xref: /openbmc/linux/drivers/spi/spi.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Empty string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del operation for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /*
479  * Prevents addition of devices with same chip select and
480  * addition of devices below an unregistering controller.
481  */
482 static DEFINE_MUTEX(spi_add_lock);
483 
484 /**
485  * spi_alloc_device - Allocate a new SPI device
486  * @ctlr: Controller to which device is connected
487  * Context: can sleep
488  *
489  * Allows a driver to allocate and initialize a spi_device without
490  * registering it immediately.  This allows a driver to directly
491  * fill the spi_device with device parameters before calling
492  * spi_add_device() on it.
493  *
494  * Caller is responsible to call spi_add_device() on the returned
495  * spi_device structure to add it to the SPI controller.  If the caller
496  * needs to discard the spi_device without adding it, then it should
497  * call spi_dev_put() on it.
498  *
499  * Return: a pointer to the new device, or NULL.
500  */
501 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
502 {
503 	struct spi_device	*spi;
504 
505 	if (!spi_controller_get(ctlr))
506 		return NULL;
507 
508 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
509 	if (!spi) {
510 		spi_controller_put(ctlr);
511 		return NULL;
512 	}
513 
514 	spi->master = spi->controller = ctlr;
515 	spi->dev.parent = &ctlr->dev;
516 	spi->dev.bus = &spi_bus_type;
517 	spi->dev.release = spidev_release;
518 	spi->cs_gpio = -ENOENT;
519 	spi->mode = ctlr->buswidth_override_bits;
520 
521 	spin_lock_init(&spi->statistics.lock);
522 
523 	device_initialize(&spi->dev);
524 	return spi;
525 }
526 EXPORT_SYMBOL_GPL(spi_alloc_device);
527 
528 static void spi_dev_set_name(struct spi_device *spi)
529 {
530 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
531 
532 	if (adev) {
533 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
534 		return;
535 	}
536 
537 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
538 		     spi->chip_select);
539 }
540 
541 static int spi_dev_check(struct device *dev, void *data)
542 {
543 	struct spi_device *spi = to_spi_device(dev);
544 	struct spi_device *new_spi = data;
545 
546 	if (spi->controller == new_spi->controller &&
547 	    spi->chip_select == new_spi->chip_select)
548 		return -EBUSY;
549 	return 0;
550 }
551 
552 /**
553  * spi_add_device - Add spi_device allocated with spi_alloc_device
554  * @spi: spi_device to register
555  *
556  * Companion function to spi_alloc_device.  Devices allocated with
557  * spi_alloc_device can be added onto the spi bus with this function.
558  *
559  * Return: 0 on success; negative errno on failure
560  */
561 int spi_add_device(struct spi_device *spi)
562 {
563 	struct spi_controller *ctlr = spi->controller;
564 	struct device *dev = ctlr->dev.parent;
565 	int status;
566 
567 	/* Chipselects are numbered 0..max; validate. */
568 	if (spi->chip_select >= ctlr->num_chipselect) {
569 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
570 			ctlr->num_chipselect);
571 		return -EINVAL;
572 	}
573 
574 	/* Set the bus ID string */
575 	spi_dev_set_name(spi);
576 
577 	/* We need to make sure there's no other device with this
578 	 * chipselect **BEFORE** we call setup(), else we'll trash
579 	 * its configuration.  Lock against concurrent add() calls.
580 	 */
581 	mutex_lock(&spi_add_lock);
582 
583 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
584 	if (status) {
585 		dev_err(dev, "chipselect %d already in use\n",
586 				spi->chip_select);
587 		goto done;
588 	}
589 
590 	/* Controller may unregister concurrently */
591 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
592 	    !device_is_registered(&ctlr->dev)) {
593 		status = -ENODEV;
594 		goto done;
595 	}
596 
597 	/* Descriptors take precedence */
598 	if (ctlr->cs_gpiods)
599 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
600 	else if (ctlr->cs_gpios)
601 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
602 
603 	/* Drivers may modify this initial i/o setup, but will
604 	 * normally rely on the device being setup.  Devices
605 	 * using SPI_CS_HIGH can't coexist well otherwise...
606 	 */
607 	status = spi_setup(spi);
608 	if (status < 0) {
609 		dev_err(dev, "can't setup %s, status %d\n",
610 				dev_name(&spi->dev), status);
611 		goto done;
612 	}
613 
614 	/* Device may be bound to an active driver when this returns */
615 	status = device_add(&spi->dev);
616 	if (status < 0)
617 		dev_err(dev, "can't add %s, status %d\n",
618 				dev_name(&spi->dev), status);
619 	else
620 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
621 
622 done:
623 	mutex_unlock(&spi_add_lock);
624 	return status;
625 }
626 EXPORT_SYMBOL_GPL(spi_add_device);
627 
628 /**
629  * spi_new_device - instantiate one new SPI device
630  * @ctlr: Controller to which device is connected
631  * @chip: Describes the SPI device
632  * Context: can sleep
633  *
634  * On typical mainboards, this is purely internal; and it's not needed
635  * after board init creates the hard-wired devices.  Some development
636  * platforms may not be able to use spi_register_board_info though, and
637  * this is exported so that for example a USB or parport based adapter
638  * driver could add devices (which it would learn about out-of-band).
639  *
640  * Return: the new device, or NULL.
641  */
642 struct spi_device *spi_new_device(struct spi_controller *ctlr,
643 				  struct spi_board_info *chip)
644 {
645 	struct spi_device	*proxy;
646 	int			status;
647 
648 	/* NOTE:  caller did any chip->bus_num checks necessary.
649 	 *
650 	 * Also, unless we change the return value convention to use
651 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
652 	 * suggests syslogged diagnostics are best here (ugh).
653 	 */
654 
655 	proxy = spi_alloc_device(ctlr);
656 	if (!proxy)
657 		return NULL;
658 
659 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
660 
661 	proxy->chip_select = chip->chip_select;
662 	proxy->max_speed_hz = chip->max_speed_hz;
663 	proxy->mode = chip->mode;
664 	proxy->irq = chip->irq;
665 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
666 	proxy->dev.platform_data = (void *) chip->platform_data;
667 	proxy->controller_data = chip->controller_data;
668 	proxy->controller_state = NULL;
669 
670 	if (chip->properties) {
671 		status = device_add_properties(&proxy->dev, chip->properties);
672 		if (status) {
673 			dev_err(&ctlr->dev,
674 				"failed to add properties to '%s': %d\n",
675 				chip->modalias, status);
676 			goto err_dev_put;
677 		}
678 	}
679 
680 	status = spi_add_device(proxy);
681 	if (status < 0)
682 		goto err_remove_props;
683 
684 	return proxy;
685 
686 err_remove_props:
687 	if (chip->properties)
688 		device_remove_properties(&proxy->dev);
689 err_dev_put:
690 	spi_dev_put(proxy);
691 	return NULL;
692 }
693 EXPORT_SYMBOL_GPL(spi_new_device);
694 
695 /**
696  * spi_unregister_device - unregister a single SPI device
697  * @spi: spi_device to unregister
698  *
699  * Start making the passed SPI device vanish. Normally this would be handled
700  * by spi_unregister_controller().
701  */
702 void spi_unregister_device(struct spi_device *spi)
703 {
704 	if (!spi)
705 		return;
706 
707 	if (spi->dev.of_node) {
708 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
709 		of_node_put(spi->dev.of_node);
710 	}
711 	if (ACPI_COMPANION(&spi->dev))
712 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
713 	device_unregister(&spi->dev);
714 }
715 EXPORT_SYMBOL_GPL(spi_unregister_device);
716 
717 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
718 					      struct spi_board_info *bi)
719 {
720 	struct spi_device *dev;
721 
722 	if (ctlr->bus_num != bi->bus_num)
723 		return;
724 
725 	dev = spi_new_device(ctlr, bi);
726 	if (!dev)
727 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
728 			bi->modalias);
729 }
730 
731 /**
732  * spi_register_board_info - register SPI devices for a given board
733  * @info: array of chip descriptors
734  * @n: how many descriptors are provided
735  * Context: can sleep
736  *
737  * Board-specific early init code calls this (probably during arch_initcall)
738  * with segments of the SPI device table.  Any device nodes are created later,
739  * after the relevant parent SPI controller (bus_num) is defined.  We keep
740  * this table of devices forever, so that reloading a controller driver will
741  * not make Linux forget about these hard-wired devices.
742  *
743  * Other code can also call this, e.g. a particular add-on board might provide
744  * SPI devices through its expansion connector, so code initializing that board
745  * would naturally declare its SPI devices.
746  *
747  * The board info passed can safely be __initdata ... but be careful of
748  * any embedded pointers (platform_data, etc), they're copied as-is.
749  * Device properties are deep-copied though.
750  *
751  * Return: zero on success, else a negative error code.
752  */
753 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
754 {
755 	struct boardinfo *bi;
756 	int i;
757 
758 	if (!n)
759 		return 0;
760 
761 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
762 	if (!bi)
763 		return -ENOMEM;
764 
765 	for (i = 0; i < n; i++, bi++, info++) {
766 		struct spi_controller *ctlr;
767 
768 		memcpy(&bi->board_info, info, sizeof(*info));
769 		if (info->properties) {
770 			bi->board_info.properties =
771 					property_entries_dup(info->properties);
772 			if (IS_ERR(bi->board_info.properties))
773 				return PTR_ERR(bi->board_info.properties);
774 		}
775 
776 		mutex_lock(&board_lock);
777 		list_add_tail(&bi->list, &board_list);
778 		list_for_each_entry(ctlr, &spi_controller_list, list)
779 			spi_match_controller_to_boardinfo(ctlr,
780 							  &bi->board_info);
781 		mutex_unlock(&board_lock);
782 	}
783 
784 	return 0;
785 }
786 
787 /*-------------------------------------------------------------------------*/
788 
789 static void spi_set_cs(struct spi_device *spi, bool enable)
790 {
791 	bool enable1 = enable;
792 
793 	/*
794 	 * Avoid calling into the driver (or doing delays) if the chip select
795 	 * isn't actually changing from the last time this was called.
796 	 */
797 	if ((spi->controller->last_cs_enable == enable) &&
798 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
799 		return;
800 
801 	spi->controller->last_cs_enable = enable;
802 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
803 
804 	if (!spi->controller->set_cs_timing) {
805 		if (enable1)
806 			spi_delay_exec(&spi->controller->cs_setup, NULL);
807 		else
808 			spi_delay_exec(&spi->controller->cs_hold, NULL);
809 	}
810 
811 	if (spi->mode & SPI_CS_HIGH)
812 		enable = !enable;
813 
814 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
815 		/*
816 		 * Honour the SPI_NO_CS flag and invert the enable line, as
817 		 * active low is default for SPI. Execution paths that handle
818 		 * polarity inversion in gpiolib (such as device tree) will
819 		 * enforce active high using the SPI_CS_HIGH resulting in a
820 		 * double inversion through the code above.
821 		 */
822 		if (!(spi->mode & SPI_NO_CS)) {
823 			if (spi->cs_gpiod)
824 				gpiod_set_value_cansleep(spi->cs_gpiod,
825 							 !enable);
826 			else
827 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
828 		}
829 		/* Some SPI masters need both GPIO CS & slave_select */
830 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
831 		    spi->controller->set_cs)
832 			spi->controller->set_cs(spi, !enable);
833 	} else if (spi->controller->set_cs) {
834 		spi->controller->set_cs(spi, !enable);
835 	}
836 
837 	if (!spi->controller->set_cs_timing) {
838 		if (!enable1)
839 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
840 	}
841 }
842 
843 #ifdef CONFIG_HAS_DMA
844 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
845 		struct sg_table *sgt, void *buf, size_t len,
846 		enum dma_data_direction dir)
847 {
848 	const bool vmalloced_buf = is_vmalloc_addr(buf);
849 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
850 #ifdef CONFIG_HIGHMEM
851 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
852 				(unsigned long)buf < (PKMAP_BASE +
853 					(LAST_PKMAP * PAGE_SIZE)));
854 #else
855 	const bool kmap_buf = false;
856 #endif
857 	int desc_len;
858 	int sgs;
859 	struct page *vm_page;
860 	struct scatterlist *sg;
861 	void *sg_buf;
862 	size_t min;
863 	int i, ret;
864 
865 	if (vmalloced_buf || kmap_buf) {
866 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
867 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
868 	} else if (virt_addr_valid(buf)) {
869 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
870 		sgs = DIV_ROUND_UP(len, desc_len);
871 	} else {
872 		return -EINVAL;
873 	}
874 
875 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
876 	if (ret != 0)
877 		return ret;
878 
879 	sg = &sgt->sgl[0];
880 	for (i = 0; i < sgs; i++) {
881 
882 		if (vmalloced_buf || kmap_buf) {
883 			/*
884 			 * Next scatterlist entry size is the minimum between
885 			 * the desc_len and the remaining buffer length that
886 			 * fits in a page.
887 			 */
888 			min = min_t(size_t, desc_len,
889 				    min_t(size_t, len,
890 					  PAGE_SIZE - offset_in_page(buf)));
891 			if (vmalloced_buf)
892 				vm_page = vmalloc_to_page(buf);
893 			else
894 				vm_page = kmap_to_page(buf);
895 			if (!vm_page) {
896 				sg_free_table(sgt);
897 				return -ENOMEM;
898 			}
899 			sg_set_page(sg, vm_page,
900 				    min, offset_in_page(buf));
901 		} else {
902 			min = min_t(size_t, len, desc_len);
903 			sg_buf = buf;
904 			sg_set_buf(sg, sg_buf, min);
905 		}
906 
907 		buf += min;
908 		len -= min;
909 		sg = sg_next(sg);
910 	}
911 
912 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
913 	if (!ret)
914 		ret = -ENOMEM;
915 	if (ret < 0) {
916 		sg_free_table(sgt);
917 		return ret;
918 	}
919 
920 	sgt->nents = ret;
921 
922 	return 0;
923 }
924 
925 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
926 		   struct sg_table *sgt, enum dma_data_direction dir)
927 {
928 	if (sgt->orig_nents) {
929 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
930 		sg_free_table(sgt);
931 	}
932 }
933 
934 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
935 {
936 	struct device *tx_dev, *rx_dev;
937 	struct spi_transfer *xfer;
938 	int ret;
939 
940 	if (!ctlr->can_dma)
941 		return 0;
942 
943 	if (ctlr->dma_tx)
944 		tx_dev = ctlr->dma_tx->device->dev;
945 	else
946 		tx_dev = ctlr->dev.parent;
947 
948 	if (ctlr->dma_rx)
949 		rx_dev = ctlr->dma_rx->device->dev;
950 	else
951 		rx_dev = ctlr->dev.parent;
952 
953 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
954 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
955 			continue;
956 
957 		if (xfer->tx_buf != NULL) {
958 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
959 					  (void *)xfer->tx_buf, xfer->len,
960 					  DMA_TO_DEVICE);
961 			if (ret != 0)
962 				return ret;
963 		}
964 
965 		if (xfer->rx_buf != NULL) {
966 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
967 					  xfer->rx_buf, xfer->len,
968 					  DMA_FROM_DEVICE);
969 			if (ret != 0) {
970 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
971 					      DMA_TO_DEVICE);
972 				return ret;
973 			}
974 		}
975 	}
976 
977 	ctlr->cur_msg_mapped = true;
978 
979 	return 0;
980 }
981 
982 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
983 {
984 	struct spi_transfer *xfer;
985 	struct device *tx_dev, *rx_dev;
986 
987 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
988 		return 0;
989 
990 	if (ctlr->dma_tx)
991 		tx_dev = ctlr->dma_tx->device->dev;
992 	else
993 		tx_dev = ctlr->dev.parent;
994 
995 	if (ctlr->dma_rx)
996 		rx_dev = ctlr->dma_rx->device->dev;
997 	else
998 		rx_dev = ctlr->dev.parent;
999 
1000 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1001 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1002 			continue;
1003 
1004 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1005 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1006 	}
1007 
1008 	ctlr->cur_msg_mapped = false;
1009 
1010 	return 0;
1011 }
1012 #else /* !CONFIG_HAS_DMA */
1013 static inline int __spi_map_msg(struct spi_controller *ctlr,
1014 				struct spi_message *msg)
1015 {
1016 	return 0;
1017 }
1018 
1019 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1020 				  struct spi_message *msg)
1021 {
1022 	return 0;
1023 }
1024 #endif /* !CONFIG_HAS_DMA */
1025 
1026 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1027 				struct spi_message *msg)
1028 {
1029 	struct spi_transfer *xfer;
1030 
1031 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1032 		/*
1033 		 * Restore the original value of tx_buf or rx_buf if they are
1034 		 * NULL.
1035 		 */
1036 		if (xfer->tx_buf == ctlr->dummy_tx)
1037 			xfer->tx_buf = NULL;
1038 		if (xfer->rx_buf == ctlr->dummy_rx)
1039 			xfer->rx_buf = NULL;
1040 	}
1041 
1042 	return __spi_unmap_msg(ctlr, msg);
1043 }
1044 
1045 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1046 {
1047 	struct spi_transfer *xfer;
1048 	void *tmp;
1049 	unsigned int max_tx, max_rx;
1050 
1051 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1052 		&& !(msg->spi->mode & SPI_3WIRE)) {
1053 		max_tx = 0;
1054 		max_rx = 0;
1055 
1056 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1057 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1058 			    !xfer->tx_buf)
1059 				max_tx = max(xfer->len, max_tx);
1060 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1061 			    !xfer->rx_buf)
1062 				max_rx = max(xfer->len, max_rx);
1063 		}
1064 
1065 		if (max_tx) {
1066 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1067 				       GFP_KERNEL | GFP_DMA);
1068 			if (!tmp)
1069 				return -ENOMEM;
1070 			ctlr->dummy_tx = tmp;
1071 			memset(tmp, 0, max_tx);
1072 		}
1073 
1074 		if (max_rx) {
1075 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1076 				       GFP_KERNEL | GFP_DMA);
1077 			if (!tmp)
1078 				return -ENOMEM;
1079 			ctlr->dummy_rx = tmp;
1080 		}
1081 
1082 		if (max_tx || max_rx) {
1083 			list_for_each_entry(xfer, &msg->transfers,
1084 					    transfer_list) {
1085 				if (!xfer->len)
1086 					continue;
1087 				if (!xfer->tx_buf)
1088 					xfer->tx_buf = ctlr->dummy_tx;
1089 				if (!xfer->rx_buf)
1090 					xfer->rx_buf = ctlr->dummy_rx;
1091 			}
1092 		}
1093 	}
1094 
1095 	return __spi_map_msg(ctlr, msg);
1096 }
1097 
1098 static int spi_transfer_wait(struct spi_controller *ctlr,
1099 			     struct spi_message *msg,
1100 			     struct spi_transfer *xfer)
1101 {
1102 	struct spi_statistics *statm = &ctlr->statistics;
1103 	struct spi_statistics *stats = &msg->spi->statistics;
1104 	unsigned long long ms;
1105 
1106 	if (spi_controller_is_slave(ctlr)) {
1107 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1108 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1109 			return -EINTR;
1110 		}
1111 	} else {
1112 		ms = 8LL * 1000LL * xfer->len;
1113 		do_div(ms, xfer->speed_hz);
1114 		ms += ms + 200; /* some tolerance */
1115 
1116 		if (ms > UINT_MAX)
1117 			ms = UINT_MAX;
1118 
1119 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1120 						 msecs_to_jiffies(ms));
1121 
1122 		if (ms == 0) {
1123 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1124 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1125 			dev_err(&msg->spi->dev,
1126 				"SPI transfer timed out\n");
1127 			return -ETIMEDOUT;
1128 		}
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 static void _spi_transfer_delay_ns(u32 ns)
1135 {
1136 	if (!ns)
1137 		return;
1138 	if (ns <= 1000) {
1139 		ndelay(ns);
1140 	} else {
1141 		u32 us = DIV_ROUND_UP(ns, 1000);
1142 
1143 		if (us <= 10)
1144 			udelay(us);
1145 		else
1146 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1147 	}
1148 }
1149 
1150 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1151 {
1152 	u32 delay = _delay->value;
1153 	u32 unit = _delay->unit;
1154 	u32 hz;
1155 
1156 	if (!delay)
1157 		return 0;
1158 
1159 	switch (unit) {
1160 	case SPI_DELAY_UNIT_USECS:
1161 		delay *= 1000;
1162 		break;
1163 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1164 		break;
1165 	case SPI_DELAY_UNIT_SCK:
1166 		/* clock cycles need to be obtained from spi_transfer */
1167 		if (!xfer)
1168 			return -EINVAL;
1169 		/* if there is no effective speed know, then approximate
1170 		 * by underestimating with half the requested hz
1171 		 */
1172 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1173 		if (!hz)
1174 			return -EINVAL;
1175 		delay *= DIV_ROUND_UP(1000000000, hz);
1176 		break;
1177 	default:
1178 		return -EINVAL;
1179 	}
1180 
1181 	return delay;
1182 }
1183 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1184 
1185 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1186 {
1187 	int delay;
1188 
1189 	might_sleep();
1190 
1191 	if (!_delay)
1192 		return -EINVAL;
1193 
1194 	delay = spi_delay_to_ns(_delay, xfer);
1195 	if (delay < 0)
1196 		return delay;
1197 
1198 	_spi_transfer_delay_ns(delay);
1199 
1200 	return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(spi_delay_exec);
1203 
1204 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1205 					  struct spi_transfer *xfer)
1206 {
1207 	u32 delay = xfer->cs_change_delay.value;
1208 	u32 unit = xfer->cs_change_delay.unit;
1209 	int ret;
1210 
1211 	/* return early on "fast" mode - for everything but USECS */
1212 	if (!delay) {
1213 		if (unit == SPI_DELAY_UNIT_USECS)
1214 			_spi_transfer_delay_ns(10000);
1215 		return;
1216 	}
1217 
1218 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1219 	if (ret) {
1220 		dev_err_once(&msg->spi->dev,
1221 			     "Use of unsupported delay unit %i, using default of 10us\n",
1222 			     unit);
1223 		_spi_transfer_delay_ns(10000);
1224 	}
1225 }
1226 
1227 /*
1228  * spi_transfer_one_message - Default implementation of transfer_one_message()
1229  *
1230  * This is a standard implementation of transfer_one_message() for
1231  * drivers which implement a transfer_one() operation.  It provides
1232  * standard handling of delays and chip select management.
1233  */
1234 static int spi_transfer_one_message(struct spi_controller *ctlr,
1235 				    struct spi_message *msg)
1236 {
1237 	struct spi_transfer *xfer;
1238 	bool keep_cs = false;
1239 	int ret = 0;
1240 	struct spi_statistics *statm = &ctlr->statistics;
1241 	struct spi_statistics *stats = &msg->spi->statistics;
1242 
1243 	spi_set_cs(msg->spi, true);
1244 
1245 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1246 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1247 
1248 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1249 		trace_spi_transfer_start(msg, xfer);
1250 
1251 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1252 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1253 
1254 		if (!ctlr->ptp_sts_supported) {
1255 			xfer->ptp_sts_word_pre = 0;
1256 			ptp_read_system_prets(xfer->ptp_sts);
1257 		}
1258 
1259 		if (xfer->tx_buf || xfer->rx_buf) {
1260 			reinit_completion(&ctlr->xfer_completion);
1261 
1262 fallback_pio:
1263 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1264 			if (ret < 0) {
1265 				if (ctlr->cur_msg_mapped &&
1266 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1267 					__spi_unmap_msg(ctlr, msg);
1268 					ctlr->fallback = true;
1269 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1270 					goto fallback_pio;
1271 				}
1272 
1273 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1274 							       errors);
1275 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1276 							       errors);
1277 				dev_err(&msg->spi->dev,
1278 					"SPI transfer failed: %d\n", ret);
1279 				goto out;
1280 			}
1281 
1282 			if (ret > 0) {
1283 				ret = spi_transfer_wait(ctlr, msg, xfer);
1284 				if (ret < 0)
1285 					msg->status = ret;
1286 			}
1287 		} else {
1288 			if (xfer->len)
1289 				dev_err(&msg->spi->dev,
1290 					"Bufferless transfer has length %u\n",
1291 					xfer->len);
1292 		}
1293 
1294 		if (!ctlr->ptp_sts_supported) {
1295 			ptp_read_system_postts(xfer->ptp_sts);
1296 			xfer->ptp_sts_word_post = xfer->len;
1297 		}
1298 
1299 		trace_spi_transfer_stop(msg, xfer);
1300 
1301 		if (msg->status != -EINPROGRESS)
1302 			goto out;
1303 
1304 		spi_transfer_delay_exec(xfer);
1305 
1306 		if (xfer->cs_change) {
1307 			if (list_is_last(&xfer->transfer_list,
1308 					 &msg->transfers)) {
1309 				keep_cs = true;
1310 			} else {
1311 				spi_set_cs(msg->spi, false);
1312 				_spi_transfer_cs_change_delay(msg, xfer);
1313 				spi_set_cs(msg->spi, true);
1314 			}
1315 		}
1316 
1317 		msg->actual_length += xfer->len;
1318 	}
1319 
1320 out:
1321 	if (ret != 0 || !keep_cs)
1322 		spi_set_cs(msg->spi, false);
1323 
1324 	if (msg->status == -EINPROGRESS)
1325 		msg->status = ret;
1326 
1327 	if (msg->status && ctlr->handle_err)
1328 		ctlr->handle_err(ctlr, msg);
1329 
1330 	spi_finalize_current_message(ctlr);
1331 
1332 	return ret;
1333 }
1334 
1335 /**
1336  * spi_finalize_current_transfer - report completion of a transfer
1337  * @ctlr: the controller reporting completion
1338  *
1339  * Called by SPI drivers using the core transfer_one_message()
1340  * implementation to notify it that the current interrupt driven
1341  * transfer has finished and the next one may be scheduled.
1342  */
1343 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1344 {
1345 	complete(&ctlr->xfer_completion);
1346 }
1347 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1348 
1349 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1350 {
1351 	if (ctlr->auto_runtime_pm) {
1352 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1353 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1354 	}
1355 }
1356 
1357 /**
1358  * __spi_pump_messages - function which processes spi message queue
1359  * @ctlr: controller to process queue for
1360  * @in_kthread: true if we are in the context of the message pump thread
1361  *
1362  * This function checks if there is any spi message in the queue that
1363  * needs processing and if so call out to the driver to initialize hardware
1364  * and transfer each message.
1365  *
1366  * Note that it is called both from the kthread itself and also from
1367  * inside spi_sync(); the queue extraction handling at the top of the
1368  * function should deal with this safely.
1369  */
1370 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1371 {
1372 	struct spi_transfer *xfer;
1373 	struct spi_message *msg;
1374 	bool was_busy = false;
1375 	unsigned long flags;
1376 	int ret;
1377 
1378 	/* Lock queue */
1379 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1380 
1381 	/* Make sure we are not already running a message */
1382 	if (ctlr->cur_msg) {
1383 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1384 		return;
1385 	}
1386 
1387 	/* If another context is idling the device then defer */
1388 	if (ctlr->idling) {
1389 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1390 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1391 		return;
1392 	}
1393 
1394 	/* Check if the queue is idle */
1395 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1396 		if (!ctlr->busy) {
1397 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1398 			return;
1399 		}
1400 
1401 		/* Defer any non-atomic teardown to the thread */
1402 		if (!in_kthread) {
1403 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1404 			    !ctlr->unprepare_transfer_hardware) {
1405 				spi_idle_runtime_pm(ctlr);
1406 				ctlr->busy = false;
1407 				trace_spi_controller_idle(ctlr);
1408 			} else {
1409 				kthread_queue_work(ctlr->kworker,
1410 						   &ctlr->pump_messages);
1411 			}
1412 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1413 			return;
1414 		}
1415 
1416 		ctlr->busy = false;
1417 		ctlr->idling = true;
1418 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1419 
1420 		kfree(ctlr->dummy_rx);
1421 		ctlr->dummy_rx = NULL;
1422 		kfree(ctlr->dummy_tx);
1423 		ctlr->dummy_tx = NULL;
1424 		if (ctlr->unprepare_transfer_hardware &&
1425 		    ctlr->unprepare_transfer_hardware(ctlr))
1426 			dev_err(&ctlr->dev,
1427 				"failed to unprepare transfer hardware\n");
1428 		spi_idle_runtime_pm(ctlr);
1429 		trace_spi_controller_idle(ctlr);
1430 
1431 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1432 		ctlr->idling = false;
1433 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1434 		return;
1435 	}
1436 
1437 	/* Extract head of queue */
1438 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1439 	ctlr->cur_msg = msg;
1440 
1441 	list_del_init(&msg->queue);
1442 	if (ctlr->busy)
1443 		was_busy = true;
1444 	else
1445 		ctlr->busy = true;
1446 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1447 
1448 	mutex_lock(&ctlr->io_mutex);
1449 
1450 	if (!was_busy && ctlr->auto_runtime_pm) {
1451 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1452 		if (ret < 0) {
1453 			pm_runtime_put_noidle(ctlr->dev.parent);
1454 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1455 				ret);
1456 			mutex_unlock(&ctlr->io_mutex);
1457 			return;
1458 		}
1459 	}
1460 
1461 	if (!was_busy)
1462 		trace_spi_controller_busy(ctlr);
1463 
1464 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1465 		ret = ctlr->prepare_transfer_hardware(ctlr);
1466 		if (ret) {
1467 			dev_err(&ctlr->dev,
1468 				"failed to prepare transfer hardware: %d\n",
1469 				ret);
1470 
1471 			if (ctlr->auto_runtime_pm)
1472 				pm_runtime_put(ctlr->dev.parent);
1473 
1474 			msg->status = ret;
1475 			spi_finalize_current_message(ctlr);
1476 
1477 			mutex_unlock(&ctlr->io_mutex);
1478 			return;
1479 		}
1480 	}
1481 
1482 	trace_spi_message_start(msg);
1483 
1484 	if (ctlr->prepare_message) {
1485 		ret = ctlr->prepare_message(ctlr, msg);
1486 		if (ret) {
1487 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1488 				ret);
1489 			msg->status = ret;
1490 			spi_finalize_current_message(ctlr);
1491 			goto out;
1492 		}
1493 		ctlr->cur_msg_prepared = true;
1494 	}
1495 
1496 	ret = spi_map_msg(ctlr, msg);
1497 	if (ret) {
1498 		msg->status = ret;
1499 		spi_finalize_current_message(ctlr);
1500 		goto out;
1501 	}
1502 
1503 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1504 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1505 			xfer->ptp_sts_word_pre = 0;
1506 			ptp_read_system_prets(xfer->ptp_sts);
1507 		}
1508 	}
1509 
1510 	ret = ctlr->transfer_one_message(ctlr, msg);
1511 	if (ret) {
1512 		dev_err(&ctlr->dev,
1513 			"failed to transfer one message from queue\n");
1514 		goto out;
1515 	}
1516 
1517 out:
1518 	mutex_unlock(&ctlr->io_mutex);
1519 
1520 	/* Prod the scheduler in case transfer_one() was busy waiting */
1521 	if (!ret)
1522 		cond_resched();
1523 }
1524 
1525 /**
1526  * spi_pump_messages - kthread work function which processes spi message queue
1527  * @work: pointer to kthread work struct contained in the controller struct
1528  */
1529 static void spi_pump_messages(struct kthread_work *work)
1530 {
1531 	struct spi_controller *ctlr =
1532 		container_of(work, struct spi_controller, pump_messages);
1533 
1534 	__spi_pump_messages(ctlr, true);
1535 }
1536 
1537 /**
1538  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1539  *			    TX timestamp for the requested byte from the SPI
1540  *			    transfer. The frequency with which this function
1541  *			    must be called (once per word, once for the whole
1542  *			    transfer, once per batch of words etc) is arbitrary
1543  *			    as long as the @tx buffer offset is greater than or
1544  *			    equal to the requested byte at the time of the
1545  *			    call. The timestamp is only taken once, at the
1546  *			    first such call. It is assumed that the driver
1547  *			    advances its @tx buffer pointer monotonically.
1548  * @ctlr: Pointer to the spi_controller structure of the driver
1549  * @xfer: Pointer to the transfer being timestamped
1550  * @progress: How many words (not bytes) have been transferred so far
1551  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1552  *	      transfer, for less jitter in time measurement. Only compatible
1553  *	      with PIO drivers. If true, must follow up with
1554  *	      spi_take_timestamp_post or otherwise system will crash.
1555  *	      WARNING: for fully predictable results, the CPU frequency must
1556  *	      also be under control (governor).
1557  */
1558 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1559 			    struct spi_transfer *xfer,
1560 			    size_t progress, bool irqs_off)
1561 {
1562 	if (!xfer->ptp_sts)
1563 		return;
1564 
1565 	if (xfer->timestamped)
1566 		return;
1567 
1568 	if (progress > xfer->ptp_sts_word_pre)
1569 		return;
1570 
1571 	/* Capture the resolution of the timestamp */
1572 	xfer->ptp_sts_word_pre = progress;
1573 
1574 	if (irqs_off) {
1575 		local_irq_save(ctlr->irq_flags);
1576 		preempt_disable();
1577 	}
1578 
1579 	ptp_read_system_prets(xfer->ptp_sts);
1580 }
1581 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1582 
1583 /**
1584  * spi_take_timestamp_post - helper for drivers to collect the end of the
1585  *			     TX timestamp for the requested byte from the SPI
1586  *			     transfer. Can be called with an arbitrary
1587  *			     frequency: only the first call where @tx exceeds
1588  *			     or is equal to the requested word will be
1589  *			     timestamped.
1590  * @ctlr: Pointer to the spi_controller structure of the driver
1591  * @xfer: Pointer to the transfer being timestamped
1592  * @progress: How many words (not bytes) have been transferred so far
1593  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1594  */
1595 void spi_take_timestamp_post(struct spi_controller *ctlr,
1596 			     struct spi_transfer *xfer,
1597 			     size_t progress, bool irqs_off)
1598 {
1599 	if (!xfer->ptp_sts)
1600 		return;
1601 
1602 	if (xfer->timestamped)
1603 		return;
1604 
1605 	if (progress < xfer->ptp_sts_word_post)
1606 		return;
1607 
1608 	ptp_read_system_postts(xfer->ptp_sts);
1609 
1610 	if (irqs_off) {
1611 		local_irq_restore(ctlr->irq_flags);
1612 		preempt_enable();
1613 	}
1614 
1615 	/* Capture the resolution of the timestamp */
1616 	xfer->ptp_sts_word_post = progress;
1617 
1618 	xfer->timestamped = true;
1619 }
1620 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1621 
1622 /**
1623  * spi_set_thread_rt - set the controller to pump at realtime priority
1624  * @ctlr: controller to boost priority of
1625  *
1626  * This can be called because the controller requested realtime priority
1627  * (by setting the ->rt value before calling spi_register_controller()) or
1628  * because a device on the bus said that its transfers needed realtime
1629  * priority.
1630  *
1631  * NOTE: at the moment if any device on a bus says it needs realtime then
1632  * the thread will be at realtime priority for all transfers on that
1633  * controller.  If this eventually becomes a problem we may see if we can
1634  * find a way to boost the priority only temporarily during relevant
1635  * transfers.
1636  */
1637 static void spi_set_thread_rt(struct spi_controller *ctlr)
1638 {
1639 	dev_info(&ctlr->dev,
1640 		"will run message pump with realtime priority\n");
1641 	sched_set_fifo(ctlr->kworker->task);
1642 }
1643 
1644 static int spi_init_queue(struct spi_controller *ctlr)
1645 {
1646 	ctlr->running = false;
1647 	ctlr->busy = false;
1648 
1649 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1650 	if (IS_ERR(ctlr->kworker)) {
1651 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1652 		return PTR_ERR(ctlr->kworker);
1653 	}
1654 
1655 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1656 
1657 	/*
1658 	 * Controller config will indicate if this controller should run the
1659 	 * message pump with high (realtime) priority to reduce the transfer
1660 	 * latency on the bus by minimising the delay between a transfer
1661 	 * request and the scheduling of the message pump thread. Without this
1662 	 * setting the message pump thread will remain at default priority.
1663 	 */
1664 	if (ctlr->rt)
1665 		spi_set_thread_rt(ctlr);
1666 
1667 	return 0;
1668 }
1669 
1670 /**
1671  * spi_get_next_queued_message() - called by driver to check for queued
1672  * messages
1673  * @ctlr: the controller to check for queued messages
1674  *
1675  * If there are more messages in the queue, the next message is returned from
1676  * this call.
1677  *
1678  * Return: the next message in the queue, else NULL if the queue is empty.
1679  */
1680 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1681 {
1682 	struct spi_message *next;
1683 	unsigned long flags;
1684 
1685 	/* get a pointer to the next message, if any */
1686 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1687 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1688 					queue);
1689 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1690 
1691 	return next;
1692 }
1693 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1694 
1695 /**
1696  * spi_finalize_current_message() - the current message is complete
1697  * @ctlr: the controller to return the message to
1698  *
1699  * Called by the driver to notify the core that the message in the front of the
1700  * queue is complete and can be removed from the queue.
1701  */
1702 void spi_finalize_current_message(struct spi_controller *ctlr)
1703 {
1704 	struct spi_transfer *xfer;
1705 	struct spi_message *mesg;
1706 	unsigned long flags;
1707 	int ret;
1708 
1709 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1710 	mesg = ctlr->cur_msg;
1711 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1712 
1713 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1714 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1715 			ptp_read_system_postts(xfer->ptp_sts);
1716 			xfer->ptp_sts_word_post = xfer->len;
1717 		}
1718 	}
1719 
1720 	if (unlikely(ctlr->ptp_sts_supported))
1721 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1722 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1723 
1724 	spi_unmap_msg(ctlr, mesg);
1725 
1726 	/* In the prepare_messages callback the spi bus has the opportunity to
1727 	 * split a transfer to smaller chunks.
1728 	 * Release splited transfers here since spi_map_msg is done on the
1729 	 * splited transfers.
1730 	 */
1731 	spi_res_release(ctlr, mesg);
1732 
1733 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1734 		ret = ctlr->unprepare_message(ctlr, mesg);
1735 		if (ret) {
1736 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1737 				ret);
1738 		}
1739 	}
1740 
1741 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1742 	ctlr->cur_msg = NULL;
1743 	ctlr->cur_msg_prepared = false;
1744 	ctlr->fallback = false;
1745 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1746 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1747 
1748 	trace_spi_message_done(mesg);
1749 
1750 	mesg->state = NULL;
1751 	if (mesg->complete)
1752 		mesg->complete(mesg->context);
1753 }
1754 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1755 
1756 static int spi_start_queue(struct spi_controller *ctlr)
1757 {
1758 	unsigned long flags;
1759 
1760 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1761 
1762 	if (ctlr->running || ctlr->busy) {
1763 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1764 		return -EBUSY;
1765 	}
1766 
1767 	ctlr->running = true;
1768 	ctlr->cur_msg = NULL;
1769 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1770 
1771 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1772 
1773 	return 0;
1774 }
1775 
1776 static int spi_stop_queue(struct spi_controller *ctlr)
1777 {
1778 	unsigned long flags;
1779 	unsigned limit = 500;
1780 	int ret = 0;
1781 
1782 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1783 
1784 	/*
1785 	 * This is a bit lame, but is optimized for the common execution path.
1786 	 * A wait_queue on the ctlr->busy could be used, but then the common
1787 	 * execution path (pump_messages) would be required to call wake_up or
1788 	 * friends on every SPI message. Do this instead.
1789 	 */
1790 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1791 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1792 		usleep_range(10000, 11000);
1793 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1794 	}
1795 
1796 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1797 		ret = -EBUSY;
1798 	else
1799 		ctlr->running = false;
1800 
1801 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1802 
1803 	if (ret) {
1804 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1805 		return ret;
1806 	}
1807 	return ret;
1808 }
1809 
1810 static int spi_destroy_queue(struct spi_controller *ctlr)
1811 {
1812 	int ret;
1813 
1814 	ret = spi_stop_queue(ctlr);
1815 
1816 	/*
1817 	 * kthread_flush_worker will block until all work is done.
1818 	 * If the reason that stop_queue timed out is that the work will never
1819 	 * finish, then it does no good to call flush/stop thread, so
1820 	 * return anyway.
1821 	 */
1822 	if (ret) {
1823 		dev_err(&ctlr->dev, "problem destroying queue\n");
1824 		return ret;
1825 	}
1826 
1827 	kthread_destroy_worker(ctlr->kworker);
1828 
1829 	return 0;
1830 }
1831 
1832 static int __spi_queued_transfer(struct spi_device *spi,
1833 				 struct spi_message *msg,
1834 				 bool need_pump)
1835 {
1836 	struct spi_controller *ctlr = spi->controller;
1837 	unsigned long flags;
1838 
1839 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1840 
1841 	if (!ctlr->running) {
1842 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1843 		return -ESHUTDOWN;
1844 	}
1845 	msg->actual_length = 0;
1846 	msg->status = -EINPROGRESS;
1847 
1848 	list_add_tail(&msg->queue, &ctlr->queue);
1849 	if (!ctlr->busy && need_pump)
1850 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1851 
1852 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1853 	return 0;
1854 }
1855 
1856 /**
1857  * spi_queued_transfer - transfer function for queued transfers
1858  * @spi: spi device which is requesting transfer
1859  * @msg: spi message which is to handled is queued to driver queue
1860  *
1861  * Return: zero on success, else a negative error code.
1862  */
1863 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1864 {
1865 	return __spi_queued_transfer(spi, msg, true);
1866 }
1867 
1868 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1869 {
1870 	int ret;
1871 
1872 	ctlr->transfer = spi_queued_transfer;
1873 	if (!ctlr->transfer_one_message)
1874 		ctlr->transfer_one_message = spi_transfer_one_message;
1875 
1876 	/* Initialize and start queue */
1877 	ret = spi_init_queue(ctlr);
1878 	if (ret) {
1879 		dev_err(&ctlr->dev, "problem initializing queue\n");
1880 		goto err_init_queue;
1881 	}
1882 	ctlr->queued = true;
1883 	ret = spi_start_queue(ctlr);
1884 	if (ret) {
1885 		dev_err(&ctlr->dev, "problem starting queue\n");
1886 		goto err_start_queue;
1887 	}
1888 
1889 	return 0;
1890 
1891 err_start_queue:
1892 	spi_destroy_queue(ctlr);
1893 err_init_queue:
1894 	return ret;
1895 }
1896 
1897 /**
1898  * spi_flush_queue - Send all pending messages in the queue from the callers'
1899  *		     context
1900  * @ctlr: controller to process queue for
1901  *
1902  * This should be used when one wants to ensure all pending messages have been
1903  * sent before doing something. Is used by the spi-mem code to make sure SPI
1904  * memory operations do not preempt regular SPI transfers that have been queued
1905  * before the spi-mem operation.
1906  */
1907 void spi_flush_queue(struct spi_controller *ctlr)
1908 {
1909 	if (ctlr->transfer == spi_queued_transfer)
1910 		__spi_pump_messages(ctlr, false);
1911 }
1912 
1913 /*-------------------------------------------------------------------------*/
1914 
1915 #if defined(CONFIG_OF)
1916 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1917 			   struct device_node *nc)
1918 {
1919 	u32 value;
1920 	int rc;
1921 
1922 	/* Mode (clock phase/polarity/etc.) */
1923 	if (of_property_read_bool(nc, "spi-cpha"))
1924 		spi->mode |= SPI_CPHA;
1925 	if (of_property_read_bool(nc, "spi-cpol"))
1926 		spi->mode |= SPI_CPOL;
1927 	if (of_property_read_bool(nc, "spi-3wire"))
1928 		spi->mode |= SPI_3WIRE;
1929 	if (of_property_read_bool(nc, "spi-lsb-first"))
1930 		spi->mode |= SPI_LSB_FIRST;
1931 	if (of_property_read_bool(nc, "spi-cs-high"))
1932 		spi->mode |= SPI_CS_HIGH;
1933 
1934 	/* Device DUAL/QUAD mode */
1935 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1936 		switch (value) {
1937 		case 1:
1938 			break;
1939 		case 2:
1940 			spi->mode |= SPI_TX_DUAL;
1941 			break;
1942 		case 4:
1943 			spi->mode |= SPI_TX_QUAD;
1944 			break;
1945 		case 8:
1946 			spi->mode |= SPI_TX_OCTAL;
1947 			break;
1948 		default:
1949 			dev_warn(&ctlr->dev,
1950 				"spi-tx-bus-width %d not supported\n",
1951 				value);
1952 			break;
1953 		}
1954 	}
1955 
1956 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1957 		switch (value) {
1958 		case 1:
1959 			break;
1960 		case 2:
1961 			spi->mode |= SPI_RX_DUAL;
1962 			break;
1963 		case 4:
1964 			spi->mode |= SPI_RX_QUAD;
1965 			break;
1966 		case 8:
1967 			spi->mode |= SPI_RX_OCTAL;
1968 			break;
1969 		default:
1970 			dev_warn(&ctlr->dev,
1971 				"spi-rx-bus-width %d not supported\n",
1972 				value);
1973 			break;
1974 		}
1975 	}
1976 
1977 	if (spi_controller_is_slave(ctlr)) {
1978 		if (!of_node_name_eq(nc, "slave")) {
1979 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1980 				nc);
1981 			return -EINVAL;
1982 		}
1983 		return 0;
1984 	}
1985 
1986 	/* Device address */
1987 	rc = of_property_read_u32(nc, "reg", &value);
1988 	if (rc) {
1989 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1990 			nc, rc);
1991 		return rc;
1992 	}
1993 	spi->chip_select = value;
1994 
1995 	/*
1996 	 * For descriptors associated with the device, polarity inversion is
1997 	 * handled in the gpiolib, so all gpio chip selects are "active high"
1998 	 * in the logical sense, the gpiolib will invert the line if need be.
1999 	 */
2000 	if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
2001 	    ctlr->cs_gpiods[spi->chip_select])
2002 		spi->mode |= SPI_CS_HIGH;
2003 
2004 	/* Device speed */
2005 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2006 		spi->max_speed_hz = value;
2007 
2008 	return 0;
2009 }
2010 
2011 static struct spi_device *
2012 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2013 {
2014 	struct spi_device *spi;
2015 	int rc;
2016 
2017 	/* Alloc an spi_device */
2018 	spi = spi_alloc_device(ctlr);
2019 	if (!spi) {
2020 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2021 		rc = -ENOMEM;
2022 		goto err_out;
2023 	}
2024 
2025 	/* Select device driver */
2026 	rc = of_modalias_node(nc, spi->modalias,
2027 				sizeof(spi->modalias));
2028 	if (rc < 0) {
2029 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2030 		goto err_out;
2031 	}
2032 
2033 	rc = of_spi_parse_dt(ctlr, spi, nc);
2034 	if (rc)
2035 		goto err_out;
2036 
2037 	/* Store a pointer to the node in the device structure */
2038 	of_node_get(nc);
2039 	spi->dev.of_node = nc;
2040 
2041 	/* Register the new device */
2042 	rc = spi_add_device(spi);
2043 	if (rc) {
2044 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2045 		goto err_of_node_put;
2046 	}
2047 
2048 	return spi;
2049 
2050 err_of_node_put:
2051 	of_node_put(nc);
2052 err_out:
2053 	spi_dev_put(spi);
2054 	return ERR_PTR(rc);
2055 }
2056 
2057 /**
2058  * of_register_spi_devices() - Register child devices onto the SPI bus
2059  * @ctlr:	Pointer to spi_controller device
2060  *
2061  * Registers an spi_device for each child node of controller node which
2062  * represents a valid SPI slave.
2063  */
2064 static void of_register_spi_devices(struct spi_controller *ctlr)
2065 {
2066 	struct spi_device *spi;
2067 	struct device_node *nc;
2068 
2069 	if (!ctlr->dev.of_node)
2070 		return;
2071 
2072 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2073 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2074 			continue;
2075 		spi = of_register_spi_device(ctlr, nc);
2076 		if (IS_ERR(spi)) {
2077 			dev_warn(&ctlr->dev,
2078 				 "Failed to create SPI device for %pOF\n", nc);
2079 			of_node_clear_flag(nc, OF_POPULATED);
2080 		}
2081 	}
2082 }
2083 #else
2084 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2085 #endif
2086 
2087 #ifdef CONFIG_ACPI
2088 struct acpi_spi_lookup {
2089 	struct spi_controller 	*ctlr;
2090 	u32			max_speed_hz;
2091 	u32			mode;
2092 	int			irq;
2093 	u8			bits_per_word;
2094 	u8			chip_select;
2095 };
2096 
2097 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2098 					    struct acpi_spi_lookup *lookup)
2099 {
2100 	const union acpi_object *obj;
2101 
2102 	if (!x86_apple_machine)
2103 		return;
2104 
2105 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2106 	    && obj->buffer.length >= 4)
2107 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2108 
2109 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2110 	    && obj->buffer.length == 8)
2111 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2112 
2113 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2114 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2115 		lookup->mode |= SPI_LSB_FIRST;
2116 
2117 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2118 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2119 		lookup->mode |= SPI_CPOL;
2120 
2121 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2122 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2123 		lookup->mode |= SPI_CPHA;
2124 }
2125 
2126 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2127 {
2128 	struct acpi_spi_lookup *lookup = data;
2129 	struct spi_controller *ctlr = lookup->ctlr;
2130 
2131 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2132 		struct acpi_resource_spi_serialbus *sb;
2133 		acpi_handle parent_handle;
2134 		acpi_status status;
2135 
2136 		sb = &ares->data.spi_serial_bus;
2137 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2138 
2139 			status = acpi_get_handle(NULL,
2140 						 sb->resource_source.string_ptr,
2141 						 &parent_handle);
2142 
2143 			if (ACPI_FAILURE(status) ||
2144 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2145 				return -ENODEV;
2146 
2147 			/*
2148 			 * ACPI DeviceSelection numbering is handled by the
2149 			 * host controller driver in Windows and can vary
2150 			 * from driver to driver. In Linux we always expect
2151 			 * 0 .. max - 1 so we need to ask the driver to
2152 			 * translate between the two schemes.
2153 			 */
2154 			if (ctlr->fw_translate_cs) {
2155 				int cs = ctlr->fw_translate_cs(ctlr,
2156 						sb->device_selection);
2157 				if (cs < 0)
2158 					return cs;
2159 				lookup->chip_select = cs;
2160 			} else {
2161 				lookup->chip_select = sb->device_selection;
2162 			}
2163 
2164 			lookup->max_speed_hz = sb->connection_speed;
2165 			lookup->bits_per_word = sb->data_bit_length;
2166 
2167 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2168 				lookup->mode |= SPI_CPHA;
2169 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2170 				lookup->mode |= SPI_CPOL;
2171 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2172 				lookup->mode |= SPI_CS_HIGH;
2173 		}
2174 	} else if (lookup->irq < 0) {
2175 		struct resource r;
2176 
2177 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2178 			lookup->irq = r.start;
2179 	}
2180 
2181 	/* Always tell the ACPI core to skip this resource */
2182 	return 1;
2183 }
2184 
2185 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2186 					    struct acpi_device *adev)
2187 {
2188 	acpi_handle parent_handle = NULL;
2189 	struct list_head resource_list;
2190 	struct acpi_spi_lookup lookup = {};
2191 	struct spi_device *spi;
2192 	int ret;
2193 
2194 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2195 	    acpi_device_enumerated(adev))
2196 		return AE_OK;
2197 
2198 	lookup.ctlr		= ctlr;
2199 	lookup.irq		= -1;
2200 
2201 	INIT_LIST_HEAD(&resource_list);
2202 	ret = acpi_dev_get_resources(adev, &resource_list,
2203 				     acpi_spi_add_resource, &lookup);
2204 	acpi_dev_free_resource_list(&resource_list);
2205 
2206 	if (ret < 0)
2207 		/* found SPI in _CRS but it points to another controller */
2208 		return AE_OK;
2209 
2210 	if (!lookup.max_speed_hz &&
2211 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2212 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2213 		/* Apple does not use _CRS but nested devices for SPI slaves */
2214 		acpi_spi_parse_apple_properties(adev, &lookup);
2215 	}
2216 
2217 	if (!lookup.max_speed_hz)
2218 		return AE_OK;
2219 
2220 	spi = spi_alloc_device(ctlr);
2221 	if (!spi) {
2222 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2223 			dev_name(&adev->dev));
2224 		return AE_NO_MEMORY;
2225 	}
2226 
2227 
2228 	ACPI_COMPANION_SET(&spi->dev, adev);
2229 	spi->max_speed_hz	= lookup.max_speed_hz;
2230 	spi->mode		|= lookup.mode;
2231 	spi->irq		= lookup.irq;
2232 	spi->bits_per_word	= lookup.bits_per_word;
2233 	spi->chip_select	= lookup.chip_select;
2234 
2235 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2236 			  sizeof(spi->modalias));
2237 
2238 	if (spi->irq < 0)
2239 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2240 
2241 	acpi_device_set_enumerated(adev);
2242 
2243 	adev->power.flags.ignore_parent = true;
2244 	if (spi_add_device(spi)) {
2245 		adev->power.flags.ignore_parent = false;
2246 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2247 			dev_name(&adev->dev));
2248 		spi_dev_put(spi);
2249 	}
2250 
2251 	return AE_OK;
2252 }
2253 
2254 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2255 				       void *data, void **return_value)
2256 {
2257 	struct spi_controller *ctlr = data;
2258 	struct acpi_device *adev;
2259 
2260 	if (acpi_bus_get_device(handle, &adev))
2261 		return AE_OK;
2262 
2263 	return acpi_register_spi_device(ctlr, adev);
2264 }
2265 
2266 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2267 
2268 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2269 {
2270 	acpi_status status;
2271 	acpi_handle handle;
2272 
2273 	handle = ACPI_HANDLE(ctlr->dev.parent);
2274 	if (!handle)
2275 		return;
2276 
2277 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2278 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2279 				     acpi_spi_add_device, NULL, ctlr, NULL);
2280 	if (ACPI_FAILURE(status))
2281 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2282 }
2283 #else
2284 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2285 #endif /* CONFIG_ACPI */
2286 
2287 static void spi_controller_release(struct device *dev)
2288 {
2289 	struct spi_controller *ctlr;
2290 
2291 	ctlr = container_of(dev, struct spi_controller, dev);
2292 	kfree(ctlr);
2293 }
2294 
2295 static struct class spi_master_class = {
2296 	.name		= "spi_master",
2297 	.owner		= THIS_MODULE,
2298 	.dev_release	= spi_controller_release,
2299 	.dev_groups	= spi_master_groups,
2300 };
2301 
2302 #ifdef CONFIG_SPI_SLAVE
2303 /**
2304  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2305  *		     controller
2306  * @spi: device used for the current transfer
2307  */
2308 int spi_slave_abort(struct spi_device *spi)
2309 {
2310 	struct spi_controller *ctlr = spi->controller;
2311 
2312 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2313 		return ctlr->slave_abort(ctlr);
2314 
2315 	return -ENOTSUPP;
2316 }
2317 EXPORT_SYMBOL_GPL(spi_slave_abort);
2318 
2319 static int match_true(struct device *dev, void *data)
2320 {
2321 	return 1;
2322 }
2323 
2324 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2325 			  char *buf)
2326 {
2327 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2328 						   dev);
2329 	struct device *child;
2330 
2331 	child = device_find_child(&ctlr->dev, NULL, match_true);
2332 	return sprintf(buf, "%s\n",
2333 		       child ? to_spi_device(child)->modalias : NULL);
2334 }
2335 
2336 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2337 			   const char *buf, size_t count)
2338 {
2339 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2340 						   dev);
2341 	struct spi_device *spi;
2342 	struct device *child;
2343 	char name[32];
2344 	int rc;
2345 
2346 	rc = sscanf(buf, "%31s", name);
2347 	if (rc != 1 || !name[0])
2348 		return -EINVAL;
2349 
2350 	child = device_find_child(&ctlr->dev, NULL, match_true);
2351 	if (child) {
2352 		/* Remove registered slave */
2353 		device_unregister(child);
2354 		put_device(child);
2355 	}
2356 
2357 	if (strcmp(name, "(null)")) {
2358 		/* Register new slave */
2359 		spi = spi_alloc_device(ctlr);
2360 		if (!spi)
2361 			return -ENOMEM;
2362 
2363 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2364 
2365 		rc = spi_add_device(spi);
2366 		if (rc) {
2367 			spi_dev_put(spi);
2368 			return rc;
2369 		}
2370 	}
2371 
2372 	return count;
2373 }
2374 
2375 static DEVICE_ATTR_RW(slave);
2376 
2377 static struct attribute *spi_slave_attrs[] = {
2378 	&dev_attr_slave.attr,
2379 	NULL,
2380 };
2381 
2382 static const struct attribute_group spi_slave_group = {
2383 	.attrs = spi_slave_attrs,
2384 };
2385 
2386 static const struct attribute_group *spi_slave_groups[] = {
2387 	&spi_controller_statistics_group,
2388 	&spi_slave_group,
2389 	NULL,
2390 };
2391 
2392 static struct class spi_slave_class = {
2393 	.name		= "spi_slave",
2394 	.owner		= THIS_MODULE,
2395 	.dev_release	= spi_controller_release,
2396 	.dev_groups	= spi_slave_groups,
2397 };
2398 #else
2399 extern struct class spi_slave_class;	/* dummy */
2400 #endif
2401 
2402 /**
2403  * __spi_alloc_controller - allocate an SPI master or slave controller
2404  * @dev: the controller, possibly using the platform_bus
2405  * @size: how much zeroed driver-private data to allocate; the pointer to this
2406  *	memory is in the driver_data field of the returned device, accessible
2407  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2408  *	drivers granting DMA access to portions of their private data need to
2409  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2410  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2411  *	slave (true) controller
2412  * Context: can sleep
2413  *
2414  * This call is used only by SPI controller drivers, which are the
2415  * only ones directly touching chip registers.  It's how they allocate
2416  * an spi_controller structure, prior to calling spi_register_controller().
2417  *
2418  * This must be called from context that can sleep.
2419  *
2420  * The caller is responsible for assigning the bus number and initializing the
2421  * controller's methods before calling spi_register_controller(); and (after
2422  * errors adding the device) calling spi_controller_put() to prevent a memory
2423  * leak.
2424  *
2425  * Return: the SPI controller structure on success, else NULL.
2426  */
2427 struct spi_controller *__spi_alloc_controller(struct device *dev,
2428 					      unsigned int size, bool slave)
2429 {
2430 	struct spi_controller	*ctlr;
2431 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2432 
2433 	if (!dev)
2434 		return NULL;
2435 
2436 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2437 	if (!ctlr)
2438 		return NULL;
2439 
2440 	device_initialize(&ctlr->dev);
2441 	ctlr->bus_num = -1;
2442 	ctlr->num_chipselect = 1;
2443 	ctlr->slave = slave;
2444 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2445 		ctlr->dev.class = &spi_slave_class;
2446 	else
2447 		ctlr->dev.class = &spi_master_class;
2448 	ctlr->dev.parent = dev;
2449 	pm_suspend_ignore_children(&ctlr->dev, true);
2450 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2451 
2452 	return ctlr;
2453 }
2454 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2455 
2456 #ifdef CONFIG_OF
2457 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2458 {
2459 	int nb, i, *cs;
2460 	struct device_node *np = ctlr->dev.of_node;
2461 
2462 	if (!np)
2463 		return 0;
2464 
2465 	nb = of_gpio_named_count(np, "cs-gpios");
2466 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2467 
2468 	/* Return error only for an incorrectly formed cs-gpios property */
2469 	if (nb == 0 || nb == -ENOENT)
2470 		return 0;
2471 	else if (nb < 0)
2472 		return nb;
2473 
2474 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2475 			  GFP_KERNEL);
2476 	ctlr->cs_gpios = cs;
2477 
2478 	if (!ctlr->cs_gpios)
2479 		return -ENOMEM;
2480 
2481 	for (i = 0; i < ctlr->num_chipselect; i++)
2482 		cs[i] = -ENOENT;
2483 
2484 	for (i = 0; i < nb; i++)
2485 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2486 
2487 	return 0;
2488 }
2489 #else
2490 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2491 {
2492 	return 0;
2493 }
2494 #endif
2495 
2496 /**
2497  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2498  * @ctlr: The SPI master to grab GPIO descriptors for
2499  */
2500 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2501 {
2502 	int nb, i;
2503 	struct gpio_desc **cs;
2504 	struct device *dev = &ctlr->dev;
2505 	unsigned long native_cs_mask = 0;
2506 	unsigned int num_cs_gpios = 0;
2507 
2508 	nb = gpiod_count(dev, "cs");
2509 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2510 
2511 	/* No GPIOs at all is fine, else return the error */
2512 	if (nb == 0 || nb == -ENOENT)
2513 		return 0;
2514 	else if (nb < 0)
2515 		return nb;
2516 
2517 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2518 			  GFP_KERNEL);
2519 	if (!cs)
2520 		return -ENOMEM;
2521 	ctlr->cs_gpiods = cs;
2522 
2523 	for (i = 0; i < nb; i++) {
2524 		/*
2525 		 * Most chipselects are active low, the inverted
2526 		 * semantics are handled by special quirks in gpiolib,
2527 		 * so initializing them GPIOD_OUT_LOW here means
2528 		 * "unasserted", in most cases this will drive the physical
2529 		 * line high.
2530 		 */
2531 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2532 						      GPIOD_OUT_LOW);
2533 		if (IS_ERR(cs[i]))
2534 			return PTR_ERR(cs[i]);
2535 
2536 		if (cs[i]) {
2537 			/*
2538 			 * If we find a CS GPIO, name it after the device and
2539 			 * chip select line.
2540 			 */
2541 			char *gpioname;
2542 
2543 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2544 						  dev_name(dev), i);
2545 			if (!gpioname)
2546 				return -ENOMEM;
2547 			gpiod_set_consumer_name(cs[i], gpioname);
2548 			num_cs_gpios++;
2549 			continue;
2550 		}
2551 
2552 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2553 			dev_err(dev, "Invalid native chip select %d\n", i);
2554 			return -EINVAL;
2555 		}
2556 		native_cs_mask |= BIT(i);
2557 	}
2558 
2559 	ctlr->unused_native_cs = ffz(native_cs_mask);
2560 	if (num_cs_gpios && ctlr->max_native_cs &&
2561 	    ctlr->unused_native_cs >= ctlr->max_native_cs) {
2562 		dev_err(dev, "No unused native chip select available\n");
2563 		return -EINVAL;
2564 	}
2565 
2566 	return 0;
2567 }
2568 
2569 static int spi_controller_check_ops(struct spi_controller *ctlr)
2570 {
2571 	/*
2572 	 * The controller may implement only the high-level SPI-memory like
2573 	 * operations if it does not support regular SPI transfers, and this is
2574 	 * valid use case.
2575 	 * If ->mem_ops is NULL, we request that at least one of the
2576 	 * ->transfer_xxx() method be implemented.
2577 	 */
2578 	if (ctlr->mem_ops) {
2579 		if (!ctlr->mem_ops->exec_op)
2580 			return -EINVAL;
2581 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2582 		   !ctlr->transfer_one_message) {
2583 		return -EINVAL;
2584 	}
2585 
2586 	return 0;
2587 }
2588 
2589 /**
2590  * spi_register_controller - register SPI master or slave controller
2591  * @ctlr: initialized master, originally from spi_alloc_master() or
2592  *	spi_alloc_slave()
2593  * Context: can sleep
2594  *
2595  * SPI controllers connect to their drivers using some non-SPI bus,
2596  * such as the platform bus.  The final stage of probe() in that code
2597  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2598  *
2599  * SPI controllers use board specific (often SOC specific) bus numbers,
2600  * and board-specific addressing for SPI devices combines those numbers
2601  * with chip select numbers.  Since SPI does not directly support dynamic
2602  * device identification, boards need configuration tables telling which
2603  * chip is at which address.
2604  *
2605  * This must be called from context that can sleep.  It returns zero on
2606  * success, else a negative error code (dropping the controller's refcount).
2607  * After a successful return, the caller is responsible for calling
2608  * spi_unregister_controller().
2609  *
2610  * Return: zero on success, else a negative error code.
2611  */
2612 int spi_register_controller(struct spi_controller *ctlr)
2613 {
2614 	struct device		*dev = ctlr->dev.parent;
2615 	struct boardinfo	*bi;
2616 	int			status;
2617 	int			id, first_dynamic;
2618 
2619 	if (!dev)
2620 		return -ENODEV;
2621 
2622 	/*
2623 	 * Make sure all necessary hooks are implemented before registering
2624 	 * the SPI controller.
2625 	 */
2626 	status = spi_controller_check_ops(ctlr);
2627 	if (status)
2628 		return status;
2629 
2630 	if (ctlr->bus_num >= 0) {
2631 		/* devices with a fixed bus num must check-in with the num */
2632 		mutex_lock(&board_lock);
2633 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2634 			ctlr->bus_num + 1, GFP_KERNEL);
2635 		mutex_unlock(&board_lock);
2636 		if (WARN(id < 0, "couldn't get idr"))
2637 			return id == -ENOSPC ? -EBUSY : id;
2638 		ctlr->bus_num = id;
2639 	} else if (ctlr->dev.of_node) {
2640 		/* allocate dynamic bus number using Linux idr */
2641 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2642 		if (id >= 0) {
2643 			ctlr->bus_num = id;
2644 			mutex_lock(&board_lock);
2645 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2646 				       ctlr->bus_num + 1, GFP_KERNEL);
2647 			mutex_unlock(&board_lock);
2648 			if (WARN(id < 0, "couldn't get idr"))
2649 				return id == -ENOSPC ? -EBUSY : id;
2650 		}
2651 	}
2652 	if (ctlr->bus_num < 0) {
2653 		first_dynamic = of_alias_get_highest_id("spi");
2654 		if (first_dynamic < 0)
2655 			first_dynamic = 0;
2656 		else
2657 			first_dynamic++;
2658 
2659 		mutex_lock(&board_lock);
2660 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2661 			       0, GFP_KERNEL);
2662 		mutex_unlock(&board_lock);
2663 		if (WARN(id < 0, "couldn't get idr"))
2664 			return id;
2665 		ctlr->bus_num = id;
2666 	}
2667 	INIT_LIST_HEAD(&ctlr->queue);
2668 	spin_lock_init(&ctlr->queue_lock);
2669 	spin_lock_init(&ctlr->bus_lock_spinlock);
2670 	mutex_init(&ctlr->bus_lock_mutex);
2671 	mutex_init(&ctlr->io_mutex);
2672 	ctlr->bus_lock_flag = 0;
2673 	init_completion(&ctlr->xfer_completion);
2674 	if (!ctlr->max_dma_len)
2675 		ctlr->max_dma_len = INT_MAX;
2676 
2677 	/* register the device, then userspace will see it.
2678 	 * registration fails if the bus ID is in use.
2679 	 */
2680 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2681 
2682 	if (!spi_controller_is_slave(ctlr)) {
2683 		if (ctlr->use_gpio_descriptors) {
2684 			status = spi_get_gpio_descs(ctlr);
2685 			if (status)
2686 				goto free_bus_id;
2687 			/*
2688 			 * A controller using GPIO descriptors always
2689 			 * supports SPI_CS_HIGH if need be.
2690 			 */
2691 			ctlr->mode_bits |= SPI_CS_HIGH;
2692 		} else {
2693 			/* Legacy code path for GPIOs from DT */
2694 			status = of_spi_get_gpio_numbers(ctlr);
2695 			if (status)
2696 				goto free_bus_id;
2697 		}
2698 	}
2699 
2700 	/*
2701 	 * Even if it's just one always-selected device, there must
2702 	 * be at least one chipselect.
2703 	 */
2704 	if (!ctlr->num_chipselect) {
2705 		status = -EINVAL;
2706 		goto free_bus_id;
2707 	}
2708 
2709 	status = device_add(&ctlr->dev);
2710 	if (status < 0)
2711 		goto free_bus_id;
2712 	dev_dbg(dev, "registered %s %s\n",
2713 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2714 			dev_name(&ctlr->dev));
2715 
2716 	/*
2717 	 * If we're using a queued driver, start the queue. Note that we don't
2718 	 * need the queueing logic if the driver is only supporting high-level
2719 	 * memory operations.
2720 	 */
2721 	if (ctlr->transfer) {
2722 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2723 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2724 		status = spi_controller_initialize_queue(ctlr);
2725 		if (status) {
2726 			device_del(&ctlr->dev);
2727 			goto free_bus_id;
2728 		}
2729 	}
2730 	/* add statistics */
2731 	spin_lock_init(&ctlr->statistics.lock);
2732 
2733 	mutex_lock(&board_lock);
2734 	list_add_tail(&ctlr->list, &spi_controller_list);
2735 	list_for_each_entry(bi, &board_list, list)
2736 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2737 	mutex_unlock(&board_lock);
2738 
2739 	/* Register devices from the device tree and ACPI */
2740 	of_register_spi_devices(ctlr);
2741 	acpi_register_spi_devices(ctlr);
2742 	return status;
2743 
2744 free_bus_id:
2745 	mutex_lock(&board_lock);
2746 	idr_remove(&spi_master_idr, ctlr->bus_num);
2747 	mutex_unlock(&board_lock);
2748 	return status;
2749 }
2750 EXPORT_SYMBOL_GPL(spi_register_controller);
2751 
2752 static void devm_spi_unregister(struct device *dev, void *res)
2753 {
2754 	spi_unregister_controller(*(struct spi_controller **)res);
2755 }
2756 
2757 /**
2758  * devm_spi_register_controller - register managed SPI master or slave
2759  *	controller
2760  * @dev:    device managing SPI controller
2761  * @ctlr: initialized controller, originally from spi_alloc_master() or
2762  *	spi_alloc_slave()
2763  * Context: can sleep
2764  *
2765  * Register a SPI device as with spi_register_controller() which will
2766  * automatically be unregistered and freed.
2767  *
2768  * Return: zero on success, else a negative error code.
2769  */
2770 int devm_spi_register_controller(struct device *dev,
2771 				 struct spi_controller *ctlr)
2772 {
2773 	struct spi_controller **ptr;
2774 	int ret;
2775 
2776 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2777 	if (!ptr)
2778 		return -ENOMEM;
2779 
2780 	ret = spi_register_controller(ctlr);
2781 	if (!ret) {
2782 		*ptr = ctlr;
2783 		devres_add(dev, ptr);
2784 	} else {
2785 		devres_free(ptr);
2786 	}
2787 
2788 	return ret;
2789 }
2790 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2791 
2792 static int __unregister(struct device *dev, void *null)
2793 {
2794 	spi_unregister_device(to_spi_device(dev));
2795 	return 0;
2796 }
2797 
2798 /**
2799  * spi_unregister_controller - unregister SPI master or slave controller
2800  * @ctlr: the controller being unregistered
2801  * Context: can sleep
2802  *
2803  * This call is used only by SPI controller drivers, which are the
2804  * only ones directly touching chip registers.
2805  *
2806  * This must be called from context that can sleep.
2807  *
2808  * Note that this function also drops a reference to the controller.
2809  */
2810 void spi_unregister_controller(struct spi_controller *ctlr)
2811 {
2812 	struct spi_controller *found;
2813 	int id = ctlr->bus_num;
2814 
2815 	/* Prevent addition of new devices, unregister existing ones */
2816 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2817 		mutex_lock(&spi_add_lock);
2818 
2819 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2820 
2821 	/* First make sure that this controller was ever added */
2822 	mutex_lock(&board_lock);
2823 	found = idr_find(&spi_master_idr, id);
2824 	mutex_unlock(&board_lock);
2825 	if (ctlr->queued) {
2826 		if (spi_destroy_queue(ctlr))
2827 			dev_err(&ctlr->dev, "queue remove failed\n");
2828 	}
2829 	mutex_lock(&board_lock);
2830 	list_del(&ctlr->list);
2831 	mutex_unlock(&board_lock);
2832 
2833 	device_unregister(&ctlr->dev);
2834 	/* free bus id */
2835 	mutex_lock(&board_lock);
2836 	if (found == ctlr)
2837 		idr_remove(&spi_master_idr, id);
2838 	mutex_unlock(&board_lock);
2839 
2840 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2841 		mutex_unlock(&spi_add_lock);
2842 }
2843 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2844 
2845 int spi_controller_suspend(struct spi_controller *ctlr)
2846 {
2847 	int ret;
2848 
2849 	/* Basically no-ops for non-queued controllers */
2850 	if (!ctlr->queued)
2851 		return 0;
2852 
2853 	ret = spi_stop_queue(ctlr);
2854 	if (ret)
2855 		dev_err(&ctlr->dev, "queue stop failed\n");
2856 
2857 	return ret;
2858 }
2859 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2860 
2861 int spi_controller_resume(struct spi_controller *ctlr)
2862 {
2863 	int ret;
2864 
2865 	if (!ctlr->queued)
2866 		return 0;
2867 
2868 	ret = spi_start_queue(ctlr);
2869 	if (ret)
2870 		dev_err(&ctlr->dev, "queue restart failed\n");
2871 
2872 	return ret;
2873 }
2874 EXPORT_SYMBOL_GPL(spi_controller_resume);
2875 
2876 static int __spi_controller_match(struct device *dev, const void *data)
2877 {
2878 	struct spi_controller *ctlr;
2879 	const u16 *bus_num = data;
2880 
2881 	ctlr = container_of(dev, struct spi_controller, dev);
2882 	return ctlr->bus_num == *bus_num;
2883 }
2884 
2885 /**
2886  * spi_busnum_to_master - look up master associated with bus_num
2887  * @bus_num: the master's bus number
2888  * Context: can sleep
2889  *
2890  * This call may be used with devices that are registered after
2891  * arch init time.  It returns a refcounted pointer to the relevant
2892  * spi_controller (which the caller must release), or NULL if there is
2893  * no such master registered.
2894  *
2895  * Return: the SPI master structure on success, else NULL.
2896  */
2897 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2898 {
2899 	struct device		*dev;
2900 	struct spi_controller	*ctlr = NULL;
2901 
2902 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2903 				__spi_controller_match);
2904 	if (dev)
2905 		ctlr = container_of(dev, struct spi_controller, dev);
2906 	/* reference got in class_find_device */
2907 	return ctlr;
2908 }
2909 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2910 
2911 /*-------------------------------------------------------------------------*/
2912 
2913 /* Core methods for SPI resource management */
2914 
2915 /**
2916  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2917  *                 during the processing of a spi_message while using
2918  *                 spi_transfer_one
2919  * @spi:     the spi device for which we allocate memory
2920  * @release: the release code to execute for this resource
2921  * @size:    size to alloc and return
2922  * @gfp:     GFP allocation flags
2923  *
2924  * Return: the pointer to the allocated data
2925  *
2926  * This may get enhanced in the future to allocate from a memory pool
2927  * of the @spi_device or @spi_controller to avoid repeated allocations.
2928  */
2929 void *spi_res_alloc(struct spi_device *spi,
2930 		    spi_res_release_t release,
2931 		    size_t size, gfp_t gfp)
2932 {
2933 	struct spi_res *sres;
2934 
2935 	sres = kzalloc(sizeof(*sres) + size, gfp);
2936 	if (!sres)
2937 		return NULL;
2938 
2939 	INIT_LIST_HEAD(&sres->entry);
2940 	sres->release = release;
2941 
2942 	return sres->data;
2943 }
2944 EXPORT_SYMBOL_GPL(spi_res_alloc);
2945 
2946 /**
2947  * spi_res_free - free an spi resource
2948  * @res: pointer to the custom data of a resource
2949  *
2950  */
2951 void spi_res_free(void *res)
2952 {
2953 	struct spi_res *sres = container_of(res, struct spi_res, data);
2954 
2955 	if (!res)
2956 		return;
2957 
2958 	WARN_ON(!list_empty(&sres->entry));
2959 	kfree(sres);
2960 }
2961 EXPORT_SYMBOL_GPL(spi_res_free);
2962 
2963 /**
2964  * spi_res_add - add a spi_res to the spi_message
2965  * @message: the spi message
2966  * @res:     the spi_resource
2967  */
2968 void spi_res_add(struct spi_message *message, void *res)
2969 {
2970 	struct spi_res *sres = container_of(res, struct spi_res, data);
2971 
2972 	WARN_ON(!list_empty(&sres->entry));
2973 	list_add_tail(&sres->entry, &message->resources);
2974 }
2975 EXPORT_SYMBOL_GPL(spi_res_add);
2976 
2977 /**
2978  * spi_res_release - release all spi resources for this message
2979  * @ctlr:  the @spi_controller
2980  * @message: the @spi_message
2981  */
2982 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2983 {
2984 	struct spi_res *res, *tmp;
2985 
2986 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2987 		if (res->release)
2988 			res->release(ctlr, message, res->data);
2989 
2990 		list_del(&res->entry);
2991 
2992 		kfree(res);
2993 	}
2994 }
2995 EXPORT_SYMBOL_GPL(spi_res_release);
2996 
2997 /*-------------------------------------------------------------------------*/
2998 
2999 /* Core methods for spi_message alterations */
3000 
3001 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3002 					    struct spi_message *msg,
3003 					    void *res)
3004 {
3005 	struct spi_replaced_transfers *rxfer = res;
3006 	size_t i;
3007 
3008 	/* call extra callback if requested */
3009 	if (rxfer->release)
3010 		rxfer->release(ctlr, msg, res);
3011 
3012 	/* insert replaced transfers back into the message */
3013 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3014 
3015 	/* remove the formerly inserted entries */
3016 	for (i = 0; i < rxfer->inserted; i++)
3017 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3018 }
3019 
3020 /**
3021  * spi_replace_transfers - replace transfers with several transfers
3022  *                         and register change with spi_message.resources
3023  * @msg:           the spi_message we work upon
3024  * @xfer_first:    the first spi_transfer we want to replace
3025  * @remove:        number of transfers to remove
3026  * @insert:        the number of transfers we want to insert instead
3027  * @release:       extra release code necessary in some circumstances
3028  * @extradatasize: extra data to allocate (with alignment guarantees
3029  *                 of struct @spi_transfer)
3030  * @gfp:           gfp flags
3031  *
3032  * Returns: pointer to @spi_replaced_transfers,
3033  *          PTR_ERR(...) in case of errors.
3034  */
3035 struct spi_replaced_transfers *spi_replace_transfers(
3036 	struct spi_message *msg,
3037 	struct spi_transfer *xfer_first,
3038 	size_t remove,
3039 	size_t insert,
3040 	spi_replaced_release_t release,
3041 	size_t extradatasize,
3042 	gfp_t gfp)
3043 {
3044 	struct spi_replaced_transfers *rxfer;
3045 	struct spi_transfer *xfer;
3046 	size_t i;
3047 
3048 	/* allocate the structure using spi_res */
3049 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3050 			      struct_size(rxfer, inserted_transfers, insert)
3051 			      + extradatasize,
3052 			      gfp);
3053 	if (!rxfer)
3054 		return ERR_PTR(-ENOMEM);
3055 
3056 	/* the release code to invoke before running the generic release */
3057 	rxfer->release = release;
3058 
3059 	/* assign extradata */
3060 	if (extradatasize)
3061 		rxfer->extradata =
3062 			&rxfer->inserted_transfers[insert];
3063 
3064 	/* init the replaced_transfers list */
3065 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3066 
3067 	/* assign the list_entry after which we should reinsert
3068 	 * the @replaced_transfers - it may be spi_message.messages!
3069 	 */
3070 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3071 
3072 	/* remove the requested number of transfers */
3073 	for (i = 0; i < remove; i++) {
3074 		/* if the entry after replaced_after it is msg->transfers
3075 		 * then we have been requested to remove more transfers
3076 		 * than are in the list
3077 		 */
3078 		if (rxfer->replaced_after->next == &msg->transfers) {
3079 			dev_err(&msg->spi->dev,
3080 				"requested to remove more spi_transfers than are available\n");
3081 			/* insert replaced transfers back into the message */
3082 			list_splice(&rxfer->replaced_transfers,
3083 				    rxfer->replaced_after);
3084 
3085 			/* free the spi_replace_transfer structure */
3086 			spi_res_free(rxfer);
3087 
3088 			/* and return with an error */
3089 			return ERR_PTR(-EINVAL);
3090 		}
3091 
3092 		/* remove the entry after replaced_after from list of
3093 		 * transfers and add it to list of replaced_transfers
3094 		 */
3095 		list_move_tail(rxfer->replaced_after->next,
3096 			       &rxfer->replaced_transfers);
3097 	}
3098 
3099 	/* create copy of the given xfer with identical settings
3100 	 * based on the first transfer to get removed
3101 	 */
3102 	for (i = 0; i < insert; i++) {
3103 		/* we need to run in reverse order */
3104 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3105 
3106 		/* copy all spi_transfer data */
3107 		memcpy(xfer, xfer_first, sizeof(*xfer));
3108 
3109 		/* add to list */
3110 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3111 
3112 		/* clear cs_change and delay for all but the last */
3113 		if (i) {
3114 			xfer->cs_change = false;
3115 			xfer->delay_usecs = 0;
3116 			xfer->delay.value = 0;
3117 		}
3118 	}
3119 
3120 	/* set up inserted */
3121 	rxfer->inserted = insert;
3122 
3123 	/* and register it with spi_res/spi_message */
3124 	spi_res_add(msg, rxfer);
3125 
3126 	return rxfer;
3127 }
3128 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3129 
3130 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3131 					struct spi_message *msg,
3132 					struct spi_transfer **xferp,
3133 					size_t maxsize,
3134 					gfp_t gfp)
3135 {
3136 	struct spi_transfer *xfer = *xferp, *xfers;
3137 	struct spi_replaced_transfers *srt;
3138 	size_t offset;
3139 	size_t count, i;
3140 
3141 	/* calculate how many we have to replace */
3142 	count = DIV_ROUND_UP(xfer->len, maxsize);
3143 
3144 	/* create replacement */
3145 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3146 	if (IS_ERR(srt))
3147 		return PTR_ERR(srt);
3148 	xfers = srt->inserted_transfers;
3149 
3150 	/* now handle each of those newly inserted spi_transfers
3151 	 * note that the replacements spi_transfers all are preset
3152 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3153 	 * are all identical (as well as most others)
3154 	 * so we just have to fix up len and the pointers.
3155 	 *
3156 	 * this also includes support for the depreciated
3157 	 * spi_message.is_dma_mapped interface
3158 	 */
3159 
3160 	/* the first transfer just needs the length modified, so we
3161 	 * run it outside the loop
3162 	 */
3163 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3164 
3165 	/* all the others need rx_buf/tx_buf also set */
3166 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3167 		/* update rx_buf, tx_buf and dma */
3168 		if (xfers[i].rx_buf)
3169 			xfers[i].rx_buf += offset;
3170 		if (xfers[i].rx_dma)
3171 			xfers[i].rx_dma += offset;
3172 		if (xfers[i].tx_buf)
3173 			xfers[i].tx_buf += offset;
3174 		if (xfers[i].tx_dma)
3175 			xfers[i].tx_dma += offset;
3176 
3177 		/* update length */
3178 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3179 	}
3180 
3181 	/* we set up xferp to the last entry we have inserted,
3182 	 * so that we skip those already split transfers
3183 	 */
3184 	*xferp = &xfers[count - 1];
3185 
3186 	/* increment statistics counters */
3187 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3188 				       transfers_split_maxsize);
3189 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3190 				       transfers_split_maxsize);
3191 
3192 	return 0;
3193 }
3194 
3195 /**
3196  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3197  *                              when an individual transfer exceeds a
3198  *                              certain size
3199  * @ctlr:    the @spi_controller for this transfer
3200  * @msg:   the @spi_message to transform
3201  * @maxsize:  the maximum when to apply this
3202  * @gfp: GFP allocation flags
3203  *
3204  * Return: status of transformation
3205  */
3206 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3207 				struct spi_message *msg,
3208 				size_t maxsize,
3209 				gfp_t gfp)
3210 {
3211 	struct spi_transfer *xfer;
3212 	int ret;
3213 
3214 	/* iterate over the transfer_list,
3215 	 * but note that xfer is advanced to the last transfer inserted
3216 	 * to avoid checking sizes again unnecessarily (also xfer does
3217 	 * potentiall belong to a different list by the time the
3218 	 * replacement has happened
3219 	 */
3220 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3221 		if (xfer->len > maxsize) {
3222 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3223 							   maxsize, gfp);
3224 			if (ret)
3225 				return ret;
3226 		}
3227 	}
3228 
3229 	return 0;
3230 }
3231 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3232 
3233 /*-------------------------------------------------------------------------*/
3234 
3235 /* Core methods for SPI controller protocol drivers.  Some of the
3236  * other core methods are currently defined as inline functions.
3237  */
3238 
3239 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3240 					u8 bits_per_word)
3241 {
3242 	if (ctlr->bits_per_word_mask) {
3243 		/* Only 32 bits fit in the mask */
3244 		if (bits_per_word > 32)
3245 			return -EINVAL;
3246 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3247 			return -EINVAL;
3248 	}
3249 
3250 	return 0;
3251 }
3252 
3253 /**
3254  * spi_setup - setup SPI mode and clock rate
3255  * @spi: the device whose settings are being modified
3256  * Context: can sleep, and no requests are queued to the device
3257  *
3258  * SPI protocol drivers may need to update the transfer mode if the
3259  * device doesn't work with its default.  They may likewise need
3260  * to update clock rates or word sizes from initial values.  This function
3261  * changes those settings, and must be called from a context that can sleep.
3262  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3263  * effect the next time the device is selected and data is transferred to
3264  * or from it.  When this function returns, the spi device is deselected.
3265  *
3266  * Note that this call will fail if the protocol driver specifies an option
3267  * that the underlying controller or its driver does not support.  For
3268  * example, not all hardware supports wire transfers using nine bit words,
3269  * LSB-first wire encoding, or active-high chipselects.
3270  *
3271  * Return: zero on success, else a negative error code.
3272  */
3273 int spi_setup(struct spi_device *spi)
3274 {
3275 	unsigned	bad_bits, ugly_bits;
3276 	int		status;
3277 
3278 	/* check mode to prevent that DUAL and QUAD set at the same time
3279 	 */
3280 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3281 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3282 		dev_err(&spi->dev,
3283 		"setup: can not select dual and quad at the same time\n");
3284 		return -EINVAL;
3285 	}
3286 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3287 	 */
3288 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3289 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3290 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3291 		return -EINVAL;
3292 	/* help drivers fail *cleanly* when they need options
3293 	 * that aren't supported with their current controller
3294 	 * SPI_CS_WORD has a fallback software implementation,
3295 	 * so it is ignored here.
3296 	 */
3297 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3298 	/* nothing prevents from working with active-high CS in case if it
3299 	 * is driven by GPIO.
3300 	 */
3301 	if (gpio_is_valid(spi->cs_gpio))
3302 		bad_bits &= ~SPI_CS_HIGH;
3303 	ugly_bits = bad_bits &
3304 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3305 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3306 	if (ugly_bits) {
3307 		dev_warn(&spi->dev,
3308 			 "setup: ignoring unsupported mode bits %x\n",
3309 			 ugly_bits);
3310 		spi->mode &= ~ugly_bits;
3311 		bad_bits &= ~ugly_bits;
3312 	}
3313 	if (bad_bits) {
3314 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3315 			bad_bits);
3316 		return -EINVAL;
3317 	}
3318 
3319 	if (!spi->bits_per_word)
3320 		spi->bits_per_word = 8;
3321 
3322 	status = __spi_validate_bits_per_word(spi->controller,
3323 					      spi->bits_per_word);
3324 	if (status)
3325 		return status;
3326 
3327 	if (!spi->max_speed_hz)
3328 		spi->max_speed_hz = spi->controller->max_speed_hz;
3329 
3330 	if (spi->controller->setup)
3331 		status = spi->controller->setup(spi);
3332 
3333 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3334 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3335 		if (status < 0) {
3336 			pm_runtime_put_noidle(spi->controller->dev.parent);
3337 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3338 				status);
3339 			return status;
3340 		}
3341 
3342 		/*
3343 		 * We do not want to return positive value from pm_runtime_get,
3344 		 * there are many instances of devices calling spi_setup() and
3345 		 * checking for a non-zero return value instead of a negative
3346 		 * return value.
3347 		 */
3348 		status = 0;
3349 
3350 		spi_set_cs(spi, false);
3351 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3352 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3353 	} else {
3354 		spi_set_cs(spi, false);
3355 	}
3356 
3357 	if (spi->rt && !spi->controller->rt) {
3358 		spi->controller->rt = true;
3359 		spi_set_thread_rt(spi->controller);
3360 	}
3361 
3362 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3363 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3364 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3365 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3366 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3367 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3368 			spi->bits_per_word, spi->max_speed_hz,
3369 			status);
3370 
3371 	return status;
3372 }
3373 EXPORT_SYMBOL_GPL(spi_setup);
3374 
3375 /**
3376  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3377  * @spi: the device that requires specific CS timing configuration
3378  * @setup: CS setup time specified via @spi_delay
3379  * @hold: CS hold time specified via @spi_delay
3380  * @inactive: CS inactive delay between transfers specified via @spi_delay
3381  *
3382  * Return: zero on success, else a negative error code.
3383  */
3384 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3385 		      struct spi_delay *hold, struct spi_delay *inactive)
3386 {
3387 	size_t len;
3388 
3389 	if (spi->controller->set_cs_timing)
3390 		return spi->controller->set_cs_timing(spi, setup, hold,
3391 						      inactive);
3392 
3393 	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3394 	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3395 	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3396 		dev_err(&spi->dev,
3397 			"Clock-cycle delays for CS not supported in SW mode\n");
3398 		return -ENOTSUPP;
3399 	}
3400 
3401 	len = sizeof(struct spi_delay);
3402 
3403 	/* copy delays to controller */
3404 	if (setup)
3405 		memcpy(&spi->controller->cs_setup, setup, len);
3406 	else
3407 		memset(&spi->controller->cs_setup, 0, len);
3408 
3409 	if (hold)
3410 		memcpy(&spi->controller->cs_hold, hold, len);
3411 	else
3412 		memset(&spi->controller->cs_hold, 0, len);
3413 
3414 	if (inactive)
3415 		memcpy(&spi->controller->cs_inactive, inactive, len);
3416 	else
3417 		memset(&spi->controller->cs_inactive, 0, len);
3418 
3419 	return 0;
3420 }
3421 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3422 
3423 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3424 				       struct spi_device *spi)
3425 {
3426 	int delay1, delay2;
3427 
3428 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3429 	if (delay1 < 0)
3430 		return delay1;
3431 
3432 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3433 	if (delay2 < 0)
3434 		return delay2;
3435 
3436 	if (delay1 < delay2)
3437 		memcpy(&xfer->word_delay, &spi->word_delay,
3438 		       sizeof(xfer->word_delay));
3439 
3440 	return 0;
3441 }
3442 
3443 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3444 {
3445 	struct spi_controller *ctlr = spi->controller;
3446 	struct spi_transfer *xfer;
3447 	int w_size;
3448 
3449 	if (list_empty(&message->transfers))
3450 		return -EINVAL;
3451 
3452 	/* If an SPI controller does not support toggling the CS line on each
3453 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3454 	 * for the CS line, we can emulate the CS-per-word hardware function by
3455 	 * splitting transfers into one-word transfers and ensuring that
3456 	 * cs_change is set for each transfer.
3457 	 */
3458 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3459 					  spi->cs_gpiod ||
3460 					  gpio_is_valid(spi->cs_gpio))) {
3461 		size_t maxsize;
3462 		int ret;
3463 
3464 		maxsize = (spi->bits_per_word + 7) / 8;
3465 
3466 		/* spi_split_transfers_maxsize() requires message->spi */
3467 		message->spi = spi;
3468 
3469 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3470 						  GFP_KERNEL);
3471 		if (ret)
3472 			return ret;
3473 
3474 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3475 			/* don't change cs_change on the last entry in the list */
3476 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3477 				break;
3478 			xfer->cs_change = 1;
3479 		}
3480 	}
3481 
3482 	/* Half-duplex links include original MicroWire, and ones with
3483 	 * only one data pin like SPI_3WIRE (switches direction) or where
3484 	 * either MOSI or MISO is missing.  They can also be caused by
3485 	 * software limitations.
3486 	 */
3487 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3488 	    (spi->mode & SPI_3WIRE)) {
3489 		unsigned flags = ctlr->flags;
3490 
3491 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3492 			if (xfer->rx_buf && xfer->tx_buf)
3493 				return -EINVAL;
3494 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3495 				return -EINVAL;
3496 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3497 				return -EINVAL;
3498 		}
3499 	}
3500 
3501 	/**
3502 	 * Set transfer bits_per_word and max speed as spi device default if
3503 	 * it is not set for this transfer.
3504 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3505 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3506 	 * Ensure transfer word_delay is at least as long as that required by
3507 	 * device itself.
3508 	 */
3509 	message->frame_length = 0;
3510 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3511 		xfer->effective_speed_hz = 0;
3512 		message->frame_length += xfer->len;
3513 		if (!xfer->bits_per_word)
3514 			xfer->bits_per_word = spi->bits_per_word;
3515 
3516 		if (!xfer->speed_hz)
3517 			xfer->speed_hz = spi->max_speed_hz;
3518 
3519 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3520 			xfer->speed_hz = ctlr->max_speed_hz;
3521 
3522 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3523 			return -EINVAL;
3524 
3525 		/*
3526 		 * SPI transfer length should be multiple of SPI word size
3527 		 * where SPI word size should be power-of-two multiple
3528 		 */
3529 		if (xfer->bits_per_word <= 8)
3530 			w_size = 1;
3531 		else if (xfer->bits_per_word <= 16)
3532 			w_size = 2;
3533 		else
3534 			w_size = 4;
3535 
3536 		/* No partial transfers accepted */
3537 		if (xfer->len % w_size)
3538 			return -EINVAL;
3539 
3540 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3541 		    xfer->speed_hz < ctlr->min_speed_hz)
3542 			return -EINVAL;
3543 
3544 		if (xfer->tx_buf && !xfer->tx_nbits)
3545 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3546 		if (xfer->rx_buf && !xfer->rx_nbits)
3547 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3548 		/* check transfer tx/rx_nbits:
3549 		 * 1. check the value matches one of single, dual and quad
3550 		 * 2. check tx/rx_nbits match the mode in spi_device
3551 		 */
3552 		if (xfer->tx_buf) {
3553 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3554 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3555 				xfer->tx_nbits != SPI_NBITS_QUAD)
3556 				return -EINVAL;
3557 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3558 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3559 				return -EINVAL;
3560 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3561 				!(spi->mode & SPI_TX_QUAD))
3562 				return -EINVAL;
3563 		}
3564 		/* check transfer rx_nbits */
3565 		if (xfer->rx_buf) {
3566 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3567 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3568 				xfer->rx_nbits != SPI_NBITS_QUAD)
3569 				return -EINVAL;
3570 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3571 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3572 				return -EINVAL;
3573 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3574 				!(spi->mode & SPI_RX_QUAD))
3575 				return -EINVAL;
3576 		}
3577 
3578 		if (_spi_xfer_word_delay_update(xfer, spi))
3579 			return -EINVAL;
3580 	}
3581 
3582 	message->status = -EINPROGRESS;
3583 
3584 	return 0;
3585 }
3586 
3587 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3588 {
3589 	struct spi_controller *ctlr = spi->controller;
3590 	struct spi_transfer *xfer;
3591 
3592 	/*
3593 	 * Some controllers do not support doing regular SPI transfers. Return
3594 	 * ENOTSUPP when this is the case.
3595 	 */
3596 	if (!ctlr->transfer)
3597 		return -ENOTSUPP;
3598 
3599 	message->spi = spi;
3600 
3601 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3602 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3603 
3604 	trace_spi_message_submit(message);
3605 
3606 	if (!ctlr->ptp_sts_supported) {
3607 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3608 			xfer->ptp_sts_word_pre = 0;
3609 			ptp_read_system_prets(xfer->ptp_sts);
3610 		}
3611 	}
3612 
3613 	return ctlr->transfer(spi, message);
3614 }
3615 
3616 /**
3617  * spi_async - asynchronous SPI transfer
3618  * @spi: device with which data will be exchanged
3619  * @message: describes the data transfers, including completion callback
3620  * Context: any (irqs may be blocked, etc)
3621  *
3622  * This call may be used in_irq and other contexts which can't sleep,
3623  * as well as from task contexts which can sleep.
3624  *
3625  * The completion callback is invoked in a context which can't sleep.
3626  * Before that invocation, the value of message->status is undefined.
3627  * When the callback is issued, message->status holds either zero (to
3628  * indicate complete success) or a negative error code.  After that
3629  * callback returns, the driver which issued the transfer request may
3630  * deallocate the associated memory; it's no longer in use by any SPI
3631  * core or controller driver code.
3632  *
3633  * Note that although all messages to a spi_device are handled in
3634  * FIFO order, messages may go to different devices in other orders.
3635  * Some device might be higher priority, or have various "hard" access
3636  * time requirements, for example.
3637  *
3638  * On detection of any fault during the transfer, processing of
3639  * the entire message is aborted, and the device is deselected.
3640  * Until returning from the associated message completion callback,
3641  * no other spi_message queued to that device will be processed.
3642  * (This rule applies equally to all the synchronous transfer calls,
3643  * which are wrappers around this core asynchronous primitive.)
3644  *
3645  * Return: zero on success, else a negative error code.
3646  */
3647 int spi_async(struct spi_device *spi, struct spi_message *message)
3648 {
3649 	struct spi_controller *ctlr = spi->controller;
3650 	int ret;
3651 	unsigned long flags;
3652 
3653 	ret = __spi_validate(spi, message);
3654 	if (ret != 0)
3655 		return ret;
3656 
3657 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3658 
3659 	if (ctlr->bus_lock_flag)
3660 		ret = -EBUSY;
3661 	else
3662 		ret = __spi_async(spi, message);
3663 
3664 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3665 
3666 	return ret;
3667 }
3668 EXPORT_SYMBOL_GPL(spi_async);
3669 
3670 /**
3671  * spi_async_locked - version of spi_async with exclusive bus usage
3672  * @spi: device with which data will be exchanged
3673  * @message: describes the data transfers, including completion callback
3674  * Context: any (irqs may be blocked, etc)
3675  *
3676  * This call may be used in_irq and other contexts which can't sleep,
3677  * as well as from task contexts which can sleep.
3678  *
3679  * The completion callback is invoked in a context which can't sleep.
3680  * Before that invocation, the value of message->status is undefined.
3681  * When the callback is issued, message->status holds either zero (to
3682  * indicate complete success) or a negative error code.  After that
3683  * callback returns, the driver which issued the transfer request may
3684  * deallocate the associated memory; it's no longer in use by any SPI
3685  * core or controller driver code.
3686  *
3687  * Note that although all messages to a spi_device are handled in
3688  * FIFO order, messages may go to different devices in other orders.
3689  * Some device might be higher priority, or have various "hard" access
3690  * time requirements, for example.
3691  *
3692  * On detection of any fault during the transfer, processing of
3693  * the entire message is aborted, and the device is deselected.
3694  * Until returning from the associated message completion callback,
3695  * no other spi_message queued to that device will be processed.
3696  * (This rule applies equally to all the synchronous transfer calls,
3697  * which are wrappers around this core asynchronous primitive.)
3698  *
3699  * Return: zero on success, else a negative error code.
3700  */
3701 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3702 {
3703 	struct spi_controller *ctlr = spi->controller;
3704 	int ret;
3705 	unsigned long flags;
3706 
3707 	ret = __spi_validate(spi, message);
3708 	if (ret != 0)
3709 		return ret;
3710 
3711 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3712 
3713 	ret = __spi_async(spi, message);
3714 
3715 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3716 
3717 	return ret;
3718 
3719 }
3720 EXPORT_SYMBOL_GPL(spi_async_locked);
3721 
3722 /*-------------------------------------------------------------------------*/
3723 
3724 /* Utility methods for SPI protocol drivers, layered on
3725  * top of the core.  Some other utility methods are defined as
3726  * inline functions.
3727  */
3728 
3729 static void spi_complete(void *arg)
3730 {
3731 	complete(arg);
3732 }
3733 
3734 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3735 {
3736 	DECLARE_COMPLETION_ONSTACK(done);
3737 	int status;
3738 	struct spi_controller *ctlr = spi->controller;
3739 	unsigned long flags;
3740 
3741 	status = __spi_validate(spi, message);
3742 	if (status != 0)
3743 		return status;
3744 
3745 	message->complete = spi_complete;
3746 	message->context = &done;
3747 	message->spi = spi;
3748 
3749 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3750 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3751 
3752 	/* If we're not using the legacy transfer method then we will
3753 	 * try to transfer in the calling context so special case.
3754 	 * This code would be less tricky if we could remove the
3755 	 * support for driver implemented message queues.
3756 	 */
3757 	if (ctlr->transfer == spi_queued_transfer) {
3758 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3759 
3760 		trace_spi_message_submit(message);
3761 
3762 		status = __spi_queued_transfer(spi, message, false);
3763 
3764 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3765 	} else {
3766 		status = spi_async_locked(spi, message);
3767 	}
3768 
3769 	if (status == 0) {
3770 		/* Push out the messages in the calling context if we
3771 		 * can.
3772 		 */
3773 		if (ctlr->transfer == spi_queued_transfer) {
3774 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3775 						       spi_sync_immediate);
3776 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3777 						       spi_sync_immediate);
3778 			__spi_pump_messages(ctlr, false);
3779 		}
3780 
3781 		wait_for_completion(&done);
3782 		status = message->status;
3783 	}
3784 	message->context = NULL;
3785 	return status;
3786 }
3787 
3788 /**
3789  * spi_sync - blocking/synchronous SPI data transfers
3790  * @spi: device with which data will be exchanged
3791  * @message: describes the data transfers
3792  * Context: can sleep
3793  *
3794  * This call may only be used from a context that may sleep.  The sleep
3795  * is non-interruptible, and has no timeout.  Low-overhead controller
3796  * drivers may DMA directly into and out of the message buffers.
3797  *
3798  * Note that the SPI device's chip select is active during the message,
3799  * and then is normally disabled between messages.  Drivers for some
3800  * frequently-used devices may want to minimize costs of selecting a chip,
3801  * by leaving it selected in anticipation that the next message will go
3802  * to the same chip.  (That may increase power usage.)
3803  *
3804  * Also, the caller is guaranteeing that the memory associated with the
3805  * message will not be freed before this call returns.
3806  *
3807  * Return: zero on success, else a negative error code.
3808  */
3809 int spi_sync(struct spi_device *spi, struct spi_message *message)
3810 {
3811 	int ret;
3812 
3813 	mutex_lock(&spi->controller->bus_lock_mutex);
3814 	ret = __spi_sync(spi, message);
3815 	mutex_unlock(&spi->controller->bus_lock_mutex);
3816 
3817 	return ret;
3818 }
3819 EXPORT_SYMBOL_GPL(spi_sync);
3820 
3821 /**
3822  * spi_sync_locked - version of spi_sync with exclusive bus usage
3823  * @spi: device with which data will be exchanged
3824  * @message: describes the data transfers
3825  * Context: can sleep
3826  *
3827  * This call may only be used from a context that may sleep.  The sleep
3828  * is non-interruptible, and has no timeout.  Low-overhead controller
3829  * drivers may DMA directly into and out of the message buffers.
3830  *
3831  * This call should be used by drivers that require exclusive access to the
3832  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3833  * be released by a spi_bus_unlock call when the exclusive access is over.
3834  *
3835  * Return: zero on success, else a negative error code.
3836  */
3837 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3838 {
3839 	return __spi_sync(spi, message);
3840 }
3841 EXPORT_SYMBOL_GPL(spi_sync_locked);
3842 
3843 /**
3844  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3845  * @ctlr: SPI bus master that should be locked for exclusive bus access
3846  * Context: can sleep
3847  *
3848  * This call may only be used from a context that may sleep.  The sleep
3849  * is non-interruptible, and has no timeout.
3850  *
3851  * This call should be used by drivers that require exclusive access to the
3852  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3853  * exclusive access is over. Data transfer must be done by spi_sync_locked
3854  * and spi_async_locked calls when the SPI bus lock is held.
3855  *
3856  * Return: always zero.
3857  */
3858 int spi_bus_lock(struct spi_controller *ctlr)
3859 {
3860 	unsigned long flags;
3861 
3862 	mutex_lock(&ctlr->bus_lock_mutex);
3863 
3864 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3865 	ctlr->bus_lock_flag = 1;
3866 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3867 
3868 	/* mutex remains locked until spi_bus_unlock is called */
3869 
3870 	return 0;
3871 }
3872 EXPORT_SYMBOL_GPL(spi_bus_lock);
3873 
3874 /**
3875  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3876  * @ctlr: SPI bus master that was locked for exclusive bus access
3877  * Context: can sleep
3878  *
3879  * This call may only be used from a context that may sleep.  The sleep
3880  * is non-interruptible, and has no timeout.
3881  *
3882  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3883  * call.
3884  *
3885  * Return: always zero.
3886  */
3887 int spi_bus_unlock(struct spi_controller *ctlr)
3888 {
3889 	ctlr->bus_lock_flag = 0;
3890 
3891 	mutex_unlock(&ctlr->bus_lock_mutex);
3892 
3893 	return 0;
3894 }
3895 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3896 
3897 /* portable code must never pass more than 32 bytes */
3898 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3899 
3900 static u8	*buf;
3901 
3902 /**
3903  * spi_write_then_read - SPI synchronous write followed by read
3904  * @spi: device with which data will be exchanged
3905  * @txbuf: data to be written (need not be dma-safe)
3906  * @n_tx: size of txbuf, in bytes
3907  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3908  * @n_rx: size of rxbuf, in bytes
3909  * Context: can sleep
3910  *
3911  * This performs a half duplex MicroWire style transaction with the
3912  * device, sending txbuf and then reading rxbuf.  The return value
3913  * is zero for success, else a negative errno status code.
3914  * This call may only be used from a context that may sleep.
3915  *
3916  * Parameters to this routine are always copied using a small buffer.
3917  * Performance-sensitive or bulk transfer code should instead use
3918  * spi_{async,sync}() calls with dma-safe buffers.
3919  *
3920  * Return: zero on success, else a negative error code.
3921  */
3922 int spi_write_then_read(struct spi_device *spi,
3923 		const void *txbuf, unsigned n_tx,
3924 		void *rxbuf, unsigned n_rx)
3925 {
3926 	static DEFINE_MUTEX(lock);
3927 
3928 	int			status;
3929 	struct spi_message	message;
3930 	struct spi_transfer	x[2];
3931 	u8			*local_buf;
3932 
3933 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3934 	 * copying here, (as a pure convenience thing), but we can
3935 	 * keep heap costs out of the hot path unless someone else is
3936 	 * using the pre-allocated buffer or the transfer is too large.
3937 	 */
3938 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3939 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3940 				    GFP_KERNEL | GFP_DMA);
3941 		if (!local_buf)
3942 			return -ENOMEM;
3943 	} else {
3944 		local_buf = buf;
3945 	}
3946 
3947 	spi_message_init(&message);
3948 	memset(x, 0, sizeof(x));
3949 	if (n_tx) {
3950 		x[0].len = n_tx;
3951 		spi_message_add_tail(&x[0], &message);
3952 	}
3953 	if (n_rx) {
3954 		x[1].len = n_rx;
3955 		spi_message_add_tail(&x[1], &message);
3956 	}
3957 
3958 	memcpy(local_buf, txbuf, n_tx);
3959 	x[0].tx_buf = local_buf;
3960 	x[1].rx_buf = local_buf + n_tx;
3961 
3962 	/* do the i/o */
3963 	status = spi_sync(spi, &message);
3964 	if (status == 0)
3965 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3966 
3967 	if (x[0].tx_buf == buf)
3968 		mutex_unlock(&lock);
3969 	else
3970 		kfree(local_buf);
3971 
3972 	return status;
3973 }
3974 EXPORT_SYMBOL_GPL(spi_write_then_read);
3975 
3976 /*-------------------------------------------------------------------------*/
3977 
3978 #if IS_ENABLED(CONFIG_OF)
3979 /* must call put_device() when done with returned spi_device device */
3980 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3981 {
3982 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3983 
3984 	return dev ? to_spi_device(dev) : NULL;
3985 }
3986 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3987 #endif /* IS_ENABLED(CONFIG_OF) */
3988 
3989 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3990 /* the spi controllers are not using spi_bus, so we find it with another way */
3991 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3992 {
3993 	struct device *dev;
3994 
3995 	dev = class_find_device_by_of_node(&spi_master_class, node);
3996 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3997 		dev = class_find_device_by_of_node(&spi_slave_class, node);
3998 	if (!dev)
3999 		return NULL;
4000 
4001 	/* reference got in class_find_device */
4002 	return container_of(dev, struct spi_controller, dev);
4003 }
4004 
4005 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4006 			 void *arg)
4007 {
4008 	struct of_reconfig_data *rd = arg;
4009 	struct spi_controller *ctlr;
4010 	struct spi_device *spi;
4011 
4012 	switch (of_reconfig_get_state_change(action, arg)) {
4013 	case OF_RECONFIG_CHANGE_ADD:
4014 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4015 		if (ctlr == NULL)
4016 			return NOTIFY_OK;	/* not for us */
4017 
4018 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4019 			put_device(&ctlr->dev);
4020 			return NOTIFY_OK;
4021 		}
4022 
4023 		spi = of_register_spi_device(ctlr, rd->dn);
4024 		put_device(&ctlr->dev);
4025 
4026 		if (IS_ERR(spi)) {
4027 			pr_err("%s: failed to create for '%pOF'\n",
4028 					__func__, rd->dn);
4029 			of_node_clear_flag(rd->dn, OF_POPULATED);
4030 			return notifier_from_errno(PTR_ERR(spi));
4031 		}
4032 		break;
4033 
4034 	case OF_RECONFIG_CHANGE_REMOVE:
4035 		/* already depopulated? */
4036 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4037 			return NOTIFY_OK;
4038 
4039 		/* find our device by node */
4040 		spi = of_find_spi_device_by_node(rd->dn);
4041 		if (spi == NULL)
4042 			return NOTIFY_OK;	/* no? not meant for us */
4043 
4044 		/* unregister takes one ref away */
4045 		spi_unregister_device(spi);
4046 
4047 		/* and put the reference of the find */
4048 		put_device(&spi->dev);
4049 		break;
4050 	}
4051 
4052 	return NOTIFY_OK;
4053 }
4054 
4055 static struct notifier_block spi_of_notifier = {
4056 	.notifier_call = of_spi_notify,
4057 };
4058 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4059 extern struct notifier_block spi_of_notifier;
4060 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4061 
4062 #if IS_ENABLED(CONFIG_ACPI)
4063 static int spi_acpi_controller_match(struct device *dev, const void *data)
4064 {
4065 	return ACPI_COMPANION(dev->parent) == data;
4066 }
4067 
4068 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4069 {
4070 	struct device *dev;
4071 
4072 	dev = class_find_device(&spi_master_class, NULL, adev,
4073 				spi_acpi_controller_match);
4074 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4075 		dev = class_find_device(&spi_slave_class, NULL, adev,
4076 					spi_acpi_controller_match);
4077 	if (!dev)
4078 		return NULL;
4079 
4080 	return container_of(dev, struct spi_controller, dev);
4081 }
4082 
4083 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4084 {
4085 	struct device *dev;
4086 
4087 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4088 	return to_spi_device(dev);
4089 }
4090 
4091 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4092 			   void *arg)
4093 {
4094 	struct acpi_device *adev = arg;
4095 	struct spi_controller *ctlr;
4096 	struct spi_device *spi;
4097 
4098 	switch (value) {
4099 	case ACPI_RECONFIG_DEVICE_ADD:
4100 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4101 		if (!ctlr)
4102 			break;
4103 
4104 		acpi_register_spi_device(ctlr, adev);
4105 		put_device(&ctlr->dev);
4106 		break;
4107 	case ACPI_RECONFIG_DEVICE_REMOVE:
4108 		if (!acpi_device_enumerated(adev))
4109 			break;
4110 
4111 		spi = acpi_spi_find_device_by_adev(adev);
4112 		if (!spi)
4113 			break;
4114 
4115 		spi_unregister_device(spi);
4116 		put_device(&spi->dev);
4117 		break;
4118 	}
4119 
4120 	return NOTIFY_OK;
4121 }
4122 
4123 static struct notifier_block spi_acpi_notifier = {
4124 	.notifier_call = acpi_spi_notify,
4125 };
4126 #else
4127 extern struct notifier_block spi_acpi_notifier;
4128 #endif
4129 
4130 static int __init spi_init(void)
4131 {
4132 	int	status;
4133 
4134 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4135 	if (!buf) {
4136 		status = -ENOMEM;
4137 		goto err0;
4138 	}
4139 
4140 	status = bus_register(&spi_bus_type);
4141 	if (status < 0)
4142 		goto err1;
4143 
4144 	status = class_register(&spi_master_class);
4145 	if (status < 0)
4146 		goto err2;
4147 
4148 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4149 		status = class_register(&spi_slave_class);
4150 		if (status < 0)
4151 			goto err3;
4152 	}
4153 
4154 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4155 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4156 	if (IS_ENABLED(CONFIG_ACPI))
4157 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4158 
4159 	return 0;
4160 
4161 err3:
4162 	class_unregister(&spi_master_class);
4163 err2:
4164 	bus_unregister(&spi_bus_type);
4165 err1:
4166 	kfree(buf);
4167 	buf = NULL;
4168 err0:
4169 	return status;
4170 }
4171 
4172 /* board_info is normally registered in arch_initcall(),
4173  * but even essential drivers wait till later
4174  *
4175  * REVISIT only boardinfo really needs static linking. the rest (device and
4176  * driver registration) _could_ be dynamically linked (modular) ... costs
4177  * include needing to have boardinfo data structures be much more public.
4178  */
4179 postcore_initcall(spi_init);
4180