xref: /openbmc/linux/drivers/spi/spi.c (revision 65ca668f)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43 
44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi masters may cleanup for released devices */
49 	if (spi->master->cleanup)
50 		spi->master->cleanup(spi);
51 
52 	spi_master_put(spi->master);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 #define SPI_STATISTICS_ATTRS(field, file)				\
71 static ssize_t spi_master_##field##_show(struct device *dev,		\
72 					 struct device_attribute *attr,	\
73 					 char *buf)			\
74 {									\
75 	struct spi_master *master = container_of(dev,			\
76 						 struct spi_master, dev); \
77 	return spi_statistics_##field##_show(&master->statistics, buf);	\
78 }									\
79 static struct device_attribute dev_attr_spi_master_##field = {		\
80 	.attr = { .name = file, .mode = S_IRUGO },			\
81 	.show = spi_master_##field##_show,				\
82 };									\
83 static ssize_t spi_device_##field##_show(struct device *dev,		\
84 					 struct device_attribute *attr,	\
85 					char *buf)			\
86 {									\
87 	struct spi_device *spi = to_spi_device(dev);			\
88 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
89 }									\
90 static struct device_attribute dev_attr_spi_device_##field = {		\
91 	.attr = { .name = file, .mode = S_IRUGO },			\
92 	.show = spi_device_##field##_show,				\
93 }
94 
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97 					    char *buf)			\
98 {									\
99 	unsigned long flags;						\
100 	ssize_t len;							\
101 	spin_lock_irqsave(&stat->lock, flags);				\
102 	len = sprintf(buf, format_string, stat->field);			\
103 	spin_unlock_irqrestore(&stat->lock, flags);			\
104 	return len;							\
105 }									\
106 SPI_STATISTICS_ATTRS(name, file)
107 
108 #define SPI_STATISTICS_SHOW(field, format_string)			\
109 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
110 				 field, format_string)
111 
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116 
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120 
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124 
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
126 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
127 				 "transfer_bytes_histo_" number,	\
128 				 transfer_bytes_histo[index],  "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146 
147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
148 
149 static struct attribute *spi_dev_attrs[] = {
150 	&dev_attr_modalias.attr,
151 	NULL,
152 };
153 
154 static const struct attribute_group spi_dev_group = {
155 	.attrs  = spi_dev_attrs,
156 };
157 
158 static struct attribute *spi_device_statistics_attrs[] = {
159 	&dev_attr_spi_device_messages.attr,
160 	&dev_attr_spi_device_transfers.attr,
161 	&dev_attr_spi_device_errors.attr,
162 	&dev_attr_spi_device_timedout.attr,
163 	&dev_attr_spi_device_spi_sync.attr,
164 	&dev_attr_spi_device_spi_sync_immediate.attr,
165 	&dev_attr_spi_device_spi_async.attr,
166 	&dev_attr_spi_device_bytes.attr,
167 	&dev_attr_spi_device_bytes_rx.attr,
168 	&dev_attr_spi_device_bytes_tx.attr,
169 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
186 	&dev_attr_spi_device_transfers_split_maxsize.attr,
187 	NULL,
188 };
189 
190 static const struct attribute_group spi_device_statistics_group = {
191 	.name  = "statistics",
192 	.attrs  = spi_device_statistics_attrs,
193 };
194 
195 static const struct attribute_group *spi_dev_groups[] = {
196 	&spi_dev_group,
197 	&spi_device_statistics_group,
198 	NULL,
199 };
200 
201 static struct attribute *spi_master_statistics_attrs[] = {
202 	&dev_attr_spi_master_messages.attr,
203 	&dev_attr_spi_master_transfers.attr,
204 	&dev_attr_spi_master_errors.attr,
205 	&dev_attr_spi_master_timedout.attr,
206 	&dev_attr_spi_master_spi_sync.attr,
207 	&dev_attr_spi_master_spi_sync_immediate.attr,
208 	&dev_attr_spi_master_spi_async.attr,
209 	&dev_attr_spi_master_bytes.attr,
210 	&dev_attr_spi_master_bytes_rx.attr,
211 	&dev_attr_spi_master_bytes_tx.attr,
212 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
226 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
227 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
228 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
229 	&dev_attr_spi_master_transfers_split_maxsize.attr,
230 	NULL,
231 };
232 
233 static const struct attribute_group spi_master_statistics_group = {
234 	.name  = "statistics",
235 	.attrs  = spi_master_statistics_attrs,
236 };
237 
238 static const struct attribute_group *spi_master_groups[] = {
239 	&spi_master_statistics_group,
240 	NULL,
241 };
242 
243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
244 				       struct spi_transfer *xfer,
245 				       struct spi_master *master)
246 {
247 	unsigned long flags;
248 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
249 
250 	if (l2len < 0)
251 		l2len = 0;
252 
253 	spin_lock_irqsave(&stats->lock, flags);
254 
255 	stats->transfers++;
256 	stats->transfer_bytes_histo[l2len]++;
257 
258 	stats->bytes += xfer->len;
259 	if ((xfer->tx_buf) &&
260 	    (xfer->tx_buf != master->dummy_tx))
261 		stats->bytes_tx += xfer->len;
262 	if ((xfer->rx_buf) &&
263 	    (xfer->rx_buf != master->dummy_rx))
264 		stats->bytes_rx += xfer->len;
265 
266 	spin_unlock_irqrestore(&stats->lock, flags);
267 }
268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
269 
270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
271  * and the sysfs version makes coldplug work too.
272  */
273 
274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
275 						const struct spi_device *sdev)
276 {
277 	while (id->name[0]) {
278 		if (!strcmp(sdev->modalias, id->name))
279 			return id;
280 		id++;
281 	}
282 	return NULL;
283 }
284 
285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
286 {
287 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
288 
289 	return spi_match_id(sdrv->id_table, sdev);
290 }
291 EXPORT_SYMBOL_GPL(spi_get_device_id);
292 
293 static int spi_match_device(struct device *dev, struct device_driver *drv)
294 {
295 	const struct spi_device	*spi = to_spi_device(dev);
296 	const struct spi_driver	*sdrv = to_spi_driver(drv);
297 
298 	/* Attempt an OF style match */
299 	if (of_driver_match_device(dev, drv))
300 		return 1;
301 
302 	/* Then try ACPI */
303 	if (acpi_driver_match_device(dev, drv))
304 		return 1;
305 
306 	if (sdrv->id_table)
307 		return !!spi_match_id(sdrv->id_table, spi);
308 
309 	return strcmp(spi->modalias, drv->name) == 0;
310 }
311 
312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
313 {
314 	const struct spi_device		*spi = to_spi_device(dev);
315 	int rc;
316 
317 	rc = acpi_device_uevent_modalias(dev, env);
318 	if (rc != -ENODEV)
319 		return rc;
320 
321 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322 	return 0;
323 }
324 
325 struct bus_type spi_bus_type = {
326 	.name		= "spi",
327 	.dev_groups	= spi_dev_groups,
328 	.match		= spi_match_device,
329 	.uevent		= spi_uevent,
330 };
331 EXPORT_SYMBOL_GPL(spi_bus_type);
332 
333 
334 static int spi_drv_probe(struct device *dev)
335 {
336 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
337 	struct spi_device		*spi = to_spi_device(dev);
338 	int ret;
339 
340 	ret = of_clk_set_defaults(dev->of_node, false);
341 	if (ret)
342 		return ret;
343 
344 	if (dev->of_node) {
345 		spi->irq = of_irq_get(dev->of_node, 0);
346 		if (spi->irq == -EPROBE_DEFER)
347 			return -EPROBE_DEFER;
348 		if (spi->irq < 0)
349 			spi->irq = 0;
350 	}
351 
352 	ret = dev_pm_domain_attach(dev, true);
353 	if (ret != -EPROBE_DEFER) {
354 		ret = sdrv->probe(spi);
355 		if (ret)
356 			dev_pm_domain_detach(dev, true);
357 	}
358 
359 	return ret;
360 }
361 
362 static int spi_drv_remove(struct device *dev)
363 {
364 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
365 	int ret;
366 
367 	ret = sdrv->remove(to_spi_device(dev));
368 	dev_pm_domain_detach(dev, true);
369 
370 	return ret;
371 }
372 
373 static void spi_drv_shutdown(struct device *dev)
374 {
375 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
376 
377 	sdrv->shutdown(to_spi_device(dev));
378 }
379 
380 /**
381  * __spi_register_driver - register a SPI driver
382  * @owner: owner module of the driver to register
383  * @sdrv: the driver to register
384  * Context: can sleep
385  *
386  * Return: zero on success, else a negative error code.
387  */
388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
389 {
390 	sdrv->driver.owner = owner;
391 	sdrv->driver.bus = &spi_bus_type;
392 	if (sdrv->probe)
393 		sdrv->driver.probe = spi_drv_probe;
394 	if (sdrv->remove)
395 		sdrv->driver.remove = spi_drv_remove;
396 	if (sdrv->shutdown)
397 		sdrv->driver.shutdown = spi_drv_shutdown;
398 	return driver_register(&sdrv->driver);
399 }
400 EXPORT_SYMBOL_GPL(__spi_register_driver);
401 
402 /*-------------------------------------------------------------------------*/
403 
404 /* SPI devices should normally not be created by SPI device drivers; that
405  * would make them board-specific.  Similarly with SPI master drivers.
406  * Device registration normally goes into like arch/.../mach.../board-YYY.c
407  * with other readonly (flashable) information about mainboard devices.
408  */
409 
410 struct boardinfo {
411 	struct list_head	list;
412 	struct spi_board_info	board_info;
413 };
414 
415 static LIST_HEAD(board_list);
416 static LIST_HEAD(spi_master_list);
417 
418 /*
419  * Used to protect add/del opertion for board_info list and
420  * spi_master list, and their matching process
421  */
422 static DEFINE_MUTEX(board_lock);
423 
424 /**
425  * spi_alloc_device - Allocate a new SPI device
426  * @master: Controller to which device is connected
427  * Context: can sleep
428  *
429  * Allows a driver to allocate and initialize a spi_device without
430  * registering it immediately.  This allows a driver to directly
431  * fill the spi_device with device parameters before calling
432  * spi_add_device() on it.
433  *
434  * Caller is responsible to call spi_add_device() on the returned
435  * spi_device structure to add it to the SPI master.  If the caller
436  * needs to discard the spi_device without adding it, then it should
437  * call spi_dev_put() on it.
438  *
439  * Return: a pointer to the new device, or NULL.
440  */
441 struct spi_device *spi_alloc_device(struct spi_master *master)
442 {
443 	struct spi_device	*spi;
444 
445 	if (!spi_master_get(master))
446 		return NULL;
447 
448 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
449 	if (!spi) {
450 		spi_master_put(master);
451 		return NULL;
452 	}
453 
454 	spi->master = master;
455 	spi->dev.parent = &master->dev;
456 	spi->dev.bus = &spi_bus_type;
457 	spi->dev.release = spidev_release;
458 	spi->cs_gpio = -ENOENT;
459 
460 	spin_lock_init(&spi->statistics.lock);
461 
462 	device_initialize(&spi->dev);
463 	return spi;
464 }
465 EXPORT_SYMBOL_GPL(spi_alloc_device);
466 
467 static void spi_dev_set_name(struct spi_device *spi)
468 {
469 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
470 
471 	if (adev) {
472 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
473 		return;
474 	}
475 
476 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
477 		     spi->chip_select);
478 }
479 
480 static int spi_dev_check(struct device *dev, void *data)
481 {
482 	struct spi_device *spi = to_spi_device(dev);
483 	struct spi_device *new_spi = data;
484 
485 	if (spi->master == new_spi->master &&
486 	    spi->chip_select == new_spi->chip_select)
487 		return -EBUSY;
488 	return 0;
489 }
490 
491 /**
492  * spi_add_device - Add spi_device allocated with spi_alloc_device
493  * @spi: spi_device to register
494  *
495  * Companion function to spi_alloc_device.  Devices allocated with
496  * spi_alloc_device can be added onto the spi bus with this function.
497  *
498  * Return: 0 on success; negative errno on failure
499  */
500 int spi_add_device(struct spi_device *spi)
501 {
502 	static DEFINE_MUTEX(spi_add_lock);
503 	struct spi_master *master = spi->master;
504 	struct device *dev = master->dev.parent;
505 	int status;
506 
507 	/* Chipselects are numbered 0..max; validate. */
508 	if (spi->chip_select >= master->num_chipselect) {
509 		dev_err(dev, "cs%d >= max %d\n",
510 			spi->chip_select,
511 			master->num_chipselect);
512 		return -EINVAL;
513 	}
514 
515 	/* Set the bus ID string */
516 	spi_dev_set_name(spi);
517 
518 	/* We need to make sure there's no other device with this
519 	 * chipselect **BEFORE** we call setup(), else we'll trash
520 	 * its configuration.  Lock against concurrent add() calls.
521 	 */
522 	mutex_lock(&spi_add_lock);
523 
524 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
525 	if (status) {
526 		dev_err(dev, "chipselect %d already in use\n",
527 				spi->chip_select);
528 		goto done;
529 	}
530 
531 	if (master->cs_gpios)
532 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
533 
534 	/* Drivers may modify this initial i/o setup, but will
535 	 * normally rely on the device being setup.  Devices
536 	 * using SPI_CS_HIGH can't coexist well otherwise...
537 	 */
538 	status = spi_setup(spi);
539 	if (status < 0) {
540 		dev_err(dev, "can't setup %s, status %d\n",
541 				dev_name(&spi->dev), status);
542 		goto done;
543 	}
544 
545 	/* Device may be bound to an active driver when this returns */
546 	status = device_add(&spi->dev);
547 	if (status < 0)
548 		dev_err(dev, "can't add %s, status %d\n",
549 				dev_name(&spi->dev), status);
550 	else
551 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
552 
553 done:
554 	mutex_unlock(&spi_add_lock);
555 	return status;
556 }
557 EXPORT_SYMBOL_GPL(spi_add_device);
558 
559 /**
560  * spi_new_device - instantiate one new SPI device
561  * @master: Controller to which device is connected
562  * @chip: Describes the SPI device
563  * Context: can sleep
564  *
565  * On typical mainboards, this is purely internal; and it's not needed
566  * after board init creates the hard-wired devices.  Some development
567  * platforms may not be able to use spi_register_board_info though, and
568  * this is exported so that for example a USB or parport based adapter
569  * driver could add devices (which it would learn about out-of-band).
570  *
571  * Return: the new device, or NULL.
572  */
573 struct spi_device *spi_new_device(struct spi_master *master,
574 				  struct spi_board_info *chip)
575 {
576 	struct spi_device	*proxy;
577 	int			status;
578 
579 	/* NOTE:  caller did any chip->bus_num checks necessary.
580 	 *
581 	 * Also, unless we change the return value convention to use
582 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
583 	 * suggests syslogged diagnostics are best here (ugh).
584 	 */
585 
586 	proxy = spi_alloc_device(master);
587 	if (!proxy)
588 		return NULL;
589 
590 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
591 
592 	proxy->chip_select = chip->chip_select;
593 	proxy->max_speed_hz = chip->max_speed_hz;
594 	proxy->mode = chip->mode;
595 	proxy->irq = chip->irq;
596 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
597 	proxy->dev.platform_data = (void *) chip->platform_data;
598 	proxy->controller_data = chip->controller_data;
599 	proxy->controller_state = NULL;
600 
601 	status = spi_add_device(proxy);
602 	if (status < 0) {
603 		spi_dev_put(proxy);
604 		return NULL;
605 	}
606 
607 	return proxy;
608 }
609 EXPORT_SYMBOL_GPL(spi_new_device);
610 
611 /**
612  * spi_unregister_device - unregister a single SPI device
613  * @spi: spi_device to unregister
614  *
615  * Start making the passed SPI device vanish. Normally this would be handled
616  * by spi_unregister_master().
617  */
618 void spi_unregister_device(struct spi_device *spi)
619 {
620 	if (!spi)
621 		return;
622 
623 	if (spi->dev.of_node)
624 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
625 	if (ACPI_COMPANION(&spi->dev))
626 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
627 	device_unregister(&spi->dev);
628 }
629 EXPORT_SYMBOL_GPL(spi_unregister_device);
630 
631 static void spi_match_master_to_boardinfo(struct spi_master *master,
632 				struct spi_board_info *bi)
633 {
634 	struct spi_device *dev;
635 
636 	if (master->bus_num != bi->bus_num)
637 		return;
638 
639 	dev = spi_new_device(master, bi);
640 	if (!dev)
641 		dev_err(master->dev.parent, "can't create new device for %s\n",
642 			bi->modalias);
643 }
644 
645 /**
646  * spi_register_board_info - register SPI devices for a given board
647  * @info: array of chip descriptors
648  * @n: how many descriptors are provided
649  * Context: can sleep
650  *
651  * Board-specific early init code calls this (probably during arch_initcall)
652  * with segments of the SPI device table.  Any device nodes are created later,
653  * after the relevant parent SPI controller (bus_num) is defined.  We keep
654  * this table of devices forever, so that reloading a controller driver will
655  * not make Linux forget about these hard-wired devices.
656  *
657  * Other code can also call this, e.g. a particular add-on board might provide
658  * SPI devices through its expansion connector, so code initializing that board
659  * would naturally declare its SPI devices.
660  *
661  * The board info passed can safely be __initdata ... but be careful of
662  * any embedded pointers (platform_data, etc), they're copied as-is.
663  *
664  * Return: zero on success, else a negative error code.
665  */
666 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
667 {
668 	struct boardinfo *bi;
669 	int i;
670 
671 	if (!n)
672 		return -EINVAL;
673 
674 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
675 	if (!bi)
676 		return -ENOMEM;
677 
678 	for (i = 0; i < n; i++, bi++, info++) {
679 		struct spi_master *master;
680 
681 		memcpy(&bi->board_info, info, sizeof(*info));
682 		mutex_lock(&board_lock);
683 		list_add_tail(&bi->list, &board_list);
684 		list_for_each_entry(master, &spi_master_list, list)
685 			spi_match_master_to_boardinfo(master, &bi->board_info);
686 		mutex_unlock(&board_lock);
687 	}
688 
689 	return 0;
690 }
691 
692 /*-------------------------------------------------------------------------*/
693 
694 static void spi_set_cs(struct spi_device *spi, bool enable)
695 {
696 	if (spi->mode & SPI_CS_HIGH)
697 		enable = !enable;
698 
699 	if (gpio_is_valid(spi->cs_gpio))
700 		gpio_set_value(spi->cs_gpio, !enable);
701 	else if (spi->master->set_cs)
702 		spi->master->set_cs(spi, !enable);
703 }
704 
705 #ifdef CONFIG_HAS_DMA
706 static int spi_map_buf(struct spi_master *master, struct device *dev,
707 		       struct sg_table *sgt, void *buf, size_t len,
708 		       enum dma_data_direction dir)
709 {
710 	const bool vmalloced_buf = is_vmalloc_addr(buf);
711 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
712 	int desc_len;
713 	int sgs;
714 	struct page *vm_page;
715 	void *sg_buf;
716 	size_t min;
717 	int i, ret;
718 
719 	if (vmalloced_buf) {
720 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
721 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
722 	} else if (virt_addr_valid(buf)) {
723 		desc_len = min_t(int, max_seg_size, master->max_dma_len);
724 		sgs = DIV_ROUND_UP(len, desc_len);
725 	} else {
726 		return -EINVAL;
727 	}
728 
729 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
730 	if (ret != 0)
731 		return ret;
732 
733 	for (i = 0; i < sgs; i++) {
734 
735 		if (vmalloced_buf) {
736 			min = min_t(size_t,
737 				    len, desc_len - offset_in_page(buf));
738 			vm_page = vmalloc_to_page(buf);
739 			if (!vm_page) {
740 				sg_free_table(sgt);
741 				return -ENOMEM;
742 			}
743 			sg_set_page(&sgt->sgl[i], vm_page,
744 				    min, offset_in_page(buf));
745 		} else {
746 			min = min_t(size_t, len, desc_len);
747 			sg_buf = buf;
748 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
749 		}
750 
751 		buf += min;
752 		len -= min;
753 	}
754 
755 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
756 	if (!ret)
757 		ret = -ENOMEM;
758 	if (ret < 0) {
759 		sg_free_table(sgt);
760 		return ret;
761 	}
762 
763 	sgt->nents = ret;
764 
765 	return 0;
766 }
767 
768 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
769 			  struct sg_table *sgt, enum dma_data_direction dir)
770 {
771 	if (sgt->orig_nents) {
772 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
773 		sg_free_table(sgt);
774 	}
775 }
776 
777 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
778 {
779 	struct device *tx_dev, *rx_dev;
780 	struct spi_transfer *xfer;
781 	int ret;
782 
783 	if (!master->can_dma)
784 		return 0;
785 
786 	if (master->dma_tx)
787 		tx_dev = master->dma_tx->device->dev;
788 	else
789 		tx_dev = &master->dev;
790 
791 	if (master->dma_rx)
792 		rx_dev = master->dma_rx->device->dev;
793 	else
794 		rx_dev = &master->dev;
795 
796 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
797 		if (!master->can_dma(master, msg->spi, xfer))
798 			continue;
799 
800 		if (xfer->tx_buf != NULL) {
801 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
802 					  (void *)xfer->tx_buf, xfer->len,
803 					  DMA_TO_DEVICE);
804 			if (ret != 0)
805 				return ret;
806 		}
807 
808 		if (xfer->rx_buf != NULL) {
809 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
810 					  xfer->rx_buf, xfer->len,
811 					  DMA_FROM_DEVICE);
812 			if (ret != 0) {
813 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
814 					      DMA_TO_DEVICE);
815 				return ret;
816 			}
817 		}
818 	}
819 
820 	master->cur_msg_mapped = true;
821 
822 	return 0;
823 }
824 
825 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
826 {
827 	struct spi_transfer *xfer;
828 	struct device *tx_dev, *rx_dev;
829 
830 	if (!master->cur_msg_mapped || !master->can_dma)
831 		return 0;
832 
833 	if (master->dma_tx)
834 		tx_dev = master->dma_tx->device->dev;
835 	else
836 		tx_dev = &master->dev;
837 
838 	if (master->dma_rx)
839 		rx_dev = master->dma_rx->device->dev;
840 	else
841 		rx_dev = &master->dev;
842 
843 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
844 		if (!master->can_dma(master, msg->spi, xfer))
845 			continue;
846 
847 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
848 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
849 	}
850 
851 	return 0;
852 }
853 #else /* !CONFIG_HAS_DMA */
854 static inline int spi_map_buf(struct spi_master *master,
855 			      struct device *dev, struct sg_table *sgt,
856 			      void *buf, size_t len,
857 			      enum dma_data_direction dir)
858 {
859 	return -EINVAL;
860 }
861 
862 static inline void spi_unmap_buf(struct spi_master *master,
863 				 struct device *dev, struct sg_table *sgt,
864 				 enum dma_data_direction dir)
865 {
866 }
867 
868 static inline int __spi_map_msg(struct spi_master *master,
869 				struct spi_message *msg)
870 {
871 	return 0;
872 }
873 
874 static inline int __spi_unmap_msg(struct spi_master *master,
875 				  struct spi_message *msg)
876 {
877 	return 0;
878 }
879 #endif /* !CONFIG_HAS_DMA */
880 
881 static inline int spi_unmap_msg(struct spi_master *master,
882 				struct spi_message *msg)
883 {
884 	struct spi_transfer *xfer;
885 
886 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
887 		/*
888 		 * Restore the original value of tx_buf or rx_buf if they are
889 		 * NULL.
890 		 */
891 		if (xfer->tx_buf == master->dummy_tx)
892 			xfer->tx_buf = NULL;
893 		if (xfer->rx_buf == master->dummy_rx)
894 			xfer->rx_buf = NULL;
895 	}
896 
897 	return __spi_unmap_msg(master, msg);
898 }
899 
900 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
901 {
902 	struct spi_transfer *xfer;
903 	void *tmp;
904 	unsigned int max_tx, max_rx;
905 
906 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
907 		max_tx = 0;
908 		max_rx = 0;
909 
910 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
911 			if ((master->flags & SPI_MASTER_MUST_TX) &&
912 			    !xfer->tx_buf)
913 				max_tx = max(xfer->len, max_tx);
914 			if ((master->flags & SPI_MASTER_MUST_RX) &&
915 			    !xfer->rx_buf)
916 				max_rx = max(xfer->len, max_rx);
917 		}
918 
919 		if (max_tx) {
920 			tmp = krealloc(master->dummy_tx, max_tx,
921 				       GFP_KERNEL | GFP_DMA);
922 			if (!tmp)
923 				return -ENOMEM;
924 			master->dummy_tx = tmp;
925 			memset(tmp, 0, max_tx);
926 		}
927 
928 		if (max_rx) {
929 			tmp = krealloc(master->dummy_rx, max_rx,
930 				       GFP_KERNEL | GFP_DMA);
931 			if (!tmp)
932 				return -ENOMEM;
933 			master->dummy_rx = tmp;
934 		}
935 
936 		if (max_tx || max_rx) {
937 			list_for_each_entry(xfer, &msg->transfers,
938 					    transfer_list) {
939 				if (!xfer->tx_buf)
940 					xfer->tx_buf = master->dummy_tx;
941 				if (!xfer->rx_buf)
942 					xfer->rx_buf = master->dummy_rx;
943 			}
944 		}
945 	}
946 
947 	return __spi_map_msg(master, msg);
948 }
949 
950 /*
951  * spi_transfer_one_message - Default implementation of transfer_one_message()
952  *
953  * This is a standard implementation of transfer_one_message() for
954  * drivers which implement a transfer_one() operation.  It provides
955  * standard handling of delays and chip select management.
956  */
957 static int spi_transfer_one_message(struct spi_master *master,
958 				    struct spi_message *msg)
959 {
960 	struct spi_transfer *xfer;
961 	bool keep_cs = false;
962 	int ret = 0;
963 	unsigned long ms = 1;
964 	struct spi_statistics *statm = &master->statistics;
965 	struct spi_statistics *stats = &msg->spi->statistics;
966 
967 	spi_set_cs(msg->spi, true);
968 
969 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
970 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
971 
972 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
973 		trace_spi_transfer_start(msg, xfer);
974 
975 		spi_statistics_add_transfer_stats(statm, xfer, master);
976 		spi_statistics_add_transfer_stats(stats, xfer, master);
977 
978 		if (xfer->tx_buf || xfer->rx_buf) {
979 			reinit_completion(&master->xfer_completion);
980 
981 			ret = master->transfer_one(master, msg->spi, xfer);
982 			if (ret < 0) {
983 				SPI_STATISTICS_INCREMENT_FIELD(statm,
984 							       errors);
985 				SPI_STATISTICS_INCREMENT_FIELD(stats,
986 							       errors);
987 				dev_err(&msg->spi->dev,
988 					"SPI transfer failed: %d\n", ret);
989 				goto out;
990 			}
991 
992 			if (ret > 0) {
993 				ret = 0;
994 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
995 				ms += ms + 100; /* some tolerance */
996 
997 				ms = wait_for_completion_timeout(&master->xfer_completion,
998 								 msecs_to_jiffies(ms));
999 			}
1000 
1001 			if (ms == 0) {
1002 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1003 							       timedout);
1004 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1005 							       timedout);
1006 				dev_err(&msg->spi->dev,
1007 					"SPI transfer timed out\n");
1008 				msg->status = -ETIMEDOUT;
1009 			}
1010 		} else {
1011 			if (xfer->len)
1012 				dev_err(&msg->spi->dev,
1013 					"Bufferless transfer has length %u\n",
1014 					xfer->len);
1015 		}
1016 
1017 		trace_spi_transfer_stop(msg, xfer);
1018 
1019 		if (msg->status != -EINPROGRESS)
1020 			goto out;
1021 
1022 		if (xfer->delay_usecs)
1023 			udelay(xfer->delay_usecs);
1024 
1025 		if (xfer->cs_change) {
1026 			if (list_is_last(&xfer->transfer_list,
1027 					 &msg->transfers)) {
1028 				keep_cs = true;
1029 			} else {
1030 				spi_set_cs(msg->spi, false);
1031 				udelay(10);
1032 				spi_set_cs(msg->spi, true);
1033 			}
1034 		}
1035 
1036 		msg->actual_length += xfer->len;
1037 	}
1038 
1039 out:
1040 	if (ret != 0 || !keep_cs)
1041 		spi_set_cs(msg->spi, false);
1042 
1043 	if (msg->status == -EINPROGRESS)
1044 		msg->status = ret;
1045 
1046 	if (msg->status && master->handle_err)
1047 		master->handle_err(master, msg);
1048 
1049 	spi_res_release(master, msg);
1050 
1051 	spi_finalize_current_message(master);
1052 
1053 	return ret;
1054 }
1055 
1056 /**
1057  * spi_finalize_current_transfer - report completion of a transfer
1058  * @master: the master reporting completion
1059  *
1060  * Called by SPI drivers using the core transfer_one_message()
1061  * implementation to notify it that the current interrupt driven
1062  * transfer has finished and the next one may be scheduled.
1063  */
1064 void spi_finalize_current_transfer(struct spi_master *master)
1065 {
1066 	complete(&master->xfer_completion);
1067 }
1068 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1069 
1070 /**
1071  * __spi_pump_messages - function which processes spi message queue
1072  * @master: master to process queue for
1073  * @in_kthread: true if we are in the context of the message pump thread
1074  *
1075  * This function checks if there is any spi message in the queue that
1076  * needs processing and if so call out to the driver to initialize hardware
1077  * and transfer each message.
1078  *
1079  * Note that it is called both from the kthread itself and also from
1080  * inside spi_sync(); the queue extraction handling at the top of the
1081  * function should deal with this safely.
1082  */
1083 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1084 {
1085 	unsigned long flags;
1086 	bool was_busy = false;
1087 	int ret;
1088 
1089 	/* Lock queue */
1090 	spin_lock_irqsave(&master->queue_lock, flags);
1091 
1092 	/* Make sure we are not already running a message */
1093 	if (master->cur_msg) {
1094 		spin_unlock_irqrestore(&master->queue_lock, flags);
1095 		return;
1096 	}
1097 
1098 	/* If another context is idling the device then defer */
1099 	if (master->idling) {
1100 		queue_kthread_work(&master->kworker, &master->pump_messages);
1101 		spin_unlock_irqrestore(&master->queue_lock, flags);
1102 		return;
1103 	}
1104 
1105 	/* Check if the queue is idle */
1106 	if (list_empty(&master->queue) || !master->running) {
1107 		if (!master->busy) {
1108 			spin_unlock_irqrestore(&master->queue_lock, flags);
1109 			return;
1110 		}
1111 
1112 		/* Only do teardown in the thread */
1113 		if (!in_kthread) {
1114 			queue_kthread_work(&master->kworker,
1115 					   &master->pump_messages);
1116 			spin_unlock_irqrestore(&master->queue_lock, flags);
1117 			return;
1118 		}
1119 
1120 		master->busy = false;
1121 		master->idling = true;
1122 		spin_unlock_irqrestore(&master->queue_lock, flags);
1123 
1124 		kfree(master->dummy_rx);
1125 		master->dummy_rx = NULL;
1126 		kfree(master->dummy_tx);
1127 		master->dummy_tx = NULL;
1128 		if (master->unprepare_transfer_hardware &&
1129 		    master->unprepare_transfer_hardware(master))
1130 			dev_err(&master->dev,
1131 				"failed to unprepare transfer hardware\n");
1132 		if (master->auto_runtime_pm) {
1133 			pm_runtime_mark_last_busy(master->dev.parent);
1134 			pm_runtime_put_autosuspend(master->dev.parent);
1135 		}
1136 		trace_spi_master_idle(master);
1137 
1138 		spin_lock_irqsave(&master->queue_lock, flags);
1139 		master->idling = false;
1140 		spin_unlock_irqrestore(&master->queue_lock, flags);
1141 		return;
1142 	}
1143 
1144 	/* Extract head of queue */
1145 	master->cur_msg =
1146 		list_first_entry(&master->queue, struct spi_message, queue);
1147 
1148 	list_del_init(&master->cur_msg->queue);
1149 	if (master->busy)
1150 		was_busy = true;
1151 	else
1152 		master->busy = true;
1153 	spin_unlock_irqrestore(&master->queue_lock, flags);
1154 
1155 	mutex_lock(&master->io_mutex);
1156 
1157 	if (!was_busy && master->auto_runtime_pm) {
1158 		ret = pm_runtime_get_sync(master->dev.parent);
1159 		if (ret < 0) {
1160 			dev_err(&master->dev, "Failed to power device: %d\n",
1161 				ret);
1162 			return;
1163 		}
1164 	}
1165 
1166 	if (!was_busy)
1167 		trace_spi_master_busy(master);
1168 
1169 	if (!was_busy && master->prepare_transfer_hardware) {
1170 		ret = master->prepare_transfer_hardware(master);
1171 		if (ret) {
1172 			dev_err(&master->dev,
1173 				"failed to prepare transfer hardware\n");
1174 
1175 			if (master->auto_runtime_pm)
1176 				pm_runtime_put(master->dev.parent);
1177 			return;
1178 		}
1179 	}
1180 
1181 	trace_spi_message_start(master->cur_msg);
1182 
1183 	if (master->prepare_message) {
1184 		ret = master->prepare_message(master, master->cur_msg);
1185 		if (ret) {
1186 			dev_err(&master->dev,
1187 				"failed to prepare message: %d\n", ret);
1188 			master->cur_msg->status = ret;
1189 			spi_finalize_current_message(master);
1190 			goto out;
1191 		}
1192 		master->cur_msg_prepared = true;
1193 	}
1194 
1195 	ret = spi_map_msg(master, master->cur_msg);
1196 	if (ret) {
1197 		master->cur_msg->status = ret;
1198 		spi_finalize_current_message(master);
1199 		goto out;
1200 	}
1201 
1202 	ret = master->transfer_one_message(master, master->cur_msg);
1203 	if (ret) {
1204 		dev_err(&master->dev,
1205 			"failed to transfer one message from queue\n");
1206 		goto out;
1207 	}
1208 
1209 out:
1210 	mutex_unlock(&master->io_mutex);
1211 
1212 	/* Prod the scheduler in case transfer_one() was busy waiting */
1213 	if (!ret)
1214 		cond_resched();
1215 }
1216 
1217 /**
1218  * spi_pump_messages - kthread work function which processes spi message queue
1219  * @work: pointer to kthread work struct contained in the master struct
1220  */
1221 static void spi_pump_messages(struct kthread_work *work)
1222 {
1223 	struct spi_master *master =
1224 		container_of(work, struct spi_master, pump_messages);
1225 
1226 	__spi_pump_messages(master, true);
1227 }
1228 
1229 static int spi_init_queue(struct spi_master *master)
1230 {
1231 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1232 
1233 	master->running = false;
1234 	master->busy = false;
1235 
1236 	init_kthread_worker(&master->kworker);
1237 	master->kworker_task = kthread_run(kthread_worker_fn,
1238 					   &master->kworker, "%s",
1239 					   dev_name(&master->dev));
1240 	if (IS_ERR(master->kworker_task)) {
1241 		dev_err(&master->dev, "failed to create message pump task\n");
1242 		return PTR_ERR(master->kworker_task);
1243 	}
1244 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1245 
1246 	/*
1247 	 * Master config will indicate if this controller should run the
1248 	 * message pump with high (realtime) priority to reduce the transfer
1249 	 * latency on the bus by minimising the delay between a transfer
1250 	 * request and the scheduling of the message pump thread. Without this
1251 	 * setting the message pump thread will remain at default priority.
1252 	 */
1253 	if (master->rt) {
1254 		dev_info(&master->dev,
1255 			"will run message pump with realtime priority\n");
1256 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1257 	}
1258 
1259 	return 0;
1260 }
1261 
1262 /**
1263  * spi_get_next_queued_message() - called by driver to check for queued
1264  * messages
1265  * @master: the master to check for queued messages
1266  *
1267  * If there are more messages in the queue, the next message is returned from
1268  * this call.
1269  *
1270  * Return: the next message in the queue, else NULL if the queue is empty.
1271  */
1272 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1273 {
1274 	struct spi_message *next;
1275 	unsigned long flags;
1276 
1277 	/* get a pointer to the next message, if any */
1278 	spin_lock_irqsave(&master->queue_lock, flags);
1279 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1280 					queue);
1281 	spin_unlock_irqrestore(&master->queue_lock, flags);
1282 
1283 	return next;
1284 }
1285 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1286 
1287 /**
1288  * spi_finalize_current_message() - the current message is complete
1289  * @master: the master to return the message to
1290  *
1291  * Called by the driver to notify the core that the message in the front of the
1292  * queue is complete and can be removed from the queue.
1293  */
1294 void spi_finalize_current_message(struct spi_master *master)
1295 {
1296 	struct spi_message *mesg;
1297 	unsigned long flags;
1298 	int ret;
1299 
1300 	spin_lock_irqsave(&master->queue_lock, flags);
1301 	mesg = master->cur_msg;
1302 	spin_unlock_irqrestore(&master->queue_lock, flags);
1303 
1304 	spi_unmap_msg(master, mesg);
1305 
1306 	if (master->cur_msg_prepared && master->unprepare_message) {
1307 		ret = master->unprepare_message(master, mesg);
1308 		if (ret) {
1309 			dev_err(&master->dev,
1310 				"failed to unprepare message: %d\n", ret);
1311 		}
1312 	}
1313 
1314 	spin_lock_irqsave(&master->queue_lock, flags);
1315 	master->cur_msg = NULL;
1316 	master->cur_msg_prepared = false;
1317 	queue_kthread_work(&master->kworker, &master->pump_messages);
1318 	spin_unlock_irqrestore(&master->queue_lock, flags);
1319 
1320 	trace_spi_message_done(mesg);
1321 
1322 	mesg->state = NULL;
1323 	if (mesg->complete)
1324 		mesg->complete(mesg->context);
1325 }
1326 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1327 
1328 static int spi_start_queue(struct spi_master *master)
1329 {
1330 	unsigned long flags;
1331 
1332 	spin_lock_irqsave(&master->queue_lock, flags);
1333 
1334 	if (master->running || master->busy) {
1335 		spin_unlock_irqrestore(&master->queue_lock, flags);
1336 		return -EBUSY;
1337 	}
1338 
1339 	master->running = true;
1340 	master->cur_msg = NULL;
1341 	spin_unlock_irqrestore(&master->queue_lock, flags);
1342 
1343 	queue_kthread_work(&master->kworker, &master->pump_messages);
1344 
1345 	return 0;
1346 }
1347 
1348 static int spi_stop_queue(struct spi_master *master)
1349 {
1350 	unsigned long flags;
1351 	unsigned limit = 500;
1352 	int ret = 0;
1353 
1354 	spin_lock_irqsave(&master->queue_lock, flags);
1355 
1356 	/*
1357 	 * This is a bit lame, but is optimized for the common execution path.
1358 	 * A wait_queue on the master->busy could be used, but then the common
1359 	 * execution path (pump_messages) would be required to call wake_up or
1360 	 * friends on every SPI message. Do this instead.
1361 	 */
1362 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1363 		spin_unlock_irqrestore(&master->queue_lock, flags);
1364 		usleep_range(10000, 11000);
1365 		spin_lock_irqsave(&master->queue_lock, flags);
1366 	}
1367 
1368 	if (!list_empty(&master->queue) || master->busy)
1369 		ret = -EBUSY;
1370 	else
1371 		master->running = false;
1372 
1373 	spin_unlock_irqrestore(&master->queue_lock, flags);
1374 
1375 	if (ret) {
1376 		dev_warn(&master->dev,
1377 			 "could not stop message queue\n");
1378 		return ret;
1379 	}
1380 	return ret;
1381 }
1382 
1383 static int spi_destroy_queue(struct spi_master *master)
1384 {
1385 	int ret;
1386 
1387 	ret = spi_stop_queue(master);
1388 
1389 	/*
1390 	 * flush_kthread_worker will block until all work is done.
1391 	 * If the reason that stop_queue timed out is that the work will never
1392 	 * finish, then it does no good to call flush/stop thread, so
1393 	 * return anyway.
1394 	 */
1395 	if (ret) {
1396 		dev_err(&master->dev, "problem destroying queue\n");
1397 		return ret;
1398 	}
1399 
1400 	flush_kthread_worker(&master->kworker);
1401 	kthread_stop(master->kworker_task);
1402 
1403 	return 0;
1404 }
1405 
1406 static int __spi_queued_transfer(struct spi_device *spi,
1407 				 struct spi_message *msg,
1408 				 bool need_pump)
1409 {
1410 	struct spi_master *master = spi->master;
1411 	unsigned long flags;
1412 
1413 	spin_lock_irqsave(&master->queue_lock, flags);
1414 
1415 	if (!master->running) {
1416 		spin_unlock_irqrestore(&master->queue_lock, flags);
1417 		return -ESHUTDOWN;
1418 	}
1419 	msg->actual_length = 0;
1420 	msg->status = -EINPROGRESS;
1421 
1422 	list_add_tail(&msg->queue, &master->queue);
1423 	if (!master->busy && need_pump)
1424 		queue_kthread_work(&master->kworker, &master->pump_messages);
1425 
1426 	spin_unlock_irqrestore(&master->queue_lock, flags);
1427 	return 0;
1428 }
1429 
1430 /**
1431  * spi_queued_transfer - transfer function for queued transfers
1432  * @spi: spi device which is requesting transfer
1433  * @msg: spi message which is to handled is queued to driver queue
1434  *
1435  * Return: zero on success, else a negative error code.
1436  */
1437 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1438 {
1439 	return __spi_queued_transfer(spi, msg, true);
1440 }
1441 
1442 static int spi_master_initialize_queue(struct spi_master *master)
1443 {
1444 	int ret;
1445 
1446 	master->transfer = spi_queued_transfer;
1447 	if (!master->transfer_one_message)
1448 		master->transfer_one_message = spi_transfer_one_message;
1449 
1450 	/* Initialize and start queue */
1451 	ret = spi_init_queue(master);
1452 	if (ret) {
1453 		dev_err(&master->dev, "problem initializing queue\n");
1454 		goto err_init_queue;
1455 	}
1456 	master->queued = true;
1457 	ret = spi_start_queue(master);
1458 	if (ret) {
1459 		dev_err(&master->dev, "problem starting queue\n");
1460 		goto err_start_queue;
1461 	}
1462 
1463 	return 0;
1464 
1465 err_start_queue:
1466 	spi_destroy_queue(master);
1467 err_init_queue:
1468 	return ret;
1469 }
1470 
1471 /*-------------------------------------------------------------------------*/
1472 
1473 #if defined(CONFIG_OF)
1474 static struct spi_device *
1475 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1476 {
1477 	struct spi_device *spi;
1478 	int rc;
1479 	u32 value;
1480 
1481 	/* Alloc an spi_device */
1482 	spi = spi_alloc_device(master);
1483 	if (!spi) {
1484 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1485 			nc->full_name);
1486 		rc = -ENOMEM;
1487 		goto err_out;
1488 	}
1489 
1490 	/* Select device driver */
1491 	rc = of_modalias_node(nc, spi->modalias,
1492 				sizeof(spi->modalias));
1493 	if (rc < 0) {
1494 		dev_err(&master->dev, "cannot find modalias for %s\n",
1495 			nc->full_name);
1496 		goto err_out;
1497 	}
1498 
1499 	/* Device address */
1500 	rc = of_property_read_u32(nc, "reg", &value);
1501 	if (rc) {
1502 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1503 			nc->full_name, rc);
1504 		goto err_out;
1505 	}
1506 	spi->chip_select = value;
1507 
1508 	/* Mode (clock phase/polarity/etc.) */
1509 	if (of_find_property(nc, "spi-cpha", NULL))
1510 		spi->mode |= SPI_CPHA;
1511 	if (of_find_property(nc, "spi-cpol", NULL))
1512 		spi->mode |= SPI_CPOL;
1513 	if (of_find_property(nc, "spi-cs-high", NULL))
1514 		spi->mode |= SPI_CS_HIGH;
1515 	if (of_find_property(nc, "spi-3wire", NULL))
1516 		spi->mode |= SPI_3WIRE;
1517 	if (of_find_property(nc, "spi-lsb-first", NULL))
1518 		spi->mode |= SPI_LSB_FIRST;
1519 
1520 	/* Device DUAL/QUAD mode */
1521 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1522 		switch (value) {
1523 		case 1:
1524 			break;
1525 		case 2:
1526 			spi->mode |= SPI_TX_DUAL;
1527 			break;
1528 		case 4:
1529 			spi->mode |= SPI_TX_QUAD;
1530 			break;
1531 		default:
1532 			dev_warn(&master->dev,
1533 				"spi-tx-bus-width %d not supported\n",
1534 				value);
1535 			break;
1536 		}
1537 	}
1538 
1539 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1540 		switch (value) {
1541 		case 1:
1542 			break;
1543 		case 2:
1544 			spi->mode |= SPI_RX_DUAL;
1545 			break;
1546 		case 4:
1547 			spi->mode |= SPI_RX_QUAD;
1548 			break;
1549 		default:
1550 			dev_warn(&master->dev,
1551 				"spi-rx-bus-width %d not supported\n",
1552 				value);
1553 			break;
1554 		}
1555 	}
1556 
1557 	/* Device speed */
1558 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1559 	if (rc) {
1560 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1561 			nc->full_name, rc);
1562 		goto err_out;
1563 	}
1564 	spi->max_speed_hz = value;
1565 
1566 	/* Store a pointer to the node in the device structure */
1567 	of_node_get(nc);
1568 	spi->dev.of_node = nc;
1569 
1570 	/* Register the new device */
1571 	rc = spi_add_device(spi);
1572 	if (rc) {
1573 		dev_err(&master->dev, "spi_device register error %s\n",
1574 			nc->full_name);
1575 		goto err_out;
1576 	}
1577 
1578 	return spi;
1579 
1580 err_out:
1581 	spi_dev_put(spi);
1582 	return ERR_PTR(rc);
1583 }
1584 
1585 /**
1586  * of_register_spi_devices() - Register child devices onto the SPI bus
1587  * @master:	Pointer to spi_master device
1588  *
1589  * Registers an spi_device for each child node of master node which has a 'reg'
1590  * property.
1591  */
1592 static void of_register_spi_devices(struct spi_master *master)
1593 {
1594 	struct spi_device *spi;
1595 	struct device_node *nc;
1596 
1597 	if (!master->dev.of_node)
1598 		return;
1599 
1600 	for_each_available_child_of_node(master->dev.of_node, nc) {
1601 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1602 			continue;
1603 		spi = of_register_spi_device(master, nc);
1604 		if (IS_ERR(spi))
1605 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1606 				nc->full_name);
1607 	}
1608 }
1609 #else
1610 static void of_register_spi_devices(struct spi_master *master) { }
1611 #endif
1612 
1613 #ifdef CONFIG_ACPI
1614 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1615 {
1616 	struct spi_device *spi = data;
1617 	struct spi_master *master = spi->master;
1618 
1619 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1620 		struct acpi_resource_spi_serialbus *sb;
1621 
1622 		sb = &ares->data.spi_serial_bus;
1623 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1624 			/*
1625 			 * ACPI DeviceSelection numbering is handled by the
1626 			 * host controller driver in Windows and can vary
1627 			 * from driver to driver. In Linux we always expect
1628 			 * 0 .. max - 1 so we need to ask the driver to
1629 			 * translate between the two schemes.
1630 			 */
1631 			if (master->fw_translate_cs) {
1632 				int cs = master->fw_translate_cs(master,
1633 						sb->device_selection);
1634 				if (cs < 0)
1635 					return cs;
1636 				spi->chip_select = cs;
1637 			} else {
1638 				spi->chip_select = sb->device_selection;
1639 			}
1640 
1641 			spi->max_speed_hz = sb->connection_speed;
1642 
1643 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1644 				spi->mode |= SPI_CPHA;
1645 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1646 				spi->mode |= SPI_CPOL;
1647 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1648 				spi->mode |= SPI_CS_HIGH;
1649 		}
1650 	} else if (spi->irq < 0) {
1651 		struct resource r;
1652 
1653 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1654 			spi->irq = r.start;
1655 	}
1656 
1657 	/* Always tell the ACPI core to skip this resource */
1658 	return 1;
1659 }
1660 
1661 static acpi_status acpi_register_spi_device(struct spi_master *master,
1662 					    struct acpi_device *adev)
1663 {
1664 	struct list_head resource_list;
1665 	struct spi_device *spi;
1666 	int ret;
1667 
1668 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1669 	    acpi_device_enumerated(adev))
1670 		return AE_OK;
1671 
1672 	spi = spi_alloc_device(master);
1673 	if (!spi) {
1674 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1675 			dev_name(&adev->dev));
1676 		return AE_NO_MEMORY;
1677 	}
1678 
1679 	ACPI_COMPANION_SET(&spi->dev, adev);
1680 	spi->irq = -1;
1681 
1682 	INIT_LIST_HEAD(&resource_list);
1683 	ret = acpi_dev_get_resources(adev, &resource_list,
1684 				     acpi_spi_add_resource, spi);
1685 	acpi_dev_free_resource_list(&resource_list);
1686 
1687 	if (ret < 0 || !spi->max_speed_hz) {
1688 		spi_dev_put(spi);
1689 		return AE_OK;
1690 	}
1691 
1692 	if (spi->irq < 0)
1693 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1694 
1695 	acpi_device_set_enumerated(adev);
1696 
1697 	adev->power.flags.ignore_parent = true;
1698 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1699 	if (spi_add_device(spi)) {
1700 		adev->power.flags.ignore_parent = false;
1701 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1702 			dev_name(&adev->dev));
1703 		spi_dev_put(spi);
1704 	}
1705 
1706 	return AE_OK;
1707 }
1708 
1709 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1710 				       void *data, void **return_value)
1711 {
1712 	struct spi_master *master = data;
1713 	struct acpi_device *adev;
1714 
1715 	if (acpi_bus_get_device(handle, &adev))
1716 		return AE_OK;
1717 
1718 	return acpi_register_spi_device(master, adev);
1719 }
1720 
1721 static void acpi_register_spi_devices(struct spi_master *master)
1722 {
1723 	acpi_status status;
1724 	acpi_handle handle;
1725 
1726 	handle = ACPI_HANDLE(master->dev.parent);
1727 	if (!handle)
1728 		return;
1729 
1730 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1731 				     acpi_spi_add_device, NULL,
1732 				     master, NULL);
1733 	if (ACPI_FAILURE(status))
1734 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1735 }
1736 #else
1737 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1738 #endif /* CONFIG_ACPI */
1739 
1740 static void spi_master_release(struct device *dev)
1741 {
1742 	struct spi_master *master;
1743 
1744 	master = container_of(dev, struct spi_master, dev);
1745 	kfree(master);
1746 }
1747 
1748 static struct class spi_master_class = {
1749 	.name		= "spi_master",
1750 	.owner		= THIS_MODULE,
1751 	.dev_release	= spi_master_release,
1752 	.dev_groups	= spi_master_groups,
1753 };
1754 
1755 
1756 /**
1757  * spi_alloc_master - allocate SPI master controller
1758  * @dev: the controller, possibly using the platform_bus
1759  * @size: how much zeroed driver-private data to allocate; the pointer to this
1760  *	memory is in the driver_data field of the returned device,
1761  *	accessible with spi_master_get_devdata().
1762  * Context: can sleep
1763  *
1764  * This call is used only by SPI master controller drivers, which are the
1765  * only ones directly touching chip registers.  It's how they allocate
1766  * an spi_master structure, prior to calling spi_register_master().
1767  *
1768  * This must be called from context that can sleep.
1769  *
1770  * The caller is responsible for assigning the bus number and initializing
1771  * the master's methods before calling spi_register_master(); and (after errors
1772  * adding the device) calling spi_master_put() to prevent a memory leak.
1773  *
1774  * Return: the SPI master structure on success, else NULL.
1775  */
1776 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1777 {
1778 	struct spi_master	*master;
1779 
1780 	if (!dev)
1781 		return NULL;
1782 
1783 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1784 	if (!master)
1785 		return NULL;
1786 
1787 	device_initialize(&master->dev);
1788 	master->bus_num = -1;
1789 	master->num_chipselect = 1;
1790 	master->dev.class = &spi_master_class;
1791 	master->dev.parent = dev;
1792 	pm_suspend_ignore_children(&master->dev, true);
1793 	spi_master_set_devdata(master, &master[1]);
1794 
1795 	return master;
1796 }
1797 EXPORT_SYMBOL_GPL(spi_alloc_master);
1798 
1799 #ifdef CONFIG_OF
1800 static int of_spi_register_master(struct spi_master *master)
1801 {
1802 	int nb, i, *cs;
1803 	struct device_node *np = master->dev.of_node;
1804 
1805 	if (!np)
1806 		return 0;
1807 
1808 	nb = of_gpio_named_count(np, "cs-gpios");
1809 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1810 
1811 	/* Return error only for an incorrectly formed cs-gpios property */
1812 	if (nb == 0 || nb == -ENOENT)
1813 		return 0;
1814 	else if (nb < 0)
1815 		return nb;
1816 
1817 	cs = devm_kzalloc(&master->dev,
1818 			  sizeof(int) * master->num_chipselect,
1819 			  GFP_KERNEL);
1820 	master->cs_gpios = cs;
1821 
1822 	if (!master->cs_gpios)
1823 		return -ENOMEM;
1824 
1825 	for (i = 0; i < master->num_chipselect; i++)
1826 		cs[i] = -ENOENT;
1827 
1828 	for (i = 0; i < nb; i++)
1829 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1830 
1831 	return 0;
1832 }
1833 #else
1834 static int of_spi_register_master(struct spi_master *master)
1835 {
1836 	return 0;
1837 }
1838 #endif
1839 
1840 /**
1841  * spi_register_master - register SPI master controller
1842  * @master: initialized master, originally from spi_alloc_master()
1843  * Context: can sleep
1844  *
1845  * SPI master controllers connect to their drivers using some non-SPI bus,
1846  * such as the platform bus.  The final stage of probe() in that code
1847  * includes calling spi_register_master() to hook up to this SPI bus glue.
1848  *
1849  * SPI controllers use board specific (often SOC specific) bus numbers,
1850  * and board-specific addressing for SPI devices combines those numbers
1851  * with chip select numbers.  Since SPI does not directly support dynamic
1852  * device identification, boards need configuration tables telling which
1853  * chip is at which address.
1854  *
1855  * This must be called from context that can sleep.  It returns zero on
1856  * success, else a negative error code (dropping the master's refcount).
1857  * After a successful return, the caller is responsible for calling
1858  * spi_unregister_master().
1859  *
1860  * Return: zero on success, else a negative error code.
1861  */
1862 int spi_register_master(struct spi_master *master)
1863 {
1864 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1865 	struct device		*dev = master->dev.parent;
1866 	struct boardinfo	*bi;
1867 	int			status = -ENODEV;
1868 	int			dynamic = 0;
1869 
1870 	if (!dev)
1871 		return -ENODEV;
1872 
1873 	status = of_spi_register_master(master);
1874 	if (status)
1875 		return status;
1876 
1877 	/* even if it's just one always-selected device, there must
1878 	 * be at least one chipselect
1879 	 */
1880 	if (master->num_chipselect == 0)
1881 		return -EINVAL;
1882 
1883 	if ((master->bus_num < 0) && master->dev.of_node)
1884 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1885 
1886 	/* convention:  dynamically assigned bus IDs count down from the max */
1887 	if (master->bus_num < 0) {
1888 		/* FIXME switch to an IDR based scheme, something like
1889 		 * I2C now uses, so we can't run out of "dynamic" IDs
1890 		 */
1891 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1892 		dynamic = 1;
1893 	}
1894 
1895 	INIT_LIST_HEAD(&master->queue);
1896 	spin_lock_init(&master->queue_lock);
1897 	spin_lock_init(&master->bus_lock_spinlock);
1898 	mutex_init(&master->bus_lock_mutex);
1899 	mutex_init(&master->io_mutex);
1900 	master->bus_lock_flag = 0;
1901 	init_completion(&master->xfer_completion);
1902 	if (!master->max_dma_len)
1903 		master->max_dma_len = INT_MAX;
1904 
1905 	/* register the device, then userspace will see it.
1906 	 * registration fails if the bus ID is in use.
1907 	 */
1908 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1909 	status = device_add(&master->dev);
1910 	if (status < 0)
1911 		goto done;
1912 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1913 			dynamic ? " (dynamic)" : "");
1914 
1915 	/* If we're using a queued driver, start the queue */
1916 	if (master->transfer)
1917 		dev_info(dev, "master is unqueued, this is deprecated\n");
1918 	else {
1919 		status = spi_master_initialize_queue(master);
1920 		if (status) {
1921 			device_del(&master->dev);
1922 			goto done;
1923 		}
1924 	}
1925 	/* add statistics */
1926 	spin_lock_init(&master->statistics.lock);
1927 
1928 	mutex_lock(&board_lock);
1929 	list_add_tail(&master->list, &spi_master_list);
1930 	list_for_each_entry(bi, &board_list, list)
1931 		spi_match_master_to_boardinfo(master, &bi->board_info);
1932 	mutex_unlock(&board_lock);
1933 
1934 	/* Register devices from the device tree and ACPI */
1935 	of_register_spi_devices(master);
1936 	acpi_register_spi_devices(master);
1937 done:
1938 	return status;
1939 }
1940 EXPORT_SYMBOL_GPL(spi_register_master);
1941 
1942 static void devm_spi_unregister(struct device *dev, void *res)
1943 {
1944 	spi_unregister_master(*(struct spi_master **)res);
1945 }
1946 
1947 /**
1948  * dev_spi_register_master - register managed SPI master controller
1949  * @dev:    device managing SPI master
1950  * @master: initialized master, originally from spi_alloc_master()
1951  * Context: can sleep
1952  *
1953  * Register a SPI device as with spi_register_master() which will
1954  * automatically be unregister
1955  *
1956  * Return: zero on success, else a negative error code.
1957  */
1958 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1959 {
1960 	struct spi_master **ptr;
1961 	int ret;
1962 
1963 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1964 	if (!ptr)
1965 		return -ENOMEM;
1966 
1967 	ret = spi_register_master(master);
1968 	if (!ret) {
1969 		*ptr = master;
1970 		devres_add(dev, ptr);
1971 	} else {
1972 		devres_free(ptr);
1973 	}
1974 
1975 	return ret;
1976 }
1977 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1978 
1979 static int __unregister(struct device *dev, void *null)
1980 {
1981 	spi_unregister_device(to_spi_device(dev));
1982 	return 0;
1983 }
1984 
1985 /**
1986  * spi_unregister_master - unregister SPI master controller
1987  * @master: the master being unregistered
1988  * Context: can sleep
1989  *
1990  * This call is used only by SPI master controller drivers, which are the
1991  * only ones directly touching chip registers.
1992  *
1993  * This must be called from context that can sleep.
1994  */
1995 void spi_unregister_master(struct spi_master *master)
1996 {
1997 	int dummy;
1998 
1999 	if (master->queued) {
2000 		if (spi_destroy_queue(master))
2001 			dev_err(&master->dev, "queue remove failed\n");
2002 	}
2003 
2004 	mutex_lock(&board_lock);
2005 	list_del(&master->list);
2006 	mutex_unlock(&board_lock);
2007 
2008 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
2009 	device_unregister(&master->dev);
2010 }
2011 EXPORT_SYMBOL_GPL(spi_unregister_master);
2012 
2013 int spi_master_suspend(struct spi_master *master)
2014 {
2015 	int ret;
2016 
2017 	/* Basically no-ops for non-queued masters */
2018 	if (!master->queued)
2019 		return 0;
2020 
2021 	ret = spi_stop_queue(master);
2022 	if (ret)
2023 		dev_err(&master->dev, "queue stop failed\n");
2024 
2025 	return ret;
2026 }
2027 EXPORT_SYMBOL_GPL(spi_master_suspend);
2028 
2029 int spi_master_resume(struct spi_master *master)
2030 {
2031 	int ret;
2032 
2033 	if (!master->queued)
2034 		return 0;
2035 
2036 	ret = spi_start_queue(master);
2037 	if (ret)
2038 		dev_err(&master->dev, "queue restart failed\n");
2039 
2040 	return ret;
2041 }
2042 EXPORT_SYMBOL_GPL(spi_master_resume);
2043 
2044 static int __spi_master_match(struct device *dev, const void *data)
2045 {
2046 	struct spi_master *m;
2047 	const u16 *bus_num = data;
2048 
2049 	m = container_of(dev, struct spi_master, dev);
2050 	return m->bus_num == *bus_num;
2051 }
2052 
2053 /**
2054  * spi_busnum_to_master - look up master associated with bus_num
2055  * @bus_num: the master's bus number
2056  * Context: can sleep
2057  *
2058  * This call may be used with devices that are registered after
2059  * arch init time.  It returns a refcounted pointer to the relevant
2060  * spi_master (which the caller must release), or NULL if there is
2061  * no such master registered.
2062  *
2063  * Return: the SPI master structure on success, else NULL.
2064  */
2065 struct spi_master *spi_busnum_to_master(u16 bus_num)
2066 {
2067 	struct device		*dev;
2068 	struct spi_master	*master = NULL;
2069 
2070 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2071 				__spi_master_match);
2072 	if (dev)
2073 		master = container_of(dev, struct spi_master, dev);
2074 	/* reference got in class_find_device */
2075 	return master;
2076 }
2077 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2078 
2079 /*-------------------------------------------------------------------------*/
2080 
2081 /* Core methods for SPI resource management */
2082 
2083 /**
2084  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2085  *                 during the processing of a spi_message while using
2086  *                 spi_transfer_one
2087  * @spi:     the spi device for which we allocate memory
2088  * @release: the release code to execute for this resource
2089  * @size:    size to alloc and return
2090  * @gfp:     GFP allocation flags
2091  *
2092  * Return: the pointer to the allocated data
2093  *
2094  * This may get enhanced in the future to allocate from a memory pool
2095  * of the @spi_device or @spi_master to avoid repeated allocations.
2096  */
2097 void *spi_res_alloc(struct spi_device *spi,
2098 		    spi_res_release_t release,
2099 		    size_t size, gfp_t gfp)
2100 {
2101 	struct spi_res *sres;
2102 
2103 	sres = kzalloc(sizeof(*sres) + size, gfp);
2104 	if (!sres)
2105 		return NULL;
2106 
2107 	INIT_LIST_HEAD(&sres->entry);
2108 	sres->release = release;
2109 
2110 	return sres->data;
2111 }
2112 EXPORT_SYMBOL_GPL(spi_res_alloc);
2113 
2114 /**
2115  * spi_res_free - free an spi resource
2116  * @res: pointer to the custom data of a resource
2117  *
2118  */
2119 void spi_res_free(void *res)
2120 {
2121 	struct spi_res *sres = container_of(res, struct spi_res, data);
2122 
2123 	if (!res)
2124 		return;
2125 
2126 	WARN_ON(!list_empty(&sres->entry));
2127 	kfree(sres);
2128 }
2129 EXPORT_SYMBOL_GPL(spi_res_free);
2130 
2131 /**
2132  * spi_res_add - add a spi_res to the spi_message
2133  * @message: the spi message
2134  * @res:     the spi_resource
2135  */
2136 void spi_res_add(struct spi_message *message, void *res)
2137 {
2138 	struct spi_res *sres = container_of(res, struct spi_res, data);
2139 
2140 	WARN_ON(!list_empty(&sres->entry));
2141 	list_add_tail(&sres->entry, &message->resources);
2142 }
2143 EXPORT_SYMBOL_GPL(spi_res_add);
2144 
2145 /**
2146  * spi_res_release - release all spi resources for this message
2147  * @master:  the @spi_master
2148  * @message: the @spi_message
2149  */
2150 void spi_res_release(struct spi_master *master,
2151 		     struct spi_message *message)
2152 {
2153 	struct spi_res *res;
2154 
2155 	while (!list_empty(&message->resources)) {
2156 		res = list_last_entry(&message->resources,
2157 				      struct spi_res, entry);
2158 
2159 		if (res->release)
2160 			res->release(master, message, res->data);
2161 
2162 		list_del(&res->entry);
2163 
2164 		kfree(res);
2165 	}
2166 }
2167 EXPORT_SYMBOL_GPL(spi_res_release);
2168 
2169 /*-------------------------------------------------------------------------*/
2170 
2171 /* Core methods for spi_message alterations */
2172 
2173 static void __spi_replace_transfers_release(struct spi_master *master,
2174 					    struct spi_message *msg,
2175 					    void *res)
2176 {
2177 	struct spi_replaced_transfers *rxfer = res;
2178 	size_t i;
2179 
2180 	/* call extra callback if requested */
2181 	if (rxfer->release)
2182 		rxfer->release(master, msg, res);
2183 
2184 	/* insert replaced transfers back into the message */
2185 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2186 
2187 	/* remove the formerly inserted entries */
2188 	for (i = 0; i < rxfer->inserted; i++)
2189 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2190 }
2191 
2192 /**
2193  * spi_replace_transfers - replace transfers with several transfers
2194  *                         and register change with spi_message.resources
2195  * @msg:           the spi_message we work upon
2196  * @xfer_first:    the first spi_transfer we want to replace
2197  * @remove:        number of transfers to remove
2198  * @insert:        the number of transfers we want to insert instead
2199  * @release:       extra release code necessary in some circumstances
2200  * @extradatasize: extra data to allocate (with alignment guarantees
2201  *                 of struct @spi_transfer)
2202  * @gfp:           gfp flags
2203  *
2204  * Returns: pointer to @spi_replaced_transfers,
2205  *          PTR_ERR(...) in case of errors.
2206  */
2207 struct spi_replaced_transfers *spi_replace_transfers(
2208 	struct spi_message *msg,
2209 	struct spi_transfer *xfer_first,
2210 	size_t remove,
2211 	size_t insert,
2212 	spi_replaced_release_t release,
2213 	size_t extradatasize,
2214 	gfp_t gfp)
2215 {
2216 	struct spi_replaced_transfers *rxfer;
2217 	struct spi_transfer *xfer;
2218 	size_t i;
2219 
2220 	/* allocate the structure using spi_res */
2221 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2222 			      insert * sizeof(struct spi_transfer)
2223 			      + sizeof(struct spi_replaced_transfers)
2224 			      + extradatasize,
2225 			      gfp);
2226 	if (!rxfer)
2227 		return ERR_PTR(-ENOMEM);
2228 
2229 	/* the release code to invoke before running the generic release */
2230 	rxfer->release = release;
2231 
2232 	/* assign extradata */
2233 	if (extradatasize)
2234 		rxfer->extradata =
2235 			&rxfer->inserted_transfers[insert];
2236 
2237 	/* init the replaced_transfers list */
2238 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2239 
2240 	/* assign the list_entry after which we should reinsert
2241 	 * the @replaced_transfers - it may be spi_message.messages!
2242 	 */
2243 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2244 
2245 	/* remove the requested number of transfers */
2246 	for (i = 0; i < remove; i++) {
2247 		/* if the entry after replaced_after it is msg->transfers
2248 		 * then we have been requested to remove more transfers
2249 		 * than are in the list
2250 		 */
2251 		if (rxfer->replaced_after->next == &msg->transfers) {
2252 			dev_err(&msg->spi->dev,
2253 				"requested to remove more spi_transfers than are available\n");
2254 			/* insert replaced transfers back into the message */
2255 			list_splice(&rxfer->replaced_transfers,
2256 				    rxfer->replaced_after);
2257 
2258 			/* free the spi_replace_transfer structure */
2259 			spi_res_free(rxfer);
2260 
2261 			/* and return with an error */
2262 			return ERR_PTR(-EINVAL);
2263 		}
2264 
2265 		/* remove the entry after replaced_after from list of
2266 		 * transfers and add it to list of replaced_transfers
2267 		 */
2268 		list_move_tail(rxfer->replaced_after->next,
2269 			       &rxfer->replaced_transfers);
2270 	}
2271 
2272 	/* create copy of the given xfer with identical settings
2273 	 * based on the first transfer to get removed
2274 	 */
2275 	for (i = 0; i < insert; i++) {
2276 		/* we need to run in reverse order */
2277 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2278 
2279 		/* copy all spi_transfer data */
2280 		memcpy(xfer, xfer_first, sizeof(*xfer));
2281 
2282 		/* add to list */
2283 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2284 
2285 		/* clear cs_change and delay_usecs for all but the last */
2286 		if (i) {
2287 			xfer->cs_change = false;
2288 			xfer->delay_usecs = 0;
2289 		}
2290 	}
2291 
2292 	/* set up inserted */
2293 	rxfer->inserted = insert;
2294 
2295 	/* and register it with spi_res/spi_message */
2296 	spi_res_add(msg, rxfer);
2297 
2298 	return rxfer;
2299 }
2300 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2301 
2302 static int __spi_split_transfer_maxsize(struct spi_master *master,
2303 					struct spi_message *msg,
2304 					struct spi_transfer **xferp,
2305 					size_t maxsize,
2306 					gfp_t gfp)
2307 {
2308 	struct spi_transfer *xfer = *xferp, *xfers;
2309 	struct spi_replaced_transfers *srt;
2310 	size_t offset;
2311 	size_t count, i;
2312 
2313 	/* warn once about this fact that we are splitting a transfer */
2314 	dev_warn_once(&msg->spi->dev,
2315 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2316 		      xfer->len, maxsize);
2317 
2318 	/* calculate how many we have to replace */
2319 	count = DIV_ROUND_UP(xfer->len, maxsize);
2320 
2321 	/* create replacement */
2322 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2323 	if (IS_ERR(srt))
2324 		return PTR_ERR(srt);
2325 	xfers = srt->inserted_transfers;
2326 
2327 	/* now handle each of those newly inserted spi_transfers
2328 	 * note that the replacements spi_transfers all are preset
2329 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2330 	 * are all identical (as well as most others)
2331 	 * so we just have to fix up len and the pointers.
2332 	 *
2333 	 * this also includes support for the depreciated
2334 	 * spi_message.is_dma_mapped interface
2335 	 */
2336 
2337 	/* the first transfer just needs the length modified, so we
2338 	 * run it outside the loop
2339 	 */
2340 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2341 
2342 	/* all the others need rx_buf/tx_buf also set */
2343 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2344 		/* update rx_buf, tx_buf and dma */
2345 		if (xfers[i].rx_buf)
2346 			xfers[i].rx_buf += offset;
2347 		if (xfers[i].rx_dma)
2348 			xfers[i].rx_dma += offset;
2349 		if (xfers[i].tx_buf)
2350 			xfers[i].tx_buf += offset;
2351 		if (xfers[i].tx_dma)
2352 			xfers[i].tx_dma += offset;
2353 
2354 		/* update length */
2355 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2356 	}
2357 
2358 	/* we set up xferp to the last entry we have inserted,
2359 	 * so that we skip those already split transfers
2360 	 */
2361 	*xferp = &xfers[count - 1];
2362 
2363 	/* increment statistics counters */
2364 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2365 				       transfers_split_maxsize);
2366 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2367 				       transfers_split_maxsize);
2368 
2369 	return 0;
2370 }
2371 
2372 /**
2373  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2374  *                              when an individual transfer exceeds a
2375  *                              certain size
2376  * @master:    the @spi_master for this transfer
2377  * @msg:   the @spi_message to transform
2378  * @maxsize:  the maximum when to apply this
2379  * @gfp: GFP allocation flags
2380  *
2381  * Return: status of transformation
2382  */
2383 int spi_split_transfers_maxsize(struct spi_master *master,
2384 				struct spi_message *msg,
2385 				size_t maxsize,
2386 				gfp_t gfp)
2387 {
2388 	struct spi_transfer *xfer;
2389 	int ret;
2390 
2391 	/* iterate over the transfer_list,
2392 	 * but note that xfer is advanced to the last transfer inserted
2393 	 * to avoid checking sizes again unnecessarily (also xfer does
2394 	 * potentiall belong to a different list by the time the
2395 	 * replacement has happened
2396 	 */
2397 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2398 		if (xfer->len > maxsize) {
2399 			ret = __spi_split_transfer_maxsize(
2400 				master, msg, &xfer, maxsize, gfp);
2401 			if (ret)
2402 				return ret;
2403 		}
2404 	}
2405 
2406 	return 0;
2407 }
2408 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2409 
2410 /*-------------------------------------------------------------------------*/
2411 
2412 /* Core methods for SPI master protocol drivers.  Some of the
2413  * other core methods are currently defined as inline functions.
2414  */
2415 
2416 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2417 {
2418 	if (master->bits_per_word_mask) {
2419 		/* Only 32 bits fit in the mask */
2420 		if (bits_per_word > 32)
2421 			return -EINVAL;
2422 		if (!(master->bits_per_word_mask &
2423 				SPI_BPW_MASK(bits_per_word)))
2424 			return -EINVAL;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 /**
2431  * spi_setup - setup SPI mode and clock rate
2432  * @spi: the device whose settings are being modified
2433  * Context: can sleep, and no requests are queued to the device
2434  *
2435  * SPI protocol drivers may need to update the transfer mode if the
2436  * device doesn't work with its default.  They may likewise need
2437  * to update clock rates or word sizes from initial values.  This function
2438  * changes those settings, and must be called from a context that can sleep.
2439  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2440  * effect the next time the device is selected and data is transferred to
2441  * or from it.  When this function returns, the spi device is deselected.
2442  *
2443  * Note that this call will fail if the protocol driver specifies an option
2444  * that the underlying controller or its driver does not support.  For
2445  * example, not all hardware supports wire transfers using nine bit words,
2446  * LSB-first wire encoding, or active-high chipselects.
2447  *
2448  * Return: zero on success, else a negative error code.
2449  */
2450 int spi_setup(struct spi_device *spi)
2451 {
2452 	unsigned	bad_bits, ugly_bits;
2453 	int		status;
2454 
2455 	/* check mode to prevent that DUAL and QUAD set at the same time
2456 	 */
2457 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2458 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2459 		dev_err(&spi->dev,
2460 		"setup: can not select dual and quad at the same time\n");
2461 		return -EINVAL;
2462 	}
2463 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2464 	 */
2465 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2466 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2467 		return -EINVAL;
2468 	/* help drivers fail *cleanly* when they need options
2469 	 * that aren't supported with their current master
2470 	 */
2471 	bad_bits = spi->mode & ~spi->master->mode_bits;
2472 	ugly_bits = bad_bits &
2473 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2474 	if (ugly_bits) {
2475 		dev_warn(&spi->dev,
2476 			 "setup: ignoring unsupported mode bits %x\n",
2477 			 ugly_bits);
2478 		spi->mode &= ~ugly_bits;
2479 		bad_bits &= ~ugly_bits;
2480 	}
2481 	if (bad_bits) {
2482 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2483 			bad_bits);
2484 		return -EINVAL;
2485 	}
2486 
2487 	if (!spi->bits_per_word)
2488 		spi->bits_per_word = 8;
2489 
2490 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2491 	if (status)
2492 		return status;
2493 
2494 	if (!spi->max_speed_hz)
2495 		spi->max_speed_hz = spi->master->max_speed_hz;
2496 
2497 	if (spi->master->setup)
2498 		status = spi->master->setup(spi);
2499 
2500 	spi_set_cs(spi, false);
2501 
2502 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2503 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2504 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2505 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2506 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2507 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2508 			spi->bits_per_word, spi->max_speed_hz,
2509 			status);
2510 
2511 	return status;
2512 }
2513 EXPORT_SYMBOL_GPL(spi_setup);
2514 
2515 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2516 {
2517 	struct spi_master *master = spi->master;
2518 	struct spi_transfer *xfer;
2519 	int w_size;
2520 
2521 	if (list_empty(&message->transfers))
2522 		return -EINVAL;
2523 
2524 	/* Half-duplex links include original MicroWire, and ones with
2525 	 * only one data pin like SPI_3WIRE (switches direction) or where
2526 	 * either MOSI or MISO is missing.  They can also be caused by
2527 	 * software limitations.
2528 	 */
2529 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2530 			|| (spi->mode & SPI_3WIRE)) {
2531 		unsigned flags = master->flags;
2532 
2533 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2534 			if (xfer->rx_buf && xfer->tx_buf)
2535 				return -EINVAL;
2536 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2537 				return -EINVAL;
2538 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2539 				return -EINVAL;
2540 		}
2541 	}
2542 
2543 	/**
2544 	 * Set transfer bits_per_word and max speed as spi device default if
2545 	 * it is not set for this transfer.
2546 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2547 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2548 	 */
2549 	message->frame_length = 0;
2550 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2551 		message->frame_length += xfer->len;
2552 		if (!xfer->bits_per_word)
2553 			xfer->bits_per_word = spi->bits_per_word;
2554 
2555 		if (!xfer->speed_hz)
2556 			xfer->speed_hz = spi->max_speed_hz;
2557 		if (!xfer->speed_hz)
2558 			xfer->speed_hz = master->max_speed_hz;
2559 
2560 		if (master->max_speed_hz &&
2561 		    xfer->speed_hz > master->max_speed_hz)
2562 			xfer->speed_hz = master->max_speed_hz;
2563 
2564 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2565 			return -EINVAL;
2566 
2567 		/*
2568 		 * SPI transfer length should be multiple of SPI word size
2569 		 * where SPI word size should be power-of-two multiple
2570 		 */
2571 		if (xfer->bits_per_word <= 8)
2572 			w_size = 1;
2573 		else if (xfer->bits_per_word <= 16)
2574 			w_size = 2;
2575 		else
2576 			w_size = 4;
2577 
2578 		/* No partial transfers accepted */
2579 		if (xfer->len % w_size)
2580 			return -EINVAL;
2581 
2582 		if (xfer->speed_hz && master->min_speed_hz &&
2583 		    xfer->speed_hz < master->min_speed_hz)
2584 			return -EINVAL;
2585 
2586 		if (xfer->tx_buf && !xfer->tx_nbits)
2587 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2588 		if (xfer->rx_buf && !xfer->rx_nbits)
2589 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2590 		/* check transfer tx/rx_nbits:
2591 		 * 1. check the value matches one of single, dual and quad
2592 		 * 2. check tx/rx_nbits match the mode in spi_device
2593 		 */
2594 		if (xfer->tx_buf) {
2595 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2596 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2597 				xfer->tx_nbits != SPI_NBITS_QUAD)
2598 				return -EINVAL;
2599 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2600 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2601 				return -EINVAL;
2602 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2603 				!(spi->mode & SPI_TX_QUAD))
2604 				return -EINVAL;
2605 		}
2606 		/* check transfer rx_nbits */
2607 		if (xfer->rx_buf) {
2608 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2609 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2610 				xfer->rx_nbits != SPI_NBITS_QUAD)
2611 				return -EINVAL;
2612 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2613 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2614 				return -EINVAL;
2615 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2616 				!(spi->mode & SPI_RX_QUAD))
2617 				return -EINVAL;
2618 		}
2619 	}
2620 
2621 	message->status = -EINPROGRESS;
2622 
2623 	return 0;
2624 }
2625 
2626 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2627 {
2628 	struct spi_master *master = spi->master;
2629 
2630 	message->spi = spi;
2631 
2632 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2633 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2634 
2635 	trace_spi_message_submit(message);
2636 
2637 	return master->transfer(spi, message);
2638 }
2639 
2640 /**
2641  * spi_async - asynchronous SPI transfer
2642  * @spi: device with which data will be exchanged
2643  * @message: describes the data transfers, including completion callback
2644  * Context: any (irqs may be blocked, etc)
2645  *
2646  * This call may be used in_irq and other contexts which can't sleep,
2647  * as well as from task contexts which can sleep.
2648  *
2649  * The completion callback is invoked in a context which can't sleep.
2650  * Before that invocation, the value of message->status is undefined.
2651  * When the callback is issued, message->status holds either zero (to
2652  * indicate complete success) or a negative error code.  After that
2653  * callback returns, the driver which issued the transfer request may
2654  * deallocate the associated memory; it's no longer in use by any SPI
2655  * core or controller driver code.
2656  *
2657  * Note that although all messages to a spi_device are handled in
2658  * FIFO order, messages may go to different devices in other orders.
2659  * Some device might be higher priority, or have various "hard" access
2660  * time requirements, for example.
2661  *
2662  * On detection of any fault during the transfer, processing of
2663  * the entire message is aborted, and the device is deselected.
2664  * Until returning from the associated message completion callback,
2665  * no other spi_message queued to that device will be processed.
2666  * (This rule applies equally to all the synchronous transfer calls,
2667  * which are wrappers around this core asynchronous primitive.)
2668  *
2669  * Return: zero on success, else a negative error code.
2670  */
2671 int spi_async(struct spi_device *spi, struct spi_message *message)
2672 {
2673 	struct spi_master *master = spi->master;
2674 	int ret;
2675 	unsigned long flags;
2676 
2677 	ret = __spi_validate(spi, message);
2678 	if (ret != 0)
2679 		return ret;
2680 
2681 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2682 
2683 	if (master->bus_lock_flag)
2684 		ret = -EBUSY;
2685 	else
2686 		ret = __spi_async(spi, message);
2687 
2688 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2689 
2690 	return ret;
2691 }
2692 EXPORT_SYMBOL_GPL(spi_async);
2693 
2694 /**
2695  * spi_async_locked - version of spi_async with exclusive bus usage
2696  * @spi: device with which data will be exchanged
2697  * @message: describes the data transfers, including completion callback
2698  * Context: any (irqs may be blocked, etc)
2699  *
2700  * This call may be used in_irq and other contexts which can't sleep,
2701  * as well as from task contexts which can sleep.
2702  *
2703  * The completion callback is invoked in a context which can't sleep.
2704  * Before that invocation, the value of message->status is undefined.
2705  * When the callback is issued, message->status holds either zero (to
2706  * indicate complete success) or a negative error code.  After that
2707  * callback returns, the driver which issued the transfer request may
2708  * deallocate the associated memory; it's no longer in use by any SPI
2709  * core or controller driver code.
2710  *
2711  * Note that although all messages to a spi_device are handled in
2712  * FIFO order, messages may go to different devices in other orders.
2713  * Some device might be higher priority, or have various "hard" access
2714  * time requirements, for example.
2715  *
2716  * On detection of any fault during the transfer, processing of
2717  * the entire message is aborted, and the device is deselected.
2718  * Until returning from the associated message completion callback,
2719  * no other spi_message queued to that device will be processed.
2720  * (This rule applies equally to all the synchronous transfer calls,
2721  * which are wrappers around this core asynchronous primitive.)
2722  *
2723  * Return: zero on success, else a negative error code.
2724  */
2725 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2726 {
2727 	struct spi_master *master = spi->master;
2728 	int ret;
2729 	unsigned long flags;
2730 
2731 	ret = __spi_validate(spi, message);
2732 	if (ret != 0)
2733 		return ret;
2734 
2735 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2736 
2737 	ret = __spi_async(spi, message);
2738 
2739 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2740 
2741 	return ret;
2742 
2743 }
2744 EXPORT_SYMBOL_GPL(spi_async_locked);
2745 
2746 
2747 int spi_flash_read(struct spi_device *spi,
2748 		   struct spi_flash_read_message *msg)
2749 
2750 {
2751 	struct spi_master *master = spi->master;
2752 	struct device *rx_dev = NULL;
2753 	int ret;
2754 
2755 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2756 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2757 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2758 		return -EINVAL;
2759 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2760 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2761 	    !(spi->mode & SPI_TX_QUAD))
2762 		return -EINVAL;
2763 	if (msg->data_nbits == SPI_NBITS_DUAL &&
2764 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2765 		return -EINVAL;
2766 	if (msg->data_nbits == SPI_NBITS_QUAD &&
2767 	    !(spi->mode &  SPI_RX_QUAD))
2768 		return -EINVAL;
2769 
2770 	if (master->auto_runtime_pm) {
2771 		ret = pm_runtime_get_sync(master->dev.parent);
2772 		if (ret < 0) {
2773 			dev_err(&master->dev, "Failed to power device: %d\n",
2774 				ret);
2775 			return ret;
2776 		}
2777 	}
2778 
2779 	mutex_lock(&master->bus_lock_mutex);
2780 	mutex_lock(&master->io_mutex);
2781 	if (master->dma_rx) {
2782 		rx_dev = master->dma_rx->device->dev;
2783 		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2784 				  msg->buf, msg->len,
2785 				  DMA_FROM_DEVICE);
2786 		if (!ret)
2787 			msg->cur_msg_mapped = true;
2788 	}
2789 	ret = master->spi_flash_read(spi, msg);
2790 	if (msg->cur_msg_mapped)
2791 		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2792 			      DMA_FROM_DEVICE);
2793 	mutex_unlock(&master->io_mutex);
2794 	mutex_unlock(&master->bus_lock_mutex);
2795 
2796 	if (master->auto_runtime_pm)
2797 		pm_runtime_put(master->dev.parent);
2798 
2799 	return ret;
2800 }
2801 EXPORT_SYMBOL_GPL(spi_flash_read);
2802 
2803 /*-------------------------------------------------------------------------*/
2804 
2805 /* Utility methods for SPI master protocol drivers, layered on
2806  * top of the core.  Some other utility methods are defined as
2807  * inline functions.
2808  */
2809 
2810 static void spi_complete(void *arg)
2811 {
2812 	complete(arg);
2813 }
2814 
2815 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2816 {
2817 	DECLARE_COMPLETION_ONSTACK(done);
2818 	int status;
2819 	struct spi_master *master = spi->master;
2820 	unsigned long flags;
2821 
2822 	status = __spi_validate(spi, message);
2823 	if (status != 0)
2824 		return status;
2825 
2826 	message->complete = spi_complete;
2827 	message->context = &done;
2828 	message->spi = spi;
2829 
2830 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2831 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2832 
2833 	/* If we're not using the legacy transfer method then we will
2834 	 * try to transfer in the calling context so special case.
2835 	 * This code would be less tricky if we could remove the
2836 	 * support for driver implemented message queues.
2837 	 */
2838 	if (master->transfer == spi_queued_transfer) {
2839 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2840 
2841 		trace_spi_message_submit(message);
2842 
2843 		status = __spi_queued_transfer(spi, message, false);
2844 
2845 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2846 	} else {
2847 		status = spi_async_locked(spi, message);
2848 	}
2849 
2850 	if (status == 0) {
2851 		/* Push out the messages in the calling context if we
2852 		 * can.
2853 		 */
2854 		if (master->transfer == spi_queued_transfer) {
2855 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2856 						       spi_sync_immediate);
2857 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2858 						       spi_sync_immediate);
2859 			__spi_pump_messages(master, false);
2860 		}
2861 
2862 		wait_for_completion(&done);
2863 		status = message->status;
2864 	}
2865 	message->context = NULL;
2866 	return status;
2867 }
2868 
2869 /**
2870  * spi_sync - blocking/synchronous SPI data transfers
2871  * @spi: device with which data will be exchanged
2872  * @message: describes the data transfers
2873  * Context: can sleep
2874  *
2875  * This call may only be used from a context that may sleep.  The sleep
2876  * is non-interruptible, and has no timeout.  Low-overhead controller
2877  * drivers may DMA directly into and out of the message buffers.
2878  *
2879  * Note that the SPI device's chip select is active during the message,
2880  * and then is normally disabled between messages.  Drivers for some
2881  * frequently-used devices may want to minimize costs of selecting a chip,
2882  * by leaving it selected in anticipation that the next message will go
2883  * to the same chip.  (That may increase power usage.)
2884  *
2885  * Also, the caller is guaranteeing that the memory associated with the
2886  * message will not be freed before this call returns.
2887  *
2888  * Return: zero on success, else a negative error code.
2889  */
2890 int spi_sync(struct spi_device *spi, struct spi_message *message)
2891 {
2892 	int ret;
2893 
2894 	mutex_lock(&spi->master->bus_lock_mutex);
2895 	ret = __spi_sync(spi, message);
2896 	mutex_unlock(&spi->master->bus_lock_mutex);
2897 
2898 	return ret;
2899 }
2900 EXPORT_SYMBOL_GPL(spi_sync);
2901 
2902 /**
2903  * spi_sync_locked - version of spi_sync with exclusive bus usage
2904  * @spi: device with which data will be exchanged
2905  * @message: describes the data transfers
2906  * Context: can sleep
2907  *
2908  * This call may only be used from a context that may sleep.  The sleep
2909  * is non-interruptible, and has no timeout.  Low-overhead controller
2910  * drivers may DMA directly into and out of the message buffers.
2911  *
2912  * This call should be used by drivers that require exclusive access to the
2913  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2914  * be released by a spi_bus_unlock call when the exclusive access is over.
2915  *
2916  * Return: zero on success, else a negative error code.
2917  */
2918 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2919 {
2920 	return __spi_sync(spi, message);
2921 }
2922 EXPORT_SYMBOL_GPL(spi_sync_locked);
2923 
2924 /**
2925  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2926  * @master: SPI bus master that should be locked for exclusive bus access
2927  * Context: can sleep
2928  *
2929  * This call may only be used from a context that may sleep.  The sleep
2930  * is non-interruptible, and has no timeout.
2931  *
2932  * This call should be used by drivers that require exclusive access to the
2933  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2934  * exclusive access is over. Data transfer must be done by spi_sync_locked
2935  * and spi_async_locked calls when the SPI bus lock is held.
2936  *
2937  * Return: always zero.
2938  */
2939 int spi_bus_lock(struct spi_master *master)
2940 {
2941 	unsigned long flags;
2942 
2943 	mutex_lock(&master->bus_lock_mutex);
2944 
2945 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2946 	master->bus_lock_flag = 1;
2947 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2948 
2949 	/* mutex remains locked until spi_bus_unlock is called */
2950 
2951 	return 0;
2952 }
2953 EXPORT_SYMBOL_GPL(spi_bus_lock);
2954 
2955 /**
2956  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2957  * @master: SPI bus master that was locked for exclusive bus access
2958  * Context: can sleep
2959  *
2960  * This call may only be used from a context that may sleep.  The sleep
2961  * is non-interruptible, and has no timeout.
2962  *
2963  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2964  * call.
2965  *
2966  * Return: always zero.
2967  */
2968 int spi_bus_unlock(struct spi_master *master)
2969 {
2970 	master->bus_lock_flag = 0;
2971 
2972 	mutex_unlock(&master->bus_lock_mutex);
2973 
2974 	return 0;
2975 }
2976 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2977 
2978 /* portable code must never pass more than 32 bytes */
2979 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2980 
2981 static u8	*buf;
2982 
2983 /**
2984  * spi_write_then_read - SPI synchronous write followed by read
2985  * @spi: device with which data will be exchanged
2986  * @txbuf: data to be written (need not be dma-safe)
2987  * @n_tx: size of txbuf, in bytes
2988  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2989  * @n_rx: size of rxbuf, in bytes
2990  * Context: can sleep
2991  *
2992  * This performs a half duplex MicroWire style transaction with the
2993  * device, sending txbuf and then reading rxbuf.  The return value
2994  * is zero for success, else a negative errno status code.
2995  * This call may only be used from a context that may sleep.
2996  *
2997  * Parameters to this routine are always copied using a small buffer;
2998  * portable code should never use this for more than 32 bytes.
2999  * Performance-sensitive or bulk transfer code should instead use
3000  * spi_{async,sync}() calls with dma-safe buffers.
3001  *
3002  * Return: zero on success, else a negative error code.
3003  */
3004 int spi_write_then_read(struct spi_device *spi,
3005 		const void *txbuf, unsigned n_tx,
3006 		void *rxbuf, unsigned n_rx)
3007 {
3008 	static DEFINE_MUTEX(lock);
3009 
3010 	int			status;
3011 	struct spi_message	message;
3012 	struct spi_transfer	x[2];
3013 	u8			*local_buf;
3014 
3015 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3016 	 * copying here, (as a pure convenience thing), but we can
3017 	 * keep heap costs out of the hot path unless someone else is
3018 	 * using the pre-allocated buffer or the transfer is too large.
3019 	 */
3020 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3021 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3022 				    GFP_KERNEL | GFP_DMA);
3023 		if (!local_buf)
3024 			return -ENOMEM;
3025 	} else {
3026 		local_buf = buf;
3027 	}
3028 
3029 	spi_message_init(&message);
3030 	memset(x, 0, sizeof(x));
3031 	if (n_tx) {
3032 		x[0].len = n_tx;
3033 		spi_message_add_tail(&x[0], &message);
3034 	}
3035 	if (n_rx) {
3036 		x[1].len = n_rx;
3037 		spi_message_add_tail(&x[1], &message);
3038 	}
3039 
3040 	memcpy(local_buf, txbuf, n_tx);
3041 	x[0].tx_buf = local_buf;
3042 	x[1].rx_buf = local_buf + n_tx;
3043 
3044 	/* do the i/o */
3045 	status = spi_sync(spi, &message);
3046 	if (status == 0)
3047 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3048 
3049 	if (x[0].tx_buf == buf)
3050 		mutex_unlock(&lock);
3051 	else
3052 		kfree(local_buf);
3053 
3054 	return status;
3055 }
3056 EXPORT_SYMBOL_GPL(spi_write_then_read);
3057 
3058 /*-------------------------------------------------------------------------*/
3059 
3060 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3061 static int __spi_of_device_match(struct device *dev, void *data)
3062 {
3063 	return dev->of_node == data;
3064 }
3065 
3066 /* must call put_device() when done with returned spi_device device */
3067 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3068 {
3069 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3070 						__spi_of_device_match);
3071 	return dev ? to_spi_device(dev) : NULL;
3072 }
3073 
3074 static int __spi_of_master_match(struct device *dev, const void *data)
3075 {
3076 	return dev->of_node == data;
3077 }
3078 
3079 /* the spi masters are not using spi_bus, so we find it with another way */
3080 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3081 {
3082 	struct device *dev;
3083 
3084 	dev = class_find_device(&spi_master_class, NULL, node,
3085 				__spi_of_master_match);
3086 	if (!dev)
3087 		return NULL;
3088 
3089 	/* reference got in class_find_device */
3090 	return container_of(dev, struct spi_master, dev);
3091 }
3092 
3093 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3094 			 void *arg)
3095 {
3096 	struct of_reconfig_data *rd = arg;
3097 	struct spi_master *master;
3098 	struct spi_device *spi;
3099 
3100 	switch (of_reconfig_get_state_change(action, arg)) {
3101 	case OF_RECONFIG_CHANGE_ADD:
3102 		master = of_find_spi_master_by_node(rd->dn->parent);
3103 		if (master == NULL)
3104 			return NOTIFY_OK;	/* not for us */
3105 
3106 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3107 			put_device(&master->dev);
3108 			return NOTIFY_OK;
3109 		}
3110 
3111 		spi = of_register_spi_device(master, rd->dn);
3112 		put_device(&master->dev);
3113 
3114 		if (IS_ERR(spi)) {
3115 			pr_err("%s: failed to create for '%s'\n",
3116 					__func__, rd->dn->full_name);
3117 			return notifier_from_errno(PTR_ERR(spi));
3118 		}
3119 		break;
3120 
3121 	case OF_RECONFIG_CHANGE_REMOVE:
3122 		/* already depopulated? */
3123 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3124 			return NOTIFY_OK;
3125 
3126 		/* find our device by node */
3127 		spi = of_find_spi_device_by_node(rd->dn);
3128 		if (spi == NULL)
3129 			return NOTIFY_OK;	/* no? not meant for us */
3130 
3131 		/* unregister takes one ref away */
3132 		spi_unregister_device(spi);
3133 
3134 		/* and put the reference of the find */
3135 		put_device(&spi->dev);
3136 		break;
3137 	}
3138 
3139 	return NOTIFY_OK;
3140 }
3141 
3142 static struct notifier_block spi_of_notifier = {
3143 	.notifier_call = of_spi_notify,
3144 };
3145 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3146 extern struct notifier_block spi_of_notifier;
3147 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3148 
3149 #if IS_ENABLED(CONFIG_ACPI)
3150 static int spi_acpi_master_match(struct device *dev, const void *data)
3151 {
3152 	return ACPI_COMPANION(dev->parent) == data;
3153 }
3154 
3155 static int spi_acpi_device_match(struct device *dev, void *data)
3156 {
3157 	return ACPI_COMPANION(dev) == data;
3158 }
3159 
3160 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3161 {
3162 	struct device *dev;
3163 
3164 	dev = class_find_device(&spi_master_class, NULL, adev,
3165 				spi_acpi_master_match);
3166 	if (!dev)
3167 		return NULL;
3168 
3169 	return container_of(dev, struct spi_master, dev);
3170 }
3171 
3172 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3173 {
3174 	struct device *dev;
3175 
3176 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3177 
3178 	return dev ? to_spi_device(dev) : NULL;
3179 }
3180 
3181 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3182 			   void *arg)
3183 {
3184 	struct acpi_device *adev = arg;
3185 	struct spi_master *master;
3186 	struct spi_device *spi;
3187 
3188 	switch (value) {
3189 	case ACPI_RECONFIG_DEVICE_ADD:
3190 		master = acpi_spi_find_master_by_adev(adev->parent);
3191 		if (!master)
3192 			break;
3193 
3194 		acpi_register_spi_device(master, adev);
3195 		put_device(&master->dev);
3196 		break;
3197 	case ACPI_RECONFIG_DEVICE_REMOVE:
3198 		if (!acpi_device_enumerated(adev))
3199 			break;
3200 
3201 		spi = acpi_spi_find_device_by_adev(adev);
3202 		if (!spi)
3203 			break;
3204 
3205 		spi_unregister_device(spi);
3206 		put_device(&spi->dev);
3207 		break;
3208 	}
3209 
3210 	return NOTIFY_OK;
3211 }
3212 
3213 static struct notifier_block spi_acpi_notifier = {
3214 	.notifier_call = acpi_spi_notify,
3215 };
3216 #else
3217 extern struct notifier_block spi_acpi_notifier;
3218 #endif
3219 
3220 static int __init spi_init(void)
3221 {
3222 	int	status;
3223 
3224 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3225 	if (!buf) {
3226 		status = -ENOMEM;
3227 		goto err0;
3228 	}
3229 
3230 	status = bus_register(&spi_bus_type);
3231 	if (status < 0)
3232 		goto err1;
3233 
3234 	status = class_register(&spi_master_class);
3235 	if (status < 0)
3236 		goto err2;
3237 
3238 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3239 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3240 	if (IS_ENABLED(CONFIG_ACPI))
3241 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3242 
3243 	return 0;
3244 
3245 err2:
3246 	bus_unregister(&spi_bus_type);
3247 err1:
3248 	kfree(buf);
3249 	buf = NULL;
3250 err0:
3251 	return status;
3252 }
3253 
3254 /* board_info is normally registered in arch_initcall(),
3255  * but even essential drivers wait till later
3256  *
3257  * REVISIT only boardinfo really needs static linking. the rest (device and
3258  * driver registration) _could_ be dynamically linked (modular) ... costs
3259  * include needing to have boardinfo data structures be much more public.
3260  */
3261 postcore_initcall(spi_init);
3262 
3263