1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del operation for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /* 479 * Prevents addition of devices with same chip select and 480 * addition of devices below an unregistering controller. 481 */ 482 static DEFINE_MUTEX(spi_add_lock); 483 484 /** 485 * spi_alloc_device - Allocate a new SPI device 486 * @ctlr: Controller to which device is connected 487 * Context: can sleep 488 * 489 * Allows a driver to allocate and initialize a spi_device without 490 * registering it immediately. This allows a driver to directly 491 * fill the spi_device with device parameters before calling 492 * spi_add_device() on it. 493 * 494 * Caller is responsible to call spi_add_device() on the returned 495 * spi_device structure to add it to the SPI controller. If the caller 496 * needs to discard the spi_device without adding it, then it should 497 * call spi_dev_put() on it. 498 * 499 * Return: a pointer to the new device, or NULL. 500 */ 501 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 502 { 503 struct spi_device *spi; 504 505 if (!spi_controller_get(ctlr)) 506 return NULL; 507 508 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 509 if (!spi) { 510 spi_controller_put(ctlr); 511 return NULL; 512 } 513 514 spi->master = spi->controller = ctlr; 515 spi->dev.parent = &ctlr->dev; 516 spi->dev.bus = &spi_bus_type; 517 spi->dev.release = spidev_release; 518 spi->cs_gpio = -ENOENT; 519 spi->mode = ctlr->buswidth_override_bits; 520 521 spin_lock_init(&spi->statistics.lock); 522 523 device_initialize(&spi->dev); 524 return spi; 525 } 526 EXPORT_SYMBOL_GPL(spi_alloc_device); 527 528 static void spi_dev_set_name(struct spi_device *spi) 529 { 530 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 531 532 if (adev) { 533 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 534 return; 535 } 536 537 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 538 spi->chip_select); 539 } 540 541 static int spi_dev_check(struct device *dev, void *data) 542 { 543 struct spi_device *spi = to_spi_device(dev); 544 struct spi_device *new_spi = data; 545 546 if (spi->controller == new_spi->controller && 547 spi->chip_select == new_spi->chip_select) 548 return -EBUSY; 549 return 0; 550 } 551 552 /** 553 * spi_add_device - Add spi_device allocated with spi_alloc_device 554 * @spi: spi_device to register 555 * 556 * Companion function to spi_alloc_device. Devices allocated with 557 * spi_alloc_device can be added onto the spi bus with this function. 558 * 559 * Return: 0 on success; negative errno on failure 560 */ 561 int spi_add_device(struct spi_device *spi) 562 { 563 struct spi_controller *ctlr = spi->controller; 564 struct device *dev = ctlr->dev.parent; 565 int status; 566 567 /* Chipselects are numbered 0..max; validate. */ 568 if (spi->chip_select >= ctlr->num_chipselect) { 569 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 570 ctlr->num_chipselect); 571 return -EINVAL; 572 } 573 574 /* Set the bus ID string */ 575 spi_dev_set_name(spi); 576 577 /* We need to make sure there's no other device with this 578 * chipselect **BEFORE** we call setup(), else we'll trash 579 * its configuration. Lock against concurrent add() calls. 580 */ 581 mutex_lock(&spi_add_lock); 582 583 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 584 if (status) { 585 dev_err(dev, "chipselect %d already in use\n", 586 spi->chip_select); 587 goto done; 588 } 589 590 /* Controller may unregister concurrently */ 591 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 592 !device_is_registered(&ctlr->dev)) { 593 status = -ENODEV; 594 goto done; 595 } 596 597 /* Descriptors take precedence */ 598 if (ctlr->cs_gpiods) 599 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 600 else if (ctlr->cs_gpios) 601 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 602 603 /* Drivers may modify this initial i/o setup, but will 604 * normally rely on the device being setup. Devices 605 * using SPI_CS_HIGH can't coexist well otherwise... 606 */ 607 status = spi_setup(spi); 608 if (status < 0) { 609 dev_err(dev, "can't setup %s, status %d\n", 610 dev_name(&spi->dev), status); 611 goto done; 612 } 613 614 /* Device may be bound to an active driver when this returns */ 615 status = device_add(&spi->dev); 616 if (status < 0) 617 dev_err(dev, "can't add %s, status %d\n", 618 dev_name(&spi->dev), status); 619 else 620 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 621 622 done: 623 mutex_unlock(&spi_add_lock); 624 return status; 625 } 626 EXPORT_SYMBOL_GPL(spi_add_device); 627 628 /** 629 * spi_new_device - instantiate one new SPI device 630 * @ctlr: Controller to which device is connected 631 * @chip: Describes the SPI device 632 * Context: can sleep 633 * 634 * On typical mainboards, this is purely internal; and it's not needed 635 * after board init creates the hard-wired devices. Some development 636 * platforms may not be able to use spi_register_board_info though, and 637 * this is exported so that for example a USB or parport based adapter 638 * driver could add devices (which it would learn about out-of-band). 639 * 640 * Return: the new device, or NULL. 641 */ 642 struct spi_device *spi_new_device(struct spi_controller *ctlr, 643 struct spi_board_info *chip) 644 { 645 struct spi_device *proxy; 646 int status; 647 648 /* NOTE: caller did any chip->bus_num checks necessary. 649 * 650 * Also, unless we change the return value convention to use 651 * error-or-pointer (not NULL-or-pointer), troubleshootability 652 * suggests syslogged diagnostics are best here (ugh). 653 */ 654 655 proxy = spi_alloc_device(ctlr); 656 if (!proxy) 657 return NULL; 658 659 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 660 661 proxy->chip_select = chip->chip_select; 662 proxy->max_speed_hz = chip->max_speed_hz; 663 proxy->mode = chip->mode; 664 proxy->irq = chip->irq; 665 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 666 proxy->dev.platform_data = (void *) chip->platform_data; 667 proxy->controller_data = chip->controller_data; 668 proxy->controller_state = NULL; 669 670 if (chip->properties) { 671 status = device_add_properties(&proxy->dev, chip->properties); 672 if (status) { 673 dev_err(&ctlr->dev, 674 "failed to add properties to '%s': %d\n", 675 chip->modalias, status); 676 goto err_dev_put; 677 } 678 } 679 680 status = spi_add_device(proxy); 681 if (status < 0) 682 goto err_remove_props; 683 684 return proxy; 685 686 err_remove_props: 687 if (chip->properties) 688 device_remove_properties(&proxy->dev); 689 err_dev_put: 690 spi_dev_put(proxy); 691 return NULL; 692 } 693 EXPORT_SYMBOL_GPL(spi_new_device); 694 695 /** 696 * spi_unregister_device - unregister a single SPI device 697 * @spi: spi_device to unregister 698 * 699 * Start making the passed SPI device vanish. Normally this would be handled 700 * by spi_unregister_controller(). 701 */ 702 void spi_unregister_device(struct spi_device *spi) 703 { 704 if (!spi) 705 return; 706 707 if (spi->dev.of_node) { 708 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 709 of_node_put(spi->dev.of_node); 710 } 711 if (ACPI_COMPANION(&spi->dev)) 712 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 713 device_unregister(&spi->dev); 714 } 715 EXPORT_SYMBOL_GPL(spi_unregister_device); 716 717 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 718 struct spi_board_info *bi) 719 { 720 struct spi_device *dev; 721 722 if (ctlr->bus_num != bi->bus_num) 723 return; 724 725 dev = spi_new_device(ctlr, bi); 726 if (!dev) 727 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 728 bi->modalias); 729 } 730 731 /** 732 * spi_register_board_info - register SPI devices for a given board 733 * @info: array of chip descriptors 734 * @n: how many descriptors are provided 735 * Context: can sleep 736 * 737 * Board-specific early init code calls this (probably during arch_initcall) 738 * with segments of the SPI device table. Any device nodes are created later, 739 * after the relevant parent SPI controller (bus_num) is defined. We keep 740 * this table of devices forever, so that reloading a controller driver will 741 * not make Linux forget about these hard-wired devices. 742 * 743 * Other code can also call this, e.g. a particular add-on board might provide 744 * SPI devices through its expansion connector, so code initializing that board 745 * would naturally declare its SPI devices. 746 * 747 * The board info passed can safely be __initdata ... but be careful of 748 * any embedded pointers (platform_data, etc), they're copied as-is. 749 * Device properties are deep-copied though. 750 * 751 * Return: zero on success, else a negative error code. 752 */ 753 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 754 { 755 struct boardinfo *bi; 756 int i; 757 758 if (!n) 759 return 0; 760 761 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 762 if (!bi) 763 return -ENOMEM; 764 765 for (i = 0; i < n; i++, bi++, info++) { 766 struct spi_controller *ctlr; 767 768 memcpy(&bi->board_info, info, sizeof(*info)); 769 if (info->properties) { 770 bi->board_info.properties = 771 property_entries_dup(info->properties); 772 if (IS_ERR(bi->board_info.properties)) 773 return PTR_ERR(bi->board_info.properties); 774 } 775 776 mutex_lock(&board_lock); 777 list_add_tail(&bi->list, &board_list); 778 list_for_each_entry(ctlr, &spi_controller_list, list) 779 spi_match_controller_to_boardinfo(ctlr, 780 &bi->board_info); 781 mutex_unlock(&board_lock); 782 } 783 784 return 0; 785 } 786 787 /*-------------------------------------------------------------------------*/ 788 789 static void spi_set_cs(struct spi_device *spi, bool enable) 790 { 791 bool enable1 = enable; 792 793 /* 794 * Avoid calling into the driver (or doing delays) if the chip select 795 * isn't actually changing from the last time this was called. 796 */ 797 if ((spi->controller->last_cs_enable == enable) && 798 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 799 return; 800 801 spi->controller->last_cs_enable = enable; 802 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 803 804 if (!spi->controller->set_cs_timing) { 805 if (enable1) 806 spi_delay_exec(&spi->controller->cs_setup, NULL); 807 else 808 spi_delay_exec(&spi->controller->cs_hold, NULL); 809 } 810 811 if (spi->mode & SPI_CS_HIGH) 812 enable = !enable; 813 814 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 815 /* 816 * Honour the SPI_NO_CS flag and invert the enable line, as 817 * active low is default for SPI. Execution paths that handle 818 * polarity inversion in gpiolib (such as device tree) will 819 * enforce active high using the SPI_CS_HIGH resulting in a 820 * double inversion through the code above. 821 */ 822 if (!(spi->mode & SPI_NO_CS)) { 823 if (spi->cs_gpiod) 824 gpiod_set_value_cansleep(spi->cs_gpiod, 825 !enable); 826 else 827 gpio_set_value_cansleep(spi->cs_gpio, !enable); 828 } 829 /* Some SPI masters need both GPIO CS & slave_select */ 830 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 831 spi->controller->set_cs) 832 spi->controller->set_cs(spi, !enable); 833 } else if (spi->controller->set_cs) { 834 spi->controller->set_cs(spi, !enable); 835 } 836 837 if (!spi->controller->set_cs_timing) { 838 if (!enable1) 839 spi_delay_exec(&spi->controller->cs_inactive, NULL); 840 } 841 } 842 843 #ifdef CONFIG_HAS_DMA 844 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 845 struct sg_table *sgt, void *buf, size_t len, 846 enum dma_data_direction dir) 847 { 848 const bool vmalloced_buf = is_vmalloc_addr(buf); 849 unsigned int max_seg_size = dma_get_max_seg_size(dev); 850 #ifdef CONFIG_HIGHMEM 851 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 852 (unsigned long)buf < (PKMAP_BASE + 853 (LAST_PKMAP * PAGE_SIZE))); 854 #else 855 const bool kmap_buf = false; 856 #endif 857 int desc_len; 858 int sgs; 859 struct page *vm_page; 860 struct scatterlist *sg; 861 void *sg_buf; 862 size_t min; 863 int i, ret; 864 865 if (vmalloced_buf || kmap_buf) { 866 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 867 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 868 } else if (virt_addr_valid(buf)) { 869 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 870 sgs = DIV_ROUND_UP(len, desc_len); 871 } else { 872 return -EINVAL; 873 } 874 875 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 876 if (ret != 0) 877 return ret; 878 879 sg = &sgt->sgl[0]; 880 for (i = 0; i < sgs; i++) { 881 882 if (vmalloced_buf || kmap_buf) { 883 /* 884 * Next scatterlist entry size is the minimum between 885 * the desc_len and the remaining buffer length that 886 * fits in a page. 887 */ 888 min = min_t(size_t, desc_len, 889 min_t(size_t, len, 890 PAGE_SIZE - offset_in_page(buf))); 891 if (vmalloced_buf) 892 vm_page = vmalloc_to_page(buf); 893 else 894 vm_page = kmap_to_page(buf); 895 if (!vm_page) { 896 sg_free_table(sgt); 897 return -ENOMEM; 898 } 899 sg_set_page(sg, vm_page, 900 min, offset_in_page(buf)); 901 } else { 902 min = min_t(size_t, len, desc_len); 903 sg_buf = buf; 904 sg_set_buf(sg, sg_buf, min); 905 } 906 907 buf += min; 908 len -= min; 909 sg = sg_next(sg); 910 } 911 912 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 913 if (!ret) 914 ret = -ENOMEM; 915 if (ret < 0) { 916 sg_free_table(sgt); 917 return ret; 918 } 919 920 sgt->nents = ret; 921 922 return 0; 923 } 924 925 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 926 struct sg_table *sgt, enum dma_data_direction dir) 927 { 928 if (sgt->orig_nents) { 929 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 930 sg_free_table(sgt); 931 } 932 } 933 934 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 935 { 936 struct device *tx_dev, *rx_dev; 937 struct spi_transfer *xfer; 938 int ret; 939 940 if (!ctlr->can_dma) 941 return 0; 942 943 if (ctlr->dma_tx) 944 tx_dev = ctlr->dma_tx->device->dev; 945 else 946 tx_dev = ctlr->dev.parent; 947 948 if (ctlr->dma_rx) 949 rx_dev = ctlr->dma_rx->device->dev; 950 else 951 rx_dev = ctlr->dev.parent; 952 953 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 954 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 955 continue; 956 957 if (xfer->tx_buf != NULL) { 958 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 959 (void *)xfer->tx_buf, xfer->len, 960 DMA_TO_DEVICE); 961 if (ret != 0) 962 return ret; 963 } 964 965 if (xfer->rx_buf != NULL) { 966 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 967 xfer->rx_buf, xfer->len, 968 DMA_FROM_DEVICE); 969 if (ret != 0) { 970 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 971 DMA_TO_DEVICE); 972 return ret; 973 } 974 } 975 } 976 977 ctlr->cur_msg_mapped = true; 978 979 return 0; 980 } 981 982 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 983 { 984 struct spi_transfer *xfer; 985 struct device *tx_dev, *rx_dev; 986 987 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 988 return 0; 989 990 if (ctlr->dma_tx) 991 tx_dev = ctlr->dma_tx->device->dev; 992 else 993 tx_dev = ctlr->dev.parent; 994 995 if (ctlr->dma_rx) 996 rx_dev = ctlr->dma_rx->device->dev; 997 else 998 rx_dev = ctlr->dev.parent; 999 1000 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1001 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1002 continue; 1003 1004 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1005 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1006 } 1007 1008 ctlr->cur_msg_mapped = false; 1009 1010 return 0; 1011 } 1012 #else /* !CONFIG_HAS_DMA */ 1013 static inline int __spi_map_msg(struct spi_controller *ctlr, 1014 struct spi_message *msg) 1015 { 1016 return 0; 1017 } 1018 1019 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1020 struct spi_message *msg) 1021 { 1022 return 0; 1023 } 1024 #endif /* !CONFIG_HAS_DMA */ 1025 1026 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1027 struct spi_message *msg) 1028 { 1029 struct spi_transfer *xfer; 1030 1031 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1032 /* 1033 * Restore the original value of tx_buf or rx_buf if they are 1034 * NULL. 1035 */ 1036 if (xfer->tx_buf == ctlr->dummy_tx) 1037 xfer->tx_buf = NULL; 1038 if (xfer->rx_buf == ctlr->dummy_rx) 1039 xfer->rx_buf = NULL; 1040 } 1041 1042 return __spi_unmap_msg(ctlr, msg); 1043 } 1044 1045 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1046 { 1047 struct spi_transfer *xfer; 1048 void *tmp; 1049 unsigned int max_tx, max_rx; 1050 1051 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1052 && !(msg->spi->mode & SPI_3WIRE)) { 1053 max_tx = 0; 1054 max_rx = 0; 1055 1056 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1057 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1058 !xfer->tx_buf) 1059 max_tx = max(xfer->len, max_tx); 1060 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1061 !xfer->rx_buf) 1062 max_rx = max(xfer->len, max_rx); 1063 } 1064 1065 if (max_tx) { 1066 tmp = krealloc(ctlr->dummy_tx, max_tx, 1067 GFP_KERNEL | GFP_DMA); 1068 if (!tmp) 1069 return -ENOMEM; 1070 ctlr->dummy_tx = tmp; 1071 memset(tmp, 0, max_tx); 1072 } 1073 1074 if (max_rx) { 1075 tmp = krealloc(ctlr->dummy_rx, max_rx, 1076 GFP_KERNEL | GFP_DMA); 1077 if (!tmp) 1078 return -ENOMEM; 1079 ctlr->dummy_rx = tmp; 1080 } 1081 1082 if (max_tx || max_rx) { 1083 list_for_each_entry(xfer, &msg->transfers, 1084 transfer_list) { 1085 if (!xfer->len) 1086 continue; 1087 if (!xfer->tx_buf) 1088 xfer->tx_buf = ctlr->dummy_tx; 1089 if (!xfer->rx_buf) 1090 xfer->rx_buf = ctlr->dummy_rx; 1091 } 1092 } 1093 } 1094 1095 return __spi_map_msg(ctlr, msg); 1096 } 1097 1098 static int spi_transfer_wait(struct spi_controller *ctlr, 1099 struct spi_message *msg, 1100 struct spi_transfer *xfer) 1101 { 1102 struct spi_statistics *statm = &ctlr->statistics; 1103 struct spi_statistics *stats = &msg->spi->statistics; 1104 unsigned long long ms; 1105 1106 if (spi_controller_is_slave(ctlr)) { 1107 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1108 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1109 return -EINTR; 1110 } 1111 } else { 1112 ms = 8LL * 1000LL * xfer->len; 1113 do_div(ms, xfer->speed_hz); 1114 ms += ms + 200; /* some tolerance */ 1115 1116 if (ms > UINT_MAX) 1117 ms = UINT_MAX; 1118 1119 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1120 msecs_to_jiffies(ms)); 1121 1122 if (ms == 0) { 1123 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1124 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1125 dev_err(&msg->spi->dev, 1126 "SPI transfer timed out\n"); 1127 return -ETIMEDOUT; 1128 } 1129 } 1130 1131 return 0; 1132 } 1133 1134 static void _spi_transfer_delay_ns(u32 ns) 1135 { 1136 if (!ns) 1137 return; 1138 if (ns <= 1000) { 1139 ndelay(ns); 1140 } else { 1141 u32 us = DIV_ROUND_UP(ns, 1000); 1142 1143 if (us <= 10) 1144 udelay(us); 1145 else 1146 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1147 } 1148 } 1149 1150 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1151 { 1152 u32 delay = _delay->value; 1153 u32 unit = _delay->unit; 1154 u32 hz; 1155 1156 if (!delay) 1157 return 0; 1158 1159 switch (unit) { 1160 case SPI_DELAY_UNIT_USECS: 1161 delay *= 1000; 1162 break; 1163 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1164 break; 1165 case SPI_DELAY_UNIT_SCK: 1166 /* clock cycles need to be obtained from spi_transfer */ 1167 if (!xfer) 1168 return -EINVAL; 1169 /* if there is no effective speed know, then approximate 1170 * by underestimating with half the requested hz 1171 */ 1172 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1173 if (!hz) 1174 return -EINVAL; 1175 delay *= DIV_ROUND_UP(1000000000, hz); 1176 break; 1177 default: 1178 return -EINVAL; 1179 } 1180 1181 return delay; 1182 } 1183 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1184 1185 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1186 { 1187 int delay; 1188 1189 might_sleep(); 1190 1191 if (!_delay) 1192 return -EINVAL; 1193 1194 delay = spi_delay_to_ns(_delay, xfer); 1195 if (delay < 0) 1196 return delay; 1197 1198 _spi_transfer_delay_ns(delay); 1199 1200 return 0; 1201 } 1202 EXPORT_SYMBOL_GPL(spi_delay_exec); 1203 1204 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1205 struct spi_transfer *xfer) 1206 { 1207 u32 delay = xfer->cs_change_delay.value; 1208 u32 unit = xfer->cs_change_delay.unit; 1209 int ret; 1210 1211 /* return early on "fast" mode - for everything but USECS */ 1212 if (!delay) { 1213 if (unit == SPI_DELAY_UNIT_USECS) 1214 _spi_transfer_delay_ns(10000); 1215 return; 1216 } 1217 1218 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1219 if (ret) { 1220 dev_err_once(&msg->spi->dev, 1221 "Use of unsupported delay unit %i, using default of 10us\n", 1222 unit); 1223 _spi_transfer_delay_ns(10000); 1224 } 1225 } 1226 1227 /* 1228 * spi_transfer_one_message - Default implementation of transfer_one_message() 1229 * 1230 * This is a standard implementation of transfer_one_message() for 1231 * drivers which implement a transfer_one() operation. It provides 1232 * standard handling of delays and chip select management. 1233 */ 1234 static int spi_transfer_one_message(struct spi_controller *ctlr, 1235 struct spi_message *msg) 1236 { 1237 struct spi_transfer *xfer; 1238 bool keep_cs = false; 1239 int ret = 0; 1240 struct spi_statistics *statm = &ctlr->statistics; 1241 struct spi_statistics *stats = &msg->spi->statistics; 1242 1243 spi_set_cs(msg->spi, true); 1244 1245 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1246 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1247 1248 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1249 trace_spi_transfer_start(msg, xfer); 1250 1251 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1252 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1253 1254 if (!ctlr->ptp_sts_supported) { 1255 xfer->ptp_sts_word_pre = 0; 1256 ptp_read_system_prets(xfer->ptp_sts); 1257 } 1258 1259 if (xfer->tx_buf || xfer->rx_buf) { 1260 reinit_completion(&ctlr->xfer_completion); 1261 1262 fallback_pio: 1263 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1264 if (ret < 0) { 1265 if (ctlr->cur_msg_mapped && 1266 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1267 __spi_unmap_msg(ctlr, msg); 1268 ctlr->fallback = true; 1269 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1270 goto fallback_pio; 1271 } 1272 1273 SPI_STATISTICS_INCREMENT_FIELD(statm, 1274 errors); 1275 SPI_STATISTICS_INCREMENT_FIELD(stats, 1276 errors); 1277 dev_err(&msg->spi->dev, 1278 "SPI transfer failed: %d\n", ret); 1279 goto out; 1280 } 1281 1282 if (ret > 0) { 1283 ret = spi_transfer_wait(ctlr, msg, xfer); 1284 if (ret < 0) 1285 msg->status = ret; 1286 } 1287 } else { 1288 if (xfer->len) 1289 dev_err(&msg->spi->dev, 1290 "Bufferless transfer has length %u\n", 1291 xfer->len); 1292 } 1293 1294 if (!ctlr->ptp_sts_supported) { 1295 ptp_read_system_postts(xfer->ptp_sts); 1296 xfer->ptp_sts_word_post = xfer->len; 1297 } 1298 1299 trace_spi_transfer_stop(msg, xfer); 1300 1301 if (msg->status != -EINPROGRESS) 1302 goto out; 1303 1304 spi_transfer_delay_exec(xfer); 1305 1306 if (xfer->cs_change) { 1307 if (list_is_last(&xfer->transfer_list, 1308 &msg->transfers)) { 1309 keep_cs = true; 1310 } else { 1311 spi_set_cs(msg->spi, false); 1312 _spi_transfer_cs_change_delay(msg, xfer); 1313 spi_set_cs(msg->spi, true); 1314 } 1315 } 1316 1317 msg->actual_length += xfer->len; 1318 } 1319 1320 out: 1321 if (ret != 0 || !keep_cs) 1322 spi_set_cs(msg->spi, false); 1323 1324 if (msg->status == -EINPROGRESS) 1325 msg->status = ret; 1326 1327 if (msg->status && ctlr->handle_err) 1328 ctlr->handle_err(ctlr, msg); 1329 1330 spi_res_release(ctlr, msg); 1331 1332 spi_finalize_current_message(ctlr); 1333 1334 return ret; 1335 } 1336 1337 /** 1338 * spi_finalize_current_transfer - report completion of a transfer 1339 * @ctlr: the controller reporting completion 1340 * 1341 * Called by SPI drivers using the core transfer_one_message() 1342 * implementation to notify it that the current interrupt driven 1343 * transfer has finished and the next one may be scheduled. 1344 */ 1345 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1346 { 1347 complete(&ctlr->xfer_completion); 1348 } 1349 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1350 1351 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1352 { 1353 if (ctlr->auto_runtime_pm) { 1354 pm_runtime_mark_last_busy(ctlr->dev.parent); 1355 pm_runtime_put_autosuspend(ctlr->dev.parent); 1356 } 1357 } 1358 1359 /** 1360 * __spi_pump_messages - function which processes spi message queue 1361 * @ctlr: controller to process queue for 1362 * @in_kthread: true if we are in the context of the message pump thread 1363 * 1364 * This function checks if there is any spi message in the queue that 1365 * needs processing and if so call out to the driver to initialize hardware 1366 * and transfer each message. 1367 * 1368 * Note that it is called both from the kthread itself and also from 1369 * inside spi_sync(); the queue extraction handling at the top of the 1370 * function should deal with this safely. 1371 */ 1372 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1373 { 1374 struct spi_transfer *xfer; 1375 struct spi_message *msg; 1376 bool was_busy = false; 1377 unsigned long flags; 1378 int ret; 1379 1380 /* Lock queue */ 1381 spin_lock_irqsave(&ctlr->queue_lock, flags); 1382 1383 /* Make sure we are not already running a message */ 1384 if (ctlr->cur_msg) { 1385 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1386 return; 1387 } 1388 1389 /* If another context is idling the device then defer */ 1390 if (ctlr->idling) { 1391 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1392 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1393 return; 1394 } 1395 1396 /* Check if the queue is idle */ 1397 if (list_empty(&ctlr->queue) || !ctlr->running) { 1398 if (!ctlr->busy) { 1399 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1400 return; 1401 } 1402 1403 /* Defer any non-atomic teardown to the thread */ 1404 if (!in_kthread) { 1405 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1406 !ctlr->unprepare_transfer_hardware) { 1407 spi_idle_runtime_pm(ctlr); 1408 ctlr->busy = false; 1409 trace_spi_controller_idle(ctlr); 1410 } else { 1411 kthread_queue_work(ctlr->kworker, 1412 &ctlr->pump_messages); 1413 } 1414 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1415 return; 1416 } 1417 1418 ctlr->busy = false; 1419 ctlr->idling = true; 1420 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1421 1422 kfree(ctlr->dummy_rx); 1423 ctlr->dummy_rx = NULL; 1424 kfree(ctlr->dummy_tx); 1425 ctlr->dummy_tx = NULL; 1426 if (ctlr->unprepare_transfer_hardware && 1427 ctlr->unprepare_transfer_hardware(ctlr)) 1428 dev_err(&ctlr->dev, 1429 "failed to unprepare transfer hardware\n"); 1430 spi_idle_runtime_pm(ctlr); 1431 trace_spi_controller_idle(ctlr); 1432 1433 spin_lock_irqsave(&ctlr->queue_lock, flags); 1434 ctlr->idling = false; 1435 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1436 return; 1437 } 1438 1439 /* Extract head of queue */ 1440 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1441 ctlr->cur_msg = msg; 1442 1443 list_del_init(&msg->queue); 1444 if (ctlr->busy) 1445 was_busy = true; 1446 else 1447 ctlr->busy = true; 1448 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1449 1450 mutex_lock(&ctlr->io_mutex); 1451 1452 if (!was_busy && ctlr->auto_runtime_pm) { 1453 ret = pm_runtime_get_sync(ctlr->dev.parent); 1454 if (ret < 0) { 1455 pm_runtime_put_noidle(ctlr->dev.parent); 1456 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1457 ret); 1458 mutex_unlock(&ctlr->io_mutex); 1459 return; 1460 } 1461 } 1462 1463 if (!was_busy) 1464 trace_spi_controller_busy(ctlr); 1465 1466 if (!was_busy && ctlr->prepare_transfer_hardware) { 1467 ret = ctlr->prepare_transfer_hardware(ctlr); 1468 if (ret) { 1469 dev_err(&ctlr->dev, 1470 "failed to prepare transfer hardware: %d\n", 1471 ret); 1472 1473 if (ctlr->auto_runtime_pm) 1474 pm_runtime_put(ctlr->dev.parent); 1475 1476 msg->status = ret; 1477 spi_finalize_current_message(ctlr); 1478 1479 mutex_unlock(&ctlr->io_mutex); 1480 return; 1481 } 1482 } 1483 1484 trace_spi_message_start(msg); 1485 1486 if (ctlr->prepare_message) { 1487 ret = ctlr->prepare_message(ctlr, msg); 1488 if (ret) { 1489 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1490 ret); 1491 msg->status = ret; 1492 spi_finalize_current_message(ctlr); 1493 goto out; 1494 } 1495 ctlr->cur_msg_prepared = true; 1496 } 1497 1498 ret = spi_map_msg(ctlr, msg); 1499 if (ret) { 1500 msg->status = ret; 1501 spi_finalize_current_message(ctlr); 1502 goto out; 1503 } 1504 1505 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1506 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1507 xfer->ptp_sts_word_pre = 0; 1508 ptp_read_system_prets(xfer->ptp_sts); 1509 } 1510 } 1511 1512 ret = ctlr->transfer_one_message(ctlr, msg); 1513 if (ret) { 1514 dev_err(&ctlr->dev, 1515 "failed to transfer one message from queue\n"); 1516 goto out; 1517 } 1518 1519 out: 1520 mutex_unlock(&ctlr->io_mutex); 1521 1522 /* Prod the scheduler in case transfer_one() was busy waiting */ 1523 if (!ret) 1524 cond_resched(); 1525 } 1526 1527 /** 1528 * spi_pump_messages - kthread work function which processes spi message queue 1529 * @work: pointer to kthread work struct contained in the controller struct 1530 */ 1531 static void spi_pump_messages(struct kthread_work *work) 1532 { 1533 struct spi_controller *ctlr = 1534 container_of(work, struct spi_controller, pump_messages); 1535 1536 __spi_pump_messages(ctlr, true); 1537 } 1538 1539 /** 1540 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1541 * TX timestamp for the requested byte from the SPI 1542 * transfer. The frequency with which this function 1543 * must be called (once per word, once for the whole 1544 * transfer, once per batch of words etc) is arbitrary 1545 * as long as the @tx buffer offset is greater than or 1546 * equal to the requested byte at the time of the 1547 * call. The timestamp is only taken once, at the 1548 * first such call. It is assumed that the driver 1549 * advances its @tx buffer pointer monotonically. 1550 * @ctlr: Pointer to the spi_controller structure of the driver 1551 * @xfer: Pointer to the transfer being timestamped 1552 * @progress: How many words (not bytes) have been transferred so far 1553 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1554 * transfer, for less jitter in time measurement. Only compatible 1555 * with PIO drivers. If true, must follow up with 1556 * spi_take_timestamp_post or otherwise system will crash. 1557 * WARNING: for fully predictable results, the CPU frequency must 1558 * also be under control (governor). 1559 */ 1560 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1561 struct spi_transfer *xfer, 1562 size_t progress, bool irqs_off) 1563 { 1564 if (!xfer->ptp_sts) 1565 return; 1566 1567 if (xfer->timestamped) 1568 return; 1569 1570 if (progress > xfer->ptp_sts_word_pre) 1571 return; 1572 1573 /* Capture the resolution of the timestamp */ 1574 xfer->ptp_sts_word_pre = progress; 1575 1576 if (irqs_off) { 1577 local_irq_save(ctlr->irq_flags); 1578 preempt_disable(); 1579 } 1580 1581 ptp_read_system_prets(xfer->ptp_sts); 1582 } 1583 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1584 1585 /** 1586 * spi_take_timestamp_post - helper for drivers to collect the end of the 1587 * TX timestamp for the requested byte from the SPI 1588 * transfer. Can be called with an arbitrary 1589 * frequency: only the first call where @tx exceeds 1590 * or is equal to the requested word will be 1591 * timestamped. 1592 * @ctlr: Pointer to the spi_controller structure of the driver 1593 * @xfer: Pointer to the transfer being timestamped 1594 * @progress: How many words (not bytes) have been transferred so far 1595 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1596 */ 1597 void spi_take_timestamp_post(struct spi_controller *ctlr, 1598 struct spi_transfer *xfer, 1599 size_t progress, bool irqs_off) 1600 { 1601 if (!xfer->ptp_sts) 1602 return; 1603 1604 if (xfer->timestamped) 1605 return; 1606 1607 if (progress < xfer->ptp_sts_word_post) 1608 return; 1609 1610 ptp_read_system_postts(xfer->ptp_sts); 1611 1612 if (irqs_off) { 1613 local_irq_restore(ctlr->irq_flags); 1614 preempt_enable(); 1615 } 1616 1617 /* Capture the resolution of the timestamp */ 1618 xfer->ptp_sts_word_post = progress; 1619 1620 xfer->timestamped = true; 1621 } 1622 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1623 1624 /** 1625 * spi_set_thread_rt - set the controller to pump at realtime priority 1626 * @ctlr: controller to boost priority of 1627 * 1628 * This can be called because the controller requested realtime priority 1629 * (by setting the ->rt value before calling spi_register_controller()) or 1630 * because a device on the bus said that its transfers needed realtime 1631 * priority. 1632 * 1633 * NOTE: at the moment if any device on a bus says it needs realtime then 1634 * the thread will be at realtime priority for all transfers on that 1635 * controller. If this eventually becomes a problem we may see if we can 1636 * find a way to boost the priority only temporarily during relevant 1637 * transfers. 1638 */ 1639 static void spi_set_thread_rt(struct spi_controller *ctlr) 1640 { 1641 dev_info(&ctlr->dev, 1642 "will run message pump with realtime priority\n"); 1643 sched_set_fifo(ctlr->kworker->task); 1644 } 1645 1646 static int spi_init_queue(struct spi_controller *ctlr) 1647 { 1648 ctlr->running = false; 1649 ctlr->busy = false; 1650 1651 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1652 if (IS_ERR(ctlr->kworker)) { 1653 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1654 return PTR_ERR(ctlr->kworker); 1655 } 1656 1657 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1658 1659 /* 1660 * Controller config will indicate if this controller should run the 1661 * message pump with high (realtime) priority to reduce the transfer 1662 * latency on the bus by minimising the delay between a transfer 1663 * request and the scheduling of the message pump thread. Without this 1664 * setting the message pump thread will remain at default priority. 1665 */ 1666 if (ctlr->rt) 1667 spi_set_thread_rt(ctlr); 1668 1669 return 0; 1670 } 1671 1672 /** 1673 * spi_get_next_queued_message() - called by driver to check for queued 1674 * messages 1675 * @ctlr: the controller to check for queued messages 1676 * 1677 * If there are more messages in the queue, the next message is returned from 1678 * this call. 1679 * 1680 * Return: the next message in the queue, else NULL if the queue is empty. 1681 */ 1682 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1683 { 1684 struct spi_message *next; 1685 unsigned long flags; 1686 1687 /* get a pointer to the next message, if any */ 1688 spin_lock_irqsave(&ctlr->queue_lock, flags); 1689 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1690 queue); 1691 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1692 1693 return next; 1694 } 1695 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1696 1697 /** 1698 * spi_finalize_current_message() - the current message is complete 1699 * @ctlr: the controller to return the message to 1700 * 1701 * Called by the driver to notify the core that the message in the front of the 1702 * queue is complete and can be removed from the queue. 1703 */ 1704 void spi_finalize_current_message(struct spi_controller *ctlr) 1705 { 1706 struct spi_transfer *xfer; 1707 struct spi_message *mesg; 1708 unsigned long flags; 1709 int ret; 1710 1711 spin_lock_irqsave(&ctlr->queue_lock, flags); 1712 mesg = ctlr->cur_msg; 1713 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1714 1715 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1716 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1717 ptp_read_system_postts(xfer->ptp_sts); 1718 xfer->ptp_sts_word_post = xfer->len; 1719 } 1720 } 1721 1722 if (unlikely(ctlr->ptp_sts_supported)) 1723 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1724 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1725 1726 spi_unmap_msg(ctlr, mesg); 1727 1728 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1729 ret = ctlr->unprepare_message(ctlr, mesg); 1730 if (ret) { 1731 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1732 ret); 1733 } 1734 } 1735 1736 spin_lock_irqsave(&ctlr->queue_lock, flags); 1737 ctlr->cur_msg = NULL; 1738 ctlr->cur_msg_prepared = false; 1739 ctlr->fallback = false; 1740 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1741 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1742 1743 trace_spi_message_done(mesg); 1744 1745 mesg->state = NULL; 1746 if (mesg->complete) 1747 mesg->complete(mesg->context); 1748 } 1749 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1750 1751 static int spi_start_queue(struct spi_controller *ctlr) 1752 { 1753 unsigned long flags; 1754 1755 spin_lock_irqsave(&ctlr->queue_lock, flags); 1756 1757 if (ctlr->running || ctlr->busy) { 1758 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1759 return -EBUSY; 1760 } 1761 1762 ctlr->running = true; 1763 ctlr->cur_msg = NULL; 1764 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1765 1766 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1767 1768 return 0; 1769 } 1770 1771 static int spi_stop_queue(struct spi_controller *ctlr) 1772 { 1773 unsigned long flags; 1774 unsigned limit = 500; 1775 int ret = 0; 1776 1777 spin_lock_irqsave(&ctlr->queue_lock, flags); 1778 1779 /* 1780 * This is a bit lame, but is optimized for the common execution path. 1781 * A wait_queue on the ctlr->busy could be used, but then the common 1782 * execution path (pump_messages) would be required to call wake_up or 1783 * friends on every SPI message. Do this instead. 1784 */ 1785 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1786 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1787 usleep_range(10000, 11000); 1788 spin_lock_irqsave(&ctlr->queue_lock, flags); 1789 } 1790 1791 if (!list_empty(&ctlr->queue) || ctlr->busy) 1792 ret = -EBUSY; 1793 else 1794 ctlr->running = false; 1795 1796 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1797 1798 if (ret) { 1799 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1800 return ret; 1801 } 1802 return ret; 1803 } 1804 1805 static int spi_destroy_queue(struct spi_controller *ctlr) 1806 { 1807 int ret; 1808 1809 ret = spi_stop_queue(ctlr); 1810 1811 /* 1812 * kthread_flush_worker will block until all work is done. 1813 * If the reason that stop_queue timed out is that the work will never 1814 * finish, then it does no good to call flush/stop thread, so 1815 * return anyway. 1816 */ 1817 if (ret) { 1818 dev_err(&ctlr->dev, "problem destroying queue\n"); 1819 return ret; 1820 } 1821 1822 kthread_destroy_worker(ctlr->kworker); 1823 1824 return 0; 1825 } 1826 1827 static int __spi_queued_transfer(struct spi_device *spi, 1828 struct spi_message *msg, 1829 bool need_pump) 1830 { 1831 struct spi_controller *ctlr = spi->controller; 1832 unsigned long flags; 1833 1834 spin_lock_irqsave(&ctlr->queue_lock, flags); 1835 1836 if (!ctlr->running) { 1837 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1838 return -ESHUTDOWN; 1839 } 1840 msg->actual_length = 0; 1841 msg->status = -EINPROGRESS; 1842 1843 list_add_tail(&msg->queue, &ctlr->queue); 1844 if (!ctlr->busy && need_pump) 1845 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1846 1847 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1848 return 0; 1849 } 1850 1851 /** 1852 * spi_queued_transfer - transfer function for queued transfers 1853 * @spi: spi device which is requesting transfer 1854 * @msg: spi message which is to handled is queued to driver queue 1855 * 1856 * Return: zero on success, else a negative error code. 1857 */ 1858 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1859 { 1860 return __spi_queued_transfer(spi, msg, true); 1861 } 1862 1863 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1864 { 1865 int ret; 1866 1867 ctlr->transfer = spi_queued_transfer; 1868 if (!ctlr->transfer_one_message) 1869 ctlr->transfer_one_message = spi_transfer_one_message; 1870 1871 /* Initialize and start queue */ 1872 ret = spi_init_queue(ctlr); 1873 if (ret) { 1874 dev_err(&ctlr->dev, "problem initializing queue\n"); 1875 goto err_init_queue; 1876 } 1877 ctlr->queued = true; 1878 ret = spi_start_queue(ctlr); 1879 if (ret) { 1880 dev_err(&ctlr->dev, "problem starting queue\n"); 1881 goto err_start_queue; 1882 } 1883 1884 return 0; 1885 1886 err_start_queue: 1887 spi_destroy_queue(ctlr); 1888 err_init_queue: 1889 return ret; 1890 } 1891 1892 /** 1893 * spi_flush_queue - Send all pending messages in the queue from the callers' 1894 * context 1895 * @ctlr: controller to process queue for 1896 * 1897 * This should be used when one wants to ensure all pending messages have been 1898 * sent before doing something. Is used by the spi-mem code to make sure SPI 1899 * memory operations do not preempt regular SPI transfers that have been queued 1900 * before the spi-mem operation. 1901 */ 1902 void spi_flush_queue(struct spi_controller *ctlr) 1903 { 1904 if (ctlr->transfer == spi_queued_transfer) 1905 __spi_pump_messages(ctlr, false); 1906 } 1907 1908 /*-------------------------------------------------------------------------*/ 1909 1910 #if defined(CONFIG_OF) 1911 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1912 struct device_node *nc) 1913 { 1914 u32 value; 1915 int rc; 1916 1917 /* Mode (clock phase/polarity/etc.) */ 1918 if (of_property_read_bool(nc, "spi-cpha")) 1919 spi->mode |= SPI_CPHA; 1920 if (of_property_read_bool(nc, "spi-cpol")) 1921 spi->mode |= SPI_CPOL; 1922 if (of_property_read_bool(nc, "spi-3wire")) 1923 spi->mode |= SPI_3WIRE; 1924 if (of_property_read_bool(nc, "spi-lsb-first")) 1925 spi->mode |= SPI_LSB_FIRST; 1926 if (of_property_read_bool(nc, "spi-cs-high")) 1927 spi->mode |= SPI_CS_HIGH; 1928 1929 /* Device DUAL/QUAD mode */ 1930 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1931 switch (value) { 1932 case 1: 1933 break; 1934 case 2: 1935 spi->mode |= SPI_TX_DUAL; 1936 break; 1937 case 4: 1938 spi->mode |= SPI_TX_QUAD; 1939 break; 1940 case 8: 1941 spi->mode |= SPI_TX_OCTAL; 1942 break; 1943 default: 1944 dev_warn(&ctlr->dev, 1945 "spi-tx-bus-width %d not supported\n", 1946 value); 1947 break; 1948 } 1949 } 1950 1951 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1952 switch (value) { 1953 case 1: 1954 break; 1955 case 2: 1956 spi->mode |= SPI_RX_DUAL; 1957 break; 1958 case 4: 1959 spi->mode |= SPI_RX_QUAD; 1960 break; 1961 case 8: 1962 spi->mode |= SPI_RX_OCTAL; 1963 break; 1964 default: 1965 dev_warn(&ctlr->dev, 1966 "spi-rx-bus-width %d not supported\n", 1967 value); 1968 break; 1969 } 1970 } 1971 1972 if (spi_controller_is_slave(ctlr)) { 1973 if (!of_node_name_eq(nc, "slave")) { 1974 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1975 nc); 1976 return -EINVAL; 1977 } 1978 return 0; 1979 } 1980 1981 /* Device address */ 1982 rc = of_property_read_u32(nc, "reg", &value); 1983 if (rc) { 1984 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1985 nc, rc); 1986 return rc; 1987 } 1988 spi->chip_select = value; 1989 1990 /* 1991 * For descriptors associated with the device, polarity inversion is 1992 * handled in the gpiolib, so all gpio chip selects are "active high" 1993 * in the logical sense, the gpiolib will invert the line if need be. 1994 */ 1995 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods && 1996 ctlr->cs_gpiods[spi->chip_select]) 1997 spi->mode |= SPI_CS_HIGH; 1998 1999 /* Device speed */ 2000 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2001 spi->max_speed_hz = value; 2002 2003 return 0; 2004 } 2005 2006 static struct spi_device * 2007 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2008 { 2009 struct spi_device *spi; 2010 int rc; 2011 2012 /* Alloc an spi_device */ 2013 spi = spi_alloc_device(ctlr); 2014 if (!spi) { 2015 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2016 rc = -ENOMEM; 2017 goto err_out; 2018 } 2019 2020 /* Select device driver */ 2021 rc = of_modalias_node(nc, spi->modalias, 2022 sizeof(spi->modalias)); 2023 if (rc < 0) { 2024 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2025 goto err_out; 2026 } 2027 2028 rc = of_spi_parse_dt(ctlr, spi, nc); 2029 if (rc) 2030 goto err_out; 2031 2032 /* Store a pointer to the node in the device structure */ 2033 of_node_get(nc); 2034 spi->dev.of_node = nc; 2035 2036 /* Register the new device */ 2037 rc = spi_add_device(spi); 2038 if (rc) { 2039 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2040 goto err_of_node_put; 2041 } 2042 2043 return spi; 2044 2045 err_of_node_put: 2046 of_node_put(nc); 2047 err_out: 2048 spi_dev_put(spi); 2049 return ERR_PTR(rc); 2050 } 2051 2052 /** 2053 * of_register_spi_devices() - Register child devices onto the SPI bus 2054 * @ctlr: Pointer to spi_controller device 2055 * 2056 * Registers an spi_device for each child node of controller node which 2057 * represents a valid SPI slave. 2058 */ 2059 static void of_register_spi_devices(struct spi_controller *ctlr) 2060 { 2061 struct spi_device *spi; 2062 struct device_node *nc; 2063 2064 if (!ctlr->dev.of_node) 2065 return; 2066 2067 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2068 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2069 continue; 2070 spi = of_register_spi_device(ctlr, nc); 2071 if (IS_ERR(spi)) { 2072 dev_warn(&ctlr->dev, 2073 "Failed to create SPI device for %pOF\n", nc); 2074 of_node_clear_flag(nc, OF_POPULATED); 2075 } 2076 } 2077 } 2078 #else 2079 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2080 #endif 2081 2082 #ifdef CONFIG_ACPI 2083 struct acpi_spi_lookup { 2084 struct spi_controller *ctlr; 2085 u32 max_speed_hz; 2086 u32 mode; 2087 int irq; 2088 u8 bits_per_word; 2089 u8 chip_select; 2090 }; 2091 2092 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2093 struct acpi_spi_lookup *lookup) 2094 { 2095 const union acpi_object *obj; 2096 2097 if (!x86_apple_machine) 2098 return; 2099 2100 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2101 && obj->buffer.length >= 4) 2102 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2103 2104 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2105 && obj->buffer.length == 8) 2106 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2107 2108 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2109 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2110 lookup->mode |= SPI_LSB_FIRST; 2111 2112 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2113 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2114 lookup->mode |= SPI_CPOL; 2115 2116 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2117 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2118 lookup->mode |= SPI_CPHA; 2119 } 2120 2121 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2122 { 2123 struct acpi_spi_lookup *lookup = data; 2124 struct spi_controller *ctlr = lookup->ctlr; 2125 2126 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2127 struct acpi_resource_spi_serialbus *sb; 2128 acpi_handle parent_handle; 2129 acpi_status status; 2130 2131 sb = &ares->data.spi_serial_bus; 2132 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2133 2134 status = acpi_get_handle(NULL, 2135 sb->resource_source.string_ptr, 2136 &parent_handle); 2137 2138 if (ACPI_FAILURE(status) || 2139 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2140 return -ENODEV; 2141 2142 /* 2143 * ACPI DeviceSelection numbering is handled by the 2144 * host controller driver in Windows and can vary 2145 * from driver to driver. In Linux we always expect 2146 * 0 .. max - 1 so we need to ask the driver to 2147 * translate between the two schemes. 2148 */ 2149 if (ctlr->fw_translate_cs) { 2150 int cs = ctlr->fw_translate_cs(ctlr, 2151 sb->device_selection); 2152 if (cs < 0) 2153 return cs; 2154 lookup->chip_select = cs; 2155 } else { 2156 lookup->chip_select = sb->device_selection; 2157 } 2158 2159 lookup->max_speed_hz = sb->connection_speed; 2160 lookup->bits_per_word = sb->data_bit_length; 2161 2162 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2163 lookup->mode |= SPI_CPHA; 2164 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2165 lookup->mode |= SPI_CPOL; 2166 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2167 lookup->mode |= SPI_CS_HIGH; 2168 } 2169 } else if (lookup->irq < 0) { 2170 struct resource r; 2171 2172 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2173 lookup->irq = r.start; 2174 } 2175 2176 /* Always tell the ACPI core to skip this resource */ 2177 return 1; 2178 } 2179 2180 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2181 struct acpi_device *adev) 2182 { 2183 acpi_handle parent_handle = NULL; 2184 struct list_head resource_list; 2185 struct acpi_spi_lookup lookup = {}; 2186 struct spi_device *spi; 2187 int ret; 2188 2189 if (acpi_bus_get_status(adev) || !adev->status.present || 2190 acpi_device_enumerated(adev)) 2191 return AE_OK; 2192 2193 lookup.ctlr = ctlr; 2194 lookup.irq = -1; 2195 2196 INIT_LIST_HEAD(&resource_list); 2197 ret = acpi_dev_get_resources(adev, &resource_list, 2198 acpi_spi_add_resource, &lookup); 2199 acpi_dev_free_resource_list(&resource_list); 2200 2201 if (ret < 0) 2202 /* found SPI in _CRS but it points to another controller */ 2203 return AE_OK; 2204 2205 if (!lookup.max_speed_hz && 2206 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 2207 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2208 /* Apple does not use _CRS but nested devices for SPI slaves */ 2209 acpi_spi_parse_apple_properties(adev, &lookup); 2210 } 2211 2212 if (!lookup.max_speed_hz) 2213 return AE_OK; 2214 2215 spi = spi_alloc_device(ctlr); 2216 if (!spi) { 2217 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2218 dev_name(&adev->dev)); 2219 return AE_NO_MEMORY; 2220 } 2221 2222 2223 ACPI_COMPANION_SET(&spi->dev, adev); 2224 spi->max_speed_hz = lookup.max_speed_hz; 2225 spi->mode |= lookup.mode; 2226 spi->irq = lookup.irq; 2227 spi->bits_per_word = lookup.bits_per_word; 2228 spi->chip_select = lookup.chip_select; 2229 2230 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2231 sizeof(spi->modalias)); 2232 2233 if (spi->irq < 0) 2234 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2235 2236 acpi_device_set_enumerated(adev); 2237 2238 adev->power.flags.ignore_parent = true; 2239 if (spi_add_device(spi)) { 2240 adev->power.flags.ignore_parent = false; 2241 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2242 dev_name(&adev->dev)); 2243 spi_dev_put(spi); 2244 } 2245 2246 return AE_OK; 2247 } 2248 2249 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2250 void *data, void **return_value) 2251 { 2252 struct spi_controller *ctlr = data; 2253 struct acpi_device *adev; 2254 2255 if (acpi_bus_get_device(handle, &adev)) 2256 return AE_OK; 2257 2258 return acpi_register_spi_device(ctlr, adev); 2259 } 2260 2261 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2262 2263 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2264 { 2265 acpi_status status; 2266 acpi_handle handle; 2267 2268 handle = ACPI_HANDLE(ctlr->dev.parent); 2269 if (!handle) 2270 return; 2271 2272 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2273 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2274 acpi_spi_add_device, NULL, ctlr, NULL); 2275 if (ACPI_FAILURE(status)) 2276 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2277 } 2278 #else 2279 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2280 #endif /* CONFIG_ACPI */ 2281 2282 static void spi_controller_release(struct device *dev) 2283 { 2284 struct spi_controller *ctlr; 2285 2286 ctlr = container_of(dev, struct spi_controller, dev); 2287 kfree(ctlr); 2288 } 2289 2290 static struct class spi_master_class = { 2291 .name = "spi_master", 2292 .owner = THIS_MODULE, 2293 .dev_release = spi_controller_release, 2294 .dev_groups = spi_master_groups, 2295 }; 2296 2297 #ifdef CONFIG_SPI_SLAVE 2298 /** 2299 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2300 * controller 2301 * @spi: device used for the current transfer 2302 */ 2303 int spi_slave_abort(struct spi_device *spi) 2304 { 2305 struct spi_controller *ctlr = spi->controller; 2306 2307 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2308 return ctlr->slave_abort(ctlr); 2309 2310 return -ENOTSUPP; 2311 } 2312 EXPORT_SYMBOL_GPL(spi_slave_abort); 2313 2314 static int match_true(struct device *dev, void *data) 2315 { 2316 return 1; 2317 } 2318 2319 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2320 char *buf) 2321 { 2322 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2323 dev); 2324 struct device *child; 2325 2326 child = device_find_child(&ctlr->dev, NULL, match_true); 2327 return sprintf(buf, "%s\n", 2328 child ? to_spi_device(child)->modalias : NULL); 2329 } 2330 2331 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2332 const char *buf, size_t count) 2333 { 2334 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2335 dev); 2336 struct spi_device *spi; 2337 struct device *child; 2338 char name[32]; 2339 int rc; 2340 2341 rc = sscanf(buf, "%31s", name); 2342 if (rc != 1 || !name[0]) 2343 return -EINVAL; 2344 2345 child = device_find_child(&ctlr->dev, NULL, match_true); 2346 if (child) { 2347 /* Remove registered slave */ 2348 device_unregister(child); 2349 put_device(child); 2350 } 2351 2352 if (strcmp(name, "(null)")) { 2353 /* Register new slave */ 2354 spi = spi_alloc_device(ctlr); 2355 if (!spi) 2356 return -ENOMEM; 2357 2358 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2359 2360 rc = spi_add_device(spi); 2361 if (rc) { 2362 spi_dev_put(spi); 2363 return rc; 2364 } 2365 } 2366 2367 return count; 2368 } 2369 2370 static DEVICE_ATTR_RW(slave); 2371 2372 static struct attribute *spi_slave_attrs[] = { 2373 &dev_attr_slave.attr, 2374 NULL, 2375 }; 2376 2377 static const struct attribute_group spi_slave_group = { 2378 .attrs = spi_slave_attrs, 2379 }; 2380 2381 static const struct attribute_group *spi_slave_groups[] = { 2382 &spi_controller_statistics_group, 2383 &spi_slave_group, 2384 NULL, 2385 }; 2386 2387 static struct class spi_slave_class = { 2388 .name = "spi_slave", 2389 .owner = THIS_MODULE, 2390 .dev_release = spi_controller_release, 2391 .dev_groups = spi_slave_groups, 2392 }; 2393 #else 2394 extern struct class spi_slave_class; /* dummy */ 2395 #endif 2396 2397 /** 2398 * __spi_alloc_controller - allocate an SPI master or slave controller 2399 * @dev: the controller, possibly using the platform_bus 2400 * @size: how much zeroed driver-private data to allocate; the pointer to this 2401 * memory is in the driver_data field of the returned device, accessible 2402 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2403 * drivers granting DMA access to portions of their private data need to 2404 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2405 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2406 * slave (true) controller 2407 * Context: can sleep 2408 * 2409 * This call is used only by SPI controller drivers, which are the 2410 * only ones directly touching chip registers. It's how they allocate 2411 * an spi_controller structure, prior to calling spi_register_controller(). 2412 * 2413 * This must be called from context that can sleep. 2414 * 2415 * The caller is responsible for assigning the bus number and initializing the 2416 * controller's methods before calling spi_register_controller(); and (after 2417 * errors adding the device) calling spi_controller_put() to prevent a memory 2418 * leak. 2419 * 2420 * Return: the SPI controller structure on success, else NULL. 2421 */ 2422 struct spi_controller *__spi_alloc_controller(struct device *dev, 2423 unsigned int size, bool slave) 2424 { 2425 struct spi_controller *ctlr; 2426 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2427 2428 if (!dev) 2429 return NULL; 2430 2431 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2432 if (!ctlr) 2433 return NULL; 2434 2435 device_initialize(&ctlr->dev); 2436 ctlr->bus_num = -1; 2437 ctlr->num_chipselect = 1; 2438 ctlr->slave = slave; 2439 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2440 ctlr->dev.class = &spi_slave_class; 2441 else 2442 ctlr->dev.class = &spi_master_class; 2443 ctlr->dev.parent = dev; 2444 pm_suspend_ignore_children(&ctlr->dev, true); 2445 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2446 2447 return ctlr; 2448 } 2449 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2450 2451 #ifdef CONFIG_OF 2452 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2453 { 2454 int nb, i, *cs; 2455 struct device_node *np = ctlr->dev.of_node; 2456 2457 if (!np) 2458 return 0; 2459 2460 nb = of_gpio_named_count(np, "cs-gpios"); 2461 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2462 2463 /* Return error only for an incorrectly formed cs-gpios property */ 2464 if (nb == 0 || nb == -ENOENT) 2465 return 0; 2466 else if (nb < 0) 2467 return nb; 2468 2469 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2470 GFP_KERNEL); 2471 ctlr->cs_gpios = cs; 2472 2473 if (!ctlr->cs_gpios) 2474 return -ENOMEM; 2475 2476 for (i = 0; i < ctlr->num_chipselect; i++) 2477 cs[i] = -ENOENT; 2478 2479 for (i = 0; i < nb; i++) 2480 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2481 2482 return 0; 2483 } 2484 #else 2485 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2486 { 2487 return 0; 2488 } 2489 #endif 2490 2491 /** 2492 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2493 * @ctlr: The SPI master to grab GPIO descriptors for 2494 */ 2495 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2496 { 2497 int nb, i; 2498 struct gpio_desc **cs; 2499 struct device *dev = &ctlr->dev; 2500 unsigned long native_cs_mask = 0; 2501 unsigned int num_cs_gpios = 0; 2502 2503 nb = gpiod_count(dev, "cs"); 2504 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2505 2506 /* No GPIOs at all is fine, else return the error */ 2507 if (nb == 0 || nb == -ENOENT) 2508 return 0; 2509 else if (nb < 0) 2510 return nb; 2511 2512 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2513 GFP_KERNEL); 2514 if (!cs) 2515 return -ENOMEM; 2516 ctlr->cs_gpiods = cs; 2517 2518 for (i = 0; i < nb; i++) { 2519 /* 2520 * Most chipselects are active low, the inverted 2521 * semantics are handled by special quirks in gpiolib, 2522 * so initializing them GPIOD_OUT_LOW here means 2523 * "unasserted", in most cases this will drive the physical 2524 * line high. 2525 */ 2526 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2527 GPIOD_OUT_LOW); 2528 if (IS_ERR(cs[i])) 2529 return PTR_ERR(cs[i]); 2530 2531 if (cs[i]) { 2532 /* 2533 * If we find a CS GPIO, name it after the device and 2534 * chip select line. 2535 */ 2536 char *gpioname; 2537 2538 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2539 dev_name(dev), i); 2540 if (!gpioname) 2541 return -ENOMEM; 2542 gpiod_set_consumer_name(cs[i], gpioname); 2543 num_cs_gpios++; 2544 continue; 2545 } 2546 2547 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2548 dev_err(dev, "Invalid native chip select %d\n", i); 2549 return -EINVAL; 2550 } 2551 native_cs_mask |= BIT(i); 2552 } 2553 2554 ctlr->unused_native_cs = ffz(native_cs_mask); 2555 if (num_cs_gpios && ctlr->max_native_cs && 2556 ctlr->unused_native_cs >= ctlr->max_native_cs) { 2557 dev_err(dev, "No unused native chip select available\n"); 2558 return -EINVAL; 2559 } 2560 2561 return 0; 2562 } 2563 2564 static int spi_controller_check_ops(struct spi_controller *ctlr) 2565 { 2566 /* 2567 * The controller may implement only the high-level SPI-memory like 2568 * operations if it does not support regular SPI transfers, and this is 2569 * valid use case. 2570 * If ->mem_ops is NULL, we request that at least one of the 2571 * ->transfer_xxx() method be implemented. 2572 */ 2573 if (ctlr->mem_ops) { 2574 if (!ctlr->mem_ops->exec_op) 2575 return -EINVAL; 2576 } else if (!ctlr->transfer && !ctlr->transfer_one && 2577 !ctlr->transfer_one_message) { 2578 return -EINVAL; 2579 } 2580 2581 return 0; 2582 } 2583 2584 /** 2585 * spi_register_controller - register SPI master or slave controller 2586 * @ctlr: initialized master, originally from spi_alloc_master() or 2587 * spi_alloc_slave() 2588 * Context: can sleep 2589 * 2590 * SPI controllers connect to their drivers using some non-SPI bus, 2591 * such as the platform bus. The final stage of probe() in that code 2592 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2593 * 2594 * SPI controllers use board specific (often SOC specific) bus numbers, 2595 * and board-specific addressing for SPI devices combines those numbers 2596 * with chip select numbers. Since SPI does not directly support dynamic 2597 * device identification, boards need configuration tables telling which 2598 * chip is at which address. 2599 * 2600 * This must be called from context that can sleep. It returns zero on 2601 * success, else a negative error code (dropping the controller's refcount). 2602 * After a successful return, the caller is responsible for calling 2603 * spi_unregister_controller(). 2604 * 2605 * Return: zero on success, else a negative error code. 2606 */ 2607 int spi_register_controller(struct spi_controller *ctlr) 2608 { 2609 struct device *dev = ctlr->dev.parent; 2610 struct boardinfo *bi; 2611 int status; 2612 int id, first_dynamic; 2613 2614 if (!dev) 2615 return -ENODEV; 2616 2617 /* 2618 * Make sure all necessary hooks are implemented before registering 2619 * the SPI controller. 2620 */ 2621 status = spi_controller_check_ops(ctlr); 2622 if (status) 2623 return status; 2624 2625 if (ctlr->bus_num >= 0) { 2626 /* devices with a fixed bus num must check-in with the num */ 2627 mutex_lock(&board_lock); 2628 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2629 ctlr->bus_num + 1, GFP_KERNEL); 2630 mutex_unlock(&board_lock); 2631 if (WARN(id < 0, "couldn't get idr")) 2632 return id == -ENOSPC ? -EBUSY : id; 2633 ctlr->bus_num = id; 2634 } else if (ctlr->dev.of_node) { 2635 /* allocate dynamic bus number using Linux idr */ 2636 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2637 if (id >= 0) { 2638 ctlr->bus_num = id; 2639 mutex_lock(&board_lock); 2640 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2641 ctlr->bus_num + 1, GFP_KERNEL); 2642 mutex_unlock(&board_lock); 2643 if (WARN(id < 0, "couldn't get idr")) 2644 return id == -ENOSPC ? -EBUSY : id; 2645 } 2646 } 2647 if (ctlr->bus_num < 0) { 2648 first_dynamic = of_alias_get_highest_id("spi"); 2649 if (first_dynamic < 0) 2650 first_dynamic = 0; 2651 else 2652 first_dynamic++; 2653 2654 mutex_lock(&board_lock); 2655 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2656 0, GFP_KERNEL); 2657 mutex_unlock(&board_lock); 2658 if (WARN(id < 0, "couldn't get idr")) 2659 return id; 2660 ctlr->bus_num = id; 2661 } 2662 INIT_LIST_HEAD(&ctlr->queue); 2663 spin_lock_init(&ctlr->queue_lock); 2664 spin_lock_init(&ctlr->bus_lock_spinlock); 2665 mutex_init(&ctlr->bus_lock_mutex); 2666 mutex_init(&ctlr->io_mutex); 2667 ctlr->bus_lock_flag = 0; 2668 init_completion(&ctlr->xfer_completion); 2669 if (!ctlr->max_dma_len) 2670 ctlr->max_dma_len = INT_MAX; 2671 2672 /* register the device, then userspace will see it. 2673 * registration fails if the bus ID is in use. 2674 */ 2675 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2676 2677 if (!spi_controller_is_slave(ctlr)) { 2678 if (ctlr->use_gpio_descriptors) { 2679 status = spi_get_gpio_descs(ctlr); 2680 if (status) 2681 goto free_bus_id; 2682 /* 2683 * A controller using GPIO descriptors always 2684 * supports SPI_CS_HIGH if need be. 2685 */ 2686 ctlr->mode_bits |= SPI_CS_HIGH; 2687 } else { 2688 /* Legacy code path for GPIOs from DT */ 2689 status = of_spi_get_gpio_numbers(ctlr); 2690 if (status) 2691 goto free_bus_id; 2692 } 2693 } 2694 2695 /* 2696 * Even if it's just one always-selected device, there must 2697 * be at least one chipselect. 2698 */ 2699 if (!ctlr->num_chipselect) { 2700 status = -EINVAL; 2701 goto free_bus_id; 2702 } 2703 2704 status = device_add(&ctlr->dev); 2705 if (status < 0) 2706 goto free_bus_id; 2707 dev_dbg(dev, "registered %s %s\n", 2708 spi_controller_is_slave(ctlr) ? "slave" : "master", 2709 dev_name(&ctlr->dev)); 2710 2711 /* 2712 * If we're using a queued driver, start the queue. Note that we don't 2713 * need the queueing logic if the driver is only supporting high-level 2714 * memory operations. 2715 */ 2716 if (ctlr->transfer) { 2717 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2718 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2719 status = spi_controller_initialize_queue(ctlr); 2720 if (status) { 2721 device_del(&ctlr->dev); 2722 goto free_bus_id; 2723 } 2724 } 2725 /* add statistics */ 2726 spin_lock_init(&ctlr->statistics.lock); 2727 2728 mutex_lock(&board_lock); 2729 list_add_tail(&ctlr->list, &spi_controller_list); 2730 list_for_each_entry(bi, &board_list, list) 2731 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2732 mutex_unlock(&board_lock); 2733 2734 /* Register devices from the device tree and ACPI */ 2735 of_register_spi_devices(ctlr); 2736 acpi_register_spi_devices(ctlr); 2737 return status; 2738 2739 free_bus_id: 2740 mutex_lock(&board_lock); 2741 idr_remove(&spi_master_idr, ctlr->bus_num); 2742 mutex_unlock(&board_lock); 2743 return status; 2744 } 2745 EXPORT_SYMBOL_GPL(spi_register_controller); 2746 2747 static void devm_spi_unregister(struct device *dev, void *res) 2748 { 2749 spi_unregister_controller(*(struct spi_controller **)res); 2750 } 2751 2752 /** 2753 * devm_spi_register_controller - register managed SPI master or slave 2754 * controller 2755 * @dev: device managing SPI controller 2756 * @ctlr: initialized controller, originally from spi_alloc_master() or 2757 * spi_alloc_slave() 2758 * Context: can sleep 2759 * 2760 * Register a SPI device as with spi_register_controller() which will 2761 * automatically be unregistered and freed. 2762 * 2763 * Return: zero on success, else a negative error code. 2764 */ 2765 int devm_spi_register_controller(struct device *dev, 2766 struct spi_controller *ctlr) 2767 { 2768 struct spi_controller **ptr; 2769 int ret; 2770 2771 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2772 if (!ptr) 2773 return -ENOMEM; 2774 2775 ret = spi_register_controller(ctlr); 2776 if (!ret) { 2777 *ptr = ctlr; 2778 devres_add(dev, ptr); 2779 } else { 2780 devres_free(ptr); 2781 } 2782 2783 return ret; 2784 } 2785 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2786 2787 static int __unregister(struct device *dev, void *null) 2788 { 2789 spi_unregister_device(to_spi_device(dev)); 2790 return 0; 2791 } 2792 2793 /** 2794 * spi_unregister_controller - unregister SPI master or slave controller 2795 * @ctlr: the controller being unregistered 2796 * Context: can sleep 2797 * 2798 * This call is used only by SPI controller drivers, which are the 2799 * only ones directly touching chip registers. 2800 * 2801 * This must be called from context that can sleep. 2802 * 2803 * Note that this function also drops a reference to the controller. 2804 */ 2805 void spi_unregister_controller(struct spi_controller *ctlr) 2806 { 2807 struct spi_controller *found; 2808 int id = ctlr->bus_num; 2809 2810 /* Prevent addition of new devices, unregister existing ones */ 2811 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2812 mutex_lock(&spi_add_lock); 2813 2814 device_for_each_child(&ctlr->dev, NULL, __unregister); 2815 2816 /* First make sure that this controller was ever added */ 2817 mutex_lock(&board_lock); 2818 found = idr_find(&spi_master_idr, id); 2819 mutex_unlock(&board_lock); 2820 if (ctlr->queued) { 2821 if (spi_destroy_queue(ctlr)) 2822 dev_err(&ctlr->dev, "queue remove failed\n"); 2823 } 2824 mutex_lock(&board_lock); 2825 list_del(&ctlr->list); 2826 mutex_unlock(&board_lock); 2827 2828 device_unregister(&ctlr->dev); 2829 /* free bus id */ 2830 mutex_lock(&board_lock); 2831 if (found == ctlr) 2832 idr_remove(&spi_master_idr, id); 2833 mutex_unlock(&board_lock); 2834 2835 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2836 mutex_unlock(&spi_add_lock); 2837 } 2838 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2839 2840 int spi_controller_suspend(struct spi_controller *ctlr) 2841 { 2842 int ret; 2843 2844 /* Basically no-ops for non-queued controllers */ 2845 if (!ctlr->queued) 2846 return 0; 2847 2848 ret = spi_stop_queue(ctlr); 2849 if (ret) 2850 dev_err(&ctlr->dev, "queue stop failed\n"); 2851 2852 return ret; 2853 } 2854 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2855 2856 int spi_controller_resume(struct spi_controller *ctlr) 2857 { 2858 int ret; 2859 2860 if (!ctlr->queued) 2861 return 0; 2862 2863 ret = spi_start_queue(ctlr); 2864 if (ret) 2865 dev_err(&ctlr->dev, "queue restart failed\n"); 2866 2867 return ret; 2868 } 2869 EXPORT_SYMBOL_GPL(spi_controller_resume); 2870 2871 static int __spi_controller_match(struct device *dev, const void *data) 2872 { 2873 struct spi_controller *ctlr; 2874 const u16 *bus_num = data; 2875 2876 ctlr = container_of(dev, struct spi_controller, dev); 2877 return ctlr->bus_num == *bus_num; 2878 } 2879 2880 /** 2881 * spi_busnum_to_master - look up master associated with bus_num 2882 * @bus_num: the master's bus number 2883 * Context: can sleep 2884 * 2885 * This call may be used with devices that are registered after 2886 * arch init time. It returns a refcounted pointer to the relevant 2887 * spi_controller (which the caller must release), or NULL if there is 2888 * no such master registered. 2889 * 2890 * Return: the SPI master structure on success, else NULL. 2891 */ 2892 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2893 { 2894 struct device *dev; 2895 struct spi_controller *ctlr = NULL; 2896 2897 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2898 __spi_controller_match); 2899 if (dev) 2900 ctlr = container_of(dev, struct spi_controller, dev); 2901 /* reference got in class_find_device */ 2902 return ctlr; 2903 } 2904 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2905 2906 /*-------------------------------------------------------------------------*/ 2907 2908 /* Core methods for SPI resource management */ 2909 2910 /** 2911 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2912 * during the processing of a spi_message while using 2913 * spi_transfer_one 2914 * @spi: the spi device for which we allocate memory 2915 * @release: the release code to execute for this resource 2916 * @size: size to alloc and return 2917 * @gfp: GFP allocation flags 2918 * 2919 * Return: the pointer to the allocated data 2920 * 2921 * This may get enhanced in the future to allocate from a memory pool 2922 * of the @spi_device or @spi_controller to avoid repeated allocations. 2923 */ 2924 void *spi_res_alloc(struct spi_device *spi, 2925 spi_res_release_t release, 2926 size_t size, gfp_t gfp) 2927 { 2928 struct spi_res *sres; 2929 2930 sres = kzalloc(sizeof(*sres) + size, gfp); 2931 if (!sres) 2932 return NULL; 2933 2934 INIT_LIST_HEAD(&sres->entry); 2935 sres->release = release; 2936 2937 return sres->data; 2938 } 2939 EXPORT_SYMBOL_GPL(spi_res_alloc); 2940 2941 /** 2942 * spi_res_free - free an spi resource 2943 * @res: pointer to the custom data of a resource 2944 * 2945 */ 2946 void spi_res_free(void *res) 2947 { 2948 struct spi_res *sres = container_of(res, struct spi_res, data); 2949 2950 if (!res) 2951 return; 2952 2953 WARN_ON(!list_empty(&sres->entry)); 2954 kfree(sres); 2955 } 2956 EXPORT_SYMBOL_GPL(spi_res_free); 2957 2958 /** 2959 * spi_res_add - add a spi_res to the spi_message 2960 * @message: the spi message 2961 * @res: the spi_resource 2962 */ 2963 void spi_res_add(struct spi_message *message, void *res) 2964 { 2965 struct spi_res *sres = container_of(res, struct spi_res, data); 2966 2967 WARN_ON(!list_empty(&sres->entry)); 2968 list_add_tail(&sres->entry, &message->resources); 2969 } 2970 EXPORT_SYMBOL_GPL(spi_res_add); 2971 2972 /** 2973 * spi_res_release - release all spi resources for this message 2974 * @ctlr: the @spi_controller 2975 * @message: the @spi_message 2976 */ 2977 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2978 { 2979 struct spi_res *res, *tmp; 2980 2981 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 2982 if (res->release) 2983 res->release(ctlr, message, res->data); 2984 2985 list_del(&res->entry); 2986 2987 kfree(res); 2988 } 2989 } 2990 EXPORT_SYMBOL_GPL(spi_res_release); 2991 2992 /*-------------------------------------------------------------------------*/ 2993 2994 /* Core methods for spi_message alterations */ 2995 2996 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2997 struct spi_message *msg, 2998 void *res) 2999 { 3000 struct spi_replaced_transfers *rxfer = res; 3001 size_t i; 3002 3003 /* call extra callback if requested */ 3004 if (rxfer->release) 3005 rxfer->release(ctlr, msg, res); 3006 3007 /* insert replaced transfers back into the message */ 3008 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3009 3010 /* remove the formerly inserted entries */ 3011 for (i = 0; i < rxfer->inserted; i++) 3012 list_del(&rxfer->inserted_transfers[i].transfer_list); 3013 } 3014 3015 /** 3016 * spi_replace_transfers - replace transfers with several transfers 3017 * and register change with spi_message.resources 3018 * @msg: the spi_message we work upon 3019 * @xfer_first: the first spi_transfer we want to replace 3020 * @remove: number of transfers to remove 3021 * @insert: the number of transfers we want to insert instead 3022 * @release: extra release code necessary in some circumstances 3023 * @extradatasize: extra data to allocate (with alignment guarantees 3024 * of struct @spi_transfer) 3025 * @gfp: gfp flags 3026 * 3027 * Returns: pointer to @spi_replaced_transfers, 3028 * PTR_ERR(...) in case of errors. 3029 */ 3030 struct spi_replaced_transfers *spi_replace_transfers( 3031 struct spi_message *msg, 3032 struct spi_transfer *xfer_first, 3033 size_t remove, 3034 size_t insert, 3035 spi_replaced_release_t release, 3036 size_t extradatasize, 3037 gfp_t gfp) 3038 { 3039 struct spi_replaced_transfers *rxfer; 3040 struct spi_transfer *xfer; 3041 size_t i; 3042 3043 /* allocate the structure using spi_res */ 3044 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3045 struct_size(rxfer, inserted_transfers, insert) 3046 + extradatasize, 3047 gfp); 3048 if (!rxfer) 3049 return ERR_PTR(-ENOMEM); 3050 3051 /* the release code to invoke before running the generic release */ 3052 rxfer->release = release; 3053 3054 /* assign extradata */ 3055 if (extradatasize) 3056 rxfer->extradata = 3057 &rxfer->inserted_transfers[insert]; 3058 3059 /* init the replaced_transfers list */ 3060 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3061 3062 /* assign the list_entry after which we should reinsert 3063 * the @replaced_transfers - it may be spi_message.messages! 3064 */ 3065 rxfer->replaced_after = xfer_first->transfer_list.prev; 3066 3067 /* remove the requested number of transfers */ 3068 for (i = 0; i < remove; i++) { 3069 /* if the entry after replaced_after it is msg->transfers 3070 * then we have been requested to remove more transfers 3071 * than are in the list 3072 */ 3073 if (rxfer->replaced_after->next == &msg->transfers) { 3074 dev_err(&msg->spi->dev, 3075 "requested to remove more spi_transfers than are available\n"); 3076 /* insert replaced transfers back into the message */ 3077 list_splice(&rxfer->replaced_transfers, 3078 rxfer->replaced_after); 3079 3080 /* free the spi_replace_transfer structure */ 3081 spi_res_free(rxfer); 3082 3083 /* and return with an error */ 3084 return ERR_PTR(-EINVAL); 3085 } 3086 3087 /* remove the entry after replaced_after from list of 3088 * transfers and add it to list of replaced_transfers 3089 */ 3090 list_move_tail(rxfer->replaced_after->next, 3091 &rxfer->replaced_transfers); 3092 } 3093 3094 /* create copy of the given xfer with identical settings 3095 * based on the first transfer to get removed 3096 */ 3097 for (i = 0; i < insert; i++) { 3098 /* we need to run in reverse order */ 3099 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3100 3101 /* copy all spi_transfer data */ 3102 memcpy(xfer, xfer_first, sizeof(*xfer)); 3103 3104 /* add to list */ 3105 list_add(&xfer->transfer_list, rxfer->replaced_after); 3106 3107 /* clear cs_change and delay for all but the last */ 3108 if (i) { 3109 xfer->cs_change = false; 3110 xfer->delay_usecs = 0; 3111 xfer->delay.value = 0; 3112 } 3113 } 3114 3115 /* set up inserted */ 3116 rxfer->inserted = insert; 3117 3118 /* and register it with spi_res/spi_message */ 3119 spi_res_add(msg, rxfer); 3120 3121 return rxfer; 3122 } 3123 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3124 3125 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3126 struct spi_message *msg, 3127 struct spi_transfer **xferp, 3128 size_t maxsize, 3129 gfp_t gfp) 3130 { 3131 struct spi_transfer *xfer = *xferp, *xfers; 3132 struct spi_replaced_transfers *srt; 3133 size_t offset; 3134 size_t count, i; 3135 3136 /* calculate how many we have to replace */ 3137 count = DIV_ROUND_UP(xfer->len, maxsize); 3138 3139 /* create replacement */ 3140 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3141 if (IS_ERR(srt)) 3142 return PTR_ERR(srt); 3143 xfers = srt->inserted_transfers; 3144 3145 /* now handle each of those newly inserted spi_transfers 3146 * note that the replacements spi_transfers all are preset 3147 * to the same values as *xferp, so tx_buf, rx_buf and len 3148 * are all identical (as well as most others) 3149 * so we just have to fix up len and the pointers. 3150 * 3151 * this also includes support for the depreciated 3152 * spi_message.is_dma_mapped interface 3153 */ 3154 3155 /* the first transfer just needs the length modified, so we 3156 * run it outside the loop 3157 */ 3158 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3159 3160 /* all the others need rx_buf/tx_buf also set */ 3161 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3162 /* update rx_buf, tx_buf and dma */ 3163 if (xfers[i].rx_buf) 3164 xfers[i].rx_buf += offset; 3165 if (xfers[i].rx_dma) 3166 xfers[i].rx_dma += offset; 3167 if (xfers[i].tx_buf) 3168 xfers[i].tx_buf += offset; 3169 if (xfers[i].tx_dma) 3170 xfers[i].tx_dma += offset; 3171 3172 /* update length */ 3173 xfers[i].len = min(maxsize, xfers[i].len - offset); 3174 } 3175 3176 /* we set up xferp to the last entry we have inserted, 3177 * so that we skip those already split transfers 3178 */ 3179 *xferp = &xfers[count - 1]; 3180 3181 /* increment statistics counters */ 3182 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3183 transfers_split_maxsize); 3184 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3185 transfers_split_maxsize); 3186 3187 return 0; 3188 } 3189 3190 /** 3191 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 3192 * when an individual transfer exceeds a 3193 * certain size 3194 * @ctlr: the @spi_controller for this transfer 3195 * @msg: the @spi_message to transform 3196 * @maxsize: the maximum when to apply this 3197 * @gfp: GFP allocation flags 3198 * 3199 * Return: status of transformation 3200 */ 3201 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3202 struct spi_message *msg, 3203 size_t maxsize, 3204 gfp_t gfp) 3205 { 3206 struct spi_transfer *xfer; 3207 int ret; 3208 3209 /* iterate over the transfer_list, 3210 * but note that xfer is advanced to the last transfer inserted 3211 * to avoid checking sizes again unnecessarily (also xfer does 3212 * potentiall belong to a different list by the time the 3213 * replacement has happened 3214 */ 3215 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3216 if (xfer->len > maxsize) { 3217 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3218 maxsize, gfp); 3219 if (ret) 3220 return ret; 3221 } 3222 } 3223 3224 return 0; 3225 } 3226 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3227 3228 /*-------------------------------------------------------------------------*/ 3229 3230 /* Core methods for SPI controller protocol drivers. Some of the 3231 * other core methods are currently defined as inline functions. 3232 */ 3233 3234 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3235 u8 bits_per_word) 3236 { 3237 if (ctlr->bits_per_word_mask) { 3238 /* Only 32 bits fit in the mask */ 3239 if (bits_per_word > 32) 3240 return -EINVAL; 3241 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3242 return -EINVAL; 3243 } 3244 3245 return 0; 3246 } 3247 3248 /** 3249 * spi_setup - setup SPI mode and clock rate 3250 * @spi: the device whose settings are being modified 3251 * Context: can sleep, and no requests are queued to the device 3252 * 3253 * SPI protocol drivers may need to update the transfer mode if the 3254 * device doesn't work with its default. They may likewise need 3255 * to update clock rates or word sizes from initial values. This function 3256 * changes those settings, and must be called from a context that can sleep. 3257 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3258 * effect the next time the device is selected and data is transferred to 3259 * or from it. When this function returns, the spi device is deselected. 3260 * 3261 * Note that this call will fail if the protocol driver specifies an option 3262 * that the underlying controller or its driver does not support. For 3263 * example, not all hardware supports wire transfers using nine bit words, 3264 * LSB-first wire encoding, or active-high chipselects. 3265 * 3266 * Return: zero on success, else a negative error code. 3267 */ 3268 int spi_setup(struct spi_device *spi) 3269 { 3270 unsigned bad_bits, ugly_bits; 3271 int status; 3272 3273 /* check mode to prevent that DUAL and QUAD set at the same time 3274 */ 3275 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3276 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3277 dev_err(&spi->dev, 3278 "setup: can not select dual and quad at the same time\n"); 3279 return -EINVAL; 3280 } 3281 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3282 */ 3283 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3284 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3285 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3286 return -EINVAL; 3287 /* help drivers fail *cleanly* when they need options 3288 * that aren't supported with their current controller 3289 * SPI_CS_WORD has a fallback software implementation, 3290 * so it is ignored here. 3291 */ 3292 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3293 /* nothing prevents from working with active-high CS in case if it 3294 * is driven by GPIO. 3295 */ 3296 if (gpio_is_valid(spi->cs_gpio)) 3297 bad_bits &= ~SPI_CS_HIGH; 3298 ugly_bits = bad_bits & 3299 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3300 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3301 if (ugly_bits) { 3302 dev_warn(&spi->dev, 3303 "setup: ignoring unsupported mode bits %x\n", 3304 ugly_bits); 3305 spi->mode &= ~ugly_bits; 3306 bad_bits &= ~ugly_bits; 3307 } 3308 if (bad_bits) { 3309 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3310 bad_bits); 3311 return -EINVAL; 3312 } 3313 3314 if (!spi->bits_per_word) 3315 spi->bits_per_word = 8; 3316 3317 status = __spi_validate_bits_per_word(spi->controller, 3318 spi->bits_per_word); 3319 if (status) 3320 return status; 3321 3322 if (!spi->max_speed_hz) 3323 spi->max_speed_hz = spi->controller->max_speed_hz; 3324 3325 if (spi->controller->setup) 3326 status = spi->controller->setup(spi); 3327 3328 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3329 status = pm_runtime_get_sync(spi->controller->dev.parent); 3330 if (status < 0) { 3331 pm_runtime_put_noidle(spi->controller->dev.parent); 3332 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3333 status); 3334 return status; 3335 } 3336 3337 /* 3338 * We do not want to return positive value from pm_runtime_get, 3339 * there are many instances of devices calling spi_setup() and 3340 * checking for a non-zero return value instead of a negative 3341 * return value. 3342 */ 3343 status = 0; 3344 3345 spi_set_cs(spi, false); 3346 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3347 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3348 } else { 3349 spi_set_cs(spi, false); 3350 } 3351 3352 if (spi->rt && !spi->controller->rt) { 3353 spi->controller->rt = true; 3354 spi_set_thread_rt(spi->controller); 3355 } 3356 3357 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3358 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3359 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3360 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3361 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3362 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3363 spi->bits_per_word, spi->max_speed_hz, 3364 status); 3365 3366 return status; 3367 } 3368 EXPORT_SYMBOL_GPL(spi_setup); 3369 3370 /** 3371 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3372 * @spi: the device that requires specific CS timing configuration 3373 * @setup: CS setup time specified via @spi_delay 3374 * @hold: CS hold time specified via @spi_delay 3375 * @inactive: CS inactive delay between transfers specified via @spi_delay 3376 * 3377 * Return: zero on success, else a negative error code. 3378 */ 3379 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3380 struct spi_delay *hold, struct spi_delay *inactive) 3381 { 3382 size_t len; 3383 3384 if (spi->controller->set_cs_timing) 3385 return spi->controller->set_cs_timing(spi, setup, hold, 3386 inactive); 3387 3388 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3389 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3390 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3391 dev_err(&spi->dev, 3392 "Clock-cycle delays for CS not supported in SW mode\n"); 3393 return -ENOTSUPP; 3394 } 3395 3396 len = sizeof(struct spi_delay); 3397 3398 /* copy delays to controller */ 3399 if (setup) 3400 memcpy(&spi->controller->cs_setup, setup, len); 3401 else 3402 memset(&spi->controller->cs_setup, 0, len); 3403 3404 if (hold) 3405 memcpy(&spi->controller->cs_hold, hold, len); 3406 else 3407 memset(&spi->controller->cs_hold, 0, len); 3408 3409 if (inactive) 3410 memcpy(&spi->controller->cs_inactive, inactive, len); 3411 else 3412 memset(&spi->controller->cs_inactive, 0, len); 3413 3414 return 0; 3415 } 3416 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3417 3418 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3419 struct spi_device *spi) 3420 { 3421 int delay1, delay2; 3422 3423 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3424 if (delay1 < 0) 3425 return delay1; 3426 3427 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3428 if (delay2 < 0) 3429 return delay2; 3430 3431 if (delay1 < delay2) 3432 memcpy(&xfer->word_delay, &spi->word_delay, 3433 sizeof(xfer->word_delay)); 3434 3435 return 0; 3436 } 3437 3438 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3439 { 3440 struct spi_controller *ctlr = spi->controller; 3441 struct spi_transfer *xfer; 3442 int w_size; 3443 3444 if (list_empty(&message->transfers)) 3445 return -EINVAL; 3446 3447 /* If an SPI controller does not support toggling the CS line on each 3448 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3449 * for the CS line, we can emulate the CS-per-word hardware function by 3450 * splitting transfers into one-word transfers and ensuring that 3451 * cs_change is set for each transfer. 3452 */ 3453 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3454 spi->cs_gpiod || 3455 gpio_is_valid(spi->cs_gpio))) { 3456 size_t maxsize; 3457 int ret; 3458 3459 maxsize = (spi->bits_per_word + 7) / 8; 3460 3461 /* spi_split_transfers_maxsize() requires message->spi */ 3462 message->spi = spi; 3463 3464 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3465 GFP_KERNEL); 3466 if (ret) 3467 return ret; 3468 3469 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3470 /* don't change cs_change on the last entry in the list */ 3471 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3472 break; 3473 xfer->cs_change = 1; 3474 } 3475 } 3476 3477 /* Half-duplex links include original MicroWire, and ones with 3478 * only one data pin like SPI_3WIRE (switches direction) or where 3479 * either MOSI or MISO is missing. They can also be caused by 3480 * software limitations. 3481 */ 3482 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3483 (spi->mode & SPI_3WIRE)) { 3484 unsigned flags = ctlr->flags; 3485 3486 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3487 if (xfer->rx_buf && xfer->tx_buf) 3488 return -EINVAL; 3489 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3490 return -EINVAL; 3491 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3492 return -EINVAL; 3493 } 3494 } 3495 3496 /** 3497 * Set transfer bits_per_word and max speed as spi device default if 3498 * it is not set for this transfer. 3499 * Set transfer tx_nbits and rx_nbits as single transfer default 3500 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3501 * Ensure transfer word_delay is at least as long as that required by 3502 * device itself. 3503 */ 3504 message->frame_length = 0; 3505 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3506 xfer->effective_speed_hz = 0; 3507 message->frame_length += xfer->len; 3508 if (!xfer->bits_per_word) 3509 xfer->bits_per_word = spi->bits_per_word; 3510 3511 if (!xfer->speed_hz) 3512 xfer->speed_hz = spi->max_speed_hz; 3513 3514 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3515 xfer->speed_hz = ctlr->max_speed_hz; 3516 3517 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3518 return -EINVAL; 3519 3520 /* 3521 * SPI transfer length should be multiple of SPI word size 3522 * where SPI word size should be power-of-two multiple 3523 */ 3524 if (xfer->bits_per_word <= 8) 3525 w_size = 1; 3526 else if (xfer->bits_per_word <= 16) 3527 w_size = 2; 3528 else 3529 w_size = 4; 3530 3531 /* No partial transfers accepted */ 3532 if (xfer->len % w_size) 3533 return -EINVAL; 3534 3535 if (xfer->speed_hz && ctlr->min_speed_hz && 3536 xfer->speed_hz < ctlr->min_speed_hz) 3537 return -EINVAL; 3538 3539 if (xfer->tx_buf && !xfer->tx_nbits) 3540 xfer->tx_nbits = SPI_NBITS_SINGLE; 3541 if (xfer->rx_buf && !xfer->rx_nbits) 3542 xfer->rx_nbits = SPI_NBITS_SINGLE; 3543 /* check transfer tx/rx_nbits: 3544 * 1. check the value matches one of single, dual and quad 3545 * 2. check tx/rx_nbits match the mode in spi_device 3546 */ 3547 if (xfer->tx_buf) { 3548 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3549 xfer->tx_nbits != SPI_NBITS_DUAL && 3550 xfer->tx_nbits != SPI_NBITS_QUAD) 3551 return -EINVAL; 3552 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3553 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3554 return -EINVAL; 3555 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3556 !(spi->mode & SPI_TX_QUAD)) 3557 return -EINVAL; 3558 } 3559 /* check transfer rx_nbits */ 3560 if (xfer->rx_buf) { 3561 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3562 xfer->rx_nbits != SPI_NBITS_DUAL && 3563 xfer->rx_nbits != SPI_NBITS_QUAD) 3564 return -EINVAL; 3565 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3566 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3567 return -EINVAL; 3568 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3569 !(spi->mode & SPI_RX_QUAD)) 3570 return -EINVAL; 3571 } 3572 3573 if (_spi_xfer_word_delay_update(xfer, spi)) 3574 return -EINVAL; 3575 } 3576 3577 message->status = -EINPROGRESS; 3578 3579 return 0; 3580 } 3581 3582 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3583 { 3584 struct spi_controller *ctlr = spi->controller; 3585 struct spi_transfer *xfer; 3586 3587 /* 3588 * Some controllers do not support doing regular SPI transfers. Return 3589 * ENOTSUPP when this is the case. 3590 */ 3591 if (!ctlr->transfer) 3592 return -ENOTSUPP; 3593 3594 message->spi = spi; 3595 3596 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3597 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3598 3599 trace_spi_message_submit(message); 3600 3601 if (!ctlr->ptp_sts_supported) { 3602 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3603 xfer->ptp_sts_word_pre = 0; 3604 ptp_read_system_prets(xfer->ptp_sts); 3605 } 3606 } 3607 3608 return ctlr->transfer(spi, message); 3609 } 3610 3611 /** 3612 * spi_async - asynchronous SPI transfer 3613 * @spi: device with which data will be exchanged 3614 * @message: describes the data transfers, including completion callback 3615 * Context: any (irqs may be blocked, etc) 3616 * 3617 * This call may be used in_irq and other contexts which can't sleep, 3618 * as well as from task contexts which can sleep. 3619 * 3620 * The completion callback is invoked in a context which can't sleep. 3621 * Before that invocation, the value of message->status is undefined. 3622 * When the callback is issued, message->status holds either zero (to 3623 * indicate complete success) or a negative error code. After that 3624 * callback returns, the driver which issued the transfer request may 3625 * deallocate the associated memory; it's no longer in use by any SPI 3626 * core or controller driver code. 3627 * 3628 * Note that although all messages to a spi_device are handled in 3629 * FIFO order, messages may go to different devices in other orders. 3630 * Some device might be higher priority, or have various "hard" access 3631 * time requirements, for example. 3632 * 3633 * On detection of any fault during the transfer, processing of 3634 * the entire message is aborted, and the device is deselected. 3635 * Until returning from the associated message completion callback, 3636 * no other spi_message queued to that device will be processed. 3637 * (This rule applies equally to all the synchronous transfer calls, 3638 * which are wrappers around this core asynchronous primitive.) 3639 * 3640 * Return: zero on success, else a negative error code. 3641 */ 3642 int spi_async(struct spi_device *spi, struct spi_message *message) 3643 { 3644 struct spi_controller *ctlr = spi->controller; 3645 int ret; 3646 unsigned long flags; 3647 3648 ret = __spi_validate(spi, message); 3649 if (ret != 0) 3650 return ret; 3651 3652 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3653 3654 if (ctlr->bus_lock_flag) 3655 ret = -EBUSY; 3656 else 3657 ret = __spi_async(spi, message); 3658 3659 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3660 3661 return ret; 3662 } 3663 EXPORT_SYMBOL_GPL(spi_async); 3664 3665 /** 3666 * spi_async_locked - version of spi_async with exclusive bus usage 3667 * @spi: device with which data will be exchanged 3668 * @message: describes the data transfers, including completion callback 3669 * Context: any (irqs may be blocked, etc) 3670 * 3671 * This call may be used in_irq and other contexts which can't sleep, 3672 * as well as from task contexts which can sleep. 3673 * 3674 * The completion callback is invoked in a context which can't sleep. 3675 * Before that invocation, the value of message->status is undefined. 3676 * When the callback is issued, message->status holds either zero (to 3677 * indicate complete success) or a negative error code. After that 3678 * callback returns, the driver which issued the transfer request may 3679 * deallocate the associated memory; it's no longer in use by any SPI 3680 * core or controller driver code. 3681 * 3682 * Note that although all messages to a spi_device are handled in 3683 * FIFO order, messages may go to different devices in other orders. 3684 * Some device might be higher priority, or have various "hard" access 3685 * time requirements, for example. 3686 * 3687 * On detection of any fault during the transfer, processing of 3688 * the entire message is aborted, and the device is deselected. 3689 * Until returning from the associated message completion callback, 3690 * no other spi_message queued to that device will be processed. 3691 * (This rule applies equally to all the synchronous transfer calls, 3692 * which are wrappers around this core asynchronous primitive.) 3693 * 3694 * Return: zero on success, else a negative error code. 3695 */ 3696 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3697 { 3698 struct spi_controller *ctlr = spi->controller; 3699 int ret; 3700 unsigned long flags; 3701 3702 ret = __spi_validate(spi, message); 3703 if (ret != 0) 3704 return ret; 3705 3706 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3707 3708 ret = __spi_async(spi, message); 3709 3710 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3711 3712 return ret; 3713 3714 } 3715 EXPORT_SYMBOL_GPL(spi_async_locked); 3716 3717 /*-------------------------------------------------------------------------*/ 3718 3719 /* Utility methods for SPI protocol drivers, layered on 3720 * top of the core. Some other utility methods are defined as 3721 * inline functions. 3722 */ 3723 3724 static void spi_complete(void *arg) 3725 { 3726 complete(arg); 3727 } 3728 3729 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3730 { 3731 DECLARE_COMPLETION_ONSTACK(done); 3732 int status; 3733 struct spi_controller *ctlr = spi->controller; 3734 unsigned long flags; 3735 3736 status = __spi_validate(spi, message); 3737 if (status != 0) 3738 return status; 3739 3740 message->complete = spi_complete; 3741 message->context = &done; 3742 message->spi = spi; 3743 3744 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3745 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3746 3747 /* If we're not using the legacy transfer method then we will 3748 * try to transfer in the calling context so special case. 3749 * This code would be less tricky if we could remove the 3750 * support for driver implemented message queues. 3751 */ 3752 if (ctlr->transfer == spi_queued_transfer) { 3753 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3754 3755 trace_spi_message_submit(message); 3756 3757 status = __spi_queued_transfer(spi, message, false); 3758 3759 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3760 } else { 3761 status = spi_async_locked(spi, message); 3762 } 3763 3764 if (status == 0) { 3765 /* Push out the messages in the calling context if we 3766 * can. 3767 */ 3768 if (ctlr->transfer == spi_queued_transfer) { 3769 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3770 spi_sync_immediate); 3771 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3772 spi_sync_immediate); 3773 __spi_pump_messages(ctlr, false); 3774 } 3775 3776 wait_for_completion(&done); 3777 status = message->status; 3778 } 3779 message->context = NULL; 3780 return status; 3781 } 3782 3783 /** 3784 * spi_sync - blocking/synchronous SPI data transfers 3785 * @spi: device with which data will be exchanged 3786 * @message: describes the data transfers 3787 * Context: can sleep 3788 * 3789 * This call may only be used from a context that may sleep. The sleep 3790 * is non-interruptible, and has no timeout. Low-overhead controller 3791 * drivers may DMA directly into and out of the message buffers. 3792 * 3793 * Note that the SPI device's chip select is active during the message, 3794 * and then is normally disabled between messages. Drivers for some 3795 * frequently-used devices may want to minimize costs of selecting a chip, 3796 * by leaving it selected in anticipation that the next message will go 3797 * to the same chip. (That may increase power usage.) 3798 * 3799 * Also, the caller is guaranteeing that the memory associated with the 3800 * message will not be freed before this call returns. 3801 * 3802 * Return: zero on success, else a negative error code. 3803 */ 3804 int spi_sync(struct spi_device *spi, struct spi_message *message) 3805 { 3806 int ret; 3807 3808 mutex_lock(&spi->controller->bus_lock_mutex); 3809 ret = __spi_sync(spi, message); 3810 mutex_unlock(&spi->controller->bus_lock_mutex); 3811 3812 return ret; 3813 } 3814 EXPORT_SYMBOL_GPL(spi_sync); 3815 3816 /** 3817 * spi_sync_locked - version of spi_sync with exclusive bus usage 3818 * @spi: device with which data will be exchanged 3819 * @message: describes the data transfers 3820 * Context: can sleep 3821 * 3822 * This call may only be used from a context that may sleep. The sleep 3823 * is non-interruptible, and has no timeout. Low-overhead controller 3824 * drivers may DMA directly into and out of the message buffers. 3825 * 3826 * This call should be used by drivers that require exclusive access to the 3827 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3828 * be released by a spi_bus_unlock call when the exclusive access is over. 3829 * 3830 * Return: zero on success, else a negative error code. 3831 */ 3832 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3833 { 3834 return __spi_sync(spi, message); 3835 } 3836 EXPORT_SYMBOL_GPL(spi_sync_locked); 3837 3838 /** 3839 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3840 * @ctlr: SPI bus master that should be locked for exclusive bus access 3841 * Context: can sleep 3842 * 3843 * This call may only be used from a context that may sleep. The sleep 3844 * is non-interruptible, and has no timeout. 3845 * 3846 * This call should be used by drivers that require exclusive access to the 3847 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3848 * exclusive access is over. Data transfer must be done by spi_sync_locked 3849 * and spi_async_locked calls when the SPI bus lock is held. 3850 * 3851 * Return: always zero. 3852 */ 3853 int spi_bus_lock(struct spi_controller *ctlr) 3854 { 3855 unsigned long flags; 3856 3857 mutex_lock(&ctlr->bus_lock_mutex); 3858 3859 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3860 ctlr->bus_lock_flag = 1; 3861 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3862 3863 /* mutex remains locked until spi_bus_unlock is called */ 3864 3865 return 0; 3866 } 3867 EXPORT_SYMBOL_GPL(spi_bus_lock); 3868 3869 /** 3870 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3871 * @ctlr: SPI bus master that was locked for exclusive bus access 3872 * Context: can sleep 3873 * 3874 * This call may only be used from a context that may sleep. The sleep 3875 * is non-interruptible, and has no timeout. 3876 * 3877 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3878 * call. 3879 * 3880 * Return: always zero. 3881 */ 3882 int spi_bus_unlock(struct spi_controller *ctlr) 3883 { 3884 ctlr->bus_lock_flag = 0; 3885 3886 mutex_unlock(&ctlr->bus_lock_mutex); 3887 3888 return 0; 3889 } 3890 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3891 3892 /* portable code must never pass more than 32 bytes */ 3893 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3894 3895 static u8 *buf; 3896 3897 /** 3898 * spi_write_then_read - SPI synchronous write followed by read 3899 * @spi: device with which data will be exchanged 3900 * @txbuf: data to be written (need not be dma-safe) 3901 * @n_tx: size of txbuf, in bytes 3902 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3903 * @n_rx: size of rxbuf, in bytes 3904 * Context: can sleep 3905 * 3906 * This performs a half duplex MicroWire style transaction with the 3907 * device, sending txbuf and then reading rxbuf. The return value 3908 * is zero for success, else a negative errno status code. 3909 * This call may only be used from a context that may sleep. 3910 * 3911 * Parameters to this routine are always copied using a small buffer. 3912 * Performance-sensitive or bulk transfer code should instead use 3913 * spi_{async,sync}() calls with dma-safe buffers. 3914 * 3915 * Return: zero on success, else a negative error code. 3916 */ 3917 int spi_write_then_read(struct spi_device *spi, 3918 const void *txbuf, unsigned n_tx, 3919 void *rxbuf, unsigned n_rx) 3920 { 3921 static DEFINE_MUTEX(lock); 3922 3923 int status; 3924 struct spi_message message; 3925 struct spi_transfer x[2]; 3926 u8 *local_buf; 3927 3928 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3929 * copying here, (as a pure convenience thing), but we can 3930 * keep heap costs out of the hot path unless someone else is 3931 * using the pre-allocated buffer or the transfer is too large. 3932 */ 3933 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3934 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3935 GFP_KERNEL | GFP_DMA); 3936 if (!local_buf) 3937 return -ENOMEM; 3938 } else { 3939 local_buf = buf; 3940 } 3941 3942 spi_message_init(&message); 3943 memset(x, 0, sizeof(x)); 3944 if (n_tx) { 3945 x[0].len = n_tx; 3946 spi_message_add_tail(&x[0], &message); 3947 } 3948 if (n_rx) { 3949 x[1].len = n_rx; 3950 spi_message_add_tail(&x[1], &message); 3951 } 3952 3953 memcpy(local_buf, txbuf, n_tx); 3954 x[0].tx_buf = local_buf; 3955 x[1].rx_buf = local_buf + n_tx; 3956 3957 /* do the i/o */ 3958 status = spi_sync(spi, &message); 3959 if (status == 0) 3960 memcpy(rxbuf, x[1].rx_buf, n_rx); 3961 3962 if (x[0].tx_buf == buf) 3963 mutex_unlock(&lock); 3964 else 3965 kfree(local_buf); 3966 3967 return status; 3968 } 3969 EXPORT_SYMBOL_GPL(spi_write_then_read); 3970 3971 /*-------------------------------------------------------------------------*/ 3972 3973 #if IS_ENABLED(CONFIG_OF) 3974 /* must call put_device() when done with returned spi_device device */ 3975 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3976 { 3977 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 3978 3979 return dev ? to_spi_device(dev) : NULL; 3980 } 3981 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3982 #endif /* IS_ENABLED(CONFIG_OF) */ 3983 3984 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3985 /* the spi controllers are not using spi_bus, so we find it with another way */ 3986 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3987 { 3988 struct device *dev; 3989 3990 dev = class_find_device_by_of_node(&spi_master_class, node); 3991 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3992 dev = class_find_device_by_of_node(&spi_slave_class, node); 3993 if (!dev) 3994 return NULL; 3995 3996 /* reference got in class_find_device */ 3997 return container_of(dev, struct spi_controller, dev); 3998 } 3999 4000 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4001 void *arg) 4002 { 4003 struct of_reconfig_data *rd = arg; 4004 struct spi_controller *ctlr; 4005 struct spi_device *spi; 4006 4007 switch (of_reconfig_get_state_change(action, arg)) { 4008 case OF_RECONFIG_CHANGE_ADD: 4009 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4010 if (ctlr == NULL) 4011 return NOTIFY_OK; /* not for us */ 4012 4013 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4014 put_device(&ctlr->dev); 4015 return NOTIFY_OK; 4016 } 4017 4018 spi = of_register_spi_device(ctlr, rd->dn); 4019 put_device(&ctlr->dev); 4020 4021 if (IS_ERR(spi)) { 4022 pr_err("%s: failed to create for '%pOF'\n", 4023 __func__, rd->dn); 4024 of_node_clear_flag(rd->dn, OF_POPULATED); 4025 return notifier_from_errno(PTR_ERR(spi)); 4026 } 4027 break; 4028 4029 case OF_RECONFIG_CHANGE_REMOVE: 4030 /* already depopulated? */ 4031 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4032 return NOTIFY_OK; 4033 4034 /* find our device by node */ 4035 spi = of_find_spi_device_by_node(rd->dn); 4036 if (spi == NULL) 4037 return NOTIFY_OK; /* no? not meant for us */ 4038 4039 /* unregister takes one ref away */ 4040 spi_unregister_device(spi); 4041 4042 /* and put the reference of the find */ 4043 put_device(&spi->dev); 4044 break; 4045 } 4046 4047 return NOTIFY_OK; 4048 } 4049 4050 static struct notifier_block spi_of_notifier = { 4051 .notifier_call = of_spi_notify, 4052 }; 4053 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4054 extern struct notifier_block spi_of_notifier; 4055 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4056 4057 #if IS_ENABLED(CONFIG_ACPI) 4058 static int spi_acpi_controller_match(struct device *dev, const void *data) 4059 { 4060 return ACPI_COMPANION(dev->parent) == data; 4061 } 4062 4063 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4064 { 4065 struct device *dev; 4066 4067 dev = class_find_device(&spi_master_class, NULL, adev, 4068 spi_acpi_controller_match); 4069 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4070 dev = class_find_device(&spi_slave_class, NULL, adev, 4071 spi_acpi_controller_match); 4072 if (!dev) 4073 return NULL; 4074 4075 return container_of(dev, struct spi_controller, dev); 4076 } 4077 4078 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4079 { 4080 struct device *dev; 4081 4082 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4083 return to_spi_device(dev); 4084 } 4085 4086 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4087 void *arg) 4088 { 4089 struct acpi_device *adev = arg; 4090 struct spi_controller *ctlr; 4091 struct spi_device *spi; 4092 4093 switch (value) { 4094 case ACPI_RECONFIG_DEVICE_ADD: 4095 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4096 if (!ctlr) 4097 break; 4098 4099 acpi_register_spi_device(ctlr, adev); 4100 put_device(&ctlr->dev); 4101 break; 4102 case ACPI_RECONFIG_DEVICE_REMOVE: 4103 if (!acpi_device_enumerated(adev)) 4104 break; 4105 4106 spi = acpi_spi_find_device_by_adev(adev); 4107 if (!spi) 4108 break; 4109 4110 spi_unregister_device(spi); 4111 put_device(&spi->dev); 4112 break; 4113 } 4114 4115 return NOTIFY_OK; 4116 } 4117 4118 static struct notifier_block spi_acpi_notifier = { 4119 .notifier_call = acpi_spi_notify, 4120 }; 4121 #else 4122 extern struct notifier_block spi_acpi_notifier; 4123 #endif 4124 4125 static int __init spi_init(void) 4126 { 4127 int status; 4128 4129 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4130 if (!buf) { 4131 status = -ENOMEM; 4132 goto err0; 4133 } 4134 4135 status = bus_register(&spi_bus_type); 4136 if (status < 0) 4137 goto err1; 4138 4139 status = class_register(&spi_master_class); 4140 if (status < 0) 4141 goto err2; 4142 4143 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4144 status = class_register(&spi_slave_class); 4145 if (status < 0) 4146 goto err3; 4147 } 4148 4149 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4150 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4151 if (IS_ENABLED(CONFIG_ACPI)) 4152 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4153 4154 return 0; 4155 4156 err3: 4157 class_unregister(&spi_master_class); 4158 err2: 4159 bus_unregister(&spi_bus_type); 4160 err1: 4161 kfree(buf); 4162 buf = NULL; 4163 err0: 4164 return status; 4165 } 4166 4167 /* board_info is normally registered in arch_initcall(), 4168 * but even essential drivers wait till later 4169 * 4170 * REVISIT only boardinfo really needs static linking. the rest (device and 4171 * driver registration) _could_ be dynamically linked (modular) ... costs 4172 * include needing to have boardinfo data structures be much more public. 4173 */ 4174 postcore_initcall(spi_init); 4175