xref: /openbmc/linux/drivers/spi/spi.c (revision 645f08975f49441b3e753d8dc5b740cbcb226594)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Empty string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del operation for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /*
479  * Prevents addition of devices with same chip select and
480  * addition of devices below an unregistering controller.
481  */
482 static DEFINE_MUTEX(spi_add_lock);
483 
484 /**
485  * spi_alloc_device - Allocate a new SPI device
486  * @ctlr: Controller to which device is connected
487  * Context: can sleep
488  *
489  * Allows a driver to allocate and initialize a spi_device without
490  * registering it immediately.  This allows a driver to directly
491  * fill the spi_device with device parameters before calling
492  * spi_add_device() on it.
493  *
494  * Caller is responsible to call spi_add_device() on the returned
495  * spi_device structure to add it to the SPI controller.  If the caller
496  * needs to discard the spi_device without adding it, then it should
497  * call spi_dev_put() on it.
498  *
499  * Return: a pointer to the new device, or NULL.
500  */
501 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
502 {
503 	struct spi_device	*spi;
504 
505 	if (!spi_controller_get(ctlr))
506 		return NULL;
507 
508 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
509 	if (!spi) {
510 		spi_controller_put(ctlr);
511 		return NULL;
512 	}
513 
514 	spi->master = spi->controller = ctlr;
515 	spi->dev.parent = &ctlr->dev;
516 	spi->dev.bus = &spi_bus_type;
517 	spi->dev.release = spidev_release;
518 	spi->cs_gpio = -ENOENT;
519 	spi->mode = ctlr->buswidth_override_bits;
520 
521 	spin_lock_init(&spi->statistics.lock);
522 
523 	device_initialize(&spi->dev);
524 	return spi;
525 }
526 EXPORT_SYMBOL_GPL(spi_alloc_device);
527 
528 static void spi_dev_set_name(struct spi_device *spi)
529 {
530 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
531 
532 	if (adev) {
533 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
534 		return;
535 	}
536 
537 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
538 		     spi->chip_select);
539 }
540 
541 static int spi_dev_check(struct device *dev, void *data)
542 {
543 	struct spi_device *spi = to_spi_device(dev);
544 	struct spi_device *new_spi = data;
545 
546 	if (spi->controller == new_spi->controller &&
547 	    spi->chip_select == new_spi->chip_select)
548 		return -EBUSY;
549 	return 0;
550 }
551 
552 /**
553  * spi_add_device - Add spi_device allocated with spi_alloc_device
554  * @spi: spi_device to register
555  *
556  * Companion function to spi_alloc_device.  Devices allocated with
557  * spi_alloc_device can be added onto the spi bus with this function.
558  *
559  * Return: 0 on success; negative errno on failure
560  */
561 int spi_add_device(struct spi_device *spi)
562 {
563 	struct spi_controller *ctlr = spi->controller;
564 	struct device *dev = ctlr->dev.parent;
565 	int status;
566 
567 	/* Chipselects are numbered 0..max; validate. */
568 	if (spi->chip_select >= ctlr->num_chipselect) {
569 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
570 			ctlr->num_chipselect);
571 		return -EINVAL;
572 	}
573 
574 	/* Set the bus ID string */
575 	spi_dev_set_name(spi);
576 
577 	/* We need to make sure there's no other device with this
578 	 * chipselect **BEFORE** we call setup(), else we'll trash
579 	 * its configuration.  Lock against concurrent add() calls.
580 	 */
581 	mutex_lock(&spi_add_lock);
582 
583 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
584 	if (status) {
585 		dev_err(dev, "chipselect %d already in use\n",
586 				spi->chip_select);
587 		goto done;
588 	}
589 
590 	/* Controller may unregister concurrently */
591 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
592 	    !device_is_registered(&ctlr->dev)) {
593 		status = -ENODEV;
594 		goto done;
595 	}
596 
597 	/* Descriptors take precedence */
598 	if (ctlr->cs_gpiods)
599 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
600 	else if (ctlr->cs_gpios)
601 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
602 
603 	/* Drivers may modify this initial i/o setup, but will
604 	 * normally rely on the device being setup.  Devices
605 	 * using SPI_CS_HIGH can't coexist well otherwise...
606 	 */
607 	status = spi_setup(spi);
608 	if (status < 0) {
609 		dev_err(dev, "can't setup %s, status %d\n",
610 				dev_name(&spi->dev), status);
611 		goto done;
612 	}
613 
614 	/* Device may be bound to an active driver when this returns */
615 	status = device_add(&spi->dev);
616 	if (status < 0)
617 		dev_err(dev, "can't add %s, status %d\n",
618 				dev_name(&spi->dev), status);
619 	else
620 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
621 
622 done:
623 	mutex_unlock(&spi_add_lock);
624 	return status;
625 }
626 EXPORT_SYMBOL_GPL(spi_add_device);
627 
628 /**
629  * spi_new_device - instantiate one new SPI device
630  * @ctlr: Controller to which device is connected
631  * @chip: Describes the SPI device
632  * Context: can sleep
633  *
634  * On typical mainboards, this is purely internal; and it's not needed
635  * after board init creates the hard-wired devices.  Some development
636  * platforms may not be able to use spi_register_board_info though, and
637  * this is exported so that for example a USB or parport based adapter
638  * driver could add devices (which it would learn about out-of-band).
639  *
640  * Return: the new device, or NULL.
641  */
642 struct spi_device *spi_new_device(struct spi_controller *ctlr,
643 				  struct spi_board_info *chip)
644 {
645 	struct spi_device	*proxy;
646 	int			status;
647 
648 	/* NOTE:  caller did any chip->bus_num checks necessary.
649 	 *
650 	 * Also, unless we change the return value convention to use
651 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
652 	 * suggests syslogged diagnostics are best here (ugh).
653 	 */
654 
655 	proxy = spi_alloc_device(ctlr);
656 	if (!proxy)
657 		return NULL;
658 
659 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
660 
661 	proxy->chip_select = chip->chip_select;
662 	proxy->max_speed_hz = chip->max_speed_hz;
663 	proxy->mode = chip->mode;
664 	proxy->irq = chip->irq;
665 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
666 	proxy->dev.platform_data = (void *) chip->platform_data;
667 	proxy->controller_data = chip->controller_data;
668 	proxy->controller_state = NULL;
669 
670 	if (chip->properties) {
671 		status = device_add_properties(&proxy->dev, chip->properties);
672 		if (status) {
673 			dev_err(&ctlr->dev,
674 				"failed to add properties to '%s': %d\n",
675 				chip->modalias, status);
676 			goto err_dev_put;
677 		}
678 	}
679 
680 	status = spi_add_device(proxy);
681 	if (status < 0)
682 		goto err_remove_props;
683 
684 	return proxy;
685 
686 err_remove_props:
687 	if (chip->properties)
688 		device_remove_properties(&proxy->dev);
689 err_dev_put:
690 	spi_dev_put(proxy);
691 	return NULL;
692 }
693 EXPORT_SYMBOL_GPL(spi_new_device);
694 
695 /**
696  * spi_unregister_device - unregister a single SPI device
697  * @spi: spi_device to unregister
698  *
699  * Start making the passed SPI device vanish. Normally this would be handled
700  * by spi_unregister_controller().
701  */
702 void spi_unregister_device(struct spi_device *spi)
703 {
704 	if (!spi)
705 		return;
706 
707 	if (spi->dev.of_node) {
708 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
709 		of_node_put(spi->dev.of_node);
710 	}
711 	if (ACPI_COMPANION(&spi->dev))
712 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
713 	device_unregister(&spi->dev);
714 }
715 EXPORT_SYMBOL_GPL(spi_unregister_device);
716 
717 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
718 					      struct spi_board_info *bi)
719 {
720 	struct spi_device *dev;
721 
722 	if (ctlr->bus_num != bi->bus_num)
723 		return;
724 
725 	dev = spi_new_device(ctlr, bi);
726 	if (!dev)
727 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
728 			bi->modalias);
729 }
730 
731 /**
732  * spi_register_board_info - register SPI devices for a given board
733  * @info: array of chip descriptors
734  * @n: how many descriptors are provided
735  * Context: can sleep
736  *
737  * Board-specific early init code calls this (probably during arch_initcall)
738  * with segments of the SPI device table.  Any device nodes are created later,
739  * after the relevant parent SPI controller (bus_num) is defined.  We keep
740  * this table of devices forever, so that reloading a controller driver will
741  * not make Linux forget about these hard-wired devices.
742  *
743  * Other code can also call this, e.g. a particular add-on board might provide
744  * SPI devices through its expansion connector, so code initializing that board
745  * would naturally declare its SPI devices.
746  *
747  * The board info passed can safely be __initdata ... but be careful of
748  * any embedded pointers (platform_data, etc), they're copied as-is.
749  * Device properties are deep-copied though.
750  *
751  * Return: zero on success, else a negative error code.
752  */
753 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
754 {
755 	struct boardinfo *bi;
756 	int i;
757 
758 	if (!n)
759 		return 0;
760 
761 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
762 	if (!bi)
763 		return -ENOMEM;
764 
765 	for (i = 0; i < n; i++, bi++, info++) {
766 		struct spi_controller *ctlr;
767 
768 		memcpy(&bi->board_info, info, sizeof(*info));
769 		if (info->properties) {
770 			bi->board_info.properties =
771 					property_entries_dup(info->properties);
772 			if (IS_ERR(bi->board_info.properties))
773 				return PTR_ERR(bi->board_info.properties);
774 		}
775 
776 		mutex_lock(&board_lock);
777 		list_add_tail(&bi->list, &board_list);
778 		list_for_each_entry(ctlr, &spi_controller_list, list)
779 			spi_match_controller_to_boardinfo(ctlr,
780 							  &bi->board_info);
781 		mutex_unlock(&board_lock);
782 	}
783 
784 	return 0;
785 }
786 
787 /*-------------------------------------------------------------------------*/
788 
789 static void spi_set_cs(struct spi_device *spi, bool enable)
790 {
791 	bool enable1 = enable;
792 
793 	/*
794 	 * Avoid calling into the driver (or doing delays) if the chip select
795 	 * isn't actually changing from the last time this was called.
796 	 */
797 	if ((spi->controller->last_cs_enable == enable) &&
798 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
799 		return;
800 
801 	spi->controller->last_cs_enable = enable;
802 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
803 
804 	if (!spi->controller->set_cs_timing) {
805 		if (enable1)
806 			spi_delay_exec(&spi->controller->cs_setup, NULL);
807 		else
808 			spi_delay_exec(&spi->controller->cs_hold, NULL);
809 	}
810 
811 	if (spi->mode & SPI_CS_HIGH)
812 		enable = !enable;
813 
814 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
815 		/*
816 		 * Honour the SPI_NO_CS flag and invert the enable line, as
817 		 * active low is default for SPI. Execution paths that handle
818 		 * polarity inversion in gpiolib (such as device tree) will
819 		 * enforce active high using the SPI_CS_HIGH resulting in a
820 		 * double inversion through the code above.
821 		 */
822 		if (!(spi->mode & SPI_NO_CS)) {
823 			if (spi->cs_gpiod)
824 				gpiod_set_value_cansleep(spi->cs_gpiod,
825 							 !enable);
826 			else
827 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
828 		}
829 		/* Some SPI masters need both GPIO CS & slave_select */
830 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
831 		    spi->controller->set_cs)
832 			spi->controller->set_cs(spi, !enable);
833 	} else if (spi->controller->set_cs) {
834 		spi->controller->set_cs(spi, !enable);
835 	}
836 
837 	if (!spi->controller->set_cs_timing) {
838 		if (!enable1)
839 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
840 	}
841 }
842 
843 #ifdef CONFIG_HAS_DMA
844 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
845 		struct sg_table *sgt, void *buf, size_t len,
846 		enum dma_data_direction dir)
847 {
848 	const bool vmalloced_buf = is_vmalloc_addr(buf);
849 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
850 #ifdef CONFIG_HIGHMEM
851 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
852 				(unsigned long)buf < (PKMAP_BASE +
853 					(LAST_PKMAP * PAGE_SIZE)));
854 #else
855 	const bool kmap_buf = false;
856 #endif
857 	int desc_len;
858 	int sgs;
859 	struct page *vm_page;
860 	struct scatterlist *sg;
861 	void *sg_buf;
862 	size_t min;
863 	int i, ret;
864 
865 	if (vmalloced_buf || kmap_buf) {
866 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
867 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
868 	} else if (virt_addr_valid(buf)) {
869 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
870 		sgs = DIV_ROUND_UP(len, desc_len);
871 	} else {
872 		return -EINVAL;
873 	}
874 
875 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
876 	if (ret != 0)
877 		return ret;
878 
879 	sg = &sgt->sgl[0];
880 	for (i = 0; i < sgs; i++) {
881 
882 		if (vmalloced_buf || kmap_buf) {
883 			/*
884 			 * Next scatterlist entry size is the minimum between
885 			 * the desc_len and the remaining buffer length that
886 			 * fits in a page.
887 			 */
888 			min = min_t(size_t, desc_len,
889 				    min_t(size_t, len,
890 					  PAGE_SIZE - offset_in_page(buf)));
891 			if (vmalloced_buf)
892 				vm_page = vmalloc_to_page(buf);
893 			else
894 				vm_page = kmap_to_page(buf);
895 			if (!vm_page) {
896 				sg_free_table(sgt);
897 				return -ENOMEM;
898 			}
899 			sg_set_page(sg, vm_page,
900 				    min, offset_in_page(buf));
901 		} else {
902 			min = min_t(size_t, len, desc_len);
903 			sg_buf = buf;
904 			sg_set_buf(sg, sg_buf, min);
905 		}
906 
907 		buf += min;
908 		len -= min;
909 		sg = sg_next(sg);
910 	}
911 
912 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
913 	if (!ret)
914 		ret = -ENOMEM;
915 	if (ret < 0) {
916 		sg_free_table(sgt);
917 		return ret;
918 	}
919 
920 	sgt->nents = ret;
921 
922 	return 0;
923 }
924 
925 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
926 		   struct sg_table *sgt, enum dma_data_direction dir)
927 {
928 	if (sgt->orig_nents) {
929 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
930 		sg_free_table(sgt);
931 	}
932 }
933 
934 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
935 {
936 	struct device *tx_dev, *rx_dev;
937 	struct spi_transfer *xfer;
938 	int ret;
939 
940 	if (!ctlr->can_dma)
941 		return 0;
942 
943 	if (ctlr->dma_tx)
944 		tx_dev = ctlr->dma_tx->device->dev;
945 	else
946 		tx_dev = ctlr->dev.parent;
947 
948 	if (ctlr->dma_rx)
949 		rx_dev = ctlr->dma_rx->device->dev;
950 	else
951 		rx_dev = ctlr->dev.parent;
952 
953 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
954 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
955 			continue;
956 
957 		if (xfer->tx_buf != NULL) {
958 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
959 					  (void *)xfer->tx_buf, xfer->len,
960 					  DMA_TO_DEVICE);
961 			if (ret != 0)
962 				return ret;
963 		}
964 
965 		if (xfer->rx_buf != NULL) {
966 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
967 					  xfer->rx_buf, xfer->len,
968 					  DMA_FROM_DEVICE);
969 			if (ret != 0) {
970 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
971 					      DMA_TO_DEVICE);
972 				return ret;
973 			}
974 		}
975 	}
976 
977 	ctlr->cur_msg_mapped = true;
978 
979 	return 0;
980 }
981 
982 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
983 {
984 	struct spi_transfer *xfer;
985 	struct device *tx_dev, *rx_dev;
986 
987 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
988 		return 0;
989 
990 	if (ctlr->dma_tx)
991 		tx_dev = ctlr->dma_tx->device->dev;
992 	else
993 		tx_dev = ctlr->dev.parent;
994 
995 	if (ctlr->dma_rx)
996 		rx_dev = ctlr->dma_rx->device->dev;
997 	else
998 		rx_dev = ctlr->dev.parent;
999 
1000 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1001 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1002 			continue;
1003 
1004 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1005 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1006 	}
1007 
1008 	ctlr->cur_msg_mapped = false;
1009 
1010 	return 0;
1011 }
1012 #else /* !CONFIG_HAS_DMA */
1013 static inline int __spi_map_msg(struct spi_controller *ctlr,
1014 				struct spi_message *msg)
1015 {
1016 	return 0;
1017 }
1018 
1019 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1020 				  struct spi_message *msg)
1021 {
1022 	return 0;
1023 }
1024 #endif /* !CONFIG_HAS_DMA */
1025 
1026 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1027 				struct spi_message *msg)
1028 {
1029 	struct spi_transfer *xfer;
1030 
1031 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1032 		/*
1033 		 * Restore the original value of tx_buf or rx_buf if they are
1034 		 * NULL.
1035 		 */
1036 		if (xfer->tx_buf == ctlr->dummy_tx)
1037 			xfer->tx_buf = NULL;
1038 		if (xfer->rx_buf == ctlr->dummy_rx)
1039 			xfer->rx_buf = NULL;
1040 	}
1041 
1042 	return __spi_unmap_msg(ctlr, msg);
1043 }
1044 
1045 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1046 {
1047 	struct spi_transfer *xfer;
1048 	void *tmp;
1049 	unsigned int max_tx, max_rx;
1050 
1051 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1052 		&& !(msg->spi->mode & SPI_3WIRE)) {
1053 		max_tx = 0;
1054 		max_rx = 0;
1055 
1056 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1057 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1058 			    !xfer->tx_buf)
1059 				max_tx = max(xfer->len, max_tx);
1060 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1061 			    !xfer->rx_buf)
1062 				max_rx = max(xfer->len, max_rx);
1063 		}
1064 
1065 		if (max_tx) {
1066 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1067 				       GFP_KERNEL | GFP_DMA);
1068 			if (!tmp)
1069 				return -ENOMEM;
1070 			ctlr->dummy_tx = tmp;
1071 			memset(tmp, 0, max_tx);
1072 		}
1073 
1074 		if (max_rx) {
1075 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1076 				       GFP_KERNEL | GFP_DMA);
1077 			if (!tmp)
1078 				return -ENOMEM;
1079 			ctlr->dummy_rx = tmp;
1080 		}
1081 
1082 		if (max_tx || max_rx) {
1083 			list_for_each_entry(xfer, &msg->transfers,
1084 					    transfer_list) {
1085 				if (!xfer->len)
1086 					continue;
1087 				if (!xfer->tx_buf)
1088 					xfer->tx_buf = ctlr->dummy_tx;
1089 				if (!xfer->rx_buf)
1090 					xfer->rx_buf = ctlr->dummy_rx;
1091 			}
1092 		}
1093 	}
1094 
1095 	return __spi_map_msg(ctlr, msg);
1096 }
1097 
1098 static int spi_transfer_wait(struct spi_controller *ctlr,
1099 			     struct spi_message *msg,
1100 			     struct spi_transfer *xfer)
1101 {
1102 	struct spi_statistics *statm = &ctlr->statistics;
1103 	struct spi_statistics *stats = &msg->spi->statistics;
1104 	unsigned long long ms;
1105 
1106 	if (spi_controller_is_slave(ctlr)) {
1107 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1108 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1109 			return -EINTR;
1110 		}
1111 	} else {
1112 		ms = 8LL * 1000LL * xfer->len;
1113 		do_div(ms, xfer->speed_hz);
1114 		ms += ms + 200; /* some tolerance */
1115 
1116 		if (ms > UINT_MAX)
1117 			ms = UINT_MAX;
1118 
1119 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1120 						 msecs_to_jiffies(ms));
1121 
1122 		if (ms == 0) {
1123 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1124 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1125 			dev_err(&msg->spi->dev,
1126 				"SPI transfer timed out\n");
1127 			return -ETIMEDOUT;
1128 		}
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 static void _spi_transfer_delay_ns(u32 ns)
1135 {
1136 	if (!ns)
1137 		return;
1138 	if (ns <= 1000) {
1139 		ndelay(ns);
1140 	} else {
1141 		u32 us = DIV_ROUND_UP(ns, 1000);
1142 
1143 		if (us <= 10)
1144 			udelay(us);
1145 		else
1146 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1147 	}
1148 }
1149 
1150 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1151 {
1152 	u32 delay = _delay->value;
1153 	u32 unit = _delay->unit;
1154 	u32 hz;
1155 
1156 	if (!delay)
1157 		return 0;
1158 
1159 	switch (unit) {
1160 	case SPI_DELAY_UNIT_USECS:
1161 		delay *= 1000;
1162 		break;
1163 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1164 		break;
1165 	case SPI_DELAY_UNIT_SCK:
1166 		/* clock cycles need to be obtained from spi_transfer */
1167 		if (!xfer)
1168 			return -EINVAL;
1169 		/* if there is no effective speed know, then approximate
1170 		 * by underestimating with half the requested hz
1171 		 */
1172 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1173 		if (!hz)
1174 			return -EINVAL;
1175 		delay *= DIV_ROUND_UP(1000000000, hz);
1176 		break;
1177 	default:
1178 		return -EINVAL;
1179 	}
1180 
1181 	return delay;
1182 }
1183 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1184 
1185 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1186 {
1187 	int delay;
1188 
1189 	might_sleep();
1190 
1191 	if (!_delay)
1192 		return -EINVAL;
1193 
1194 	delay = spi_delay_to_ns(_delay, xfer);
1195 	if (delay < 0)
1196 		return delay;
1197 
1198 	_spi_transfer_delay_ns(delay);
1199 
1200 	return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(spi_delay_exec);
1203 
1204 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1205 					  struct spi_transfer *xfer)
1206 {
1207 	u32 delay = xfer->cs_change_delay.value;
1208 	u32 unit = xfer->cs_change_delay.unit;
1209 	int ret;
1210 
1211 	/* return early on "fast" mode - for everything but USECS */
1212 	if (!delay) {
1213 		if (unit == SPI_DELAY_UNIT_USECS)
1214 			_spi_transfer_delay_ns(10000);
1215 		return;
1216 	}
1217 
1218 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1219 	if (ret) {
1220 		dev_err_once(&msg->spi->dev,
1221 			     "Use of unsupported delay unit %i, using default of 10us\n",
1222 			     unit);
1223 		_spi_transfer_delay_ns(10000);
1224 	}
1225 }
1226 
1227 /*
1228  * spi_transfer_one_message - Default implementation of transfer_one_message()
1229  *
1230  * This is a standard implementation of transfer_one_message() for
1231  * drivers which implement a transfer_one() operation.  It provides
1232  * standard handling of delays and chip select management.
1233  */
1234 static int spi_transfer_one_message(struct spi_controller *ctlr,
1235 				    struct spi_message *msg)
1236 {
1237 	struct spi_transfer *xfer;
1238 	bool keep_cs = false;
1239 	int ret = 0;
1240 	struct spi_statistics *statm = &ctlr->statistics;
1241 	struct spi_statistics *stats = &msg->spi->statistics;
1242 
1243 	spi_set_cs(msg->spi, true);
1244 
1245 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1246 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1247 
1248 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1249 		trace_spi_transfer_start(msg, xfer);
1250 
1251 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1252 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1253 
1254 		if (!ctlr->ptp_sts_supported) {
1255 			xfer->ptp_sts_word_pre = 0;
1256 			ptp_read_system_prets(xfer->ptp_sts);
1257 		}
1258 
1259 		if (xfer->tx_buf || xfer->rx_buf) {
1260 			reinit_completion(&ctlr->xfer_completion);
1261 
1262 fallback_pio:
1263 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1264 			if (ret < 0) {
1265 				if (ctlr->cur_msg_mapped &&
1266 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1267 					__spi_unmap_msg(ctlr, msg);
1268 					ctlr->fallback = true;
1269 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1270 					goto fallback_pio;
1271 				}
1272 
1273 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1274 							       errors);
1275 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1276 							       errors);
1277 				dev_err(&msg->spi->dev,
1278 					"SPI transfer failed: %d\n", ret);
1279 				goto out;
1280 			}
1281 
1282 			if (ret > 0) {
1283 				ret = spi_transfer_wait(ctlr, msg, xfer);
1284 				if (ret < 0)
1285 					msg->status = ret;
1286 			}
1287 		} else {
1288 			if (xfer->len)
1289 				dev_err(&msg->spi->dev,
1290 					"Bufferless transfer has length %u\n",
1291 					xfer->len);
1292 		}
1293 
1294 		if (!ctlr->ptp_sts_supported) {
1295 			ptp_read_system_postts(xfer->ptp_sts);
1296 			xfer->ptp_sts_word_post = xfer->len;
1297 		}
1298 
1299 		trace_spi_transfer_stop(msg, xfer);
1300 
1301 		if (msg->status != -EINPROGRESS)
1302 			goto out;
1303 
1304 		spi_transfer_delay_exec(xfer);
1305 
1306 		if (xfer->cs_change) {
1307 			if (list_is_last(&xfer->transfer_list,
1308 					 &msg->transfers)) {
1309 				keep_cs = true;
1310 			} else {
1311 				spi_set_cs(msg->spi, false);
1312 				_spi_transfer_cs_change_delay(msg, xfer);
1313 				spi_set_cs(msg->spi, true);
1314 			}
1315 		}
1316 
1317 		msg->actual_length += xfer->len;
1318 	}
1319 
1320 out:
1321 	if (ret != 0 || !keep_cs)
1322 		spi_set_cs(msg->spi, false);
1323 
1324 	if (msg->status == -EINPROGRESS)
1325 		msg->status = ret;
1326 
1327 	if (msg->status && ctlr->handle_err)
1328 		ctlr->handle_err(ctlr, msg);
1329 
1330 	spi_res_release(ctlr, msg);
1331 
1332 	spi_finalize_current_message(ctlr);
1333 
1334 	return ret;
1335 }
1336 
1337 /**
1338  * spi_finalize_current_transfer - report completion of a transfer
1339  * @ctlr: the controller reporting completion
1340  *
1341  * Called by SPI drivers using the core transfer_one_message()
1342  * implementation to notify it that the current interrupt driven
1343  * transfer has finished and the next one may be scheduled.
1344  */
1345 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1346 {
1347 	complete(&ctlr->xfer_completion);
1348 }
1349 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1350 
1351 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1352 {
1353 	if (ctlr->auto_runtime_pm) {
1354 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1355 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1356 	}
1357 }
1358 
1359 /**
1360  * __spi_pump_messages - function which processes spi message queue
1361  * @ctlr: controller to process queue for
1362  * @in_kthread: true if we are in the context of the message pump thread
1363  *
1364  * This function checks if there is any spi message in the queue that
1365  * needs processing and if so call out to the driver to initialize hardware
1366  * and transfer each message.
1367  *
1368  * Note that it is called both from the kthread itself and also from
1369  * inside spi_sync(); the queue extraction handling at the top of the
1370  * function should deal with this safely.
1371  */
1372 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1373 {
1374 	struct spi_transfer *xfer;
1375 	struct spi_message *msg;
1376 	bool was_busy = false;
1377 	unsigned long flags;
1378 	int ret;
1379 
1380 	/* Lock queue */
1381 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1382 
1383 	/* Make sure we are not already running a message */
1384 	if (ctlr->cur_msg) {
1385 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1386 		return;
1387 	}
1388 
1389 	/* If another context is idling the device then defer */
1390 	if (ctlr->idling) {
1391 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1392 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1393 		return;
1394 	}
1395 
1396 	/* Check if the queue is idle */
1397 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1398 		if (!ctlr->busy) {
1399 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1400 			return;
1401 		}
1402 
1403 		/* Defer any non-atomic teardown to the thread */
1404 		if (!in_kthread) {
1405 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1406 			    !ctlr->unprepare_transfer_hardware) {
1407 				spi_idle_runtime_pm(ctlr);
1408 				ctlr->busy = false;
1409 				trace_spi_controller_idle(ctlr);
1410 			} else {
1411 				kthread_queue_work(ctlr->kworker,
1412 						   &ctlr->pump_messages);
1413 			}
1414 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1415 			return;
1416 		}
1417 
1418 		ctlr->busy = false;
1419 		ctlr->idling = true;
1420 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1421 
1422 		kfree(ctlr->dummy_rx);
1423 		ctlr->dummy_rx = NULL;
1424 		kfree(ctlr->dummy_tx);
1425 		ctlr->dummy_tx = NULL;
1426 		if (ctlr->unprepare_transfer_hardware &&
1427 		    ctlr->unprepare_transfer_hardware(ctlr))
1428 			dev_err(&ctlr->dev,
1429 				"failed to unprepare transfer hardware\n");
1430 		spi_idle_runtime_pm(ctlr);
1431 		trace_spi_controller_idle(ctlr);
1432 
1433 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1434 		ctlr->idling = false;
1435 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1436 		return;
1437 	}
1438 
1439 	/* Extract head of queue */
1440 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1441 	ctlr->cur_msg = msg;
1442 
1443 	list_del_init(&msg->queue);
1444 	if (ctlr->busy)
1445 		was_busy = true;
1446 	else
1447 		ctlr->busy = true;
1448 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1449 
1450 	mutex_lock(&ctlr->io_mutex);
1451 
1452 	if (!was_busy && ctlr->auto_runtime_pm) {
1453 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1454 		if (ret < 0) {
1455 			pm_runtime_put_noidle(ctlr->dev.parent);
1456 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1457 				ret);
1458 			mutex_unlock(&ctlr->io_mutex);
1459 			return;
1460 		}
1461 	}
1462 
1463 	if (!was_busy)
1464 		trace_spi_controller_busy(ctlr);
1465 
1466 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1467 		ret = ctlr->prepare_transfer_hardware(ctlr);
1468 		if (ret) {
1469 			dev_err(&ctlr->dev,
1470 				"failed to prepare transfer hardware: %d\n",
1471 				ret);
1472 
1473 			if (ctlr->auto_runtime_pm)
1474 				pm_runtime_put(ctlr->dev.parent);
1475 
1476 			msg->status = ret;
1477 			spi_finalize_current_message(ctlr);
1478 
1479 			mutex_unlock(&ctlr->io_mutex);
1480 			return;
1481 		}
1482 	}
1483 
1484 	trace_spi_message_start(msg);
1485 
1486 	if (ctlr->prepare_message) {
1487 		ret = ctlr->prepare_message(ctlr, msg);
1488 		if (ret) {
1489 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1490 				ret);
1491 			msg->status = ret;
1492 			spi_finalize_current_message(ctlr);
1493 			goto out;
1494 		}
1495 		ctlr->cur_msg_prepared = true;
1496 	}
1497 
1498 	ret = spi_map_msg(ctlr, msg);
1499 	if (ret) {
1500 		msg->status = ret;
1501 		spi_finalize_current_message(ctlr);
1502 		goto out;
1503 	}
1504 
1505 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1506 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1507 			xfer->ptp_sts_word_pre = 0;
1508 			ptp_read_system_prets(xfer->ptp_sts);
1509 		}
1510 	}
1511 
1512 	ret = ctlr->transfer_one_message(ctlr, msg);
1513 	if (ret) {
1514 		dev_err(&ctlr->dev,
1515 			"failed to transfer one message from queue\n");
1516 		goto out;
1517 	}
1518 
1519 out:
1520 	mutex_unlock(&ctlr->io_mutex);
1521 
1522 	/* Prod the scheduler in case transfer_one() was busy waiting */
1523 	if (!ret)
1524 		cond_resched();
1525 }
1526 
1527 /**
1528  * spi_pump_messages - kthread work function which processes spi message queue
1529  * @work: pointer to kthread work struct contained in the controller struct
1530  */
1531 static void spi_pump_messages(struct kthread_work *work)
1532 {
1533 	struct spi_controller *ctlr =
1534 		container_of(work, struct spi_controller, pump_messages);
1535 
1536 	__spi_pump_messages(ctlr, true);
1537 }
1538 
1539 /**
1540  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1541  *			    TX timestamp for the requested byte from the SPI
1542  *			    transfer. The frequency with which this function
1543  *			    must be called (once per word, once for the whole
1544  *			    transfer, once per batch of words etc) is arbitrary
1545  *			    as long as the @tx buffer offset is greater than or
1546  *			    equal to the requested byte at the time of the
1547  *			    call. The timestamp is only taken once, at the
1548  *			    first such call. It is assumed that the driver
1549  *			    advances its @tx buffer pointer monotonically.
1550  * @ctlr: Pointer to the spi_controller structure of the driver
1551  * @xfer: Pointer to the transfer being timestamped
1552  * @progress: How many words (not bytes) have been transferred so far
1553  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1554  *	      transfer, for less jitter in time measurement. Only compatible
1555  *	      with PIO drivers. If true, must follow up with
1556  *	      spi_take_timestamp_post or otherwise system will crash.
1557  *	      WARNING: for fully predictable results, the CPU frequency must
1558  *	      also be under control (governor).
1559  */
1560 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1561 			    struct spi_transfer *xfer,
1562 			    size_t progress, bool irqs_off)
1563 {
1564 	if (!xfer->ptp_sts)
1565 		return;
1566 
1567 	if (xfer->timestamped)
1568 		return;
1569 
1570 	if (progress > xfer->ptp_sts_word_pre)
1571 		return;
1572 
1573 	/* Capture the resolution of the timestamp */
1574 	xfer->ptp_sts_word_pre = progress;
1575 
1576 	if (irqs_off) {
1577 		local_irq_save(ctlr->irq_flags);
1578 		preempt_disable();
1579 	}
1580 
1581 	ptp_read_system_prets(xfer->ptp_sts);
1582 }
1583 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1584 
1585 /**
1586  * spi_take_timestamp_post - helper for drivers to collect the end of the
1587  *			     TX timestamp for the requested byte from the SPI
1588  *			     transfer. Can be called with an arbitrary
1589  *			     frequency: only the first call where @tx exceeds
1590  *			     or is equal to the requested word will be
1591  *			     timestamped.
1592  * @ctlr: Pointer to the spi_controller structure of the driver
1593  * @xfer: Pointer to the transfer being timestamped
1594  * @progress: How many words (not bytes) have been transferred so far
1595  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1596  */
1597 void spi_take_timestamp_post(struct spi_controller *ctlr,
1598 			     struct spi_transfer *xfer,
1599 			     size_t progress, bool irqs_off)
1600 {
1601 	if (!xfer->ptp_sts)
1602 		return;
1603 
1604 	if (xfer->timestamped)
1605 		return;
1606 
1607 	if (progress < xfer->ptp_sts_word_post)
1608 		return;
1609 
1610 	ptp_read_system_postts(xfer->ptp_sts);
1611 
1612 	if (irqs_off) {
1613 		local_irq_restore(ctlr->irq_flags);
1614 		preempt_enable();
1615 	}
1616 
1617 	/* Capture the resolution of the timestamp */
1618 	xfer->ptp_sts_word_post = progress;
1619 
1620 	xfer->timestamped = true;
1621 }
1622 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1623 
1624 /**
1625  * spi_set_thread_rt - set the controller to pump at realtime priority
1626  * @ctlr: controller to boost priority of
1627  *
1628  * This can be called because the controller requested realtime priority
1629  * (by setting the ->rt value before calling spi_register_controller()) or
1630  * because a device on the bus said that its transfers needed realtime
1631  * priority.
1632  *
1633  * NOTE: at the moment if any device on a bus says it needs realtime then
1634  * the thread will be at realtime priority for all transfers on that
1635  * controller.  If this eventually becomes a problem we may see if we can
1636  * find a way to boost the priority only temporarily during relevant
1637  * transfers.
1638  */
1639 static void spi_set_thread_rt(struct spi_controller *ctlr)
1640 {
1641 	dev_info(&ctlr->dev,
1642 		"will run message pump with realtime priority\n");
1643 	sched_set_fifo(ctlr->kworker->task);
1644 }
1645 
1646 static int spi_init_queue(struct spi_controller *ctlr)
1647 {
1648 	ctlr->running = false;
1649 	ctlr->busy = false;
1650 
1651 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1652 	if (IS_ERR(ctlr->kworker)) {
1653 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1654 		return PTR_ERR(ctlr->kworker);
1655 	}
1656 
1657 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1658 
1659 	/*
1660 	 * Controller config will indicate if this controller should run the
1661 	 * message pump with high (realtime) priority to reduce the transfer
1662 	 * latency on the bus by minimising the delay between a transfer
1663 	 * request and the scheduling of the message pump thread. Without this
1664 	 * setting the message pump thread will remain at default priority.
1665 	 */
1666 	if (ctlr->rt)
1667 		spi_set_thread_rt(ctlr);
1668 
1669 	return 0;
1670 }
1671 
1672 /**
1673  * spi_get_next_queued_message() - called by driver to check for queued
1674  * messages
1675  * @ctlr: the controller to check for queued messages
1676  *
1677  * If there are more messages in the queue, the next message is returned from
1678  * this call.
1679  *
1680  * Return: the next message in the queue, else NULL if the queue is empty.
1681  */
1682 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1683 {
1684 	struct spi_message *next;
1685 	unsigned long flags;
1686 
1687 	/* get a pointer to the next message, if any */
1688 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1689 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1690 					queue);
1691 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1692 
1693 	return next;
1694 }
1695 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1696 
1697 /**
1698  * spi_finalize_current_message() - the current message is complete
1699  * @ctlr: the controller to return the message to
1700  *
1701  * Called by the driver to notify the core that the message in the front of the
1702  * queue is complete and can be removed from the queue.
1703  */
1704 void spi_finalize_current_message(struct spi_controller *ctlr)
1705 {
1706 	struct spi_transfer *xfer;
1707 	struct spi_message *mesg;
1708 	unsigned long flags;
1709 	int ret;
1710 
1711 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1712 	mesg = ctlr->cur_msg;
1713 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1714 
1715 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1716 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1717 			ptp_read_system_postts(xfer->ptp_sts);
1718 			xfer->ptp_sts_word_post = xfer->len;
1719 		}
1720 	}
1721 
1722 	if (unlikely(ctlr->ptp_sts_supported))
1723 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1724 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1725 
1726 	spi_unmap_msg(ctlr, mesg);
1727 
1728 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1729 		ret = ctlr->unprepare_message(ctlr, mesg);
1730 		if (ret) {
1731 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1732 				ret);
1733 		}
1734 	}
1735 
1736 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1737 	ctlr->cur_msg = NULL;
1738 	ctlr->cur_msg_prepared = false;
1739 	ctlr->fallback = false;
1740 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1741 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1742 
1743 	trace_spi_message_done(mesg);
1744 
1745 	mesg->state = NULL;
1746 	if (mesg->complete)
1747 		mesg->complete(mesg->context);
1748 }
1749 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1750 
1751 static int spi_start_queue(struct spi_controller *ctlr)
1752 {
1753 	unsigned long flags;
1754 
1755 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1756 
1757 	if (ctlr->running || ctlr->busy) {
1758 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1759 		return -EBUSY;
1760 	}
1761 
1762 	ctlr->running = true;
1763 	ctlr->cur_msg = NULL;
1764 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1765 
1766 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1767 
1768 	return 0;
1769 }
1770 
1771 static int spi_stop_queue(struct spi_controller *ctlr)
1772 {
1773 	unsigned long flags;
1774 	unsigned limit = 500;
1775 	int ret = 0;
1776 
1777 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1778 
1779 	/*
1780 	 * This is a bit lame, but is optimized for the common execution path.
1781 	 * A wait_queue on the ctlr->busy could be used, but then the common
1782 	 * execution path (pump_messages) would be required to call wake_up or
1783 	 * friends on every SPI message. Do this instead.
1784 	 */
1785 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1786 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1787 		usleep_range(10000, 11000);
1788 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1789 	}
1790 
1791 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1792 		ret = -EBUSY;
1793 	else
1794 		ctlr->running = false;
1795 
1796 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1797 
1798 	if (ret) {
1799 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1800 		return ret;
1801 	}
1802 	return ret;
1803 }
1804 
1805 static int spi_destroy_queue(struct spi_controller *ctlr)
1806 {
1807 	int ret;
1808 
1809 	ret = spi_stop_queue(ctlr);
1810 
1811 	/*
1812 	 * kthread_flush_worker will block until all work is done.
1813 	 * If the reason that stop_queue timed out is that the work will never
1814 	 * finish, then it does no good to call flush/stop thread, so
1815 	 * return anyway.
1816 	 */
1817 	if (ret) {
1818 		dev_err(&ctlr->dev, "problem destroying queue\n");
1819 		return ret;
1820 	}
1821 
1822 	kthread_destroy_worker(ctlr->kworker);
1823 
1824 	return 0;
1825 }
1826 
1827 static int __spi_queued_transfer(struct spi_device *spi,
1828 				 struct spi_message *msg,
1829 				 bool need_pump)
1830 {
1831 	struct spi_controller *ctlr = spi->controller;
1832 	unsigned long flags;
1833 
1834 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1835 
1836 	if (!ctlr->running) {
1837 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1838 		return -ESHUTDOWN;
1839 	}
1840 	msg->actual_length = 0;
1841 	msg->status = -EINPROGRESS;
1842 
1843 	list_add_tail(&msg->queue, &ctlr->queue);
1844 	if (!ctlr->busy && need_pump)
1845 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1846 
1847 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1848 	return 0;
1849 }
1850 
1851 /**
1852  * spi_queued_transfer - transfer function for queued transfers
1853  * @spi: spi device which is requesting transfer
1854  * @msg: spi message which is to handled is queued to driver queue
1855  *
1856  * Return: zero on success, else a negative error code.
1857  */
1858 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1859 {
1860 	return __spi_queued_transfer(spi, msg, true);
1861 }
1862 
1863 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1864 {
1865 	int ret;
1866 
1867 	ctlr->transfer = spi_queued_transfer;
1868 	if (!ctlr->transfer_one_message)
1869 		ctlr->transfer_one_message = spi_transfer_one_message;
1870 
1871 	/* Initialize and start queue */
1872 	ret = spi_init_queue(ctlr);
1873 	if (ret) {
1874 		dev_err(&ctlr->dev, "problem initializing queue\n");
1875 		goto err_init_queue;
1876 	}
1877 	ctlr->queued = true;
1878 	ret = spi_start_queue(ctlr);
1879 	if (ret) {
1880 		dev_err(&ctlr->dev, "problem starting queue\n");
1881 		goto err_start_queue;
1882 	}
1883 
1884 	return 0;
1885 
1886 err_start_queue:
1887 	spi_destroy_queue(ctlr);
1888 err_init_queue:
1889 	return ret;
1890 }
1891 
1892 /**
1893  * spi_flush_queue - Send all pending messages in the queue from the callers'
1894  *		     context
1895  * @ctlr: controller to process queue for
1896  *
1897  * This should be used when one wants to ensure all pending messages have been
1898  * sent before doing something. Is used by the spi-mem code to make sure SPI
1899  * memory operations do not preempt regular SPI transfers that have been queued
1900  * before the spi-mem operation.
1901  */
1902 void spi_flush_queue(struct spi_controller *ctlr)
1903 {
1904 	if (ctlr->transfer == spi_queued_transfer)
1905 		__spi_pump_messages(ctlr, false);
1906 }
1907 
1908 /*-------------------------------------------------------------------------*/
1909 
1910 #if defined(CONFIG_OF)
1911 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1912 			   struct device_node *nc)
1913 {
1914 	u32 value;
1915 	int rc;
1916 
1917 	/* Mode (clock phase/polarity/etc.) */
1918 	if (of_property_read_bool(nc, "spi-cpha"))
1919 		spi->mode |= SPI_CPHA;
1920 	if (of_property_read_bool(nc, "spi-cpol"))
1921 		spi->mode |= SPI_CPOL;
1922 	if (of_property_read_bool(nc, "spi-3wire"))
1923 		spi->mode |= SPI_3WIRE;
1924 	if (of_property_read_bool(nc, "spi-lsb-first"))
1925 		spi->mode |= SPI_LSB_FIRST;
1926 	if (of_property_read_bool(nc, "spi-cs-high"))
1927 		spi->mode |= SPI_CS_HIGH;
1928 
1929 	/* Device DUAL/QUAD mode */
1930 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1931 		switch (value) {
1932 		case 1:
1933 			break;
1934 		case 2:
1935 			spi->mode |= SPI_TX_DUAL;
1936 			break;
1937 		case 4:
1938 			spi->mode |= SPI_TX_QUAD;
1939 			break;
1940 		case 8:
1941 			spi->mode |= SPI_TX_OCTAL;
1942 			break;
1943 		default:
1944 			dev_warn(&ctlr->dev,
1945 				"spi-tx-bus-width %d not supported\n",
1946 				value);
1947 			break;
1948 		}
1949 	}
1950 
1951 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1952 		switch (value) {
1953 		case 1:
1954 			break;
1955 		case 2:
1956 			spi->mode |= SPI_RX_DUAL;
1957 			break;
1958 		case 4:
1959 			spi->mode |= SPI_RX_QUAD;
1960 			break;
1961 		case 8:
1962 			spi->mode |= SPI_RX_OCTAL;
1963 			break;
1964 		default:
1965 			dev_warn(&ctlr->dev,
1966 				"spi-rx-bus-width %d not supported\n",
1967 				value);
1968 			break;
1969 		}
1970 	}
1971 
1972 	if (spi_controller_is_slave(ctlr)) {
1973 		if (!of_node_name_eq(nc, "slave")) {
1974 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1975 				nc);
1976 			return -EINVAL;
1977 		}
1978 		return 0;
1979 	}
1980 
1981 	/* Device address */
1982 	rc = of_property_read_u32(nc, "reg", &value);
1983 	if (rc) {
1984 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1985 			nc, rc);
1986 		return rc;
1987 	}
1988 	spi->chip_select = value;
1989 
1990 	/*
1991 	 * For descriptors associated with the device, polarity inversion is
1992 	 * handled in the gpiolib, so all gpio chip selects are "active high"
1993 	 * in the logical sense, the gpiolib will invert the line if need be.
1994 	 */
1995 	if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1996 	    ctlr->cs_gpiods[spi->chip_select])
1997 		spi->mode |= SPI_CS_HIGH;
1998 
1999 	/* Device speed */
2000 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2001 		spi->max_speed_hz = value;
2002 
2003 	return 0;
2004 }
2005 
2006 static struct spi_device *
2007 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2008 {
2009 	struct spi_device *spi;
2010 	int rc;
2011 
2012 	/* Alloc an spi_device */
2013 	spi = spi_alloc_device(ctlr);
2014 	if (!spi) {
2015 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2016 		rc = -ENOMEM;
2017 		goto err_out;
2018 	}
2019 
2020 	/* Select device driver */
2021 	rc = of_modalias_node(nc, spi->modalias,
2022 				sizeof(spi->modalias));
2023 	if (rc < 0) {
2024 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2025 		goto err_out;
2026 	}
2027 
2028 	rc = of_spi_parse_dt(ctlr, spi, nc);
2029 	if (rc)
2030 		goto err_out;
2031 
2032 	/* Store a pointer to the node in the device structure */
2033 	of_node_get(nc);
2034 	spi->dev.of_node = nc;
2035 
2036 	/* Register the new device */
2037 	rc = spi_add_device(spi);
2038 	if (rc) {
2039 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2040 		goto err_of_node_put;
2041 	}
2042 
2043 	return spi;
2044 
2045 err_of_node_put:
2046 	of_node_put(nc);
2047 err_out:
2048 	spi_dev_put(spi);
2049 	return ERR_PTR(rc);
2050 }
2051 
2052 /**
2053  * of_register_spi_devices() - Register child devices onto the SPI bus
2054  * @ctlr:	Pointer to spi_controller device
2055  *
2056  * Registers an spi_device for each child node of controller node which
2057  * represents a valid SPI slave.
2058  */
2059 static void of_register_spi_devices(struct spi_controller *ctlr)
2060 {
2061 	struct spi_device *spi;
2062 	struct device_node *nc;
2063 
2064 	if (!ctlr->dev.of_node)
2065 		return;
2066 
2067 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2068 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2069 			continue;
2070 		spi = of_register_spi_device(ctlr, nc);
2071 		if (IS_ERR(spi)) {
2072 			dev_warn(&ctlr->dev,
2073 				 "Failed to create SPI device for %pOF\n", nc);
2074 			of_node_clear_flag(nc, OF_POPULATED);
2075 		}
2076 	}
2077 }
2078 #else
2079 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2080 #endif
2081 
2082 #ifdef CONFIG_ACPI
2083 struct acpi_spi_lookup {
2084 	struct spi_controller 	*ctlr;
2085 	u32			max_speed_hz;
2086 	u32			mode;
2087 	int			irq;
2088 	u8			bits_per_word;
2089 	u8			chip_select;
2090 };
2091 
2092 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2093 					    struct acpi_spi_lookup *lookup)
2094 {
2095 	const union acpi_object *obj;
2096 
2097 	if (!x86_apple_machine)
2098 		return;
2099 
2100 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2101 	    && obj->buffer.length >= 4)
2102 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2103 
2104 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2105 	    && obj->buffer.length == 8)
2106 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2107 
2108 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2109 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2110 		lookup->mode |= SPI_LSB_FIRST;
2111 
2112 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2113 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2114 		lookup->mode |= SPI_CPOL;
2115 
2116 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2117 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2118 		lookup->mode |= SPI_CPHA;
2119 }
2120 
2121 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2122 {
2123 	struct acpi_spi_lookup *lookup = data;
2124 	struct spi_controller *ctlr = lookup->ctlr;
2125 
2126 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2127 		struct acpi_resource_spi_serialbus *sb;
2128 		acpi_handle parent_handle;
2129 		acpi_status status;
2130 
2131 		sb = &ares->data.spi_serial_bus;
2132 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2133 
2134 			status = acpi_get_handle(NULL,
2135 						 sb->resource_source.string_ptr,
2136 						 &parent_handle);
2137 
2138 			if (ACPI_FAILURE(status) ||
2139 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2140 				return -ENODEV;
2141 
2142 			/*
2143 			 * ACPI DeviceSelection numbering is handled by the
2144 			 * host controller driver in Windows and can vary
2145 			 * from driver to driver. In Linux we always expect
2146 			 * 0 .. max - 1 so we need to ask the driver to
2147 			 * translate between the two schemes.
2148 			 */
2149 			if (ctlr->fw_translate_cs) {
2150 				int cs = ctlr->fw_translate_cs(ctlr,
2151 						sb->device_selection);
2152 				if (cs < 0)
2153 					return cs;
2154 				lookup->chip_select = cs;
2155 			} else {
2156 				lookup->chip_select = sb->device_selection;
2157 			}
2158 
2159 			lookup->max_speed_hz = sb->connection_speed;
2160 			lookup->bits_per_word = sb->data_bit_length;
2161 
2162 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2163 				lookup->mode |= SPI_CPHA;
2164 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2165 				lookup->mode |= SPI_CPOL;
2166 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2167 				lookup->mode |= SPI_CS_HIGH;
2168 		}
2169 	} else if (lookup->irq < 0) {
2170 		struct resource r;
2171 
2172 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2173 			lookup->irq = r.start;
2174 	}
2175 
2176 	/* Always tell the ACPI core to skip this resource */
2177 	return 1;
2178 }
2179 
2180 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2181 					    struct acpi_device *adev)
2182 {
2183 	acpi_handle parent_handle = NULL;
2184 	struct list_head resource_list;
2185 	struct acpi_spi_lookup lookup = {};
2186 	struct spi_device *spi;
2187 	int ret;
2188 
2189 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2190 	    acpi_device_enumerated(adev))
2191 		return AE_OK;
2192 
2193 	lookup.ctlr		= ctlr;
2194 	lookup.irq		= -1;
2195 
2196 	INIT_LIST_HEAD(&resource_list);
2197 	ret = acpi_dev_get_resources(adev, &resource_list,
2198 				     acpi_spi_add_resource, &lookup);
2199 	acpi_dev_free_resource_list(&resource_list);
2200 
2201 	if (ret < 0)
2202 		/* found SPI in _CRS but it points to another controller */
2203 		return AE_OK;
2204 
2205 	if (!lookup.max_speed_hz &&
2206 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2207 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2208 		/* Apple does not use _CRS but nested devices for SPI slaves */
2209 		acpi_spi_parse_apple_properties(adev, &lookup);
2210 	}
2211 
2212 	if (!lookup.max_speed_hz)
2213 		return AE_OK;
2214 
2215 	spi = spi_alloc_device(ctlr);
2216 	if (!spi) {
2217 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2218 			dev_name(&adev->dev));
2219 		return AE_NO_MEMORY;
2220 	}
2221 
2222 
2223 	ACPI_COMPANION_SET(&spi->dev, adev);
2224 	spi->max_speed_hz	= lookup.max_speed_hz;
2225 	spi->mode		|= lookup.mode;
2226 	spi->irq		= lookup.irq;
2227 	spi->bits_per_word	= lookup.bits_per_word;
2228 	spi->chip_select	= lookup.chip_select;
2229 
2230 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2231 			  sizeof(spi->modalias));
2232 
2233 	if (spi->irq < 0)
2234 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2235 
2236 	acpi_device_set_enumerated(adev);
2237 
2238 	adev->power.flags.ignore_parent = true;
2239 	if (spi_add_device(spi)) {
2240 		adev->power.flags.ignore_parent = false;
2241 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2242 			dev_name(&adev->dev));
2243 		spi_dev_put(spi);
2244 	}
2245 
2246 	return AE_OK;
2247 }
2248 
2249 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2250 				       void *data, void **return_value)
2251 {
2252 	struct spi_controller *ctlr = data;
2253 	struct acpi_device *adev;
2254 
2255 	if (acpi_bus_get_device(handle, &adev))
2256 		return AE_OK;
2257 
2258 	return acpi_register_spi_device(ctlr, adev);
2259 }
2260 
2261 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2262 
2263 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2264 {
2265 	acpi_status status;
2266 	acpi_handle handle;
2267 
2268 	handle = ACPI_HANDLE(ctlr->dev.parent);
2269 	if (!handle)
2270 		return;
2271 
2272 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2273 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2274 				     acpi_spi_add_device, NULL, ctlr, NULL);
2275 	if (ACPI_FAILURE(status))
2276 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2277 }
2278 #else
2279 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2280 #endif /* CONFIG_ACPI */
2281 
2282 static void spi_controller_release(struct device *dev)
2283 {
2284 	struct spi_controller *ctlr;
2285 
2286 	ctlr = container_of(dev, struct spi_controller, dev);
2287 	kfree(ctlr);
2288 }
2289 
2290 static struct class spi_master_class = {
2291 	.name		= "spi_master",
2292 	.owner		= THIS_MODULE,
2293 	.dev_release	= spi_controller_release,
2294 	.dev_groups	= spi_master_groups,
2295 };
2296 
2297 #ifdef CONFIG_SPI_SLAVE
2298 /**
2299  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2300  *		     controller
2301  * @spi: device used for the current transfer
2302  */
2303 int spi_slave_abort(struct spi_device *spi)
2304 {
2305 	struct spi_controller *ctlr = spi->controller;
2306 
2307 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2308 		return ctlr->slave_abort(ctlr);
2309 
2310 	return -ENOTSUPP;
2311 }
2312 EXPORT_SYMBOL_GPL(spi_slave_abort);
2313 
2314 static int match_true(struct device *dev, void *data)
2315 {
2316 	return 1;
2317 }
2318 
2319 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2320 			  char *buf)
2321 {
2322 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2323 						   dev);
2324 	struct device *child;
2325 
2326 	child = device_find_child(&ctlr->dev, NULL, match_true);
2327 	return sprintf(buf, "%s\n",
2328 		       child ? to_spi_device(child)->modalias : NULL);
2329 }
2330 
2331 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2332 			   const char *buf, size_t count)
2333 {
2334 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2335 						   dev);
2336 	struct spi_device *spi;
2337 	struct device *child;
2338 	char name[32];
2339 	int rc;
2340 
2341 	rc = sscanf(buf, "%31s", name);
2342 	if (rc != 1 || !name[0])
2343 		return -EINVAL;
2344 
2345 	child = device_find_child(&ctlr->dev, NULL, match_true);
2346 	if (child) {
2347 		/* Remove registered slave */
2348 		device_unregister(child);
2349 		put_device(child);
2350 	}
2351 
2352 	if (strcmp(name, "(null)")) {
2353 		/* Register new slave */
2354 		spi = spi_alloc_device(ctlr);
2355 		if (!spi)
2356 			return -ENOMEM;
2357 
2358 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2359 
2360 		rc = spi_add_device(spi);
2361 		if (rc) {
2362 			spi_dev_put(spi);
2363 			return rc;
2364 		}
2365 	}
2366 
2367 	return count;
2368 }
2369 
2370 static DEVICE_ATTR_RW(slave);
2371 
2372 static struct attribute *spi_slave_attrs[] = {
2373 	&dev_attr_slave.attr,
2374 	NULL,
2375 };
2376 
2377 static const struct attribute_group spi_slave_group = {
2378 	.attrs = spi_slave_attrs,
2379 };
2380 
2381 static const struct attribute_group *spi_slave_groups[] = {
2382 	&spi_controller_statistics_group,
2383 	&spi_slave_group,
2384 	NULL,
2385 };
2386 
2387 static struct class spi_slave_class = {
2388 	.name		= "spi_slave",
2389 	.owner		= THIS_MODULE,
2390 	.dev_release	= spi_controller_release,
2391 	.dev_groups	= spi_slave_groups,
2392 };
2393 #else
2394 extern struct class spi_slave_class;	/* dummy */
2395 #endif
2396 
2397 /**
2398  * __spi_alloc_controller - allocate an SPI master or slave controller
2399  * @dev: the controller, possibly using the platform_bus
2400  * @size: how much zeroed driver-private data to allocate; the pointer to this
2401  *	memory is in the driver_data field of the returned device, accessible
2402  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2403  *	drivers granting DMA access to portions of their private data need to
2404  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2405  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2406  *	slave (true) controller
2407  * Context: can sleep
2408  *
2409  * This call is used only by SPI controller drivers, which are the
2410  * only ones directly touching chip registers.  It's how they allocate
2411  * an spi_controller structure, prior to calling spi_register_controller().
2412  *
2413  * This must be called from context that can sleep.
2414  *
2415  * The caller is responsible for assigning the bus number and initializing the
2416  * controller's methods before calling spi_register_controller(); and (after
2417  * errors adding the device) calling spi_controller_put() to prevent a memory
2418  * leak.
2419  *
2420  * Return: the SPI controller structure on success, else NULL.
2421  */
2422 struct spi_controller *__spi_alloc_controller(struct device *dev,
2423 					      unsigned int size, bool slave)
2424 {
2425 	struct spi_controller	*ctlr;
2426 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2427 
2428 	if (!dev)
2429 		return NULL;
2430 
2431 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2432 	if (!ctlr)
2433 		return NULL;
2434 
2435 	device_initialize(&ctlr->dev);
2436 	ctlr->bus_num = -1;
2437 	ctlr->num_chipselect = 1;
2438 	ctlr->slave = slave;
2439 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2440 		ctlr->dev.class = &spi_slave_class;
2441 	else
2442 		ctlr->dev.class = &spi_master_class;
2443 	ctlr->dev.parent = dev;
2444 	pm_suspend_ignore_children(&ctlr->dev, true);
2445 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2446 
2447 	return ctlr;
2448 }
2449 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2450 
2451 #ifdef CONFIG_OF
2452 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2453 {
2454 	int nb, i, *cs;
2455 	struct device_node *np = ctlr->dev.of_node;
2456 
2457 	if (!np)
2458 		return 0;
2459 
2460 	nb = of_gpio_named_count(np, "cs-gpios");
2461 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2462 
2463 	/* Return error only for an incorrectly formed cs-gpios property */
2464 	if (nb == 0 || nb == -ENOENT)
2465 		return 0;
2466 	else if (nb < 0)
2467 		return nb;
2468 
2469 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2470 			  GFP_KERNEL);
2471 	ctlr->cs_gpios = cs;
2472 
2473 	if (!ctlr->cs_gpios)
2474 		return -ENOMEM;
2475 
2476 	for (i = 0; i < ctlr->num_chipselect; i++)
2477 		cs[i] = -ENOENT;
2478 
2479 	for (i = 0; i < nb; i++)
2480 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2481 
2482 	return 0;
2483 }
2484 #else
2485 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2486 {
2487 	return 0;
2488 }
2489 #endif
2490 
2491 /**
2492  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2493  * @ctlr: The SPI master to grab GPIO descriptors for
2494  */
2495 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2496 {
2497 	int nb, i;
2498 	struct gpio_desc **cs;
2499 	struct device *dev = &ctlr->dev;
2500 	unsigned long native_cs_mask = 0;
2501 	unsigned int num_cs_gpios = 0;
2502 
2503 	nb = gpiod_count(dev, "cs");
2504 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2505 
2506 	/* No GPIOs at all is fine, else return the error */
2507 	if (nb == 0 || nb == -ENOENT)
2508 		return 0;
2509 	else if (nb < 0)
2510 		return nb;
2511 
2512 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2513 			  GFP_KERNEL);
2514 	if (!cs)
2515 		return -ENOMEM;
2516 	ctlr->cs_gpiods = cs;
2517 
2518 	for (i = 0; i < nb; i++) {
2519 		/*
2520 		 * Most chipselects are active low, the inverted
2521 		 * semantics are handled by special quirks in gpiolib,
2522 		 * so initializing them GPIOD_OUT_LOW here means
2523 		 * "unasserted", in most cases this will drive the physical
2524 		 * line high.
2525 		 */
2526 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2527 						      GPIOD_OUT_LOW);
2528 		if (IS_ERR(cs[i]))
2529 			return PTR_ERR(cs[i]);
2530 
2531 		if (cs[i]) {
2532 			/*
2533 			 * If we find a CS GPIO, name it after the device and
2534 			 * chip select line.
2535 			 */
2536 			char *gpioname;
2537 
2538 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2539 						  dev_name(dev), i);
2540 			if (!gpioname)
2541 				return -ENOMEM;
2542 			gpiod_set_consumer_name(cs[i], gpioname);
2543 			num_cs_gpios++;
2544 			continue;
2545 		}
2546 
2547 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2548 			dev_err(dev, "Invalid native chip select %d\n", i);
2549 			return -EINVAL;
2550 		}
2551 		native_cs_mask |= BIT(i);
2552 	}
2553 
2554 	ctlr->unused_native_cs = ffz(native_cs_mask);
2555 	if (num_cs_gpios && ctlr->max_native_cs &&
2556 	    ctlr->unused_native_cs >= ctlr->max_native_cs) {
2557 		dev_err(dev, "No unused native chip select available\n");
2558 		return -EINVAL;
2559 	}
2560 
2561 	return 0;
2562 }
2563 
2564 static int spi_controller_check_ops(struct spi_controller *ctlr)
2565 {
2566 	/*
2567 	 * The controller may implement only the high-level SPI-memory like
2568 	 * operations if it does not support regular SPI transfers, and this is
2569 	 * valid use case.
2570 	 * If ->mem_ops is NULL, we request that at least one of the
2571 	 * ->transfer_xxx() method be implemented.
2572 	 */
2573 	if (ctlr->mem_ops) {
2574 		if (!ctlr->mem_ops->exec_op)
2575 			return -EINVAL;
2576 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2577 		   !ctlr->transfer_one_message) {
2578 		return -EINVAL;
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 /**
2585  * spi_register_controller - register SPI master or slave controller
2586  * @ctlr: initialized master, originally from spi_alloc_master() or
2587  *	spi_alloc_slave()
2588  * Context: can sleep
2589  *
2590  * SPI controllers connect to their drivers using some non-SPI bus,
2591  * such as the platform bus.  The final stage of probe() in that code
2592  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2593  *
2594  * SPI controllers use board specific (often SOC specific) bus numbers,
2595  * and board-specific addressing for SPI devices combines those numbers
2596  * with chip select numbers.  Since SPI does not directly support dynamic
2597  * device identification, boards need configuration tables telling which
2598  * chip is at which address.
2599  *
2600  * This must be called from context that can sleep.  It returns zero on
2601  * success, else a negative error code (dropping the controller's refcount).
2602  * After a successful return, the caller is responsible for calling
2603  * spi_unregister_controller().
2604  *
2605  * Return: zero on success, else a negative error code.
2606  */
2607 int spi_register_controller(struct spi_controller *ctlr)
2608 {
2609 	struct device		*dev = ctlr->dev.parent;
2610 	struct boardinfo	*bi;
2611 	int			status;
2612 	int			id, first_dynamic;
2613 
2614 	if (!dev)
2615 		return -ENODEV;
2616 
2617 	/*
2618 	 * Make sure all necessary hooks are implemented before registering
2619 	 * the SPI controller.
2620 	 */
2621 	status = spi_controller_check_ops(ctlr);
2622 	if (status)
2623 		return status;
2624 
2625 	if (ctlr->bus_num >= 0) {
2626 		/* devices with a fixed bus num must check-in with the num */
2627 		mutex_lock(&board_lock);
2628 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2629 			ctlr->bus_num + 1, GFP_KERNEL);
2630 		mutex_unlock(&board_lock);
2631 		if (WARN(id < 0, "couldn't get idr"))
2632 			return id == -ENOSPC ? -EBUSY : id;
2633 		ctlr->bus_num = id;
2634 	} else if (ctlr->dev.of_node) {
2635 		/* allocate dynamic bus number using Linux idr */
2636 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2637 		if (id >= 0) {
2638 			ctlr->bus_num = id;
2639 			mutex_lock(&board_lock);
2640 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2641 				       ctlr->bus_num + 1, GFP_KERNEL);
2642 			mutex_unlock(&board_lock);
2643 			if (WARN(id < 0, "couldn't get idr"))
2644 				return id == -ENOSPC ? -EBUSY : id;
2645 		}
2646 	}
2647 	if (ctlr->bus_num < 0) {
2648 		first_dynamic = of_alias_get_highest_id("spi");
2649 		if (first_dynamic < 0)
2650 			first_dynamic = 0;
2651 		else
2652 			first_dynamic++;
2653 
2654 		mutex_lock(&board_lock);
2655 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2656 			       0, GFP_KERNEL);
2657 		mutex_unlock(&board_lock);
2658 		if (WARN(id < 0, "couldn't get idr"))
2659 			return id;
2660 		ctlr->bus_num = id;
2661 	}
2662 	INIT_LIST_HEAD(&ctlr->queue);
2663 	spin_lock_init(&ctlr->queue_lock);
2664 	spin_lock_init(&ctlr->bus_lock_spinlock);
2665 	mutex_init(&ctlr->bus_lock_mutex);
2666 	mutex_init(&ctlr->io_mutex);
2667 	ctlr->bus_lock_flag = 0;
2668 	init_completion(&ctlr->xfer_completion);
2669 	if (!ctlr->max_dma_len)
2670 		ctlr->max_dma_len = INT_MAX;
2671 
2672 	/* register the device, then userspace will see it.
2673 	 * registration fails if the bus ID is in use.
2674 	 */
2675 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2676 
2677 	if (!spi_controller_is_slave(ctlr)) {
2678 		if (ctlr->use_gpio_descriptors) {
2679 			status = spi_get_gpio_descs(ctlr);
2680 			if (status)
2681 				goto free_bus_id;
2682 			/*
2683 			 * A controller using GPIO descriptors always
2684 			 * supports SPI_CS_HIGH if need be.
2685 			 */
2686 			ctlr->mode_bits |= SPI_CS_HIGH;
2687 		} else {
2688 			/* Legacy code path for GPIOs from DT */
2689 			status = of_spi_get_gpio_numbers(ctlr);
2690 			if (status)
2691 				goto free_bus_id;
2692 		}
2693 	}
2694 
2695 	/*
2696 	 * Even if it's just one always-selected device, there must
2697 	 * be at least one chipselect.
2698 	 */
2699 	if (!ctlr->num_chipselect) {
2700 		status = -EINVAL;
2701 		goto free_bus_id;
2702 	}
2703 
2704 	status = device_add(&ctlr->dev);
2705 	if (status < 0)
2706 		goto free_bus_id;
2707 	dev_dbg(dev, "registered %s %s\n",
2708 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2709 			dev_name(&ctlr->dev));
2710 
2711 	/*
2712 	 * If we're using a queued driver, start the queue. Note that we don't
2713 	 * need the queueing logic if the driver is only supporting high-level
2714 	 * memory operations.
2715 	 */
2716 	if (ctlr->transfer) {
2717 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2718 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2719 		status = spi_controller_initialize_queue(ctlr);
2720 		if (status) {
2721 			device_del(&ctlr->dev);
2722 			goto free_bus_id;
2723 		}
2724 	}
2725 	/* add statistics */
2726 	spin_lock_init(&ctlr->statistics.lock);
2727 
2728 	mutex_lock(&board_lock);
2729 	list_add_tail(&ctlr->list, &spi_controller_list);
2730 	list_for_each_entry(bi, &board_list, list)
2731 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2732 	mutex_unlock(&board_lock);
2733 
2734 	/* Register devices from the device tree and ACPI */
2735 	of_register_spi_devices(ctlr);
2736 	acpi_register_spi_devices(ctlr);
2737 	return status;
2738 
2739 free_bus_id:
2740 	mutex_lock(&board_lock);
2741 	idr_remove(&spi_master_idr, ctlr->bus_num);
2742 	mutex_unlock(&board_lock);
2743 	return status;
2744 }
2745 EXPORT_SYMBOL_GPL(spi_register_controller);
2746 
2747 static void devm_spi_unregister(struct device *dev, void *res)
2748 {
2749 	spi_unregister_controller(*(struct spi_controller **)res);
2750 }
2751 
2752 /**
2753  * devm_spi_register_controller - register managed SPI master or slave
2754  *	controller
2755  * @dev:    device managing SPI controller
2756  * @ctlr: initialized controller, originally from spi_alloc_master() or
2757  *	spi_alloc_slave()
2758  * Context: can sleep
2759  *
2760  * Register a SPI device as with spi_register_controller() which will
2761  * automatically be unregistered and freed.
2762  *
2763  * Return: zero on success, else a negative error code.
2764  */
2765 int devm_spi_register_controller(struct device *dev,
2766 				 struct spi_controller *ctlr)
2767 {
2768 	struct spi_controller **ptr;
2769 	int ret;
2770 
2771 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2772 	if (!ptr)
2773 		return -ENOMEM;
2774 
2775 	ret = spi_register_controller(ctlr);
2776 	if (!ret) {
2777 		*ptr = ctlr;
2778 		devres_add(dev, ptr);
2779 	} else {
2780 		devres_free(ptr);
2781 	}
2782 
2783 	return ret;
2784 }
2785 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2786 
2787 static int __unregister(struct device *dev, void *null)
2788 {
2789 	spi_unregister_device(to_spi_device(dev));
2790 	return 0;
2791 }
2792 
2793 /**
2794  * spi_unregister_controller - unregister SPI master or slave controller
2795  * @ctlr: the controller being unregistered
2796  * Context: can sleep
2797  *
2798  * This call is used only by SPI controller drivers, which are the
2799  * only ones directly touching chip registers.
2800  *
2801  * This must be called from context that can sleep.
2802  *
2803  * Note that this function also drops a reference to the controller.
2804  */
2805 void spi_unregister_controller(struct spi_controller *ctlr)
2806 {
2807 	struct spi_controller *found;
2808 	int id = ctlr->bus_num;
2809 
2810 	/* Prevent addition of new devices, unregister existing ones */
2811 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2812 		mutex_lock(&spi_add_lock);
2813 
2814 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2815 
2816 	/* First make sure that this controller was ever added */
2817 	mutex_lock(&board_lock);
2818 	found = idr_find(&spi_master_idr, id);
2819 	mutex_unlock(&board_lock);
2820 	if (ctlr->queued) {
2821 		if (spi_destroy_queue(ctlr))
2822 			dev_err(&ctlr->dev, "queue remove failed\n");
2823 	}
2824 	mutex_lock(&board_lock);
2825 	list_del(&ctlr->list);
2826 	mutex_unlock(&board_lock);
2827 
2828 	device_unregister(&ctlr->dev);
2829 	/* free bus id */
2830 	mutex_lock(&board_lock);
2831 	if (found == ctlr)
2832 		idr_remove(&spi_master_idr, id);
2833 	mutex_unlock(&board_lock);
2834 
2835 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2836 		mutex_unlock(&spi_add_lock);
2837 }
2838 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2839 
2840 int spi_controller_suspend(struct spi_controller *ctlr)
2841 {
2842 	int ret;
2843 
2844 	/* Basically no-ops for non-queued controllers */
2845 	if (!ctlr->queued)
2846 		return 0;
2847 
2848 	ret = spi_stop_queue(ctlr);
2849 	if (ret)
2850 		dev_err(&ctlr->dev, "queue stop failed\n");
2851 
2852 	return ret;
2853 }
2854 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2855 
2856 int spi_controller_resume(struct spi_controller *ctlr)
2857 {
2858 	int ret;
2859 
2860 	if (!ctlr->queued)
2861 		return 0;
2862 
2863 	ret = spi_start_queue(ctlr);
2864 	if (ret)
2865 		dev_err(&ctlr->dev, "queue restart failed\n");
2866 
2867 	return ret;
2868 }
2869 EXPORT_SYMBOL_GPL(spi_controller_resume);
2870 
2871 static int __spi_controller_match(struct device *dev, const void *data)
2872 {
2873 	struct spi_controller *ctlr;
2874 	const u16 *bus_num = data;
2875 
2876 	ctlr = container_of(dev, struct spi_controller, dev);
2877 	return ctlr->bus_num == *bus_num;
2878 }
2879 
2880 /**
2881  * spi_busnum_to_master - look up master associated with bus_num
2882  * @bus_num: the master's bus number
2883  * Context: can sleep
2884  *
2885  * This call may be used with devices that are registered after
2886  * arch init time.  It returns a refcounted pointer to the relevant
2887  * spi_controller (which the caller must release), or NULL if there is
2888  * no such master registered.
2889  *
2890  * Return: the SPI master structure on success, else NULL.
2891  */
2892 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2893 {
2894 	struct device		*dev;
2895 	struct spi_controller	*ctlr = NULL;
2896 
2897 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2898 				__spi_controller_match);
2899 	if (dev)
2900 		ctlr = container_of(dev, struct spi_controller, dev);
2901 	/* reference got in class_find_device */
2902 	return ctlr;
2903 }
2904 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2905 
2906 /*-------------------------------------------------------------------------*/
2907 
2908 /* Core methods for SPI resource management */
2909 
2910 /**
2911  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2912  *                 during the processing of a spi_message while using
2913  *                 spi_transfer_one
2914  * @spi:     the spi device for which we allocate memory
2915  * @release: the release code to execute for this resource
2916  * @size:    size to alloc and return
2917  * @gfp:     GFP allocation flags
2918  *
2919  * Return: the pointer to the allocated data
2920  *
2921  * This may get enhanced in the future to allocate from a memory pool
2922  * of the @spi_device or @spi_controller to avoid repeated allocations.
2923  */
2924 void *spi_res_alloc(struct spi_device *spi,
2925 		    spi_res_release_t release,
2926 		    size_t size, gfp_t gfp)
2927 {
2928 	struct spi_res *sres;
2929 
2930 	sres = kzalloc(sizeof(*sres) + size, gfp);
2931 	if (!sres)
2932 		return NULL;
2933 
2934 	INIT_LIST_HEAD(&sres->entry);
2935 	sres->release = release;
2936 
2937 	return sres->data;
2938 }
2939 EXPORT_SYMBOL_GPL(spi_res_alloc);
2940 
2941 /**
2942  * spi_res_free - free an spi resource
2943  * @res: pointer to the custom data of a resource
2944  *
2945  */
2946 void spi_res_free(void *res)
2947 {
2948 	struct spi_res *sres = container_of(res, struct spi_res, data);
2949 
2950 	if (!res)
2951 		return;
2952 
2953 	WARN_ON(!list_empty(&sres->entry));
2954 	kfree(sres);
2955 }
2956 EXPORT_SYMBOL_GPL(spi_res_free);
2957 
2958 /**
2959  * spi_res_add - add a spi_res to the spi_message
2960  * @message: the spi message
2961  * @res:     the spi_resource
2962  */
2963 void spi_res_add(struct spi_message *message, void *res)
2964 {
2965 	struct spi_res *sres = container_of(res, struct spi_res, data);
2966 
2967 	WARN_ON(!list_empty(&sres->entry));
2968 	list_add_tail(&sres->entry, &message->resources);
2969 }
2970 EXPORT_SYMBOL_GPL(spi_res_add);
2971 
2972 /**
2973  * spi_res_release - release all spi resources for this message
2974  * @ctlr:  the @spi_controller
2975  * @message: the @spi_message
2976  */
2977 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2978 {
2979 	struct spi_res *res, *tmp;
2980 
2981 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2982 		if (res->release)
2983 			res->release(ctlr, message, res->data);
2984 
2985 		list_del(&res->entry);
2986 
2987 		kfree(res);
2988 	}
2989 }
2990 EXPORT_SYMBOL_GPL(spi_res_release);
2991 
2992 /*-------------------------------------------------------------------------*/
2993 
2994 /* Core methods for spi_message alterations */
2995 
2996 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2997 					    struct spi_message *msg,
2998 					    void *res)
2999 {
3000 	struct spi_replaced_transfers *rxfer = res;
3001 	size_t i;
3002 
3003 	/* call extra callback if requested */
3004 	if (rxfer->release)
3005 		rxfer->release(ctlr, msg, res);
3006 
3007 	/* insert replaced transfers back into the message */
3008 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3009 
3010 	/* remove the formerly inserted entries */
3011 	for (i = 0; i < rxfer->inserted; i++)
3012 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3013 }
3014 
3015 /**
3016  * spi_replace_transfers - replace transfers with several transfers
3017  *                         and register change with spi_message.resources
3018  * @msg:           the spi_message we work upon
3019  * @xfer_first:    the first spi_transfer we want to replace
3020  * @remove:        number of transfers to remove
3021  * @insert:        the number of transfers we want to insert instead
3022  * @release:       extra release code necessary in some circumstances
3023  * @extradatasize: extra data to allocate (with alignment guarantees
3024  *                 of struct @spi_transfer)
3025  * @gfp:           gfp flags
3026  *
3027  * Returns: pointer to @spi_replaced_transfers,
3028  *          PTR_ERR(...) in case of errors.
3029  */
3030 struct spi_replaced_transfers *spi_replace_transfers(
3031 	struct spi_message *msg,
3032 	struct spi_transfer *xfer_first,
3033 	size_t remove,
3034 	size_t insert,
3035 	spi_replaced_release_t release,
3036 	size_t extradatasize,
3037 	gfp_t gfp)
3038 {
3039 	struct spi_replaced_transfers *rxfer;
3040 	struct spi_transfer *xfer;
3041 	size_t i;
3042 
3043 	/* allocate the structure using spi_res */
3044 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3045 			      struct_size(rxfer, inserted_transfers, insert)
3046 			      + extradatasize,
3047 			      gfp);
3048 	if (!rxfer)
3049 		return ERR_PTR(-ENOMEM);
3050 
3051 	/* the release code to invoke before running the generic release */
3052 	rxfer->release = release;
3053 
3054 	/* assign extradata */
3055 	if (extradatasize)
3056 		rxfer->extradata =
3057 			&rxfer->inserted_transfers[insert];
3058 
3059 	/* init the replaced_transfers list */
3060 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3061 
3062 	/* assign the list_entry after which we should reinsert
3063 	 * the @replaced_transfers - it may be spi_message.messages!
3064 	 */
3065 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3066 
3067 	/* remove the requested number of transfers */
3068 	for (i = 0; i < remove; i++) {
3069 		/* if the entry after replaced_after it is msg->transfers
3070 		 * then we have been requested to remove more transfers
3071 		 * than are in the list
3072 		 */
3073 		if (rxfer->replaced_after->next == &msg->transfers) {
3074 			dev_err(&msg->spi->dev,
3075 				"requested to remove more spi_transfers than are available\n");
3076 			/* insert replaced transfers back into the message */
3077 			list_splice(&rxfer->replaced_transfers,
3078 				    rxfer->replaced_after);
3079 
3080 			/* free the spi_replace_transfer structure */
3081 			spi_res_free(rxfer);
3082 
3083 			/* and return with an error */
3084 			return ERR_PTR(-EINVAL);
3085 		}
3086 
3087 		/* remove the entry after replaced_after from list of
3088 		 * transfers and add it to list of replaced_transfers
3089 		 */
3090 		list_move_tail(rxfer->replaced_after->next,
3091 			       &rxfer->replaced_transfers);
3092 	}
3093 
3094 	/* create copy of the given xfer with identical settings
3095 	 * based on the first transfer to get removed
3096 	 */
3097 	for (i = 0; i < insert; i++) {
3098 		/* we need to run in reverse order */
3099 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3100 
3101 		/* copy all spi_transfer data */
3102 		memcpy(xfer, xfer_first, sizeof(*xfer));
3103 
3104 		/* add to list */
3105 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3106 
3107 		/* clear cs_change and delay for all but the last */
3108 		if (i) {
3109 			xfer->cs_change = false;
3110 			xfer->delay_usecs = 0;
3111 			xfer->delay.value = 0;
3112 		}
3113 	}
3114 
3115 	/* set up inserted */
3116 	rxfer->inserted = insert;
3117 
3118 	/* and register it with spi_res/spi_message */
3119 	spi_res_add(msg, rxfer);
3120 
3121 	return rxfer;
3122 }
3123 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3124 
3125 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3126 					struct spi_message *msg,
3127 					struct spi_transfer **xferp,
3128 					size_t maxsize,
3129 					gfp_t gfp)
3130 {
3131 	struct spi_transfer *xfer = *xferp, *xfers;
3132 	struct spi_replaced_transfers *srt;
3133 	size_t offset;
3134 	size_t count, i;
3135 
3136 	/* calculate how many we have to replace */
3137 	count = DIV_ROUND_UP(xfer->len, maxsize);
3138 
3139 	/* create replacement */
3140 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3141 	if (IS_ERR(srt))
3142 		return PTR_ERR(srt);
3143 	xfers = srt->inserted_transfers;
3144 
3145 	/* now handle each of those newly inserted spi_transfers
3146 	 * note that the replacements spi_transfers all are preset
3147 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3148 	 * are all identical (as well as most others)
3149 	 * so we just have to fix up len and the pointers.
3150 	 *
3151 	 * this also includes support for the depreciated
3152 	 * spi_message.is_dma_mapped interface
3153 	 */
3154 
3155 	/* the first transfer just needs the length modified, so we
3156 	 * run it outside the loop
3157 	 */
3158 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3159 
3160 	/* all the others need rx_buf/tx_buf also set */
3161 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3162 		/* update rx_buf, tx_buf and dma */
3163 		if (xfers[i].rx_buf)
3164 			xfers[i].rx_buf += offset;
3165 		if (xfers[i].rx_dma)
3166 			xfers[i].rx_dma += offset;
3167 		if (xfers[i].tx_buf)
3168 			xfers[i].tx_buf += offset;
3169 		if (xfers[i].tx_dma)
3170 			xfers[i].tx_dma += offset;
3171 
3172 		/* update length */
3173 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3174 	}
3175 
3176 	/* we set up xferp to the last entry we have inserted,
3177 	 * so that we skip those already split transfers
3178 	 */
3179 	*xferp = &xfers[count - 1];
3180 
3181 	/* increment statistics counters */
3182 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3183 				       transfers_split_maxsize);
3184 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3185 				       transfers_split_maxsize);
3186 
3187 	return 0;
3188 }
3189 
3190 /**
3191  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3192  *                              when an individual transfer exceeds a
3193  *                              certain size
3194  * @ctlr:    the @spi_controller for this transfer
3195  * @msg:   the @spi_message to transform
3196  * @maxsize:  the maximum when to apply this
3197  * @gfp: GFP allocation flags
3198  *
3199  * Return: status of transformation
3200  */
3201 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3202 				struct spi_message *msg,
3203 				size_t maxsize,
3204 				gfp_t gfp)
3205 {
3206 	struct spi_transfer *xfer;
3207 	int ret;
3208 
3209 	/* iterate over the transfer_list,
3210 	 * but note that xfer is advanced to the last transfer inserted
3211 	 * to avoid checking sizes again unnecessarily (also xfer does
3212 	 * potentiall belong to a different list by the time the
3213 	 * replacement has happened
3214 	 */
3215 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3216 		if (xfer->len > maxsize) {
3217 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3218 							   maxsize, gfp);
3219 			if (ret)
3220 				return ret;
3221 		}
3222 	}
3223 
3224 	return 0;
3225 }
3226 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3227 
3228 /*-------------------------------------------------------------------------*/
3229 
3230 /* Core methods for SPI controller protocol drivers.  Some of the
3231  * other core methods are currently defined as inline functions.
3232  */
3233 
3234 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3235 					u8 bits_per_word)
3236 {
3237 	if (ctlr->bits_per_word_mask) {
3238 		/* Only 32 bits fit in the mask */
3239 		if (bits_per_word > 32)
3240 			return -EINVAL;
3241 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3242 			return -EINVAL;
3243 	}
3244 
3245 	return 0;
3246 }
3247 
3248 /**
3249  * spi_setup - setup SPI mode and clock rate
3250  * @spi: the device whose settings are being modified
3251  * Context: can sleep, and no requests are queued to the device
3252  *
3253  * SPI protocol drivers may need to update the transfer mode if the
3254  * device doesn't work with its default.  They may likewise need
3255  * to update clock rates or word sizes from initial values.  This function
3256  * changes those settings, and must be called from a context that can sleep.
3257  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3258  * effect the next time the device is selected and data is transferred to
3259  * or from it.  When this function returns, the spi device is deselected.
3260  *
3261  * Note that this call will fail if the protocol driver specifies an option
3262  * that the underlying controller or its driver does not support.  For
3263  * example, not all hardware supports wire transfers using nine bit words,
3264  * LSB-first wire encoding, or active-high chipselects.
3265  *
3266  * Return: zero on success, else a negative error code.
3267  */
3268 int spi_setup(struct spi_device *spi)
3269 {
3270 	unsigned	bad_bits, ugly_bits;
3271 	int		status;
3272 
3273 	/* check mode to prevent that DUAL and QUAD set at the same time
3274 	 */
3275 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3276 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3277 		dev_err(&spi->dev,
3278 		"setup: can not select dual and quad at the same time\n");
3279 		return -EINVAL;
3280 	}
3281 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3282 	 */
3283 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3284 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3285 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3286 		return -EINVAL;
3287 	/* help drivers fail *cleanly* when they need options
3288 	 * that aren't supported with their current controller
3289 	 * SPI_CS_WORD has a fallback software implementation,
3290 	 * so it is ignored here.
3291 	 */
3292 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3293 	/* nothing prevents from working with active-high CS in case if it
3294 	 * is driven by GPIO.
3295 	 */
3296 	if (gpio_is_valid(spi->cs_gpio))
3297 		bad_bits &= ~SPI_CS_HIGH;
3298 	ugly_bits = bad_bits &
3299 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3300 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3301 	if (ugly_bits) {
3302 		dev_warn(&spi->dev,
3303 			 "setup: ignoring unsupported mode bits %x\n",
3304 			 ugly_bits);
3305 		spi->mode &= ~ugly_bits;
3306 		bad_bits &= ~ugly_bits;
3307 	}
3308 	if (bad_bits) {
3309 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3310 			bad_bits);
3311 		return -EINVAL;
3312 	}
3313 
3314 	if (!spi->bits_per_word)
3315 		spi->bits_per_word = 8;
3316 
3317 	status = __spi_validate_bits_per_word(spi->controller,
3318 					      spi->bits_per_word);
3319 	if (status)
3320 		return status;
3321 
3322 	if (!spi->max_speed_hz)
3323 		spi->max_speed_hz = spi->controller->max_speed_hz;
3324 
3325 	if (spi->controller->setup)
3326 		status = spi->controller->setup(spi);
3327 
3328 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3329 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3330 		if (status < 0) {
3331 			pm_runtime_put_noidle(spi->controller->dev.parent);
3332 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3333 				status);
3334 			return status;
3335 		}
3336 
3337 		/*
3338 		 * We do not want to return positive value from pm_runtime_get,
3339 		 * there are many instances of devices calling spi_setup() and
3340 		 * checking for a non-zero return value instead of a negative
3341 		 * return value.
3342 		 */
3343 		status = 0;
3344 
3345 		spi_set_cs(spi, false);
3346 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3347 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3348 	} else {
3349 		spi_set_cs(spi, false);
3350 	}
3351 
3352 	if (spi->rt && !spi->controller->rt) {
3353 		spi->controller->rt = true;
3354 		spi_set_thread_rt(spi->controller);
3355 	}
3356 
3357 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3358 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3359 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3360 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3361 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3362 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3363 			spi->bits_per_word, spi->max_speed_hz,
3364 			status);
3365 
3366 	return status;
3367 }
3368 EXPORT_SYMBOL_GPL(spi_setup);
3369 
3370 /**
3371  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3372  * @spi: the device that requires specific CS timing configuration
3373  * @setup: CS setup time specified via @spi_delay
3374  * @hold: CS hold time specified via @spi_delay
3375  * @inactive: CS inactive delay between transfers specified via @spi_delay
3376  *
3377  * Return: zero on success, else a negative error code.
3378  */
3379 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3380 		      struct spi_delay *hold, struct spi_delay *inactive)
3381 {
3382 	size_t len;
3383 
3384 	if (spi->controller->set_cs_timing)
3385 		return spi->controller->set_cs_timing(spi, setup, hold,
3386 						      inactive);
3387 
3388 	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3389 	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3390 	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3391 		dev_err(&spi->dev,
3392 			"Clock-cycle delays for CS not supported in SW mode\n");
3393 		return -ENOTSUPP;
3394 	}
3395 
3396 	len = sizeof(struct spi_delay);
3397 
3398 	/* copy delays to controller */
3399 	if (setup)
3400 		memcpy(&spi->controller->cs_setup, setup, len);
3401 	else
3402 		memset(&spi->controller->cs_setup, 0, len);
3403 
3404 	if (hold)
3405 		memcpy(&spi->controller->cs_hold, hold, len);
3406 	else
3407 		memset(&spi->controller->cs_hold, 0, len);
3408 
3409 	if (inactive)
3410 		memcpy(&spi->controller->cs_inactive, inactive, len);
3411 	else
3412 		memset(&spi->controller->cs_inactive, 0, len);
3413 
3414 	return 0;
3415 }
3416 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3417 
3418 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3419 				       struct spi_device *spi)
3420 {
3421 	int delay1, delay2;
3422 
3423 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3424 	if (delay1 < 0)
3425 		return delay1;
3426 
3427 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3428 	if (delay2 < 0)
3429 		return delay2;
3430 
3431 	if (delay1 < delay2)
3432 		memcpy(&xfer->word_delay, &spi->word_delay,
3433 		       sizeof(xfer->word_delay));
3434 
3435 	return 0;
3436 }
3437 
3438 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3439 {
3440 	struct spi_controller *ctlr = spi->controller;
3441 	struct spi_transfer *xfer;
3442 	int w_size;
3443 
3444 	if (list_empty(&message->transfers))
3445 		return -EINVAL;
3446 
3447 	/* If an SPI controller does not support toggling the CS line on each
3448 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3449 	 * for the CS line, we can emulate the CS-per-word hardware function by
3450 	 * splitting transfers into one-word transfers and ensuring that
3451 	 * cs_change is set for each transfer.
3452 	 */
3453 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3454 					  spi->cs_gpiod ||
3455 					  gpio_is_valid(spi->cs_gpio))) {
3456 		size_t maxsize;
3457 		int ret;
3458 
3459 		maxsize = (spi->bits_per_word + 7) / 8;
3460 
3461 		/* spi_split_transfers_maxsize() requires message->spi */
3462 		message->spi = spi;
3463 
3464 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3465 						  GFP_KERNEL);
3466 		if (ret)
3467 			return ret;
3468 
3469 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3470 			/* don't change cs_change on the last entry in the list */
3471 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3472 				break;
3473 			xfer->cs_change = 1;
3474 		}
3475 	}
3476 
3477 	/* Half-duplex links include original MicroWire, and ones with
3478 	 * only one data pin like SPI_3WIRE (switches direction) or where
3479 	 * either MOSI or MISO is missing.  They can also be caused by
3480 	 * software limitations.
3481 	 */
3482 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3483 	    (spi->mode & SPI_3WIRE)) {
3484 		unsigned flags = ctlr->flags;
3485 
3486 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3487 			if (xfer->rx_buf && xfer->tx_buf)
3488 				return -EINVAL;
3489 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3490 				return -EINVAL;
3491 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3492 				return -EINVAL;
3493 		}
3494 	}
3495 
3496 	/**
3497 	 * Set transfer bits_per_word and max speed as spi device default if
3498 	 * it is not set for this transfer.
3499 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3500 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3501 	 * Ensure transfer word_delay is at least as long as that required by
3502 	 * device itself.
3503 	 */
3504 	message->frame_length = 0;
3505 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3506 		xfer->effective_speed_hz = 0;
3507 		message->frame_length += xfer->len;
3508 		if (!xfer->bits_per_word)
3509 			xfer->bits_per_word = spi->bits_per_word;
3510 
3511 		if (!xfer->speed_hz)
3512 			xfer->speed_hz = spi->max_speed_hz;
3513 
3514 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3515 			xfer->speed_hz = ctlr->max_speed_hz;
3516 
3517 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3518 			return -EINVAL;
3519 
3520 		/*
3521 		 * SPI transfer length should be multiple of SPI word size
3522 		 * where SPI word size should be power-of-two multiple
3523 		 */
3524 		if (xfer->bits_per_word <= 8)
3525 			w_size = 1;
3526 		else if (xfer->bits_per_word <= 16)
3527 			w_size = 2;
3528 		else
3529 			w_size = 4;
3530 
3531 		/* No partial transfers accepted */
3532 		if (xfer->len % w_size)
3533 			return -EINVAL;
3534 
3535 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3536 		    xfer->speed_hz < ctlr->min_speed_hz)
3537 			return -EINVAL;
3538 
3539 		if (xfer->tx_buf && !xfer->tx_nbits)
3540 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3541 		if (xfer->rx_buf && !xfer->rx_nbits)
3542 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3543 		/* check transfer tx/rx_nbits:
3544 		 * 1. check the value matches one of single, dual and quad
3545 		 * 2. check tx/rx_nbits match the mode in spi_device
3546 		 */
3547 		if (xfer->tx_buf) {
3548 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3549 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3550 				xfer->tx_nbits != SPI_NBITS_QUAD)
3551 				return -EINVAL;
3552 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3553 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3554 				return -EINVAL;
3555 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3556 				!(spi->mode & SPI_TX_QUAD))
3557 				return -EINVAL;
3558 		}
3559 		/* check transfer rx_nbits */
3560 		if (xfer->rx_buf) {
3561 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3562 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3563 				xfer->rx_nbits != SPI_NBITS_QUAD)
3564 				return -EINVAL;
3565 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3566 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3567 				return -EINVAL;
3568 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3569 				!(spi->mode & SPI_RX_QUAD))
3570 				return -EINVAL;
3571 		}
3572 
3573 		if (_spi_xfer_word_delay_update(xfer, spi))
3574 			return -EINVAL;
3575 	}
3576 
3577 	message->status = -EINPROGRESS;
3578 
3579 	return 0;
3580 }
3581 
3582 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3583 {
3584 	struct spi_controller *ctlr = spi->controller;
3585 	struct spi_transfer *xfer;
3586 
3587 	/*
3588 	 * Some controllers do not support doing regular SPI transfers. Return
3589 	 * ENOTSUPP when this is the case.
3590 	 */
3591 	if (!ctlr->transfer)
3592 		return -ENOTSUPP;
3593 
3594 	message->spi = spi;
3595 
3596 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3597 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3598 
3599 	trace_spi_message_submit(message);
3600 
3601 	if (!ctlr->ptp_sts_supported) {
3602 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3603 			xfer->ptp_sts_word_pre = 0;
3604 			ptp_read_system_prets(xfer->ptp_sts);
3605 		}
3606 	}
3607 
3608 	return ctlr->transfer(spi, message);
3609 }
3610 
3611 /**
3612  * spi_async - asynchronous SPI transfer
3613  * @spi: device with which data will be exchanged
3614  * @message: describes the data transfers, including completion callback
3615  * Context: any (irqs may be blocked, etc)
3616  *
3617  * This call may be used in_irq and other contexts which can't sleep,
3618  * as well as from task contexts which can sleep.
3619  *
3620  * The completion callback is invoked in a context which can't sleep.
3621  * Before that invocation, the value of message->status is undefined.
3622  * When the callback is issued, message->status holds either zero (to
3623  * indicate complete success) or a negative error code.  After that
3624  * callback returns, the driver which issued the transfer request may
3625  * deallocate the associated memory; it's no longer in use by any SPI
3626  * core or controller driver code.
3627  *
3628  * Note that although all messages to a spi_device are handled in
3629  * FIFO order, messages may go to different devices in other orders.
3630  * Some device might be higher priority, or have various "hard" access
3631  * time requirements, for example.
3632  *
3633  * On detection of any fault during the transfer, processing of
3634  * the entire message is aborted, and the device is deselected.
3635  * Until returning from the associated message completion callback,
3636  * no other spi_message queued to that device will be processed.
3637  * (This rule applies equally to all the synchronous transfer calls,
3638  * which are wrappers around this core asynchronous primitive.)
3639  *
3640  * Return: zero on success, else a negative error code.
3641  */
3642 int spi_async(struct spi_device *spi, struct spi_message *message)
3643 {
3644 	struct spi_controller *ctlr = spi->controller;
3645 	int ret;
3646 	unsigned long flags;
3647 
3648 	ret = __spi_validate(spi, message);
3649 	if (ret != 0)
3650 		return ret;
3651 
3652 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3653 
3654 	if (ctlr->bus_lock_flag)
3655 		ret = -EBUSY;
3656 	else
3657 		ret = __spi_async(spi, message);
3658 
3659 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3660 
3661 	return ret;
3662 }
3663 EXPORT_SYMBOL_GPL(spi_async);
3664 
3665 /**
3666  * spi_async_locked - version of spi_async with exclusive bus usage
3667  * @spi: device with which data will be exchanged
3668  * @message: describes the data transfers, including completion callback
3669  * Context: any (irqs may be blocked, etc)
3670  *
3671  * This call may be used in_irq and other contexts which can't sleep,
3672  * as well as from task contexts which can sleep.
3673  *
3674  * The completion callback is invoked in a context which can't sleep.
3675  * Before that invocation, the value of message->status is undefined.
3676  * When the callback is issued, message->status holds either zero (to
3677  * indicate complete success) or a negative error code.  After that
3678  * callback returns, the driver which issued the transfer request may
3679  * deallocate the associated memory; it's no longer in use by any SPI
3680  * core or controller driver code.
3681  *
3682  * Note that although all messages to a spi_device are handled in
3683  * FIFO order, messages may go to different devices in other orders.
3684  * Some device might be higher priority, or have various "hard" access
3685  * time requirements, for example.
3686  *
3687  * On detection of any fault during the transfer, processing of
3688  * the entire message is aborted, and the device is deselected.
3689  * Until returning from the associated message completion callback,
3690  * no other spi_message queued to that device will be processed.
3691  * (This rule applies equally to all the synchronous transfer calls,
3692  * which are wrappers around this core asynchronous primitive.)
3693  *
3694  * Return: zero on success, else a negative error code.
3695  */
3696 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3697 {
3698 	struct spi_controller *ctlr = spi->controller;
3699 	int ret;
3700 	unsigned long flags;
3701 
3702 	ret = __spi_validate(spi, message);
3703 	if (ret != 0)
3704 		return ret;
3705 
3706 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3707 
3708 	ret = __spi_async(spi, message);
3709 
3710 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3711 
3712 	return ret;
3713 
3714 }
3715 EXPORT_SYMBOL_GPL(spi_async_locked);
3716 
3717 /*-------------------------------------------------------------------------*/
3718 
3719 /* Utility methods for SPI protocol drivers, layered on
3720  * top of the core.  Some other utility methods are defined as
3721  * inline functions.
3722  */
3723 
3724 static void spi_complete(void *arg)
3725 {
3726 	complete(arg);
3727 }
3728 
3729 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3730 {
3731 	DECLARE_COMPLETION_ONSTACK(done);
3732 	int status;
3733 	struct spi_controller *ctlr = spi->controller;
3734 	unsigned long flags;
3735 
3736 	status = __spi_validate(spi, message);
3737 	if (status != 0)
3738 		return status;
3739 
3740 	message->complete = spi_complete;
3741 	message->context = &done;
3742 	message->spi = spi;
3743 
3744 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3745 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3746 
3747 	/* If we're not using the legacy transfer method then we will
3748 	 * try to transfer in the calling context so special case.
3749 	 * This code would be less tricky if we could remove the
3750 	 * support for driver implemented message queues.
3751 	 */
3752 	if (ctlr->transfer == spi_queued_transfer) {
3753 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3754 
3755 		trace_spi_message_submit(message);
3756 
3757 		status = __spi_queued_transfer(spi, message, false);
3758 
3759 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3760 	} else {
3761 		status = spi_async_locked(spi, message);
3762 	}
3763 
3764 	if (status == 0) {
3765 		/* Push out the messages in the calling context if we
3766 		 * can.
3767 		 */
3768 		if (ctlr->transfer == spi_queued_transfer) {
3769 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3770 						       spi_sync_immediate);
3771 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3772 						       spi_sync_immediate);
3773 			__spi_pump_messages(ctlr, false);
3774 		}
3775 
3776 		wait_for_completion(&done);
3777 		status = message->status;
3778 	}
3779 	message->context = NULL;
3780 	return status;
3781 }
3782 
3783 /**
3784  * spi_sync - blocking/synchronous SPI data transfers
3785  * @spi: device with which data will be exchanged
3786  * @message: describes the data transfers
3787  * Context: can sleep
3788  *
3789  * This call may only be used from a context that may sleep.  The sleep
3790  * is non-interruptible, and has no timeout.  Low-overhead controller
3791  * drivers may DMA directly into and out of the message buffers.
3792  *
3793  * Note that the SPI device's chip select is active during the message,
3794  * and then is normally disabled between messages.  Drivers for some
3795  * frequently-used devices may want to minimize costs of selecting a chip,
3796  * by leaving it selected in anticipation that the next message will go
3797  * to the same chip.  (That may increase power usage.)
3798  *
3799  * Also, the caller is guaranteeing that the memory associated with the
3800  * message will not be freed before this call returns.
3801  *
3802  * Return: zero on success, else a negative error code.
3803  */
3804 int spi_sync(struct spi_device *spi, struct spi_message *message)
3805 {
3806 	int ret;
3807 
3808 	mutex_lock(&spi->controller->bus_lock_mutex);
3809 	ret = __spi_sync(spi, message);
3810 	mutex_unlock(&spi->controller->bus_lock_mutex);
3811 
3812 	return ret;
3813 }
3814 EXPORT_SYMBOL_GPL(spi_sync);
3815 
3816 /**
3817  * spi_sync_locked - version of spi_sync with exclusive bus usage
3818  * @spi: device with which data will be exchanged
3819  * @message: describes the data transfers
3820  * Context: can sleep
3821  *
3822  * This call may only be used from a context that may sleep.  The sleep
3823  * is non-interruptible, and has no timeout.  Low-overhead controller
3824  * drivers may DMA directly into and out of the message buffers.
3825  *
3826  * This call should be used by drivers that require exclusive access to the
3827  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3828  * be released by a spi_bus_unlock call when the exclusive access is over.
3829  *
3830  * Return: zero on success, else a negative error code.
3831  */
3832 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3833 {
3834 	return __spi_sync(spi, message);
3835 }
3836 EXPORT_SYMBOL_GPL(spi_sync_locked);
3837 
3838 /**
3839  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3840  * @ctlr: SPI bus master that should be locked for exclusive bus access
3841  * Context: can sleep
3842  *
3843  * This call may only be used from a context that may sleep.  The sleep
3844  * is non-interruptible, and has no timeout.
3845  *
3846  * This call should be used by drivers that require exclusive access to the
3847  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3848  * exclusive access is over. Data transfer must be done by spi_sync_locked
3849  * and spi_async_locked calls when the SPI bus lock is held.
3850  *
3851  * Return: always zero.
3852  */
3853 int spi_bus_lock(struct spi_controller *ctlr)
3854 {
3855 	unsigned long flags;
3856 
3857 	mutex_lock(&ctlr->bus_lock_mutex);
3858 
3859 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3860 	ctlr->bus_lock_flag = 1;
3861 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3862 
3863 	/* mutex remains locked until spi_bus_unlock is called */
3864 
3865 	return 0;
3866 }
3867 EXPORT_SYMBOL_GPL(spi_bus_lock);
3868 
3869 /**
3870  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3871  * @ctlr: SPI bus master that was locked for exclusive bus access
3872  * Context: can sleep
3873  *
3874  * This call may only be used from a context that may sleep.  The sleep
3875  * is non-interruptible, and has no timeout.
3876  *
3877  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3878  * call.
3879  *
3880  * Return: always zero.
3881  */
3882 int spi_bus_unlock(struct spi_controller *ctlr)
3883 {
3884 	ctlr->bus_lock_flag = 0;
3885 
3886 	mutex_unlock(&ctlr->bus_lock_mutex);
3887 
3888 	return 0;
3889 }
3890 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3891 
3892 /* portable code must never pass more than 32 bytes */
3893 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3894 
3895 static u8	*buf;
3896 
3897 /**
3898  * spi_write_then_read - SPI synchronous write followed by read
3899  * @spi: device with which data will be exchanged
3900  * @txbuf: data to be written (need not be dma-safe)
3901  * @n_tx: size of txbuf, in bytes
3902  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3903  * @n_rx: size of rxbuf, in bytes
3904  * Context: can sleep
3905  *
3906  * This performs a half duplex MicroWire style transaction with the
3907  * device, sending txbuf and then reading rxbuf.  The return value
3908  * is zero for success, else a negative errno status code.
3909  * This call may only be used from a context that may sleep.
3910  *
3911  * Parameters to this routine are always copied using a small buffer.
3912  * Performance-sensitive or bulk transfer code should instead use
3913  * spi_{async,sync}() calls with dma-safe buffers.
3914  *
3915  * Return: zero on success, else a negative error code.
3916  */
3917 int spi_write_then_read(struct spi_device *spi,
3918 		const void *txbuf, unsigned n_tx,
3919 		void *rxbuf, unsigned n_rx)
3920 {
3921 	static DEFINE_MUTEX(lock);
3922 
3923 	int			status;
3924 	struct spi_message	message;
3925 	struct spi_transfer	x[2];
3926 	u8			*local_buf;
3927 
3928 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3929 	 * copying here, (as a pure convenience thing), but we can
3930 	 * keep heap costs out of the hot path unless someone else is
3931 	 * using the pre-allocated buffer or the transfer is too large.
3932 	 */
3933 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3934 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3935 				    GFP_KERNEL | GFP_DMA);
3936 		if (!local_buf)
3937 			return -ENOMEM;
3938 	} else {
3939 		local_buf = buf;
3940 	}
3941 
3942 	spi_message_init(&message);
3943 	memset(x, 0, sizeof(x));
3944 	if (n_tx) {
3945 		x[0].len = n_tx;
3946 		spi_message_add_tail(&x[0], &message);
3947 	}
3948 	if (n_rx) {
3949 		x[1].len = n_rx;
3950 		spi_message_add_tail(&x[1], &message);
3951 	}
3952 
3953 	memcpy(local_buf, txbuf, n_tx);
3954 	x[0].tx_buf = local_buf;
3955 	x[1].rx_buf = local_buf + n_tx;
3956 
3957 	/* do the i/o */
3958 	status = spi_sync(spi, &message);
3959 	if (status == 0)
3960 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3961 
3962 	if (x[0].tx_buf == buf)
3963 		mutex_unlock(&lock);
3964 	else
3965 		kfree(local_buf);
3966 
3967 	return status;
3968 }
3969 EXPORT_SYMBOL_GPL(spi_write_then_read);
3970 
3971 /*-------------------------------------------------------------------------*/
3972 
3973 #if IS_ENABLED(CONFIG_OF)
3974 /* must call put_device() when done with returned spi_device device */
3975 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3976 {
3977 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3978 
3979 	return dev ? to_spi_device(dev) : NULL;
3980 }
3981 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3982 #endif /* IS_ENABLED(CONFIG_OF) */
3983 
3984 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3985 /* the spi controllers are not using spi_bus, so we find it with another way */
3986 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3987 {
3988 	struct device *dev;
3989 
3990 	dev = class_find_device_by_of_node(&spi_master_class, node);
3991 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3992 		dev = class_find_device_by_of_node(&spi_slave_class, node);
3993 	if (!dev)
3994 		return NULL;
3995 
3996 	/* reference got in class_find_device */
3997 	return container_of(dev, struct spi_controller, dev);
3998 }
3999 
4000 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4001 			 void *arg)
4002 {
4003 	struct of_reconfig_data *rd = arg;
4004 	struct spi_controller *ctlr;
4005 	struct spi_device *spi;
4006 
4007 	switch (of_reconfig_get_state_change(action, arg)) {
4008 	case OF_RECONFIG_CHANGE_ADD:
4009 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4010 		if (ctlr == NULL)
4011 			return NOTIFY_OK;	/* not for us */
4012 
4013 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4014 			put_device(&ctlr->dev);
4015 			return NOTIFY_OK;
4016 		}
4017 
4018 		spi = of_register_spi_device(ctlr, rd->dn);
4019 		put_device(&ctlr->dev);
4020 
4021 		if (IS_ERR(spi)) {
4022 			pr_err("%s: failed to create for '%pOF'\n",
4023 					__func__, rd->dn);
4024 			of_node_clear_flag(rd->dn, OF_POPULATED);
4025 			return notifier_from_errno(PTR_ERR(spi));
4026 		}
4027 		break;
4028 
4029 	case OF_RECONFIG_CHANGE_REMOVE:
4030 		/* already depopulated? */
4031 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4032 			return NOTIFY_OK;
4033 
4034 		/* find our device by node */
4035 		spi = of_find_spi_device_by_node(rd->dn);
4036 		if (spi == NULL)
4037 			return NOTIFY_OK;	/* no? not meant for us */
4038 
4039 		/* unregister takes one ref away */
4040 		spi_unregister_device(spi);
4041 
4042 		/* and put the reference of the find */
4043 		put_device(&spi->dev);
4044 		break;
4045 	}
4046 
4047 	return NOTIFY_OK;
4048 }
4049 
4050 static struct notifier_block spi_of_notifier = {
4051 	.notifier_call = of_spi_notify,
4052 };
4053 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4054 extern struct notifier_block spi_of_notifier;
4055 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4056 
4057 #if IS_ENABLED(CONFIG_ACPI)
4058 static int spi_acpi_controller_match(struct device *dev, const void *data)
4059 {
4060 	return ACPI_COMPANION(dev->parent) == data;
4061 }
4062 
4063 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4064 {
4065 	struct device *dev;
4066 
4067 	dev = class_find_device(&spi_master_class, NULL, adev,
4068 				spi_acpi_controller_match);
4069 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4070 		dev = class_find_device(&spi_slave_class, NULL, adev,
4071 					spi_acpi_controller_match);
4072 	if (!dev)
4073 		return NULL;
4074 
4075 	return container_of(dev, struct spi_controller, dev);
4076 }
4077 
4078 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4079 {
4080 	struct device *dev;
4081 
4082 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4083 	return to_spi_device(dev);
4084 }
4085 
4086 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4087 			   void *arg)
4088 {
4089 	struct acpi_device *adev = arg;
4090 	struct spi_controller *ctlr;
4091 	struct spi_device *spi;
4092 
4093 	switch (value) {
4094 	case ACPI_RECONFIG_DEVICE_ADD:
4095 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4096 		if (!ctlr)
4097 			break;
4098 
4099 		acpi_register_spi_device(ctlr, adev);
4100 		put_device(&ctlr->dev);
4101 		break;
4102 	case ACPI_RECONFIG_DEVICE_REMOVE:
4103 		if (!acpi_device_enumerated(adev))
4104 			break;
4105 
4106 		spi = acpi_spi_find_device_by_adev(adev);
4107 		if (!spi)
4108 			break;
4109 
4110 		spi_unregister_device(spi);
4111 		put_device(&spi->dev);
4112 		break;
4113 	}
4114 
4115 	return NOTIFY_OK;
4116 }
4117 
4118 static struct notifier_block spi_acpi_notifier = {
4119 	.notifier_call = acpi_spi_notify,
4120 };
4121 #else
4122 extern struct notifier_block spi_acpi_notifier;
4123 #endif
4124 
4125 static int __init spi_init(void)
4126 {
4127 	int	status;
4128 
4129 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4130 	if (!buf) {
4131 		status = -ENOMEM;
4132 		goto err0;
4133 	}
4134 
4135 	status = bus_register(&spi_bus_type);
4136 	if (status < 0)
4137 		goto err1;
4138 
4139 	status = class_register(&spi_master_class);
4140 	if (status < 0)
4141 		goto err2;
4142 
4143 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4144 		status = class_register(&spi_slave_class);
4145 		if (status < 0)
4146 			goto err3;
4147 	}
4148 
4149 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4150 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4151 	if (IS_ENABLED(CONFIG_ACPI))
4152 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4153 
4154 	return 0;
4155 
4156 err3:
4157 	class_unregister(&spi_master_class);
4158 err2:
4159 	bus_unregister(&spi_bus_type);
4160 err1:
4161 	kfree(buf);
4162 	buf = NULL;
4163 err0:
4164 	return status;
4165 }
4166 
4167 /* board_info is normally registered in arch_initcall(),
4168  * but even essential drivers wait till later
4169  *
4170  * REVISIT only boardinfo really needs static linking. the rest (device and
4171  * driver registration) _could_ be dynamically linked (modular) ... costs
4172  * include needing to have boardinfo data structures be much more public.
4173  */
4174 postcore_initcall(spi_init);
4175