xref: /openbmc/linux/drivers/spi/spi.c (revision 62e59c4e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 
40 #include "internals.h"
41 
42 static DEFINE_IDR(spi_master_idr);
43 
44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi controllers may cleanup for released devices */
49 	if (spi->controller->cleanup)
50 		spi->controller->cleanup(spi);
51 
52 	spi_controller_put(spi->controller);
53 	kfree(spi->driver_override);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	const char *end = memchr(buf, '\n', count);
77 	const size_t len = end ? end - buf : count;
78 	const char *driver_override, *old;
79 
80 	/* We need to keep extra room for a newline when displaying value */
81 	if (len >= (PAGE_SIZE - 1))
82 		return -EINVAL;
83 
84 	driver_override = kstrndup(buf, len, GFP_KERNEL);
85 	if (!driver_override)
86 		return -ENOMEM;
87 
88 	device_lock(dev);
89 	old = spi->driver_override;
90 	if (len) {
91 		spi->driver_override = driver_override;
92 	} else {
93 		/* Emptry string, disable driver override */
94 		spi->driver_override = NULL;
95 		kfree(driver_override);
96 	}
97 	device_unlock(dev);
98 	kfree(old);
99 
100 	return count;
101 }
102 
103 static ssize_t driver_override_show(struct device *dev,
104 				    struct device_attribute *a, char *buf)
105 {
106 	const struct spi_device *spi = to_spi_device(dev);
107 	ssize_t len;
108 
109 	device_lock(dev);
110 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
111 	device_unlock(dev);
112 	return len;
113 }
114 static DEVICE_ATTR_RW(driver_override);
115 
116 #define SPI_STATISTICS_ATTRS(field, file)				\
117 static ssize_t spi_controller_##field##_show(struct device *dev,	\
118 					     struct device_attribute *attr, \
119 					     char *buf)			\
120 {									\
121 	struct spi_controller *ctlr = container_of(dev,			\
122 					 struct spi_controller, dev);	\
123 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
124 }									\
125 static struct device_attribute dev_attr_spi_controller_##field = {	\
126 	.attr = { .name = file, .mode = 0444 },				\
127 	.show = spi_controller_##field##_show,				\
128 };									\
129 static ssize_t spi_device_##field##_show(struct device *dev,		\
130 					 struct device_attribute *attr,	\
131 					char *buf)			\
132 {									\
133 	struct spi_device *spi = to_spi_device(dev);			\
134 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
135 }									\
136 static struct device_attribute dev_attr_spi_device_##field = {		\
137 	.attr = { .name = file, .mode = 0444 },				\
138 	.show = spi_device_##field##_show,				\
139 }
140 
141 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
142 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
143 					    char *buf)			\
144 {									\
145 	unsigned long flags;						\
146 	ssize_t len;							\
147 	spin_lock_irqsave(&stat->lock, flags);				\
148 	len = sprintf(buf, format_string, stat->field);			\
149 	spin_unlock_irqrestore(&stat->lock, flags);			\
150 	return len;							\
151 }									\
152 SPI_STATISTICS_ATTRS(name, file)
153 
154 #define SPI_STATISTICS_SHOW(field, format_string)			\
155 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
156 				 field, format_string)
157 
158 SPI_STATISTICS_SHOW(messages, "%lu");
159 SPI_STATISTICS_SHOW(transfers, "%lu");
160 SPI_STATISTICS_SHOW(errors, "%lu");
161 SPI_STATISTICS_SHOW(timedout, "%lu");
162 
163 SPI_STATISTICS_SHOW(spi_sync, "%lu");
164 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
165 SPI_STATISTICS_SHOW(spi_async, "%lu");
166 
167 SPI_STATISTICS_SHOW(bytes, "%llu");
168 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
169 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
170 
171 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
172 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
173 				 "transfer_bytes_histo_" number,	\
174 				 transfer_bytes_histo[index],  "%lu")
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
192 
193 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
194 
195 static struct attribute *spi_dev_attrs[] = {
196 	&dev_attr_modalias.attr,
197 	&dev_attr_driver_override.attr,
198 	NULL,
199 };
200 
201 static const struct attribute_group spi_dev_group = {
202 	.attrs  = spi_dev_attrs,
203 };
204 
205 static struct attribute *spi_device_statistics_attrs[] = {
206 	&dev_attr_spi_device_messages.attr,
207 	&dev_attr_spi_device_transfers.attr,
208 	&dev_attr_spi_device_errors.attr,
209 	&dev_attr_spi_device_timedout.attr,
210 	&dev_attr_spi_device_spi_sync.attr,
211 	&dev_attr_spi_device_spi_sync_immediate.attr,
212 	&dev_attr_spi_device_spi_async.attr,
213 	&dev_attr_spi_device_bytes.attr,
214 	&dev_attr_spi_device_bytes_rx.attr,
215 	&dev_attr_spi_device_bytes_tx.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
233 	&dev_attr_spi_device_transfers_split_maxsize.attr,
234 	NULL,
235 };
236 
237 static const struct attribute_group spi_device_statistics_group = {
238 	.name  = "statistics",
239 	.attrs  = spi_device_statistics_attrs,
240 };
241 
242 static const struct attribute_group *spi_dev_groups[] = {
243 	&spi_dev_group,
244 	&spi_device_statistics_group,
245 	NULL,
246 };
247 
248 static struct attribute *spi_controller_statistics_attrs[] = {
249 	&dev_attr_spi_controller_messages.attr,
250 	&dev_attr_spi_controller_transfers.attr,
251 	&dev_attr_spi_controller_errors.attr,
252 	&dev_attr_spi_controller_timedout.attr,
253 	&dev_attr_spi_controller_spi_sync.attr,
254 	&dev_attr_spi_controller_spi_sync_immediate.attr,
255 	&dev_attr_spi_controller_spi_async.attr,
256 	&dev_attr_spi_controller_bytes.attr,
257 	&dev_attr_spi_controller_bytes_rx.attr,
258 	&dev_attr_spi_controller_bytes_tx.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
276 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
277 	NULL,
278 };
279 
280 static const struct attribute_group spi_controller_statistics_group = {
281 	.name  = "statistics",
282 	.attrs  = spi_controller_statistics_attrs,
283 };
284 
285 static const struct attribute_group *spi_master_groups[] = {
286 	&spi_controller_statistics_group,
287 	NULL,
288 };
289 
290 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
291 				       struct spi_transfer *xfer,
292 				       struct spi_controller *ctlr)
293 {
294 	unsigned long flags;
295 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
296 
297 	if (l2len < 0)
298 		l2len = 0;
299 
300 	spin_lock_irqsave(&stats->lock, flags);
301 
302 	stats->transfers++;
303 	stats->transfer_bytes_histo[l2len]++;
304 
305 	stats->bytes += xfer->len;
306 	if ((xfer->tx_buf) &&
307 	    (xfer->tx_buf != ctlr->dummy_tx))
308 		stats->bytes_tx += xfer->len;
309 	if ((xfer->rx_buf) &&
310 	    (xfer->rx_buf != ctlr->dummy_rx))
311 		stats->bytes_rx += xfer->len;
312 
313 	spin_unlock_irqrestore(&stats->lock, flags);
314 }
315 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
316 
317 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
318  * and the sysfs version makes coldplug work too.
319  */
320 
321 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
322 						const struct spi_device *sdev)
323 {
324 	while (id->name[0]) {
325 		if (!strcmp(sdev->modalias, id->name))
326 			return id;
327 		id++;
328 	}
329 	return NULL;
330 }
331 
332 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
333 {
334 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
335 
336 	return spi_match_id(sdrv->id_table, sdev);
337 }
338 EXPORT_SYMBOL_GPL(spi_get_device_id);
339 
340 static int spi_match_device(struct device *dev, struct device_driver *drv)
341 {
342 	const struct spi_device	*spi = to_spi_device(dev);
343 	const struct spi_driver	*sdrv = to_spi_driver(drv);
344 
345 	/* Check override first, and if set, only use the named driver */
346 	if (spi->driver_override)
347 		return strcmp(spi->driver_override, drv->name) == 0;
348 
349 	/* Attempt an OF style match */
350 	if (of_driver_match_device(dev, drv))
351 		return 1;
352 
353 	/* Then try ACPI */
354 	if (acpi_driver_match_device(dev, drv))
355 		return 1;
356 
357 	if (sdrv->id_table)
358 		return !!spi_match_id(sdrv->id_table, spi);
359 
360 	return strcmp(spi->modalias, drv->name) == 0;
361 }
362 
363 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
364 {
365 	const struct spi_device		*spi = to_spi_device(dev);
366 	int rc;
367 
368 	rc = acpi_device_uevent_modalias(dev, env);
369 	if (rc != -ENODEV)
370 		return rc;
371 
372 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
373 }
374 
375 struct bus_type spi_bus_type = {
376 	.name		= "spi",
377 	.dev_groups	= spi_dev_groups,
378 	.match		= spi_match_device,
379 	.uevent		= spi_uevent,
380 };
381 EXPORT_SYMBOL_GPL(spi_bus_type);
382 
383 
384 static int spi_drv_probe(struct device *dev)
385 {
386 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
387 	struct spi_device		*spi = to_spi_device(dev);
388 	int ret;
389 
390 	ret = of_clk_set_defaults(dev->of_node, false);
391 	if (ret)
392 		return ret;
393 
394 	if (dev->of_node) {
395 		spi->irq = of_irq_get(dev->of_node, 0);
396 		if (spi->irq == -EPROBE_DEFER)
397 			return -EPROBE_DEFER;
398 		if (spi->irq < 0)
399 			spi->irq = 0;
400 	}
401 
402 	ret = dev_pm_domain_attach(dev, true);
403 	if (ret)
404 		return ret;
405 
406 	ret = sdrv->probe(spi);
407 	if (ret)
408 		dev_pm_domain_detach(dev, true);
409 
410 	return ret;
411 }
412 
413 static int spi_drv_remove(struct device *dev)
414 {
415 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
416 	int ret;
417 
418 	ret = sdrv->remove(to_spi_device(dev));
419 	dev_pm_domain_detach(dev, true);
420 
421 	return ret;
422 }
423 
424 static void spi_drv_shutdown(struct device *dev)
425 {
426 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
427 
428 	sdrv->shutdown(to_spi_device(dev));
429 }
430 
431 /**
432  * __spi_register_driver - register a SPI driver
433  * @owner: owner module of the driver to register
434  * @sdrv: the driver to register
435  * Context: can sleep
436  *
437  * Return: zero on success, else a negative error code.
438  */
439 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
440 {
441 	sdrv->driver.owner = owner;
442 	sdrv->driver.bus = &spi_bus_type;
443 	if (sdrv->probe)
444 		sdrv->driver.probe = spi_drv_probe;
445 	if (sdrv->remove)
446 		sdrv->driver.remove = spi_drv_remove;
447 	if (sdrv->shutdown)
448 		sdrv->driver.shutdown = spi_drv_shutdown;
449 	return driver_register(&sdrv->driver);
450 }
451 EXPORT_SYMBOL_GPL(__spi_register_driver);
452 
453 /*-------------------------------------------------------------------------*/
454 
455 /* SPI devices should normally not be created by SPI device drivers; that
456  * would make them board-specific.  Similarly with SPI controller drivers.
457  * Device registration normally goes into like arch/.../mach.../board-YYY.c
458  * with other readonly (flashable) information about mainboard devices.
459  */
460 
461 struct boardinfo {
462 	struct list_head	list;
463 	struct spi_board_info	board_info;
464 };
465 
466 static LIST_HEAD(board_list);
467 static LIST_HEAD(spi_controller_list);
468 
469 /*
470  * Used to protect add/del opertion for board_info list and
471  * spi_controller list, and their matching process
472  * also used to protect object of type struct idr
473  */
474 static DEFINE_MUTEX(board_lock);
475 
476 /**
477  * spi_alloc_device - Allocate a new SPI device
478  * @ctlr: Controller to which device is connected
479  * Context: can sleep
480  *
481  * Allows a driver to allocate and initialize a spi_device without
482  * registering it immediately.  This allows a driver to directly
483  * fill the spi_device with device parameters before calling
484  * spi_add_device() on it.
485  *
486  * Caller is responsible to call spi_add_device() on the returned
487  * spi_device structure to add it to the SPI controller.  If the caller
488  * needs to discard the spi_device without adding it, then it should
489  * call spi_dev_put() on it.
490  *
491  * Return: a pointer to the new device, or NULL.
492  */
493 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
494 {
495 	struct spi_device	*spi;
496 
497 	if (!spi_controller_get(ctlr))
498 		return NULL;
499 
500 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
501 	if (!spi) {
502 		spi_controller_put(ctlr);
503 		return NULL;
504 	}
505 
506 	spi->master = spi->controller = ctlr;
507 	spi->dev.parent = &ctlr->dev;
508 	spi->dev.bus = &spi_bus_type;
509 	spi->dev.release = spidev_release;
510 	spi->cs_gpio = -ENOENT;
511 
512 	spin_lock_init(&spi->statistics.lock);
513 
514 	device_initialize(&spi->dev);
515 	return spi;
516 }
517 EXPORT_SYMBOL_GPL(spi_alloc_device);
518 
519 static void spi_dev_set_name(struct spi_device *spi)
520 {
521 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
522 
523 	if (adev) {
524 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
525 		return;
526 	}
527 
528 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
529 		     spi->chip_select);
530 }
531 
532 static int spi_dev_check(struct device *dev, void *data)
533 {
534 	struct spi_device *spi = to_spi_device(dev);
535 	struct spi_device *new_spi = data;
536 
537 	if (spi->controller == new_spi->controller &&
538 	    spi->chip_select == new_spi->chip_select)
539 		return -EBUSY;
540 	return 0;
541 }
542 
543 /**
544  * spi_add_device - Add spi_device allocated with spi_alloc_device
545  * @spi: spi_device to register
546  *
547  * Companion function to spi_alloc_device.  Devices allocated with
548  * spi_alloc_device can be added onto the spi bus with this function.
549  *
550  * Return: 0 on success; negative errno on failure
551  */
552 int spi_add_device(struct spi_device *spi)
553 {
554 	static DEFINE_MUTEX(spi_add_lock);
555 	struct spi_controller *ctlr = spi->controller;
556 	struct device *dev = ctlr->dev.parent;
557 	int status;
558 
559 	/* Chipselects are numbered 0..max; validate. */
560 	if (spi->chip_select >= ctlr->num_chipselect) {
561 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
562 			ctlr->num_chipselect);
563 		return -EINVAL;
564 	}
565 
566 	/* Set the bus ID string */
567 	spi_dev_set_name(spi);
568 
569 	/* We need to make sure there's no other device with this
570 	 * chipselect **BEFORE** we call setup(), else we'll trash
571 	 * its configuration.  Lock against concurrent add() calls.
572 	 */
573 	mutex_lock(&spi_add_lock);
574 
575 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
576 	if (status) {
577 		dev_err(dev, "chipselect %d already in use\n",
578 				spi->chip_select);
579 		goto done;
580 	}
581 
582 	/* Descriptors take precedence */
583 	if (ctlr->cs_gpiods)
584 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
585 	else if (ctlr->cs_gpios)
586 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
587 
588 	/* Drivers may modify this initial i/o setup, but will
589 	 * normally rely on the device being setup.  Devices
590 	 * using SPI_CS_HIGH can't coexist well otherwise...
591 	 */
592 	status = spi_setup(spi);
593 	if (status < 0) {
594 		dev_err(dev, "can't setup %s, status %d\n",
595 				dev_name(&spi->dev), status);
596 		goto done;
597 	}
598 
599 	/* Device may be bound to an active driver when this returns */
600 	status = device_add(&spi->dev);
601 	if (status < 0)
602 		dev_err(dev, "can't add %s, status %d\n",
603 				dev_name(&spi->dev), status);
604 	else
605 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
606 
607 done:
608 	mutex_unlock(&spi_add_lock);
609 	return status;
610 }
611 EXPORT_SYMBOL_GPL(spi_add_device);
612 
613 /**
614  * spi_new_device - instantiate one new SPI device
615  * @ctlr: Controller to which device is connected
616  * @chip: Describes the SPI device
617  * Context: can sleep
618  *
619  * On typical mainboards, this is purely internal; and it's not needed
620  * after board init creates the hard-wired devices.  Some development
621  * platforms may not be able to use spi_register_board_info though, and
622  * this is exported so that for example a USB or parport based adapter
623  * driver could add devices (which it would learn about out-of-band).
624  *
625  * Return: the new device, or NULL.
626  */
627 struct spi_device *spi_new_device(struct spi_controller *ctlr,
628 				  struct spi_board_info *chip)
629 {
630 	struct spi_device	*proxy;
631 	int			status;
632 
633 	/* NOTE:  caller did any chip->bus_num checks necessary.
634 	 *
635 	 * Also, unless we change the return value convention to use
636 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
637 	 * suggests syslogged diagnostics are best here (ugh).
638 	 */
639 
640 	proxy = spi_alloc_device(ctlr);
641 	if (!proxy)
642 		return NULL;
643 
644 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
645 
646 	proxy->chip_select = chip->chip_select;
647 	proxy->max_speed_hz = chip->max_speed_hz;
648 	proxy->mode = chip->mode;
649 	proxy->irq = chip->irq;
650 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
651 	proxy->dev.platform_data = (void *) chip->platform_data;
652 	proxy->controller_data = chip->controller_data;
653 	proxy->controller_state = NULL;
654 
655 	if (chip->properties) {
656 		status = device_add_properties(&proxy->dev, chip->properties);
657 		if (status) {
658 			dev_err(&ctlr->dev,
659 				"failed to add properties to '%s': %d\n",
660 				chip->modalias, status);
661 			goto err_dev_put;
662 		}
663 	}
664 
665 	status = spi_add_device(proxy);
666 	if (status < 0)
667 		goto err_remove_props;
668 
669 	return proxy;
670 
671 err_remove_props:
672 	if (chip->properties)
673 		device_remove_properties(&proxy->dev);
674 err_dev_put:
675 	spi_dev_put(proxy);
676 	return NULL;
677 }
678 EXPORT_SYMBOL_GPL(spi_new_device);
679 
680 /**
681  * spi_unregister_device - unregister a single SPI device
682  * @spi: spi_device to unregister
683  *
684  * Start making the passed SPI device vanish. Normally this would be handled
685  * by spi_unregister_controller().
686  */
687 void spi_unregister_device(struct spi_device *spi)
688 {
689 	if (!spi)
690 		return;
691 
692 	if (spi->dev.of_node) {
693 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
694 		of_node_put(spi->dev.of_node);
695 	}
696 	if (ACPI_COMPANION(&spi->dev))
697 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
698 	device_unregister(&spi->dev);
699 }
700 EXPORT_SYMBOL_GPL(spi_unregister_device);
701 
702 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
703 					      struct spi_board_info *bi)
704 {
705 	struct spi_device *dev;
706 
707 	if (ctlr->bus_num != bi->bus_num)
708 		return;
709 
710 	dev = spi_new_device(ctlr, bi);
711 	if (!dev)
712 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
713 			bi->modalias);
714 }
715 
716 /**
717  * spi_register_board_info - register SPI devices for a given board
718  * @info: array of chip descriptors
719  * @n: how many descriptors are provided
720  * Context: can sleep
721  *
722  * Board-specific early init code calls this (probably during arch_initcall)
723  * with segments of the SPI device table.  Any device nodes are created later,
724  * after the relevant parent SPI controller (bus_num) is defined.  We keep
725  * this table of devices forever, so that reloading a controller driver will
726  * not make Linux forget about these hard-wired devices.
727  *
728  * Other code can also call this, e.g. a particular add-on board might provide
729  * SPI devices through its expansion connector, so code initializing that board
730  * would naturally declare its SPI devices.
731  *
732  * The board info passed can safely be __initdata ... but be careful of
733  * any embedded pointers (platform_data, etc), they're copied as-is.
734  * Device properties are deep-copied though.
735  *
736  * Return: zero on success, else a negative error code.
737  */
738 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
739 {
740 	struct boardinfo *bi;
741 	int i;
742 
743 	if (!n)
744 		return 0;
745 
746 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
747 	if (!bi)
748 		return -ENOMEM;
749 
750 	for (i = 0; i < n; i++, bi++, info++) {
751 		struct spi_controller *ctlr;
752 
753 		memcpy(&bi->board_info, info, sizeof(*info));
754 		if (info->properties) {
755 			bi->board_info.properties =
756 					property_entries_dup(info->properties);
757 			if (IS_ERR(bi->board_info.properties))
758 				return PTR_ERR(bi->board_info.properties);
759 		}
760 
761 		mutex_lock(&board_lock);
762 		list_add_tail(&bi->list, &board_list);
763 		list_for_each_entry(ctlr, &spi_controller_list, list)
764 			spi_match_controller_to_boardinfo(ctlr,
765 							  &bi->board_info);
766 		mutex_unlock(&board_lock);
767 	}
768 
769 	return 0;
770 }
771 
772 /*-------------------------------------------------------------------------*/
773 
774 static void spi_set_cs(struct spi_device *spi, bool enable)
775 {
776 	if (spi->mode & SPI_CS_HIGH)
777 		enable = !enable;
778 
779 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
780 		/*
781 		 * Honour the SPI_NO_CS flag and invert the enable line, as
782 		 * active low is default for SPI. Execution paths that handle
783 		 * polarity inversion in gpiolib (such as device tree) will
784 		 * enforce active high using the SPI_CS_HIGH resulting in a
785 		 * double inversion through the code above.
786 		 */
787 		if (!(spi->mode & SPI_NO_CS)) {
788 			if (spi->cs_gpiod)
789 				gpiod_set_value_cansleep(spi->cs_gpiod,
790 							 !enable);
791 			else
792 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
793 		}
794 		/* Some SPI masters need both GPIO CS & slave_select */
795 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
796 		    spi->controller->set_cs)
797 			spi->controller->set_cs(spi, !enable);
798 	} else if (spi->controller->set_cs) {
799 		spi->controller->set_cs(spi, !enable);
800 	}
801 }
802 
803 #ifdef CONFIG_HAS_DMA
804 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
805 		struct sg_table *sgt, void *buf, size_t len,
806 		enum dma_data_direction dir)
807 {
808 	const bool vmalloced_buf = is_vmalloc_addr(buf);
809 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
810 #ifdef CONFIG_HIGHMEM
811 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
812 				(unsigned long)buf < (PKMAP_BASE +
813 					(LAST_PKMAP * PAGE_SIZE)));
814 #else
815 	const bool kmap_buf = false;
816 #endif
817 	int desc_len;
818 	int sgs;
819 	struct page *vm_page;
820 	struct scatterlist *sg;
821 	void *sg_buf;
822 	size_t min;
823 	int i, ret;
824 
825 	if (vmalloced_buf || kmap_buf) {
826 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
827 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
828 	} else if (virt_addr_valid(buf)) {
829 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
830 		sgs = DIV_ROUND_UP(len, desc_len);
831 	} else {
832 		return -EINVAL;
833 	}
834 
835 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
836 	if (ret != 0)
837 		return ret;
838 
839 	sg = &sgt->sgl[0];
840 	for (i = 0; i < sgs; i++) {
841 
842 		if (vmalloced_buf || kmap_buf) {
843 			/*
844 			 * Next scatterlist entry size is the minimum between
845 			 * the desc_len and the remaining buffer length that
846 			 * fits in a page.
847 			 */
848 			min = min_t(size_t, desc_len,
849 				    min_t(size_t, len,
850 					  PAGE_SIZE - offset_in_page(buf)));
851 			if (vmalloced_buf)
852 				vm_page = vmalloc_to_page(buf);
853 			else
854 				vm_page = kmap_to_page(buf);
855 			if (!vm_page) {
856 				sg_free_table(sgt);
857 				return -ENOMEM;
858 			}
859 			sg_set_page(sg, vm_page,
860 				    min, offset_in_page(buf));
861 		} else {
862 			min = min_t(size_t, len, desc_len);
863 			sg_buf = buf;
864 			sg_set_buf(sg, sg_buf, min);
865 		}
866 
867 		buf += min;
868 		len -= min;
869 		sg = sg_next(sg);
870 	}
871 
872 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
873 	if (!ret)
874 		ret = -ENOMEM;
875 	if (ret < 0) {
876 		sg_free_table(sgt);
877 		return ret;
878 	}
879 
880 	sgt->nents = ret;
881 
882 	return 0;
883 }
884 
885 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
886 		   struct sg_table *sgt, enum dma_data_direction dir)
887 {
888 	if (sgt->orig_nents) {
889 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
890 		sg_free_table(sgt);
891 	}
892 }
893 
894 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
895 {
896 	struct device *tx_dev, *rx_dev;
897 	struct spi_transfer *xfer;
898 	int ret;
899 
900 	if (!ctlr->can_dma)
901 		return 0;
902 
903 	if (ctlr->dma_tx)
904 		tx_dev = ctlr->dma_tx->device->dev;
905 	else
906 		tx_dev = ctlr->dev.parent;
907 
908 	if (ctlr->dma_rx)
909 		rx_dev = ctlr->dma_rx->device->dev;
910 	else
911 		rx_dev = ctlr->dev.parent;
912 
913 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
914 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
915 			continue;
916 
917 		if (xfer->tx_buf != NULL) {
918 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
919 					  (void *)xfer->tx_buf, xfer->len,
920 					  DMA_TO_DEVICE);
921 			if (ret != 0)
922 				return ret;
923 		}
924 
925 		if (xfer->rx_buf != NULL) {
926 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
927 					  xfer->rx_buf, xfer->len,
928 					  DMA_FROM_DEVICE);
929 			if (ret != 0) {
930 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
931 					      DMA_TO_DEVICE);
932 				return ret;
933 			}
934 		}
935 	}
936 
937 	ctlr->cur_msg_mapped = true;
938 
939 	return 0;
940 }
941 
942 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
943 {
944 	struct spi_transfer *xfer;
945 	struct device *tx_dev, *rx_dev;
946 
947 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
948 		return 0;
949 
950 	if (ctlr->dma_tx)
951 		tx_dev = ctlr->dma_tx->device->dev;
952 	else
953 		tx_dev = ctlr->dev.parent;
954 
955 	if (ctlr->dma_rx)
956 		rx_dev = ctlr->dma_rx->device->dev;
957 	else
958 		rx_dev = ctlr->dev.parent;
959 
960 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
961 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
962 			continue;
963 
964 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
965 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
966 	}
967 
968 	return 0;
969 }
970 #else /* !CONFIG_HAS_DMA */
971 static inline int __spi_map_msg(struct spi_controller *ctlr,
972 				struct spi_message *msg)
973 {
974 	return 0;
975 }
976 
977 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
978 				  struct spi_message *msg)
979 {
980 	return 0;
981 }
982 #endif /* !CONFIG_HAS_DMA */
983 
984 static inline int spi_unmap_msg(struct spi_controller *ctlr,
985 				struct spi_message *msg)
986 {
987 	struct spi_transfer *xfer;
988 
989 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
990 		/*
991 		 * Restore the original value of tx_buf or rx_buf if they are
992 		 * NULL.
993 		 */
994 		if (xfer->tx_buf == ctlr->dummy_tx)
995 			xfer->tx_buf = NULL;
996 		if (xfer->rx_buf == ctlr->dummy_rx)
997 			xfer->rx_buf = NULL;
998 	}
999 
1000 	return __spi_unmap_msg(ctlr, msg);
1001 }
1002 
1003 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1004 {
1005 	struct spi_transfer *xfer;
1006 	void *tmp;
1007 	unsigned int max_tx, max_rx;
1008 
1009 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1010 		max_tx = 0;
1011 		max_rx = 0;
1012 
1013 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1014 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1015 			    !xfer->tx_buf)
1016 				max_tx = max(xfer->len, max_tx);
1017 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1018 			    !xfer->rx_buf)
1019 				max_rx = max(xfer->len, max_rx);
1020 		}
1021 
1022 		if (max_tx) {
1023 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1024 				       GFP_KERNEL | GFP_DMA);
1025 			if (!tmp)
1026 				return -ENOMEM;
1027 			ctlr->dummy_tx = tmp;
1028 			memset(tmp, 0, max_tx);
1029 		}
1030 
1031 		if (max_rx) {
1032 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1033 				       GFP_KERNEL | GFP_DMA);
1034 			if (!tmp)
1035 				return -ENOMEM;
1036 			ctlr->dummy_rx = tmp;
1037 		}
1038 
1039 		if (max_tx || max_rx) {
1040 			list_for_each_entry(xfer, &msg->transfers,
1041 					    transfer_list) {
1042 				if (!xfer->tx_buf)
1043 					xfer->tx_buf = ctlr->dummy_tx;
1044 				if (!xfer->rx_buf)
1045 					xfer->rx_buf = ctlr->dummy_rx;
1046 			}
1047 		}
1048 	}
1049 
1050 	return __spi_map_msg(ctlr, msg);
1051 }
1052 
1053 static int spi_transfer_wait(struct spi_controller *ctlr,
1054 			     struct spi_message *msg,
1055 			     struct spi_transfer *xfer)
1056 {
1057 	struct spi_statistics *statm = &ctlr->statistics;
1058 	struct spi_statistics *stats = &msg->spi->statistics;
1059 	unsigned long long ms = 1;
1060 
1061 	if (spi_controller_is_slave(ctlr)) {
1062 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1063 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1064 			return -EINTR;
1065 		}
1066 	} else {
1067 		ms = 8LL * 1000LL * xfer->len;
1068 		do_div(ms, xfer->speed_hz);
1069 		ms += ms + 200; /* some tolerance */
1070 
1071 		if (ms > UINT_MAX)
1072 			ms = UINT_MAX;
1073 
1074 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1075 						 msecs_to_jiffies(ms));
1076 
1077 		if (ms == 0) {
1078 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1079 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1080 			dev_err(&msg->spi->dev,
1081 				"SPI transfer timed out\n");
1082 			return -ETIMEDOUT;
1083 		}
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 /*
1090  * spi_transfer_one_message - Default implementation of transfer_one_message()
1091  *
1092  * This is a standard implementation of transfer_one_message() for
1093  * drivers which implement a transfer_one() operation.  It provides
1094  * standard handling of delays and chip select management.
1095  */
1096 static int spi_transfer_one_message(struct spi_controller *ctlr,
1097 				    struct spi_message *msg)
1098 {
1099 	struct spi_transfer *xfer;
1100 	bool keep_cs = false;
1101 	int ret = 0;
1102 	struct spi_statistics *statm = &ctlr->statistics;
1103 	struct spi_statistics *stats = &msg->spi->statistics;
1104 
1105 	spi_set_cs(msg->spi, true);
1106 
1107 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1108 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1109 
1110 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1111 		trace_spi_transfer_start(msg, xfer);
1112 
1113 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1114 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1115 
1116 		if (xfer->tx_buf || xfer->rx_buf) {
1117 			reinit_completion(&ctlr->xfer_completion);
1118 
1119 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1120 			if (ret < 0) {
1121 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1122 							       errors);
1123 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1124 							       errors);
1125 				dev_err(&msg->spi->dev,
1126 					"SPI transfer failed: %d\n", ret);
1127 				goto out;
1128 			}
1129 
1130 			if (ret > 0) {
1131 				ret = spi_transfer_wait(ctlr, msg, xfer);
1132 				if (ret < 0)
1133 					msg->status = ret;
1134 			}
1135 		} else {
1136 			if (xfer->len)
1137 				dev_err(&msg->spi->dev,
1138 					"Bufferless transfer has length %u\n",
1139 					xfer->len);
1140 		}
1141 
1142 		trace_spi_transfer_stop(msg, xfer);
1143 
1144 		if (msg->status != -EINPROGRESS)
1145 			goto out;
1146 
1147 		if (xfer->delay_usecs) {
1148 			u16 us = xfer->delay_usecs;
1149 
1150 			if (us <= 10)
1151 				udelay(us);
1152 			else
1153 				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1154 		}
1155 
1156 		if (xfer->cs_change) {
1157 			if (list_is_last(&xfer->transfer_list,
1158 					 &msg->transfers)) {
1159 				keep_cs = true;
1160 			} else {
1161 				spi_set_cs(msg->spi, false);
1162 				udelay(10);
1163 				spi_set_cs(msg->spi, true);
1164 			}
1165 		}
1166 
1167 		msg->actual_length += xfer->len;
1168 	}
1169 
1170 out:
1171 	if (ret != 0 || !keep_cs)
1172 		spi_set_cs(msg->spi, false);
1173 
1174 	if (msg->status == -EINPROGRESS)
1175 		msg->status = ret;
1176 
1177 	if (msg->status && ctlr->handle_err)
1178 		ctlr->handle_err(ctlr, msg);
1179 
1180 	spi_res_release(ctlr, msg);
1181 
1182 	spi_finalize_current_message(ctlr);
1183 
1184 	return ret;
1185 }
1186 
1187 /**
1188  * spi_finalize_current_transfer - report completion of a transfer
1189  * @ctlr: the controller reporting completion
1190  *
1191  * Called by SPI drivers using the core transfer_one_message()
1192  * implementation to notify it that the current interrupt driven
1193  * transfer has finished and the next one may be scheduled.
1194  */
1195 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1196 {
1197 	complete(&ctlr->xfer_completion);
1198 }
1199 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1200 
1201 /**
1202  * __spi_pump_messages - function which processes spi message queue
1203  * @ctlr: controller to process queue for
1204  * @in_kthread: true if we are in the context of the message pump thread
1205  *
1206  * This function checks if there is any spi message in the queue that
1207  * needs processing and if so call out to the driver to initialize hardware
1208  * and transfer each message.
1209  *
1210  * Note that it is called both from the kthread itself and also from
1211  * inside spi_sync(); the queue extraction handling at the top of the
1212  * function should deal with this safely.
1213  */
1214 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1215 {
1216 	unsigned long flags;
1217 	bool was_busy = false;
1218 	int ret;
1219 
1220 	/* Lock queue */
1221 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1222 
1223 	/* Make sure we are not already running a message */
1224 	if (ctlr->cur_msg) {
1225 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1226 		return;
1227 	}
1228 
1229 	/* If another context is idling the device then defer */
1230 	if (ctlr->idling) {
1231 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1232 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1233 		return;
1234 	}
1235 
1236 	/* Check if the queue is idle */
1237 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1238 		if (!ctlr->busy) {
1239 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1240 			return;
1241 		}
1242 
1243 		/* Only do teardown in the thread */
1244 		if (!in_kthread) {
1245 			kthread_queue_work(&ctlr->kworker,
1246 					   &ctlr->pump_messages);
1247 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1248 			return;
1249 		}
1250 
1251 		ctlr->busy = false;
1252 		ctlr->idling = true;
1253 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1254 
1255 		kfree(ctlr->dummy_rx);
1256 		ctlr->dummy_rx = NULL;
1257 		kfree(ctlr->dummy_tx);
1258 		ctlr->dummy_tx = NULL;
1259 		if (ctlr->unprepare_transfer_hardware &&
1260 		    ctlr->unprepare_transfer_hardware(ctlr))
1261 			dev_err(&ctlr->dev,
1262 				"failed to unprepare transfer hardware\n");
1263 		if (ctlr->auto_runtime_pm) {
1264 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1265 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1266 		}
1267 		trace_spi_controller_idle(ctlr);
1268 
1269 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1270 		ctlr->idling = false;
1271 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1272 		return;
1273 	}
1274 
1275 	/* Extract head of queue */
1276 	ctlr->cur_msg =
1277 		list_first_entry(&ctlr->queue, struct spi_message, queue);
1278 
1279 	list_del_init(&ctlr->cur_msg->queue);
1280 	if (ctlr->busy)
1281 		was_busy = true;
1282 	else
1283 		ctlr->busy = true;
1284 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1285 
1286 	mutex_lock(&ctlr->io_mutex);
1287 
1288 	if (!was_busy && ctlr->auto_runtime_pm) {
1289 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1290 		if (ret < 0) {
1291 			pm_runtime_put_noidle(ctlr->dev.parent);
1292 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1293 				ret);
1294 			mutex_unlock(&ctlr->io_mutex);
1295 			return;
1296 		}
1297 	}
1298 
1299 	if (!was_busy)
1300 		trace_spi_controller_busy(ctlr);
1301 
1302 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1303 		ret = ctlr->prepare_transfer_hardware(ctlr);
1304 		if (ret) {
1305 			dev_err(&ctlr->dev,
1306 				"failed to prepare transfer hardware\n");
1307 
1308 			if (ctlr->auto_runtime_pm)
1309 				pm_runtime_put(ctlr->dev.parent);
1310 			mutex_unlock(&ctlr->io_mutex);
1311 			return;
1312 		}
1313 	}
1314 
1315 	trace_spi_message_start(ctlr->cur_msg);
1316 
1317 	if (ctlr->prepare_message) {
1318 		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1319 		if (ret) {
1320 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1321 				ret);
1322 			ctlr->cur_msg->status = ret;
1323 			spi_finalize_current_message(ctlr);
1324 			goto out;
1325 		}
1326 		ctlr->cur_msg_prepared = true;
1327 	}
1328 
1329 	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1330 	if (ret) {
1331 		ctlr->cur_msg->status = ret;
1332 		spi_finalize_current_message(ctlr);
1333 		goto out;
1334 	}
1335 
1336 	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1337 	if (ret) {
1338 		dev_err(&ctlr->dev,
1339 			"failed to transfer one message from queue\n");
1340 		goto out;
1341 	}
1342 
1343 out:
1344 	mutex_unlock(&ctlr->io_mutex);
1345 
1346 	/* Prod the scheduler in case transfer_one() was busy waiting */
1347 	if (!ret)
1348 		cond_resched();
1349 }
1350 
1351 /**
1352  * spi_pump_messages - kthread work function which processes spi message queue
1353  * @work: pointer to kthread work struct contained in the controller struct
1354  */
1355 static void spi_pump_messages(struct kthread_work *work)
1356 {
1357 	struct spi_controller *ctlr =
1358 		container_of(work, struct spi_controller, pump_messages);
1359 
1360 	__spi_pump_messages(ctlr, true);
1361 }
1362 
1363 static int spi_init_queue(struct spi_controller *ctlr)
1364 {
1365 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1366 
1367 	ctlr->running = false;
1368 	ctlr->busy = false;
1369 
1370 	kthread_init_worker(&ctlr->kworker);
1371 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1372 					 "%s", dev_name(&ctlr->dev));
1373 	if (IS_ERR(ctlr->kworker_task)) {
1374 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1375 		return PTR_ERR(ctlr->kworker_task);
1376 	}
1377 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1378 
1379 	/*
1380 	 * Controller config will indicate if this controller should run the
1381 	 * message pump with high (realtime) priority to reduce the transfer
1382 	 * latency on the bus by minimising the delay between a transfer
1383 	 * request and the scheduling of the message pump thread. Without this
1384 	 * setting the message pump thread will remain at default priority.
1385 	 */
1386 	if (ctlr->rt) {
1387 		dev_info(&ctlr->dev,
1388 			"will run message pump with realtime priority\n");
1389 		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1390 	}
1391 
1392 	return 0;
1393 }
1394 
1395 /**
1396  * spi_get_next_queued_message() - called by driver to check for queued
1397  * messages
1398  * @ctlr: the controller to check for queued messages
1399  *
1400  * If there are more messages in the queue, the next message is returned from
1401  * this call.
1402  *
1403  * Return: the next message in the queue, else NULL if the queue is empty.
1404  */
1405 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1406 {
1407 	struct spi_message *next;
1408 	unsigned long flags;
1409 
1410 	/* get a pointer to the next message, if any */
1411 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1412 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1413 					queue);
1414 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1415 
1416 	return next;
1417 }
1418 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1419 
1420 /**
1421  * spi_finalize_current_message() - the current message is complete
1422  * @ctlr: the controller to return the message to
1423  *
1424  * Called by the driver to notify the core that the message in the front of the
1425  * queue is complete and can be removed from the queue.
1426  */
1427 void spi_finalize_current_message(struct spi_controller *ctlr)
1428 {
1429 	struct spi_message *mesg;
1430 	unsigned long flags;
1431 	int ret;
1432 
1433 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1434 	mesg = ctlr->cur_msg;
1435 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1436 
1437 	spi_unmap_msg(ctlr, mesg);
1438 
1439 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1440 		ret = ctlr->unprepare_message(ctlr, mesg);
1441 		if (ret) {
1442 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1443 				ret);
1444 		}
1445 	}
1446 
1447 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1448 	ctlr->cur_msg = NULL;
1449 	ctlr->cur_msg_prepared = false;
1450 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1451 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1452 
1453 	trace_spi_message_done(mesg);
1454 
1455 	mesg->state = NULL;
1456 	if (mesg->complete)
1457 		mesg->complete(mesg->context);
1458 }
1459 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1460 
1461 static int spi_start_queue(struct spi_controller *ctlr)
1462 {
1463 	unsigned long flags;
1464 
1465 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1466 
1467 	if (ctlr->running || ctlr->busy) {
1468 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1469 		return -EBUSY;
1470 	}
1471 
1472 	ctlr->running = true;
1473 	ctlr->cur_msg = NULL;
1474 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1475 
1476 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1477 
1478 	return 0;
1479 }
1480 
1481 static int spi_stop_queue(struct spi_controller *ctlr)
1482 {
1483 	unsigned long flags;
1484 	unsigned limit = 500;
1485 	int ret = 0;
1486 
1487 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1488 
1489 	/*
1490 	 * This is a bit lame, but is optimized for the common execution path.
1491 	 * A wait_queue on the ctlr->busy could be used, but then the common
1492 	 * execution path (pump_messages) would be required to call wake_up or
1493 	 * friends on every SPI message. Do this instead.
1494 	 */
1495 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1496 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1497 		usleep_range(10000, 11000);
1498 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1499 	}
1500 
1501 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1502 		ret = -EBUSY;
1503 	else
1504 		ctlr->running = false;
1505 
1506 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1507 
1508 	if (ret) {
1509 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1510 		return ret;
1511 	}
1512 	return ret;
1513 }
1514 
1515 static int spi_destroy_queue(struct spi_controller *ctlr)
1516 {
1517 	int ret;
1518 
1519 	ret = spi_stop_queue(ctlr);
1520 
1521 	/*
1522 	 * kthread_flush_worker will block until all work is done.
1523 	 * If the reason that stop_queue timed out is that the work will never
1524 	 * finish, then it does no good to call flush/stop thread, so
1525 	 * return anyway.
1526 	 */
1527 	if (ret) {
1528 		dev_err(&ctlr->dev, "problem destroying queue\n");
1529 		return ret;
1530 	}
1531 
1532 	kthread_flush_worker(&ctlr->kworker);
1533 	kthread_stop(ctlr->kworker_task);
1534 
1535 	return 0;
1536 }
1537 
1538 static int __spi_queued_transfer(struct spi_device *spi,
1539 				 struct spi_message *msg,
1540 				 bool need_pump)
1541 {
1542 	struct spi_controller *ctlr = spi->controller;
1543 	unsigned long flags;
1544 
1545 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1546 
1547 	if (!ctlr->running) {
1548 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1549 		return -ESHUTDOWN;
1550 	}
1551 	msg->actual_length = 0;
1552 	msg->status = -EINPROGRESS;
1553 
1554 	list_add_tail(&msg->queue, &ctlr->queue);
1555 	if (!ctlr->busy && need_pump)
1556 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1557 
1558 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1559 	return 0;
1560 }
1561 
1562 /**
1563  * spi_queued_transfer - transfer function for queued transfers
1564  * @spi: spi device which is requesting transfer
1565  * @msg: spi message which is to handled is queued to driver queue
1566  *
1567  * Return: zero on success, else a negative error code.
1568  */
1569 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1570 {
1571 	return __spi_queued_transfer(spi, msg, true);
1572 }
1573 
1574 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1575 {
1576 	int ret;
1577 
1578 	ctlr->transfer = spi_queued_transfer;
1579 	if (!ctlr->transfer_one_message)
1580 		ctlr->transfer_one_message = spi_transfer_one_message;
1581 
1582 	/* Initialize and start queue */
1583 	ret = spi_init_queue(ctlr);
1584 	if (ret) {
1585 		dev_err(&ctlr->dev, "problem initializing queue\n");
1586 		goto err_init_queue;
1587 	}
1588 	ctlr->queued = true;
1589 	ret = spi_start_queue(ctlr);
1590 	if (ret) {
1591 		dev_err(&ctlr->dev, "problem starting queue\n");
1592 		goto err_start_queue;
1593 	}
1594 
1595 	return 0;
1596 
1597 err_start_queue:
1598 	spi_destroy_queue(ctlr);
1599 err_init_queue:
1600 	return ret;
1601 }
1602 
1603 /**
1604  * spi_flush_queue - Send all pending messages in the queue from the callers'
1605  *		     context
1606  * @ctlr: controller to process queue for
1607  *
1608  * This should be used when one wants to ensure all pending messages have been
1609  * sent before doing something. Is used by the spi-mem code to make sure SPI
1610  * memory operations do not preempt regular SPI transfers that have been queued
1611  * before the spi-mem operation.
1612  */
1613 void spi_flush_queue(struct spi_controller *ctlr)
1614 {
1615 	if (ctlr->transfer == spi_queued_transfer)
1616 		__spi_pump_messages(ctlr, false);
1617 }
1618 
1619 /*-------------------------------------------------------------------------*/
1620 
1621 #if defined(CONFIG_OF)
1622 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1623 			   struct device_node *nc)
1624 {
1625 	u32 value;
1626 	int rc;
1627 
1628 	/* Mode (clock phase/polarity/etc.) */
1629 	if (of_property_read_bool(nc, "spi-cpha"))
1630 		spi->mode |= SPI_CPHA;
1631 	if (of_property_read_bool(nc, "spi-cpol"))
1632 		spi->mode |= SPI_CPOL;
1633 	if (of_property_read_bool(nc, "spi-3wire"))
1634 		spi->mode |= SPI_3WIRE;
1635 	if (of_property_read_bool(nc, "spi-lsb-first"))
1636 		spi->mode |= SPI_LSB_FIRST;
1637 
1638 	/*
1639 	 * For descriptors associated with the device, polarity inversion is
1640 	 * handled in the gpiolib, so all chip selects are "active high" in
1641 	 * the logical sense, the gpiolib will invert the line if need be.
1642 	 */
1643 	if (ctlr->use_gpio_descriptors)
1644 		spi->mode |= SPI_CS_HIGH;
1645 	else if (of_property_read_bool(nc, "spi-cs-high"))
1646 		spi->mode |= SPI_CS_HIGH;
1647 
1648 	/* Device DUAL/QUAD mode */
1649 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1650 		switch (value) {
1651 		case 1:
1652 			break;
1653 		case 2:
1654 			spi->mode |= SPI_TX_DUAL;
1655 			break;
1656 		case 4:
1657 			spi->mode |= SPI_TX_QUAD;
1658 			break;
1659 		case 8:
1660 			spi->mode |= SPI_TX_OCTAL;
1661 			break;
1662 		default:
1663 			dev_warn(&ctlr->dev,
1664 				"spi-tx-bus-width %d not supported\n",
1665 				value);
1666 			break;
1667 		}
1668 	}
1669 
1670 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1671 		switch (value) {
1672 		case 1:
1673 			break;
1674 		case 2:
1675 			spi->mode |= SPI_RX_DUAL;
1676 			break;
1677 		case 4:
1678 			spi->mode |= SPI_RX_QUAD;
1679 			break;
1680 		case 8:
1681 			spi->mode |= SPI_RX_OCTAL;
1682 			break;
1683 		default:
1684 			dev_warn(&ctlr->dev,
1685 				"spi-rx-bus-width %d not supported\n",
1686 				value);
1687 			break;
1688 		}
1689 	}
1690 
1691 	if (spi_controller_is_slave(ctlr)) {
1692 		if (!of_node_name_eq(nc, "slave")) {
1693 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1694 				nc);
1695 			return -EINVAL;
1696 		}
1697 		return 0;
1698 	}
1699 
1700 	/* Device address */
1701 	rc = of_property_read_u32(nc, "reg", &value);
1702 	if (rc) {
1703 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1704 			nc, rc);
1705 		return rc;
1706 	}
1707 	spi->chip_select = value;
1708 
1709 	/* Device speed */
1710 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1711 	if (rc) {
1712 		dev_err(&ctlr->dev,
1713 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1714 		return rc;
1715 	}
1716 	spi->max_speed_hz = value;
1717 
1718 	return 0;
1719 }
1720 
1721 static struct spi_device *
1722 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1723 {
1724 	struct spi_device *spi;
1725 	int rc;
1726 
1727 	/* Alloc an spi_device */
1728 	spi = spi_alloc_device(ctlr);
1729 	if (!spi) {
1730 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1731 		rc = -ENOMEM;
1732 		goto err_out;
1733 	}
1734 
1735 	/* Select device driver */
1736 	rc = of_modalias_node(nc, spi->modalias,
1737 				sizeof(spi->modalias));
1738 	if (rc < 0) {
1739 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1740 		goto err_out;
1741 	}
1742 
1743 	rc = of_spi_parse_dt(ctlr, spi, nc);
1744 	if (rc)
1745 		goto err_out;
1746 
1747 	/* Store a pointer to the node in the device structure */
1748 	of_node_get(nc);
1749 	spi->dev.of_node = nc;
1750 
1751 	/* Register the new device */
1752 	rc = spi_add_device(spi);
1753 	if (rc) {
1754 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1755 		goto err_of_node_put;
1756 	}
1757 
1758 	return spi;
1759 
1760 err_of_node_put:
1761 	of_node_put(nc);
1762 err_out:
1763 	spi_dev_put(spi);
1764 	return ERR_PTR(rc);
1765 }
1766 
1767 /**
1768  * of_register_spi_devices() - Register child devices onto the SPI bus
1769  * @ctlr:	Pointer to spi_controller device
1770  *
1771  * Registers an spi_device for each child node of controller node which
1772  * represents a valid SPI slave.
1773  */
1774 static void of_register_spi_devices(struct spi_controller *ctlr)
1775 {
1776 	struct spi_device *spi;
1777 	struct device_node *nc;
1778 
1779 	if (!ctlr->dev.of_node)
1780 		return;
1781 
1782 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1783 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1784 			continue;
1785 		spi = of_register_spi_device(ctlr, nc);
1786 		if (IS_ERR(spi)) {
1787 			dev_warn(&ctlr->dev,
1788 				 "Failed to create SPI device for %pOF\n", nc);
1789 			of_node_clear_flag(nc, OF_POPULATED);
1790 		}
1791 	}
1792 }
1793 #else
1794 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1795 #endif
1796 
1797 #ifdef CONFIG_ACPI
1798 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1799 {
1800 	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1801 	const union acpi_object *obj;
1802 
1803 	if (!x86_apple_machine)
1804 		return;
1805 
1806 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1807 	    && obj->buffer.length >= 4)
1808 		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1809 
1810 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1811 	    && obj->buffer.length == 8)
1812 		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1813 
1814 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1815 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1816 		spi->mode |= SPI_LSB_FIRST;
1817 
1818 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1819 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1820 		spi->mode |= SPI_CPOL;
1821 
1822 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1823 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1824 		spi->mode |= SPI_CPHA;
1825 }
1826 
1827 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1828 {
1829 	struct spi_device *spi = data;
1830 	struct spi_controller *ctlr = spi->controller;
1831 
1832 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1833 		struct acpi_resource_spi_serialbus *sb;
1834 
1835 		sb = &ares->data.spi_serial_bus;
1836 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1837 			/*
1838 			 * ACPI DeviceSelection numbering is handled by the
1839 			 * host controller driver in Windows and can vary
1840 			 * from driver to driver. In Linux we always expect
1841 			 * 0 .. max - 1 so we need to ask the driver to
1842 			 * translate between the two schemes.
1843 			 */
1844 			if (ctlr->fw_translate_cs) {
1845 				int cs = ctlr->fw_translate_cs(ctlr,
1846 						sb->device_selection);
1847 				if (cs < 0)
1848 					return cs;
1849 				spi->chip_select = cs;
1850 			} else {
1851 				spi->chip_select = sb->device_selection;
1852 			}
1853 
1854 			spi->max_speed_hz = sb->connection_speed;
1855 
1856 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1857 				spi->mode |= SPI_CPHA;
1858 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1859 				spi->mode |= SPI_CPOL;
1860 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1861 				spi->mode |= SPI_CS_HIGH;
1862 		}
1863 	} else if (spi->irq < 0) {
1864 		struct resource r;
1865 
1866 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1867 			spi->irq = r.start;
1868 	}
1869 
1870 	/* Always tell the ACPI core to skip this resource */
1871 	return 1;
1872 }
1873 
1874 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1875 					    struct acpi_device *adev)
1876 {
1877 	struct list_head resource_list;
1878 	struct spi_device *spi;
1879 	int ret;
1880 
1881 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1882 	    acpi_device_enumerated(adev))
1883 		return AE_OK;
1884 
1885 	spi = spi_alloc_device(ctlr);
1886 	if (!spi) {
1887 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1888 			dev_name(&adev->dev));
1889 		return AE_NO_MEMORY;
1890 	}
1891 
1892 	ACPI_COMPANION_SET(&spi->dev, adev);
1893 	spi->irq = -1;
1894 
1895 	INIT_LIST_HEAD(&resource_list);
1896 	ret = acpi_dev_get_resources(adev, &resource_list,
1897 				     acpi_spi_add_resource, spi);
1898 	acpi_dev_free_resource_list(&resource_list);
1899 
1900 	acpi_spi_parse_apple_properties(spi);
1901 
1902 	if (ret < 0 || !spi->max_speed_hz) {
1903 		spi_dev_put(spi);
1904 		return AE_OK;
1905 	}
1906 
1907 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1908 			  sizeof(spi->modalias));
1909 
1910 	if (spi->irq < 0)
1911 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1912 
1913 	acpi_device_set_enumerated(adev);
1914 
1915 	adev->power.flags.ignore_parent = true;
1916 	if (spi_add_device(spi)) {
1917 		adev->power.flags.ignore_parent = false;
1918 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1919 			dev_name(&adev->dev));
1920 		spi_dev_put(spi);
1921 	}
1922 
1923 	return AE_OK;
1924 }
1925 
1926 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1927 				       void *data, void **return_value)
1928 {
1929 	struct spi_controller *ctlr = data;
1930 	struct acpi_device *adev;
1931 
1932 	if (acpi_bus_get_device(handle, &adev))
1933 		return AE_OK;
1934 
1935 	return acpi_register_spi_device(ctlr, adev);
1936 }
1937 
1938 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1939 {
1940 	acpi_status status;
1941 	acpi_handle handle;
1942 
1943 	handle = ACPI_HANDLE(ctlr->dev.parent);
1944 	if (!handle)
1945 		return;
1946 
1947 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1948 				     acpi_spi_add_device, NULL, ctlr, NULL);
1949 	if (ACPI_FAILURE(status))
1950 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1951 }
1952 #else
1953 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1954 #endif /* CONFIG_ACPI */
1955 
1956 static void spi_controller_release(struct device *dev)
1957 {
1958 	struct spi_controller *ctlr;
1959 
1960 	ctlr = container_of(dev, struct spi_controller, dev);
1961 	kfree(ctlr);
1962 }
1963 
1964 static struct class spi_master_class = {
1965 	.name		= "spi_master",
1966 	.owner		= THIS_MODULE,
1967 	.dev_release	= spi_controller_release,
1968 	.dev_groups	= spi_master_groups,
1969 };
1970 
1971 #ifdef CONFIG_SPI_SLAVE
1972 /**
1973  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1974  *		     controller
1975  * @spi: device used for the current transfer
1976  */
1977 int spi_slave_abort(struct spi_device *spi)
1978 {
1979 	struct spi_controller *ctlr = spi->controller;
1980 
1981 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1982 		return ctlr->slave_abort(ctlr);
1983 
1984 	return -ENOTSUPP;
1985 }
1986 EXPORT_SYMBOL_GPL(spi_slave_abort);
1987 
1988 static int match_true(struct device *dev, void *data)
1989 {
1990 	return 1;
1991 }
1992 
1993 static ssize_t spi_slave_show(struct device *dev,
1994 			      struct device_attribute *attr, char *buf)
1995 {
1996 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1997 						   dev);
1998 	struct device *child;
1999 
2000 	child = device_find_child(&ctlr->dev, NULL, match_true);
2001 	return sprintf(buf, "%s\n",
2002 		       child ? to_spi_device(child)->modalias : NULL);
2003 }
2004 
2005 static ssize_t spi_slave_store(struct device *dev,
2006 			       struct device_attribute *attr, const char *buf,
2007 			       size_t count)
2008 {
2009 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2010 						   dev);
2011 	struct spi_device *spi;
2012 	struct device *child;
2013 	char name[32];
2014 	int rc;
2015 
2016 	rc = sscanf(buf, "%31s", name);
2017 	if (rc != 1 || !name[0])
2018 		return -EINVAL;
2019 
2020 	child = device_find_child(&ctlr->dev, NULL, match_true);
2021 	if (child) {
2022 		/* Remove registered slave */
2023 		device_unregister(child);
2024 		put_device(child);
2025 	}
2026 
2027 	if (strcmp(name, "(null)")) {
2028 		/* Register new slave */
2029 		spi = spi_alloc_device(ctlr);
2030 		if (!spi)
2031 			return -ENOMEM;
2032 
2033 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2034 
2035 		rc = spi_add_device(spi);
2036 		if (rc) {
2037 			spi_dev_put(spi);
2038 			return rc;
2039 		}
2040 	}
2041 
2042 	return count;
2043 }
2044 
2045 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2046 
2047 static struct attribute *spi_slave_attrs[] = {
2048 	&dev_attr_slave.attr,
2049 	NULL,
2050 };
2051 
2052 static const struct attribute_group spi_slave_group = {
2053 	.attrs = spi_slave_attrs,
2054 };
2055 
2056 static const struct attribute_group *spi_slave_groups[] = {
2057 	&spi_controller_statistics_group,
2058 	&spi_slave_group,
2059 	NULL,
2060 };
2061 
2062 static struct class spi_slave_class = {
2063 	.name		= "spi_slave",
2064 	.owner		= THIS_MODULE,
2065 	.dev_release	= spi_controller_release,
2066 	.dev_groups	= spi_slave_groups,
2067 };
2068 #else
2069 extern struct class spi_slave_class;	/* dummy */
2070 #endif
2071 
2072 /**
2073  * __spi_alloc_controller - allocate an SPI master or slave controller
2074  * @dev: the controller, possibly using the platform_bus
2075  * @size: how much zeroed driver-private data to allocate; the pointer to this
2076  *	memory is in the driver_data field of the returned device,
2077  *	accessible with spi_controller_get_devdata().
2078  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2079  *	slave (true) controller
2080  * Context: can sleep
2081  *
2082  * This call is used only by SPI controller drivers, which are the
2083  * only ones directly touching chip registers.  It's how they allocate
2084  * an spi_controller structure, prior to calling spi_register_controller().
2085  *
2086  * This must be called from context that can sleep.
2087  *
2088  * The caller is responsible for assigning the bus number and initializing the
2089  * controller's methods before calling spi_register_controller(); and (after
2090  * errors adding the device) calling spi_controller_put() to prevent a memory
2091  * leak.
2092  *
2093  * Return: the SPI controller structure on success, else NULL.
2094  */
2095 struct spi_controller *__spi_alloc_controller(struct device *dev,
2096 					      unsigned int size, bool slave)
2097 {
2098 	struct spi_controller	*ctlr;
2099 
2100 	if (!dev)
2101 		return NULL;
2102 
2103 	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2104 	if (!ctlr)
2105 		return NULL;
2106 
2107 	device_initialize(&ctlr->dev);
2108 	ctlr->bus_num = -1;
2109 	ctlr->num_chipselect = 1;
2110 	ctlr->slave = slave;
2111 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2112 		ctlr->dev.class = &spi_slave_class;
2113 	else
2114 		ctlr->dev.class = &spi_master_class;
2115 	ctlr->dev.parent = dev;
2116 	pm_suspend_ignore_children(&ctlr->dev, true);
2117 	spi_controller_set_devdata(ctlr, &ctlr[1]);
2118 
2119 	return ctlr;
2120 }
2121 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2122 
2123 #ifdef CONFIG_OF
2124 static int of_spi_register_master(struct spi_controller *ctlr)
2125 {
2126 	int nb, i, *cs;
2127 	struct device_node *np = ctlr->dev.of_node;
2128 
2129 	if (!np)
2130 		return 0;
2131 
2132 	nb = of_gpio_named_count(np, "cs-gpios");
2133 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2134 
2135 	/* Return error only for an incorrectly formed cs-gpios property */
2136 	if (nb == 0 || nb == -ENOENT)
2137 		return 0;
2138 	else if (nb < 0)
2139 		return nb;
2140 
2141 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2142 			  GFP_KERNEL);
2143 	ctlr->cs_gpios = cs;
2144 
2145 	if (!ctlr->cs_gpios)
2146 		return -ENOMEM;
2147 
2148 	for (i = 0; i < ctlr->num_chipselect; i++)
2149 		cs[i] = -ENOENT;
2150 
2151 	for (i = 0; i < nb; i++)
2152 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2153 
2154 	return 0;
2155 }
2156 #else
2157 static int of_spi_register_master(struct spi_controller *ctlr)
2158 {
2159 	return 0;
2160 }
2161 #endif
2162 
2163 /**
2164  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2165  * @ctlr: The SPI master to grab GPIO descriptors for
2166  */
2167 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2168 {
2169 	int nb, i;
2170 	struct gpio_desc **cs;
2171 	struct device *dev = &ctlr->dev;
2172 
2173 	nb = gpiod_count(dev, "cs");
2174 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2175 
2176 	/* No GPIOs at all is fine, else return the error */
2177 	if (nb == 0 || nb == -ENOENT)
2178 		return 0;
2179 	else if (nb < 0)
2180 		return nb;
2181 
2182 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2183 			  GFP_KERNEL);
2184 	if (!cs)
2185 		return -ENOMEM;
2186 	ctlr->cs_gpiods = cs;
2187 
2188 	for (i = 0; i < nb; i++) {
2189 		/*
2190 		 * Most chipselects are active low, the inverted
2191 		 * semantics are handled by special quirks in gpiolib,
2192 		 * so initializing them GPIOD_OUT_LOW here means
2193 		 * "unasserted", in most cases this will drive the physical
2194 		 * line high.
2195 		 */
2196 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2197 						      GPIOD_OUT_LOW);
2198 
2199 		if (cs[i]) {
2200 			/*
2201 			 * If we find a CS GPIO, name it after the device and
2202 			 * chip select line.
2203 			 */
2204 			char *gpioname;
2205 
2206 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2207 						  dev_name(dev), i);
2208 			if (!gpioname)
2209 				return -ENOMEM;
2210 			gpiod_set_consumer_name(cs[i], gpioname);
2211 		}
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static int spi_controller_check_ops(struct spi_controller *ctlr)
2218 {
2219 	/*
2220 	 * The controller may implement only the high-level SPI-memory like
2221 	 * operations if it does not support regular SPI transfers, and this is
2222 	 * valid use case.
2223 	 * If ->mem_ops is NULL, we request that at least one of the
2224 	 * ->transfer_xxx() method be implemented.
2225 	 */
2226 	if (ctlr->mem_ops) {
2227 		if (!ctlr->mem_ops->exec_op)
2228 			return -EINVAL;
2229 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2230 		   !ctlr->transfer_one_message) {
2231 		return -EINVAL;
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 /**
2238  * spi_register_controller - register SPI master or slave controller
2239  * @ctlr: initialized master, originally from spi_alloc_master() or
2240  *	spi_alloc_slave()
2241  * Context: can sleep
2242  *
2243  * SPI controllers connect to their drivers using some non-SPI bus,
2244  * such as the platform bus.  The final stage of probe() in that code
2245  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2246  *
2247  * SPI controllers use board specific (often SOC specific) bus numbers,
2248  * and board-specific addressing for SPI devices combines those numbers
2249  * with chip select numbers.  Since SPI does not directly support dynamic
2250  * device identification, boards need configuration tables telling which
2251  * chip is at which address.
2252  *
2253  * This must be called from context that can sleep.  It returns zero on
2254  * success, else a negative error code (dropping the controller's refcount).
2255  * After a successful return, the caller is responsible for calling
2256  * spi_unregister_controller().
2257  *
2258  * Return: zero on success, else a negative error code.
2259  */
2260 int spi_register_controller(struct spi_controller *ctlr)
2261 {
2262 	struct device		*dev = ctlr->dev.parent;
2263 	struct boardinfo	*bi;
2264 	int			status = -ENODEV;
2265 	int			id, first_dynamic;
2266 
2267 	if (!dev)
2268 		return -ENODEV;
2269 
2270 	/*
2271 	 * Make sure all necessary hooks are implemented before registering
2272 	 * the SPI controller.
2273 	 */
2274 	status = spi_controller_check_ops(ctlr);
2275 	if (status)
2276 		return status;
2277 
2278 	if (!spi_controller_is_slave(ctlr)) {
2279 		if (ctlr->use_gpio_descriptors) {
2280 			status = spi_get_gpio_descs(ctlr);
2281 			if (status)
2282 				return status;
2283 			/*
2284 			 * A controller using GPIO descriptors always
2285 			 * supports SPI_CS_HIGH if need be.
2286 			 */
2287 			ctlr->mode_bits |= SPI_CS_HIGH;
2288 		} else {
2289 			/* Legacy code path for GPIOs from DT */
2290 			status = of_spi_register_master(ctlr);
2291 			if (status)
2292 				return status;
2293 		}
2294 	}
2295 
2296 	/* even if it's just one always-selected device, there must
2297 	 * be at least one chipselect
2298 	 */
2299 	if (ctlr->num_chipselect == 0)
2300 		return -EINVAL;
2301 	if (ctlr->bus_num >= 0) {
2302 		/* devices with a fixed bus num must check-in with the num */
2303 		mutex_lock(&board_lock);
2304 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2305 			ctlr->bus_num + 1, GFP_KERNEL);
2306 		mutex_unlock(&board_lock);
2307 		if (WARN(id < 0, "couldn't get idr"))
2308 			return id == -ENOSPC ? -EBUSY : id;
2309 		ctlr->bus_num = id;
2310 	} else if (ctlr->dev.of_node) {
2311 		/* allocate dynamic bus number using Linux idr */
2312 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2313 		if (id >= 0) {
2314 			ctlr->bus_num = id;
2315 			mutex_lock(&board_lock);
2316 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2317 				       ctlr->bus_num + 1, GFP_KERNEL);
2318 			mutex_unlock(&board_lock);
2319 			if (WARN(id < 0, "couldn't get idr"))
2320 				return id == -ENOSPC ? -EBUSY : id;
2321 		}
2322 	}
2323 	if (ctlr->bus_num < 0) {
2324 		first_dynamic = of_alias_get_highest_id("spi");
2325 		if (first_dynamic < 0)
2326 			first_dynamic = 0;
2327 		else
2328 			first_dynamic++;
2329 
2330 		mutex_lock(&board_lock);
2331 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2332 			       0, GFP_KERNEL);
2333 		mutex_unlock(&board_lock);
2334 		if (WARN(id < 0, "couldn't get idr"))
2335 			return id;
2336 		ctlr->bus_num = id;
2337 	}
2338 	INIT_LIST_HEAD(&ctlr->queue);
2339 	spin_lock_init(&ctlr->queue_lock);
2340 	spin_lock_init(&ctlr->bus_lock_spinlock);
2341 	mutex_init(&ctlr->bus_lock_mutex);
2342 	mutex_init(&ctlr->io_mutex);
2343 	ctlr->bus_lock_flag = 0;
2344 	init_completion(&ctlr->xfer_completion);
2345 	if (!ctlr->max_dma_len)
2346 		ctlr->max_dma_len = INT_MAX;
2347 
2348 	/* register the device, then userspace will see it.
2349 	 * registration fails if the bus ID is in use.
2350 	 */
2351 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2352 	status = device_add(&ctlr->dev);
2353 	if (status < 0) {
2354 		/* free bus id */
2355 		mutex_lock(&board_lock);
2356 		idr_remove(&spi_master_idr, ctlr->bus_num);
2357 		mutex_unlock(&board_lock);
2358 		goto done;
2359 	}
2360 	dev_dbg(dev, "registered %s %s\n",
2361 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2362 			dev_name(&ctlr->dev));
2363 
2364 	/*
2365 	 * If we're using a queued driver, start the queue. Note that we don't
2366 	 * need the queueing logic if the driver is only supporting high-level
2367 	 * memory operations.
2368 	 */
2369 	if (ctlr->transfer) {
2370 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2371 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2372 		status = spi_controller_initialize_queue(ctlr);
2373 		if (status) {
2374 			device_del(&ctlr->dev);
2375 			/* free bus id */
2376 			mutex_lock(&board_lock);
2377 			idr_remove(&spi_master_idr, ctlr->bus_num);
2378 			mutex_unlock(&board_lock);
2379 			goto done;
2380 		}
2381 	}
2382 	/* add statistics */
2383 	spin_lock_init(&ctlr->statistics.lock);
2384 
2385 	mutex_lock(&board_lock);
2386 	list_add_tail(&ctlr->list, &spi_controller_list);
2387 	list_for_each_entry(bi, &board_list, list)
2388 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2389 	mutex_unlock(&board_lock);
2390 
2391 	/* Register devices from the device tree and ACPI */
2392 	of_register_spi_devices(ctlr);
2393 	acpi_register_spi_devices(ctlr);
2394 done:
2395 	return status;
2396 }
2397 EXPORT_SYMBOL_GPL(spi_register_controller);
2398 
2399 static void devm_spi_unregister(struct device *dev, void *res)
2400 {
2401 	spi_unregister_controller(*(struct spi_controller **)res);
2402 }
2403 
2404 /**
2405  * devm_spi_register_controller - register managed SPI master or slave
2406  *	controller
2407  * @dev:    device managing SPI controller
2408  * @ctlr: initialized controller, originally from spi_alloc_master() or
2409  *	spi_alloc_slave()
2410  * Context: can sleep
2411  *
2412  * Register a SPI device as with spi_register_controller() which will
2413  * automatically be unregistered and freed.
2414  *
2415  * Return: zero on success, else a negative error code.
2416  */
2417 int devm_spi_register_controller(struct device *dev,
2418 				 struct spi_controller *ctlr)
2419 {
2420 	struct spi_controller **ptr;
2421 	int ret;
2422 
2423 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2424 	if (!ptr)
2425 		return -ENOMEM;
2426 
2427 	ret = spi_register_controller(ctlr);
2428 	if (!ret) {
2429 		*ptr = ctlr;
2430 		devres_add(dev, ptr);
2431 	} else {
2432 		devres_free(ptr);
2433 	}
2434 
2435 	return ret;
2436 }
2437 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2438 
2439 static int __unregister(struct device *dev, void *null)
2440 {
2441 	spi_unregister_device(to_spi_device(dev));
2442 	return 0;
2443 }
2444 
2445 /**
2446  * spi_unregister_controller - unregister SPI master or slave controller
2447  * @ctlr: the controller being unregistered
2448  * Context: can sleep
2449  *
2450  * This call is used only by SPI controller drivers, which are the
2451  * only ones directly touching chip registers.
2452  *
2453  * This must be called from context that can sleep.
2454  *
2455  * Note that this function also drops a reference to the controller.
2456  */
2457 void spi_unregister_controller(struct spi_controller *ctlr)
2458 {
2459 	struct spi_controller *found;
2460 	int id = ctlr->bus_num;
2461 	int dummy;
2462 
2463 	/* First make sure that this controller was ever added */
2464 	mutex_lock(&board_lock);
2465 	found = idr_find(&spi_master_idr, id);
2466 	mutex_unlock(&board_lock);
2467 	if (ctlr->queued) {
2468 		if (spi_destroy_queue(ctlr))
2469 			dev_err(&ctlr->dev, "queue remove failed\n");
2470 	}
2471 	mutex_lock(&board_lock);
2472 	list_del(&ctlr->list);
2473 	mutex_unlock(&board_lock);
2474 
2475 	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2476 	device_unregister(&ctlr->dev);
2477 	/* free bus id */
2478 	mutex_lock(&board_lock);
2479 	if (found == ctlr)
2480 		idr_remove(&spi_master_idr, id);
2481 	mutex_unlock(&board_lock);
2482 }
2483 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2484 
2485 int spi_controller_suspend(struct spi_controller *ctlr)
2486 {
2487 	int ret;
2488 
2489 	/* Basically no-ops for non-queued controllers */
2490 	if (!ctlr->queued)
2491 		return 0;
2492 
2493 	ret = spi_stop_queue(ctlr);
2494 	if (ret)
2495 		dev_err(&ctlr->dev, "queue stop failed\n");
2496 
2497 	return ret;
2498 }
2499 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2500 
2501 int spi_controller_resume(struct spi_controller *ctlr)
2502 {
2503 	int ret;
2504 
2505 	if (!ctlr->queued)
2506 		return 0;
2507 
2508 	ret = spi_start_queue(ctlr);
2509 	if (ret)
2510 		dev_err(&ctlr->dev, "queue restart failed\n");
2511 
2512 	return ret;
2513 }
2514 EXPORT_SYMBOL_GPL(spi_controller_resume);
2515 
2516 static int __spi_controller_match(struct device *dev, const void *data)
2517 {
2518 	struct spi_controller *ctlr;
2519 	const u16 *bus_num = data;
2520 
2521 	ctlr = container_of(dev, struct spi_controller, dev);
2522 	return ctlr->bus_num == *bus_num;
2523 }
2524 
2525 /**
2526  * spi_busnum_to_master - look up master associated with bus_num
2527  * @bus_num: the master's bus number
2528  * Context: can sleep
2529  *
2530  * This call may be used with devices that are registered after
2531  * arch init time.  It returns a refcounted pointer to the relevant
2532  * spi_controller (which the caller must release), or NULL if there is
2533  * no such master registered.
2534  *
2535  * Return: the SPI master structure on success, else NULL.
2536  */
2537 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2538 {
2539 	struct device		*dev;
2540 	struct spi_controller	*ctlr = NULL;
2541 
2542 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2543 				__spi_controller_match);
2544 	if (dev)
2545 		ctlr = container_of(dev, struct spi_controller, dev);
2546 	/* reference got in class_find_device */
2547 	return ctlr;
2548 }
2549 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2550 
2551 /*-------------------------------------------------------------------------*/
2552 
2553 /* Core methods for SPI resource management */
2554 
2555 /**
2556  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2557  *                 during the processing of a spi_message while using
2558  *                 spi_transfer_one
2559  * @spi:     the spi device for which we allocate memory
2560  * @release: the release code to execute for this resource
2561  * @size:    size to alloc and return
2562  * @gfp:     GFP allocation flags
2563  *
2564  * Return: the pointer to the allocated data
2565  *
2566  * This may get enhanced in the future to allocate from a memory pool
2567  * of the @spi_device or @spi_controller to avoid repeated allocations.
2568  */
2569 void *spi_res_alloc(struct spi_device *spi,
2570 		    spi_res_release_t release,
2571 		    size_t size, gfp_t gfp)
2572 {
2573 	struct spi_res *sres;
2574 
2575 	sres = kzalloc(sizeof(*sres) + size, gfp);
2576 	if (!sres)
2577 		return NULL;
2578 
2579 	INIT_LIST_HEAD(&sres->entry);
2580 	sres->release = release;
2581 
2582 	return sres->data;
2583 }
2584 EXPORT_SYMBOL_GPL(spi_res_alloc);
2585 
2586 /**
2587  * spi_res_free - free an spi resource
2588  * @res: pointer to the custom data of a resource
2589  *
2590  */
2591 void spi_res_free(void *res)
2592 {
2593 	struct spi_res *sres = container_of(res, struct spi_res, data);
2594 
2595 	if (!res)
2596 		return;
2597 
2598 	WARN_ON(!list_empty(&sres->entry));
2599 	kfree(sres);
2600 }
2601 EXPORT_SYMBOL_GPL(spi_res_free);
2602 
2603 /**
2604  * spi_res_add - add a spi_res to the spi_message
2605  * @message: the spi message
2606  * @res:     the spi_resource
2607  */
2608 void spi_res_add(struct spi_message *message, void *res)
2609 {
2610 	struct spi_res *sres = container_of(res, struct spi_res, data);
2611 
2612 	WARN_ON(!list_empty(&sres->entry));
2613 	list_add_tail(&sres->entry, &message->resources);
2614 }
2615 EXPORT_SYMBOL_GPL(spi_res_add);
2616 
2617 /**
2618  * spi_res_release - release all spi resources for this message
2619  * @ctlr:  the @spi_controller
2620  * @message: the @spi_message
2621  */
2622 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2623 {
2624 	struct spi_res *res;
2625 
2626 	while (!list_empty(&message->resources)) {
2627 		res = list_last_entry(&message->resources,
2628 				      struct spi_res, entry);
2629 
2630 		if (res->release)
2631 			res->release(ctlr, message, res->data);
2632 
2633 		list_del(&res->entry);
2634 
2635 		kfree(res);
2636 	}
2637 }
2638 EXPORT_SYMBOL_GPL(spi_res_release);
2639 
2640 /*-------------------------------------------------------------------------*/
2641 
2642 /* Core methods for spi_message alterations */
2643 
2644 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2645 					    struct spi_message *msg,
2646 					    void *res)
2647 {
2648 	struct spi_replaced_transfers *rxfer = res;
2649 	size_t i;
2650 
2651 	/* call extra callback if requested */
2652 	if (rxfer->release)
2653 		rxfer->release(ctlr, msg, res);
2654 
2655 	/* insert replaced transfers back into the message */
2656 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2657 
2658 	/* remove the formerly inserted entries */
2659 	for (i = 0; i < rxfer->inserted; i++)
2660 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2661 }
2662 
2663 /**
2664  * spi_replace_transfers - replace transfers with several transfers
2665  *                         and register change with spi_message.resources
2666  * @msg:           the spi_message we work upon
2667  * @xfer_first:    the first spi_transfer we want to replace
2668  * @remove:        number of transfers to remove
2669  * @insert:        the number of transfers we want to insert instead
2670  * @release:       extra release code necessary in some circumstances
2671  * @extradatasize: extra data to allocate (with alignment guarantees
2672  *                 of struct @spi_transfer)
2673  * @gfp:           gfp flags
2674  *
2675  * Returns: pointer to @spi_replaced_transfers,
2676  *          PTR_ERR(...) in case of errors.
2677  */
2678 struct spi_replaced_transfers *spi_replace_transfers(
2679 	struct spi_message *msg,
2680 	struct spi_transfer *xfer_first,
2681 	size_t remove,
2682 	size_t insert,
2683 	spi_replaced_release_t release,
2684 	size_t extradatasize,
2685 	gfp_t gfp)
2686 {
2687 	struct spi_replaced_transfers *rxfer;
2688 	struct spi_transfer *xfer;
2689 	size_t i;
2690 
2691 	/* allocate the structure using spi_res */
2692 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2693 			      insert * sizeof(struct spi_transfer)
2694 			      + sizeof(struct spi_replaced_transfers)
2695 			      + extradatasize,
2696 			      gfp);
2697 	if (!rxfer)
2698 		return ERR_PTR(-ENOMEM);
2699 
2700 	/* the release code to invoke before running the generic release */
2701 	rxfer->release = release;
2702 
2703 	/* assign extradata */
2704 	if (extradatasize)
2705 		rxfer->extradata =
2706 			&rxfer->inserted_transfers[insert];
2707 
2708 	/* init the replaced_transfers list */
2709 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2710 
2711 	/* assign the list_entry after which we should reinsert
2712 	 * the @replaced_transfers - it may be spi_message.messages!
2713 	 */
2714 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2715 
2716 	/* remove the requested number of transfers */
2717 	for (i = 0; i < remove; i++) {
2718 		/* if the entry after replaced_after it is msg->transfers
2719 		 * then we have been requested to remove more transfers
2720 		 * than are in the list
2721 		 */
2722 		if (rxfer->replaced_after->next == &msg->transfers) {
2723 			dev_err(&msg->spi->dev,
2724 				"requested to remove more spi_transfers than are available\n");
2725 			/* insert replaced transfers back into the message */
2726 			list_splice(&rxfer->replaced_transfers,
2727 				    rxfer->replaced_after);
2728 
2729 			/* free the spi_replace_transfer structure */
2730 			spi_res_free(rxfer);
2731 
2732 			/* and return with an error */
2733 			return ERR_PTR(-EINVAL);
2734 		}
2735 
2736 		/* remove the entry after replaced_after from list of
2737 		 * transfers and add it to list of replaced_transfers
2738 		 */
2739 		list_move_tail(rxfer->replaced_after->next,
2740 			       &rxfer->replaced_transfers);
2741 	}
2742 
2743 	/* create copy of the given xfer with identical settings
2744 	 * based on the first transfer to get removed
2745 	 */
2746 	for (i = 0; i < insert; i++) {
2747 		/* we need to run in reverse order */
2748 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2749 
2750 		/* copy all spi_transfer data */
2751 		memcpy(xfer, xfer_first, sizeof(*xfer));
2752 
2753 		/* add to list */
2754 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2755 
2756 		/* clear cs_change and delay_usecs for all but the last */
2757 		if (i) {
2758 			xfer->cs_change = false;
2759 			xfer->delay_usecs = 0;
2760 		}
2761 	}
2762 
2763 	/* set up inserted */
2764 	rxfer->inserted = insert;
2765 
2766 	/* and register it with spi_res/spi_message */
2767 	spi_res_add(msg, rxfer);
2768 
2769 	return rxfer;
2770 }
2771 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2772 
2773 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2774 					struct spi_message *msg,
2775 					struct spi_transfer **xferp,
2776 					size_t maxsize,
2777 					gfp_t gfp)
2778 {
2779 	struct spi_transfer *xfer = *xferp, *xfers;
2780 	struct spi_replaced_transfers *srt;
2781 	size_t offset;
2782 	size_t count, i;
2783 
2784 	/* warn once about this fact that we are splitting a transfer */
2785 	dev_warn_once(&msg->spi->dev,
2786 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2787 		      xfer->len, maxsize);
2788 
2789 	/* calculate how many we have to replace */
2790 	count = DIV_ROUND_UP(xfer->len, maxsize);
2791 
2792 	/* create replacement */
2793 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2794 	if (IS_ERR(srt))
2795 		return PTR_ERR(srt);
2796 	xfers = srt->inserted_transfers;
2797 
2798 	/* now handle each of those newly inserted spi_transfers
2799 	 * note that the replacements spi_transfers all are preset
2800 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2801 	 * are all identical (as well as most others)
2802 	 * so we just have to fix up len and the pointers.
2803 	 *
2804 	 * this also includes support for the depreciated
2805 	 * spi_message.is_dma_mapped interface
2806 	 */
2807 
2808 	/* the first transfer just needs the length modified, so we
2809 	 * run it outside the loop
2810 	 */
2811 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2812 
2813 	/* all the others need rx_buf/tx_buf also set */
2814 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2815 		/* update rx_buf, tx_buf and dma */
2816 		if (xfers[i].rx_buf)
2817 			xfers[i].rx_buf += offset;
2818 		if (xfers[i].rx_dma)
2819 			xfers[i].rx_dma += offset;
2820 		if (xfers[i].tx_buf)
2821 			xfers[i].tx_buf += offset;
2822 		if (xfers[i].tx_dma)
2823 			xfers[i].tx_dma += offset;
2824 
2825 		/* update length */
2826 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2827 	}
2828 
2829 	/* we set up xferp to the last entry we have inserted,
2830 	 * so that we skip those already split transfers
2831 	 */
2832 	*xferp = &xfers[count - 1];
2833 
2834 	/* increment statistics counters */
2835 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2836 				       transfers_split_maxsize);
2837 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2838 				       transfers_split_maxsize);
2839 
2840 	return 0;
2841 }
2842 
2843 /**
2844  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2845  *                              when an individual transfer exceeds a
2846  *                              certain size
2847  * @ctlr:    the @spi_controller for this transfer
2848  * @msg:   the @spi_message to transform
2849  * @maxsize:  the maximum when to apply this
2850  * @gfp: GFP allocation flags
2851  *
2852  * Return: status of transformation
2853  */
2854 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2855 				struct spi_message *msg,
2856 				size_t maxsize,
2857 				gfp_t gfp)
2858 {
2859 	struct spi_transfer *xfer;
2860 	int ret;
2861 
2862 	/* iterate over the transfer_list,
2863 	 * but note that xfer is advanced to the last transfer inserted
2864 	 * to avoid checking sizes again unnecessarily (also xfer does
2865 	 * potentiall belong to a different list by the time the
2866 	 * replacement has happened
2867 	 */
2868 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2869 		if (xfer->len > maxsize) {
2870 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2871 							   maxsize, gfp);
2872 			if (ret)
2873 				return ret;
2874 		}
2875 	}
2876 
2877 	return 0;
2878 }
2879 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2880 
2881 /*-------------------------------------------------------------------------*/
2882 
2883 /* Core methods for SPI controller protocol drivers.  Some of the
2884  * other core methods are currently defined as inline functions.
2885  */
2886 
2887 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2888 					u8 bits_per_word)
2889 {
2890 	if (ctlr->bits_per_word_mask) {
2891 		/* Only 32 bits fit in the mask */
2892 		if (bits_per_word > 32)
2893 			return -EINVAL;
2894 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2895 			return -EINVAL;
2896 	}
2897 
2898 	return 0;
2899 }
2900 
2901 /**
2902  * spi_setup - setup SPI mode and clock rate
2903  * @spi: the device whose settings are being modified
2904  * Context: can sleep, and no requests are queued to the device
2905  *
2906  * SPI protocol drivers may need to update the transfer mode if the
2907  * device doesn't work with its default.  They may likewise need
2908  * to update clock rates or word sizes from initial values.  This function
2909  * changes those settings, and must be called from a context that can sleep.
2910  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2911  * effect the next time the device is selected and data is transferred to
2912  * or from it.  When this function returns, the spi device is deselected.
2913  *
2914  * Note that this call will fail if the protocol driver specifies an option
2915  * that the underlying controller or its driver does not support.  For
2916  * example, not all hardware supports wire transfers using nine bit words,
2917  * LSB-first wire encoding, or active-high chipselects.
2918  *
2919  * Return: zero on success, else a negative error code.
2920  */
2921 int spi_setup(struct spi_device *spi)
2922 {
2923 	unsigned	bad_bits, ugly_bits;
2924 	int		status;
2925 
2926 	/* check mode to prevent that DUAL and QUAD set at the same time
2927 	 */
2928 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2929 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2930 		dev_err(&spi->dev,
2931 		"setup: can not select dual and quad at the same time\n");
2932 		return -EINVAL;
2933 	}
2934 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2935 	 */
2936 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2937 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2938 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
2939 		return -EINVAL;
2940 	/* help drivers fail *cleanly* when they need options
2941 	 * that aren't supported with their current controller
2942 	 * SPI_CS_WORD has a fallback software implementation,
2943 	 * so it is ignored here.
2944 	 */
2945 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
2946 	ugly_bits = bad_bits &
2947 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2948 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
2949 	if (ugly_bits) {
2950 		dev_warn(&spi->dev,
2951 			 "setup: ignoring unsupported mode bits %x\n",
2952 			 ugly_bits);
2953 		spi->mode &= ~ugly_bits;
2954 		bad_bits &= ~ugly_bits;
2955 	}
2956 	if (bad_bits) {
2957 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2958 			bad_bits);
2959 		return -EINVAL;
2960 	}
2961 
2962 	if (!spi->bits_per_word)
2963 		spi->bits_per_word = 8;
2964 
2965 	status = __spi_validate_bits_per_word(spi->controller,
2966 					      spi->bits_per_word);
2967 	if (status)
2968 		return status;
2969 
2970 	if (!spi->max_speed_hz)
2971 		spi->max_speed_hz = spi->controller->max_speed_hz;
2972 
2973 	if (spi->controller->setup)
2974 		status = spi->controller->setup(spi);
2975 
2976 	spi_set_cs(spi, false);
2977 
2978 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2979 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2980 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2981 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2982 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2983 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2984 			spi->bits_per_word, spi->max_speed_hz,
2985 			status);
2986 
2987 	return status;
2988 }
2989 EXPORT_SYMBOL_GPL(spi_setup);
2990 
2991 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2992 {
2993 	struct spi_controller *ctlr = spi->controller;
2994 	struct spi_transfer *xfer;
2995 	int w_size;
2996 
2997 	if (list_empty(&message->transfers))
2998 		return -EINVAL;
2999 
3000 	/* If an SPI controller does not support toggling the CS line on each
3001 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3002 	 * for the CS line, we can emulate the CS-per-word hardware function by
3003 	 * splitting transfers into one-word transfers and ensuring that
3004 	 * cs_change is set for each transfer.
3005 	 */
3006 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3007 					  spi->cs_gpiod ||
3008 					  gpio_is_valid(spi->cs_gpio))) {
3009 		size_t maxsize;
3010 		int ret;
3011 
3012 		maxsize = (spi->bits_per_word + 7) / 8;
3013 
3014 		/* spi_split_transfers_maxsize() requires message->spi */
3015 		message->spi = spi;
3016 
3017 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3018 						  GFP_KERNEL);
3019 		if (ret)
3020 			return ret;
3021 
3022 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3023 			/* don't change cs_change on the last entry in the list */
3024 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3025 				break;
3026 			xfer->cs_change = 1;
3027 		}
3028 	}
3029 
3030 	/* Half-duplex links include original MicroWire, and ones with
3031 	 * only one data pin like SPI_3WIRE (switches direction) or where
3032 	 * either MOSI or MISO is missing.  They can also be caused by
3033 	 * software limitations.
3034 	 */
3035 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3036 	    (spi->mode & SPI_3WIRE)) {
3037 		unsigned flags = ctlr->flags;
3038 
3039 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3040 			if (xfer->rx_buf && xfer->tx_buf)
3041 				return -EINVAL;
3042 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3043 				return -EINVAL;
3044 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3045 				return -EINVAL;
3046 		}
3047 	}
3048 
3049 	/**
3050 	 * Set transfer bits_per_word and max speed as spi device default if
3051 	 * it is not set for this transfer.
3052 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3053 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3054 	 * Ensure transfer word_delay is at least as long as that required by
3055 	 * device itself.
3056 	 */
3057 	message->frame_length = 0;
3058 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3059 		message->frame_length += xfer->len;
3060 		if (!xfer->bits_per_word)
3061 			xfer->bits_per_word = spi->bits_per_word;
3062 
3063 		if (!xfer->speed_hz)
3064 			xfer->speed_hz = spi->max_speed_hz;
3065 		if (!xfer->speed_hz)
3066 			xfer->speed_hz = ctlr->max_speed_hz;
3067 
3068 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3069 			xfer->speed_hz = ctlr->max_speed_hz;
3070 
3071 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3072 			return -EINVAL;
3073 
3074 		/*
3075 		 * SPI transfer length should be multiple of SPI word size
3076 		 * where SPI word size should be power-of-two multiple
3077 		 */
3078 		if (xfer->bits_per_word <= 8)
3079 			w_size = 1;
3080 		else if (xfer->bits_per_word <= 16)
3081 			w_size = 2;
3082 		else
3083 			w_size = 4;
3084 
3085 		/* No partial transfers accepted */
3086 		if (xfer->len % w_size)
3087 			return -EINVAL;
3088 
3089 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3090 		    xfer->speed_hz < ctlr->min_speed_hz)
3091 			return -EINVAL;
3092 
3093 		if (xfer->tx_buf && !xfer->tx_nbits)
3094 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3095 		if (xfer->rx_buf && !xfer->rx_nbits)
3096 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3097 		/* check transfer tx/rx_nbits:
3098 		 * 1. check the value matches one of single, dual and quad
3099 		 * 2. check tx/rx_nbits match the mode in spi_device
3100 		 */
3101 		if (xfer->tx_buf) {
3102 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3103 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3104 				xfer->tx_nbits != SPI_NBITS_QUAD)
3105 				return -EINVAL;
3106 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3107 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3108 				return -EINVAL;
3109 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3110 				!(spi->mode & SPI_TX_QUAD))
3111 				return -EINVAL;
3112 		}
3113 		/* check transfer rx_nbits */
3114 		if (xfer->rx_buf) {
3115 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3116 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3117 				xfer->rx_nbits != SPI_NBITS_QUAD)
3118 				return -EINVAL;
3119 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3120 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3121 				return -EINVAL;
3122 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3123 				!(spi->mode & SPI_RX_QUAD))
3124 				return -EINVAL;
3125 		}
3126 
3127 		if (xfer->word_delay_usecs < spi->word_delay_usecs)
3128 			xfer->word_delay_usecs = spi->word_delay_usecs;
3129 	}
3130 
3131 	message->status = -EINPROGRESS;
3132 
3133 	return 0;
3134 }
3135 
3136 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3137 {
3138 	struct spi_controller *ctlr = spi->controller;
3139 
3140 	/*
3141 	 * Some controllers do not support doing regular SPI transfers. Return
3142 	 * ENOTSUPP when this is the case.
3143 	 */
3144 	if (!ctlr->transfer)
3145 		return -ENOTSUPP;
3146 
3147 	message->spi = spi;
3148 
3149 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3150 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3151 
3152 	trace_spi_message_submit(message);
3153 
3154 	return ctlr->transfer(spi, message);
3155 }
3156 
3157 /**
3158  * spi_async - asynchronous SPI transfer
3159  * @spi: device with which data will be exchanged
3160  * @message: describes the data transfers, including completion callback
3161  * Context: any (irqs may be blocked, etc)
3162  *
3163  * This call may be used in_irq and other contexts which can't sleep,
3164  * as well as from task contexts which can sleep.
3165  *
3166  * The completion callback is invoked in a context which can't sleep.
3167  * Before that invocation, the value of message->status is undefined.
3168  * When the callback is issued, message->status holds either zero (to
3169  * indicate complete success) or a negative error code.  After that
3170  * callback returns, the driver which issued the transfer request may
3171  * deallocate the associated memory; it's no longer in use by any SPI
3172  * core or controller driver code.
3173  *
3174  * Note that although all messages to a spi_device are handled in
3175  * FIFO order, messages may go to different devices in other orders.
3176  * Some device might be higher priority, or have various "hard" access
3177  * time requirements, for example.
3178  *
3179  * On detection of any fault during the transfer, processing of
3180  * the entire message is aborted, and the device is deselected.
3181  * Until returning from the associated message completion callback,
3182  * no other spi_message queued to that device will be processed.
3183  * (This rule applies equally to all the synchronous transfer calls,
3184  * which are wrappers around this core asynchronous primitive.)
3185  *
3186  * Return: zero on success, else a negative error code.
3187  */
3188 int spi_async(struct spi_device *spi, struct spi_message *message)
3189 {
3190 	struct spi_controller *ctlr = spi->controller;
3191 	int ret;
3192 	unsigned long flags;
3193 
3194 	ret = __spi_validate(spi, message);
3195 	if (ret != 0)
3196 		return ret;
3197 
3198 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3199 
3200 	if (ctlr->bus_lock_flag)
3201 		ret = -EBUSY;
3202 	else
3203 		ret = __spi_async(spi, message);
3204 
3205 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3206 
3207 	return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(spi_async);
3210 
3211 /**
3212  * spi_async_locked - version of spi_async with exclusive bus usage
3213  * @spi: device with which data will be exchanged
3214  * @message: describes the data transfers, including completion callback
3215  * Context: any (irqs may be blocked, etc)
3216  *
3217  * This call may be used in_irq and other contexts which can't sleep,
3218  * as well as from task contexts which can sleep.
3219  *
3220  * The completion callback is invoked in a context which can't sleep.
3221  * Before that invocation, the value of message->status is undefined.
3222  * When the callback is issued, message->status holds either zero (to
3223  * indicate complete success) or a negative error code.  After that
3224  * callback returns, the driver which issued the transfer request may
3225  * deallocate the associated memory; it's no longer in use by any SPI
3226  * core or controller driver code.
3227  *
3228  * Note that although all messages to a spi_device are handled in
3229  * FIFO order, messages may go to different devices in other orders.
3230  * Some device might be higher priority, or have various "hard" access
3231  * time requirements, for example.
3232  *
3233  * On detection of any fault during the transfer, processing of
3234  * the entire message is aborted, and the device is deselected.
3235  * Until returning from the associated message completion callback,
3236  * no other spi_message queued to that device will be processed.
3237  * (This rule applies equally to all the synchronous transfer calls,
3238  * which are wrappers around this core asynchronous primitive.)
3239  *
3240  * Return: zero on success, else a negative error code.
3241  */
3242 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3243 {
3244 	struct spi_controller *ctlr = spi->controller;
3245 	int ret;
3246 	unsigned long flags;
3247 
3248 	ret = __spi_validate(spi, message);
3249 	if (ret != 0)
3250 		return ret;
3251 
3252 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3253 
3254 	ret = __spi_async(spi, message);
3255 
3256 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3257 
3258 	return ret;
3259 
3260 }
3261 EXPORT_SYMBOL_GPL(spi_async_locked);
3262 
3263 /*-------------------------------------------------------------------------*/
3264 
3265 /* Utility methods for SPI protocol drivers, layered on
3266  * top of the core.  Some other utility methods are defined as
3267  * inline functions.
3268  */
3269 
3270 static void spi_complete(void *arg)
3271 {
3272 	complete(arg);
3273 }
3274 
3275 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3276 {
3277 	DECLARE_COMPLETION_ONSTACK(done);
3278 	int status;
3279 	struct spi_controller *ctlr = spi->controller;
3280 	unsigned long flags;
3281 
3282 	status = __spi_validate(spi, message);
3283 	if (status != 0)
3284 		return status;
3285 
3286 	message->complete = spi_complete;
3287 	message->context = &done;
3288 	message->spi = spi;
3289 
3290 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3291 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3292 
3293 	/* If we're not using the legacy transfer method then we will
3294 	 * try to transfer in the calling context so special case.
3295 	 * This code would be less tricky if we could remove the
3296 	 * support for driver implemented message queues.
3297 	 */
3298 	if (ctlr->transfer == spi_queued_transfer) {
3299 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3300 
3301 		trace_spi_message_submit(message);
3302 
3303 		status = __spi_queued_transfer(spi, message, false);
3304 
3305 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3306 	} else {
3307 		status = spi_async_locked(spi, message);
3308 	}
3309 
3310 	if (status == 0) {
3311 		/* Push out the messages in the calling context if we
3312 		 * can.
3313 		 */
3314 		if (ctlr->transfer == spi_queued_transfer) {
3315 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3316 						       spi_sync_immediate);
3317 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3318 						       spi_sync_immediate);
3319 			__spi_pump_messages(ctlr, false);
3320 		}
3321 
3322 		wait_for_completion(&done);
3323 		status = message->status;
3324 	}
3325 	message->context = NULL;
3326 	return status;
3327 }
3328 
3329 /**
3330  * spi_sync - blocking/synchronous SPI data transfers
3331  * @spi: device with which data will be exchanged
3332  * @message: describes the data transfers
3333  * Context: can sleep
3334  *
3335  * This call may only be used from a context that may sleep.  The sleep
3336  * is non-interruptible, and has no timeout.  Low-overhead controller
3337  * drivers may DMA directly into and out of the message buffers.
3338  *
3339  * Note that the SPI device's chip select is active during the message,
3340  * and then is normally disabled between messages.  Drivers for some
3341  * frequently-used devices may want to minimize costs of selecting a chip,
3342  * by leaving it selected in anticipation that the next message will go
3343  * to the same chip.  (That may increase power usage.)
3344  *
3345  * Also, the caller is guaranteeing that the memory associated with the
3346  * message will not be freed before this call returns.
3347  *
3348  * Return: zero on success, else a negative error code.
3349  */
3350 int spi_sync(struct spi_device *spi, struct spi_message *message)
3351 {
3352 	int ret;
3353 
3354 	mutex_lock(&spi->controller->bus_lock_mutex);
3355 	ret = __spi_sync(spi, message);
3356 	mutex_unlock(&spi->controller->bus_lock_mutex);
3357 
3358 	return ret;
3359 }
3360 EXPORT_SYMBOL_GPL(spi_sync);
3361 
3362 /**
3363  * spi_sync_locked - version of spi_sync with exclusive bus usage
3364  * @spi: device with which data will be exchanged
3365  * @message: describes the data transfers
3366  * Context: can sleep
3367  *
3368  * This call may only be used from a context that may sleep.  The sleep
3369  * is non-interruptible, and has no timeout.  Low-overhead controller
3370  * drivers may DMA directly into and out of the message buffers.
3371  *
3372  * This call should be used by drivers that require exclusive access to the
3373  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3374  * be released by a spi_bus_unlock call when the exclusive access is over.
3375  *
3376  * Return: zero on success, else a negative error code.
3377  */
3378 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3379 {
3380 	return __spi_sync(spi, message);
3381 }
3382 EXPORT_SYMBOL_GPL(spi_sync_locked);
3383 
3384 /**
3385  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3386  * @ctlr: SPI bus master that should be locked for exclusive bus access
3387  * Context: can sleep
3388  *
3389  * This call may only be used from a context that may sleep.  The sleep
3390  * is non-interruptible, and has no timeout.
3391  *
3392  * This call should be used by drivers that require exclusive access to the
3393  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3394  * exclusive access is over. Data transfer must be done by spi_sync_locked
3395  * and spi_async_locked calls when the SPI bus lock is held.
3396  *
3397  * Return: always zero.
3398  */
3399 int spi_bus_lock(struct spi_controller *ctlr)
3400 {
3401 	unsigned long flags;
3402 
3403 	mutex_lock(&ctlr->bus_lock_mutex);
3404 
3405 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3406 	ctlr->bus_lock_flag = 1;
3407 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3408 
3409 	/* mutex remains locked until spi_bus_unlock is called */
3410 
3411 	return 0;
3412 }
3413 EXPORT_SYMBOL_GPL(spi_bus_lock);
3414 
3415 /**
3416  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3417  * @ctlr: SPI bus master that was locked for exclusive bus access
3418  * Context: can sleep
3419  *
3420  * This call may only be used from a context that may sleep.  The sleep
3421  * is non-interruptible, and has no timeout.
3422  *
3423  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3424  * call.
3425  *
3426  * Return: always zero.
3427  */
3428 int spi_bus_unlock(struct spi_controller *ctlr)
3429 {
3430 	ctlr->bus_lock_flag = 0;
3431 
3432 	mutex_unlock(&ctlr->bus_lock_mutex);
3433 
3434 	return 0;
3435 }
3436 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3437 
3438 /* portable code must never pass more than 32 bytes */
3439 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3440 
3441 static u8	*buf;
3442 
3443 /**
3444  * spi_write_then_read - SPI synchronous write followed by read
3445  * @spi: device with which data will be exchanged
3446  * @txbuf: data to be written (need not be dma-safe)
3447  * @n_tx: size of txbuf, in bytes
3448  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3449  * @n_rx: size of rxbuf, in bytes
3450  * Context: can sleep
3451  *
3452  * This performs a half duplex MicroWire style transaction with the
3453  * device, sending txbuf and then reading rxbuf.  The return value
3454  * is zero for success, else a negative errno status code.
3455  * This call may only be used from a context that may sleep.
3456  *
3457  * Parameters to this routine are always copied using a small buffer;
3458  * portable code should never use this for more than 32 bytes.
3459  * Performance-sensitive or bulk transfer code should instead use
3460  * spi_{async,sync}() calls with dma-safe buffers.
3461  *
3462  * Return: zero on success, else a negative error code.
3463  */
3464 int spi_write_then_read(struct spi_device *spi,
3465 		const void *txbuf, unsigned n_tx,
3466 		void *rxbuf, unsigned n_rx)
3467 {
3468 	static DEFINE_MUTEX(lock);
3469 
3470 	int			status;
3471 	struct spi_message	message;
3472 	struct spi_transfer	x[2];
3473 	u8			*local_buf;
3474 
3475 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3476 	 * copying here, (as a pure convenience thing), but we can
3477 	 * keep heap costs out of the hot path unless someone else is
3478 	 * using the pre-allocated buffer or the transfer is too large.
3479 	 */
3480 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3481 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3482 				    GFP_KERNEL | GFP_DMA);
3483 		if (!local_buf)
3484 			return -ENOMEM;
3485 	} else {
3486 		local_buf = buf;
3487 	}
3488 
3489 	spi_message_init(&message);
3490 	memset(x, 0, sizeof(x));
3491 	if (n_tx) {
3492 		x[0].len = n_tx;
3493 		spi_message_add_tail(&x[0], &message);
3494 	}
3495 	if (n_rx) {
3496 		x[1].len = n_rx;
3497 		spi_message_add_tail(&x[1], &message);
3498 	}
3499 
3500 	memcpy(local_buf, txbuf, n_tx);
3501 	x[0].tx_buf = local_buf;
3502 	x[1].rx_buf = local_buf + n_tx;
3503 
3504 	/* do the i/o */
3505 	status = spi_sync(spi, &message);
3506 	if (status == 0)
3507 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3508 
3509 	if (x[0].tx_buf == buf)
3510 		mutex_unlock(&lock);
3511 	else
3512 		kfree(local_buf);
3513 
3514 	return status;
3515 }
3516 EXPORT_SYMBOL_GPL(spi_write_then_read);
3517 
3518 /*-------------------------------------------------------------------------*/
3519 
3520 #if IS_ENABLED(CONFIG_OF)
3521 static int __spi_of_device_match(struct device *dev, void *data)
3522 {
3523 	return dev->of_node == data;
3524 }
3525 
3526 /* must call put_device() when done with returned spi_device device */
3527 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3528 {
3529 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3530 						__spi_of_device_match);
3531 	return dev ? to_spi_device(dev) : NULL;
3532 }
3533 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3534 #endif /* IS_ENABLED(CONFIG_OF) */
3535 
3536 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3537 static int __spi_of_controller_match(struct device *dev, const void *data)
3538 {
3539 	return dev->of_node == data;
3540 }
3541 
3542 /* the spi controllers are not using spi_bus, so we find it with another way */
3543 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3544 {
3545 	struct device *dev;
3546 
3547 	dev = class_find_device(&spi_master_class, NULL, node,
3548 				__spi_of_controller_match);
3549 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3550 		dev = class_find_device(&spi_slave_class, NULL, node,
3551 					__spi_of_controller_match);
3552 	if (!dev)
3553 		return NULL;
3554 
3555 	/* reference got in class_find_device */
3556 	return container_of(dev, struct spi_controller, dev);
3557 }
3558 
3559 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3560 			 void *arg)
3561 {
3562 	struct of_reconfig_data *rd = arg;
3563 	struct spi_controller *ctlr;
3564 	struct spi_device *spi;
3565 
3566 	switch (of_reconfig_get_state_change(action, arg)) {
3567 	case OF_RECONFIG_CHANGE_ADD:
3568 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3569 		if (ctlr == NULL)
3570 			return NOTIFY_OK;	/* not for us */
3571 
3572 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3573 			put_device(&ctlr->dev);
3574 			return NOTIFY_OK;
3575 		}
3576 
3577 		spi = of_register_spi_device(ctlr, rd->dn);
3578 		put_device(&ctlr->dev);
3579 
3580 		if (IS_ERR(spi)) {
3581 			pr_err("%s: failed to create for '%pOF'\n",
3582 					__func__, rd->dn);
3583 			of_node_clear_flag(rd->dn, OF_POPULATED);
3584 			return notifier_from_errno(PTR_ERR(spi));
3585 		}
3586 		break;
3587 
3588 	case OF_RECONFIG_CHANGE_REMOVE:
3589 		/* already depopulated? */
3590 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3591 			return NOTIFY_OK;
3592 
3593 		/* find our device by node */
3594 		spi = of_find_spi_device_by_node(rd->dn);
3595 		if (spi == NULL)
3596 			return NOTIFY_OK;	/* no? not meant for us */
3597 
3598 		/* unregister takes one ref away */
3599 		spi_unregister_device(spi);
3600 
3601 		/* and put the reference of the find */
3602 		put_device(&spi->dev);
3603 		break;
3604 	}
3605 
3606 	return NOTIFY_OK;
3607 }
3608 
3609 static struct notifier_block spi_of_notifier = {
3610 	.notifier_call = of_spi_notify,
3611 };
3612 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3613 extern struct notifier_block spi_of_notifier;
3614 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3615 
3616 #if IS_ENABLED(CONFIG_ACPI)
3617 static int spi_acpi_controller_match(struct device *dev, const void *data)
3618 {
3619 	return ACPI_COMPANION(dev->parent) == data;
3620 }
3621 
3622 static int spi_acpi_device_match(struct device *dev, void *data)
3623 {
3624 	return ACPI_COMPANION(dev) == data;
3625 }
3626 
3627 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3628 {
3629 	struct device *dev;
3630 
3631 	dev = class_find_device(&spi_master_class, NULL, adev,
3632 				spi_acpi_controller_match);
3633 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3634 		dev = class_find_device(&spi_slave_class, NULL, adev,
3635 					spi_acpi_controller_match);
3636 	if (!dev)
3637 		return NULL;
3638 
3639 	return container_of(dev, struct spi_controller, dev);
3640 }
3641 
3642 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3643 {
3644 	struct device *dev;
3645 
3646 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3647 
3648 	return dev ? to_spi_device(dev) : NULL;
3649 }
3650 
3651 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3652 			   void *arg)
3653 {
3654 	struct acpi_device *adev = arg;
3655 	struct spi_controller *ctlr;
3656 	struct spi_device *spi;
3657 
3658 	switch (value) {
3659 	case ACPI_RECONFIG_DEVICE_ADD:
3660 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3661 		if (!ctlr)
3662 			break;
3663 
3664 		acpi_register_spi_device(ctlr, adev);
3665 		put_device(&ctlr->dev);
3666 		break;
3667 	case ACPI_RECONFIG_DEVICE_REMOVE:
3668 		if (!acpi_device_enumerated(adev))
3669 			break;
3670 
3671 		spi = acpi_spi_find_device_by_adev(adev);
3672 		if (!spi)
3673 			break;
3674 
3675 		spi_unregister_device(spi);
3676 		put_device(&spi->dev);
3677 		break;
3678 	}
3679 
3680 	return NOTIFY_OK;
3681 }
3682 
3683 static struct notifier_block spi_acpi_notifier = {
3684 	.notifier_call = acpi_spi_notify,
3685 };
3686 #else
3687 extern struct notifier_block spi_acpi_notifier;
3688 #endif
3689 
3690 static int __init spi_init(void)
3691 {
3692 	int	status;
3693 
3694 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3695 	if (!buf) {
3696 		status = -ENOMEM;
3697 		goto err0;
3698 	}
3699 
3700 	status = bus_register(&spi_bus_type);
3701 	if (status < 0)
3702 		goto err1;
3703 
3704 	status = class_register(&spi_master_class);
3705 	if (status < 0)
3706 		goto err2;
3707 
3708 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3709 		status = class_register(&spi_slave_class);
3710 		if (status < 0)
3711 			goto err3;
3712 	}
3713 
3714 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3715 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3716 	if (IS_ENABLED(CONFIG_ACPI))
3717 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3718 
3719 	return 0;
3720 
3721 err3:
3722 	class_unregister(&spi_master_class);
3723 err2:
3724 	bus_unregister(&spi_bus_type);
3725 err1:
3726 	kfree(buf);
3727 	buf = NULL;
3728 err0:
3729 	return status;
3730 }
3731 
3732 /* board_info is normally registered in arch_initcall(),
3733  * but even essential drivers wait till later
3734  *
3735  * REVISIT only boardinfo really needs static linking. the rest (device and
3736  * driver registration) _could_ be dynamically linked (modular) ... costs
3737  * include needing to have boardinfo data structures be much more public.
3738  */
3739 postcore_initcall(spi_init);
3740 
3741