1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/cache.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/mutex.h> 25 #include <linux/of_device.h> 26 #include <linux/of_irq.h> 27 #include <linux/clk/clk-conf.h> 28 #include <linux/slab.h> 29 #include <linux/mod_devicetable.h> 30 #include <linux/spi/spi.h> 31 #include <linux/of_gpio.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/pm_domain.h> 34 #include <linux/property.h> 35 #include <linux/export.h> 36 #include <linux/sched/rt.h> 37 #include <uapi/linux/sched/types.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/ioport.h> 41 #include <linux/acpi.h> 42 #include <linux/highmem.h> 43 #include <linux/idr.h> 44 #include <linux/platform_data/x86/apple.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/spi.h> 48 49 static DEFINE_IDR(spi_master_idr); 50 51 static void spidev_release(struct device *dev) 52 { 53 struct spi_device *spi = to_spi_device(dev); 54 55 /* spi controllers may cleanup for released devices */ 56 if (spi->controller->cleanup) 57 spi->controller->cleanup(spi); 58 59 spi_controller_put(spi->controller); 60 kfree(spi); 61 } 62 63 static ssize_t 64 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 65 { 66 const struct spi_device *spi = to_spi_device(dev); 67 int len; 68 69 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 70 if (len != -ENODEV) 71 return len; 72 73 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 74 } 75 static DEVICE_ATTR_RO(modalias); 76 77 #define SPI_STATISTICS_ATTRS(field, file) \ 78 static ssize_t spi_controller_##field##_show(struct device *dev, \ 79 struct device_attribute *attr, \ 80 char *buf) \ 81 { \ 82 struct spi_controller *ctlr = container_of(dev, \ 83 struct spi_controller, dev); \ 84 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 85 } \ 86 static struct device_attribute dev_attr_spi_controller_##field = { \ 87 .attr = { .name = file, .mode = 0444 }, \ 88 .show = spi_controller_##field##_show, \ 89 }; \ 90 static ssize_t spi_device_##field##_show(struct device *dev, \ 91 struct device_attribute *attr, \ 92 char *buf) \ 93 { \ 94 struct spi_device *spi = to_spi_device(dev); \ 95 return spi_statistics_##field##_show(&spi->statistics, buf); \ 96 } \ 97 static struct device_attribute dev_attr_spi_device_##field = { \ 98 .attr = { .name = file, .mode = 0444 }, \ 99 .show = spi_device_##field##_show, \ 100 } 101 102 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 103 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 104 char *buf) \ 105 { \ 106 unsigned long flags; \ 107 ssize_t len; \ 108 spin_lock_irqsave(&stat->lock, flags); \ 109 len = sprintf(buf, format_string, stat->field); \ 110 spin_unlock_irqrestore(&stat->lock, flags); \ 111 return len; \ 112 } \ 113 SPI_STATISTICS_ATTRS(name, file) 114 115 #define SPI_STATISTICS_SHOW(field, format_string) \ 116 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 117 field, format_string) 118 119 SPI_STATISTICS_SHOW(messages, "%lu"); 120 SPI_STATISTICS_SHOW(transfers, "%lu"); 121 SPI_STATISTICS_SHOW(errors, "%lu"); 122 SPI_STATISTICS_SHOW(timedout, "%lu"); 123 124 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 125 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 126 SPI_STATISTICS_SHOW(spi_async, "%lu"); 127 128 SPI_STATISTICS_SHOW(bytes, "%llu"); 129 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 130 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 131 132 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 133 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 134 "transfer_bytes_histo_" number, \ 135 transfer_bytes_histo[index], "%lu") 136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 153 154 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 155 156 static struct attribute *spi_dev_attrs[] = { 157 &dev_attr_modalias.attr, 158 NULL, 159 }; 160 161 static const struct attribute_group spi_dev_group = { 162 .attrs = spi_dev_attrs, 163 }; 164 165 static struct attribute *spi_device_statistics_attrs[] = { 166 &dev_attr_spi_device_messages.attr, 167 &dev_attr_spi_device_transfers.attr, 168 &dev_attr_spi_device_errors.attr, 169 &dev_attr_spi_device_timedout.attr, 170 &dev_attr_spi_device_spi_sync.attr, 171 &dev_attr_spi_device_spi_sync_immediate.attr, 172 &dev_attr_spi_device_spi_async.attr, 173 &dev_attr_spi_device_bytes.attr, 174 &dev_attr_spi_device_bytes_rx.attr, 175 &dev_attr_spi_device_bytes_tx.attr, 176 &dev_attr_spi_device_transfer_bytes_histo0.attr, 177 &dev_attr_spi_device_transfer_bytes_histo1.attr, 178 &dev_attr_spi_device_transfer_bytes_histo2.attr, 179 &dev_attr_spi_device_transfer_bytes_histo3.attr, 180 &dev_attr_spi_device_transfer_bytes_histo4.attr, 181 &dev_attr_spi_device_transfer_bytes_histo5.attr, 182 &dev_attr_spi_device_transfer_bytes_histo6.attr, 183 &dev_attr_spi_device_transfer_bytes_histo7.attr, 184 &dev_attr_spi_device_transfer_bytes_histo8.attr, 185 &dev_attr_spi_device_transfer_bytes_histo9.attr, 186 &dev_attr_spi_device_transfer_bytes_histo10.attr, 187 &dev_attr_spi_device_transfer_bytes_histo11.attr, 188 &dev_attr_spi_device_transfer_bytes_histo12.attr, 189 &dev_attr_spi_device_transfer_bytes_histo13.attr, 190 &dev_attr_spi_device_transfer_bytes_histo14.attr, 191 &dev_attr_spi_device_transfer_bytes_histo15.attr, 192 &dev_attr_spi_device_transfer_bytes_histo16.attr, 193 &dev_attr_spi_device_transfers_split_maxsize.attr, 194 NULL, 195 }; 196 197 static const struct attribute_group spi_device_statistics_group = { 198 .name = "statistics", 199 .attrs = spi_device_statistics_attrs, 200 }; 201 202 static const struct attribute_group *spi_dev_groups[] = { 203 &spi_dev_group, 204 &spi_device_statistics_group, 205 NULL, 206 }; 207 208 static struct attribute *spi_controller_statistics_attrs[] = { 209 &dev_attr_spi_controller_messages.attr, 210 &dev_attr_spi_controller_transfers.attr, 211 &dev_attr_spi_controller_errors.attr, 212 &dev_attr_spi_controller_timedout.attr, 213 &dev_attr_spi_controller_spi_sync.attr, 214 &dev_attr_spi_controller_spi_sync_immediate.attr, 215 &dev_attr_spi_controller_spi_async.attr, 216 &dev_attr_spi_controller_bytes.attr, 217 &dev_attr_spi_controller_bytes_rx.attr, 218 &dev_attr_spi_controller_bytes_tx.attr, 219 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 220 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 221 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 222 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 223 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 224 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 225 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 226 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 227 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 228 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 229 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 230 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 231 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 232 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 233 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 234 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 235 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 236 &dev_attr_spi_controller_transfers_split_maxsize.attr, 237 NULL, 238 }; 239 240 static const struct attribute_group spi_controller_statistics_group = { 241 .name = "statistics", 242 .attrs = spi_controller_statistics_attrs, 243 }; 244 245 static const struct attribute_group *spi_master_groups[] = { 246 &spi_controller_statistics_group, 247 NULL, 248 }; 249 250 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 251 struct spi_transfer *xfer, 252 struct spi_controller *ctlr) 253 { 254 unsigned long flags; 255 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 256 257 if (l2len < 0) 258 l2len = 0; 259 260 spin_lock_irqsave(&stats->lock, flags); 261 262 stats->transfers++; 263 stats->transfer_bytes_histo[l2len]++; 264 265 stats->bytes += xfer->len; 266 if ((xfer->tx_buf) && 267 (xfer->tx_buf != ctlr->dummy_tx)) 268 stats->bytes_tx += xfer->len; 269 if ((xfer->rx_buf) && 270 (xfer->rx_buf != ctlr->dummy_rx)) 271 stats->bytes_rx += xfer->len; 272 273 spin_unlock_irqrestore(&stats->lock, flags); 274 } 275 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 276 277 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 278 * and the sysfs version makes coldplug work too. 279 */ 280 281 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 282 const struct spi_device *sdev) 283 { 284 while (id->name[0]) { 285 if (!strcmp(sdev->modalias, id->name)) 286 return id; 287 id++; 288 } 289 return NULL; 290 } 291 292 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 293 { 294 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 295 296 return spi_match_id(sdrv->id_table, sdev); 297 } 298 EXPORT_SYMBOL_GPL(spi_get_device_id); 299 300 static int spi_match_device(struct device *dev, struct device_driver *drv) 301 { 302 const struct spi_device *spi = to_spi_device(dev); 303 const struct spi_driver *sdrv = to_spi_driver(drv); 304 305 /* Attempt an OF style match */ 306 if (of_driver_match_device(dev, drv)) 307 return 1; 308 309 /* Then try ACPI */ 310 if (acpi_driver_match_device(dev, drv)) 311 return 1; 312 313 if (sdrv->id_table) 314 return !!spi_match_id(sdrv->id_table, spi); 315 316 return strcmp(spi->modalias, drv->name) == 0; 317 } 318 319 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 320 { 321 const struct spi_device *spi = to_spi_device(dev); 322 int rc; 323 324 rc = acpi_device_uevent_modalias(dev, env); 325 if (rc != -ENODEV) 326 return rc; 327 328 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 329 } 330 331 struct bus_type spi_bus_type = { 332 .name = "spi", 333 .dev_groups = spi_dev_groups, 334 .match = spi_match_device, 335 .uevent = spi_uevent, 336 }; 337 EXPORT_SYMBOL_GPL(spi_bus_type); 338 339 340 static int spi_drv_probe(struct device *dev) 341 { 342 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 343 struct spi_device *spi = to_spi_device(dev); 344 int ret; 345 346 ret = of_clk_set_defaults(dev->of_node, false); 347 if (ret) 348 return ret; 349 350 if (dev->of_node) { 351 spi->irq = of_irq_get(dev->of_node, 0); 352 if (spi->irq == -EPROBE_DEFER) 353 return -EPROBE_DEFER; 354 if (spi->irq < 0) 355 spi->irq = 0; 356 } 357 358 ret = dev_pm_domain_attach(dev, true); 359 if (ret != -EPROBE_DEFER) { 360 ret = sdrv->probe(spi); 361 if (ret) 362 dev_pm_domain_detach(dev, true); 363 } 364 365 return ret; 366 } 367 368 static int spi_drv_remove(struct device *dev) 369 { 370 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 371 int ret; 372 373 ret = sdrv->remove(to_spi_device(dev)); 374 dev_pm_domain_detach(dev, true); 375 376 return ret; 377 } 378 379 static void spi_drv_shutdown(struct device *dev) 380 { 381 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 382 383 sdrv->shutdown(to_spi_device(dev)); 384 } 385 386 /** 387 * __spi_register_driver - register a SPI driver 388 * @owner: owner module of the driver to register 389 * @sdrv: the driver to register 390 * Context: can sleep 391 * 392 * Return: zero on success, else a negative error code. 393 */ 394 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 395 { 396 sdrv->driver.owner = owner; 397 sdrv->driver.bus = &spi_bus_type; 398 if (sdrv->probe) 399 sdrv->driver.probe = spi_drv_probe; 400 if (sdrv->remove) 401 sdrv->driver.remove = spi_drv_remove; 402 if (sdrv->shutdown) 403 sdrv->driver.shutdown = spi_drv_shutdown; 404 return driver_register(&sdrv->driver); 405 } 406 EXPORT_SYMBOL_GPL(__spi_register_driver); 407 408 /*-------------------------------------------------------------------------*/ 409 410 /* SPI devices should normally not be created by SPI device drivers; that 411 * would make them board-specific. Similarly with SPI controller drivers. 412 * Device registration normally goes into like arch/.../mach.../board-YYY.c 413 * with other readonly (flashable) information about mainboard devices. 414 */ 415 416 struct boardinfo { 417 struct list_head list; 418 struct spi_board_info board_info; 419 }; 420 421 static LIST_HEAD(board_list); 422 static LIST_HEAD(spi_controller_list); 423 424 /* 425 * Used to protect add/del opertion for board_info list and 426 * spi_controller list, and their matching process 427 * also used to protect object of type struct idr 428 */ 429 static DEFINE_MUTEX(board_lock); 430 431 /** 432 * spi_alloc_device - Allocate a new SPI device 433 * @ctlr: Controller to which device is connected 434 * Context: can sleep 435 * 436 * Allows a driver to allocate and initialize a spi_device without 437 * registering it immediately. This allows a driver to directly 438 * fill the spi_device with device parameters before calling 439 * spi_add_device() on it. 440 * 441 * Caller is responsible to call spi_add_device() on the returned 442 * spi_device structure to add it to the SPI controller. If the caller 443 * needs to discard the spi_device without adding it, then it should 444 * call spi_dev_put() on it. 445 * 446 * Return: a pointer to the new device, or NULL. 447 */ 448 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 449 { 450 struct spi_device *spi; 451 452 if (!spi_controller_get(ctlr)) 453 return NULL; 454 455 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 456 if (!spi) { 457 spi_controller_put(ctlr); 458 return NULL; 459 } 460 461 spi->master = spi->controller = ctlr; 462 spi->dev.parent = &ctlr->dev; 463 spi->dev.bus = &spi_bus_type; 464 spi->dev.release = spidev_release; 465 spi->cs_gpio = -ENOENT; 466 467 spin_lock_init(&spi->statistics.lock); 468 469 device_initialize(&spi->dev); 470 return spi; 471 } 472 EXPORT_SYMBOL_GPL(spi_alloc_device); 473 474 static void spi_dev_set_name(struct spi_device *spi) 475 { 476 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 477 478 if (adev) { 479 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 480 return; 481 } 482 483 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 484 spi->chip_select); 485 } 486 487 static int spi_dev_check(struct device *dev, void *data) 488 { 489 struct spi_device *spi = to_spi_device(dev); 490 struct spi_device *new_spi = data; 491 492 if (spi->controller == new_spi->controller && 493 spi->chip_select == new_spi->chip_select) 494 return -EBUSY; 495 return 0; 496 } 497 498 /** 499 * spi_add_device - Add spi_device allocated with spi_alloc_device 500 * @spi: spi_device to register 501 * 502 * Companion function to spi_alloc_device. Devices allocated with 503 * spi_alloc_device can be added onto the spi bus with this function. 504 * 505 * Return: 0 on success; negative errno on failure 506 */ 507 int spi_add_device(struct spi_device *spi) 508 { 509 static DEFINE_MUTEX(spi_add_lock); 510 struct spi_controller *ctlr = spi->controller; 511 struct device *dev = ctlr->dev.parent; 512 int status; 513 514 /* Chipselects are numbered 0..max; validate. */ 515 if (spi->chip_select >= ctlr->num_chipselect) { 516 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 517 ctlr->num_chipselect); 518 return -EINVAL; 519 } 520 521 /* Set the bus ID string */ 522 spi_dev_set_name(spi); 523 524 /* We need to make sure there's no other device with this 525 * chipselect **BEFORE** we call setup(), else we'll trash 526 * its configuration. Lock against concurrent add() calls. 527 */ 528 mutex_lock(&spi_add_lock); 529 530 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 531 if (status) { 532 dev_err(dev, "chipselect %d already in use\n", 533 spi->chip_select); 534 goto done; 535 } 536 537 if (ctlr->cs_gpios) 538 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 539 540 /* Drivers may modify this initial i/o setup, but will 541 * normally rely on the device being setup. Devices 542 * using SPI_CS_HIGH can't coexist well otherwise... 543 */ 544 status = spi_setup(spi); 545 if (status < 0) { 546 dev_err(dev, "can't setup %s, status %d\n", 547 dev_name(&spi->dev), status); 548 goto done; 549 } 550 551 /* Device may be bound to an active driver when this returns */ 552 status = device_add(&spi->dev); 553 if (status < 0) 554 dev_err(dev, "can't add %s, status %d\n", 555 dev_name(&spi->dev), status); 556 else 557 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 558 559 done: 560 mutex_unlock(&spi_add_lock); 561 return status; 562 } 563 EXPORT_SYMBOL_GPL(spi_add_device); 564 565 /** 566 * spi_new_device - instantiate one new SPI device 567 * @ctlr: Controller to which device is connected 568 * @chip: Describes the SPI device 569 * Context: can sleep 570 * 571 * On typical mainboards, this is purely internal; and it's not needed 572 * after board init creates the hard-wired devices. Some development 573 * platforms may not be able to use spi_register_board_info though, and 574 * this is exported so that for example a USB or parport based adapter 575 * driver could add devices (which it would learn about out-of-band). 576 * 577 * Return: the new device, or NULL. 578 */ 579 struct spi_device *spi_new_device(struct spi_controller *ctlr, 580 struct spi_board_info *chip) 581 { 582 struct spi_device *proxy; 583 int status; 584 585 /* NOTE: caller did any chip->bus_num checks necessary. 586 * 587 * Also, unless we change the return value convention to use 588 * error-or-pointer (not NULL-or-pointer), troubleshootability 589 * suggests syslogged diagnostics are best here (ugh). 590 */ 591 592 proxy = spi_alloc_device(ctlr); 593 if (!proxy) 594 return NULL; 595 596 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 597 598 proxy->chip_select = chip->chip_select; 599 proxy->max_speed_hz = chip->max_speed_hz; 600 proxy->mode = chip->mode; 601 proxy->irq = chip->irq; 602 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 603 proxy->dev.platform_data = (void *) chip->platform_data; 604 proxy->controller_data = chip->controller_data; 605 proxy->controller_state = NULL; 606 607 if (chip->properties) { 608 status = device_add_properties(&proxy->dev, chip->properties); 609 if (status) { 610 dev_err(&ctlr->dev, 611 "failed to add properties to '%s': %d\n", 612 chip->modalias, status); 613 goto err_dev_put; 614 } 615 } 616 617 status = spi_add_device(proxy); 618 if (status < 0) 619 goto err_remove_props; 620 621 return proxy; 622 623 err_remove_props: 624 if (chip->properties) 625 device_remove_properties(&proxy->dev); 626 err_dev_put: 627 spi_dev_put(proxy); 628 return NULL; 629 } 630 EXPORT_SYMBOL_GPL(spi_new_device); 631 632 /** 633 * spi_unregister_device - unregister a single SPI device 634 * @spi: spi_device to unregister 635 * 636 * Start making the passed SPI device vanish. Normally this would be handled 637 * by spi_unregister_controller(). 638 */ 639 void spi_unregister_device(struct spi_device *spi) 640 { 641 if (!spi) 642 return; 643 644 if (spi->dev.of_node) { 645 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 646 of_node_put(spi->dev.of_node); 647 } 648 if (ACPI_COMPANION(&spi->dev)) 649 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 650 device_unregister(&spi->dev); 651 } 652 EXPORT_SYMBOL_GPL(spi_unregister_device); 653 654 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 655 struct spi_board_info *bi) 656 { 657 struct spi_device *dev; 658 659 if (ctlr->bus_num != bi->bus_num) 660 return; 661 662 dev = spi_new_device(ctlr, bi); 663 if (!dev) 664 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 665 bi->modalias); 666 } 667 668 /** 669 * spi_register_board_info - register SPI devices for a given board 670 * @info: array of chip descriptors 671 * @n: how many descriptors are provided 672 * Context: can sleep 673 * 674 * Board-specific early init code calls this (probably during arch_initcall) 675 * with segments of the SPI device table. Any device nodes are created later, 676 * after the relevant parent SPI controller (bus_num) is defined. We keep 677 * this table of devices forever, so that reloading a controller driver will 678 * not make Linux forget about these hard-wired devices. 679 * 680 * Other code can also call this, e.g. a particular add-on board might provide 681 * SPI devices through its expansion connector, so code initializing that board 682 * would naturally declare its SPI devices. 683 * 684 * The board info passed can safely be __initdata ... but be careful of 685 * any embedded pointers (platform_data, etc), they're copied as-is. 686 * Device properties are deep-copied though. 687 * 688 * Return: zero on success, else a negative error code. 689 */ 690 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 691 { 692 struct boardinfo *bi; 693 int i; 694 695 if (!n) 696 return 0; 697 698 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 699 if (!bi) 700 return -ENOMEM; 701 702 for (i = 0; i < n; i++, bi++, info++) { 703 struct spi_controller *ctlr; 704 705 memcpy(&bi->board_info, info, sizeof(*info)); 706 if (info->properties) { 707 bi->board_info.properties = 708 property_entries_dup(info->properties); 709 if (IS_ERR(bi->board_info.properties)) 710 return PTR_ERR(bi->board_info.properties); 711 } 712 713 mutex_lock(&board_lock); 714 list_add_tail(&bi->list, &board_list); 715 list_for_each_entry(ctlr, &spi_controller_list, list) 716 spi_match_controller_to_boardinfo(ctlr, 717 &bi->board_info); 718 mutex_unlock(&board_lock); 719 } 720 721 return 0; 722 } 723 724 /*-------------------------------------------------------------------------*/ 725 726 static void spi_set_cs(struct spi_device *spi, bool enable) 727 { 728 if (spi->mode & SPI_CS_HIGH) 729 enable = !enable; 730 731 if (gpio_is_valid(spi->cs_gpio)) { 732 gpio_set_value(spi->cs_gpio, !enable); 733 /* Some SPI masters need both GPIO CS & slave_select */ 734 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 735 spi->controller->set_cs) 736 spi->controller->set_cs(spi, !enable); 737 } else if (spi->controller->set_cs) { 738 spi->controller->set_cs(spi, !enable); 739 } 740 } 741 742 #ifdef CONFIG_HAS_DMA 743 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 744 struct sg_table *sgt, void *buf, size_t len, 745 enum dma_data_direction dir) 746 { 747 const bool vmalloced_buf = is_vmalloc_addr(buf); 748 unsigned int max_seg_size = dma_get_max_seg_size(dev); 749 #ifdef CONFIG_HIGHMEM 750 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 751 (unsigned long)buf < (PKMAP_BASE + 752 (LAST_PKMAP * PAGE_SIZE))); 753 #else 754 const bool kmap_buf = false; 755 #endif 756 int desc_len; 757 int sgs; 758 struct page *vm_page; 759 struct scatterlist *sg; 760 void *sg_buf; 761 size_t min; 762 int i, ret; 763 764 if (vmalloced_buf || kmap_buf) { 765 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 766 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 767 } else if (virt_addr_valid(buf)) { 768 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 769 sgs = DIV_ROUND_UP(len, desc_len); 770 } else { 771 return -EINVAL; 772 } 773 774 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 775 if (ret != 0) 776 return ret; 777 778 sg = &sgt->sgl[0]; 779 for (i = 0; i < sgs; i++) { 780 781 if (vmalloced_buf || kmap_buf) { 782 min = min_t(size_t, 783 len, desc_len - offset_in_page(buf)); 784 if (vmalloced_buf) 785 vm_page = vmalloc_to_page(buf); 786 else 787 vm_page = kmap_to_page(buf); 788 if (!vm_page) { 789 sg_free_table(sgt); 790 return -ENOMEM; 791 } 792 sg_set_page(sg, vm_page, 793 min, offset_in_page(buf)); 794 } else { 795 min = min_t(size_t, len, desc_len); 796 sg_buf = buf; 797 sg_set_buf(sg, sg_buf, min); 798 } 799 800 buf += min; 801 len -= min; 802 sg = sg_next(sg); 803 } 804 805 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 806 if (!ret) 807 ret = -ENOMEM; 808 if (ret < 0) { 809 sg_free_table(sgt); 810 return ret; 811 } 812 813 sgt->nents = ret; 814 815 return 0; 816 } 817 818 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 819 struct sg_table *sgt, enum dma_data_direction dir) 820 { 821 if (sgt->orig_nents) { 822 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 823 sg_free_table(sgt); 824 } 825 } 826 827 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 828 { 829 struct device *tx_dev, *rx_dev; 830 struct spi_transfer *xfer; 831 int ret; 832 833 if (!ctlr->can_dma) 834 return 0; 835 836 if (ctlr->dma_tx) 837 tx_dev = ctlr->dma_tx->device->dev; 838 else 839 tx_dev = ctlr->dev.parent; 840 841 if (ctlr->dma_rx) 842 rx_dev = ctlr->dma_rx->device->dev; 843 else 844 rx_dev = ctlr->dev.parent; 845 846 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 847 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 848 continue; 849 850 if (xfer->tx_buf != NULL) { 851 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 852 (void *)xfer->tx_buf, xfer->len, 853 DMA_TO_DEVICE); 854 if (ret != 0) 855 return ret; 856 } 857 858 if (xfer->rx_buf != NULL) { 859 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 860 xfer->rx_buf, xfer->len, 861 DMA_FROM_DEVICE); 862 if (ret != 0) { 863 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 864 DMA_TO_DEVICE); 865 return ret; 866 } 867 } 868 } 869 870 ctlr->cur_msg_mapped = true; 871 872 return 0; 873 } 874 875 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 876 { 877 struct spi_transfer *xfer; 878 struct device *tx_dev, *rx_dev; 879 880 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 881 return 0; 882 883 if (ctlr->dma_tx) 884 tx_dev = ctlr->dma_tx->device->dev; 885 else 886 tx_dev = ctlr->dev.parent; 887 888 if (ctlr->dma_rx) 889 rx_dev = ctlr->dma_rx->device->dev; 890 else 891 rx_dev = ctlr->dev.parent; 892 893 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 894 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 895 continue; 896 897 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 898 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 899 } 900 901 return 0; 902 } 903 #else /* !CONFIG_HAS_DMA */ 904 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 905 struct sg_table *sgt, void *buf, size_t len, 906 enum dma_data_direction dir) 907 { 908 return -EINVAL; 909 } 910 911 static inline void spi_unmap_buf(struct spi_controller *ctlr, 912 struct device *dev, struct sg_table *sgt, 913 enum dma_data_direction dir) 914 { 915 } 916 917 static inline int __spi_map_msg(struct spi_controller *ctlr, 918 struct spi_message *msg) 919 { 920 return 0; 921 } 922 923 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 924 struct spi_message *msg) 925 { 926 return 0; 927 } 928 #endif /* !CONFIG_HAS_DMA */ 929 930 static inline int spi_unmap_msg(struct spi_controller *ctlr, 931 struct spi_message *msg) 932 { 933 struct spi_transfer *xfer; 934 935 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 936 /* 937 * Restore the original value of tx_buf or rx_buf if they are 938 * NULL. 939 */ 940 if (xfer->tx_buf == ctlr->dummy_tx) 941 xfer->tx_buf = NULL; 942 if (xfer->rx_buf == ctlr->dummy_rx) 943 xfer->rx_buf = NULL; 944 } 945 946 return __spi_unmap_msg(ctlr, msg); 947 } 948 949 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 950 { 951 struct spi_transfer *xfer; 952 void *tmp; 953 unsigned int max_tx, max_rx; 954 955 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { 956 max_tx = 0; 957 max_rx = 0; 958 959 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 960 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 961 !xfer->tx_buf) 962 max_tx = max(xfer->len, max_tx); 963 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 964 !xfer->rx_buf) 965 max_rx = max(xfer->len, max_rx); 966 } 967 968 if (max_tx) { 969 tmp = krealloc(ctlr->dummy_tx, max_tx, 970 GFP_KERNEL | GFP_DMA); 971 if (!tmp) 972 return -ENOMEM; 973 ctlr->dummy_tx = tmp; 974 memset(tmp, 0, max_tx); 975 } 976 977 if (max_rx) { 978 tmp = krealloc(ctlr->dummy_rx, max_rx, 979 GFP_KERNEL | GFP_DMA); 980 if (!tmp) 981 return -ENOMEM; 982 ctlr->dummy_rx = tmp; 983 } 984 985 if (max_tx || max_rx) { 986 list_for_each_entry(xfer, &msg->transfers, 987 transfer_list) { 988 if (!xfer->tx_buf) 989 xfer->tx_buf = ctlr->dummy_tx; 990 if (!xfer->rx_buf) 991 xfer->rx_buf = ctlr->dummy_rx; 992 } 993 } 994 } 995 996 return __spi_map_msg(ctlr, msg); 997 } 998 999 /* 1000 * spi_transfer_one_message - Default implementation of transfer_one_message() 1001 * 1002 * This is a standard implementation of transfer_one_message() for 1003 * drivers which implement a transfer_one() operation. It provides 1004 * standard handling of delays and chip select management. 1005 */ 1006 static int spi_transfer_one_message(struct spi_controller *ctlr, 1007 struct spi_message *msg) 1008 { 1009 struct spi_transfer *xfer; 1010 bool keep_cs = false; 1011 int ret = 0; 1012 unsigned long long ms = 1; 1013 struct spi_statistics *statm = &ctlr->statistics; 1014 struct spi_statistics *stats = &msg->spi->statistics; 1015 1016 spi_set_cs(msg->spi, true); 1017 1018 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1019 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1020 1021 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1022 trace_spi_transfer_start(msg, xfer); 1023 1024 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1025 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1026 1027 if (xfer->tx_buf || xfer->rx_buf) { 1028 reinit_completion(&ctlr->xfer_completion); 1029 1030 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1031 if (ret < 0) { 1032 SPI_STATISTICS_INCREMENT_FIELD(statm, 1033 errors); 1034 SPI_STATISTICS_INCREMENT_FIELD(stats, 1035 errors); 1036 dev_err(&msg->spi->dev, 1037 "SPI transfer failed: %d\n", ret); 1038 goto out; 1039 } 1040 1041 if (ret > 0) { 1042 ret = 0; 1043 ms = 8LL * 1000LL * xfer->len; 1044 do_div(ms, xfer->speed_hz); 1045 ms += ms + 200; /* some tolerance */ 1046 1047 if (ms > UINT_MAX) 1048 ms = UINT_MAX; 1049 1050 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1051 msecs_to_jiffies(ms)); 1052 } 1053 1054 if (ms == 0) { 1055 SPI_STATISTICS_INCREMENT_FIELD(statm, 1056 timedout); 1057 SPI_STATISTICS_INCREMENT_FIELD(stats, 1058 timedout); 1059 dev_err(&msg->spi->dev, 1060 "SPI transfer timed out\n"); 1061 msg->status = -ETIMEDOUT; 1062 } 1063 } else { 1064 if (xfer->len) 1065 dev_err(&msg->spi->dev, 1066 "Bufferless transfer has length %u\n", 1067 xfer->len); 1068 } 1069 1070 trace_spi_transfer_stop(msg, xfer); 1071 1072 if (msg->status != -EINPROGRESS) 1073 goto out; 1074 1075 if (xfer->delay_usecs) { 1076 u16 us = xfer->delay_usecs; 1077 1078 if (us <= 10) 1079 udelay(us); 1080 else 1081 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1082 } 1083 1084 if (xfer->cs_change) { 1085 if (list_is_last(&xfer->transfer_list, 1086 &msg->transfers)) { 1087 keep_cs = true; 1088 } else { 1089 spi_set_cs(msg->spi, false); 1090 udelay(10); 1091 spi_set_cs(msg->spi, true); 1092 } 1093 } 1094 1095 msg->actual_length += xfer->len; 1096 } 1097 1098 out: 1099 if (ret != 0 || !keep_cs) 1100 spi_set_cs(msg->spi, false); 1101 1102 if (msg->status == -EINPROGRESS) 1103 msg->status = ret; 1104 1105 if (msg->status && ctlr->handle_err) 1106 ctlr->handle_err(ctlr, msg); 1107 1108 spi_res_release(ctlr, msg); 1109 1110 spi_finalize_current_message(ctlr); 1111 1112 return ret; 1113 } 1114 1115 /** 1116 * spi_finalize_current_transfer - report completion of a transfer 1117 * @ctlr: the controller reporting completion 1118 * 1119 * Called by SPI drivers using the core transfer_one_message() 1120 * implementation to notify it that the current interrupt driven 1121 * transfer has finished and the next one may be scheduled. 1122 */ 1123 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1124 { 1125 complete(&ctlr->xfer_completion); 1126 } 1127 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1128 1129 /** 1130 * __spi_pump_messages - function which processes spi message queue 1131 * @ctlr: controller to process queue for 1132 * @in_kthread: true if we are in the context of the message pump thread 1133 * 1134 * This function checks if there is any spi message in the queue that 1135 * needs processing and if so call out to the driver to initialize hardware 1136 * and transfer each message. 1137 * 1138 * Note that it is called both from the kthread itself and also from 1139 * inside spi_sync(); the queue extraction handling at the top of the 1140 * function should deal with this safely. 1141 */ 1142 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1143 { 1144 unsigned long flags; 1145 bool was_busy = false; 1146 int ret; 1147 1148 /* Lock queue */ 1149 spin_lock_irqsave(&ctlr->queue_lock, flags); 1150 1151 /* Make sure we are not already running a message */ 1152 if (ctlr->cur_msg) { 1153 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1154 return; 1155 } 1156 1157 /* If another context is idling the device then defer */ 1158 if (ctlr->idling) { 1159 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1160 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1161 return; 1162 } 1163 1164 /* Check if the queue is idle */ 1165 if (list_empty(&ctlr->queue) || !ctlr->running) { 1166 if (!ctlr->busy) { 1167 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1168 return; 1169 } 1170 1171 /* Only do teardown in the thread */ 1172 if (!in_kthread) { 1173 kthread_queue_work(&ctlr->kworker, 1174 &ctlr->pump_messages); 1175 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1176 return; 1177 } 1178 1179 ctlr->busy = false; 1180 ctlr->idling = true; 1181 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1182 1183 kfree(ctlr->dummy_rx); 1184 ctlr->dummy_rx = NULL; 1185 kfree(ctlr->dummy_tx); 1186 ctlr->dummy_tx = NULL; 1187 if (ctlr->unprepare_transfer_hardware && 1188 ctlr->unprepare_transfer_hardware(ctlr)) 1189 dev_err(&ctlr->dev, 1190 "failed to unprepare transfer hardware\n"); 1191 if (ctlr->auto_runtime_pm) { 1192 pm_runtime_mark_last_busy(ctlr->dev.parent); 1193 pm_runtime_put_autosuspend(ctlr->dev.parent); 1194 } 1195 trace_spi_controller_idle(ctlr); 1196 1197 spin_lock_irqsave(&ctlr->queue_lock, flags); 1198 ctlr->idling = false; 1199 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1200 return; 1201 } 1202 1203 /* Extract head of queue */ 1204 ctlr->cur_msg = 1205 list_first_entry(&ctlr->queue, struct spi_message, queue); 1206 1207 list_del_init(&ctlr->cur_msg->queue); 1208 if (ctlr->busy) 1209 was_busy = true; 1210 else 1211 ctlr->busy = true; 1212 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1213 1214 mutex_lock(&ctlr->io_mutex); 1215 1216 if (!was_busy && ctlr->auto_runtime_pm) { 1217 ret = pm_runtime_get_sync(ctlr->dev.parent); 1218 if (ret < 0) { 1219 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1220 ret); 1221 mutex_unlock(&ctlr->io_mutex); 1222 return; 1223 } 1224 } 1225 1226 if (!was_busy) 1227 trace_spi_controller_busy(ctlr); 1228 1229 if (!was_busy && ctlr->prepare_transfer_hardware) { 1230 ret = ctlr->prepare_transfer_hardware(ctlr); 1231 if (ret) { 1232 dev_err(&ctlr->dev, 1233 "failed to prepare transfer hardware\n"); 1234 1235 if (ctlr->auto_runtime_pm) 1236 pm_runtime_put(ctlr->dev.parent); 1237 mutex_unlock(&ctlr->io_mutex); 1238 return; 1239 } 1240 } 1241 1242 trace_spi_message_start(ctlr->cur_msg); 1243 1244 if (ctlr->prepare_message) { 1245 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg); 1246 if (ret) { 1247 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1248 ret); 1249 ctlr->cur_msg->status = ret; 1250 spi_finalize_current_message(ctlr); 1251 goto out; 1252 } 1253 ctlr->cur_msg_prepared = true; 1254 } 1255 1256 ret = spi_map_msg(ctlr, ctlr->cur_msg); 1257 if (ret) { 1258 ctlr->cur_msg->status = ret; 1259 spi_finalize_current_message(ctlr); 1260 goto out; 1261 } 1262 1263 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg); 1264 if (ret) { 1265 dev_err(&ctlr->dev, 1266 "failed to transfer one message from queue\n"); 1267 goto out; 1268 } 1269 1270 out: 1271 mutex_unlock(&ctlr->io_mutex); 1272 1273 /* Prod the scheduler in case transfer_one() was busy waiting */ 1274 if (!ret) 1275 cond_resched(); 1276 } 1277 1278 /** 1279 * spi_pump_messages - kthread work function which processes spi message queue 1280 * @work: pointer to kthread work struct contained in the controller struct 1281 */ 1282 static void spi_pump_messages(struct kthread_work *work) 1283 { 1284 struct spi_controller *ctlr = 1285 container_of(work, struct spi_controller, pump_messages); 1286 1287 __spi_pump_messages(ctlr, true); 1288 } 1289 1290 static int spi_init_queue(struct spi_controller *ctlr) 1291 { 1292 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1293 1294 ctlr->running = false; 1295 ctlr->busy = false; 1296 1297 kthread_init_worker(&ctlr->kworker); 1298 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, 1299 "%s", dev_name(&ctlr->dev)); 1300 if (IS_ERR(ctlr->kworker_task)) { 1301 dev_err(&ctlr->dev, "failed to create message pump task\n"); 1302 return PTR_ERR(ctlr->kworker_task); 1303 } 1304 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1305 1306 /* 1307 * Controller config will indicate if this controller should run the 1308 * message pump with high (realtime) priority to reduce the transfer 1309 * latency on the bus by minimising the delay between a transfer 1310 * request and the scheduling of the message pump thread. Without this 1311 * setting the message pump thread will remain at default priority. 1312 */ 1313 if (ctlr->rt) { 1314 dev_info(&ctlr->dev, 1315 "will run message pump with realtime priority\n"); 1316 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); 1317 } 1318 1319 return 0; 1320 } 1321 1322 /** 1323 * spi_get_next_queued_message() - called by driver to check for queued 1324 * messages 1325 * @ctlr: the controller to check for queued messages 1326 * 1327 * If there are more messages in the queue, the next message is returned from 1328 * this call. 1329 * 1330 * Return: the next message in the queue, else NULL if the queue is empty. 1331 */ 1332 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1333 { 1334 struct spi_message *next; 1335 unsigned long flags; 1336 1337 /* get a pointer to the next message, if any */ 1338 spin_lock_irqsave(&ctlr->queue_lock, flags); 1339 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1340 queue); 1341 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1342 1343 return next; 1344 } 1345 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1346 1347 /** 1348 * spi_finalize_current_message() - the current message is complete 1349 * @ctlr: the controller to return the message to 1350 * 1351 * Called by the driver to notify the core that the message in the front of the 1352 * queue is complete and can be removed from the queue. 1353 */ 1354 void spi_finalize_current_message(struct spi_controller *ctlr) 1355 { 1356 struct spi_message *mesg; 1357 unsigned long flags; 1358 int ret; 1359 1360 spin_lock_irqsave(&ctlr->queue_lock, flags); 1361 mesg = ctlr->cur_msg; 1362 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1363 1364 spi_unmap_msg(ctlr, mesg); 1365 1366 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1367 ret = ctlr->unprepare_message(ctlr, mesg); 1368 if (ret) { 1369 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1370 ret); 1371 } 1372 } 1373 1374 spin_lock_irqsave(&ctlr->queue_lock, flags); 1375 ctlr->cur_msg = NULL; 1376 ctlr->cur_msg_prepared = false; 1377 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1378 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1379 1380 trace_spi_message_done(mesg); 1381 1382 mesg->state = NULL; 1383 if (mesg->complete) 1384 mesg->complete(mesg->context); 1385 } 1386 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1387 1388 static int spi_start_queue(struct spi_controller *ctlr) 1389 { 1390 unsigned long flags; 1391 1392 spin_lock_irqsave(&ctlr->queue_lock, flags); 1393 1394 if (ctlr->running || ctlr->busy) { 1395 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1396 return -EBUSY; 1397 } 1398 1399 ctlr->running = true; 1400 ctlr->cur_msg = NULL; 1401 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1402 1403 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1404 1405 return 0; 1406 } 1407 1408 static int spi_stop_queue(struct spi_controller *ctlr) 1409 { 1410 unsigned long flags; 1411 unsigned limit = 500; 1412 int ret = 0; 1413 1414 spin_lock_irqsave(&ctlr->queue_lock, flags); 1415 1416 /* 1417 * This is a bit lame, but is optimized for the common execution path. 1418 * A wait_queue on the ctlr->busy could be used, but then the common 1419 * execution path (pump_messages) would be required to call wake_up or 1420 * friends on every SPI message. Do this instead. 1421 */ 1422 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1423 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1424 usleep_range(10000, 11000); 1425 spin_lock_irqsave(&ctlr->queue_lock, flags); 1426 } 1427 1428 if (!list_empty(&ctlr->queue) || ctlr->busy) 1429 ret = -EBUSY; 1430 else 1431 ctlr->running = false; 1432 1433 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1434 1435 if (ret) { 1436 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1437 return ret; 1438 } 1439 return ret; 1440 } 1441 1442 static int spi_destroy_queue(struct spi_controller *ctlr) 1443 { 1444 int ret; 1445 1446 ret = spi_stop_queue(ctlr); 1447 1448 /* 1449 * kthread_flush_worker will block until all work is done. 1450 * If the reason that stop_queue timed out is that the work will never 1451 * finish, then it does no good to call flush/stop thread, so 1452 * return anyway. 1453 */ 1454 if (ret) { 1455 dev_err(&ctlr->dev, "problem destroying queue\n"); 1456 return ret; 1457 } 1458 1459 kthread_flush_worker(&ctlr->kworker); 1460 kthread_stop(ctlr->kworker_task); 1461 1462 return 0; 1463 } 1464 1465 static int __spi_queued_transfer(struct spi_device *spi, 1466 struct spi_message *msg, 1467 bool need_pump) 1468 { 1469 struct spi_controller *ctlr = spi->controller; 1470 unsigned long flags; 1471 1472 spin_lock_irqsave(&ctlr->queue_lock, flags); 1473 1474 if (!ctlr->running) { 1475 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1476 return -ESHUTDOWN; 1477 } 1478 msg->actual_length = 0; 1479 msg->status = -EINPROGRESS; 1480 1481 list_add_tail(&msg->queue, &ctlr->queue); 1482 if (!ctlr->busy && need_pump) 1483 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1484 1485 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1486 return 0; 1487 } 1488 1489 /** 1490 * spi_queued_transfer - transfer function for queued transfers 1491 * @spi: spi device which is requesting transfer 1492 * @msg: spi message which is to handled is queued to driver queue 1493 * 1494 * Return: zero on success, else a negative error code. 1495 */ 1496 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1497 { 1498 return __spi_queued_transfer(spi, msg, true); 1499 } 1500 1501 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1502 { 1503 int ret; 1504 1505 ctlr->transfer = spi_queued_transfer; 1506 if (!ctlr->transfer_one_message) 1507 ctlr->transfer_one_message = spi_transfer_one_message; 1508 1509 /* Initialize and start queue */ 1510 ret = spi_init_queue(ctlr); 1511 if (ret) { 1512 dev_err(&ctlr->dev, "problem initializing queue\n"); 1513 goto err_init_queue; 1514 } 1515 ctlr->queued = true; 1516 ret = spi_start_queue(ctlr); 1517 if (ret) { 1518 dev_err(&ctlr->dev, "problem starting queue\n"); 1519 goto err_start_queue; 1520 } 1521 1522 return 0; 1523 1524 err_start_queue: 1525 spi_destroy_queue(ctlr); 1526 err_init_queue: 1527 return ret; 1528 } 1529 1530 /*-------------------------------------------------------------------------*/ 1531 1532 #if defined(CONFIG_OF) 1533 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1534 struct device_node *nc) 1535 { 1536 u32 value; 1537 int rc; 1538 1539 /* Mode (clock phase/polarity/etc.) */ 1540 if (of_property_read_bool(nc, "spi-cpha")) 1541 spi->mode |= SPI_CPHA; 1542 if (of_property_read_bool(nc, "spi-cpol")) 1543 spi->mode |= SPI_CPOL; 1544 if (of_property_read_bool(nc, "spi-cs-high")) 1545 spi->mode |= SPI_CS_HIGH; 1546 if (of_property_read_bool(nc, "spi-3wire")) 1547 spi->mode |= SPI_3WIRE; 1548 if (of_property_read_bool(nc, "spi-lsb-first")) 1549 spi->mode |= SPI_LSB_FIRST; 1550 1551 /* Device DUAL/QUAD mode */ 1552 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1553 switch (value) { 1554 case 1: 1555 break; 1556 case 2: 1557 spi->mode |= SPI_TX_DUAL; 1558 break; 1559 case 4: 1560 spi->mode |= SPI_TX_QUAD; 1561 break; 1562 default: 1563 dev_warn(&ctlr->dev, 1564 "spi-tx-bus-width %d not supported\n", 1565 value); 1566 break; 1567 } 1568 } 1569 1570 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1571 switch (value) { 1572 case 1: 1573 break; 1574 case 2: 1575 spi->mode |= SPI_RX_DUAL; 1576 break; 1577 case 4: 1578 spi->mode |= SPI_RX_QUAD; 1579 break; 1580 default: 1581 dev_warn(&ctlr->dev, 1582 "spi-rx-bus-width %d not supported\n", 1583 value); 1584 break; 1585 } 1586 } 1587 1588 if (spi_controller_is_slave(ctlr)) { 1589 if (strcmp(nc->name, "slave")) { 1590 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1591 nc); 1592 return -EINVAL; 1593 } 1594 return 0; 1595 } 1596 1597 /* Device address */ 1598 rc = of_property_read_u32(nc, "reg", &value); 1599 if (rc) { 1600 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1601 nc, rc); 1602 return rc; 1603 } 1604 spi->chip_select = value; 1605 1606 /* Device speed */ 1607 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1608 if (rc) { 1609 dev_err(&ctlr->dev, 1610 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); 1611 return rc; 1612 } 1613 spi->max_speed_hz = value; 1614 1615 return 0; 1616 } 1617 1618 static struct spi_device * 1619 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1620 { 1621 struct spi_device *spi; 1622 int rc; 1623 1624 /* Alloc an spi_device */ 1625 spi = spi_alloc_device(ctlr); 1626 if (!spi) { 1627 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 1628 rc = -ENOMEM; 1629 goto err_out; 1630 } 1631 1632 /* Select device driver */ 1633 rc = of_modalias_node(nc, spi->modalias, 1634 sizeof(spi->modalias)); 1635 if (rc < 0) { 1636 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 1637 goto err_out; 1638 } 1639 1640 rc = of_spi_parse_dt(ctlr, spi, nc); 1641 if (rc) 1642 goto err_out; 1643 1644 /* Store a pointer to the node in the device structure */ 1645 of_node_get(nc); 1646 spi->dev.of_node = nc; 1647 1648 /* Register the new device */ 1649 rc = spi_add_device(spi); 1650 if (rc) { 1651 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 1652 goto err_of_node_put; 1653 } 1654 1655 return spi; 1656 1657 err_of_node_put: 1658 of_node_put(nc); 1659 err_out: 1660 spi_dev_put(spi); 1661 return ERR_PTR(rc); 1662 } 1663 1664 /** 1665 * of_register_spi_devices() - Register child devices onto the SPI bus 1666 * @ctlr: Pointer to spi_controller device 1667 * 1668 * Registers an spi_device for each child node of controller node which 1669 * represents a valid SPI slave. 1670 */ 1671 static void of_register_spi_devices(struct spi_controller *ctlr) 1672 { 1673 struct spi_device *spi; 1674 struct device_node *nc; 1675 1676 if (!ctlr->dev.of_node) 1677 return; 1678 1679 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 1680 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 1681 continue; 1682 spi = of_register_spi_device(ctlr, nc); 1683 if (IS_ERR(spi)) { 1684 dev_warn(&ctlr->dev, 1685 "Failed to create SPI device for %pOF\n", nc); 1686 of_node_clear_flag(nc, OF_POPULATED); 1687 } 1688 } 1689 } 1690 #else 1691 static void of_register_spi_devices(struct spi_controller *ctlr) { } 1692 #endif 1693 1694 #ifdef CONFIG_ACPI 1695 static void acpi_spi_parse_apple_properties(struct spi_device *spi) 1696 { 1697 struct acpi_device *dev = ACPI_COMPANION(&spi->dev); 1698 const union acpi_object *obj; 1699 1700 if (!x86_apple_machine) 1701 return; 1702 1703 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 1704 && obj->buffer.length >= 4) 1705 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 1706 1707 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 1708 && obj->buffer.length == 8) 1709 spi->bits_per_word = *(u64 *)obj->buffer.pointer; 1710 1711 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 1712 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 1713 spi->mode |= SPI_LSB_FIRST; 1714 1715 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 1716 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1717 spi->mode |= SPI_CPOL; 1718 1719 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 1720 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1721 spi->mode |= SPI_CPHA; 1722 } 1723 1724 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1725 { 1726 struct spi_device *spi = data; 1727 struct spi_controller *ctlr = spi->controller; 1728 1729 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1730 struct acpi_resource_spi_serialbus *sb; 1731 1732 sb = &ares->data.spi_serial_bus; 1733 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1734 /* 1735 * ACPI DeviceSelection numbering is handled by the 1736 * host controller driver in Windows and can vary 1737 * from driver to driver. In Linux we always expect 1738 * 0 .. max - 1 so we need to ask the driver to 1739 * translate between the two schemes. 1740 */ 1741 if (ctlr->fw_translate_cs) { 1742 int cs = ctlr->fw_translate_cs(ctlr, 1743 sb->device_selection); 1744 if (cs < 0) 1745 return cs; 1746 spi->chip_select = cs; 1747 } else { 1748 spi->chip_select = sb->device_selection; 1749 } 1750 1751 spi->max_speed_hz = sb->connection_speed; 1752 1753 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1754 spi->mode |= SPI_CPHA; 1755 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1756 spi->mode |= SPI_CPOL; 1757 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1758 spi->mode |= SPI_CS_HIGH; 1759 } 1760 } else if (spi->irq < 0) { 1761 struct resource r; 1762 1763 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1764 spi->irq = r.start; 1765 } 1766 1767 /* Always tell the ACPI core to skip this resource */ 1768 return 1; 1769 } 1770 1771 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 1772 struct acpi_device *adev) 1773 { 1774 struct list_head resource_list; 1775 struct spi_device *spi; 1776 int ret; 1777 1778 if (acpi_bus_get_status(adev) || !adev->status.present || 1779 acpi_device_enumerated(adev)) 1780 return AE_OK; 1781 1782 spi = spi_alloc_device(ctlr); 1783 if (!spi) { 1784 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 1785 dev_name(&adev->dev)); 1786 return AE_NO_MEMORY; 1787 } 1788 1789 ACPI_COMPANION_SET(&spi->dev, adev); 1790 spi->irq = -1; 1791 1792 INIT_LIST_HEAD(&resource_list); 1793 ret = acpi_dev_get_resources(adev, &resource_list, 1794 acpi_spi_add_resource, spi); 1795 acpi_dev_free_resource_list(&resource_list); 1796 1797 acpi_spi_parse_apple_properties(spi); 1798 1799 if (ret < 0 || !spi->max_speed_hz) { 1800 spi_dev_put(spi); 1801 return AE_OK; 1802 } 1803 1804 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 1805 sizeof(spi->modalias)); 1806 1807 if (spi->irq < 0) 1808 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 1809 1810 acpi_device_set_enumerated(adev); 1811 1812 adev->power.flags.ignore_parent = true; 1813 if (spi_add_device(spi)) { 1814 adev->power.flags.ignore_parent = false; 1815 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 1816 dev_name(&adev->dev)); 1817 spi_dev_put(spi); 1818 } 1819 1820 return AE_OK; 1821 } 1822 1823 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1824 void *data, void **return_value) 1825 { 1826 struct spi_controller *ctlr = data; 1827 struct acpi_device *adev; 1828 1829 if (acpi_bus_get_device(handle, &adev)) 1830 return AE_OK; 1831 1832 return acpi_register_spi_device(ctlr, adev); 1833 } 1834 1835 static void acpi_register_spi_devices(struct spi_controller *ctlr) 1836 { 1837 acpi_status status; 1838 acpi_handle handle; 1839 1840 handle = ACPI_HANDLE(ctlr->dev.parent); 1841 if (!handle) 1842 return; 1843 1844 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1845 acpi_spi_add_device, NULL, ctlr, NULL); 1846 if (ACPI_FAILURE(status)) 1847 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 1848 } 1849 #else 1850 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 1851 #endif /* CONFIG_ACPI */ 1852 1853 static void spi_controller_release(struct device *dev) 1854 { 1855 struct spi_controller *ctlr; 1856 1857 ctlr = container_of(dev, struct spi_controller, dev); 1858 kfree(ctlr); 1859 } 1860 1861 static struct class spi_master_class = { 1862 .name = "spi_master", 1863 .owner = THIS_MODULE, 1864 .dev_release = spi_controller_release, 1865 .dev_groups = spi_master_groups, 1866 }; 1867 1868 #ifdef CONFIG_SPI_SLAVE 1869 /** 1870 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 1871 * controller 1872 * @spi: device used for the current transfer 1873 */ 1874 int spi_slave_abort(struct spi_device *spi) 1875 { 1876 struct spi_controller *ctlr = spi->controller; 1877 1878 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 1879 return ctlr->slave_abort(ctlr); 1880 1881 return -ENOTSUPP; 1882 } 1883 EXPORT_SYMBOL_GPL(spi_slave_abort); 1884 1885 static int match_true(struct device *dev, void *data) 1886 { 1887 return 1; 1888 } 1889 1890 static ssize_t spi_slave_show(struct device *dev, 1891 struct device_attribute *attr, char *buf) 1892 { 1893 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 1894 dev); 1895 struct device *child; 1896 1897 child = device_find_child(&ctlr->dev, NULL, match_true); 1898 return sprintf(buf, "%s\n", 1899 child ? to_spi_device(child)->modalias : NULL); 1900 } 1901 1902 static ssize_t spi_slave_store(struct device *dev, 1903 struct device_attribute *attr, const char *buf, 1904 size_t count) 1905 { 1906 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 1907 dev); 1908 struct spi_device *spi; 1909 struct device *child; 1910 char name[32]; 1911 int rc; 1912 1913 rc = sscanf(buf, "%31s", name); 1914 if (rc != 1 || !name[0]) 1915 return -EINVAL; 1916 1917 child = device_find_child(&ctlr->dev, NULL, match_true); 1918 if (child) { 1919 /* Remove registered slave */ 1920 device_unregister(child); 1921 put_device(child); 1922 } 1923 1924 if (strcmp(name, "(null)")) { 1925 /* Register new slave */ 1926 spi = spi_alloc_device(ctlr); 1927 if (!spi) 1928 return -ENOMEM; 1929 1930 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 1931 1932 rc = spi_add_device(spi); 1933 if (rc) { 1934 spi_dev_put(spi); 1935 return rc; 1936 } 1937 } 1938 1939 return count; 1940 } 1941 1942 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store); 1943 1944 static struct attribute *spi_slave_attrs[] = { 1945 &dev_attr_slave.attr, 1946 NULL, 1947 }; 1948 1949 static const struct attribute_group spi_slave_group = { 1950 .attrs = spi_slave_attrs, 1951 }; 1952 1953 static const struct attribute_group *spi_slave_groups[] = { 1954 &spi_controller_statistics_group, 1955 &spi_slave_group, 1956 NULL, 1957 }; 1958 1959 static struct class spi_slave_class = { 1960 .name = "spi_slave", 1961 .owner = THIS_MODULE, 1962 .dev_release = spi_controller_release, 1963 .dev_groups = spi_slave_groups, 1964 }; 1965 #else 1966 extern struct class spi_slave_class; /* dummy */ 1967 #endif 1968 1969 /** 1970 * __spi_alloc_controller - allocate an SPI master or slave controller 1971 * @dev: the controller, possibly using the platform_bus 1972 * @size: how much zeroed driver-private data to allocate; the pointer to this 1973 * memory is in the driver_data field of the returned device, 1974 * accessible with spi_controller_get_devdata(). 1975 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 1976 * slave (true) controller 1977 * Context: can sleep 1978 * 1979 * This call is used only by SPI controller drivers, which are the 1980 * only ones directly touching chip registers. It's how they allocate 1981 * an spi_controller structure, prior to calling spi_register_controller(). 1982 * 1983 * This must be called from context that can sleep. 1984 * 1985 * The caller is responsible for assigning the bus number and initializing the 1986 * controller's methods before calling spi_register_controller(); and (after 1987 * errors adding the device) calling spi_controller_put() to prevent a memory 1988 * leak. 1989 * 1990 * Return: the SPI controller structure on success, else NULL. 1991 */ 1992 struct spi_controller *__spi_alloc_controller(struct device *dev, 1993 unsigned int size, bool slave) 1994 { 1995 struct spi_controller *ctlr; 1996 1997 if (!dev) 1998 return NULL; 1999 2000 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL); 2001 if (!ctlr) 2002 return NULL; 2003 2004 device_initialize(&ctlr->dev); 2005 ctlr->bus_num = -1; 2006 ctlr->num_chipselect = 1; 2007 ctlr->slave = slave; 2008 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2009 ctlr->dev.class = &spi_slave_class; 2010 else 2011 ctlr->dev.class = &spi_master_class; 2012 ctlr->dev.parent = dev; 2013 pm_suspend_ignore_children(&ctlr->dev, true); 2014 spi_controller_set_devdata(ctlr, &ctlr[1]); 2015 2016 return ctlr; 2017 } 2018 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2019 2020 #ifdef CONFIG_OF 2021 static int of_spi_register_master(struct spi_controller *ctlr) 2022 { 2023 int nb, i, *cs; 2024 struct device_node *np = ctlr->dev.of_node; 2025 2026 if (!np) 2027 return 0; 2028 2029 nb = of_gpio_named_count(np, "cs-gpios"); 2030 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2031 2032 /* Return error only for an incorrectly formed cs-gpios property */ 2033 if (nb == 0 || nb == -ENOENT) 2034 return 0; 2035 else if (nb < 0) 2036 return nb; 2037 2038 cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect, 2039 GFP_KERNEL); 2040 ctlr->cs_gpios = cs; 2041 2042 if (!ctlr->cs_gpios) 2043 return -ENOMEM; 2044 2045 for (i = 0; i < ctlr->num_chipselect; i++) 2046 cs[i] = -ENOENT; 2047 2048 for (i = 0; i < nb; i++) 2049 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2050 2051 return 0; 2052 } 2053 #else 2054 static int of_spi_register_master(struct spi_controller *ctlr) 2055 { 2056 return 0; 2057 } 2058 #endif 2059 2060 /** 2061 * spi_register_controller - register SPI master or slave controller 2062 * @ctlr: initialized master, originally from spi_alloc_master() or 2063 * spi_alloc_slave() 2064 * Context: can sleep 2065 * 2066 * SPI controllers connect to their drivers using some non-SPI bus, 2067 * such as the platform bus. The final stage of probe() in that code 2068 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2069 * 2070 * SPI controllers use board specific (often SOC specific) bus numbers, 2071 * and board-specific addressing for SPI devices combines those numbers 2072 * with chip select numbers. Since SPI does not directly support dynamic 2073 * device identification, boards need configuration tables telling which 2074 * chip is at which address. 2075 * 2076 * This must be called from context that can sleep. It returns zero on 2077 * success, else a negative error code (dropping the controller's refcount). 2078 * After a successful return, the caller is responsible for calling 2079 * spi_unregister_controller(). 2080 * 2081 * Return: zero on success, else a negative error code. 2082 */ 2083 int spi_register_controller(struct spi_controller *ctlr) 2084 { 2085 struct device *dev = ctlr->dev.parent; 2086 struct boardinfo *bi; 2087 int status = -ENODEV; 2088 int id, first_dynamic; 2089 2090 if (!dev) 2091 return -ENODEV; 2092 2093 if (!spi_controller_is_slave(ctlr)) { 2094 status = of_spi_register_master(ctlr); 2095 if (status) 2096 return status; 2097 } 2098 2099 /* even if it's just one always-selected device, there must 2100 * be at least one chipselect 2101 */ 2102 if (ctlr->num_chipselect == 0) 2103 return -EINVAL; 2104 /* allocate dynamic bus number using Linux idr */ 2105 if ((ctlr->bus_num < 0) && ctlr->dev.of_node) { 2106 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2107 if (id >= 0) { 2108 ctlr->bus_num = id; 2109 mutex_lock(&board_lock); 2110 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2111 ctlr->bus_num + 1, GFP_KERNEL); 2112 mutex_unlock(&board_lock); 2113 if (WARN(id < 0, "couldn't get idr")) 2114 return id == -ENOSPC ? -EBUSY : id; 2115 } 2116 } 2117 if (ctlr->bus_num < 0) { 2118 first_dynamic = of_alias_get_highest_id("spi"); 2119 if (first_dynamic < 0) 2120 first_dynamic = 0; 2121 else 2122 first_dynamic++; 2123 2124 mutex_lock(&board_lock); 2125 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2126 0, GFP_KERNEL); 2127 mutex_unlock(&board_lock); 2128 if (WARN(id < 0, "couldn't get idr")) 2129 return id; 2130 ctlr->bus_num = id; 2131 } 2132 INIT_LIST_HEAD(&ctlr->queue); 2133 spin_lock_init(&ctlr->queue_lock); 2134 spin_lock_init(&ctlr->bus_lock_spinlock); 2135 mutex_init(&ctlr->bus_lock_mutex); 2136 mutex_init(&ctlr->io_mutex); 2137 ctlr->bus_lock_flag = 0; 2138 init_completion(&ctlr->xfer_completion); 2139 if (!ctlr->max_dma_len) 2140 ctlr->max_dma_len = INT_MAX; 2141 2142 /* register the device, then userspace will see it. 2143 * registration fails if the bus ID is in use. 2144 */ 2145 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2146 status = device_add(&ctlr->dev); 2147 if (status < 0) { 2148 /* free bus id */ 2149 mutex_lock(&board_lock); 2150 idr_remove(&spi_master_idr, ctlr->bus_num); 2151 mutex_unlock(&board_lock); 2152 goto done; 2153 } 2154 dev_dbg(dev, "registered %s %s\n", 2155 spi_controller_is_slave(ctlr) ? "slave" : "master", 2156 dev_name(&ctlr->dev)); 2157 2158 /* If we're using a queued driver, start the queue */ 2159 if (ctlr->transfer) 2160 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2161 else { 2162 status = spi_controller_initialize_queue(ctlr); 2163 if (status) { 2164 device_del(&ctlr->dev); 2165 /* free bus id */ 2166 mutex_lock(&board_lock); 2167 idr_remove(&spi_master_idr, ctlr->bus_num); 2168 mutex_unlock(&board_lock); 2169 goto done; 2170 } 2171 } 2172 /* add statistics */ 2173 spin_lock_init(&ctlr->statistics.lock); 2174 2175 mutex_lock(&board_lock); 2176 list_add_tail(&ctlr->list, &spi_controller_list); 2177 list_for_each_entry(bi, &board_list, list) 2178 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2179 mutex_unlock(&board_lock); 2180 2181 /* Register devices from the device tree and ACPI */ 2182 of_register_spi_devices(ctlr); 2183 acpi_register_spi_devices(ctlr); 2184 done: 2185 return status; 2186 } 2187 EXPORT_SYMBOL_GPL(spi_register_controller); 2188 2189 static void devm_spi_unregister(struct device *dev, void *res) 2190 { 2191 spi_unregister_controller(*(struct spi_controller **)res); 2192 } 2193 2194 /** 2195 * devm_spi_register_controller - register managed SPI master or slave 2196 * controller 2197 * @dev: device managing SPI controller 2198 * @ctlr: initialized controller, originally from spi_alloc_master() or 2199 * spi_alloc_slave() 2200 * Context: can sleep 2201 * 2202 * Register a SPI device as with spi_register_controller() which will 2203 * automatically be unregistered and freed. 2204 * 2205 * Return: zero on success, else a negative error code. 2206 */ 2207 int devm_spi_register_controller(struct device *dev, 2208 struct spi_controller *ctlr) 2209 { 2210 struct spi_controller **ptr; 2211 int ret; 2212 2213 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2214 if (!ptr) 2215 return -ENOMEM; 2216 2217 ret = spi_register_controller(ctlr); 2218 if (!ret) { 2219 *ptr = ctlr; 2220 devres_add(dev, ptr); 2221 } else { 2222 devres_free(ptr); 2223 } 2224 2225 return ret; 2226 } 2227 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2228 2229 static int __unregister(struct device *dev, void *null) 2230 { 2231 spi_unregister_device(to_spi_device(dev)); 2232 return 0; 2233 } 2234 2235 /** 2236 * spi_unregister_controller - unregister SPI master or slave controller 2237 * @ctlr: the controller being unregistered 2238 * Context: can sleep 2239 * 2240 * This call is used only by SPI controller drivers, which are the 2241 * only ones directly touching chip registers. 2242 * 2243 * This must be called from context that can sleep. 2244 * 2245 * Note that this function also drops a reference to the controller. 2246 */ 2247 void spi_unregister_controller(struct spi_controller *ctlr) 2248 { 2249 struct spi_controller *found; 2250 int id = ctlr->bus_num; 2251 int dummy; 2252 2253 /* First make sure that this controller was ever added */ 2254 mutex_lock(&board_lock); 2255 found = idr_find(&spi_master_idr, id); 2256 mutex_unlock(&board_lock); 2257 if (found != ctlr) { 2258 dev_dbg(&ctlr->dev, 2259 "attempting to delete unregistered controller [%s]\n", 2260 dev_name(&ctlr->dev)); 2261 return; 2262 } 2263 if (ctlr->queued) { 2264 if (spi_destroy_queue(ctlr)) 2265 dev_err(&ctlr->dev, "queue remove failed\n"); 2266 } 2267 mutex_lock(&board_lock); 2268 list_del(&ctlr->list); 2269 mutex_unlock(&board_lock); 2270 2271 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister); 2272 device_unregister(&ctlr->dev); 2273 /* free bus id */ 2274 mutex_lock(&board_lock); 2275 idr_remove(&spi_master_idr, id); 2276 mutex_unlock(&board_lock); 2277 } 2278 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2279 2280 int spi_controller_suspend(struct spi_controller *ctlr) 2281 { 2282 int ret; 2283 2284 /* Basically no-ops for non-queued controllers */ 2285 if (!ctlr->queued) 2286 return 0; 2287 2288 ret = spi_stop_queue(ctlr); 2289 if (ret) 2290 dev_err(&ctlr->dev, "queue stop failed\n"); 2291 2292 return ret; 2293 } 2294 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2295 2296 int spi_controller_resume(struct spi_controller *ctlr) 2297 { 2298 int ret; 2299 2300 if (!ctlr->queued) 2301 return 0; 2302 2303 ret = spi_start_queue(ctlr); 2304 if (ret) 2305 dev_err(&ctlr->dev, "queue restart failed\n"); 2306 2307 return ret; 2308 } 2309 EXPORT_SYMBOL_GPL(spi_controller_resume); 2310 2311 static int __spi_controller_match(struct device *dev, const void *data) 2312 { 2313 struct spi_controller *ctlr; 2314 const u16 *bus_num = data; 2315 2316 ctlr = container_of(dev, struct spi_controller, dev); 2317 return ctlr->bus_num == *bus_num; 2318 } 2319 2320 /** 2321 * spi_busnum_to_master - look up master associated with bus_num 2322 * @bus_num: the master's bus number 2323 * Context: can sleep 2324 * 2325 * This call may be used with devices that are registered after 2326 * arch init time. It returns a refcounted pointer to the relevant 2327 * spi_controller (which the caller must release), or NULL if there is 2328 * no such master registered. 2329 * 2330 * Return: the SPI master structure on success, else NULL. 2331 */ 2332 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2333 { 2334 struct device *dev; 2335 struct spi_controller *ctlr = NULL; 2336 2337 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2338 __spi_controller_match); 2339 if (dev) 2340 ctlr = container_of(dev, struct spi_controller, dev); 2341 /* reference got in class_find_device */ 2342 return ctlr; 2343 } 2344 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2345 2346 /*-------------------------------------------------------------------------*/ 2347 2348 /* Core methods for SPI resource management */ 2349 2350 /** 2351 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2352 * during the processing of a spi_message while using 2353 * spi_transfer_one 2354 * @spi: the spi device for which we allocate memory 2355 * @release: the release code to execute for this resource 2356 * @size: size to alloc and return 2357 * @gfp: GFP allocation flags 2358 * 2359 * Return: the pointer to the allocated data 2360 * 2361 * This may get enhanced in the future to allocate from a memory pool 2362 * of the @spi_device or @spi_controller to avoid repeated allocations. 2363 */ 2364 void *spi_res_alloc(struct spi_device *spi, 2365 spi_res_release_t release, 2366 size_t size, gfp_t gfp) 2367 { 2368 struct spi_res *sres; 2369 2370 sres = kzalloc(sizeof(*sres) + size, gfp); 2371 if (!sres) 2372 return NULL; 2373 2374 INIT_LIST_HEAD(&sres->entry); 2375 sres->release = release; 2376 2377 return sres->data; 2378 } 2379 EXPORT_SYMBOL_GPL(spi_res_alloc); 2380 2381 /** 2382 * spi_res_free - free an spi resource 2383 * @res: pointer to the custom data of a resource 2384 * 2385 */ 2386 void spi_res_free(void *res) 2387 { 2388 struct spi_res *sres = container_of(res, struct spi_res, data); 2389 2390 if (!res) 2391 return; 2392 2393 WARN_ON(!list_empty(&sres->entry)); 2394 kfree(sres); 2395 } 2396 EXPORT_SYMBOL_GPL(spi_res_free); 2397 2398 /** 2399 * spi_res_add - add a spi_res to the spi_message 2400 * @message: the spi message 2401 * @res: the spi_resource 2402 */ 2403 void spi_res_add(struct spi_message *message, void *res) 2404 { 2405 struct spi_res *sres = container_of(res, struct spi_res, data); 2406 2407 WARN_ON(!list_empty(&sres->entry)); 2408 list_add_tail(&sres->entry, &message->resources); 2409 } 2410 EXPORT_SYMBOL_GPL(spi_res_add); 2411 2412 /** 2413 * spi_res_release - release all spi resources for this message 2414 * @ctlr: the @spi_controller 2415 * @message: the @spi_message 2416 */ 2417 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2418 { 2419 struct spi_res *res; 2420 2421 while (!list_empty(&message->resources)) { 2422 res = list_last_entry(&message->resources, 2423 struct spi_res, entry); 2424 2425 if (res->release) 2426 res->release(ctlr, message, res->data); 2427 2428 list_del(&res->entry); 2429 2430 kfree(res); 2431 } 2432 } 2433 EXPORT_SYMBOL_GPL(spi_res_release); 2434 2435 /*-------------------------------------------------------------------------*/ 2436 2437 /* Core methods for spi_message alterations */ 2438 2439 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2440 struct spi_message *msg, 2441 void *res) 2442 { 2443 struct spi_replaced_transfers *rxfer = res; 2444 size_t i; 2445 2446 /* call extra callback if requested */ 2447 if (rxfer->release) 2448 rxfer->release(ctlr, msg, res); 2449 2450 /* insert replaced transfers back into the message */ 2451 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2452 2453 /* remove the formerly inserted entries */ 2454 for (i = 0; i < rxfer->inserted; i++) 2455 list_del(&rxfer->inserted_transfers[i].transfer_list); 2456 } 2457 2458 /** 2459 * spi_replace_transfers - replace transfers with several transfers 2460 * and register change with spi_message.resources 2461 * @msg: the spi_message we work upon 2462 * @xfer_first: the first spi_transfer we want to replace 2463 * @remove: number of transfers to remove 2464 * @insert: the number of transfers we want to insert instead 2465 * @release: extra release code necessary in some circumstances 2466 * @extradatasize: extra data to allocate (with alignment guarantees 2467 * of struct @spi_transfer) 2468 * @gfp: gfp flags 2469 * 2470 * Returns: pointer to @spi_replaced_transfers, 2471 * PTR_ERR(...) in case of errors. 2472 */ 2473 struct spi_replaced_transfers *spi_replace_transfers( 2474 struct spi_message *msg, 2475 struct spi_transfer *xfer_first, 2476 size_t remove, 2477 size_t insert, 2478 spi_replaced_release_t release, 2479 size_t extradatasize, 2480 gfp_t gfp) 2481 { 2482 struct spi_replaced_transfers *rxfer; 2483 struct spi_transfer *xfer; 2484 size_t i; 2485 2486 /* allocate the structure using spi_res */ 2487 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2488 insert * sizeof(struct spi_transfer) 2489 + sizeof(struct spi_replaced_transfers) 2490 + extradatasize, 2491 gfp); 2492 if (!rxfer) 2493 return ERR_PTR(-ENOMEM); 2494 2495 /* the release code to invoke before running the generic release */ 2496 rxfer->release = release; 2497 2498 /* assign extradata */ 2499 if (extradatasize) 2500 rxfer->extradata = 2501 &rxfer->inserted_transfers[insert]; 2502 2503 /* init the replaced_transfers list */ 2504 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2505 2506 /* assign the list_entry after which we should reinsert 2507 * the @replaced_transfers - it may be spi_message.messages! 2508 */ 2509 rxfer->replaced_after = xfer_first->transfer_list.prev; 2510 2511 /* remove the requested number of transfers */ 2512 for (i = 0; i < remove; i++) { 2513 /* if the entry after replaced_after it is msg->transfers 2514 * then we have been requested to remove more transfers 2515 * than are in the list 2516 */ 2517 if (rxfer->replaced_after->next == &msg->transfers) { 2518 dev_err(&msg->spi->dev, 2519 "requested to remove more spi_transfers than are available\n"); 2520 /* insert replaced transfers back into the message */ 2521 list_splice(&rxfer->replaced_transfers, 2522 rxfer->replaced_after); 2523 2524 /* free the spi_replace_transfer structure */ 2525 spi_res_free(rxfer); 2526 2527 /* and return with an error */ 2528 return ERR_PTR(-EINVAL); 2529 } 2530 2531 /* remove the entry after replaced_after from list of 2532 * transfers and add it to list of replaced_transfers 2533 */ 2534 list_move_tail(rxfer->replaced_after->next, 2535 &rxfer->replaced_transfers); 2536 } 2537 2538 /* create copy of the given xfer with identical settings 2539 * based on the first transfer to get removed 2540 */ 2541 for (i = 0; i < insert; i++) { 2542 /* we need to run in reverse order */ 2543 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 2544 2545 /* copy all spi_transfer data */ 2546 memcpy(xfer, xfer_first, sizeof(*xfer)); 2547 2548 /* add to list */ 2549 list_add(&xfer->transfer_list, rxfer->replaced_after); 2550 2551 /* clear cs_change and delay_usecs for all but the last */ 2552 if (i) { 2553 xfer->cs_change = false; 2554 xfer->delay_usecs = 0; 2555 } 2556 } 2557 2558 /* set up inserted */ 2559 rxfer->inserted = insert; 2560 2561 /* and register it with spi_res/spi_message */ 2562 spi_res_add(msg, rxfer); 2563 2564 return rxfer; 2565 } 2566 EXPORT_SYMBOL_GPL(spi_replace_transfers); 2567 2568 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 2569 struct spi_message *msg, 2570 struct spi_transfer **xferp, 2571 size_t maxsize, 2572 gfp_t gfp) 2573 { 2574 struct spi_transfer *xfer = *xferp, *xfers; 2575 struct spi_replaced_transfers *srt; 2576 size_t offset; 2577 size_t count, i; 2578 2579 /* warn once about this fact that we are splitting a transfer */ 2580 dev_warn_once(&msg->spi->dev, 2581 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n", 2582 xfer->len, maxsize); 2583 2584 /* calculate how many we have to replace */ 2585 count = DIV_ROUND_UP(xfer->len, maxsize); 2586 2587 /* create replacement */ 2588 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 2589 if (IS_ERR(srt)) 2590 return PTR_ERR(srt); 2591 xfers = srt->inserted_transfers; 2592 2593 /* now handle each of those newly inserted spi_transfers 2594 * note that the replacements spi_transfers all are preset 2595 * to the same values as *xferp, so tx_buf, rx_buf and len 2596 * are all identical (as well as most others) 2597 * so we just have to fix up len and the pointers. 2598 * 2599 * this also includes support for the depreciated 2600 * spi_message.is_dma_mapped interface 2601 */ 2602 2603 /* the first transfer just needs the length modified, so we 2604 * run it outside the loop 2605 */ 2606 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 2607 2608 /* all the others need rx_buf/tx_buf also set */ 2609 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 2610 /* update rx_buf, tx_buf and dma */ 2611 if (xfers[i].rx_buf) 2612 xfers[i].rx_buf += offset; 2613 if (xfers[i].rx_dma) 2614 xfers[i].rx_dma += offset; 2615 if (xfers[i].tx_buf) 2616 xfers[i].tx_buf += offset; 2617 if (xfers[i].tx_dma) 2618 xfers[i].tx_dma += offset; 2619 2620 /* update length */ 2621 xfers[i].len = min(maxsize, xfers[i].len - offset); 2622 } 2623 2624 /* we set up xferp to the last entry we have inserted, 2625 * so that we skip those already split transfers 2626 */ 2627 *xferp = &xfers[count - 1]; 2628 2629 /* increment statistics counters */ 2630 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 2631 transfers_split_maxsize); 2632 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 2633 transfers_split_maxsize); 2634 2635 return 0; 2636 } 2637 2638 /** 2639 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 2640 * when an individual transfer exceeds a 2641 * certain size 2642 * @ctlr: the @spi_controller for this transfer 2643 * @msg: the @spi_message to transform 2644 * @maxsize: the maximum when to apply this 2645 * @gfp: GFP allocation flags 2646 * 2647 * Return: status of transformation 2648 */ 2649 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 2650 struct spi_message *msg, 2651 size_t maxsize, 2652 gfp_t gfp) 2653 { 2654 struct spi_transfer *xfer; 2655 int ret; 2656 2657 /* iterate over the transfer_list, 2658 * but note that xfer is advanced to the last transfer inserted 2659 * to avoid checking sizes again unnecessarily (also xfer does 2660 * potentiall belong to a different list by the time the 2661 * replacement has happened 2662 */ 2663 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 2664 if (xfer->len > maxsize) { 2665 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 2666 maxsize, gfp); 2667 if (ret) 2668 return ret; 2669 } 2670 } 2671 2672 return 0; 2673 } 2674 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 2675 2676 /*-------------------------------------------------------------------------*/ 2677 2678 /* Core methods for SPI controller protocol drivers. Some of the 2679 * other core methods are currently defined as inline functions. 2680 */ 2681 2682 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 2683 u8 bits_per_word) 2684 { 2685 if (ctlr->bits_per_word_mask) { 2686 /* Only 32 bits fit in the mask */ 2687 if (bits_per_word > 32) 2688 return -EINVAL; 2689 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 2690 return -EINVAL; 2691 } 2692 2693 return 0; 2694 } 2695 2696 /** 2697 * spi_setup - setup SPI mode and clock rate 2698 * @spi: the device whose settings are being modified 2699 * Context: can sleep, and no requests are queued to the device 2700 * 2701 * SPI protocol drivers may need to update the transfer mode if the 2702 * device doesn't work with its default. They may likewise need 2703 * to update clock rates or word sizes from initial values. This function 2704 * changes those settings, and must be called from a context that can sleep. 2705 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 2706 * effect the next time the device is selected and data is transferred to 2707 * or from it. When this function returns, the spi device is deselected. 2708 * 2709 * Note that this call will fail if the protocol driver specifies an option 2710 * that the underlying controller or its driver does not support. For 2711 * example, not all hardware supports wire transfers using nine bit words, 2712 * LSB-first wire encoding, or active-high chipselects. 2713 * 2714 * Return: zero on success, else a negative error code. 2715 */ 2716 int spi_setup(struct spi_device *spi) 2717 { 2718 unsigned bad_bits, ugly_bits; 2719 int status; 2720 2721 /* check mode to prevent that DUAL and QUAD set at the same time 2722 */ 2723 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 2724 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 2725 dev_err(&spi->dev, 2726 "setup: can not select dual and quad at the same time\n"); 2727 return -EINVAL; 2728 } 2729 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 2730 */ 2731 if ((spi->mode & SPI_3WIRE) && (spi->mode & 2732 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 2733 return -EINVAL; 2734 /* help drivers fail *cleanly* when they need options 2735 * that aren't supported with their current controller 2736 */ 2737 bad_bits = spi->mode & ~spi->controller->mode_bits; 2738 ugly_bits = bad_bits & 2739 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); 2740 if (ugly_bits) { 2741 dev_warn(&spi->dev, 2742 "setup: ignoring unsupported mode bits %x\n", 2743 ugly_bits); 2744 spi->mode &= ~ugly_bits; 2745 bad_bits &= ~ugly_bits; 2746 } 2747 if (bad_bits) { 2748 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 2749 bad_bits); 2750 return -EINVAL; 2751 } 2752 2753 if (!spi->bits_per_word) 2754 spi->bits_per_word = 8; 2755 2756 status = __spi_validate_bits_per_word(spi->controller, 2757 spi->bits_per_word); 2758 if (status) 2759 return status; 2760 2761 if (!spi->max_speed_hz) 2762 spi->max_speed_hz = spi->controller->max_speed_hz; 2763 2764 if (spi->controller->setup) 2765 status = spi->controller->setup(spi); 2766 2767 spi_set_cs(spi, false); 2768 2769 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 2770 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 2771 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 2772 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 2773 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 2774 (spi->mode & SPI_LOOP) ? "loopback, " : "", 2775 spi->bits_per_word, spi->max_speed_hz, 2776 status); 2777 2778 return status; 2779 } 2780 EXPORT_SYMBOL_GPL(spi_setup); 2781 2782 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 2783 { 2784 struct spi_controller *ctlr = spi->controller; 2785 struct spi_transfer *xfer; 2786 int w_size; 2787 2788 if (list_empty(&message->transfers)) 2789 return -EINVAL; 2790 2791 /* Half-duplex links include original MicroWire, and ones with 2792 * only one data pin like SPI_3WIRE (switches direction) or where 2793 * either MOSI or MISO is missing. They can also be caused by 2794 * software limitations. 2795 */ 2796 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 2797 (spi->mode & SPI_3WIRE)) { 2798 unsigned flags = ctlr->flags; 2799 2800 list_for_each_entry(xfer, &message->transfers, transfer_list) { 2801 if (xfer->rx_buf && xfer->tx_buf) 2802 return -EINVAL; 2803 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 2804 return -EINVAL; 2805 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 2806 return -EINVAL; 2807 } 2808 } 2809 2810 /** 2811 * Set transfer bits_per_word and max speed as spi device default if 2812 * it is not set for this transfer. 2813 * Set transfer tx_nbits and rx_nbits as single transfer default 2814 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 2815 */ 2816 message->frame_length = 0; 2817 list_for_each_entry(xfer, &message->transfers, transfer_list) { 2818 message->frame_length += xfer->len; 2819 if (!xfer->bits_per_word) 2820 xfer->bits_per_word = spi->bits_per_word; 2821 2822 if (!xfer->speed_hz) 2823 xfer->speed_hz = spi->max_speed_hz; 2824 if (!xfer->speed_hz) 2825 xfer->speed_hz = ctlr->max_speed_hz; 2826 2827 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 2828 xfer->speed_hz = ctlr->max_speed_hz; 2829 2830 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 2831 return -EINVAL; 2832 2833 /* 2834 * SPI transfer length should be multiple of SPI word size 2835 * where SPI word size should be power-of-two multiple 2836 */ 2837 if (xfer->bits_per_word <= 8) 2838 w_size = 1; 2839 else if (xfer->bits_per_word <= 16) 2840 w_size = 2; 2841 else 2842 w_size = 4; 2843 2844 /* No partial transfers accepted */ 2845 if (xfer->len % w_size) 2846 return -EINVAL; 2847 2848 if (xfer->speed_hz && ctlr->min_speed_hz && 2849 xfer->speed_hz < ctlr->min_speed_hz) 2850 return -EINVAL; 2851 2852 if (xfer->tx_buf && !xfer->tx_nbits) 2853 xfer->tx_nbits = SPI_NBITS_SINGLE; 2854 if (xfer->rx_buf && !xfer->rx_nbits) 2855 xfer->rx_nbits = SPI_NBITS_SINGLE; 2856 /* check transfer tx/rx_nbits: 2857 * 1. check the value matches one of single, dual and quad 2858 * 2. check tx/rx_nbits match the mode in spi_device 2859 */ 2860 if (xfer->tx_buf) { 2861 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 2862 xfer->tx_nbits != SPI_NBITS_DUAL && 2863 xfer->tx_nbits != SPI_NBITS_QUAD) 2864 return -EINVAL; 2865 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 2866 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 2867 return -EINVAL; 2868 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 2869 !(spi->mode & SPI_TX_QUAD)) 2870 return -EINVAL; 2871 } 2872 /* check transfer rx_nbits */ 2873 if (xfer->rx_buf) { 2874 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 2875 xfer->rx_nbits != SPI_NBITS_DUAL && 2876 xfer->rx_nbits != SPI_NBITS_QUAD) 2877 return -EINVAL; 2878 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 2879 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 2880 return -EINVAL; 2881 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 2882 !(spi->mode & SPI_RX_QUAD)) 2883 return -EINVAL; 2884 } 2885 } 2886 2887 message->status = -EINPROGRESS; 2888 2889 return 0; 2890 } 2891 2892 static int __spi_async(struct spi_device *spi, struct spi_message *message) 2893 { 2894 struct spi_controller *ctlr = spi->controller; 2895 2896 message->spi = spi; 2897 2898 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 2899 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 2900 2901 trace_spi_message_submit(message); 2902 2903 return ctlr->transfer(spi, message); 2904 } 2905 2906 /** 2907 * spi_async - asynchronous SPI transfer 2908 * @spi: device with which data will be exchanged 2909 * @message: describes the data transfers, including completion callback 2910 * Context: any (irqs may be blocked, etc) 2911 * 2912 * This call may be used in_irq and other contexts which can't sleep, 2913 * as well as from task contexts which can sleep. 2914 * 2915 * The completion callback is invoked in a context which can't sleep. 2916 * Before that invocation, the value of message->status is undefined. 2917 * When the callback is issued, message->status holds either zero (to 2918 * indicate complete success) or a negative error code. After that 2919 * callback returns, the driver which issued the transfer request may 2920 * deallocate the associated memory; it's no longer in use by any SPI 2921 * core or controller driver code. 2922 * 2923 * Note that although all messages to a spi_device are handled in 2924 * FIFO order, messages may go to different devices in other orders. 2925 * Some device might be higher priority, or have various "hard" access 2926 * time requirements, for example. 2927 * 2928 * On detection of any fault during the transfer, processing of 2929 * the entire message is aborted, and the device is deselected. 2930 * Until returning from the associated message completion callback, 2931 * no other spi_message queued to that device will be processed. 2932 * (This rule applies equally to all the synchronous transfer calls, 2933 * which are wrappers around this core asynchronous primitive.) 2934 * 2935 * Return: zero on success, else a negative error code. 2936 */ 2937 int spi_async(struct spi_device *spi, struct spi_message *message) 2938 { 2939 struct spi_controller *ctlr = spi->controller; 2940 int ret; 2941 unsigned long flags; 2942 2943 ret = __spi_validate(spi, message); 2944 if (ret != 0) 2945 return ret; 2946 2947 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 2948 2949 if (ctlr->bus_lock_flag) 2950 ret = -EBUSY; 2951 else 2952 ret = __spi_async(spi, message); 2953 2954 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 2955 2956 return ret; 2957 } 2958 EXPORT_SYMBOL_GPL(spi_async); 2959 2960 /** 2961 * spi_async_locked - version of spi_async with exclusive bus usage 2962 * @spi: device with which data will be exchanged 2963 * @message: describes the data transfers, including completion callback 2964 * Context: any (irqs may be blocked, etc) 2965 * 2966 * This call may be used in_irq and other contexts which can't sleep, 2967 * as well as from task contexts which can sleep. 2968 * 2969 * The completion callback is invoked in a context which can't sleep. 2970 * Before that invocation, the value of message->status is undefined. 2971 * When the callback is issued, message->status holds either zero (to 2972 * indicate complete success) or a negative error code. After that 2973 * callback returns, the driver which issued the transfer request may 2974 * deallocate the associated memory; it's no longer in use by any SPI 2975 * core or controller driver code. 2976 * 2977 * Note that although all messages to a spi_device are handled in 2978 * FIFO order, messages may go to different devices in other orders. 2979 * Some device might be higher priority, or have various "hard" access 2980 * time requirements, for example. 2981 * 2982 * On detection of any fault during the transfer, processing of 2983 * the entire message is aborted, and the device is deselected. 2984 * Until returning from the associated message completion callback, 2985 * no other spi_message queued to that device will be processed. 2986 * (This rule applies equally to all the synchronous transfer calls, 2987 * which are wrappers around this core asynchronous primitive.) 2988 * 2989 * Return: zero on success, else a negative error code. 2990 */ 2991 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 2992 { 2993 struct spi_controller *ctlr = spi->controller; 2994 int ret; 2995 unsigned long flags; 2996 2997 ret = __spi_validate(spi, message); 2998 if (ret != 0) 2999 return ret; 3000 3001 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3002 3003 ret = __spi_async(spi, message); 3004 3005 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3006 3007 return ret; 3008 3009 } 3010 EXPORT_SYMBOL_GPL(spi_async_locked); 3011 3012 3013 int spi_flash_read(struct spi_device *spi, 3014 struct spi_flash_read_message *msg) 3015 3016 { 3017 struct spi_controller *master = spi->controller; 3018 struct device *rx_dev = NULL; 3019 int ret; 3020 3021 if ((msg->opcode_nbits == SPI_NBITS_DUAL || 3022 msg->addr_nbits == SPI_NBITS_DUAL) && 3023 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3024 return -EINVAL; 3025 if ((msg->opcode_nbits == SPI_NBITS_QUAD || 3026 msg->addr_nbits == SPI_NBITS_QUAD) && 3027 !(spi->mode & SPI_TX_QUAD)) 3028 return -EINVAL; 3029 if (msg->data_nbits == SPI_NBITS_DUAL && 3030 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3031 return -EINVAL; 3032 if (msg->data_nbits == SPI_NBITS_QUAD && 3033 !(spi->mode & SPI_RX_QUAD)) 3034 return -EINVAL; 3035 3036 if (master->auto_runtime_pm) { 3037 ret = pm_runtime_get_sync(master->dev.parent); 3038 if (ret < 0) { 3039 dev_err(&master->dev, "Failed to power device: %d\n", 3040 ret); 3041 return ret; 3042 } 3043 } 3044 3045 mutex_lock(&master->bus_lock_mutex); 3046 mutex_lock(&master->io_mutex); 3047 if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) { 3048 rx_dev = master->dma_rx->device->dev; 3049 ret = spi_map_buf(master, rx_dev, &msg->rx_sg, 3050 msg->buf, msg->len, 3051 DMA_FROM_DEVICE); 3052 if (!ret) 3053 msg->cur_msg_mapped = true; 3054 } 3055 ret = master->spi_flash_read(spi, msg); 3056 if (msg->cur_msg_mapped) 3057 spi_unmap_buf(master, rx_dev, &msg->rx_sg, 3058 DMA_FROM_DEVICE); 3059 mutex_unlock(&master->io_mutex); 3060 mutex_unlock(&master->bus_lock_mutex); 3061 3062 if (master->auto_runtime_pm) 3063 pm_runtime_put(master->dev.parent); 3064 3065 return ret; 3066 } 3067 EXPORT_SYMBOL_GPL(spi_flash_read); 3068 3069 /*-------------------------------------------------------------------------*/ 3070 3071 /* Utility methods for SPI protocol drivers, layered on 3072 * top of the core. Some other utility methods are defined as 3073 * inline functions. 3074 */ 3075 3076 static void spi_complete(void *arg) 3077 { 3078 complete(arg); 3079 } 3080 3081 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3082 { 3083 DECLARE_COMPLETION_ONSTACK(done); 3084 int status; 3085 struct spi_controller *ctlr = spi->controller; 3086 unsigned long flags; 3087 3088 status = __spi_validate(spi, message); 3089 if (status != 0) 3090 return status; 3091 3092 message->complete = spi_complete; 3093 message->context = &done; 3094 message->spi = spi; 3095 3096 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3097 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3098 3099 /* If we're not using the legacy transfer method then we will 3100 * try to transfer in the calling context so special case. 3101 * This code would be less tricky if we could remove the 3102 * support for driver implemented message queues. 3103 */ 3104 if (ctlr->transfer == spi_queued_transfer) { 3105 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3106 3107 trace_spi_message_submit(message); 3108 3109 status = __spi_queued_transfer(spi, message, false); 3110 3111 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3112 } else { 3113 status = spi_async_locked(spi, message); 3114 } 3115 3116 if (status == 0) { 3117 /* Push out the messages in the calling context if we 3118 * can. 3119 */ 3120 if (ctlr->transfer == spi_queued_transfer) { 3121 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3122 spi_sync_immediate); 3123 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3124 spi_sync_immediate); 3125 __spi_pump_messages(ctlr, false); 3126 } 3127 3128 wait_for_completion(&done); 3129 status = message->status; 3130 } 3131 message->context = NULL; 3132 return status; 3133 } 3134 3135 /** 3136 * spi_sync - blocking/synchronous SPI data transfers 3137 * @spi: device with which data will be exchanged 3138 * @message: describes the data transfers 3139 * Context: can sleep 3140 * 3141 * This call may only be used from a context that may sleep. The sleep 3142 * is non-interruptible, and has no timeout. Low-overhead controller 3143 * drivers may DMA directly into and out of the message buffers. 3144 * 3145 * Note that the SPI device's chip select is active during the message, 3146 * and then is normally disabled between messages. Drivers for some 3147 * frequently-used devices may want to minimize costs of selecting a chip, 3148 * by leaving it selected in anticipation that the next message will go 3149 * to the same chip. (That may increase power usage.) 3150 * 3151 * Also, the caller is guaranteeing that the memory associated with the 3152 * message will not be freed before this call returns. 3153 * 3154 * Return: zero on success, else a negative error code. 3155 */ 3156 int spi_sync(struct spi_device *spi, struct spi_message *message) 3157 { 3158 int ret; 3159 3160 mutex_lock(&spi->controller->bus_lock_mutex); 3161 ret = __spi_sync(spi, message); 3162 mutex_unlock(&spi->controller->bus_lock_mutex); 3163 3164 return ret; 3165 } 3166 EXPORT_SYMBOL_GPL(spi_sync); 3167 3168 /** 3169 * spi_sync_locked - version of spi_sync with exclusive bus usage 3170 * @spi: device with which data will be exchanged 3171 * @message: describes the data transfers 3172 * Context: can sleep 3173 * 3174 * This call may only be used from a context that may sleep. The sleep 3175 * is non-interruptible, and has no timeout. Low-overhead controller 3176 * drivers may DMA directly into and out of the message buffers. 3177 * 3178 * This call should be used by drivers that require exclusive access to the 3179 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3180 * be released by a spi_bus_unlock call when the exclusive access is over. 3181 * 3182 * Return: zero on success, else a negative error code. 3183 */ 3184 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3185 { 3186 return __spi_sync(spi, message); 3187 } 3188 EXPORT_SYMBOL_GPL(spi_sync_locked); 3189 3190 /** 3191 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3192 * @ctlr: SPI bus master that should be locked for exclusive bus access 3193 * Context: can sleep 3194 * 3195 * This call may only be used from a context that may sleep. The sleep 3196 * is non-interruptible, and has no timeout. 3197 * 3198 * This call should be used by drivers that require exclusive access to the 3199 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3200 * exclusive access is over. Data transfer must be done by spi_sync_locked 3201 * and spi_async_locked calls when the SPI bus lock is held. 3202 * 3203 * Return: always zero. 3204 */ 3205 int spi_bus_lock(struct spi_controller *ctlr) 3206 { 3207 unsigned long flags; 3208 3209 mutex_lock(&ctlr->bus_lock_mutex); 3210 3211 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3212 ctlr->bus_lock_flag = 1; 3213 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3214 3215 /* mutex remains locked until spi_bus_unlock is called */ 3216 3217 return 0; 3218 } 3219 EXPORT_SYMBOL_GPL(spi_bus_lock); 3220 3221 /** 3222 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3223 * @ctlr: SPI bus master that was locked for exclusive bus access 3224 * Context: can sleep 3225 * 3226 * This call may only be used from a context that may sleep. The sleep 3227 * is non-interruptible, and has no timeout. 3228 * 3229 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3230 * call. 3231 * 3232 * Return: always zero. 3233 */ 3234 int spi_bus_unlock(struct spi_controller *ctlr) 3235 { 3236 ctlr->bus_lock_flag = 0; 3237 3238 mutex_unlock(&ctlr->bus_lock_mutex); 3239 3240 return 0; 3241 } 3242 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3243 3244 /* portable code must never pass more than 32 bytes */ 3245 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3246 3247 static u8 *buf; 3248 3249 /** 3250 * spi_write_then_read - SPI synchronous write followed by read 3251 * @spi: device with which data will be exchanged 3252 * @txbuf: data to be written (need not be dma-safe) 3253 * @n_tx: size of txbuf, in bytes 3254 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3255 * @n_rx: size of rxbuf, in bytes 3256 * Context: can sleep 3257 * 3258 * This performs a half duplex MicroWire style transaction with the 3259 * device, sending txbuf and then reading rxbuf. The return value 3260 * is zero for success, else a negative errno status code. 3261 * This call may only be used from a context that may sleep. 3262 * 3263 * Parameters to this routine are always copied using a small buffer; 3264 * portable code should never use this for more than 32 bytes. 3265 * Performance-sensitive or bulk transfer code should instead use 3266 * spi_{async,sync}() calls with dma-safe buffers. 3267 * 3268 * Return: zero on success, else a negative error code. 3269 */ 3270 int spi_write_then_read(struct spi_device *spi, 3271 const void *txbuf, unsigned n_tx, 3272 void *rxbuf, unsigned n_rx) 3273 { 3274 static DEFINE_MUTEX(lock); 3275 3276 int status; 3277 struct spi_message message; 3278 struct spi_transfer x[2]; 3279 u8 *local_buf; 3280 3281 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3282 * copying here, (as a pure convenience thing), but we can 3283 * keep heap costs out of the hot path unless someone else is 3284 * using the pre-allocated buffer or the transfer is too large. 3285 */ 3286 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3287 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3288 GFP_KERNEL | GFP_DMA); 3289 if (!local_buf) 3290 return -ENOMEM; 3291 } else { 3292 local_buf = buf; 3293 } 3294 3295 spi_message_init(&message); 3296 memset(x, 0, sizeof(x)); 3297 if (n_tx) { 3298 x[0].len = n_tx; 3299 spi_message_add_tail(&x[0], &message); 3300 } 3301 if (n_rx) { 3302 x[1].len = n_rx; 3303 spi_message_add_tail(&x[1], &message); 3304 } 3305 3306 memcpy(local_buf, txbuf, n_tx); 3307 x[0].tx_buf = local_buf; 3308 x[1].rx_buf = local_buf + n_tx; 3309 3310 /* do the i/o */ 3311 status = spi_sync(spi, &message); 3312 if (status == 0) 3313 memcpy(rxbuf, x[1].rx_buf, n_rx); 3314 3315 if (x[0].tx_buf == buf) 3316 mutex_unlock(&lock); 3317 else 3318 kfree(local_buf); 3319 3320 return status; 3321 } 3322 EXPORT_SYMBOL_GPL(spi_write_then_read); 3323 3324 /*-------------------------------------------------------------------------*/ 3325 3326 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3327 static int __spi_of_device_match(struct device *dev, void *data) 3328 { 3329 return dev->of_node == data; 3330 } 3331 3332 /* must call put_device() when done with returned spi_device device */ 3333 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3334 { 3335 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 3336 __spi_of_device_match); 3337 return dev ? to_spi_device(dev) : NULL; 3338 } 3339 3340 static int __spi_of_controller_match(struct device *dev, const void *data) 3341 { 3342 return dev->of_node == data; 3343 } 3344 3345 /* the spi controllers are not using spi_bus, so we find it with another way */ 3346 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3347 { 3348 struct device *dev; 3349 3350 dev = class_find_device(&spi_master_class, NULL, node, 3351 __spi_of_controller_match); 3352 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3353 dev = class_find_device(&spi_slave_class, NULL, node, 3354 __spi_of_controller_match); 3355 if (!dev) 3356 return NULL; 3357 3358 /* reference got in class_find_device */ 3359 return container_of(dev, struct spi_controller, dev); 3360 } 3361 3362 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3363 void *arg) 3364 { 3365 struct of_reconfig_data *rd = arg; 3366 struct spi_controller *ctlr; 3367 struct spi_device *spi; 3368 3369 switch (of_reconfig_get_state_change(action, arg)) { 3370 case OF_RECONFIG_CHANGE_ADD: 3371 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3372 if (ctlr == NULL) 3373 return NOTIFY_OK; /* not for us */ 3374 3375 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3376 put_device(&ctlr->dev); 3377 return NOTIFY_OK; 3378 } 3379 3380 spi = of_register_spi_device(ctlr, rd->dn); 3381 put_device(&ctlr->dev); 3382 3383 if (IS_ERR(spi)) { 3384 pr_err("%s: failed to create for '%pOF'\n", 3385 __func__, rd->dn); 3386 of_node_clear_flag(rd->dn, OF_POPULATED); 3387 return notifier_from_errno(PTR_ERR(spi)); 3388 } 3389 break; 3390 3391 case OF_RECONFIG_CHANGE_REMOVE: 3392 /* already depopulated? */ 3393 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3394 return NOTIFY_OK; 3395 3396 /* find our device by node */ 3397 spi = of_find_spi_device_by_node(rd->dn); 3398 if (spi == NULL) 3399 return NOTIFY_OK; /* no? not meant for us */ 3400 3401 /* unregister takes one ref away */ 3402 spi_unregister_device(spi); 3403 3404 /* and put the reference of the find */ 3405 put_device(&spi->dev); 3406 break; 3407 } 3408 3409 return NOTIFY_OK; 3410 } 3411 3412 static struct notifier_block spi_of_notifier = { 3413 .notifier_call = of_spi_notify, 3414 }; 3415 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3416 extern struct notifier_block spi_of_notifier; 3417 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3418 3419 #if IS_ENABLED(CONFIG_ACPI) 3420 static int spi_acpi_controller_match(struct device *dev, const void *data) 3421 { 3422 return ACPI_COMPANION(dev->parent) == data; 3423 } 3424 3425 static int spi_acpi_device_match(struct device *dev, void *data) 3426 { 3427 return ACPI_COMPANION(dev) == data; 3428 } 3429 3430 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 3431 { 3432 struct device *dev; 3433 3434 dev = class_find_device(&spi_master_class, NULL, adev, 3435 spi_acpi_controller_match); 3436 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3437 dev = class_find_device(&spi_slave_class, NULL, adev, 3438 spi_acpi_controller_match); 3439 if (!dev) 3440 return NULL; 3441 3442 return container_of(dev, struct spi_controller, dev); 3443 } 3444 3445 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 3446 { 3447 struct device *dev; 3448 3449 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match); 3450 3451 return dev ? to_spi_device(dev) : NULL; 3452 } 3453 3454 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 3455 void *arg) 3456 { 3457 struct acpi_device *adev = arg; 3458 struct spi_controller *ctlr; 3459 struct spi_device *spi; 3460 3461 switch (value) { 3462 case ACPI_RECONFIG_DEVICE_ADD: 3463 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 3464 if (!ctlr) 3465 break; 3466 3467 acpi_register_spi_device(ctlr, adev); 3468 put_device(&ctlr->dev); 3469 break; 3470 case ACPI_RECONFIG_DEVICE_REMOVE: 3471 if (!acpi_device_enumerated(adev)) 3472 break; 3473 3474 spi = acpi_spi_find_device_by_adev(adev); 3475 if (!spi) 3476 break; 3477 3478 spi_unregister_device(spi); 3479 put_device(&spi->dev); 3480 break; 3481 } 3482 3483 return NOTIFY_OK; 3484 } 3485 3486 static struct notifier_block spi_acpi_notifier = { 3487 .notifier_call = acpi_spi_notify, 3488 }; 3489 #else 3490 extern struct notifier_block spi_acpi_notifier; 3491 #endif 3492 3493 static int __init spi_init(void) 3494 { 3495 int status; 3496 3497 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 3498 if (!buf) { 3499 status = -ENOMEM; 3500 goto err0; 3501 } 3502 3503 status = bus_register(&spi_bus_type); 3504 if (status < 0) 3505 goto err1; 3506 3507 status = class_register(&spi_master_class); 3508 if (status < 0) 3509 goto err2; 3510 3511 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 3512 status = class_register(&spi_slave_class); 3513 if (status < 0) 3514 goto err3; 3515 } 3516 3517 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 3518 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 3519 if (IS_ENABLED(CONFIG_ACPI)) 3520 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 3521 3522 return 0; 3523 3524 err3: 3525 class_unregister(&spi_master_class); 3526 err2: 3527 bus_unregister(&spi_bus_type); 3528 err1: 3529 kfree(buf); 3530 buf = NULL; 3531 err0: 3532 return status; 3533 } 3534 3535 /* board_info is normally registered in arch_initcall(), 3536 * but even essential drivers wait till later 3537 * 3538 * REVISIT only boardinfo really needs static linking. the rest (device and 3539 * driver registration) _could_ be dynamically linked (modular) ... costs 3540 * include needing to have boardinfo data structures be much more public. 3541 */ 3542 postcore_initcall(spi_init); 3543 3544