock_mutex);
4311 
4312 	return ret;
4313 }
4314 EXPORT_SYMBOL_GPL(spi_sync);
4315 
4316 /**
4317  * spi_sync_locked - version of spi_sync with exclusive bus usage
4318  * @spi: device with which data will be exchanged
4319  * @message: describes the data transfers
4320  * Context: can sleep
4321  *
4322  * This call may only be used from a context that may sleep.  The sleep
4323  * is non-interruptible, and has no timeout.  Low-overhead controller
4324  * drivers may DMA directly into and out of the message buffers.
4325  *
4326  * This call should be used by drivers that require exclusive access to the
4327  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4328  * be released by a spi_bus_unlock call when the exclusive access is over.
4329  *
4330  * Return: zero on success, else a negative error code.
4331  */
4332 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4333 {
4334 	return __spi_sync(spi, message);
4335 }
4336 EXPORT_SYMBOL_GPL(spi_sync_locked);
4337 
4338 /**
4339  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4340  * @ctlr: SPI bus master that should be locked for exclusive bus access
4341  * Context: can sleep
4342  *
4343  * This call may only be used from a context that may sleep.  The sleep
4344  * is non-interruptible, and has no timeout.
4345  *
4346  * This call should be used by drivers that require exclusive access to the
4347  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4348  * exclusive access is over. Data transfer must be done by spi_sync_locked
4349  * and spi_async_locked calls when the SPI bus lock is held.
4350  *
4351  * Return: always zero.
4352  */
4353 int spi_bus_lock(struct spi_controller *ctlr)
4354 {
4355 	unsigned long flags;
4356 
4357 	mutex_lock(&ctlr->bus_lock_mutex);
4358 
4359 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4360 	ctlr->bus_lock_flag = 1;
4361 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4362 
4363 	/* Mutex remains locked until spi_bus_unlock() is called */
4364 
4365 	return 0;
4366 }
4367 EXPORT_SYMBOL_GPL(spi_bus_lock);
4368 
4369 /**
4370  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4371  * @ctlr: SPI bus master that was locked for exclusive bus access
4372  * Context: can sleep
4373  *
4374  * This call may only be used from a context that may sleep.  The sleep
4375  * is non-interruptible, and has no timeout.
4376  *
4377  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4378  * call.
4379  *
4380  * Return: always zero.
4381  */
4382 int spi_bus_unlock(struct spi_controller *ctlr)
4383 {
4384 	ctlr->bus_lock_flag = 0;
4385 
4386 	mutex_unlock(&ctlr->bus_lock_mutex);
4387 
4388 	return 0;
4389 }
4390 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4391 
4392 /* Portable code must never pass more than 32 bytes */
4393 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4394 
4395 static u8	*buf;
4396 
4397 /**
4398  * spi_write_then_read - SPI synchronous write followed by read
4399  * @spi: device with which data will be exchanged
4400  * @txbuf: data to be written (need not be DMA-safe)
4401  * @n_tx: size of txbuf, in bytes
4402  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4403  * @n_rx: size of rxbuf, in bytes
4404  * Context: can sleep
4405  *
4406  * This performs a half duplex MicroWire style transaction with the
4407  * device, sending txbuf and then reading rxbuf.  The return value
4408  * is zero for success, else a negative errno status code.
4409  * This call may only be used from a context that may sleep.
4410  *
4411  * Parameters to this routine are always copied using a small buffer.
4412  * Performance-sensitive or bulk transfer code should instead use
4413  * spi_{async,sync}() calls with DMA-safe buffers.
4414  *
4415  * Return: zero on success, else a negative error code.
4416  */
4417 int spi_write_then_read(struct spi_device *spi,
4418 		const void *txbuf, unsigned n_tx,
4419 		void *rxbuf, unsigned n_rx)
4420 {
4421 	static DEFINE_MUTEX(lock);
4422 
4423 	int			status;
4424 	struct spi_message	message;
4425 	struct spi_transfer	x[2];
4426 	u8			*local_buf;
4427 
4428 	/*
4429 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4430 	 * copying here, (as a pure convenience thing), but we can
4431 	 * keep heap costs out of the hot path unless someone else is
4432 	 * using the pre-allocated buffer or the transfer is too large.
4433 	 */
4434 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4435 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4436 				    GFP_KERNEL | GFP_DMA);
4437 		if (!local_buf)
4438 			return -ENOMEM;
4439 	} else {
4440 		local_buf = buf;
4441 	}
4442 
4443 	spi_message_init(&message);
4444 	memset(x, 0, sizeof(x));
4445 	if (n_tx) {
4446 		x[0].len = n_tx;
4447 		spi_message_add_tail(&x[0], &message);
4448 	}
4449 	if (n_rx) {
4450 		x[1].len = n_rx;
4451 		spi_message_add_tail(&x[1], &message);
4452 	}
4453 
4454 	memcpy(local_buf, txbuf, n_tx);
4455 	x[0].tx_buf = local_buf;
4456 	x[1].rx_buf = local_buf + n_tx;
4457 
4458 	/* Do the I/O */
4459 	status = spi_sync(spi, &message);
4460 	if (status == 0)
4461 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4462 
4463 	if (x[0].tx_buf == buf)
4464 		mutex_unlock(&lock);
4465 	else
4466 		kfree(local_buf);
4467 
4468 	return status;
4469 }
4470 EXPORT_SYMBOL_GPL(spi_write_then_read);
4471 
4472 /*-------------------------------------------------------------------------*/
4473 
4474 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4475 /* Must call put_device() when done with returned spi_device device */
4476 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4477 {
4478 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4479 
4480 	return dev ? to_spi_device(dev) : NULL;
4481 }
4482 
4483 /* The spi controllers are not using spi_bus, so we find it with another way */
4484 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4485 {
4486 	struct device *dev;
4487 
4488 	dev = class_find_device_by_of_node(&spi_master_class, node);
4489 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4490 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4491 	if (!dev)
4492 		return NULL;
4493 
4494 	/* Reference got in class_find_device */
4495 	return container_of(dev, struct spi_controller, dev);
4496 }
4497 
4498 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4499 			 void *arg)
4500 {
4501 	struct of_reconfig_data *rd = arg;
4502 	struct spi_controller *ctlr;
4503 	struct spi_device *spi;
4504 
4505 	switch (of_reconfig_get_state_change(action, arg)) {
4506 	case OF_RECONFIG_CHANGE_ADD:
4507 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4508 		if (ctlr == NULL)
4509 			return NOTIFY_OK;	/* Not for us */
4510 
4511 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4512 			put_device(&ctlr->dev);
4513 			return NOTIFY_OK;
4514 		}
4515 
4516 		/*
4517 		 * Clear the flag before adding the device so that fw_devlink
4518 		 * doesn't skip adding consumers to this device.
4519 		 */
4520 		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4521 		spi = of_register_spi_device(ctlr, rd->dn);
4522 		put_device(&ctlr->dev);
4523 
4524 		if (IS_ERR(spi)) {
4525 			pr_err("%s: failed to create for '%pOF'\n",
4526 					__func__, rd->dn);
4527 			of_node_clear_flag(rd->dn, OF_POPULATED);
4528 			return notifier_from_errno(PTR_ERR(spi));
4529 		}
4530 		break;
4531 
4532 	case OF_RECONFIG_CHANGE_REMOVE:
4533 		/* Already depopulated? */
4534 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4535 			return NOTIFY_OK;
4536 
4537 		/* Find our device by node */
4538 		spi = of_find_spi_device_by_node(rd->dn);
4539 		if (spi == NULL)
4540 			return NOTIFY_OK;	/* No? not meant for us */
4541 
4542 		/* Unregister takes one ref away */
4543 		spi_unregister_device(spi);
4544 
4545 		/* And put the reference of the find */
4546 		put_device(&spi->dev);
4547 		break;
4548 	}
4549 
4550 	return NOTIFY_OK;
4551 }
4552 
4553 static struct notifier_block spi_of_notifier = {
4554 	.notifier_call = of_spi_notify,
4555 };
4556 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4557 extern struct notifier_block spi_of_notifier;
4558 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4559 
4560 #if IS_ENABLED(CONFIG_ACPI)
4561 static int spi_acpi_controller_match(struct device *dev, const void *data)
4562 {
4563 	return ACPI_COMPANION(dev->parent) == data;
4564 }
4565 
4566 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4567 {
4568 	struct device *dev;
4569 
4570 	dev = class_find_device(&spi_master_class, NULL, adev,
4571 				spi_acpi_controller_match);
4572 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4573 		dev = class_find_device(&spi_slave_class, NULL, adev,
4574 					spi_acpi_controller_match);
4575 	if (!dev)
4576 		return NULL;
4577 
4578 	return container_of(dev, struct spi_controller, dev);
4579 }
4580 
4581 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4582 {
4583 	struct device *dev;
4584 
4585 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4586 	return to_spi_device(dev);
4587 }
4588 
4589 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4590 			   void *arg)
4591 {
4592 	struct acpi_device *adev = arg;
4593 	struct spi_controller *ctlr;
4594 	struct spi_device *spi;
4595 
4596 	switch (value) {
4597 	case ACPI_RECONFIG_DEVICE_ADD:
4598 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4599 		if (!ctlr)
4600 			break;
4601 
4602 		acpi_register_spi_device(ctlr, adev);
4603 		put_device(&ctlr->dev);
4604 		break;
4605 	case ACPI_RECONFIG_DEVICE_REMOVE:
4606 		if (!acpi_device_enumerated(adev))
4607 			break;
4608 
4609 		spi = acpi_spi_find_device_by_adev(adev);
4610 		if (!spi)
4611 			break;
4612 
4613 		spi_unregister_device(spi);
4614 		put_device(&spi->dev);
4615 		break;
4616 	}
4617 
4618 	return NOTIFY_OK;
4619 }
4620 
4621 static struct notifier_block spi_acpi_notifier = {
4622 	.notifier_call = acpi_spi_notify,
4623 };
4624 #else
4625 extern struct notifier_block spi_acpi_notifier;
4626 #endif
4627 
4628 static int __init spi_init(void)
4629 {
4630 	int	status;
4631 
4632 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4633 	if (!buf) {
4634 		status = -ENOMEM;
4635 		goto err0;
4636 	}
4637 
4638 	status = bus_register(&spi_bus_type);
4639 	if (status < 0)
4640 		goto err1;
4641 
4642 	status = class_register(&spi_master_class);
4643 	if (status < 0)
4644 		goto err2;
4645 
4646 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4647 		status = class_register(&spi_slave_class);
4648 		if (status < 0)
4649 			goto err3;
4650 	}
4651 
4652 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4653 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4654 	if (IS_ENABLED(CONFIG_ACPI))
4655 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4656 
4657 	return 0;
4658 
4659 err3:
4660 	class_unregister(&spi_master_class);
4661 err2:
4662 	bus_unregister(&spi_bus_type);
4663 err1:
4664 	kfree(buf);
4665 	buf = NULL;
4666 err0:
4667 	return status;
4668 }
4669 
4670 /*
4671  * A board_info is normally registered in arch_initcall(),
4672  * but even essential drivers wait till later.
4673  *
4674  * REVISIT only boardinfo really needs static linking. The rest (device and
4675  * driver registration) _could_ be dynamically linked (modular) ... Costs
4676  * include needing to have boardinfo data structures be much more public.
4677  */
4678 postcore_initcall(spi_init);
4679