1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Emptry string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del opertion for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /** 479 * spi_alloc_device - Allocate a new SPI device 480 * @ctlr: Controller to which device is connected 481 * Context: can sleep 482 * 483 * Allows a driver to allocate and initialize a spi_device without 484 * registering it immediately. This allows a driver to directly 485 * fill the spi_device with device parameters before calling 486 * spi_add_device() on it. 487 * 488 * Caller is responsible to call spi_add_device() on the returned 489 * spi_device structure to add it to the SPI controller. If the caller 490 * needs to discard the spi_device without adding it, then it should 491 * call spi_dev_put() on it. 492 * 493 * Return: a pointer to the new device, or NULL. 494 */ 495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 496 { 497 struct spi_device *spi; 498 499 if (!spi_controller_get(ctlr)) 500 return NULL; 501 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 503 if (!spi) { 504 spi_controller_put(ctlr); 505 return NULL; 506 } 507 508 spi->master = spi->controller = ctlr; 509 spi->dev.parent = &ctlr->dev; 510 spi->dev.bus = &spi_bus_type; 511 spi->dev.release = spidev_release; 512 spi->cs_gpio = -ENOENT; 513 514 spin_lock_init(&spi->statistics.lock); 515 516 device_initialize(&spi->dev); 517 return spi; 518 } 519 EXPORT_SYMBOL_GPL(spi_alloc_device); 520 521 static void spi_dev_set_name(struct spi_device *spi) 522 { 523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 524 525 if (adev) { 526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 527 return; 528 } 529 530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 531 spi->chip_select); 532 } 533 534 static int spi_dev_check(struct device *dev, void *data) 535 { 536 struct spi_device *spi = to_spi_device(dev); 537 struct spi_device *new_spi = data; 538 539 if (spi->controller == new_spi->controller && 540 spi->chip_select == new_spi->chip_select) 541 return -EBUSY; 542 return 0; 543 } 544 545 /** 546 * spi_add_device - Add spi_device allocated with spi_alloc_device 547 * @spi: spi_device to register 548 * 549 * Companion function to spi_alloc_device. Devices allocated with 550 * spi_alloc_device can be added onto the spi bus with this function. 551 * 552 * Return: 0 on success; negative errno on failure 553 */ 554 int spi_add_device(struct spi_device *spi) 555 { 556 static DEFINE_MUTEX(spi_add_lock); 557 struct spi_controller *ctlr = spi->controller; 558 struct device *dev = ctlr->dev.parent; 559 int status; 560 561 /* Chipselects are numbered 0..max; validate. */ 562 if (spi->chip_select >= ctlr->num_chipselect) { 563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 564 ctlr->num_chipselect); 565 return -EINVAL; 566 } 567 568 /* Set the bus ID string */ 569 spi_dev_set_name(spi); 570 571 /* We need to make sure there's no other device with this 572 * chipselect **BEFORE** we call setup(), else we'll trash 573 * its configuration. Lock against concurrent add() calls. 574 */ 575 mutex_lock(&spi_add_lock); 576 577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 578 if (status) { 579 dev_err(dev, "chipselect %d already in use\n", 580 spi->chip_select); 581 goto done; 582 } 583 584 /* Descriptors take precedence */ 585 if (ctlr->cs_gpiods) 586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 587 else if (ctlr->cs_gpios) 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 589 590 /* Drivers may modify this initial i/o setup, but will 591 * normally rely on the device being setup. Devices 592 * using SPI_CS_HIGH can't coexist well otherwise... 593 */ 594 status = spi_setup(spi); 595 if (status < 0) { 596 dev_err(dev, "can't setup %s, status %d\n", 597 dev_name(&spi->dev), status); 598 goto done; 599 } 600 601 /* Device may be bound to an active driver when this returns */ 602 status = device_add(&spi->dev); 603 if (status < 0) 604 dev_err(dev, "can't add %s, status %d\n", 605 dev_name(&spi->dev), status); 606 else 607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 608 609 done: 610 mutex_unlock(&spi_add_lock); 611 return status; 612 } 613 EXPORT_SYMBOL_GPL(spi_add_device); 614 615 /** 616 * spi_new_device - instantiate one new SPI device 617 * @ctlr: Controller to which device is connected 618 * @chip: Describes the SPI device 619 * Context: can sleep 620 * 621 * On typical mainboards, this is purely internal; and it's not needed 622 * after board init creates the hard-wired devices. Some development 623 * platforms may not be able to use spi_register_board_info though, and 624 * this is exported so that for example a USB or parport based adapter 625 * driver could add devices (which it would learn about out-of-band). 626 * 627 * Return: the new device, or NULL. 628 */ 629 struct spi_device *spi_new_device(struct spi_controller *ctlr, 630 struct spi_board_info *chip) 631 { 632 struct spi_device *proxy; 633 int status; 634 635 /* NOTE: caller did any chip->bus_num checks necessary. 636 * 637 * Also, unless we change the return value convention to use 638 * error-or-pointer (not NULL-or-pointer), troubleshootability 639 * suggests syslogged diagnostics are best here (ugh). 640 */ 641 642 proxy = spi_alloc_device(ctlr); 643 if (!proxy) 644 return NULL; 645 646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 647 648 proxy->chip_select = chip->chip_select; 649 proxy->max_speed_hz = chip->max_speed_hz; 650 proxy->mode = chip->mode; 651 proxy->irq = chip->irq; 652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 653 proxy->dev.platform_data = (void *) chip->platform_data; 654 proxy->controller_data = chip->controller_data; 655 proxy->controller_state = NULL; 656 657 if (chip->properties) { 658 status = device_add_properties(&proxy->dev, chip->properties); 659 if (status) { 660 dev_err(&ctlr->dev, 661 "failed to add properties to '%s': %d\n", 662 chip->modalias, status); 663 goto err_dev_put; 664 } 665 } 666 667 status = spi_add_device(proxy); 668 if (status < 0) 669 goto err_remove_props; 670 671 return proxy; 672 673 err_remove_props: 674 if (chip->properties) 675 device_remove_properties(&proxy->dev); 676 err_dev_put: 677 spi_dev_put(proxy); 678 return NULL; 679 } 680 EXPORT_SYMBOL_GPL(spi_new_device); 681 682 /** 683 * spi_unregister_device - unregister a single SPI device 684 * @spi: spi_device to unregister 685 * 686 * Start making the passed SPI device vanish. Normally this would be handled 687 * by spi_unregister_controller(). 688 */ 689 void spi_unregister_device(struct spi_device *spi) 690 { 691 if (!spi) 692 return; 693 694 if (spi->dev.of_node) { 695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 696 of_node_put(spi->dev.of_node); 697 } 698 if (ACPI_COMPANION(&spi->dev)) 699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 700 device_unregister(&spi->dev); 701 } 702 EXPORT_SYMBOL_GPL(spi_unregister_device); 703 704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 705 struct spi_board_info *bi) 706 { 707 struct spi_device *dev; 708 709 if (ctlr->bus_num != bi->bus_num) 710 return; 711 712 dev = spi_new_device(ctlr, bi); 713 if (!dev) 714 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 715 bi->modalias); 716 } 717 718 /** 719 * spi_register_board_info - register SPI devices for a given board 720 * @info: array of chip descriptors 721 * @n: how many descriptors are provided 722 * Context: can sleep 723 * 724 * Board-specific early init code calls this (probably during arch_initcall) 725 * with segments of the SPI device table. Any device nodes are created later, 726 * after the relevant parent SPI controller (bus_num) is defined. We keep 727 * this table of devices forever, so that reloading a controller driver will 728 * not make Linux forget about these hard-wired devices. 729 * 730 * Other code can also call this, e.g. a particular add-on board might provide 731 * SPI devices through its expansion connector, so code initializing that board 732 * would naturally declare its SPI devices. 733 * 734 * The board info passed can safely be __initdata ... but be careful of 735 * any embedded pointers (platform_data, etc), they're copied as-is. 736 * Device properties are deep-copied though. 737 * 738 * Return: zero on success, else a negative error code. 739 */ 740 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 741 { 742 struct boardinfo *bi; 743 int i; 744 745 if (!n) 746 return 0; 747 748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 749 if (!bi) 750 return -ENOMEM; 751 752 for (i = 0; i < n; i++, bi++, info++) { 753 struct spi_controller *ctlr; 754 755 memcpy(&bi->board_info, info, sizeof(*info)); 756 if (info->properties) { 757 bi->board_info.properties = 758 property_entries_dup(info->properties); 759 if (IS_ERR(bi->board_info.properties)) 760 return PTR_ERR(bi->board_info.properties); 761 } 762 763 mutex_lock(&board_lock); 764 list_add_tail(&bi->list, &board_list); 765 list_for_each_entry(ctlr, &spi_controller_list, list) 766 spi_match_controller_to_boardinfo(ctlr, 767 &bi->board_info); 768 mutex_unlock(&board_lock); 769 } 770 771 return 0; 772 } 773 774 /*-------------------------------------------------------------------------*/ 775 776 static void spi_set_cs(struct spi_device *spi, bool enable) 777 { 778 if (spi->mode & SPI_CS_HIGH) 779 enable = !enable; 780 781 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 782 /* 783 * Honour the SPI_NO_CS flag and invert the enable line, as 784 * active low is default for SPI. Execution paths that handle 785 * polarity inversion in gpiolib (such as device tree) will 786 * enforce active high using the SPI_CS_HIGH resulting in a 787 * double inversion through the code above. 788 */ 789 if (!(spi->mode & SPI_NO_CS)) { 790 if (spi->cs_gpiod) 791 gpiod_set_value_cansleep(spi->cs_gpiod, 792 !enable); 793 else 794 gpio_set_value_cansleep(spi->cs_gpio, !enable); 795 } 796 /* Some SPI masters need both GPIO CS & slave_select */ 797 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 798 spi->controller->set_cs) 799 spi->controller->set_cs(spi, !enable); 800 } else if (spi->controller->set_cs) { 801 spi->controller->set_cs(spi, !enable); 802 } 803 } 804 805 #ifdef CONFIG_HAS_DMA 806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 807 struct sg_table *sgt, void *buf, size_t len, 808 enum dma_data_direction dir) 809 { 810 const bool vmalloced_buf = is_vmalloc_addr(buf); 811 unsigned int max_seg_size = dma_get_max_seg_size(dev); 812 #ifdef CONFIG_HIGHMEM 813 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 814 (unsigned long)buf < (PKMAP_BASE + 815 (LAST_PKMAP * PAGE_SIZE))); 816 #else 817 const bool kmap_buf = false; 818 #endif 819 int desc_len; 820 int sgs; 821 struct page *vm_page; 822 struct scatterlist *sg; 823 void *sg_buf; 824 size_t min; 825 int i, ret; 826 827 if (vmalloced_buf || kmap_buf) { 828 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 829 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 830 } else if (virt_addr_valid(buf)) { 831 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 832 sgs = DIV_ROUND_UP(len, desc_len); 833 } else { 834 return -EINVAL; 835 } 836 837 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 838 if (ret != 0) 839 return ret; 840 841 sg = &sgt->sgl[0]; 842 for (i = 0; i < sgs; i++) { 843 844 if (vmalloced_buf || kmap_buf) { 845 /* 846 * Next scatterlist entry size is the minimum between 847 * the desc_len and the remaining buffer length that 848 * fits in a page. 849 */ 850 min = min_t(size_t, desc_len, 851 min_t(size_t, len, 852 PAGE_SIZE - offset_in_page(buf))); 853 if (vmalloced_buf) 854 vm_page = vmalloc_to_page(buf); 855 else 856 vm_page = kmap_to_page(buf); 857 if (!vm_page) { 858 sg_free_table(sgt); 859 return -ENOMEM; 860 } 861 sg_set_page(sg, vm_page, 862 min, offset_in_page(buf)); 863 } else { 864 min = min_t(size_t, len, desc_len); 865 sg_buf = buf; 866 sg_set_buf(sg, sg_buf, min); 867 } 868 869 buf += min; 870 len -= min; 871 sg = sg_next(sg); 872 } 873 874 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 875 if (!ret) 876 ret = -ENOMEM; 877 if (ret < 0) { 878 sg_free_table(sgt); 879 return ret; 880 } 881 882 sgt->nents = ret; 883 884 return 0; 885 } 886 887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 888 struct sg_table *sgt, enum dma_data_direction dir) 889 { 890 if (sgt->orig_nents) { 891 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 892 sg_free_table(sgt); 893 } 894 } 895 896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 897 { 898 struct device *tx_dev, *rx_dev; 899 struct spi_transfer *xfer; 900 int ret; 901 902 if (!ctlr->can_dma) 903 return 0; 904 905 if (ctlr->dma_tx) 906 tx_dev = ctlr->dma_tx->device->dev; 907 else 908 tx_dev = ctlr->dev.parent; 909 910 if (ctlr->dma_rx) 911 rx_dev = ctlr->dma_rx->device->dev; 912 else 913 rx_dev = ctlr->dev.parent; 914 915 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 916 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 917 continue; 918 919 if (xfer->tx_buf != NULL) { 920 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 921 (void *)xfer->tx_buf, xfer->len, 922 DMA_TO_DEVICE); 923 if (ret != 0) 924 return ret; 925 } 926 927 if (xfer->rx_buf != NULL) { 928 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 929 xfer->rx_buf, xfer->len, 930 DMA_FROM_DEVICE); 931 if (ret != 0) { 932 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 933 DMA_TO_DEVICE); 934 return ret; 935 } 936 } 937 } 938 939 ctlr->cur_msg_mapped = true; 940 941 return 0; 942 } 943 944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 945 { 946 struct spi_transfer *xfer; 947 struct device *tx_dev, *rx_dev; 948 949 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 950 return 0; 951 952 if (ctlr->dma_tx) 953 tx_dev = ctlr->dma_tx->device->dev; 954 else 955 tx_dev = ctlr->dev.parent; 956 957 if (ctlr->dma_rx) 958 rx_dev = ctlr->dma_rx->device->dev; 959 else 960 rx_dev = ctlr->dev.parent; 961 962 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 963 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 964 continue; 965 966 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 967 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 968 } 969 970 return 0; 971 } 972 #else /* !CONFIG_HAS_DMA */ 973 static inline int __spi_map_msg(struct spi_controller *ctlr, 974 struct spi_message *msg) 975 { 976 return 0; 977 } 978 979 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 980 struct spi_message *msg) 981 { 982 return 0; 983 } 984 #endif /* !CONFIG_HAS_DMA */ 985 986 static inline int spi_unmap_msg(struct spi_controller *ctlr, 987 struct spi_message *msg) 988 { 989 struct spi_transfer *xfer; 990 991 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 992 /* 993 * Restore the original value of tx_buf or rx_buf if they are 994 * NULL. 995 */ 996 if (xfer->tx_buf == ctlr->dummy_tx) 997 xfer->tx_buf = NULL; 998 if (xfer->rx_buf == ctlr->dummy_rx) 999 xfer->rx_buf = NULL; 1000 } 1001 1002 return __spi_unmap_msg(ctlr, msg); 1003 } 1004 1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1006 { 1007 struct spi_transfer *xfer; 1008 void *tmp; 1009 unsigned int max_tx, max_rx; 1010 1011 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { 1012 max_tx = 0; 1013 max_rx = 0; 1014 1015 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1016 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1017 !xfer->tx_buf) 1018 max_tx = max(xfer->len, max_tx); 1019 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1020 !xfer->rx_buf) 1021 max_rx = max(xfer->len, max_rx); 1022 } 1023 1024 if (max_tx) { 1025 tmp = krealloc(ctlr->dummy_tx, max_tx, 1026 GFP_KERNEL | GFP_DMA); 1027 if (!tmp) 1028 return -ENOMEM; 1029 ctlr->dummy_tx = tmp; 1030 memset(tmp, 0, max_tx); 1031 } 1032 1033 if (max_rx) { 1034 tmp = krealloc(ctlr->dummy_rx, max_rx, 1035 GFP_KERNEL | GFP_DMA); 1036 if (!tmp) 1037 return -ENOMEM; 1038 ctlr->dummy_rx = tmp; 1039 } 1040 1041 if (max_tx || max_rx) { 1042 list_for_each_entry(xfer, &msg->transfers, 1043 transfer_list) { 1044 if (!xfer->len) 1045 continue; 1046 if (!xfer->tx_buf) 1047 xfer->tx_buf = ctlr->dummy_tx; 1048 if (!xfer->rx_buf) 1049 xfer->rx_buf = ctlr->dummy_rx; 1050 } 1051 } 1052 } 1053 1054 return __spi_map_msg(ctlr, msg); 1055 } 1056 1057 static int spi_transfer_wait(struct spi_controller *ctlr, 1058 struct spi_message *msg, 1059 struct spi_transfer *xfer) 1060 { 1061 struct spi_statistics *statm = &ctlr->statistics; 1062 struct spi_statistics *stats = &msg->spi->statistics; 1063 unsigned long long ms = 1; 1064 1065 if (spi_controller_is_slave(ctlr)) { 1066 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1067 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1068 return -EINTR; 1069 } 1070 } else { 1071 ms = 8LL * 1000LL * xfer->len; 1072 do_div(ms, xfer->speed_hz); 1073 ms += ms + 200; /* some tolerance */ 1074 1075 if (ms > UINT_MAX) 1076 ms = UINT_MAX; 1077 1078 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1079 msecs_to_jiffies(ms)); 1080 1081 if (ms == 0) { 1082 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1083 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1084 dev_err(&msg->spi->dev, 1085 "SPI transfer timed out\n"); 1086 return -ETIMEDOUT; 1087 } 1088 } 1089 1090 return 0; 1091 } 1092 1093 static void _spi_transfer_delay_ns(u32 ns) 1094 { 1095 if (!ns) 1096 return; 1097 if (ns <= 1000) { 1098 ndelay(ns); 1099 } else { 1100 u32 us = DIV_ROUND_UP(ns, 1000); 1101 1102 if (us <= 10) 1103 udelay(us); 1104 else 1105 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1106 } 1107 } 1108 1109 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1110 struct spi_transfer *xfer) 1111 { 1112 u32 delay = xfer->cs_change_delay; 1113 u32 unit = xfer->cs_change_delay_unit; 1114 u32 hz; 1115 1116 /* return early on "fast" mode - for everything but USECS */ 1117 if (!delay && unit != SPI_DELAY_UNIT_USECS) 1118 return; 1119 1120 switch (unit) { 1121 case SPI_DELAY_UNIT_USECS: 1122 /* for compatibility use default of 10us */ 1123 if (!delay) 1124 delay = 10000; 1125 else 1126 delay *= 1000; 1127 break; 1128 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1129 break; 1130 case SPI_DELAY_UNIT_SCK: 1131 /* if there is no effective speed know, then approximate 1132 * by underestimating with half the requested hz 1133 */ 1134 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1135 delay *= DIV_ROUND_UP(1000000000, hz); 1136 break; 1137 default: 1138 dev_err_once(&msg->spi->dev, 1139 "Use of unsupported delay unit %i, using default of 10us\n", 1140 xfer->cs_change_delay_unit); 1141 delay = 10000; 1142 } 1143 /* now sleep for the requested amount of time */ 1144 _spi_transfer_delay_ns(delay); 1145 } 1146 1147 /* 1148 * spi_transfer_one_message - Default implementation of transfer_one_message() 1149 * 1150 * This is a standard implementation of transfer_one_message() for 1151 * drivers which implement a transfer_one() operation. It provides 1152 * standard handling of delays and chip select management. 1153 */ 1154 static int spi_transfer_one_message(struct spi_controller *ctlr, 1155 struct spi_message *msg) 1156 { 1157 struct spi_transfer *xfer; 1158 bool keep_cs = false; 1159 int ret = 0; 1160 struct spi_statistics *statm = &ctlr->statistics; 1161 struct spi_statistics *stats = &msg->spi->statistics; 1162 1163 spi_set_cs(msg->spi, true); 1164 1165 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1166 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1167 1168 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1169 trace_spi_transfer_start(msg, xfer); 1170 1171 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1172 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1173 1174 if (xfer->tx_buf || xfer->rx_buf) { 1175 reinit_completion(&ctlr->xfer_completion); 1176 1177 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1178 if (ret < 0) { 1179 SPI_STATISTICS_INCREMENT_FIELD(statm, 1180 errors); 1181 SPI_STATISTICS_INCREMENT_FIELD(stats, 1182 errors); 1183 dev_err(&msg->spi->dev, 1184 "SPI transfer failed: %d\n", ret); 1185 goto out; 1186 } 1187 1188 if (ret > 0) { 1189 ret = spi_transfer_wait(ctlr, msg, xfer); 1190 if (ret < 0) 1191 msg->status = ret; 1192 } 1193 } else { 1194 if (xfer->len) 1195 dev_err(&msg->spi->dev, 1196 "Bufferless transfer has length %u\n", 1197 xfer->len); 1198 } 1199 1200 trace_spi_transfer_stop(msg, xfer); 1201 1202 if (msg->status != -EINPROGRESS) 1203 goto out; 1204 1205 if (xfer->delay_usecs) 1206 _spi_transfer_delay_ns(xfer->delay_usecs * 1000); 1207 1208 if (xfer->cs_change) { 1209 if (list_is_last(&xfer->transfer_list, 1210 &msg->transfers)) { 1211 keep_cs = true; 1212 } else { 1213 spi_set_cs(msg->spi, false); 1214 _spi_transfer_cs_change_delay(msg, xfer); 1215 spi_set_cs(msg->spi, true); 1216 } 1217 } 1218 1219 msg->actual_length += xfer->len; 1220 } 1221 1222 out: 1223 if (ret != 0 || !keep_cs) 1224 spi_set_cs(msg->spi, false); 1225 1226 if (msg->status == -EINPROGRESS) 1227 msg->status = ret; 1228 1229 if (msg->status && ctlr->handle_err) 1230 ctlr->handle_err(ctlr, msg); 1231 1232 spi_res_release(ctlr, msg); 1233 1234 spi_finalize_current_message(ctlr); 1235 1236 return ret; 1237 } 1238 1239 /** 1240 * spi_finalize_current_transfer - report completion of a transfer 1241 * @ctlr: the controller reporting completion 1242 * 1243 * Called by SPI drivers using the core transfer_one_message() 1244 * implementation to notify it that the current interrupt driven 1245 * transfer has finished and the next one may be scheduled. 1246 */ 1247 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1248 { 1249 complete(&ctlr->xfer_completion); 1250 } 1251 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1252 1253 /** 1254 * __spi_pump_messages - function which processes spi message queue 1255 * @ctlr: controller to process queue for 1256 * @in_kthread: true if we are in the context of the message pump thread 1257 * 1258 * This function checks if there is any spi message in the queue that 1259 * needs processing and if so call out to the driver to initialize hardware 1260 * and transfer each message. 1261 * 1262 * Note that it is called both from the kthread itself and also from 1263 * inside spi_sync(); the queue extraction handling at the top of the 1264 * function should deal with this safely. 1265 */ 1266 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1267 { 1268 unsigned long flags; 1269 bool was_busy = false; 1270 int ret; 1271 1272 /* Lock queue */ 1273 spin_lock_irqsave(&ctlr->queue_lock, flags); 1274 1275 /* Make sure we are not already running a message */ 1276 if (ctlr->cur_msg) { 1277 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1278 return; 1279 } 1280 1281 /* If another context is idling the device then defer */ 1282 if (ctlr->idling) { 1283 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1284 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1285 return; 1286 } 1287 1288 /* Check if the queue is idle */ 1289 if (list_empty(&ctlr->queue) || !ctlr->running) { 1290 if (!ctlr->busy) { 1291 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1292 return; 1293 } 1294 1295 /* Only do teardown in the thread */ 1296 if (!in_kthread) { 1297 kthread_queue_work(&ctlr->kworker, 1298 &ctlr->pump_messages); 1299 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1300 return; 1301 } 1302 1303 ctlr->busy = false; 1304 ctlr->idling = true; 1305 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1306 1307 kfree(ctlr->dummy_rx); 1308 ctlr->dummy_rx = NULL; 1309 kfree(ctlr->dummy_tx); 1310 ctlr->dummy_tx = NULL; 1311 if (ctlr->unprepare_transfer_hardware && 1312 ctlr->unprepare_transfer_hardware(ctlr)) 1313 dev_err(&ctlr->dev, 1314 "failed to unprepare transfer hardware\n"); 1315 if (ctlr->auto_runtime_pm) { 1316 pm_runtime_mark_last_busy(ctlr->dev.parent); 1317 pm_runtime_put_autosuspend(ctlr->dev.parent); 1318 } 1319 trace_spi_controller_idle(ctlr); 1320 1321 spin_lock_irqsave(&ctlr->queue_lock, flags); 1322 ctlr->idling = false; 1323 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1324 return; 1325 } 1326 1327 /* Extract head of queue */ 1328 ctlr->cur_msg = 1329 list_first_entry(&ctlr->queue, struct spi_message, queue); 1330 1331 list_del_init(&ctlr->cur_msg->queue); 1332 if (ctlr->busy) 1333 was_busy = true; 1334 else 1335 ctlr->busy = true; 1336 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1337 1338 mutex_lock(&ctlr->io_mutex); 1339 1340 if (!was_busy && ctlr->auto_runtime_pm) { 1341 ret = pm_runtime_get_sync(ctlr->dev.parent); 1342 if (ret < 0) { 1343 pm_runtime_put_noidle(ctlr->dev.parent); 1344 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1345 ret); 1346 mutex_unlock(&ctlr->io_mutex); 1347 return; 1348 } 1349 } 1350 1351 if (!was_busy) 1352 trace_spi_controller_busy(ctlr); 1353 1354 if (!was_busy && ctlr->prepare_transfer_hardware) { 1355 ret = ctlr->prepare_transfer_hardware(ctlr); 1356 if (ret) { 1357 dev_err(&ctlr->dev, 1358 "failed to prepare transfer hardware: %d\n", 1359 ret); 1360 1361 if (ctlr->auto_runtime_pm) 1362 pm_runtime_put(ctlr->dev.parent); 1363 1364 ctlr->cur_msg->status = ret; 1365 spi_finalize_current_message(ctlr); 1366 1367 mutex_unlock(&ctlr->io_mutex); 1368 return; 1369 } 1370 } 1371 1372 trace_spi_message_start(ctlr->cur_msg); 1373 1374 if (ctlr->prepare_message) { 1375 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg); 1376 if (ret) { 1377 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1378 ret); 1379 ctlr->cur_msg->status = ret; 1380 spi_finalize_current_message(ctlr); 1381 goto out; 1382 } 1383 ctlr->cur_msg_prepared = true; 1384 } 1385 1386 ret = spi_map_msg(ctlr, ctlr->cur_msg); 1387 if (ret) { 1388 ctlr->cur_msg->status = ret; 1389 spi_finalize_current_message(ctlr); 1390 goto out; 1391 } 1392 1393 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg); 1394 if (ret) { 1395 dev_err(&ctlr->dev, 1396 "failed to transfer one message from queue\n"); 1397 goto out; 1398 } 1399 1400 out: 1401 mutex_unlock(&ctlr->io_mutex); 1402 1403 /* Prod the scheduler in case transfer_one() was busy waiting */ 1404 if (!ret) 1405 cond_resched(); 1406 } 1407 1408 /** 1409 * spi_pump_messages - kthread work function which processes spi message queue 1410 * @work: pointer to kthread work struct contained in the controller struct 1411 */ 1412 static void spi_pump_messages(struct kthread_work *work) 1413 { 1414 struct spi_controller *ctlr = 1415 container_of(work, struct spi_controller, pump_messages); 1416 1417 __spi_pump_messages(ctlr, true); 1418 } 1419 1420 /** 1421 * spi_set_thread_rt - set the controller to pump at realtime priority 1422 * @ctlr: controller to boost priority of 1423 * 1424 * This can be called because the controller requested realtime priority 1425 * (by setting the ->rt value before calling spi_register_controller()) or 1426 * because a device on the bus said that its transfers needed realtime 1427 * priority. 1428 * 1429 * NOTE: at the moment if any device on a bus says it needs realtime then 1430 * the thread will be at realtime priority for all transfers on that 1431 * controller. If this eventually becomes a problem we may see if we can 1432 * find a way to boost the priority only temporarily during relevant 1433 * transfers. 1434 */ 1435 static void spi_set_thread_rt(struct spi_controller *ctlr) 1436 { 1437 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1438 1439 dev_info(&ctlr->dev, 1440 "will run message pump with realtime priority\n"); 1441 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); 1442 } 1443 1444 static int spi_init_queue(struct spi_controller *ctlr) 1445 { 1446 ctlr->running = false; 1447 ctlr->busy = false; 1448 1449 kthread_init_worker(&ctlr->kworker); 1450 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, 1451 "%s", dev_name(&ctlr->dev)); 1452 if (IS_ERR(ctlr->kworker_task)) { 1453 dev_err(&ctlr->dev, "failed to create message pump task\n"); 1454 return PTR_ERR(ctlr->kworker_task); 1455 } 1456 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1457 1458 /* 1459 * Controller config will indicate if this controller should run the 1460 * message pump with high (realtime) priority to reduce the transfer 1461 * latency on the bus by minimising the delay between a transfer 1462 * request and the scheduling of the message pump thread. Without this 1463 * setting the message pump thread will remain at default priority. 1464 */ 1465 if (ctlr->rt) 1466 spi_set_thread_rt(ctlr); 1467 1468 return 0; 1469 } 1470 1471 /** 1472 * spi_get_next_queued_message() - called by driver to check for queued 1473 * messages 1474 * @ctlr: the controller to check for queued messages 1475 * 1476 * If there are more messages in the queue, the next message is returned from 1477 * this call. 1478 * 1479 * Return: the next message in the queue, else NULL if the queue is empty. 1480 */ 1481 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1482 { 1483 struct spi_message *next; 1484 unsigned long flags; 1485 1486 /* get a pointer to the next message, if any */ 1487 spin_lock_irqsave(&ctlr->queue_lock, flags); 1488 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1489 queue); 1490 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1491 1492 return next; 1493 } 1494 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1495 1496 /** 1497 * spi_finalize_current_message() - the current message is complete 1498 * @ctlr: the controller to return the message to 1499 * 1500 * Called by the driver to notify the core that the message in the front of the 1501 * queue is complete and can be removed from the queue. 1502 */ 1503 void spi_finalize_current_message(struct spi_controller *ctlr) 1504 { 1505 struct spi_message *mesg; 1506 unsigned long flags; 1507 int ret; 1508 1509 spin_lock_irqsave(&ctlr->queue_lock, flags); 1510 mesg = ctlr->cur_msg; 1511 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1512 1513 spi_unmap_msg(ctlr, mesg); 1514 1515 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1516 ret = ctlr->unprepare_message(ctlr, mesg); 1517 if (ret) { 1518 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1519 ret); 1520 } 1521 } 1522 1523 spin_lock_irqsave(&ctlr->queue_lock, flags); 1524 ctlr->cur_msg = NULL; 1525 ctlr->cur_msg_prepared = false; 1526 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1527 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1528 1529 trace_spi_message_done(mesg); 1530 1531 mesg->state = NULL; 1532 if (mesg->complete) 1533 mesg->complete(mesg->context); 1534 } 1535 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1536 1537 static int spi_start_queue(struct spi_controller *ctlr) 1538 { 1539 unsigned long flags; 1540 1541 spin_lock_irqsave(&ctlr->queue_lock, flags); 1542 1543 if (ctlr->running || ctlr->busy) { 1544 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1545 return -EBUSY; 1546 } 1547 1548 ctlr->running = true; 1549 ctlr->cur_msg = NULL; 1550 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1551 1552 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1553 1554 return 0; 1555 } 1556 1557 static int spi_stop_queue(struct spi_controller *ctlr) 1558 { 1559 unsigned long flags; 1560 unsigned limit = 500; 1561 int ret = 0; 1562 1563 spin_lock_irqsave(&ctlr->queue_lock, flags); 1564 1565 /* 1566 * This is a bit lame, but is optimized for the common execution path. 1567 * A wait_queue on the ctlr->busy could be used, but then the common 1568 * execution path (pump_messages) would be required to call wake_up or 1569 * friends on every SPI message. Do this instead. 1570 */ 1571 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1572 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1573 usleep_range(10000, 11000); 1574 spin_lock_irqsave(&ctlr->queue_lock, flags); 1575 } 1576 1577 if (!list_empty(&ctlr->queue) || ctlr->busy) 1578 ret = -EBUSY; 1579 else 1580 ctlr->running = false; 1581 1582 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1583 1584 if (ret) { 1585 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1586 return ret; 1587 } 1588 return ret; 1589 } 1590 1591 static int spi_destroy_queue(struct spi_controller *ctlr) 1592 { 1593 int ret; 1594 1595 ret = spi_stop_queue(ctlr); 1596 1597 /* 1598 * kthread_flush_worker will block until all work is done. 1599 * If the reason that stop_queue timed out is that the work will never 1600 * finish, then it does no good to call flush/stop thread, so 1601 * return anyway. 1602 */ 1603 if (ret) { 1604 dev_err(&ctlr->dev, "problem destroying queue\n"); 1605 return ret; 1606 } 1607 1608 kthread_flush_worker(&ctlr->kworker); 1609 kthread_stop(ctlr->kworker_task); 1610 1611 return 0; 1612 } 1613 1614 static int __spi_queued_transfer(struct spi_device *spi, 1615 struct spi_message *msg, 1616 bool need_pump) 1617 { 1618 struct spi_controller *ctlr = spi->controller; 1619 unsigned long flags; 1620 1621 spin_lock_irqsave(&ctlr->queue_lock, flags); 1622 1623 if (!ctlr->running) { 1624 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1625 return -ESHUTDOWN; 1626 } 1627 msg->actual_length = 0; 1628 msg->status = -EINPROGRESS; 1629 1630 list_add_tail(&msg->queue, &ctlr->queue); 1631 if (!ctlr->busy && need_pump) 1632 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1633 1634 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1635 return 0; 1636 } 1637 1638 /** 1639 * spi_queued_transfer - transfer function for queued transfers 1640 * @spi: spi device which is requesting transfer 1641 * @msg: spi message which is to handled is queued to driver queue 1642 * 1643 * Return: zero on success, else a negative error code. 1644 */ 1645 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1646 { 1647 return __spi_queued_transfer(spi, msg, true); 1648 } 1649 1650 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1651 { 1652 int ret; 1653 1654 ctlr->transfer = spi_queued_transfer; 1655 if (!ctlr->transfer_one_message) 1656 ctlr->transfer_one_message = spi_transfer_one_message; 1657 1658 /* Initialize and start queue */ 1659 ret = spi_init_queue(ctlr); 1660 if (ret) { 1661 dev_err(&ctlr->dev, "problem initializing queue\n"); 1662 goto err_init_queue; 1663 } 1664 ctlr->queued = true; 1665 ret = spi_start_queue(ctlr); 1666 if (ret) { 1667 dev_err(&ctlr->dev, "problem starting queue\n"); 1668 goto err_start_queue; 1669 } 1670 1671 return 0; 1672 1673 err_start_queue: 1674 spi_destroy_queue(ctlr); 1675 err_init_queue: 1676 return ret; 1677 } 1678 1679 /** 1680 * spi_flush_queue - Send all pending messages in the queue from the callers' 1681 * context 1682 * @ctlr: controller to process queue for 1683 * 1684 * This should be used when one wants to ensure all pending messages have been 1685 * sent before doing something. Is used by the spi-mem code to make sure SPI 1686 * memory operations do not preempt regular SPI transfers that have been queued 1687 * before the spi-mem operation. 1688 */ 1689 void spi_flush_queue(struct spi_controller *ctlr) 1690 { 1691 if (ctlr->transfer == spi_queued_transfer) 1692 __spi_pump_messages(ctlr, false); 1693 } 1694 1695 /*-------------------------------------------------------------------------*/ 1696 1697 #if defined(CONFIG_OF) 1698 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1699 struct device_node *nc) 1700 { 1701 u32 value; 1702 int rc; 1703 1704 /* Mode (clock phase/polarity/etc.) */ 1705 if (of_property_read_bool(nc, "spi-cpha")) 1706 spi->mode |= SPI_CPHA; 1707 if (of_property_read_bool(nc, "spi-cpol")) 1708 spi->mode |= SPI_CPOL; 1709 if (of_property_read_bool(nc, "spi-3wire")) 1710 spi->mode |= SPI_3WIRE; 1711 if (of_property_read_bool(nc, "spi-lsb-first")) 1712 spi->mode |= SPI_LSB_FIRST; 1713 1714 /* 1715 * For descriptors associated with the device, polarity inversion is 1716 * handled in the gpiolib, so all chip selects are "active high" in 1717 * the logical sense, the gpiolib will invert the line if need be. 1718 */ 1719 if (ctlr->use_gpio_descriptors) 1720 spi->mode |= SPI_CS_HIGH; 1721 else if (of_property_read_bool(nc, "spi-cs-high")) 1722 spi->mode |= SPI_CS_HIGH; 1723 1724 /* Device DUAL/QUAD mode */ 1725 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1726 switch (value) { 1727 case 1: 1728 break; 1729 case 2: 1730 spi->mode |= SPI_TX_DUAL; 1731 break; 1732 case 4: 1733 spi->mode |= SPI_TX_QUAD; 1734 break; 1735 case 8: 1736 spi->mode |= SPI_TX_OCTAL; 1737 break; 1738 default: 1739 dev_warn(&ctlr->dev, 1740 "spi-tx-bus-width %d not supported\n", 1741 value); 1742 break; 1743 } 1744 } 1745 1746 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1747 switch (value) { 1748 case 1: 1749 break; 1750 case 2: 1751 spi->mode |= SPI_RX_DUAL; 1752 break; 1753 case 4: 1754 spi->mode |= SPI_RX_QUAD; 1755 break; 1756 case 8: 1757 spi->mode |= SPI_RX_OCTAL; 1758 break; 1759 default: 1760 dev_warn(&ctlr->dev, 1761 "spi-rx-bus-width %d not supported\n", 1762 value); 1763 break; 1764 } 1765 } 1766 1767 if (spi_controller_is_slave(ctlr)) { 1768 if (!of_node_name_eq(nc, "slave")) { 1769 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1770 nc); 1771 return -EINVAL; 1772 } 1773 return 0; 1774 } 1775 1776 /* Device address */ 1777 rc = of_property_read_u32(nc, "reg", &value); 1778 if (rc) { 1779 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1780 nc, rc); 1781 return rc; 1782 } 1783 spi->chip_select = value; 1784 1785 /* Device speed */ 1786 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1787 if (rc) { 1788 dev_err(&ctlr->dev, 1789 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); 1790 return rc; 1791 } 1792 spi->max_speed_hz = value; 1793 1794 return 0; 1795 } 1796 1797 static struct spi_device * 1798 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1799 { 1800 struct spi_device *spi; 1801 int rc; 1802 1803 /* Alloc an spi_device */ 1804 spi = spi_alloc_device(ctlr); 1805 if (!spi) { 1806 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 1807 rc = -ENOMEM; 1808 goto err_out; 1809 } 1810 1811 /* Select device driver */ 1812 rc = of_modalias_node(nc, spi->modalias, 1813 sizeof(spi->modalias)); 1814 if (rc < 0) { 1815 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 1816 goto err_out; 1817 } 1818 1819 rc = of_spi_parse_dt(ctlr, spi, nc); 1820 if (rc) 1821 goto err_out; 1822 1823 /* Store a pointer to the node in the device structure */ 1824 of_node_get(nc); 1825 spi->dev.of_node = nc; 1826 1827 /* Register the new device */ 1828 rc = spi_add_device(spi); 1829 if (rc) { 1830 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 1831 goto err_of_node_put; 1832 } 1833 1834 return spi; 1835 1836 err_of_node_put: 1837 of_node_put(nc); 1838 err_out: 1839 spi_dev_put(spi); 1840 return ERR_PTR(rc); 1841 } 1842 1843 /** 1844 * of_register_spi_devices() - Register child devices onto the SPI bus 1845 * @ctlr: Pointer to spi_controller device 1846 * 1847 * Registers an spi_device for each child node of controller node which 1848 * represents a valid SPI slave. 1849 */ 1850 static void of_register_spi_devices(struct spi_controller *ctlr) 1851 { 1852 struct spi_device *spi; 1853 struct device_node *nc; 1854 1855 if (!ctlr->dev.of_node) 1856 return; 1857 1858 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 1859 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 1860 continue; 1861 spi = of_register_spi_device(ctlr, nc); 1862 if (IS_ERR(spi)) { 1863 dev_warn(&ctlr->dev, 1864 "Failed to create SPI device for %pOF\n", nc); 1865 of_node_clear_flag(nc, OF_POPULATED); 1866 } 1867 } 1868 } 1869 #else 1870 static void of_register_spi_devices(struct spi_controller *ctlr) { } 1871 #endif 1872 1873 #ifdef CONFIG_ACPI 1874 struct acpi_spi_lookup { 1875 struct spi_controller *ctlr; 1876 u32 max_speed_hz; 1877 u32 mode; 1878 int irq; 1879 u8 bits_per_word; 1880 u8 chip_select; 1881 }; 1882 1883 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 1884 struct acpi_spi_lookup *lookup) 1885 { 1886 const union acpi_object *obj; 1887 1888 if (!x86_apple_machine) 1889 return; 1890 1891 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 1892 && obj->buffer.length >= 4) 1893 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 1894 1895 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 1896 && obj->buffer.length == 8) 1897 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 1898 1899 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 1900 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 1901 lookup->mode |= SPI_LSB_FIRST; 1902 1903 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 1904 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1905 lookup->mode |= SPI_CPOL; 1906 1907 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 1908 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 1909 lookup->mode |= SPI_CPHA; 1910 } 1911 1912 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1913 { 1914 struct acpi_spi_lookup *lookup = data; 1915 struct spi_controller *ctlr = lookup->ctlr; 1916 1917 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1918 struct acpi_resource_spi_serialbus *sb; 1919 acpi_handle parent_handle; 1920 acpi_status status; 1921 1922 sb = &ares->data.spi_serial_bus; 1923 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1924 1925 status = acpi_get_handle(NULL, 1926 sb->resource_source.string_ptr, 1927 &parent_handle); 1928 1929 if (ACPI_FAILURE(status) || 1930 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 1931 return -ENODEV; 1932 1933 /* 1934 * ACPI DeviceSelection numbering is handled by the 1935 * host controller driver in Windows and can vary 1936 * from driver to driver. In Linux we always expect 1937 * 0 .. max - 1 so we need to ask the driver to 1938 * translate between the two schemes. 1939 */ 1940 if (ctlr->fw_translate_cs) { 1941 int cs = ctlr->fw_translate_cs(ctlr, 1942 sb->device_selection); 1943 if (cs < 0) 1944 return cs; 1945 lookup->chip_select = cs; 1946 } else { 1947 lookup->chip_select = sb->device_selection; 1948 } 1949 1950 lookup->max_speed_hz = sb->connection_speed; 1951 1952 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1953 lookup->mode |= SPI_CPHA; 1954 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1955 lookup->mode |= SPI_CPOL; 1956 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1957 lookup->mode |= SPI_CS_HIGH; 1958 } 1959 } else if (lookup->irq < 0) { 1960 struct resource r; 1961 1962 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1963 lookup->irq = r.start; 1964 } 1965 1966 /* Always tell the ACPI core to skip this resource */ 1967 return 1; 1968 } 1969 1970 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 1971 struct acpi_device *adev) 1972 { 1973 acpi_handle parent_handle = NULL; 1974 struct list_head resource_list; 1975 struct acpi_spi_lookup lookup = {}; 1976 struct spi_device *spi; 1977 int ret; 1978 1979 if (acpi_bus_get_status(adev) || !adev->status.present || 1980 acpi_device_enumerated(adev)) 1981 return AE_OK; 1982 1983 lookup.ctlr = ctlr; 1984 lookup.irq = -1; 1985 1986 INIT_LIST_HEAD(&resource_list); 1987 ret = acpi_dev_get_resources(adev, &resource_list, 1988 acpi_spi_add_resource, &lookup); 1989 acpi_dev_free_resource_list(&resource_list); 1990 1991 if (ret < 0) 1992 /* found SPI in _CRS but it points to another controller */ 1993 return AE_OK; 1994 1995 if (!lookup.max_speed_hz && 1996 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 1997 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 1998 /* Apple does not use _CRS but nested devices for SPI slaves */ 1999 acpi_spi_parse_apple_properties(adev, &lookup); 2000 } 2001 2002 if (!lookup.max_speed_hz) 2003 return AE_OK; 2004 2005 spi = spi_alloc_device(ctlr); 2006 if (!spi) { 2007 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2008 dev_name(&adev->dev)); 2009 return AE_NO_MEMORY; 2010 } 2011 2012 ACPI_COMPANION_SET(&spi->dev, adev); 2013 spi->max_speed_hz = lookup.max_speed_hz; 2014 spi->mode = lookup.mode; 2015 spi->irq = lookup.irq; 2016 spi->bits_per_word = lookup.bits_per_word; 2017 spi->chip_select = lookup.chip_select; 2018 2019 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2020 sizeof(spi->modalias)); 2021 2022 if (spi->irq < 0) 2023 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2024 2025 acpi_device_set_enumerated(adev); 2026 2027 adev->power.flags.ignore_parent = true; 2028 if (spi_add_device(spi)) { 2029 adev->power.flags.ignore_parent = false; 2030 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2031 dev_name(&adev->dev)); 2032 spi_dev_put(spi); 2033 } 2034 2035 return AE_OK; 2036 } 2037 2038 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2039 void *data, void **return_value) 2040 { 2041 struct spi_controller *ctlr = data; 2042 struct acpi_device *adev; 2043 2044 if (acpi_bus_get_device(handle, &adev)) 2045 return AE_OK; 2046 2047 return acpi_register_spi_device(ctlr, adev); 2048 } 2049 2050 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2051 2052 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2053 { 2054 acpi_status status; 2055 acpi_handle handle; 2056 2057 handle = ACPI_HANDLE(ctlr->dev.parent); 2058 if (!handle) 2059 return; 2060 2061 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2062 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2063 acpi_spi_add_device, NULL, ctlr, NULL); 2064 if (ACPI_FAILURE(status)) 2065 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2066 } 2067 #else 2068 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2069 #endif /* CONFIG_ACPI */ 2070 2071 static void spi_controller_release(struct device *dev) 2072 { 2073 struct spi_controller *ctlr; 2074 2075 ctlr = container_of(dev, struct spi_controller, dev); 2076 kfree(ctlr); 2077 } 2078 2079 static struct class spi_master_class = { 2080 .name = "spi_master", 2081 .owner = THIS_MODULE, 2082 .dev_release = spi_controller_release, 2083 .dev_groups = spi_master_groups, 2084 }; 2085 2086 #ifdef CONFIG_SPI_SLAVE 2087 /** 2088 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2089 * controller 2090 * @spi: device used for the current transfer 2091 */ 2092 int spi_slave_abort(struct spi_device *spi) 2093 { 2094 struct spi_controller *ctlr = spi->controller; 2095 2096 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2097 return ctlr->slave_abort(ctlr); 2098 2099 return -ENOTSUPP; 2100 } 2101 EXPORT_SYMBOL_GPL(spi_slave_abort); 2102 2103 static int match_true(struct device *dev, void *data) 2104 { 2105 return 1; 2106 } 2107 2108 static ssize_t spi_slave_show(struct device *dev, 2109 struct device_attribute *attr, char *buf) 2110 { 2111 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2112 dev); 2113 struct device *child; 2114 2115 child = device_find_child(&ctlr->dev, NULL, match_true); 2116 return sprintf(buf, "%s\n", 2117 child ? to_spi_device(child)->modalias : NULL); 2118 } 2119 2120 static ssize_t spi_slave_store(struct device *dev, 2121 struct device_attribute *attr, const char *buf, 2122 size_t count) 2123 { 2124 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2125 dev); 2126 struct spi_device *spi; 2127 struct device *child; 2128 char name[32]; 2129 int rc; 2130 2131 rc = sscanf(buf, "%31s", name); 2132 if (rc != 1 || !name[0]) 2133 return -EINVAL; 2134 2135 child = device_find_child(&ctlr->dev, NULL, match_true); 2136 if (child) { 2137 /* Remove registered slave */ 2138 device_unregister(child); 2139 put_device(child); 2140 } 2141 2142 if (strcmp(name, "(null)")) { 2143 /* Register new slave */ 2144 spi = spi_alloc_device(ctlr); 2145 if (!spi) 2146 return -ENOMEM; 2147 2148 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2149 2150 rc = spi_add_device(spi); 2151 if (rc) { 2152 spi_dev_put(spi); 2153 return rc; 2154 } 2155 } 2156 2157 return count; 2158 } 2159 2160 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store); 2161 2162 static struct attribute *spi_slave_attrs[] = { 2163 &dev_attr_slave.attr, 2164 NULL, 2165 }; 2166 2167 static const struct attribute_group spi_slave_group = { 2168 .attrs = spi_slave_attrs, 2169 }; 2170 2171 static const struct attribute_group *spi_slave_groups[] = { 2172 &spi_controller_statistics_group, 2173 &spi_slave_group, 2174 NULL, 2175 }; 2176 2177 static struct class spi_slave_class = { 2178 .name = "spi_slave", 2179 .owner = THIS_MODULE, 2180 .dev_release = spi_controller_release, 2181 .dev_groups = spi_slave_groups, 2182 }; 2183 #else 2184 extern struct class spi_slave_class; /* dummy */ 2185 #endif 2186 2187 /** 2188 * __spi_alloc_controller - allocate an SPI master or slave controller 2189 * @dev: the controller, possibly using the platform_bus 2190 * @size: how much zeroed driver-private data to allocate; the pointer to this 2191 * memory is in the driver_data field of the returned device, 2192 * accessible with spi_controller_get_devdata(). 2193 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2194 * slave (true) controller 2195 * Context: can sleep 2196 * 2197 * This call is used only by SPI controller drivers, which are the 2198 * only ones directly touching chip registers. It's how they allocate 2199 * an spi_controller structure, prior to calling spi_register_controller(). 2200 * 2201 * This must be called from context that can sleep. 2202 * 2203 * The caller is responsible for assigning the bus number and initializing the 2204 * controller's methods before calling spi_register_controller(); and (after 2205 * errors adding the device) calling spi_controller_put() to prevent a memory 2206 * leak. 2207 * 2208 * Return: the SPI controller structure on success, else NULL. 2209 */ 2210 struct spi_controller *__spi_alloc_controller(struct device *dev, 2211 unsigned int size, bool slave) 2212 { 2213 struct spi_controller *ctlr; 2214 2215 if (!dev) 2216 return NULL; 2217 2218 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL); 2219 if (!ctlr) 2220 return NULL; 2221 2222 device_initialize(&ctlr->dev); 2223 ctlr->bus_num = -1; 2224 ctlr->num_chipselect = 1; 2225 ctlr->slave = slave; 2226 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2227 ctlr->dev.class = &spi_slave_class; 2228 else 2229 ctlr->dev.class = &spi_master_class; 2230 ctlr->dev.parent = dev; 2231 pm_suspend_ignore_children(&ctlr->dev, true); 2232 spi_controller_set_devdata(ctlr, &ctlr[1]); 2233 2234 return ctlr; 2235 } 2236 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2237 2238 #ifdef CONFIG_OF 2239 static int of_spi_register_master(struct spi_controller *ctlr) 2240 { 2241 int nb, i, *cs; 2242 struct device_node *np = ctlr->dev.of_node; 2243 2244 if (!np) 2245 return 0; 2246 2247 nb = of_gpio_named_count(np, "cs-gpios"); 2248 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2249 2250 /* Return error only for an incorrectly formed cs-gpios property */ 2251 if (nb == 0 || nb == -ENOENT) 2252 return 0; 2253 else if (nb < 0) 2254 return nb; 2255 2256 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2257 GFP_KERNEL); 2258 ctlr->cs_gpios = cs; 2259 2260 if (!ctlr->cs_gpios) 2261 return -ENOMEM; 2262 2263 for (i = 0; i < ctlr->num_chipselect; i++) 2264 cs[i] = -ENOENT; 2265 2266 for (i = 0; i < nb; i++) 2267 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2268 2269 return 0; 2270 } 2271 #else 2272 static int of_spi_register_master(struct spi_controller *ctlr) 2273 { 2274 return 0; 2275 } 2276 #endif 2277 2278 /** 2279 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2280 * @ctlr: The SPI master to grab GPIO descriptors for 2281 */ 2282 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2283 { 2284 int nb, i; 2285 struct gpio_desc **cs; 2286 struct device *dev = &ctlr->dev; 2287 2288 nb = gpiod_count(dev, "cs"); 2289 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2290 2291 /* No GPIOs at all is fine, else return the error */ 2292 if (nb == 0 || nb == -ENOENT) 2293 return 0; 2294 else if (nb < 0) 2295 return nb; 2296 2297 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2298 GFP_KERNEL); 2299 if (!cs) 2300 return -ENOMEM; 2301 ctlr->cs_gpiods = cs; 2302 2303 for (i = 0; i < nb; i++) { 2304 /* 2305 * Most chipselects are active low, the inverted 2306 * semantics are handled by special quirks in gpiolib, 2307 * so initializing them GPIOD_OUT_LOW here means 2308 * "unasserted", in most cases this will drive the physical 2309 * line high. 2310 */ 2311 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2312 GPIOD_OUT_LOW); 2313 if (IS_ERR(cs[i])) 2314 return PTR_ERR(cs[i]); 2315 2316 if (cs[i]) { 2317 /* 2318 * If we find a CS GPIO, name it after the device and 2319 * chip select line. 2320 */ 2321 char *gpioname; 2322 2323 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2324 dev_name(dev), i); 2325 if (!gpioname) 2326 return -ENOMEM; 2327 gpiod_set_consumer_name(cs[i], gpioname); 2328 } 2329 } 2330 2331 return 0; 2332 } 2333 2334 static int spi_controller_check_ops(struct spi_controller *ctlr) 2335 { 2336 /* 2337 * The controller may implement only the high-level SPI-memory like 2338 * operations if it does not support regular SPI transfers, and this is 2339 * valid use case. 2340 * If ->mem_ops is NULL, we request that at least one of the 2341 * ->transfer_xxx() method be implemented. 2342 */ 2343 if (ctlr->mem_ops) { 2344 if (!ctlr->mem_ops->exec_op) 2345 return -EINVAL; 2346 } else if (!ctlr->transfer && !ctlr->transfer_one && 2347 !ctlr->transfer_one_message) { 2348 return -EINVAL; 2349 } 2350 2351 return 0; 2352 } 2353 2354 /** 2355 * spi_register_controller - register SPI master or slave controller 2356 * @ctlr: initialized master, originally from spi_alloc_master() or 2357 * spi_alloc_slave() 2358 * Context: can sleep 2359 * 2360 * SPI controllers connect to their drivers using some non-SPI bus, 2361 * such as the platform bus. The final stage of probe() in that code 2362 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2363 * 2364 * SPI controllers use board specific (often SOC specific) bus numbers, 2365 * and board-specific addressing for SPI devices combines those numbers 2366 * with chip select numbers. Since SPI does not directly support dynamic 2367 * device identification, boards need configuration tables telling which 2368 * chip is at which address. 2369 * 2370 * This must be called from context that can sleep. It returns zero on 2371 * success, else a negative error code (dropping the controller's refcount). 2372 * After a successful return, the caller is responsible for calling 2373 * spi_unregister_controller(). 2374 * 2375 * Return: zero on success, else a negative error code. 2376 */ 2377 int spi_register_controller(struct spi_controller *ctlr) 2378 { 2379 struct device *dev = ctlr->dev.parent; 2380 struct boardinfo *bi; 2381 int status; 2382 int id, first_dynamic; 2383 2384 if (!dev) 2385 return -ENODEV; 2386 2387 /* 2388 * Make sure all necessary hooks are implemented before registering 2389 * the SPI controller. 2390 */ 2391 status = spi_controller_check_ops(ctlr); 2392 if (status) 2393 return status; 2394 2395 if (ctlr->bus_num >= 0) { 2396 /* devices with a fixed bus num must check-in with the num */ 2397 mutex_lock(&board_lock); 2398 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2399 ctlr->bus_num + 1, GFP_KERNEL); 2400 mutex_unlock(&board_lock); 2401 if (WARN(id < 0, "couldn't get idr")) 2402 return id == -ENOSPC ? -EBUSY : id; 2403 ctlr->bus_num = id; 2404 } else if (ctlr->dev.of_node) { 2405 /* allocate dynamic bus number using Linux idr */ 2406 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2407 if (id >= 0) { 2408 ctlr->bus_num = id; 2409 mutex_lock(&board_lock); 2410 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2411 ctlr->bus_num + 1, GFP_KERNEL); 2412 mutex_unlock(&board_lock); 2413 if (WARN(id < 0, "couldn't get idr")) 2414 return id == -ENOSPC ? -EBUSY : id; 2415 } 2416 } 2417 if (ctlr->bus_num < 0) { 2418 first_dynamic = of_alias_get_highest_id("spi"); 2419 if (first_dynamic < 0) 2420 first_dynamic = 0; 2421 else 2422 first_dynamic++; 2423 2424 mutex_lock(&board_lock); 2425 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2426 0, GFP_KERNEL); 2427 mutex_unlock(&board_lock); 2428 if (WARN(id < 0, "couldn't get idr")) 2429 return id; 2430 ctlr->bus_num = id; 2431 } 2432 INIT_LIST_HEAD(&ctlr->queue); 2433 spin_lock_init(&ctlr->queue_lock); 2434 spin_lock_init(&ctlr->bus_lock_spinlock); 2435 mutex_init(&ctlr->bus_lock_mutex); 2436 mutex_init(&ctlr->io_mutex); 2437 ctlr->bus_lock_flag = 0; 2438 init_completion(&ctlr->xfer_completion); 2439 if (!ctlr->max_dma_len) 2440 ctlr->max_dma_len = INT_MAX; 2441 2442 /* register the device, then userspace will see it. 2443 * registration fails if the bus ID is in use. 2444 */ 2445 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2446 2447 if (!spi_controller_is_slave(ctlr)) { 2448 if (ctlr->use_gpio_descriptors) { 2449 status = spi_get_gpio_descs(ctlr); 2450 if (status) 2451 return status; 2452 /* 2453 * A controller using GPIO descriptors always 2454 * supports SPI_CS_HIGH if need be. 2455 */ 2456 ctlr->mode_bits |= SPI_CS_HIGH; 2457 } else { 2458 /* Legacy code path for GPIOs from DT */ 2459 status = of_spi_register_master(ctlr); 2460 if (status) 2461 return status; 2462 } 2463 } 2464 2465 /* 2466 * Even if it's just one always-selected device, there must 2467 * be at least one chipselect. 2468 */ 2469 if (!ctlr->num_chipselect) 2470 return -EINVAL; 2471 2472 status = device_add(&ctlr->dev); 2473 if (status < 0) { 2474 /* free bus id */ 2475 mutex_lock(&board_lock); 2476 idr_remove(&spi_master_idr, ctlr->bus_num); 2477 mutex_unlock(&board_lock); 2478 goto done; 2479 } 2480 dev_dbg(dev, "registered %s %s\n", 2481 spi_controller_is_slave(ctlr) ? "slave" : "master", 2482 dev_name(&ctlr->dev)); 2483 2484 /* 2485 * If we're using a queued driver, start the queue. Note that we don't 2486 * need the queueing logic if the driver is only supporting high-level 2487 * memory operations. 2488 */ 2489 if (ctlr->transfer) { 2490 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2491 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2492 status = spi_controller_initialize_queue(ctlr); 2493 if (status) { 2494 device_del(&ctlr->dev); 2495 /* free bus id */ 2496 mutex_lock(&board_lock); 2497 idr_remove(&spi_master_idr, ctlr->bus_num); 2498 mutex_unlock(&board_lock); 2499 goto done; 2500 } 2501 } 2502 /* add statistics */ 2503 spin_lock_init(&ctlr->statistics.lock); 2504 2505 mutex_lock(&board_lock); 2506 list_add_tail(&ctlr->list, &spi_controller_list); 2507 list_for_each_entry(bi, &board_list, list) 2508 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2509 mutex_unlock(&board_lock); 2510 2511 /* Register devices from the device tree and ACPI */ 2512 of_register_spi_devices(ctlr); 2513 acpi_register_spi_devices(ctlr); 2514 done: 2515 return status; 2516 } 2517 EXPORT_SYMBOL_GPL(spi_register_controller); 2518 2519 static void devm_spi_unregister(struct device *dev, void *res) 2520 { 2521 spi_unregister_controller(*(struct spi_controller **)res); 2522 } 2523 2524 /** 2525 * devm_spi_register_controller - register managed SPI master or slave 2526 * controller 2527 * @dev: device managing SPI controller 2528 * @ctlr: initialized controller, originally from spi_alloc_master() or 2529 * spi_alloc_slave() 2530 * Context: can sleep 2531 * 2532 * Register a SPI device as with spi_register_controller() which will 2533 * automatically be unregistered and freed. 2534 * 2535 * Return: zero on success, else a negative error code. 2536 */ 2537 int devm_spi_register_controller(struct device *dev, 2538 struct spi_controller *ctlr) 2539 { 2540 struct spi_controller **ptr; 2541 int ret; 2542 2543 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2544 if (!ptr) 2545 return -ENOMEM; 2546 2547 ret = spi_register_controller(ctlr); 2548 if (!ret) { 2549 *ptr = ctlr; 2550 devres_add(dev, ptr); 2551 } else { 2552 devres_free(ptr); 2553 } 2554 2555 return ret; 2556 } 2557 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2558 2559 static int __unregister(struct device *dev, void *null) 2560 { 2561 spi_unregister_device(to_spi_device(dev)); 2562 return 0; 2563 } 2564 2565 /** 2566 * spi_unregister_controller - unregister SPI master or slave controller 2567 * @ctlr: the controller being unregistered 2568 * Context: can sleep 2569 * 2570 * This call is used only by SPI controller drivers, which are the 2571 * only ones directly touching chip registers. 2572 * 2573 * This must be called from context that can sleep. 2574 * 2575 * Note that this function also drops a reference to the controller. 2576 */ 2577 void spi_unregister_controller(struct spi_controller *ctlr) 2578 { 2579 struct spi_controller *found; 2580 int id = ctlr->bus_num; 2581 2582 /* First make sure that this controller was ever added */ 2583 mutex_lock(&board_lock); 2584 found = idr_find(&spi_master_idr, id); 2585 mutex_unlock(&board_lock); 2586 if (ctlr->queued) { 2587 if (spi_destroy_queue(ctlr)) 2588 dev_err(&ctlr->dev, "queue remove failed\n"); 2589 } 2590 mutex_lock(&board_lock); 2591 list_del(&ctlr->list); 2592 mutex_unlock(&board_lock); 2593 2594 device_for_each_child(&ctlr->dev, NULL, __unregister); 2595 device_unregister(&ctlr->dev); 2596 /* free bus id */ 2597 mutex_lock(&board_lock); 2598 if (found == ctlr) 2599 idr_remove(&spi_master_idr, id); 2600 mutex_unlock(&board_lock); 2601 } 2602 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2603 2604 int spi_controller_suspend(struct spi_controller *ctlr) 2605 { 2606 int ret; 2607 2608 /* Basically no-ops for non-queued controllers */ 2609 if (!ctlr->queued) 2610 return 0; 2611 2612 ret = spi_stop_queue(ctlr); 2613 if (ret) 2614 dev_err(&ctlr->dev, "queue stop failed\n"); 2615 2616 return ret; 2617 } 2618 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2619 2620 int spi_controller_resume(struct spi_controller *ctlr) 2621 { 2622 int ret; 2623 2624 if (!ctlr->queued) 2625 return 0; 2626 2627 ret = spi_start_queue(ctlr); 2628 if (ret) 2629 dev_err(&ctlr->dev, "queue restart failed\n"); 2630 2631 return ret; 2632 } 2633 EXPORT_SYMBOL_GPL(spi_controller_resume); 2634 2635 static int __spi_controller_match(struct device *dev, const void *data) 2636 { 2637 struct spi_controller *ctlr; 2638 const u16 *bus_num = data; 2639 2640 ctlr = container_of(dev, struct spi_controller, dev); 2641 return ctlr->bus_num == *bus_num; 2642 } 2643 2644 /** 2645 * spi_busnum_to_master - look up master associated with bus_num 2646 * @bus_num: the master's bus number 2647 * Context: can sleep 2648 * 2649 * This call may be used with devices that are registered after 2650 * arch init time. It returns a refcounted pointer to the relevant 2651 * spi_controller (which the caller must release), or NULL if there is 2652 * no such master registered. 2653 * 2654 * Return: the SPI master structure on success, else NULL. 2655 */ 2656 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2657 { 2658 struct device *dev; 2659 struct spi_controller *ctlr = NULL; 2660 2661 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2662 __spi_controller_match); 2663 if (dev) 2664 ctlr = container_of(dev, struct spi_controller, dev); 2665 /* reference got in class_find_device */ 2666 return ctlr; 2667 } 2668 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2669 2670 /*-------------------------------------------------------------------------*/ 2671 2672 /* Core methods for SPI resource management */ 2673 2674 /** 2675 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2676 * during the processing of a spi_message while using 2677 * spi_transfer_one 2678 * @spi: the spi device for which we allocate memory 2679 * @release: the release code to execute for this resource 2680 * @size: size to alloc and return 2681 * @gfp: GFP allocation flags 2682 * 2683 * Return: the pointer to the allocated data 2684 * 2685 * This may get enhanced in the future to allocate from a memory pool 2686 * of the @spi_device or @spi_controller to avoid repeated allocations. 2687 */ 2688 void *spi_res_alloc(struct spi_device *spi, 2689 spi_res_release_t release, 2690 size_t size, gfp_t gfp) 2691 { 2692 struct spi_res *sres; 2693 2694 sres = kzalloc(sizeof(*sres) + size, gfp); 2695 if (!sres) 2696 return NULL; 2697 2698 INIT_LIST_HEAD(&sres->entry); 2699 sres->release = release; 2700 2701 return sres->data; 2702 } 2703 EXPORT_SYMBOL_GPL(spi_res_alloc); 2704 2705 /** 2706 * spi_res_free - free an spi resource 2707 * @res: pointer to the custom data of a resource 2708 * 2709 */ 2710 void spi_res_free(void *res) 2711 { 2712 struct spi_res *sres = container_of(res, struct spi_res, data); 2713 2714 if (!res) 2715 return; 2716 2717 WARN_ON(!list_empty(&sres->entry)); 2718 kfree(sres); 2719 } 2720 EXPORT_SYMBOL_GPL(spi_res_free); 2721 2722 /** 2723 * spi_res_add - add a spi_res to the spi_message 2724 * @message: the spi message 2725 * @res: the spi_resource 2726 */ 2727 void spi_res_add(struct spi_message *message, void *res) 2728 { 2729 struct spi_res *sres = container_of(res, struct spi_res, data); 2730 2731 WARN_ON(!list_empty(&sres->entry)); 2732 list_add_tail(&sres->entry, &message->resources); 2733 } 2734 EXPORT_SYMBOL_GPL(spi_res_add); 2735 2736 /** 2737 * spi_res_release - release all spi resources for this message 2738 * @ctlr: the @spi_controller 2739 * @message: the @spi_message 2740 */ 2741 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2742 { 2743 struct spi_res *res, *tmp; 2744 2745 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 2746 if (res->release) 2747 res->release(ctlr, message, res->data); 2748 2749 list_del(&res->entry); 2750 2751 kfree(res); 2752 } 2753 } 2754 EXPORT_SYMBOL_GPL(spi_res_release); 2755 2756 /*-------------------------------------------------------------------------*/ 2757 2758 /* Core methods for spi_message alterations */ 2759 2760 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2761 struct spi_message *msg, 2762 void *res) 2763 { 2764 struct spi_replaced_transfers *rxfer = res; 2765 size_t i; 2766 2767 /* call extra callback if requested */ 2768 if (rxfer->release) 2769 rxfer->release(ctlr, msg, res); 2770 2771 /* insert replaced transfers back into the message */ 2772 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2773 2774 /* remove the formerly inserted entries */ 2775 for (i = 0; i < rxfer->inserted; i++) 2776 list_del(&rxfer->inserted_transfers[i].transfer_list); 2777 } 2778 2779 /** 2780 * spi_replace_transfers - replace transfers with several transfers 2781 * and register change with spi_message.resources 2782 * @msg: the spi_message we work upon 2783 * @xfer_first: the first spi_transfer we want to replace 2784 * @remove: number of transfers to remove 2785 * @insert: the number of transfers we want to insert instead 2786 * @release: extra release code necessary in some circumstances 2787 * @extradatasize: extra data to allocate (with alignment guarantees 2788 * of struct @spi_transfer) 2789 * @gfp: gfp flags 2790 * 2791 * Returns: pointer to @spi_replaced_transfers, 2792 * PTR_ERR(...) in case of errors. 2793 */ 2794 struct spi_replaced_transfers *spi_replace_transfers( 2795 struct spi_message *msg, 2796 struct spi_transfer *xfer_first, 2797 size_t remove, 2798 size_t insert, 2799 spi_replaced_release_t release, 2800 size_t extradatasize, 2801 gfp_t gfp) 2802 { 2803 struct spi_replaced_transfers *rxfer; 2804 struct spi_transfer *xfer; 2805 size_t i; 2806 2807 /* allocate the structure using spi_res */ 2808 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2809 struct_size(rxfer, inserted_transfers, insert) 2810 + extradatasize, 2811 gfp); 2812 if (!rxfer) 2813 return ERR_PTR(-ENOMEM); 2814 2815 /* the release code to invoke before running the generic release */ 2816 rxfer->release = release; 2817 2818 /* assign extradata */ 2819 if (extradatasize) 2820 rxfer->extradata = 2821 &rxfer->inserted_transfers[insert]; 2822 2823 /* init the replaced_transfers list */ 2824 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2825 2826 /* assign the list_entry after which we should reinsert 2827 * the @replaced_transfers - it may be spi_message.messages! 2828 */ 2829 rxfer->replaced_after = xfer_first->transfer_list.prev; 2830 2831 /* remove the requested number of transfers */ 2832 for (i = 0; i < remove; i++) { 2833 /* if the entry after replaced_after it is msg->transfers 2834 * then we have been requested to remove more transfers 2835 * than are in the list 2836 */ 2837 if (rxfer->replaced_after->next == &msg->transfers) { 2838 dev_err(&msg->spi->dev, 2839 "requested to remove more spi_transfers than are available\n"); 2840 /* insert replaced transfers back into the message */ 2841 list_splice(&rxfer->replaced_transfers, 2842 rxfer->replaced_after); 2843 2844 /* free the spi_replace_transfer structure */ 2845 spi_res_free(rxfer); 2846 2847 /* and return with an error */ 2848 return ERR_PTR(-EINVAL); 2849 } 2850 2851 /* remove the entry after replaced_after from list of 2852 * transfers and add it to list of replaced_transfers 2853 */ 2854 list_move_tail(rxfer->replaced_after->next, 2855 &rxfer->replaced_transfers); 2856 } 2857 2858 /* create copy of the given xfer with identical settings 2859 * based on the first transfer to get removed 2860 */ 2861 for (i = 0; i < insert; i++) { 2862 /* we need to run in reverse order */ 2863 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 2864 2865 /* copy all spi_transfer data */ 2866 memcpy(xfer, xfer_first, sizeof(*xfer)); 2867 2868 /* add to list */ 2869 list_add(&xfer->transfer_list, rxfer->replaced_after); 2870 2871 /* clear cs_change and delay_usecs for all but the last */ 2872 if (i) { 2873 xfer->cs_change = false; 2874 xfer->delay_usecs = 0; 2875 } 2876 } 2877 2878 /* set up inserted */ 2879 rxfer->inserted = insert; 2880 2881 /* and register it with spi_res/spi_message */ 2882 spi_res_add(msg, rxfer); 2883 2884 return rxfer; 2885 } 2886 EXPORT_SYMBOL_GPL(spi_replace_transfers); 2887 2888 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 2889 struct spi_message *msg, 2890 struct spi_transfer **xferp, 2891 size_t maxsize, 2892 gfp_t gfp) 2893 { 2894 struct spi_transfer *xfer = *xferp, *xfers; 2895 struct spi_replaced_transfers *srt; 2896 size_t offset; 2897 size_t count, i; 2898 2899 /* calculate how many we have to replace */ 2900 count = DIV_ROUND_UP(xfer->len, maxsize); 2901 2902 /* create replacement */ 2903 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 2904 if (IS_ERR(srt)) 2905 return PTR_ERR(srt); 2906 xfers = srt->inserted_transfers; 2907 2908 /* now handle each of those newly inserted spi_transfers 2909 * note that the replacements spi_transfers all are preset 2910 * to the same values as *xferp, so tx_buf, rx_buf and len 2911 * are all identical (as well as most others) 2912 * so we just have to fix up len and the pointers. 2913 * 2914 * this also includes support for the depreciated 2915 * spi_message.is_dma_mapped interface 2916 */ 2917 2918 /* the first transfer just needs the length modified, so we 2919 * run it outside the loop 2920 */ 2921 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 2922 2923 /* all the others need rx_buf/tx_buf also set */ 2924 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 2925 /* update rx_buf, tx_buf and dma */ 2926 if (xfers[i].rx_buf) 2927 xfers[i].rx_buf += offset; 2928 if (xfers[i].rx_dma) 2929 xfers[i].rx_dma += offset; 2930 if (xfers[i].tx_buf) 2931 xfers[i].tx_buf += offset; 2932 if (xfers[i].tx_dma) 2933 xfers[i].tx_dma += offset; 2934 2935 /* update length */ 2936 xfers[i].len = min(maxsize, xfers[i].len - offset); 2937 } 2938 2939 /* we set up xferp to the last entry we have inserted, 2940 * so that we skip those already split transfers 2941 */ 2942 *xferp = &xfers[count - 1]; 2943 2944 /* increment statistics counters */ 2945 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 2946 transfers_split_maxsize); 2947 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 2948 transfers_split_maxsize); 2949 2950 return 0; 2951 } 2952 2953 /** 2954 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 2955 * when an individual transfer exceeds a 2956 * certain size 2957 * @ctlr: the @spi_controller for this transfer 2958 * @msg: the @spi_message to transform 2959 * @maxsize: the maximum when to apply this 2960 * @gfp: GFP allocation flags 2961 * 2962 * Return: status of transformation 2963 */ 2964 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 2965 struct spi_message *msg, 2966 size_t maxsize, 2967 gfp_t gfp) 2968 { 2969 struct spi_transfer *xfer; 2970 int ret; 2971 2972 /* iterate over the transfer_list, 2973 * but note that xfer is advanced to the last transfer inserted 2974 * to avoid checking sizes again unnecessarily (also xfer does 2975 * potentiall belong to a different list by the time the 2976 * replacement has happened 2977 */ 2978 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 2979 if (xfer->len > maxsize) { 2980 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 2981 maxsize, gfp); 2982 if (ret) 2983 return ret; 2984 } 2985 } 2986 2987 return 0; 2988 } 2989 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 2990 2991 /*-------------------------------------------------------------------------*/ 2992 2993 /* Core methods for SPI controller protocol drivers. Some of the 2994 * other core methods are currently defined as inline functions. 2995 */ 2996 2997 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 2998 u8 bits_per_word) 2999 { 3000 if (ctlr->bits_per_word_mask) { 3001 /* Only 32 bits fit in the mask */ 3002 if (bits_per_word > 32) 3003 return -EINVAL; 3004 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3005 return -EINVAL; 3006 } 3007 3008 return 0; 3009 } 3010 3011 /** 3012 * spi_setup - setup SPI mode and clock rate 3013 * @spi: the device whose settings are being modified 3014 * Context: can sleep, and no requests are queued to the device 3015 * 3016 * SPI protocol drivers may need to update the transfer mode if the 3017 * device doesn't work with its default. They may likewise need 3018 * to update clock rates or word sizes from initial values. This function 3019 * changes those settings, and must be called from a context that can sleep. 3020 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3021 * effect the next time the device is selected and data is transferred to 3022 * or from it. When this function returns, the spi device is deselected. 3023 * 3024 * Note that this call will fail if the protocol driver specifies an option 3025 * that the underlying controller or its driver does not support. For 3026 * example, not all hardware supports wire transfers using nine bit words, 3027 * LSB-first wire encoding, or active-high chipselects. 3028 * 3029 * Return: zero on success, else a negative error code. 3030 */ 3031 int spi_setup(struct spi_device *spi) 3032 { 3033 unsigned bad_bits, ugly_bits; 3034 int status; 3035 3036 /* check mode to prevent that DUAL and QUAD set at the same time 3037 */ 3038 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3039 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3040 dev_err(&spi->dev, 3041 "setup: can not select dual and quad at the same time\n"); 3042 return -EINVAL; 3043 } 3044 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3045 */ 3046 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3047 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3048 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3049 return -EINVAL; 3050 /* help drivers fail *cleanly* when they need options 3051 * that aren't supported with their current controller 3052 * SPI_CS_WORD has a fallback software implementation, 3053 * so it is ignored here. 3054 */ 3055 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3056 /* nothing prevents from working with active-high CS in case if it 3057 * is driven by GPIO. 3058 */ 3059 if (gpio_is_valid(spi->cs_gpio)) 3060 bad_bits &= ~SPI_CS_HIGH; 3061 ugly_bits = bad_bits & 3062 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3063 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3064 if (ugly_bits) { 3065 dev_warn(&spi->dev, 3066 "setup: ignoring unsupported mode bits %x\n", 3067 ugly_bits); 3068 spi->mode &= ~ugly_bits; 3069 bad_bits &= ~ugly_bits; 3070 } 3071 if (bad_bits) { 3072 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3073 bad_bits); 3074 return -EINVAL; 3075 } 3076 3077 if (!spi->bits_per_word) 3078 spi->bits_per_word = 8; 3079 3080 status = __spi_validate_bits_per_word(spi->controller, 3081 spi->bits_per_word); 3082 if (status) 3083 return status; 3084 3085 if (!spi->max_speed_hz) 3086 spi->max_speed_hz = spi->controller->max_speed_hz; 3087 3088 if (spi->controller->setup) 3089 status = spi->controller->setup(spi); 3090 3091 spi_set_cs(spi, false); 3092 3093 if (spi->rt && !spi->controller->rt) { 3094 spi->controller->rt = true; 3095 spi_set_thread_rt(spi->controller); 3096 } 3097 3098 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3099 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3100 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3101 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3102 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3103 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3104 spi->bits_per_word, spi->max_speed_hz, 3105 status); 3106 3107 return status; 3108 } 3109 EXPORT_SYMBOL_GPL(spi_setup); 3110 3111 /** 3112 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3113 * @spi: the device that requires specific CS timing configuration 3114 * @setup: CS setup time in terms of clock count 3115 * @hold: CS hold time in terms of clock count 3116 * @inactive_dly: CS inactive delay between transfers in terms of clock count 3117 */ 3118 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold, 3119 u8 inactive_dly) 3120 { 3121 if (spi->controller->set_cs_timing) 3122 spi->controller->set_cs_timing(spi, setup, hold, inactive_dly); 3123 } 3124 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3125 3126 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3127 { 3128 struct spi_controller *ctlr = spi->controller; 3129 struct spi_transfer *xfer; 3130 int w_size; 3131 3132 if (list_empty(&message->transfers)) 3133 return -EINVAL; 3134 3135 /* If an SPI controller does not support toggling the CS line on each 3136 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3137 * for the CS line, we can emulate the CS-per-word hardware function by 3138 * splitting transfers into one-word transfers and ensuring that 3139 * cs_change is set for each transfer. 3140 */ 3141 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3142 spi->cs_gpiod || 3143 gpio_is_valid(spi->cs_gpio))) { 3144 size_t maxsize; 3145 int ret; 3146 3147 maxsize = (spi->bits_per_word + 7) / 8; 3148 3149 /* spi_split_transfers_maxsize() requires message->spi */ 3150 message->spi = spi; 3151 3152 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3153 GFP_KERNEL); 3154 if (ret) 3155 return ret; 3156 3157 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3158 /* don't change cs_change on the last entry in the list */ 3159 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3160 break; 3161 xfer->cs_change = 1; 3162 } 3163 } 3164 3165 /* Half-duplex links include original MicroWire, and ones with 3166 * only one data pin like SPI_3WIRE (switches direction) or where 3167 * either MOSI or MISO is missing. They can also be caused by 3168 * software limitations. 3169 */ 3170 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3171 (spi->mode & SPI_3WIRE)) { 3172 unsigned flags = ctlr->flags; 3173 3174 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3175 if (xfer->rx_buf && xfer->tx_buf) 3176 return -EINVAL; 3177 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3178 return -EINVAL; 3179 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3180 return -EINVAL; 3181 } 3182 } 3183 3184 /** 3185 * Set transfer bits_per_word and max speed as spi device default if 3186 * it is not set for this transfer. 3187 * Set transfer tx_nbits and rx_nbits as single transfer default 3188 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3189 * Ensure transfer word_delay is at least as long as that required by 3190 * device itself. 3191 */ 3192 message->frame_length = 0; 3193 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3194 xfer->effective_speed_hz = 0; 3195 message->frame_length += xfer->len; 3196 if (!xfer->bits_per_word) 3197 xfer->bits_per_word = spi->bits_per_word; 3198 3199 if (!xfer->speed_hz) 3200 xfer->speed_hz = spi->max_speed_hz; 3201 3202 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3203 xfer->speed_hz = ctlr->max_speed_hz; 3204 3205 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3206 return -EINVAL; 3207 3208 /* 3209 * SPI transfer length should be multiple of SPI word size 3210 * where SPI word size should be power-of-two multiple 3211 */ 3212 if (xfer->bits_per_word <= 8) 3213 w_size = 1; 3214 else if (xfer->bits_per_word <= 16) 3215 w_size = 2; 3216 else 3217 w_size = 4; 3218 3219 /* No partial transfers accepted */ 3220 if (xfer->len % w_size) 3221 return -EINVAL; 3222 3223 if (xfer->speed_hz && ctlr->min_speed_hz && 3224 xfer->speed_hz < ctlr->min_speed_hz) 3225 return -EINVAL; 3226 3227 if (xfer->tx_buf && !xfer->tx_nbits) 3228 xfer->tx_nbits = SPI_NBITS_SINGLE; 3229 if (xfer->rx_buf && !xfer->rx_nbits) 3230 xfer->rx_nbits = SPI_NBITS_SINGLE; 3231 /* check transfer tx/rx_nbits: 3232 * 1. check the value matches one of single, dual and quad 3233 * 2. check tx/rx_nbits match the mode in spi_device 3234 */ 3235 if (xfer->tx_buf) { 3236 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3237 xfer->tx_nbits != SPI_NBITS_DUAL && 3238 xfer->tx_nbits != SPI_NBITS_QUAD) 3239 return -EINVAL; 3240 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3241 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3242 return -EINVAL; 3243 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3244 !(spi->mode & SPI_TX_QUAD)) 3245 return -EINVAL; 3246 } 3247 /* check transfer rx_nbits */ 3248 if (xfer->rx_buf) { 3249 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3250 xfer->rx_nbits != SPI_NBITS_DUAL && 3251 xfer->rx_nbits != SPI_NBITS_QUAD) 3252 return -EINVAL; 3253 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3254 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3255 return -EINVAL; 3256 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3257 !(spi->mode & SPI_RX_QUAD)) 3258 return -EINVAL; 3259 } 3260 3261 if (xfer->word_delay_usecs < spi->word_delay_usecs) 3262 xfer->word_delay_usecs = spi->word_delay_usecs; 3263 } 3264 3265 message->status = -EINPROGRESS; 3266 3267 return 0; 3268 } 3269 3270 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3271 { 3272 struct spi_controller *ctlr = spi->controller; 3273 3274 /* 3275 * Some controllers do not support doing regular SPI transfers. Return 3276 * ENOTSUPP when this is the case. 3277 */ 3278 if (!ctlr->transfer) 3279 return -ENOTSUPP; 3280 3281 message->spi = spi; 3282 3283 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3284 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3285 3286 trace_spi_message_submit(message); 3287 3288 return ctlr->transfer(spi, message); 3289 } 3290 3291 /** 3292 * spi_async - asynchronous SPI transfer 3293 * @spi: device with which data will be exchanged 3294 * @message: describes the data transfers, including completion callback 3295 * Context: any (irqs may be blocked, etc) 3296 * 3297 * This call may be used in_irq and other contexts which can't sleep, 3298 * as well as from task contexts which can sleep. 3299 * 3300 * The completion callback is invoked in a context which can't sleep. 3301 * Before that invocation, the value of message->status is undefined. 3302 * When the callback is issued, message->status holds either zero (to 3303 * indicate complete success) or a negative error code. After that 3304 * callback returns, the driver which issued the transfer request may 3305 * deallocate the associated memory; it's no longer in use by any SPI 3306 * core or controller driver code. 3307 * 3308 * Note that although all messages to a spi_device are handled in 3309 * FIFO order, messages may go to different devices in other orders. 3310 * Some device might be higher priority, or have various "hard" access 3311 * time requirements, for example. 3312 * 3313 * On detection of any fault during the transfer, processing of 3314 * the entire message is aborted, and the device is deselected. 3315 * Until returning from the associated message completion callback, 3316 * no other spi_message queued to that device will be processed. 3317 * (This rule applies equally to all the synchronous transfer calls, 3318 * which are wrappers around this core asynchronous primitive.) 3319 * 3320 * Return: zero on success, else a negative error code. 3321 */ 3322 int spi_async(struct spi_device *spi, struct spi_message *message) 3323 { 3324 struct spi_controller *ctlr = spi->controller; 3325 int ret; 3326 unsigned long flags; 3327 3328 ret = __spi_validate(spi, message); 3329 if (ret != 0) 3330 return ret; 3331 3332 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3333 3334 if (ctlr->bus_lock_flag) 3335 ret = -EBUSY; 3336 else 3337 ret = __spi_async(spi, message); 3338 3339 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3340 3341 return ret; 3342 } 3343 EXPORT_SYMBOL_GPL(spi_async); 3344 3345 /** 3346 * spi_async_locked - version of spi_async with exclusive bus usage 3347 * @spi: device with which data will be exchanged 3348 * @message: describes the data transfers, including completion callback 3349 * Context: any (irqs may be blocked, etc) 3350 * 3351 * This call may be used in_irq and other contexts which can't sleep, 3352 * as well as from task contexts which can sleep. 3353 * 3354 * The completion callback is invoked in a context which can't sleep. 3355 * Before that invocation, the value of message->status is undefined. 3356 * When the callback is issued, message->status holds either zero (to 3357 * indicate complete success) or a negative error code. After that 3358 * callback returns, the driver which issued the transfer request may 3359 * deallocate the associated memory; it's no longer in use by any SPI 3360 * core or controller driver code. 3361 * 3362 * Note that although all messages to a spi_device are handled in 3363 * FIFO order, messages may go to different devices in other orders. 3364 * Some device might be higher priority, or have various "hard" access 3365 * time requirements, for example. 3366 * 3367 * On detection of any fault during the transfer, processing of 3368 * the entire message is aborted, and the device is deselected. 3369 * Until returning from the associated message completion callback, 3370 * no other spi_message queued to that device will be processed. 3371 * (This rule applies equally to all the synchronous transfer calls, 3372 * which are wrappers around this core asynchronous primitive.) 3373 * 3374 * Return: zero on success, else a negative error code. 3375 */ 3376 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3377 { 3378 struct spi_controller *ctlr = spi->controller; 3379 int ret; 3380 unsigned long flags; 3381 3382 ret = __spi_validate(spi, message); 3383 if (ret != 0) 3384 return ret; 3385 3386 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3387 3388 ret = __spi_async(spi, message); 3389 3390 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3391 3392 return ret; 3393 3394 } 3395 EXPORT_SYMBOL_GPL(spi_async_locked); 3396 3397 /*-------------------------------------------------------------------------*/ 3398 3399 /* Utility methods for SPI protocol drivers, layered on 3400 * top of the core. Some other utility methods are defined as 3401 * inline functions. 3402 */ 3403 3404 static void spi_complete(void *arg) 3405 { 3406 complete(arg); 3407 } 3408 3409 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3410 { 3411 DECLARE_COMPLETION_ONSTACK(done); 3412 int status; 3413 struct spi_controller *ctlr = spi->controller; 3414 unsigned long flags; 3415 3416 status = __spi_validate(spi, message); 3417 if (status != 0) 3418 return status; 3419 3420 message->complete = spi_complete; 3421 message->context = &done; 3422 message->spi = spi; 3423 3424 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3425 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3426 3427 /* If we're not using the legacy transfer method then we will 3428 * try to transfer in the calling context so special case. 3429 * This code would be less tricky if we could remove the 3430 * support for driver implemented message queues. 3431 */ 3432 if (ctlr->transfer == spi_queued_transfer) { 3433 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3434 3435 trace_spi_message_submit(message); 3436 3437 status = __spi_queued_transfer(spi, message, false); 3438 3439 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3440 } else { 3441 status = spi_async_locked(spi, message); 3442 } 3443 3444 if (status == 0) { 3445 /* Push out the messages in the calling context if we 3446 * can. 3447 */ 3448 if (ctlr->transfer == spi_queued_transfer) { 3449 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3450 spi_sync_immediate); 3451 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3452 spi_sync_immediate); 3453 __spi_pump_messages(ctlr, false); 3454 } 3455 3456 wait_for_completion(&done); 3457 status = message->status; 3458 } 3459 message->context = NULL; 3460 return status; 3461 } 3462 3463 /** 3464 * spi_sync - blocking/synchronous SPI data transfers 3465 * @spi: device with which data will be exchanged 3466 * @message: describes the data transfers 3467 * Context: can sleep 3468 * 3469 * This call may only be used from a context that may sleep. The sleep 3470 * is non-interruptible, and has no timeout. Low-overhead controller 3471 * drivers may DMA directly into and out of the message buffers. 3472 * 3473 * Note that the SPI device's chip select is active during the message, 3474 * and then is normally disabled between messages. Drivers for some 3475 * frequently-used devices may want to minimize costs of selecting a chip, 3476 * by leaving it selected in anticipation that the next message will go 3477 * to the same chip. (That may increase power usage.) 3478 * 3479 * Also, the caller is guaranteeing that the memory associated with the 3480 * message will not be freed before this call returns. 3481 * 3482 * Return: zero on success, else a negative error code. 3483 */ 3484 int spi_sync(struct spi_device *spi, struct spi_message *message) 3485 { 3486 int ret; 3487 3488 mutex_lock(&spi->controller->bus_lock_mutex); 3489 ret = __spi_sync(spi, message); 3490 mutex_unlock(&spi->controller->bus_lock_mutex); 3491 3492 return ret; 3493 } 3494 EXPORT_SYMBOL_GPL(spi_sync); 3495 3496 /** 3497 * spi_sync_locked - version of spi_sync with exclusive bus usage 3498 * @spi: device with which data will be exchanged 3499 * @message: describes the data transfers 3500 * Context: can sleep 3501 * 3502 * This call may only be used from a context that may sleep. The sleep 3503 * is non-interruptible, and has no timeout. Low-overhead controller 3504 * drivers may DMA directly into and out of the message buffers. 3505 * 3506 * This call should be used by drivers that require exclusive access to the 3507 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3508 * be released by a spi_bus_unlock call when the exclusive access is over. 3509 * 3510 * Return: zero on success, else a negative error code. 3511 */ 3512 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3513 { 3514 return __spi_sync(spi, message); 3515 } 3516 EXPORT_SYMBOL_GPL(spi_sync_locked); 3517 3518 /** 3519 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3520 * @ctlr: SPI bus master that should be locked for exclusive bus access 3521 * Context: can sleep 3522 * 3523 * This call may only be used from a context that may sleep. The sleep 3524 * is non-interruptible, and has no timeout. 3525 * 3526 * This call should be used by drivers that require exclusive access to the 3527 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3528 * exclusive access is over. Data transfer must be done by spi_sync_locked 3529 * and spi_async_locked calls when the SPI bus lock is held. 3530 * 3531 * Return: always zero. 3532 */ 3533 int spi_bus_lock(struct spi_controller *ctlr) 3534 { 3535 unsigned long flags; 3536 3537 mutex_lock(&ctlr->bus_lock_mutex); 3538 3539 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3540 ctlr->bus_lock_flag = 1; 3541 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3542 3543 /* mutex remains locked until spi_bus_unlock is called */ 3544 3545 return 0; 3546 } 3547 EXPORT_SYMBOL_GPL(spi_bus_lock); 3548 3549 /** 3550 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3551 * @ctlr: SPI bus master that was locked for exclusive bus access 3552 * Context: can sleep 3553 * 3554 * This call may only be used from a context that may sleep. The sleep 3555 * is non-interruptible, and has no timeout. 3556 * 3557 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3558 * call. 3559 * 3560 * Return: always zero. 3561 */ 3562 int spi_bus_unlock(struct spi_controller *ctlr) 3563 { 3564 ctlr->bus_lock_flag = 0; 3565 3566 mutex_unlock(&ctlr->bus_lock_mutex); 3567 3568 return 0; 3569 } 3570 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3571 3572 /* portable code must never pass more than 32 bytes */ 3573 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3574 3575 static u8 *buf; 3576 3577 /** 3578 * spi_write_then_read - SPI synchronous write followed by read 3579 * @spi: device with which data will be exchanged 3580 * @txbuf: data to be written (need not be dma-safe) 3581 * @n_tx: size of txbuf, in bytes 3582 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3583 * @n_rx: size of rxbuf, in bytes 3584 * Context: can sleep 3585 * 3586 * This performs a half duplex MicroWire style transaction with the 3587 * device, sending txbuf and then reading rxbuf. The return value 3588 * is zero for success, else a negative errno status code. 3589 * This call may only be used from a context that may sleep. 3590 * 3591 * Parameters to this routine are always copied using a small buffer; 3592 * portable code should never use this for more than 32 bytes. 3593 * Performance-sensitive or bulk transfer code should instead use 3594 * spi_{async,sync}() calls with dma-safe buffers. 3595 * 3596 * Return: zero on success, else a negative error code. 3597 */ 3598 int spi_write_then_read(struct spi_device *spi, 3599 const void *txbuf, unsigned n_tx, 3600 void *rxbuf, unsigned n_rx) 3601 { 3602 static DEFINE_MUTEX(lock); 3603 3604 int status; 3605 struct spi_message message; 3606 struct spi_transfer x[2]; 3607 u8 *local_buf; 3608 3609 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3610 * copying here, (as a pure convenience thing), but we can 3611 * keep heap costs out of the hot path unless someone else is 3612 * using the pre-allocated buffer or the transfer is too large. 3613 */ 3614 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3615 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3616 GFP_KERNEL | GFP_DMA); 3617 if (!local_buf) 3618 return -ENOMEM; 3619 } else { 3620 local_buf = buf; 3621 } 3622 3623 spi_message_init(&message); 3624 memset(x, 0, sizeof(x)); 3625 if (n_tx) { 3626 x[0].len = n_tx; 3627 spi_message_add_tail(&x[0], &message); 3628 } 3629 if (n_rx) { 3630 x[1].len = n_rx; 3631 spi_message_add_tail(&x[1], &message); 3632 } 3633 3634 memcpy(local_buf, txbuf, n_tx); 3635 x[0].tx_buf = local_buf; 3636 x[1].rx_buf = local_buf + n_tx; 3637 3638 /* do the i/o */ 3639 status = spi_sync(spi, &message); 3640 if (status == 0) 3641 memcpy(rxbuf, x[1].rx_buf, n_rx); 3642 3643 if (x[0].tx_buf == buf) 3644 mutex_unlock(&lock); 3645 else 3646 kfree(local_buf); 3647 3648 return status; 3649 } 3650 EXPORT_SYMBOL_GPL(spi_write_then_read); 3651 3652 /*-------------------------------------------------------------------------*/ 3653 3654 #if IS_ENABLED(CONFIG_OF) 3655 static int __spi_of_device_match(struct device *dev, const void *data) 3656 { 3657 return dev->of_node == data; 3658 } 3659 3660 /* must call put_device() when done with returned spi_device device */ 3661 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3662 { 3663 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 3664 __spi_of_device_match); 3665 return dev ? to_spi_device(dev) : NULL; 3666 } 3667 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3668 #endif /* IS_ENABLED(CONFIG_OF) */ 3669 3670 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3671 static int __spi_of_controller_match(struct device *dev, const void *data) 3672 { 3673 return dev->of_node == data; 3674 } 3675 3676 /* the spi controllers are not using spi_bus, so we find it with another way */ 3677 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3678 { 3679 struct device *dev; 3680 3681 dev = class_find_device(&spi_master_class, NULL, node, 3682 __spi_of_controller_match); 3683 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3684 dev = class_find_device(&spi_slave_class, NULL, node, 3685 __spi_of_controller_match); 3686 if (!dev) 3687 return NULL; 3688 3689 /* reference got in class_find_device */ 3690 return container_of(dev, struct spi_controller, dev); 3691 } 3692 3693 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3694 void *arg) 3695 { 3696 struct of_reconfig_data *rd = arg; 3697 struct spi_controller *ctlr; 3698 struct spi_device *spi; 3699 3700 switch (of_reconfig_get_state_change(action, arg)) { 3701 case OF_RECONFIG_CHANGE_ADD: 3702 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3703 if (ctlr == NULL) 3704 return NOTIFY_OK; /* not for us */ 3705 3706 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3707 put_device(&ctlr->dev); 3708 return NOTIFY_OK; 3709 } 3710 3711 spi = of_register_spi_device(ctlr, rd->dn); 3712 put_device(&ctlr->dev); 3713 3714 if (IS_ERR(spi)) { 3715 pr_err("%s: failed to create for '%pOF'\n", 3716 __func__, rd->dn); 3717 of_node_clear_flag(rd->dn, OF_POPULATED); 3718 return notifier_from_errno(PTR_ERR(spi)); 3719 } 3720 break; 3721 3722 case OF_RECONFIG_CHANGE_REMOVE: 3723 /* already depopulated? */ 3724 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3725 return NOTIFY_OK; 3726 3727 /* find our device by node */ 3728 spi = of_find_spi_device_by_node(rd->dn); 3729 if (spi == NULL) 3730 return NOTIFY_OK; /* no? not meant for us */ 3731 3732 /* unregister takes one ref away */ 3733 spi_unregister_device(spi); 3734 3735 /* and put the reference of the find */ 3736 put_device(&spi->dev); 3737 break; 3738 } 3739 3740 return NOTIFY_OK; 3741 } 3742 3743 static struct notifier_block spi_of_notifier = { 3744 .notifier_call = of_spi_notify, 3745 }; 3746 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3747 extern struct notifier_block spi_of_notifier; 3748 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3749 3750 #if IS_ENABLED(CONFIG_ACPI) 3751 static int spi_acpi_controller_match(struct device *dev, const void *data) 3752 { 3753 return ACPI_COMPANION(dev->parent) == data; 3754 } 3755 3756 static int spi_acpi_device_match(struct device *dev, const void *data) 3757 { 3758 return ACPI_COMPANION(dev) == data; 3759 } 3760 3761 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 3762 { 3763 struct device *dev; 3764 3765 dev = class_find_device(&spi_master_class, NULL, adev, 3766 spi_acpi_controller_match); 3767 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3768 dev = class_find_device(&spi_slave_class, NULL, adev, 3769 spi_acpi_controller_match); 3770 if (!dev) 3771 return NULL; 3772 3773 return container_of(dev, struct spi_controller, dev); 3774 } 3775 3776 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 3777 { 3778 struct device *dev; 3779 3780 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match); 3781 3782 return dev ? to_spi_device(dev) : NULL; 3783 } 3784 3785 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 3786 void *arg) 3787 { 3788 struct acpi_device *adev = arg; 3789 struct spi_controller *ctlr; 3790 struct spi_device *spi; 3791 3792 switch (value) { 3793 case ACPI_RECONFIG_DEVICE_ADD: 3794 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 3795 if (!ctlr) 3796 break; 3797 3798 acpi_register_spi_device(ctlr, adev); 3799 put_device(&ctlr->dev); 3800 break; 3801 case ACPI_RECONFIG_DEVICE_REMOVE: 3802 if (!acpi_device_enumerated(adev)) 3803 break; 3804 3805 spi = acpi_spi_find_device_by_adev(adev); 3806 if (!spi) 3807 break; 3808 3809 spi_unregister_device(spi); 3810 put_device(&spi->dev); 3811 break; 3812 } 3813 3814 return NOTIFY_OK; 3815 } 3816 3817 static struct notifier_block spi_acpi_notifier = { 3818 .notifier_call = acpi_spi_notify, 3819 }; 3820 #else 3821 extern struct notifier_block spi_acpi_notifier; 3822 #endif 3823 3824 static int __init spi_init(void) 3825 { 3826 int status; 3827 3828 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 3829 if (!buf) { 3830 status = -ENOMEM; 3831 goto err0; 3832 } 3833 3834 status = bus_register(&spi_bus_type); 3835 if (status < 0) 3836 goto err1; 3837 3838 status = class_register(&spi_master_class); 3839 if (status < 0) 3840 goto err2; 3841 3842 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 3843 status = class_register(&spi_slave_class); 3844 if (status < 0) 3845 goto err3; 3846 } 3847 3848 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 3849 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 3850 if (IS_ENABLED(CONFIG_ACPI)) 3851 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 3852 3853 return 0; 3854 3855 err3: 3856 class_unregister(&spi_master_class); 3857 err2: 3858 bus_unregister(&spi_bus_type); 3859 err1: 3860 kfree(buf); 3861 buf = NULL; 3862 err0: 3863 return status; 3864 } 3865 3866 /* board_info is normally registered in arch_initcall(), 3867 * but even essential drivers wait till later 3868 * 3869 * REVISIT only boardinfo really needs static linking. the rest (device and 3870 * driver registration) _could_ be dynamically linked (modular) ... costs 3871 * include needing to have boardinfo data structures be much more public. 3872 */ 3873 postcore_initcall(spi_init); 3874