1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 spi_controller_put(spi->controller); 51 kfree(spi->driver_override); 52 kfree(spi); 53 } 54 55 static ssize_t 56 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 57 { 58 const struct spi_device *spi = to_spi_device(dev); 59 int len; 60 61 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 62 if (len != -ENODEV) 63 return len; 64 65 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 66 } 67 static DEVICE_ATTR_RO(modalias); 68 69 static ssize_t driver_override_store(struct device *dev, 70 struct device_attribute *a, 71 const char *buf, size_t count) 72 { 73 struct spi_device *spi = to_spi_device(dev); 74 const char *end = memchr(buf, '\n', count); 75 const size_t len = end ? end - buf : count; 76 const char *driver_override, *old; 77 78 /* We need to keep extra room for a newline when displaying value */ 79 if (len >= (PAGE_SIZE - 1)) 80 return -EINVAL; 81 82 driver_override = kstrndup(buf, len, GFP_KERNEL); 83 if (!driver_override) 84 return -ENOMEM; 85 86 device_lock(dev); 87 old = spi->driver_override; 88 if (len) { 89 spi->driver_override = driver_override; 90 } else { 91 /* Empty string, disable driver override */ 92 spi->driver_override = NULL; 93 kfree(driver_override); 94 } 95 device_unlock(dev); 96 kfree(old); 97 98 return count; 99 } 100 101 static ssize_t driver_override_show(struct device *dev, 102 struct device_attribute *a, char *buf) 103 { 104 const struct spi_device *spi = to_spi_device(dev); 105 ssize_t len; 106 107 device_lock(dev); 108 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 109 device_unlock(dev); 110 return len; 111 } 112 static DEVICE_ATTR_RW(driver_override); 113 114 #define SPI_STATISTICS_ATTRS(field, file) \ 115 static ssize_t spi_controller_##field##_show(struct device *dev, \ 116 struct device_attribute *attr, \ 117 char *buf) \ 118 { \ 119 struct spi_controller *ctlr = container_of(dev, \ 120 struct spi_controller, dev); \ 121 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 122 } \ 123 static struct device_attribute dev_attr_spi_controller_##field = { \ 124 .attr = { .name = file, .mode = 0444 }, \ 125 .show = spi_controller_##field##_show, \ 126 }; \ 127 static ssize_t spi_device_##field##_show(struct device *dev, \ 128 struct device_attribute *attr, \ 129 char *buf) \ 130 { \ 131 struct spi_device *spi = to_spi_device(dev); \ 132 return spi_statistics_##field##_show(&spi->statistics, buf); \ 133 } \ 134 static struct device_attribute dev_attr_spi_device_##field = { \ 135 .attr = { .name = file, .mode = 0444 }, \ 136 .show = spi_device_##field##_show, \ 137 } 138 139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 141 char *buf) \ 142 { \ 143 unsigned long flags; \ 144 ssize_t len; \ 145 spin_lock_irqsave(&stat->lock, flags); \ 146 len = sprintf(buf, format_string, stat->field); \ 147 spin_unlock_irqrestore(&stat->lock, flags); \ 148 return len; \ 149 } \ 150 SPI_STATISTICS_ATTRS(name, file) 151 152 #define SPI_STATISTICS_SHOW(field, format_string) \ 153 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 154 field, format_string) 155 156 SPI_STATISTICS_SHOW(messages, "%lu"); 157 SPI_STATISTICS_SHOW(transfers, "%lu"); 158 SPI_STATISTICS_SHOW(errors, "%lu"); 159 SPI_STATISTICS_SHOW(timedout, "%lu"); 160 161 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 163 SPI_STATISTICS_SHOW(spi_async, "%lu"); 164 165 SPI_STATISTICS_SHOW(bytes, "%llu"); 166 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 167 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 168 169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 170 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 171 "transfer_bytes_histo_" number, \ 172 transfer_bytes_histo[index], "%lu") 173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 190 191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 192 193 static struct attribute *spi_dev_attrs[] = { 194 &dev_attr_modalias.attr, 195 &dev_attr_driver_override.attr, 196 NULL, 197 }; 198 199 static const struct attribute_group spi_dev_group = { 200 .attrs = spi_dev_attrs, 201 }; 202 203 static struct attribute *spi_device_statistics_attrs[] = { 204 &dev_attr_spi_device_messages.attr, 205 &dev_attr_spi_device_transfers.attr, 206 &dev_attr_spi_device_errors.attr, 207 &dev_attr_spi_device_timedout.attr, 208 &dev_attr_spi_device_spi_sync.attr, 209 &dev_attr_spi_device_spi_sync_immediate.attr, 210 &dev_attr_spi_device_spi_async.attr, 211 &dev_attr_spi_device_bytes.attr, 212 &dev_attr_spi_device_bytes_rx.attr, 213 &dev_attr_spi_device_bytes_tx.attr, 214 &dev_attr_spi_device_transfer_bytes_histo0.attr, 215 &dev_attr_spi_device_transfer_bytes_histo1.attr, 216 &dev_attr_spi_device_transfer_bytes_histo2.attr, 217 &dev_attr_spi_device_transfer_bytes_histo3.attr, 218 &dev_attr_spi_device_transfer_bytes_histo4.attr, 219 &dev_attr_spi_device_transfer_bytes_histo5.attr, 220 &dev_attr_spi_device_transfer_bytes_histo6.attr, 221 &dev_attr_spi_device_transfer_bytes_histo7.attr, 222 &dev_attr_spi_device_transfer_bytes_histo8.attr, 223 &dev_attr_spi_device_transfer_bytes_histo9.attr, 224 &dev_attr_spi_device_transfer_bytes_histo10.attr, 225 &dev_attr_spi_device_transfer_bytes_histo11.attr, 226 &dev_attr_spi_device_transfer_bytes_histo12.attr, 227 &dev_attr_spi_device_transfer_bytes_histo13.attr, 228 &dev_attr_spi_device_transfer_bytes_histo14.attr, 229 &dev_attr_spi_device_transfer_bytes_histo15.attr, 230 &dev_attr_spi_device_transfer_bytes_histo16.attr, 231 &dev_attr_spi_device_transfers_split_maxsize.attr, 232 NULL, 233 }; 234 235 static const struct attribute_group spi_device_statistics_group = { 236 .name = "statistics", 237 .attrs = spi_device_statistics_attrs, 238 }; 239 240 static const struct attribute_group *spi_dev_groups[] = { 241 &spi_dev_group, 242 &spi_device_statistics_group, 243 NULL, 244 }; 245 246 static struct attribute *spi_controller_statistics_attrs[] = { 247 &dev_attr_spi_controller_messages.attr, 248 &dev_attr_spi_controller_transfers.attr, 249 &dev_attr_spi_controller_errors.attr, 250 &dev_attr_spi_controller_timedout.attr, 251 &dev_attr_spi_controller_spi_sync.attr, 252 &dev_attr_spi_controller_spi_sync_immediate.attr, 253 &dev_attr_spi_controller_spi_async.attr, 254 &dev_attr_spi_controller_bytes.attr, 255 &dev_attr_spi_controller_bytes_rx.attr, 256 &dev_attr_spi_controller_bytes_tx.attr, 257 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 258 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 259 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 260 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 274 &dev_attr_spi_controller_transfers_split_maxsize.attr, 275 NULL, 276 }; 277 278 static const struct attribute_group spi_controller_statistics_group = { 279 .name = "statistics", 280 .attrs = spi_controller_statistics_attrs, 281 }; 282 283 static const struct attribute_group *spi_master_groups[] = { 284 &spi_controller_statistics_group, 285 NULL, 286 }; 287 288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 289 struct spi_transfer *xfer, 290 struct spi_controller *ctlr) 291 { 292 unsigned long flags; 293 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 294 295 if (l2len < 0) 296 l2len = 0; 297 298 spin_lock_irqsave(&stats->lock, flags); 299 300 stats->transfers++; 301 stats->transfer_bytes_histo[l2len]++; 302 303 stats->bytes += xfer->len; 304 if ((xfer->tx_buf) && 305 (xfer->tx_buf != ctlr->dummy_tx)) 306 stats->bytes_tx += xfer->len; 307 if ((xfer->rx_buf) && 308 (xfer->rx_buf != ctlr->dummy_rx)) 309 stats->bytes_rx += xfer->len; 310 311 spin_unlock_irqrestore(&stats->lock, flags); 312 } 313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 314 315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 316 * and the sysfs version makes coldplug work too. 317 */ 318 319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 320 const struct spi_device *sdev) 321 { 322 while (id->name[0]) { 323 if (!strcmp(sdev->modalias, id->name)) 324 return id; 325 id++; 326 } 327 return NULL; 328 } 329 330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 331 { 332 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 333 334 return spi_match_id(sdrv->id_table, sdev); 335 } 336 EXPORT_SYMBOL_GPL(spi_get_device_id); 337 338 static int spi_match_device(struct device *dev, struct device_driver *drv) 339 { 340 const struct spi_device *spi = to_spi_device(dev); 341 const struct spi_driver *sdrv = to_spi_driver(drv); 342 343 /* Check override first, and if set, only use the named driver */ 344 if (spi->driver_override) 345 return strcmp(spi->driver_override, drv->name) == 0; 346 347 /* Attempt an OF style match */ 348 if (of_driver_match_device(dev, drv)) 349 return 1; 350 351 /* Then try ACPI */ 352 if (acpi_driver_match_device(dev, drv)) 353 return 1; 354 355 if (sdrv->id_table) 356 return !!spi_match_id(sdrv->id_table, spi); 357 358 return strcmp(spi->modalias, drv->name) == 0; 359 } 360 361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 362 { 363 const struct spi_device *spi = to_spi_device(dev); 364 int rc; 365 366 rc = acpi_device_uevent_modalias(dev, env); 367 if (rc != -ENODEV) 368 return rc; 369 370 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 371 } 372 373 static int spi_probe(struct device *dev) 374 { 375 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 376 struct spi_device *spi = to_spi_device(dev); 377 int ret; 378 379 ret = of_clk_set_defaults(dev->of_node, false); 380 if (ret) 381 return ret; 382 383 if (dev->of_node) { 384 spi->irq = of_irq_get(dev->of_node, 0); 385 if (spi->irq == -EPROBE_DEFER) 386 return -EPROBE_DEFER; 387 if (spi->irq < 0) 388 spi->irq = 0; 389 } 390 391 ret = dev_pm_domain_attach(dev, true); 392 if (ret) 393 return ret; 394 395 if (sdrv->probe) { 396 ret = sdrv->probe(spi); 397 if (ret) 398 dev_pm_domain_detach(dev, true); 399 } 400 401 return ret; 402 } 403 404 static int spi_remove(struct device *dev) 405 { 406 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 407 408 if (sdrv->remove) { 409 int ret; 410 411 ret = sdrv->remove(to_spi_device(dev)); 412 if (ret) 413 dev_warn(dev, 414 "Failed to unbind driver (%pe), ignoring\n", 415 ERR_PTR(ret)); 416 } 417 418 dev_pm_domain_detach(dev, true); 419 420 return 0; 421 } 422 423 static void spi_shutdown(struct device *dev) 424 { 425 if (dev->driver) { 426 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 427 428 if (sdrv->shutdown) 429 sdrv->shutdown(to_spi_device(dev)); 430 } 431 } 432 433 struct bus_type spi_bus_type = { 434 .name = "spi", 435 .dev_groups = spi_dev_groups, 436 .match = spi_match_device, 437 .uevent = spi_uevent, 438 .probe = spi_probe, 439 .remove = spi_remove, 440 .shutdown = spi_shutdown, 441 }; 442 EXPORT_SYMBOL_GPL(spi_bus_type); 443 444 /** 445 * __spi_register_driver - register a SPI driver 446 * @owner: owner module of the driver to register 447 * @sdrv: the driver to register 448 * Context: can sleep 449 * 450 * Return: zero on success, else a negative error code. 451 */ 452 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 453 { 454 sdrv->driver.owner = owner; 455 sdrv->driver.bus = &spi_bus_type; 456 return driver_register(&sdrv->driver); 457 } 458 EXPORT_SYMBOL_GPL(__spi_register_driver); 459 460 /*-------------------------------------------------------------------------*/ 461 462 /* SPI devices should normally not be created by SPI device drivers; that 463 * would make them board-specific. Similarly with SPI controller drivers. 464 * Device registration normally goes into like arch/.../mach.../board-YYY.c 465 * with other readonly (flashable) information about mainboard devices. 466 */ 467 468 struct boardinfo { 469 struct list_head list; 470 struct spi_board_info board_info; 471 }; 472 473 static LIST_HEAD(board_list); 474 static LIST_HEAD(spi_controller_list); 475 476 /* 477 * Used to protect add/del operation for board_info list and 478 * spi_controller list, and their matching process 479 * also used to protect object of type struct idr 480 */ 481 static DEFINE_MUTEX(board_lock); 482 483 /* 484 * Prevents addition of devices with same chip select and 485 * addition of devices below an unregistering controller. 486 */ 487 static DEFINE_MUTEX(spi_add_lock); 488 489 /** 490 * spi_alloc_device - Allocate a new SPI device 491 * @ctlr: Controller to which device is connected 492 * Context: can sleep 493 * 494 * Allows a driver to allocate and initialize a spi_device without 495 * registering it immediately. This allows a driver to directly 496 * fill the spi_device with device parameters before calling 497 * spi_add_device() on it. 498 * 499 * Caller is responsible to call spi_add_device() on the returned 500 * spi_device structure to add it to the SPI controller. If the caller 501 * needs to discard the spi_device without adding it, then it should 502 * call spi_dev_put() on it. 503 * 504 * Return: a pointer to the new device, or NULL. 505 */ 506 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 507 { 508 struct spi_device *spi; 509 510 if (!spi_controller_get(ctlr)) 511 return NULL; 512 513 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 514 if (!spi) { 515 spi_controller_put(ctlr); 516 return NULL; 517 } 518 519 spi->master = spi->controller = ctlr; 520 spi->dev.parent = &ctlr->dev; 521 spi->dev.bus = &spi_bus_type; 522 spi->dev.release = spidev_release; 523 spi->cs_gpio = -ENOENT; 524 spi->mode = ctlr->buswidth_override_bits; 525 526 spin_lock_init(&spi->statistics.lock); 527 528 device_initialize(&spi->dev); 529 return spi; 530 } 531 EXPORT_SYMBOL_GPL(spi_alloc_device); 532 533 static void spi_dev_set_name(struct spi_device *spi) 534 { 535 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 536 537 if (adev) { 538 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 539 return; 540 } 541 542 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 543 spi->chip_select); 544 } 545 546 static int spi_dev_check(struct device *dev, void *data) 547 { 548 struct spi_device *spi = to_spi_device(dev); 549 struct spi_device *new_spi = data; 550 551 if (spi->controller == new_spi->controller && 552 spi->chip_select == new_spi->chip_select) 553 return -EBUSY; 554 return 0; 555 } 556 557 static void spi_cleanup(struct spi_device *spi) 558 { 559 if (spi->controller->cleanup) 560 spi->controller->cleanup(spi); 561 } 562 563 /** 564 * spi_add_device - Add spi_device allocated with spi_alloc_device 565 * @spi: spi_device to register 566 * 567 * Companion function to spi_alloc_device. Devices allocated with 568 * spi_alloc_device can be added onto the spi bus with this function. 569 * 570 * Return: 0 on success; negative errno on failure 571 */ 572 int spi_add_device(struct spi_device *spi) 573 { 574 struct spi_controller *ctlr = spi->controller; 575 struct device *dev = ctlr->dev.parent; 576 int status; 577 578 /* Chipselects are numbered 0..max; validate. */ 579 if (spi->chip_select >= ctlr->num_chipselect) { 580 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 581 ctlr->num_chipselect); 582 return -EINVAL; 583 } 584 585 /* Set the bus ID string */ 586 spi_dev_set_name(spi); 587 588 /* We need to make sure there's no other device with this 589 * chipselect **BEFORE** we call setup(), else we'll trash 590 * its configuration. Lock against concurrent add() calls. 591 */ 592 mutex_lock(&spi_add_lock); 593 594 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 595 if (status) { 596 dev_err(dev, "chipselect %d already in use\n", 597 spi->chip_select); 598 goto done; 599 } 600 601 /* Controller may unregister concurrently */ 602 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 603 !device_is_registered(&ctlr->dev)) { 604 status = -ENODEV; 605 goto done; 606 } 607 608 /* Descriptors take precedence */ 609 if (ctlr->cs_gpiods) 610 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 611 else if (ctlr->cs_gpios) 612 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 613 614 /* Drivers may modify this initial i/o setup, but will 615 * normally rely on the device being setup. Devices 616 * using SPI_CS_HIGH can't coexist well otherwise... 617 */ 618 status = spi_setup(spi); 619 if (status < 0) { 620 dev_err(dev, "can't setup %s, status %d\n", 621 dev_name(&spi->dev), status); 622 goto done; 623 } 624 625 /* Device may be bound to an active driver when this returns */ 626 status = device_add(&spi->dev); 627 if (status < 0) { 628 dev_err(dev, "can't add %s, status %d\n", 629 dev_name(&spi->dev), status); 630 spi_cleanup(spi); 631 } else { 632 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 633 } 634 635 done: 636 mutex_unlock(&spi_add_lock); 637 return status; 638 } 639 EXPORT_SYMBOL_GPL(spi_add_device); 640 641 /** 642 * spi_new_device - instantiate one new SPI device 643 * @ctlr: Controller to which device is connected 644 * @chip: Describes the SPI device 645 * Context: can sleep 646 * 647 * On typical mainboards, this is purely internal; and it's not needed 648 * after board init creates the hard-wired devices. Some development 649 * platforms may not be able to use spi_register_board_info though, and 650 * this is exported so that for example a USB or parport based adapter 651 * driver could add devices (which it would learn about out-of-band). 652 * 653 * Return: the new device, or NULL. 654 */ 655 struct spi_device *spi_new_device(struct spi_controller *ctlr, 656 struct spi_board_info *chip) 657 { 658 struct spi_device *proxy; 659 int status; 660 661 /* NOTE: caller did any chip->bus_num checks necessary. 662 * 663 * Also, unless we change the return value convention to use 664 * error-or-pointer (not NULL-or-pointer), troubleshootability 665 * suggests syslogged diagnostics are best here (ugh). 666 */ 667 668 proxy = spi_alloc_device(ctlr); 669 if (!proxy) 670 return NULL; 671 672 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 673 674 proxy->chip_select = chip->chip_select; 675 proxy->max_speed_hz = chip->max_speed_hz; 676 proxy->mode = chip->mode; 677 proxy->irq = chip->irq; 678 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 679 proxy->dev.platform_data = (void *) chip->platform_data; 680 proxy->controller_data = chip->controller_data; 681 proxy->controller_state = NULL; 682 683 if (chip->swnode) { 684 status = device_add_software_node(&proxy->dev, chip->swnode); 685 if (status) { 686 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 687 chip->modalias, status); 688 goto err_dev_put; 689 } 690 } 691 692 status = spi_add_device(proxy); 693 if (status < 0) 694 goto err_dev_put; 695 696 return proxy; 697 698 err_dev_put: 699 device_remove_software_node(&proxy->dev); 700 spi_dev_put(proxy); 701 return NULL; 702 } 703 EXPORT_SYMBOL_GPL(spi_new_device); 704 705 /** 706 * spi_unregister_device - unregister a single SPI device 707 * @spi: spi_device to unregister 708 * 709 * Start making the passed SPI device vanish. Normally this would be handled 710 * by spi_unregister_controller(). 711 */ 712 void spi_unregister_device(struct spi_device *spi) 713 { 714 if (!spi) 715 return; 716 717 if (spi->dev.of_node) { 718 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 719 of_node_put(spi->dev.of_node); 720 } 721 if (ACPI_COMPANION(&spi->dev)) 722 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 723 device_remove_software_node(&spi->dev); 724 device_del(&spi->dev); 725 spi_cleanup(spi); 726 put_device(&spi->dev); 727 } 728 EXPORT_SYMBOL_GPL(spi_unregister_device); 729 730 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 731 struct spi_board_info *bi) 732 { 733 struct spi_device *dev; 734 735 if (ctlr->bus_num != bi->bus_num) 736 return; 737 738 dev = spi_new_device(ctlr, bi); 739 if (!dev) 740 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 741 bi->modalias); 742 } 743 744 /** 745 * spi_register_board_info - register SPI devices for a given board 746 * @info: array of chip descriptors 747 * @n: how many descriptors are provided 748 * Context: can sleep 749 * 750 * Board-specific early init code calls this (probably during arch_initcall) 751 * with segments of the SPI device table. Any device nodes are created later, 752 * after the relevant parent SPI controller (bus_num) is defined. We keep 753 * this table of devices forever, so that reloading a controller driver will 754 * not make Linux forget about these hard-wired devices. 755 * 756 * Other code can also call this, e.g. a particular add-on board might provide 757 * SPI devices through its expansion connector, so code initializing that board 758 * would naturally declare its SPI devices. 759 * 760 * The board info passed can safely be __initdata ... but be careful of 761 * any embedded pointers (platform_data, etc), they're copied as-is. 762 * 763 * Return: zero on success, else a negative error code. 764 */ 765 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 766 { 767 struct boardinfo *bi; 768 int i; 769 770 if (!n) 771 return 0; 772 773 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 774 if (!bi) 775 return -ENOMEM; 776 777 for (i = 0; i < n; i++, bi++, info++) { 778 struct spi_controller *ctlr; 779 780 memcpy(&bi->board_info, info, sizeof(*info)); 781 782 mutex_lock(&board_lock); 783 list_add_tail(&bi->list, &board_list); 784 list_for_each_entry(ctlr, &spi_controller_list, list) 785 spi_match_controller_to_boardinfo(ctlr, 786 &bi->board_info); 787 mutex_unlock(&board_lock); 788 } 789 790 return 0; 791 } 792 793 /*-------------------------------------------------------------------------*/ 794 795 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 796 { 797 bool activate = enable; 798 799 /* 800 * Avoid calling into the driver (or doing delays) if the chip select 801 * isn't actually changing from the last time this was called. 802 */ 803 if (!force && (spi->controller->last_cs_enable == enable) && 804 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 805 return; 806 807 spi->controller->last_cs_enable = enable; 808 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 809 810 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 811 !spi->controller->set_cs_timing) { 812 if (activate) 813 spi_delay_exec(&spi->controller->cs_setup, NULL); 814 else 815 spi_delay_exec(&spi->controller->cs_hold, NULL); 816 } 817 818 if (spi->mode & SPI_CS_HIGH) 819 enable = !enable; 820 821 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 822 if (!(spi->mode & SPI_NO_CS)) { 823 if (spi->cs_gpiod) { 824 /* 825 * Historically ACPI has no means of the GPIO polarity and 826 * thus the SPISerialBus() resource defines it on the per-chip 827 * basis. In order to avoid a chain of negations, the GPIO 828 * polarity is considered being Active High. Even for the cases 829 * when _DSD() is involved (in the updated versions of ACPI) 830 * the GPIO CS polarity must be defined Active High to avoid 831 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 832 * into account. 833 */ 834 if (has_acpi_companion(&spi->dev)) 835 gpiod_set_value_cansleep(spi->cs_gpiod, !enable); 836 else 837 /* Polarity handled by GPIO library */ 838 gpiod_set_value_cansleep(spi->cs_gpiod, activate); 839 } else { 840 /* 841 * invert the enable line, as active low is 842 * default for SPI. 843 */ 844 gpio_set_value_cansleep(spi->cs_gpio, !enable); 845 } 846 } 847 /* Some SPI masters need both GPIO CS & slave_select */ 848 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 849 spi->controller->set_cs) 850 spi->controller->set_cs(spi, !enable); 851 } else if (spi->controller->set_cs) { 852 spi->controller->set_cs(spi, !enable); 853 } 854 855 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 856 !spi->controller->set_cs_timing) { 857 if (!activate) 858 spi_delay_exec(&spi->controller->cs_inactive, NULL); 859 } 860 } 861 862 #ifdef CONFIG_HAS_DMA 863 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 864 struct sg_table *sgt, void *buf, size_t len, 865 enum dma_data_direction dir) 866 { 867 const bool vmalloced_buf = is_vmalloc_addr(buf); 868 unsigned int max_seg_size = dma_get_max_seg_size(dev); 869 #ifdef CONFIG_HIGHMEM 870 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 871 (unsigned long)buf < (PKMAP_BASE + 872 (LAST_PKMAP * PAGE_SIZE))); 873 #else 874 const bool kmap_buf = false; 875 #endif 876 int desc_len; 877 int sgs; 878 struct page *vm_page; 879 struct scatterlist *sg; 880 void *sg_buf; 881 size_t min; 882 int i, ret; 883 884 if (vmalloced_buf || kmap_buf) { 885 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 886 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 887 } else if (virt_addr_valid(buf)) { 888 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 889 sgs = DIV_ROUND_UP(len, desc_len); 890 } else { 891 return -EINVAL; 892 } 893 894 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 895 if (ret != 0) 896 return ret; 897 898 sg = &sgt->sgl[0]; 899 for (i = 0; i < sgs; i++) { 900 901 if (vmalloced_buf || kmap_buf) { 902 /* 903 * Next scatterlist entry size is the minimum between 904 * the desc_len and the remaining buffer length that 905 * fits in a page. 906 */ 907 min = min_t(size_t, desc_len, 908 min_t(size_t, len, 909 PAGE_SIZE - offset_in_page(buf))); 910 if (vmalloced_buf) 911 vm_page = vmalloc_to_page(buf); 912 else 913 vm_page = kmap_to_page(buf); 914 if (!vm_page) { 915 sg_free_table(sgt); 916 return -ENOMEM; 917 } 918 sg_set_page(sg, vm_page, 919 min, offset_in_page(buf)); 920 } else { 921 min = min_t(size_t, len, desc_len); 922 sg_buf = buf; 923 sg_set_buf(sg, sg_buf, min); 924 } 925 926 buf += min; 927 len -= min; 928 sg = sg_next(sg); 929 } 930 931 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 932 if (!ret) 933 ret = -ENOMEM; 934 if (ret < 0) { 935 sg_free_table(sgt); 936 return ret; 937 } 938 939 sgt->nents = ret; 940 941 return 0; 942 } 943 944 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 945 struct sg_table *sgt, enum dma_data_direction dir) 946 { 947 if (sgt->orig_nents) { 948 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 949 sg_free_table(sgt); 950 } 951 } 952 953 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 954 { 955 struct device *tx_dev, *rx_dev; 956 struct spi_transfer *xfer; 957 int ret; 958 959 if (!ctlr->can_dma) 960 return 0; 961 962 if (ctlr->dma_tx) 963 tx_dev = ctlr->dma_tx->device->dev; 964 else 965 tx_dev = ctlr->dev.parent; 966 967 if (ctlr->dma_rx) 968 rx_dev = ctlr->dma_rx->device->dev; 969 else 970 rx_dev = ctlr->dev.parent; 971 972 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 973 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 974 continue; 975 976 if (xfer->tx_buf != NULL) { 977 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 978 (void *)xfer->tx_buf, xfer->len, 979 DMA_TO_DEVICE); 980 if (ret != 0) 981 return ret; 982 } 983 984 if (xfer->rx_buf != NULL) { 985 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 986 xfer->rx_buf, xfer->len, 987 DMA_FROM_DEVICE); 988 if (ret != 0) { 989 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 990 DMA_TO_DEVICE); 991 return ret; 992 } 993 } 994 } 995 996 ctlr->cur_msg_mapped = true; 997 998 return 0; 999 } 1000 1001 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1002 { 1003 struct spi_transfer *xfer; 1004 struct device *tx_dev, *rx_dev; 1005 1006 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1007 return 0; 1008 1009 if (ctlr->dma_tx) 1010 tx_dev = ctlr->dma_tx->device->dev; 1011 else 1012 tx_dev = ctlr->dev.parent; 1013 1014 if (ctlr->dma_rx) 1015 rx_dev = ctlr->dma_rx->device->dev; 1016 else 1017 rx_dev = ctlr->dev.parent; 1018 1019 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1020 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1021 continue; 1022 1023 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1024 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1025 } 1026 1027 ctlr->cur_msg_mapped = false; 1028 1029 return 0; 1030 } 1031 #else /* !CONFIG_HAS_DMA */ 1032 static inline int __spi_map_msg(struct spi_controller *ctlr, 1033 struct spi_message *msg) 1034 { 1035 return 0; 1036 } 1037 1038 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1039 struct spi_message *msg) 1040 { 1041 return 0; 1042 } 1043 #endif /* !CONFIG_HAS_DMA */ 1044 1045 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1046 struct spi_message *msg) 1047 { 1048 struct spi_transfer *xfer; 1049 1050 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1051 /* 1052 * Restore the original value of tx_buf or rx_buf if they are 1053 * NULL. 1054 */ 1055 if (xfer->tx_buf == ctlr->dummy_tx) 1056 xfer->tx_buf = NULL; 1057 if (xfer->rx_buf == ctlr->dummy_rx) 1058 xfer->rx_buf = NULL; 1059 } 1060 1061 return __spi_unmap_msg(ctlr, msg); 1062 } 1063 1064 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1065 { 1066 struct spi_transfer *xfer; 1067 void *tmp; 1068 unsigned int max_tx, max_rx; 1069 1070 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1071 && !(msg->spi->mode & SPI_3WIRE)) { 1072 max_tx = 0; 1073 max_rx = 0; 1074 1075 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1076 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1077 !xfer->tx_buf) 1078 max_tx = max(xfer->len, max_tx); 1079 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1080 !xfer->rx_buf) 1081 max_rx = max(xfer->len, max_rx); 1082 } 1083 1084 if (max_tx) { 1085 tmp = krealloc(ctlr->dummy_tx, max_tx, 1086 GFP_KERNEL | GFP_DMA); 1087 if (!tmp) 1088 return -ENOMEM; 1089 ctlr->dummy_tx = tmp; 1090 memset(tmp, 0, max_tx); 1091 } 1092 1093 if (max_rx) { 1094 tmp = krealloc(ctlr->dummy_rx, max_rx, 1095 GFP_KERNEL | GFP_DMA); 1096 if (!tmp) 1097 return -ENOMEM; 1098 ctlr->dummy_rx = tmp; 1099 } 1100 1101 if (max_tx || max_rx) { 1102 list_for_each_entry(xfer, &msg->transfers, 1103 transfer_list) { 1104 if (!xfer->len) 1105 continue; 1106 if (!xfer->tx_buf) 1107 xfer->tx_buf = ctlr->dummy_tx; 1108 if (!xfer->rx_buf) 1109 xfer->rx_buf = ctlr->dummy_rx; 1110 } 1111 } 1112 } 1113 1114 return __spi_map_msg(ctlr, msg); 1115 } 1116 1117 static int spi_transfer_wait(struct spi_controller *ctlr, 1118 struct spi_message *msg, 1119 struct spi_transfer *xfer) 1120 { 1121 struct spi_statistics *statm = &ctlr->statistics; 1122 struct spi_statistics *stats = &msg->spi->statistics; 1123 u32 speed_hz = xfer->speed_hz; 1124 unsigned long long ms; 1125 1126 if (spi_controller_is_slave(ctlr)) { 1127 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1128 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1129 return -EINTR; 1130 } 1131 } else { 1132 if (!speed_hz) 1133 speed_hz = 100000; 1134 1135 ms = 8LL * 1000LL * xfer->len; 1136 do_div(ms, speed_hz); 1137 ms += ms + 200; /* some tolerance */ 1138 1139 if (ms > UINT_MAX) 1140 ms = UINT_MAX; 1141 1142 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1143 msecs_to_jiffies(ms)); 1144 1145 if (ms == 0) { 1146 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1147 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1148 dev_err(&msg->spi->dev, 1149 "SPI transfer timed out\n"); 1150 return -ETIMEDOUT; 1151 } 1152 } 1153 1154 return 0; 1155 } 1156 1157 static void _spi_transfer_delay_ns(u32 ns) 1158 { 1159 if (!ns) 1160 return; 1161 if (ns <= 1000) { 1162 ndelay(ns); 1163 } else { 1164 u32 us = DIV_ROUND_UP(ns, 1000); 1165 1166 if (us <= 10) 1167 udelay(us); 1168 else 1169 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1170 } 1171 } 1172 1173 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1174 { 1175 u32 delay = _delay->value; 1176 u32 unit = _delay->unit; 1177 u32 hz; 1178 1179 if (!delay) 1180 return 0; 1181 1182 switch (unit) { 1183 case SPI_DELAY_UNIT_USECS: 1184 delay *= 1000; 1185 break; 1186 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1187 break; 1188 case SPI_DELAY_UNIT_SCK: 1189 /* clock cycles need to be obtained from spi_transfer */ 1190 if (!xfer) 1191 return -EINVAL; 1192 /* if there is no effective speed know, then approximate 1193 * by underestimating with half the requested hz 1194 */ 1195 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1196 if (!hz) 1197 return -EINVAL; 1198 delay *= DIV_ROUND_UP(1000000000, hz); 1199 break; 1200 default: 1201 return -EINVAL; 1202 } 1203 1204 return delay; 1205 } 1206 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1207 1208 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1209 { 1210 int delay; 1211 1212 might_sleep(); 1213 1214 if (!_delay) 1215 return -EINVAL; 1216 1217 delay = spi_delay_to_ns(_delay, xfer); 1218 if (delay < 0) 1219 return delay; 1220 1221 _spi_transfer_delay_ns(delay); 1222 1223 return 0; 1224 } 1225 EXPORT_SYMBOL_GPL(spi_delay_exec); 1226 1227 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1228 struct spi_transfer *xfer) 1229 { 1230 u32 delay = xfer->cs_change_delay.value; 1231 u32 unit = xfer->cs_change_delay.unit; 1232 int ret; 1233 1234 /* return early on "fast" mode - for everything but USECS */ 1235 if (!delay) { 1236 if (unit == SPI_DELAY_UNIT_USECS) 1237 _spi_transfer_delay_ns(10000); 1238 return; 1239 } 1240 1241 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1242 if (ret) { 1243 dev_err_once(&msg->spi->dev, 1244 "Use of unsupported delay unit %i, using default of 10us\n", 1245 unit); 1246 _spi_transfer_delay_ns(10000); 1247 } 1248 } 1249 1250 /* 1251 * spi_transfer_one_message - Default implementation of transfer_one_message() 1252 * 1253 * This is a standard implementation of transfer_one_message() for 1254 * drivers which implement a transfer_one() operation. It provides 1255 * standard handling of delays and chip select management. 1256 */ 1257 static int spi_transfer_one_message(struct spi_controller *ctlr, 1258 struct spi_message *msg) 1259 { 1260 struct spi_transfer *xfer; 1261 bool keep_cs = false; 1262 int ret = 0; 1263 struct spi_statistics *statm = &ctlr->statistics; 1264 struct spi_statistics *stats = &msg->spi->statistics; 1265 1266 spi_set_cs(msg->spi, true, false); 1267 1268 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1269 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1270 1271 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1272 trace_spi_transfer_start(msg, xfer); 1273 1274 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1275 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1276 1277 if (!ctlr->ptp_sts_supported) { 1278 xfer->ptp_sts_word_pre = 0; 1279 ptp_read_system_prets(xfer->ptp_sts); 1280 } 1281 1282 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1283 reinit_completion(&ctlr->xfer_completion); 1284 1285 fallback_pio: 1286 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1287 if (ret < 0) { 1288 if (ctlr->cur_msg_mapped && 1289 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1290 __spi_unmap_msg(ctlr, msg); 1291 ctlr->fallback = true; 1292 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1293 goto fallback_pio; 1294 } 1295 1296 SPI_STATISTICS_INCREMENT_FIELD(statm, 1297 errors); 1298 SPI_STATISTICS_INCREMENT_FIELD(stats, 1299 errors); 1300 dev_err(&msg->spi->dev, 1301 "SPI transfer failed: %d\n", ret); 1302 goto out; 1303 } 1304 1305 if (ret > 0) { 1306 ret = spi_transfer_wait(ctlr, msg, xfer); 1307 if (ret < 0) 1308 msg->status = ret; 1309 } 1310 } else { 1311 if (xfer->len) 1312 dev_err(&msg->spi->dev, 1313 "Bufferless transfer has length %u\n", 1314 xfer->len); 1315 } 1316 1317 if (!ctlr->ptp_sts_supported) { 1318 ptp_read_system_postts(xfer->ptp_sts); 1319 xfer->ptp_sts_word_post = xfer->len; 1320 } 1321 1322 trace_spi_transfer_stop(msg, xfer); 1323 1324 if (msg->status != -EINPROGRESS) 1325 goto out; 1326 1327 spi_transfer_delay_exec(xfer); 1328 1329 if (xfer->cs_change) { 1330 if (list_is_last(&xfer->transfer_list, 1331 &msg->transfers)) { 1332 keep_cs = true; 1333 } else { 1334 spi_set_cs(msg->spi, false, false); 1335 _spi_transfer_cs_change_delay(msg, xfer); 1336 spi_set_cs(msg->spi, true, false); 1337 } 1338 } 1339 1340 msg->actual_length += xfer->len; 1341 } 1342 1343 out: 1344 if (ret != 0 || !keep_cs) 1345 spi_set_cs(msg->spi, false, false); 1346 1347 if (msg->status == -EINPROGRESS) 1348 msg->status = ret; 1349 1350 if (msg->status && ctlr->handle_err) 1351 ctlr->handle_err(ctlr, msg); 1352 1353 spi_finalize_current_message(ctlr); 1354 1355 return ret; 1356 } 1357 1358 /** 1359 * spi_finalize_current_transfer - report completion of a transfer 1360 * @ctlr: the controller reporting completion 1361 * 1362 * Called by SPI drivers using the core transfer_one_message() 1363 * implementation to notify it that the current interrupt driven 1364 * transfer has finished and the next one may be scheduled. 1365 */ 1366 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1367 { 1368 complete(&ctlr->xfer_completion); 1369 } 1370 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1371 1372 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1373 { 1374 if (ctlr->auto_runtime_pm) { 1375 pm_runtime_mark_last_busy(ctlr->dev.parent); 1376 pm_runtime_put_autosuspend(ctlr->dev.parent); 1377 } 1378 } 1379 1380 /** 1381 * __spi_pump_messages - function which processes spi message queue 1382 * @ctlr: controller to process queue for 1383 * @in_kthread: true if we are in the context of the message pump thread 1384 * 1385 * This function checks if there is any spi message in the queue that 1386 * needs processing and if so call out to the driver to initialize hardware 1387 * and transfer each message. 1388 * 1389 * Note that it is called both from the kthread itself and also from 1390 * inside spi_sync(); the queue extraction handling at the top of the 1391 * function should deal with this safely. 1392 */ 1393 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1394 { 1395 struct spi_transfer *xfer; 1396 struct spi_message *msg; 1397 bool was_busy = false; 1398 unsigned long flags; 1399 int ret; 1400 1401 /* Lock queue */ 1402 spin_lock_irqsave(&ctlr->queue_lock, flags); 1403 1404 /* Make sure we are not already running a message */ 1405 if (ctlr->cur_msg) { 1406 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1407 return; 1408 } 1409 1410 /* If another context is idling the device then defer */ 1411 if (ctlr->idling) { 1412 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1413 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1414 return; 1415 } 1416 1417 /* Check if the queue is idle */ 1418 if (list_empty(&ctlr->queue) || !ctlr->running) { 1419 if (!ctlr->busy) { 1420 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1421 return; 1422 } 1423 1424 /* Defer any non-atomic teardown to the thread */ 1425 if (!in_kthread) { 1426 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1427 !ctlr->unprepare_transfer_hardware) { 1428 spi_idle_runtime_pm(ctlr); 1429 ctlr->busy = false; 1430 trace_spi_controller_idle(ctlr); 1431 } else { 1432 kthread_queue_work(ctlr->kworker, 1433 &ctlr->pump_messages); 1434 } 1435 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1436 return; 1437 } 1438 1439 ctlr->busy = false; 1440 ctlr->idling = true; 1441 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1442 1443 kfree(ctlr->dummy_rx); 1444 ctlr->dummy_rx = NULL; 1445 kfree(ctlr->dummy_tx); 1446 ctlr->dummy_tx = NULL; 1447 if (ctlr->unprepare_transfer_hardware && 1448 ctlr->unprepare_transfer_hardware(ctlr)) 1449 dev_err(&ctlr->dev, 1450 "failed to unprepare transfer hardware\n"); 1451 spi_idle_runtime_pm(ctlr); 1452 trace_spi_controller_idle(ctlr); 1453 1454 spin_lock_irqsave(&ctlr->queue_lock, flags); 1455 ctlr->idling = false; 1456 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1457 return; 1458 } 1459 1460 /* Extract head of queue */ 1461 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1462 ctlr->cur_msg = msg; 1463 1464 list_del_init(&msg->queue); 1465 if (ctlr->busy) 1466 was_busy = true; 1467 else 1468 ctlr->busy = true; 1469 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1470 1471 mutex_lock(&ctlr->io_mutex); 1472 1473 if (!was_busy && ctlr->auto_runtime_pm) { 1474 ret = pm_runtime_get_sync(ctlr->dev.parent); 1475 if (ret < 0) { 1476 pm_runtime_put_noidle(ctlr->dev.parent); 1477 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1478 ret); 1479 mutex_unlock(&ctlr->io_mutex); 1480 return; 1481 } 1482 } 1483 1484 if (!was_busy) 1485 trace_spi_controller_busy(ctlr); 1486 1487 if (!was_busy && ctlr->prepare_transfer_hardware) { 1488 ret = ctlr->prepare_transfer_hardware(ctlr); 1489 if (ret) { 1490 dev_err(&ctlr->dev, 1491 "failed to prepare transfer hardware: %d\n", 1492 ret); 1493 1494 if (ctlr->auto_runtime_pm) 1495 pm_runtime_put(ctlr->dev.parent); 1496 1497 msg->status = ret; 1498 spi_finalize_current_message(ctlr); 1499 1500 mutex_unlock(&ctlr->io_mutex); 1501 return; 1502 } 1503 } 1504 1505 trace_spi_message_start(msg); 1506 1507 if (ctlr->prepare_message) { 1508 ret = ctlr->prepare_message(ctlr, msg); 1509 if (ret) { 1510 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1511 ret); 1512 msg->status = ret; 1513 spi_finalize_current_message(ctlr); 1514 goto out; 1515 } 1516 ctlr->cur_msg_prepared = true; 1517 } 1518 1519 ret = spi_map_msg(ctlr, msg); 1520 if (ret) { 1521 msg->status = ret; 1522 spi_finalize_current_message(ctlr); 1523 goto out; 1524 } 1525 1526 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1527 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1528 xfer->ptp_sts_word_pre = 0; 1529 ptp_read_system_prets(xfer->ptp_sts); 1530 } 1531 } 1532 1533 ret = ctlr->transfer_one_message(ctlr, msg); 1534 if (ret) { 1535 dev_err(&ctlr->dev, 1536 "failed to transfer one message from queue\n"); 1537 goto out; 1538 } 1539 1540 out: 1541 mutex_unlock(&ctlr->io_mutex); 1542 1543 /* Prod the scheduler in case transfer_one() was busy waiting */ 1544 if (!ret) 1545 cond_resched(); 1546 } 1547 1548 /** 1549 * spi_pump_messages - kthread work function which processes spi message queue 1550 * @work: pointer to kthread work struct contained in the controller struct 1551 */ 1552 static void spi_pump_messages(struct kthread_work *work) 1553 { 1554 struct spi_controller *ctlr = 1555 container_of(work, struct spi_controller, pump_messages); 1556 1557 __spi_pump_messages(ctlr, true); 1558 } 1559 1560 /** 1561 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1562 * TX timestamp for the requested byte from the SPI 1563 * transfer. The frequency with which this function 1564 * must be called (once per word, once for the whole 1565 * transfer, once per batch of words etc) is arbitrary 1566 * as long as the @tx buffer offset is greater than or 1567 * equal to the requested byte at the time of the 1568 * call. The timestamp is only taken once, at the 1569 * first such call. It is assumed that the driver 1570 * advances its @tx buffer pointer monotonically. 1571 * @ctlr: Pointer to the spi_controller structure of the driver 1572 * @xfer: Pointer to the transfer being timestamped 1573 * @progress: How many words (not bytes) have been transferred so far 1574 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1575 * transfer, for less jitter in time measurement. Only compatible 1576 * with PIO drivers. If true, must follow up with 1577 * spi_take_timestamp_post or otherwise system will crash. 1578 * WARNING: for fully predictable results, the CPU frequency must 1579 * also be under control (governor). 1580 */ 1581 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1582 struct spi_transfer *xfer, 1583 size_t progress, bool irqs_off) 1584 { 1585 if (!xfer->ptp_sts) 1586 return; 1587 1588 if (xfer->timestamped) 1589 return; 1590 1591 if (progress > xfer->ptp_sts_word_pre) 1592 return; 1593 1594 /* Capture the resolution of the timestamp */ 1595 xfer->ptp_sts_word_pre = progress; 1596 1597 if (irqs_off) { 1598 local_irq_save(ctlr->irq_flags); 1599 preempt_disable(); 1600 } 1601 1602 ptp_read_system_prets(xfer->ptp_sts); 1603 } 1604 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1605 1606 /** 1607 * spi_take_timestamp_post - helper for drivers to collect the end of the 1608 * TX timestamp for the requested byte from the SPI 1609 * transfer. Can be called with an arbitrary 1610 * frequency: only the first call where @tx exceeds 1611 * or is equal to the requested word will be 1612 * timestamped. 1613 * @ctlr: Pointer to the spi_controller structure of the driver 1614 * @xfer: Pointer to the transfer being timestamped 1615 * @progress: How many words (not bytes) have been transferred so far 1616 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1617 */ 1618 void spi_take_timestamp_post(struct spi_controller *ctlr, 1619 struct spi_transfer *xfer, 1620 size_t progress, bool irqs_off) 1621 { 1622 if (!xfer->ptp_sts) 1623 return; 1624 1625 if (xfer->timestamped) 1626 return; 1627 1628 if (progress < xfer->ptp_sts_word_post) 1629 return; 1630 1631 ptp_read_system_postts(xfer->ptp_sts); 1632 1633 if (irqs_off) { 1634 local_irq_restore(ctlr->irq_flags); 1635 preempt_enable(); 1636 } 1637 1638 /* Capture the resolution of the timestamp */ 1639 xfer->ptp_sts_word_post = progress; 1640 1641 xfer->timestamped = true; 1642 } 1643 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1644 1645 /** 1646 * spi_set_thread_rt - set the controller to pump at realtime priority 1647 * @ctlr: controller to boost priority of 1648 * 1649 * This can be called because the controller requested realtime priority 1650 * (by setting the ->rt value before calling spi_register_controller()) or 1651 * because a device on the bus said that its transfers needed realtime 1652 * priority. 1653 * 1654 * NOTE: at the moment if any device on a bus says it needs realtime then 1655 * the thread will be at realtime priority for all transfers on that 1656 * controller. If this eventually becomes a problem we may see if we can 1657 * find a way to boost the priority only temporarily during relevant 1658 * transfers. 1659 */ 1660 static void spi_set_thread_rt(struct spi_controller *ctlr) 1661 { 1662 dev_info(&ctlr->dev, 1663 "will run message pump with realtime priority\n"); 1664 sched_set_fifo(ctlr->kworker->task); 1665 } 1666 1667 static int spi_init_queue(struct spi_controller *ctlr) 1668 { 1669 ctlr->running = false; 1670 ctlr->busy = false; 1671 1672 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1673 if (IS_ERR(ctlr->kworker)) { 1674 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1675 return PTR_ERR(ctlr->kworker); 1676 } 1677 1678 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1679 1680 /* 1681 * Controller config will indicate if this controller should run the 1682 * message pump with high (realtime) priority to reduce the transfer 1683 * latency on the bus by minimising the delay between a transfer 1684 * request and the scheduling of the message pump thread. Without this 1685 * setting the message pump thread will remain at default priority. 1686 */ 1687 if (ctlr->rt) 1688 spi_set_thread_rt(ctlr); 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * spi_get_next_queued_message() - called by driver to check for queued 1695 * messages 1696 * @ctlr: the controller to check for queued messages 1697 * 1698 * If there are more messages in the queue, the next message is returned from 1699 * this call. 1700 * 1701 * Return: the next message in the queue, else NULL if the queue is empty. 1702 */ 1703 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1704 { 1705 struct spi_message *next; 1706 unsigned long flags; 1707 1708 /* get a pointer to the next message, if any */ 1709 spin_lock_irqsave(&ctlr->queue_lock, flags); 1710 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1711 queue); 1712 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1713 1714 return next; 1715 } 1716 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1717 1718 /** 1719 * spi_finalize_current_message() - the current message is complete 1720 * @ctlr: the controller to return the message to 1721 * 1722 * Called by the driver to notify the core that the message in the front of the 1723 * queue is complete and can be removed from the queue. 1724 */ 1725 void spi_finalize_current_message(struct spi_controller *ctlr) 1726 { 1727 struct spi_transfer *xfer; 1728 struct spi_message *mesg; 1729 unsigned long flags; 1730 int ret; 1731 1732 spin_lock_irqsave(&ctlr->queue_lock, flags); 1733 mesg = ctlr->cur_msg; 1734 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1735 1736 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1737 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1738 ptp_read_system_postts(xfer->ptp_sts); 1739 xfer->ptp_sts_word_post = xfer->len; 1740 } 1741 } 1742 1743 if (unlikely(ctlr->ptp_sts_supported)) 1744 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1745 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1746 1747 spi_unmap_msg(ctlr, mesg); 1748 1749 /* In the prepare_messages callback the spi bus has the opportunity to 1750 * split a transfer to smaller chunks. 1751 * Release splited transfers here since spi_map_msg is done on the 1752 * splited transfers. 1753 */ 1754 spi_res_release(ctlr, mesg); 1755 1756 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1757 ret = ctlr->unprepare_message(ctlr, mesg); 1758 if (ret) { 1759 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1760 ret); 1761 } 1762 } 1763 1764 spin_lock_irqsave(&ctlr->queue_lock, flags); 1765 ctlr->cur_msg = NULL; 1766 ctlr->cur_msg_prepared = false; 1767 ctlr->fallback = false; 1768 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1769 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1770 1771 trace_spi_message_done(mesg); 1772 1773 mesg->state = NULL; 1774 if (mesg->complete) 1775 mesg->complete(mesg->context); 1776 } 1777 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1778 1779 static int spi_start_queue(struct spi_controller *ctlr) 1780 { 1781 unsigned long flags; 1782 1783 spin_lock_irqsave(&ctlr->queue_lock, flags); 1784 1785 if (ctlr->running || ctlr->busy) { 1786 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1787 return -EBUSY; 1788 } 1789 1790 ctlr->running = true; 1791 ctlr->cur_msg = NULL; 1792 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1793 1794 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1795 1796 return 0; 1797 } 1798 1799 static int spi_stop_queue(struct spi_controller *ctlr) 1800 { 1801 unsigned long flags; 1802 unsigned limit = 500; 1803 int ret = 0; 1804 1805 spin_lock_irqsave(&ctlr->queue_lock, flags); 1806 1807 /* 1808 * This is a bit lame, but is optimized for the common execution path. 1809 * A wait_queue on the ctlr->busy could be used, but then the common 1810 * execution path (pump_messages) would be required to call wake_up or 1811 * friends on every SPI message. Do this instead. 1812 */ 1813 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1814 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1815 usleep_range(10000, 11000); 1816 spin_lock_irqsave(&ctlr->queue_lock, flags); 1817 } 1818 1819 if (!list_empty(&ctlr->queue) || ctlr->busy) 1820 ret = -EBUSY; 1821 else 1822 ctlr->running = false; 1823 1824 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1825 1826 if (ret) { 1827 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1828 return ret; 1829 } 1830 return ret; 1831 } 1832 1833 static int spi_destroy_queue(struct spi_controller *ctlr) 1834 { 1835 int ret; 1836 1837 ret = spi_stop_queue(ctlr); 1838 1839 /* 1840 * kthread_flush_worker will block until all work is done. 1841 * If the reason that stop_queue timed out is that the work will never 1842 * finish, then it does no good to call flush/stop thread, so 1843 * return anyway. 1844 */ 1845 if (ret) { 1846 dev_err(&ctlr->dev, "problem destroying queue\n"); 1847 return ret; 1848 } 1849 1850 kthread_destroy_worker(ctlr->kworker); 1851 1852 return 0; 1853 } 1854 1855 static int __spi_queued_transfer(struct spi_device *spi, 1856 struct spi_message *msg, 1857 bool need_pump) 1858 { 1859 struct spi_controller *ctlr = spi->controller; 1860 unsigned long flags; 1861 1862 spin_lock_irqsave(&ctlr->queue_lock, flags); 1863 1864 if (!ctlr->running) { 1865 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1866 return -ESHUTDOWN; 1867 } 1868 msg->actual_length = 0; 1869 msg->status = -EINPROGRESS; 1870 1871 list_add_tail(&msg->queue, &ctlr->queue); 1872 if (!ctlr->busy && need_pump) 1873 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1874 1875 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1876 return 0; 1877 } 1878 1879 /** 1880 * spi_queued_transfer - transfer function for queued transfers 1881 * @spi: spi device which is requesting transfer 1882 * @msg: spi message which is to handled is queued to driver queue 1883 * 1884 * Return: zero on success, else a negative error code. 1885 */ 1886 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1887 { 1888 return __spi_queued_transfer(spi, msg, true); 1889 } 1890 1891 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1892 { 1893 int ret; 1894 1895 ctlr->transfer = spi_queued_transfer; 1896 if (!ctlr->transfer_one_message) 1897 ctlr->transfer_one_message = spi_transfer_one_message; 1898 1899 /* Initialize and start queue */ 1900 ret = spi_init_queue(ctlr); 1901 if (ret) { 1902 dev_err(&ctlr->dev, "problem initializing queue\n"); 1903 goto err_init_queue; 1904 } 1905 ctlr->queued = true; 1906 ret = spi_start_queue(ctlr); 1907 if (ret) { 1908 dev_err(&ctlr->dev, "problem starting queue\n"); 1909 goto err_start_queue; 1910 } 1911 1912 return 0; 1913 1914 err_start_queue: 1915 spi_destroy_queue(ctlr); 1916 err_init_queue: 1917 return ret; 1918 } 1919 1920 /** 1921 * spi_flush_queue - Send all pending messages in the queue from the callers' 1922 * context 1923 * @ctlr: controller to process queue for 1924 * 1925 * This should be used when one wants to ensure all pending messages have been 1926 * sent before doing something. Is used by the spi-mem code to make sure SPI 1927 * memory operations do not preempt regular SPI transfers that have been queued 1928 * before the spi-mem operation. 1929 */ 1930 void spi_flush_queue(struct spi_controller *ctlr) 1931 { 1932 if (ctlr->transfer == spi_queued_transfer) 1933 __spi_pump_messages(ctlr, false); 1934 } 1935 1936 /*-------------------------------------------------------------------------*/ 1937 1938 #if defined(CONFIG_OF) 1939 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1940 struct device_node *nc) 1941 { 1942 u32 value; 1943 int rc; 1944 1945 /* Mode (clock phase/polarity/etc.) */ 1946 if (of_property_read_bool(nc, "spi-cpha")) 1947 spi->mode |= SPI_CPHA; 1948 if (of_property_read_bool(nc, "spi-cpol")) 1949 spi->mode |= SPI_CPOL; 1950 if (of_property_read_bool(nc, "spi-3wire")) 1951 spi->mode |= SPI_3WIRE; 1952 if (of_property_read_bool(nc, "spi-lsb-first")) 1953 spi->mode |= SPI_LSB_FIRST; 1954 if (of_property_read_bool(nc, "spi-cs-high")) 1955 spi->mode |= SPI_CS_HIGH; 1956 1957 /* Device DUAL/QUAD mode */ 1958 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1959 switch (value) { 1960 case 0: 1961 spi->mode |= SPI_NO_TX; 1962 break; 1963 case 1: 1964 break; 1965 case 2: 1966 spi->mode |= SPI_TX_DUAL; 1967 break; 1968 case 4: 1969 spi->mode |= SPI_TX_QUAD; 1970 break; 1971 case 8: 1972 spi->mode |= SPI_TX_OCTAL; 1973 break; 1974 default: 1975 dev_warn(&ctlr->dev, 1976 "spi-tx-bus-width %d not supported\n", 1977 value); 1978 break; 1979 } 1980 } 1981 1982 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1983 switch (value) { 1984 case 0: 1985 spi->mode |= SPI_NO_RX; 1986 break; 1987 case 1: 1988 break; 1989 case 2: 1990 spi->mode |= SPI_RX_DUAL; 1991 break; 1992 case 4: 1993 spi->mode |= SPI_RX_QUAD; 1994 break; 1995 case 8: 1996 spi->mode |= SPI_RX_OCTAL; 1997 break; 1998 default: 1999 dev_warn(&ctlr->dev, 2000 "spi-rx-bus-width %d not supported\n", 2001 value); 2002 break; 2003 } 2004 } 2005 2006 if (spi_controller_is_slave(ctlr)) { 2007 if (!of_node_name_eq(nc, "slave")) { 2008 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2009 nc); 2010 return -EINVAL; 2011 } 2012 return 0; 2013 } 2014 2015 /* Device address */ 2016 rc = of_property_read_u32(nc, "reg", &value); 2017 if (rc) { 2018 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2019 nc, rc); 2020 return rc; 2021 } 2022 spi->chip_select = value; 2023 2024 /* Device speed */ 2025 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2026 spi->max_speed_hz = value; 2027 2028 return 0; 2029 } 2030 2031 static struct spi_device * 2032 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2033 { 2034 struct spi_device *spi; 2035 int rc; 2036 2037 /* Alloc an spi_device */ 2038 spi = spi_alloc_device(ctlr); 2039 if (!spi) { 2040 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2041 rc = -ENOMEM; 2042 goto err_out; 2043 } 2044 2045 /* Select device driver */ 2046 rc = of_modalias_node(nc, spi->modalias, 2047 sizeof(spi->modalias)); 2048 if (rc < 0) { 2049 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2050 goto err_out; 2051 } 2052 2053 rc = of_spi_parse_dt(ctlr, spi, nc); 2054 if (rc) 2055 goto err_out; 2056 2057 /* Store a pointer to the node in the device structure */ 2058 of_node_get(nc); 2059 spi->dev.of_node = nc; 2060 2061 /* Register the new device */ 2062 rc = spi_add_device(spi); 2063 if (rc) { 2064 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2065 goto err_of_node_put; 2066 } 2067 2068 return spi; 2069 2070 err_of_node_put: 2071 of_node_put(nc); 2072 err_out: 2073 spi_dev_put(spi); 2074 return ERR_PTR(rc); 2075 } 2076 2077 /** 2078 * of_register_spi_devices() - Register child devices onto the SPI bus 2079 * @ctlr: Pointer to spi_controller device 2080 * 2081 * Registers an spi_device for each child node of controller node which 2082 * represents a valid SPI slave. 2083 */ 2084 static void of_register_spi_devices(struct spi_controller *ctlr) 2085 { 2086 struct spi_device *spi; 2087 struct device_node *nc; 2088 2089 if (!ctlr->dev.of_node) 2090 return; 2091 2092 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2093 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2094 continue; 2095 spi = of_register_spi_device(ctlr, nc); 2096 if (IS_ERR(spi)) { 2097 dev_warn(&ctlr->dev, 2098 "Failed to create SPI device for %pOF\n", nc); 2099 of_node_clear_flag(nc, OF_POPULATED); 2100 } 2101 } 2102 } 2103 #else 2104 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2105 #endif 2106 2107 #ifdef CONFIG_ACPI 2108 struct acpi_spi_lookup { 2109 struct spi_controller *ctlr; 2110 u32 max_speed_hz; 2111 u32 mode; 2112 int irq; 2113 u8 bits_per_word; 2114 u8 chip_select; 2115 }; 2116 2117 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2118 struct acpi_spi_lookup *lookup) 2119 { 2120 const union acpi_object *obj; 2121 2122 if (!x86_apple_machine) 2123 return; 2124 2125 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2126 && obj->buffer.length >= 4) 2127 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2128 2129 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2130 && obj->buffer.length == 8) 2131 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2132 2133 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2134 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2135 lookup->mode |= SPI_LSB_FIRST; 2136 2137 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2138 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2139 lookup->mode |= SPI_CPOL; 2140 2141 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2142 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2143 lookup->mode |= SPI_CPHA; 2144 } 2145 2146 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2147 { 2148 struct acpi_spi_lookup *lookup = data; 2149 struct spi_controller *ctlr = lookup->ctlr; 2150 2151 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2152 struct acpi_resource_spi_serialbus *sb; 2153 acpi_handle parent_handle; 2154 acpi_status status; 2155 2156 sb = &ares->data.spi_serial_bus; 2157 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2158 2159 status = acpi_get_handle(NULL, 2160 sb->resource_source.string_ptr, 2161 &parent_handle); 2162 2163 if (ACPI_FAILURE(status) || 2164 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2165 return -ENODEV; 2166 2167 /* 2168 * ACPI DeviceSelection numbering is handled by the 2169 * host controller driver in Windows and can vary 2170 * from driver to driver. In Linux we always expect 2171 * 0 .. max - 1 so we need to ask the driver to 2172 * translate between the two schemes. 2173 */ 2174 if (ctlr->fw_translate_cs) { 2175 int cs = ctlr->fw_translate_cs(ctlr, 2176 sb->device_selection); 2177 if (cs < 0) 2178 return cs; 2179 lookup->chip_select = cs; 2180 } else { 2181 lookup->chip_select = sb->device_selection; 2182 } 2183 2184 lookup->max_speed_hz = sb->connection_speed; 2185 lookup->bits_per_word = sb->data_bit_length; 2186 2187 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2188 lookup->mode |= SPI_CPHA; 2189 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2190 lookup->mode |= SPI_CPOL; 2191 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2192 lookup->mode |= SPI_CS_HIGH; 2193 } 2194 } else if (lookup->irq < 0) { 2195 struct resource r; 2196 2197 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2198 lookup->irq = r.start; 2199 } 2200 2201 /* Always tell the ACPI core to skip this resource */ 2202 return 1; 2203 } 2204 2205 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2206 struct acpi_device *adev) 2207 { 2208 acpi_handle parent_handle = NULL; 2209 struct list_head resource_list; 2210 struct acpi_spi_lookup lookup = {}; 2211 struct spi_device *spi; 2212 int ret; 2213 2214 if (acpi_bus_get_status(adev) || !adev->status.present || 2215 acpi_device_enumerated(adev)) 2216 return AE_OK; 2217 2218 lookup.ctlr = ctlr; 2219 lookup.irq = -1; 2220 2221 INIT_LIST_HEAD(&resource_list); 2222 ret = acpi_dev_get_resources(adev, &resource_list, 2223 acpi_spi_add_resource, &lookup); 2224 acpi_dev_free_resource_list(&resource_list); 2225 2226 if (ret < 0) 2227 /* found SPI in _CRS but it points to another controller */ 2228 return AE_OK; 2229 2230 if (!lookup.max_speed_hz && 2231 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2232 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2233 /* Apple does not use _CRS but nested devices for SPI slaves */ 2234 acpi_spi_parse_apple_properties(adev, &lookup); 2235 } 2236 2237 if (!lookup.max_speed_hz) 2238 return AE_OK; 2239 2240 spi = spi_alloc_device(ctlr); 2241 if (!spi) { 2242 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2243 dev_name(&adev->dev)); 2244 return AE_NO_MEMORY; 2245 } 2246 2247 2248 ACPI_COMPANION_SET(&spi->dev, adev); 2249 spi->max_speed_hz = lookup.max_speed_hz; 2250 spi->mode |= lookup.mode; 2251 spi->irq = lookup.irq; 2252 spi->bits_per_word = lookup.bits_per_word; 2253 spi->chip_select = lookup.chip_select; 2254 2255 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2256 sizeof(spi->modalias)); 2257 2258 if (spi->irq < 0) 2259 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2260 2261 acpi_device_set_enumerated(adev); 2262 2263 adev->power.flags.ignore_parent = true; 2264 if (spi_add_device(spi)) { 2265 adev->power.flags.ignore_parent = false; 2266 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2267 dev_name(&adev->dev)); 2268 spi_dev_put(spi); 2269 } 2270 2271 return AE_OK; 2272 } 2273 2274 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2275 void *data, void **return_value) 2276 { 2277 struct spi_controller *ctlr = data; 2278 struct acpi_device *adev; 2279 2280 if (acpi_bus_get_device(handle, &adev)) 2281 return AE_OK; 2282 2283 return acpi_register_spi_device(ctlr, adev); 2284 } 2285 2286 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2287 2288 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2289 { 2290 acpi_status status; 2291 acpi_handle handle; 2292 2293 handle = ACPI_HANDLE(ctlr->dev.parent); 2294 if (!handle) 2295 return; 2296 2297 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2298 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2299 acpi_spi_add_device, NULL, ctlr, NULL); 2300 if (ACPI_FAILURE(status)) 2301 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2302 } 2303 #else 2304 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2305 #endif /* CONFIG_ACPI */ 2306 2307 static void spi_controller_release(struct device *dev) 2308 { 2309 struct spi_controller *ctlr; 2310 2311 ctlr = container_of(dev, struct spi_controller, dev); 2312 kfree(ctlr); 2313 } 2314 2315 static struct class spi_master_class = { 2316 .name = "spi_master", 2317 .owner = THIS_MODULE, 2318 .dev_release = spi_controller_release, 2319 .dev_groups = spi_master_groups, 2320 }; 2321 2322 #ifdef CONFIG_SPI_SLAVE 2323 /** 2324 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2325 * controller 2326 * @spi: device used for the current transfer 2327 */ 2328 int spi_slave_abort(struct spi_device *spi) 2329 { 2330 struct spi_controller *ctlr = spi->controller; 2331 2332 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2333 return ctlr->slave_abort(ctlr); 2334 2335 return -ENOTSUPP; 2336 } 2337 EXPORT_SYMBOL_GPL(spi_slave_abort); 2338 2339 static int match_true(struct device *dev, void *data) 2340 { 2341 return 1; 2342 } 2343 2344 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2345 char *buf) 2346 { 2347 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2348 dev); 2349 struct device *child; 2350 2351 child = device_find_child(&ctlr->dev, NULL, match_true); 2352 return sprintf(buf, "%s\n", 2353 child ? to_spi_device(child)->modalias : NULL); 2354 } 2355 2356 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2357 const char *buf, size_t count) 2358 { 2359 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2360 dev); 2361 struct spi_device *spi; 2362 struct device *child; 2363 char name[32]; 2364 int rc; 2365 2366 rc = sscanf(buf, "%31s", name); 2367 if (rc != 1 || !name[0]) 2368 return -EINVAL; 2369 2370 child = device_find_child(&ctlr->dev, NULL, match_true); 2371 if (child) { 2372 /* Remove registered slave */ 2373 device_unregister(child); 2374 put_device(child); 2375 } 2376 2377 if (strcmp(name, "(null)")) { 2378 /* Register new slave */ 2379 spi = spi_alloc_device(ctlr); 2380 if (!spi) 2381 return -ENOMEM; 2382 2383 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2384 2385 rc = spi_add_device(spi); 2386 if (rc) { 2387 spi_dev_put(spi); 2388 return rc; 2389 } 2390 } 2391 2392 return count; 2393 } 2394 2395 static DEVICE_ATTR_RW(slave); 2396 2397 static struct attribute *spi_slave_attrs[] = { 2398 &dev_attr_slave.attr, 2399 NULL, 2400 }; 2401 2402 static const struct attribute_group spi_slave_group = { 2403 .attrs = spi_slave_attrs, 2404 }; 2405 2406 static const struct attribute_group *spi_slave_groups[] = { 2407 &spi_controller_statistics_group, 2408 &spi_slave_group, 2409 NULL, 2410 }; 2411 2412 static struct class spi_slave_class = { 2413 .name = "spi_slave", 2414 .owner = THIS_MODULE, 2415 .dev_release = spi_controller_release, 2416 .dev_groups = spi_slave_groups, 2417 }; 2418 #else 2419 extern struct class spi_slave_class; /* dummy */ 2420 #endif 2421 2422 /** 2423 * __spi_alloc_controller - allocate an SPI master or slave controller 2424 * @dev: the controller, possibly using the platform_bus 2425 * @size: how much zeroed driver-private data to allocate; the pointer to this 2426 * memory is in the driver_data field of the returned device, accessible 2427 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2428 * drivers granting DMA access to portions of their private data need to 2429 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2430 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2431 * slave (true) controller 2432 * Context: can sleep 2433 * 2434 * This call is used only by SPI controller drivers, which are the 2435 * only ones directly touching chip registers. It's how they allocate 2436 * an spi_controller structure, prior to calling spi_register_controller(). 2437 * 2438 * This must be called from context that can sleep. 2439 * 2440 * The caller is responsible for assigning the bus number and initializing the 2441 * controller's methods before calling spi_register_controller(); and (after 2442 * errors adding the device) calling spi_controller_put() to prevent a memory 2443 * leak. 2444 * 2445 * Return: the SPI controller structure on success, else NULL. 2446 */ 2447 struct spi_controller *__spi_alloc_controller(struct device *dev, 2448 unsigned int size, bool slave) 2449 { 2450 struct spi_controller *ctlr; 2451 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2452 2453 if (!dev) 2454 return NULL; 2455 2456 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2457 if (!ctlr) 2458 return NULL; 2459 2460 device_initialize(&ctlr->dev); 2461 ctlr->bus_num = -1; 2462 ctlr->num_chipselect = 1; 2463 ctlr->slave = slave; 2464 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2465 ctlr->dev.class = &spi_slave_class; 2466 else 2467 ctlr->dev.class = &spi_master_class; 2468 ctlr->dev.parent = dev; 2469 pm_suspend_ignore_children(&ctlr->dev, true); 2470 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2471 2472 return ctlr; 2473 } 2474 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2475 2476 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2477 { 2478 spi_controller_put(*(struct spi_controller **)ctlr); 2479 } 2480 2481 /** 2482 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2483 * @dev: physical device of SPI controller 2484 * @size: how much zeroed driver-private data to allocate 2485 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2486 * Context: can sleep 2487 * 2488 * Allocate an SPI controller and automatically release a reference on it 2489 * when @dev is unbound from its driver. Drivers are thus relieved from 2490 * having to call spi_controller_put(). 2491 * 2492 * The arguments to this function are identical to __spi_alloc_controller(). 2493 * 2494 * Return: the SPI controller structure on success, else NULL. 2495 */ 2496 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2497 unsigned int size, 2498 bool slave) 2499 { 2500 struct spi_controller **ptr, *ctlr; 2501 2502 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2503 GFP_KERNEL); 2504 if (!ptr) 2505 return NULL; 2506 2507 ctlr = __spi_alloc_controller(dev, size, slave); 2508 if (ctlr) { 2509 ctlr->devm_allocated = true; 2510 *ptr = ctlr; 2511 devres_add(dev, ptr); 2512 } else { 2513 devres_free(ptr); 2514 } 2515 2516 return ctlr; 2517 } 2518 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2519 2520 #ifdef CONFIG_OF 2521 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2522 { 2523 int nb, i, *cs; 2524 struct device_node *np = ctlr->dev.of_node; 2525 2526 if (!np) 2527 return 0; 2528 2529 nb = of_gpio_named_count(np, "cs-gpios"); 2530 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2531 2532 /* Return error only for an incorrectly formed cs-gpios property */ 2533 if (nb == 0 || nb == -ENOENT) 2534 return 0; 2535 else if (nb < 0) 2536 return nb; 2537 2538 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2539 GFP_KERNEL); 2540 ctlr->cs_gpios = cs; 2541 2542 if (!ctlr->cs_gpios) 2543 return -ENOMEM; 2544 2545 for (i = 0; i < ctlr->num_chipselect; i++) 2546 cs[i] = -ENOENT; 2547 2548 for (i = 0; i < nb; i++) 2549 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2550 2551 return 0; 2552 } 2553 #else 2554 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2555 { 2556 return 0; 2557 } 2558 #endif 2559 2560 /** 2561 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2562 * @ctlr: The SPI master to grab GPIO descriptors for 2563 */ 2564 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2565 { 2566 int nb, i; 2567 struct gpio_desc **cs; 2568 struct device *dev = &ctlr->dev; 2569 unsigned long native_cs_mask = 0; 2570 unsigned int num_cs_gpios = 0; 2571 2572 nb = gpiod_count(dev, "cs"); 2573 if (nb < 0) { 2574 /* No GPIOs at all is fine, else return the error */ 2575 if (nb == -ENOENT) 2576 return 0; 2577 return nb; 2578 } 2579 2580 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2581 2582 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2583 GFP_KERNEL); 2584 if (!cs) 2585 return -ENOMEM; 2586 ctlr->cs_gpiods = cs; 2587 2588 for (i = 0; i < nb; i++) { 2589 /* 2590 * Most chipselects are active low, the inverted 2591 * semantics are handled by special quirks in gpiolib, 2592 * so initializing them GPIOD_OUT_LOW here means 2593 * "unasserted", in most cases this will drive the physical 2594 * line high. 2595 */ 2596 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2597 GPIOD_OUT_LOW); 2598 if (IS_ERR(cs[i])) 2599 return PTR_ERR(cs[i]); 2600 2601 if (cs[i]) { 2602 /* 2603 * If we find a CS GPIO, name it after the device and 2604 * chip select line. 2605 */ 2606 char *gpioname; 2607 2608 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2609 dev_name(dev), i); 2610 if (!gpioname) 2611 return -ENOMEM; 2612 gpiod_set_consumer_name(cs[i], gpioname); 2613 num_cs_gpios++; 2614 continue; 2615 } 2616 2617 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2618 dev_err(dev, "Invalid native chip select %d\n", i); 2619 return -EINVAL; 2620 } 2621 native_cs_mask |= BIT(i); 2622 } 2623 2624 ctlr->unused_native_cs = ffz(native_cs_mask); 2625 if (num_cs_gpios && ctlr->max_native_cs && 2626 ctlr->unused_native_cs >= ctlr->max_native_cs) { 2627 dev_err(dev, "No unused native chip select available\n"); 2628 return -EINVAL; 2629 } 2630 2631 return 0; 2632 } 2633 2634 static int spi_controller_check_ops(struct spi_controller *ctlr) 2635 { 2636 /* 2637 * The controller may implement only the high-level SPI-memory like 2638 * operations if it does not support regular SPI transfers, and this is 2639 * valid use case. 2640 * If ->mem_ops is NULL, we request that at least one of the 2641 * ->transfer_xxx() method be implemented. 2642 */ 2643 if (ctlr->mem_ops) { 2644 if (!ctlr->mem_ops->exec_op) 2645 return -EINVAL; 2646 } else if (!ctlr->transfer && !ctlr->transfer_one && 2647 !ctlr->transfer_one_message) { 2648 return -EINVAL; 2649 } 2650 2651 return 0; 2652 } 2653 2654 /** 2655 * spi_register_controller - register SPI master or slave controller 2656 * @ctlr: initialized master, originally from spi_alloc_master() or 2657 * spi_alloc_slave() 2658 * Context: can sleep 2659 * 2660 * SPI controllers connect to their drivers using some non-SPI bus, 2661 * such as the platform bus. The final stage of probe() in that code 2662 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2663 * 2664 * SPI controllers use board specific (often SOC specific) bus numbers, 2665 * and board-specific addressing for SPI devices combines those numbers 2666 * with chip select numbers. Since SPI does not directly support dynamic 2667 * device identification, boards need configuration tables telling which 2668 * chip is at which address. 2669 * 2670 * This must be called from context that can sleep. It returns zero on 2671 * success, else a negative error code (dropping the controller's refcount). 2672 * After a successful return, the caller is responsible for calling 2673 * spi_unregister_controller(). 2674 * 2675 * Return: zero on success, else a negative error code. 2676 */ 2677 int spi_register_controller(struct spi_controller *ctlr) 2678 { 2679 struct device *dev = ctlr->dev.parent; 2680 struct boardinfo *bi; 2681 int status; 2682 int id, first_dynamic; 2683 2684 if (!dev) 2685 return -ENODEV; 2686 2687 /* 2688 * Make sure all necessary hooks are implemented before registering 2689 * the SPI controller. 2690 */ 2691 status = spi_controller_check_ops(ctlr); 2692 if (status) 2693 return status; 2694 2695 if (ctlr->bus_num >= 0) { 2696 /* devices with a fixed bus num must check-in with the num */ 2697 mutex_lock(&board_lock); 2698 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2699 ctlr->bus_num + 1, GFP_KERNEL); 2700 mutex_unlock(&board_lock); 2701 if (WARN(id < 0, "couldn't get idr")) 2702 return id == -ENOSPC ? -EBUSY : id; 2703 ctlr->bus_num = id; 2704 } else if (ctlr->dev.of_node) { 2705 /* allocate dynamic bus number using Linux idr */ 2706 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2707 if (id >= 0) { 2708 ctlr->bus_num = id; 2709 mutex_lock(&board_lock); 2710 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2711 ctlr->bus_num + 1, GFP_KERNEL); 2712 mutex_unlock(&board_lock); 2713 if (WARN(id < 0, "couldn't get idr")) 2714 return id == -ENOSPC ? -EBUSY : id; 2715 } 2716 } 2717 if (ctlr->bus_num < 0) { 2718 first_dynamic = of_alias_get_highest_id("spi"); 2719 if (first_dynamic < 0) 2720 first_dynamic = 0; 2721 else 2722 first_dynamic++; 2723 2724 mutex_lock(&board_lock); 2725 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2726 0, GFP_KERNEL); 2727 mutex_unlock(&board_lock); 2728 if (WARN(id < 0, "couldn't get idr")) 2729 return id; 2730 ctlr->bus_num = id; 2731 } 2732 INIT_LIST_HEAD(&ctlr->queue); 2733 spin_lock_init(&ctlr->queue_lock); 2734 spin_lock_init(&ctlr->bus_lock_spinlock); 2735 mutex_init(&ctlr->bus_lock_mutex); 2736 mutex_init(&ctlr->io_mutex); 2737 ctlr->bus_lock_flag = 0; 2738 init_completion(&ctlr->xfer_completion); 2739 if (!ctlr->max_dma_len) 2740 ctlr->max_dma_len = INT_MAX; 2741 2742 /* register the device, then userspace will see it. 2743 * registration fails if the bus ID is in use. 2744 */ 2745 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2746 2747 if (!spi_controller_is_slave(ctlr)) { 2748 if (ctlr->use_gpio_descriptors) { 2749 status = spi_get_gpio_descs(ctlr); 2750 if (status) 2751 goto free_bus_id; 2752 /* 2753 * A controller using GPIO descriptors always 2754 * supports SPI_CS_HIGH if need be. 2755 */ 2756 ctlr->mode_bits |= SPI_CS_HIGH; 2757 } else { 2758 /* Legacy code path for GPIOs from DT */ 2759 status = of_spi_get_gpio_numbers(ctlr); 2760 if (status) 2761 goto free_bus_id; 2762 } 2763 } 2764 2765 /* 2766 * Even if it's just one always-selected device, there must 2767 * be at least one chipselect. 2768 */ 2769 if (!ctlr->num_chipselect) { 2770 status = -EINVAL; 2771 goto free_bus_id; 2772 } 2773 2774 status = device_add(&ctlr->dev); 2775 if (status < 0) 2776 goto free_bus_id; 2777 dev_dbg(dev, "registered %s %s\n", 2778 spi_controller_is_slave(ctlr) ? "slave" : "master", 2779 dev_name(&ctlr->dev)); 2780 2781 /* 2782 * If we're using a queued driver, start the queue. Note that we don't 2783 * need the queueing logic if the driver is only supporting high-level 2784 * memory operations. 2785 */ 2786 if (ctlr->transfer) { 2787 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2788 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2789 status = spi_controller_initialize_queue(ctlr); 2790 if (status) { 2791 device_del(&ctlr->dev); 2792 goto free_bus_id; 2793 } 2794 } 2795 /* add statistics */ 2796 spin_lock_init(&ctlr->statistics.lock); 2797 2798 mutex_lock(&board_lock); 2799 list_add_tail(&ctlr->list, &spi_controller_list); 2800 list_for_each_entry(bi, &board_list, list) 2801 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2802 mutex_unlock(&board_lock); 2803 2804 /* Register devices from the device tree and ACPI */ 2805 of_register_spi_devices(ctlr); 2806 acpi_register_spi_devices(ctlr); 2807 return status; 2808 2809 free_bus_id: 2810 mutex_lock(&board_lock); 2811 idr_remove(&spi_master_idr, ctlr->bus_num); 2812 mutex_unlock(&board_lock); 2813 return status; 2814 } 2815 EXPORT_SYMBOL_GPL(spi_register_controller); 2816 2817 static void devm_spi_unregister(void *ctlr) 2818 { 2819 spi_unregister_controller(ctlr); 2820 } 2821 2822 /** 2823 * devm_spi_register_controller - register managed SPI master or slave 2824 * controller 2825 * @dev: device managing SPI controller 2826 * @ctlr: initialized controller, originally from spi_alloc_master() or 2827 * spi_alloc_slave() 2828 * Context: can sleep 2829 * 2830 * Register a SPI device as with spi_register_controller() which will 2831 * automatically be unregistered and freed. 2832 * 2833 * Return: zero on success, else a negative error code. 2834 */ 2835 int devm_spi_register_controller(struct device *dev, 2836 struct spi_controller *ctlr) 2837 { 2838 int ret; 2839 2840 ret = spi_register_controller(ctlr); 2841 if (ret) 2842 return ret; 2843 2844 return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr); 2845 } 2846 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2847 2848 static int __unregister(struct device *dev, void *null) 2849 { 2850 spi_unregister_device(to_spi_device(dev)); 2851 return 0; 2852 } 2853 2854 /** 2855 * spi_unregister_controller - unregister SPI master or slave controller 2856 * @ctlr: the controller being unregistered 2857 * Context: can sleep 2858 * 2859 * This call is used only by SPI controller drivers, which are the 2860 * only ones directly touching chip registers. 2861 * 2862 * This must be called from context that can sleep. 2863 * 2864 * Note that this function also drops a reference to the controller. 2865 */ 2866 void spi_unregister_controller(struct spi_controller *ctlr) 2867 { 2868 struct spi_controller *found; 2869 int id = ctlr->bus_num; 2870 2871 /* Prevent addition of new devices, unregister existing ones */ 2872 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2873 mutex_lock(&spi_add_lock); 2874 2875 device_for_each_child(&ctlr->dev, NULL, __unregister); 2876 2877 /* First make sure that this controller was ever added */ 2878 mutex_lock(&board_lock); 2879 found = idr_find(&spi_master_idr, id); 2880 mutex_unlock(&board_lock); 2881 if (ctlr->queued) { 2882 if (spi_destroy_queue(ctlr)) 2883 dev_err(&ctlr->dev, "queue remove failed\n"); 2884 } 2885 mutex_lock(&board_lock); 2886 list_del(&ctlr->list); 2887 mutex_unlock(&board_lock); 2888 2889 device_del(&ctlr->dev); 2890 2891 /* Release the last reference on the controller if its driver 2892 * has not yet been converted to devm_spi_alloc_master/slave(). 2893 */ 2894 if (!ctlr->devm_allocated) 2895 put_device(&ctlr->dev); 2896 2897 /* free bus id */ 2898 mutex_lock(&board_lock); 2899 if (found == ctlr) 2900 idr_remove(&spi_master_idr, id); 2901 mutex_unlock(&board_lock); 2902 2903 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2904 mutex_unlock(&spi_add_lock); 2905 } 2906 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2907 2908 int spi_controller_suspend(struct spi_controller *ctlr) 2909 { 2910 int ret; 2911 2912 /* Basically no-ops for non-queued controllers */ 2913 if (!ctlr->queued) 2914 return 0; 2915 2916 ret = spi_stop_queue(ctlr); 2917 if (ret) 2918 dev_err(&ctlr->dev, "queue stop failed\n"); 2919 2920 return ret; 2921 } 2922 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2923 2924 int spi_controller_resume(struct spi_controller *ctlr) 2925 { 2926 int ret; 2927 2928 if (!ctlr->queued) 2929 return 0; 2930 2931 ret = spi_start_queue(ctlr); 2932 if (ret) 2933 dev_err(&ctlr->dev, "queue restart failed\n"); 2934 2935 return ret; 2936 } 2937 EXPORT_SYMBOL_GPL(spi_controller_resume); 2938 2939 static int __spi_controller_match(struct device *dev, const void *data) 2940 { 2941 struct spi_controller *ctlr; 2942 const u16 *bus_num = data; 2943 2944 ctlr = container_of(dev, struct spi_controller, dev); 2945 return ctlr->bus_num == *bus_num; 2946 } 2947 2948 /** 2949 * spi_busnum_to_master - look up master associated with bus_num 2950 * @bus_num: the master's bus number 2951 * Context: can sleep 2952 * 2953 * This call may be used with devices that are registered after 2954 * arch init time. It returns a refcounted pointer to the relevant 2955 * spi_controller (which the caller must release), or NULL if there is 2956 * no such master registered. 2957 * 2958 * Return: the SPI master structure on success, else NULL. 2959 */ 2960 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2961 { 2962 struct device *dev; 2963 struct spi_controller *ctlr = NULL; 2964 2965 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2966 __spi_controller_match); 2967 if (dev) 2968 ctlr = container_of(dev, struct spi_controller, dev); 2969 /* reference got in class_find_device */ 2970 return ctlr; 2971 } 2972 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2973 2974 /*-------------------------------------------------------------------------*/ 2975 2976 /* Core methods for SPI resource management */ 2977 2978 /** 2979 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2980 * during the processing of a spi_message while using 2981 * spi_transfer_one 2982 * @spi: the spi device for which we allocate memory 2983 * @release: the release code to execute for this resource 2984 * @size: size to alloc and return 2985 * @gfp: GFP allocation flags 2986 * 2987 * Return: the pointer to the allocated data 2988 * 2989 * This may get enhanced in the future to allocate from a memory pool 2990 * of the @spi_device or @spi_controller to avoid repeated allocations. 2991 */ 2992 void *spi_res_alloc(struct spi_device *spi, 2993 spi_res_release_t release, 2994 size_t size, gfp_t gfp) 2995 { 2996 struct spi_res *sres; 2997 2998 sres = kzalloc(sizeof(*sres) + size, gfp); 2999 if (!sres) 3000 return NULL; 3001 3002 INIT_LIST_HEAD(&sres->entry); 3003 sres->release = release; 3004 3005 return sres->data; 3006 } 3007 EXPORT_SYMBOL_GPL(spi_res_alloc); 3008 3009 /** 3010 * spi_res_free - free an spi resource 3011 * @res: pointer to the custom data of a resource 3012 * 3013 */ 3014 void spi_res_free(void *res) 3015 { 3016 struct spi_res *sres = container_of(res, struct spi_res, data); 3017 3018 if (!res) 3019 return; 3020 3021 WARN_ON(!list_empty(&sres->entry)); 3022 kfree(sres); 3023 } 3024 EXPORT_SYMBOL_GPL(spi_res_free); 3025 3026 /** 3027 * spi_res_add - add a spi_res to the spi_message 3028 * @message: the spi message 3029 * @res: the spi_resource 3030 */ 3031 void spi_res_add(struct spi_message *message, void *res) 3032 { 3033 struct spi_res *sres = container_of(res, struct spi_res, data); 3034 3035 WARN_ON(!list_empty(&sres->entry)); 3036 list_add_tail(&sres->entry, &message->resources); 3037 } 3038 EXPORT_SYMBOL_GPL(spi_res_add); 3039 3040 /** 3041 * spi_res_release - release all spi resources for this message 3042 * @ctlr: the @spi_controller 3043 * @message: the @spi_message 3044 */ 3045 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 3046 { 3047 struct spi_res *res, *tmp; 3048 3049 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 3050 if (res->release) 3051 res->release(ctlr, message, res->data); 3052 3053 list_del(&res->entry); 3054 3055 kfree(res); 3056 } 3057 } 3058 EXPORT_SYMBOL_GPL(spi_res_release); 3059 3060 /*-------------------------------------------------------------------------*/ 3061 3062 /* Core methods for spi_message alterations */ 3063 3064 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3065 struct spi_message *msg, 3066 void *res) 3067 { 3068 struct spi_replaced_transfers *rxfer = res; 3069 size_t i; 3070 3071 /* call extra callback if requested */ 3072 if (rxfer->release) 3073 rxfer->release(ctlr, msg, res); 3074 3075 /* insert replaced transfers back into the message */ 3076 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3077 3078 /* remove the formerly inserted entries */ 3079 for (i = 0; i < rxfer->inserted; i++) 3080 list_del(&rxfer->inserted_transfers[i].transfer_list); 3081 } 3082 3083 /** 3084 * spi_replace_transfers - replace transfers with several transfers 3085 * and register change with spi_message.resources 3086 * @msg: the spi_message we work upon 3087 * @xfer_first: the first spi_transfer we want to replace 3088 * @remove: number of transfers to remove 3089 * @insert: the number of transfers we want to insert instead 3090 * @release: extra release code necessary in some circumstances 3091 * @extradatasize: extra data to allocate (with alignment guarantees 3092 * of struct @spi_transfer) 3093 * @gfp: gfp flags 3094 * 3095 * Returns: pointer to @spi_replaced_transfers, 3096 * PTR_ERR(...) in case of errors. 3097 */ 3098 struct spi_replaced_transfers *spi_replace_transfers( 3099 struct spi_message *msg, 3100 struct spi_transfer *xfer_first, 3101 size_t remove, 3102 size_t insert, 3103 spi_replaced_release_t release, 3104 size_t extradatasize, 3105 gfp_t gfp) 3106 { 3107 struct spi_replaced_transfers *rxfer; 3108 struct spi_transfer *xfer; 3109 size_t i; 3110 3111 /* allocate the structure using spi_res */ 3112 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3113 struct_size(rxfer, inserted_transfers, insert) 3114 + extradatasize, 3115 gfp); 3116 if (!rxfer) 3117 return ERR_PTR(-ENOMEM); 3118 3119 /* the release code to invoke before running the generic release */ 3120 rxfer->release = release; 3121 3122 /* assign extradata */ 3123 if (extradatasize) 3124 rxfer->extradata = 3125 &rxfer->inserted_transfers[insert]; 3126 3127 /* init the replaced_transfers list */ 3128 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3129 3130 /* assign the list_entry after which we should reinsert 3131 * the @replaced_transfers - it may be spi_message.messages! 3132 */ 3133 rxfer->replaced_after = xfer_first->transfer_list.prev; 3134 3135 /* remove the requested number of transfers */ 3136 for (i = 0; i < remove; i++) { 3137 /* if the entry after replaced_after it is msg->transfers 3138 * then we have been requested to remove more transfers 3139 * than are in the list 3140 */ 3141 if (rxfer->replaced_after->next == &msg->transfers) { 3142 dev_err(&msg->spi->dev, 3143 "requested to remove more spi_transfers than are available\n"); 3144 /* insert replaced transfers back into the message */ 3145 list_splice(&rxfer->replaced_transfers, 3146 rxfer->replaced_after); 3147 3148 /* free the spi_replace_transfer structure */ 3149 spi_res_free(rxfer); 3150 3151 /* and return with an error */ 3152 return ERR_PTR(-EINVAL); 3153 } 3154 3155 /* remove the entry after replaced_after from list of 3156 * transfers and add it to list of replaced_transfers 3157 */ 3158 list_move_tail(rxfer->replaced_after->next, 3159 &rxfer->replaced_transfers); 3160 } 3161 3162 /* create copy of the given xfer with identical settings 3163 * based on the first transfer to get removed 3164 */ 3165 for (i = 0; i < insert; i++) { 3166 /* we need to run in reverse order */ 3167 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3168 3169 /* copy all spi_transfer data */ 3170 memcpy(xfer, xfer_first, sizeof(*xfer)); 3171 3172 /* add to list */ 3173 list_add(&xfer->transfer_list, rxfer->replaced_after); 3174 3175 /* clear cs_change and delay for all but the last */ 3176 if (i) { 3177 xfer->cs_change = false; 3178 xfer->delay.value = 0; 3179 } 3180 } 3181 3182 /* set up inserted */ 3183 rxfer->inserted = insert; 3184 3185 /* and register it with spi_res/spi_message */ 3186 spi_res_add(msg, rxfer); 3187 3188 return rxfer; 3189 } 3190 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3191 3192 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3193 struct spi_message *msg, 3194 struct spi_transfer **xferp, 3195 size_t maxsize, 3196 gfp_t gfp) 3197 { 3198 struct spi_transfer *xfer = *xferp, *xfers; 3199 struct spi_replaced_transfers *srt; 3200 size_t offset; 3201 size_t count, i; 3202 3203 /* calculate how many we have to replace */ 3204 count = DIV_ROUND_UP(xfer->len, maxsize); 3205 3206 /* create replacement */ 3207 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3208 if (IS_ERR(srt)) 3209 return PTR_ERR(srt); 3210 xfers = srt->inserted_transfers; 3211 3212 /* now handle each of those newly inserted spi_transfers 3213 * note that the replacements spi_transfers all are preset 3214 * to the same values as *xferp, so tx_buf, rx_buf and len 3215 * are all identical (as well as most others) 3216 * so we just have to fix up len and the pointers. 3217 * 3218 * this also includes support for the depreciated 3219 * spi_message.is_dma_mapped interface 3220 */ 3221 3222 /* the first transfer just needs the length modified, so we 3223 * run it outside the loop 3224 */ 3225 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3226 3227 /* all the others need rx_buf/tx_buf also set */ 3228 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3229 /* update rx_buf, tx_buf and dma */ 3230 if (xfers[i].rx_buf) 3231 xfers[i].rx_buf += offset; 3232 if (xfers[i].rx_dma) 3233 xfers[i].rx_dma += offset; 3234 if (xfers[i].tx_buf) 3235 xfers[i].tx_buf += offset; 3236 if (xfers[i].tx_dma) 3237 xfers[i].tx_dma += offset; 3238 3239 /* update length */ 3240 xfers[i].len = min(maxsize, xfers[i].len - offset); 3241 } 3242 3243 /* we set up xferp to the last entry we have inserted, 3244 * so that we skip those already split transfers 3245 */ 3246 *xferp = &xfers[count - 1]; 3247 3248 /* increment statistics counters */ 3249 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3250 transfers_split_maxsize); 3251 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3252 transfers_split_maxsize); 3253 3254 return 0; 3255 } 3256 3257 /** 3258 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3259 * when an individual transfer exceeds a 3260 * certain size 3261 * @ctlr: the @spi_controller for this transfer 3262 * @msg: the @spi_message to transform 3263 * @maxsize: the maximum when to apply this 3264 * @gfp: GFP allocation flags 3265 * 3266 * Return: status of transformation 3267 */ 3268 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3269 struct spi_message *msg, 3270 size_t maxsize, 3271 gfp_t gfp) 3272 { 3273 struct spi_transfer *xfer; 3274 int ret; 3275 3276 /* iterate over the transfer_list, 3277 * but note that xfer is advanced to the last transfer inserted 3278 * to avoid checking sizes again unnecessarily (also xfer does 3279 * potentiall belong to a different list by the time the 3280 * replacement has happened 3281 */ 3282 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3283 if (xfer->len > maxsize) { 3284 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3285 maxsize, gfp); 3286 if (ret) 3287 return ret; 3288 } 3289 } 3290 3291 return 0; 3292 } 3293 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3294 3295 /*-------------------------------------------------------------------------*/ 3296 3297 /* Core methods for SPI controller protocol drivers. Some of the 3298 * other core methods are currently defined as inline functions. 3299 */ 3300 3301 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3302 u8 bits_per_word) 3303 { 3304 if (ctlr->bits_per_word_mask) { 3305 /* Only 32 bits fit in the mask */ 3306 if (bits_per_word > 32) 3307 return -EINVAL; 3308 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3309 return -EINVAL; 3310 } 3311 3312 return 0; 3313 } 3314 3315 /** 3316 * spi_setup - setup SPI mode and clock rate 3317 * @spi: the device whose settings are being modified 3318 * Context: can sleep, and no requests are queued to the device 3319 * 3320 * SPI protocol drivers may need to update the transfer mode if the 3321 * device doesn't work with its default. They may likewise need 3322 * to update clock rates or word sizes from initial values. This function 3323 * changes those settings, and must be called from a context that can sleep. 3324 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3325 * effect the next time the device is selected and data is transferred to 3326 * or from it. When this function returns, the spi device is deselected. 3327 * 3328 * Note that this call will fail if the protocol driver specifies an option 3329 * that the underlying controller or its driver does not support. For 3330 * example, not all hardware supports wire transfers using nine bit words, 3331 * LSB-first wire encoding, or active-high chipselects. 3332 * 3333 * Return: zero on success, else a negative error code. 3334 */ 3335 int spi_setup(struct spi_device *spi) 3336 { 3337 unsigned bad_bits, ugly_bits; 3338 int status; 3339 3340 /* 3341 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3342 * are set at the same time 3343 */ 3344 if ((hweight_long(spi->mode & 3345 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3346 (hweight_long(spi->mode & 3347 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3348 dev_err(&spi->dev, 3349 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3350 return -EINVAL; 3351 } 3352 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3353 */ 3354 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3355 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3356 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3357 return -EINVAL; 3358 /* help drivers fail *cleanly* when they need options 3359 * that aren't supported with their current controller 3360 * SPI_CS_WORD has a fallback software implementation, 3361 * so it is ignored here. 3362 */ 3363 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3364 SPI_NO_TX | SPI_NO_RX); 3365 /* nothing prevents from working with active-high CS in case if it 3366 * is driven by GPIO. 3367 */ 3368 if (gpio_is_valid(spi->cs_gpio)) 3369 bad_bits &= ~SPI_CS_HIGH; 3370 ugly_bits = bad_bits & 3371 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3372 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3373 if (ugly_bits) { 3374 dev_warn(&spi->dev, 3375 "setup: ignoring unsupported mode bits %x\n", 3376 ugly_bits); 3377 spi->mode &= ~ugly_bits; 3378 bad_bits &= ~ugly_bits; 3379 } 3380 if (bad_bits) { 3381 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3382 bad_bits); 3383 return -EINVAL; 3384 } 3385 3386 if (!spi->bits_per_word) 3387 spi->bits_per_word = 8; 3388 3389 status = __spi_validate_bits_per_word(spi->controller, 3390 spi->bits_per_word); 3391 if (status) 3392 return status; 3393 3394 if (spi->controller->max_speed_hz && 3395 (!spi->max_speed_hz || 3396 spi->max_speed_hz > spi->controller->max_speed_hz)) 3397 spi->max_speed_hz = spi->controller->max_speed_hz; 3398 3399 mutex_lock(&spi->controller->io_mutex); 3400 3401 if (spi->controller->setup) { 3402 status = spi->controller->setup(spi); 3403 if (status) { 3404 mutex_unlock(&spi->controller->io_mutex); 3405 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3406 status); 3407 return status; 3408 } 3409 } 3410 3411 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3412 status = pm_runtime_get_sync(spi->controller->dev.parent); 3413 if (status < 0) { 3414 mutex_unlock(&spi->controller->io_mutex); 3415 pm_runtime_put_noidle(spi->controller->dev.parent); 3416 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3417 status); 3418 return status; 3419 } 3420 3421 /* 3422 * We do not want to return positive value from pm_runtime_get, 3423 * there are many instances of devices calling spi_setup() and 3424 * checking for a non-zero return value instead of a negative 3425 * return value. 3426 */ 3427 status = 0; 3428 3429 spi_set_cs(spi, false, true); 3430 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3431 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3432 } else { 3433 spi_set_cs(spi, false, true); 3434 } 3435 3436 mutex_unlock(&spi->controller->io_mutex); 3437 3438 if (spi->rt && !spi->controller->rt) { 3439 spi->controller->rt = true; 3440 spi_set_thread_rt(spi->controller); 3441 } 3442 3443 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3444 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3445 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3446 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3447 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3448 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3449 spi->bits_per_word, spi->max_speed_hz, 3450 status); 3451 3452 return status; 3453 } 3454 EXPORT_SYMBOL_GPL(spi_setup); 3455 3456 /** 3457 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3458 * @spi: the device that requires specific CS timing configuration 3459 * @setup: CS setup time specified via @spi_delay 3460 * @hold: CS hold time specified via @spi_delay 3461 * @inactive: CS inactive delay between transfers specified via @spi_delay 3462 * 3463 * Return: zero on success, else a negative error code. 3464 */ 3465 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3466 struct spi_delay *hold, struct spi_delay *inactive) 3467 { 3468 struct device *parent = spi->controller->dev.parent; 3469 size_t len; 3470 int status; 3471 3472 if (spi->controller->set_cs_timing && 3473 !(spi->cs_gpiod || gpio_is_valid(spi->cs_gpio))) { 3474 mutex_lock(&spi->controller->io_mutex); 3475 3476 if (spi->controller->auto_runtime_pm) { 3477 status = pm_runtime_get_sync(parent); 3478 if (status < 0) { 3479 mutex_unlock(&spi->controller->io_mutex); 3480 pm_runtime_put_noidle(parent); 3481 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3482 status); 3483 return status; 3484 } 3485 3486 status = spi->controller->set_cs_timing(spi, setup, 3487 hold, inactive); 3488 pm_runtime_mark_last_busy(parent); 3489 pm_runtime_put_autosuspend(parent); 3490 } else { 3491 status = spi->controller->set_cs_timing(spi, setup, hold, 3492 inactive); 3493 } 3494 3495 mutex_unlock(&spi->controller->io_mutex); 3496 return status; 3497 } 3498 3499 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3500 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3501 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3502 dev_err(&spi->dev, 3503 "Clock-cycle delays for CS not supported in SW mode\n"); 3504 return -ENOTSUPP; 3505 } 3506 3507 len = sizeof(struct spi_delay); 3508 3509 /* copy delays to controller */ 3510 if (setup) 3511 memcpy(&spi->controller->cs_setup, setup, len); 3512 else 3513 memset(&spi->controller->cs_setup, 0, len); 3514 3515 if (hold) 3516 memcpy(&spi->controller->cs_hold, hold, len); 3517 else 3518 memset(&spi->controller->cs_hold, 0, len); 3519 3520 if (inactive) 3521 memcpy(&spi->controller->cs_inactive, inactive, len); 3522 else 3523 memset(&spi->controller->cs_inactive, 0, len); 3524 3525 return 0; 3526 } 3527 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3528 3529 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3530 struct spi_device *spi) 3531 { 3532 int delay1, delay2; 3533 3534 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3535 if (delay1 < 0) 3536 return delay1; 3537 3538 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3539 if (delay2 < 0) 3540 return delay2; 3541 3542 if (delay1 < delay2) 3543 memcpy(&xfer->word_delay, &spi->word_delay, 3544 sizeof(xfer->word_delay)); 3545 3546 return 0; 3547 } 3548 3549 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3550 { 3551 struct spi_controller *ctlr = spi->controller; 3552 struct spi_transfer *xfer; 3553 int w_size; 3554 3555 if (list_empty(&message->transfers)) 3556 return -EINVAL; 3557 3558 /* If an SPI controller does not support toggling the CS line on each 3559 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3560 * for the CS line, we can emulate the CS-per-word hardware function by 3561 * splitting transfers into one-word transfers and ensuring that 3562 * cs_change is set for each transfer. 3563 */ 3564 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3565 spi->cs_gpiod || 3566 gpio_is_valid(spi->cs_gpio))) { 3567 size_t maxsize; 3568 int ret; 3569 3570 maxsize = (spi->bits_per_word + 7) / 8; 3571 3572 /* spi_split_transfers_maxsize() requires message->spi */ 3573 message->spi = spi; 3574 3575 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3576 GFP_KERNEL); 3577 if (ret) 3578 return ret; 3579 3580 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3581 /* don't change cs_change on the last entry in the list */ 3582 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3583 break; 3584 xfer->cs_change = 1; 3585 } 3586 } 3587 3588 /* Half-duplex links include original MicroWire, and ones with 3589 * only one data pin like SPI_3WIRE (switches direction) or where 3590 * either MOSI or MISO is missing. They can also be caused by 3591 * software limitations. 3592 */ 3593 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3594 (spi->mode & SPI_3WIRE)) { 3595 unsigned flags = ctlr->flags; 3596 3597 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3598 if (xfer->rx_buf && xfer->tx_buf) 3599 return -EINVAL; 3600 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3601 return -EINVAL; 3602 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3603 return -EINVAL; 3604 } 3605 } 3606 3607 /** 3608 * Set transfer bits_per_word and max speed as spi device default if 3609 * it is not set for this transfer. 3610 * Set transfer tx_nbits and rx_nbits as single transfer default 3611 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3612 * Ensure transfer word_delay is at least as long as that required by 3613 * device itself. 3614 */ 3615 message->frame_length = 0; 3616 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3617 xfer->effective_speed_hz = 0; 3618 message->frame_length += xfer->len; 3619 if (!xfer->bits_per_word) 3620 xfer->bits_per_word = spi->bits_per_word; 3621 3622 if (!xfer->speed_hz) 3623 xfer->speed_hz = spi->max_speed_hz; 3624 3625 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3626 xfer->speed_hz = ctlr->max_speed_hz; 3627 3628 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3629 return -EINVAL; 3630 3631 /* 3632 * SPI transfer length should be multiple of SPI word size 3633 * where SPI word size should be power-of-two multiple 3634 */ 3635 if (xfer->bits_per_word <= 8) 3636 w_size = 1; 3637 else if (xfer->bits_per_word <= 16) 3638 w_size = 2; 3639 else 3640 w_size = 4; 3641 3642 /* No partial transfers accepted */ 3643 if (xfer->len % w_size) 3644 return -EINVAL; 3645 3646 if (xfer->speed_hz && ctlr->min_speed_hz && 3647 xfer->speed_hz < ctlr->min_speed_hz) 3648 return -EINVAL; 3649 3650 if (xfer->tx_buf && !xfer->tx_nbits) 3651 xfer->tx_nbits = SPI_NBITS_SINGLE; 3652 if (xfer->rx_buf && !xfer->rx_nbits) 3653 xfer->rx_nbits = SPI_NBITS_SINGLE; 3654 /* check transfer tx/rx_nbits: 3655 * 1. check the value matches one of single, dual and quad 3656 * 2. check tx/rx_nbits match the mode in spi_device 3657 */ 3658 if (xfer->tx_buf) { 3659 if (spi->mode & SPI_NO_TX) 3660 return -EINVAL; 3661 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3662 xfer->tx_nbits != SPI_NBITS_DUAL && 3663 xfer->tx_nbits != SPI_NBITS_QUAD) 3664 return -EINVAL; 3665 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3666 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3667 return -EINVAL; 3668 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3669 !(spi->mode & SPI_TX_QUAD)) 3670 return -EINVAL; 3671 } 3672 /* check transfer rx_nbits */ 3673 if (xfer->rx_buf) { 3674 if (spi->mode & SPI_NO_RX) 3675 return -EINVAL; 3676 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3677 xfer->rx_nbits != SPI_NBITS_DUAL && 3678 xfer->rx_nbits != SPI_NBITS_QUAD) 3679 return -EINVAL; 3680 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3681 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3682 return -EINVAL; 3683 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3684 !(spi->mode & SPI_RX_QUAD)) 3685 return -EINVAL; 3686 } 3687 3688 if (_spi_xfer_word_delay_update(xfer, spi)) 3689 return -EINVAL; 3690 } 3691 3692 message->status = -EINPROGRESS; 3693 3694 return 0; 3695 } 3696 3697 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3698 { 3699 struct spi_controller *ctlr = spi->controller; 3700 struct spi_transfer *xfer; 3701 3702 /* 3703 * Some controllers do not support doing regular SPI transfers. Return 3704 * ENOTSUPP when this is the case. 3705 */ 3706 if (!ctlr->transfer) 3707 return -ENOTSUPP; 3708 3709 message->spi = spi; 3710 3711 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3712 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3713 3714 trace_spi_message_submit(message); 3715 3716 if (!ctlr->ptp_sts_supported) { 3717 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3718 xfer->ptp_sts_word_pre = 0; 3719 ptp_read_system_prets(xfer->ptp_sts); 3720 } 3721 } 3722 3723 return ctlr->transfer(spi, message); 3724 } 3725 3726 /** 3727 * spi_async - asynchronous SPI transfer 3728 * @spi: device with which data will be exchanged 3729 * @message: describes the data transfers, including completion callback 3730 * Context: any (irqs may be blocked, etc) 3731 * 3732 * This call may be used in_irq and other contexts which can't sleep, 3733 * as well as from task contexts which can sleep. 3734 * 3735 * The completion callback is invoked in a context which can't sleep. 3736 * Before that invocation, the value of message->status is undefined. 3737 * When the callback is issued, message->status holds either zero (to 3738 * indicate complete success) or a negative error code. After that 3739 * callback returns, the driver which issued the transfer request may 3740 * deallocate the associated memory; it's no longer in use by any SPI 3741 * core or controller driver code. 3742 * 3743 * Note that although all messages to a spi_device are handled in 3744 * FIFO order, messages may go to different devices in other orders. 3745 * Some device might be higher priority, or have various "hard" access 3746 * time requirements, for example. 3747 * 3748 * On detection of any fault during the transfer, processing of 3749 * the entire message is aborted, and the device is deselected. 3750 * Until returning from the associated message completion callback, 3751 * no other spi_message queued to that device will be processed. 3752 * (This rule applies equally to all the synchronous transfer calls, 3753 * which are wrappers around this core asynchronous primitive.) 3754 * 3755 * Return: zero on success, else a negative error code. 3756 */ 3757 int spi_async(struct spi_device *spi, struct spi_message *message) 3758 { 3759 struct spi_controller *ctlr = spi->controller; 3760 int ret; 3761 unsigned long flags; 3762 3763 ret = __spi_validate(spi, message); 3764 if (ret != 0) 3765 return ret; 3766 3767 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3768 3769 if (ctlr->bus_lock_flag) 3770 ret = -EBUSY; 3771 else 3772 ret = __spi_async(spi, message); 3773 3774 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3775 3776 return ret; 3777 } 3778 EXPORT_SYMBOL_GPL(spi_async); 3779 3780 /** 3781 * spi_async_locked - version of spi_async with exclusive bus usage 3782 * @spi: device with which data will be exchanged 3783 * @message: describes the data transfers, including completion callback 3784 * Context: any (irqs may be blocked, etc) 3785 * 3786 * This call may be used in_irq and other contexts which can't sleep, 3787 * as well as from task contexts which can sleep. 3788 * 3789 * The completion callback is invoked in a context which can't sleep. 3790 * Before that invocation, the value of message->status is undefined. 3791 * When the callback is issued, message->status holds either zero (to 3792 * indicate complete success) or a negative error code. After that 3793 * callback returns, the driver which issued the transfer request may 3794 * deallocate the associated memory; it's no longer in use by any SPI 3795 * core or controller driver code. 3796 * 3797 * Note that although all messages to a spi_device are handled in 3798 * FIFO order, messages may go to different devices in other orders. 3799 * Some device might be higher priority, or have various "hard" access 3800 * time requirements, for example. 3801 * 3802 * On detection of any fault during the transfer, processing of 3803 * the entire message is aborted, and the device is deselected. 3804 * Until returning from the associated message completion callback, 3805 * no other spi_message queued to that device will be processed. 3806 * (This rule applies equally to all the synchronous transfer calls, 3807 * which are wrappers around this core asynchronous primitive.) 3808 * 3809 * Return: zero on success, else a negative error code. 3810 */ 3811 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3812 { 3813 struct spi_controller *ctlr = spi->controller; 3814 int ret; 3815 unsigned long flags; 3816 3817 ret = __spi_validate(spi, message); 3818 if (ret != 0) 3819 return ret; 3820 3821 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3822 3823 ret = __spi_async(spi, message); 3824 3825 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3826 3827 return ret; 3828 3829 } 3830 EXPORT_SYMBOL_GPL(spi_async_locked); 3831 3832 /*-------------------------------------------------------------------------*/ 3833 3834 /* Utility methods for SPI protocol drivers, layered on 3835 * top of the core. Some other utility methods are defined as 3836 * inline functions. 3837 */ 3838 3839 static void spi_complete(void *arg) 3840 { 3841 complete(arg); 3842 } 3843 3844 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3845 { 3846 DECLARE_COMPLETION_ONSTACK(done); 3847 int status; 3848 struct spi_controller *ctlr = spi->controller; 3849 unsigned long flags; 3850 3851 status = __spi_validate(spi, message); 3852 if (status != 0) 3853 return status; 3854 3855 message->complete = spi_complete; 3856 message->context = &done; 3857 message->spi = spi; 3858 3859 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3860 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3861 3862 /* If we're not using the legacy transfer method then we will 3863 * try to transfer in the calling context so special case. 3864 * This code would be less tricky if we could remove the 3865 * support for driver implemented message queues. 3866 */ 3867 if (ctlr->transfer == spi_queued_transfer) { 3868 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3869 3870 trace_spi_message_submit(message); 3871 3872 status = __spi_queued_transfer(spi, message, false); 3873 3874 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3875 } else { 3876 status = spi_async_locked(spi, message); 3877 } 3878 3879 if (status == 0) { 3880 /* Push out the messages in the calling context if we 3881 * can. 3882 */ 3883 if (ctlr->transfer == spi_queued_transfer) { 3884 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3885 spi_sync_immediate); 3886 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3887 spi_sync_immediate); 3888 __spi_pump_messages(ctlr, false); 3889 } 3890 3891 wait_for_completion(&done); 3892 status = message->status; 3893 } 3894 message->context = NULL; 3895 return status; 3896 } 3897 3898 /** 3899 * spi_sync - blocking/synchronous SPI data transfers 3900 * @spi: device with which data will be exchanged 3901 * @message: describes the data transfers 3902 * Context: can sleep 3903 * 3904 * This call may only be used from a context that may sleep. The sleep 3905 * is non-interruptible, and has no timeout. Low-overhead controller 3906 * drivers may DMA directly into and out of the message buffers. 3907 * 3908 * Note that the SPI device's chip select is active during the message, 3909 * and then is normally disabled between messages. Drivers for some 3910 * frequently-used devices may want to minimize costs of selecting a chip, 3911 * by leaving it selected in anticipation that the next message will go 3912 * to the same chip. (That may increase power usage.) 3913 * 3914 * Also, the caller is guaranteeing that the memory associated with the 3915 * message will not be freed before this call returns. 3916 * 3917 * Return: zero on success, else a negative error code. 3918 */ 3919 int spi_sync(struct spi_device *spi, struct spi_message *message) 3920 { 3921 int ret; 3922 3923 mutex_lock(&spi->controller->bus_lock_mutex); 3924 ret = __spi_sync(spi, message); 3925 mutex_unlock(&spi->controller->bus_lock_mutex); 3926 3927 return ret; 3928 } 3929 EXPORT_SYMBOL_GPL(spi_sync); 3930 3931 /** 3932 * spi_sync_locked - version of spi_sync with exclusive bus usage 3933 * @spi: device with which data will be exchanged 3934 * @message: describes the data transfers 3935 * Context: can sleep 3936 * 3937 * This call may only be used from a context that may sleep. The sleep 3938 * is non-interruptible, and has no timeout. Low-overhead controller 3939 * drivers may DMA directly into and out of the message buffers. 3940 * 3941 * This call should be used by drivers that require exclusive access to the 3942 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3943 * be released by a spi_bus_unlock call when the exclusive access is over. 3944 * 3945 * Return: zero on success, else a negative error code. 3946 */ 3947 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3948 { 3949 return __spi_sync(spi, message); 3950 } 3951 EXPORT_SYMBOL_GPL(spi_sync_locked); 3952 3953 /** 3954 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3955 * @ctlr: SPI bus master that should be locked for exclusive bus access 3956 * Context: can sleep 3957 * 3958 * This call may only be used from a context that may sleep. The sleep 3959 * is non-interruptible, and has no timeout. 3960 * 3961 * This call should be used by drivers that require exclusive access to the 3962 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3963 * exclusive access is over. Data transfer must be done by spi_sync_locked 3964 * and spi_async_locked calls when the SPI bus lock is held. 3965 * 3966 * Return: always zero. 3967 */ 3968 int spi_bus_lock(struct spi_controller *ctlr) 3969 { 3970 unsigned long flags; 3971 3972 mutex_lock(&ctlr->bus_lock_mutex); 3973 3974 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3975 ctlr->bus_lock_flag = 1; 3976 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3977 3978 /* mutex remains locked until spi_bus_unlock is called */ 3979 3980 return 0; 3981 } 3982 EXPORT_SYMBOL_GPL(spi_bus_lock); 3983 3984 /** 3985 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3986 * @ctlr: SPI bus master that was locked for exclusive bus access 3987 * Context: can sleep 3988 * 3989 * This call may only be used from a context that may sleep. The sleep 3990 * is non-interruptible, and has no timeout. 3991 * 3992 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3993 * call. 3994 * 3995 * Return: always zero. 3996 */ 3997 int spi_bus_unlock(struct spi_controller *ctlr) 3998 { 3999 ctlr->bus_lock_flag = 0; 4000 4001 mutex_unlock(&ctlr->bus_lock_mutex); 4002 4003 return 0; 4004 } 4005 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4006 4007 /* portable code must never pass more than 32 bytes */ 4008 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4009 4010 static u8 *buf; 4011 4012 /** 4013 * spi_write_then_read - SPI synchronous write followed by read 4014 * @spi: device with which data will be exchanged 4015 * @txbuf: data to be written (need not be dma-safe) 4016 * @n_tx: size of txbuf, in bytes 4017 * @rxbuf: buffer into which data will be read (need not be dma-safe) 4018 * @n_rx: size of rxbuf, in bytes 4019 * Context: can sleep 4020 * 4021 * This performs a half duplex MicroWire style transaction with the 4022 * device, sending txbuf and then reading rxbuf. The return value 4023 * is zero for success, else a negative errno status code. 4024 * This call may only be used from a context that may sleep. 4025 * 4026 * Parameters to this routine are always copied using a small buffer. 4027 * Performance-sensitive or bulk transfer code should instead use 4028 * spi_{async,sync}() calls with dma-safe buffers. 4029 * 4030 * Return: zero on success, else a negative error code. 4031 */ 4032 int spi_write_then_read(struct spi_device *spi, 4033 const void *txbuf, unsigned n_tx, 4034 void *rxbuf, unsigned n_rx) 4035 { 4036 static DEFINE_MUTEX(lock); 4037 4038 int status; 4039 struct spi_message message; 4040 struct spi_transfer x[2]; 4041 u8 *local_buf; 4042 4043 /* Use preallocated DMA-safe buffer if we can. We can't avoid 4044 * copying here, (as a pure convenience thing), but we can 4045 * keep heap costs out of the hot path unless someone else is 4046 * using the pre-allocated buffer or the transfer is too large. 4047 */ 4048 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4049 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4050 GFP_KERNEL | GFP_DMA); 4051 if (!local_buf) 4052 return -ENOMEM; 4053 } else { 4054 local_buf = buf; 4055 } 4056 4057 spi_message_init(&message); 4058 memset(x, 0, sizeof(x)); 4059 if (n_tx) { 4060 x[0].len = n_tx; 4061 spi_message_add_tail(&x[0], &message); 4062 } 4063 if (n_rx) { 4064 x[1].len = n_rx; 4065 spi_message_add_tail(&x[1], &message); 4066 } 4067 4068 memcpy(local_buf, txbuf, n_tx); 4069 x[0].tx_buf = local_buf; 4070 x[1].rx_buf = local_buf + n_tx; 4071 4072 /* do the i/o */ 4073 status = spi_sync(spi, &message); 4074 if (status == 0) 4075 memcpy(rxbuf, x[1].rx_buf, n_rx); 4076 4077 if (x[0].tx_buf == buf) 4078 mutex_unlock(&lock); 4079 else 4080 kfree(local_buf); 4081 4082 return status; 4083 } 4084 EXPORT_SYMBOL_GPL(spi_write_then_read); 4085 4086 /*-------------------------------------------------------------------------*/ 4087 4088 #if IS_ENABLED(CONFIG_OF) 4089 /* must call put_device() when done with returned spi_device device */ 4090 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4091 { 4092 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4093 4094 return dev ? to_spi_device(dev) : NULL; 4095 } 4096 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 4097 #endif /* IS_ENABLED(CONFIG_OF) */ 4098 4099 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4100 /* the spi controllers are not using spi_bus, so we find it with another way */ 4101 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4102 { 4103 struct device *dev; 4104 4105 dev = class_find_device_by_of_node(&spi_master_class, node); 4106 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4107 dev = class_find_device_by_of_node(&spi_slave_class, node); 4108 if (!dev) 4109 return NULL; 4110 4111 /* reference got in class_find_device */ 4112 return container_of(dev, struct spi_controller, dev); 4113 } 4114 4115 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4116 void *arg) 4117 { 4118 struct of_reconfig_data *rd = arg; 4119 struct spi_controller *ctlr; 4120 struct spi_device *spi; 4121 4122 switch (of_reconfig_get_state_change(action, arg)) { 4123 case OF_RECONFIG_CHANGE_ADD: 4124 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4125 if (ctlr == NULL) 4126 return NOTIFY_OK; /* not for us */ 4127 4128 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4129 put_device(&ctlr->dev); 4130 return NOTIFY_OK; 4131 } 4132 4133 spi = of_register_spi_device(ctlr, rd->dn); 4134 put_device(&ctlr->dev); 4135 4136 if (IS_ERR(spi)) { 4137 pr_err("%s: failed to create for '%pOF'\n", 4138 __func__, rd->dn); 4139 of_node_clear_flag(rd->dn, OF_POPULATED); 4140 return notifier_from_errno(PTR_ERR(spi)); 4141 } 4142 break; 4143 4144 case OF_RECONFIG_CHANGE_REMOVE: 4145 /* already depopulated? */ 4146 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4147 return NOTIFY_OK; 4148 4149 /* find our device by node */ 4150 spi = of_find_spi_device_by_node(rd->dn); 4151 if (spi == NULL) 4152 return NOTIFY_OK; /* no? not meant for us */ 4153 4154 /* unregister takes one ref away */ 4155 spi_unregister_device(spi); 4156 4157 /* and put the reference of the find */ 4158 put_device(&spi->dev); 4159 break; 4160 } 4161 4162 return NOTIFY_OK; 4163 } 4164 4165 static struct notifier_block spi_of_notifier = { 4166 .notifier_call = of_spi_notify, 4167 }; 4168 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4169 extern struct notifier_block spi_of_notifier; 4170 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4171 4172 #if IS_ENABLED(CONFIG_ACPI) 4173 static int spi_acpi_controller_match(struct device *dev, const void *data) 4174 { 4175 return ACPI_COMPANION(dev->parent) == data; 4176 } 4177 4178 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4179 { 4180 struct device *dev; 4181 4182 dev = class_find_device(&spi_master_class, NULL, adev, 4183 spi_acpi_controller_match); 4184 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4185 dev = class_find_device(&spi_slave_class, NULL, adev, 4186 spi_acpi_controller_match); 4187 if (!dev) 4188 return NULL; 4189 4190 return container_of(dev, struct spi_controller, dev); 4191 } 4192 4193 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4194 { 4195 struct device *dev; 4196 4197 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4198 return to_spi_device(dev); 4199 } 4200 4201 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4202 void *arg) 4203 { 4204 struct acpi_device *adev = arg; 4205 struct spi_controller *ctlr; 4206 struct spi_device *spi; 4207 4208 switch (value) { 4209 case ACPI_RECONFIG_DEVICE_ADD: 4210 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4211 if (!ctlr) 4212 break; 4213 4214 acpi_register_spi_device(ctlr, adev); 4215 put_device(&ctlr->dev); 4216 break; 4217 case ACPI_RECONFIG_DEVICE_REMOVE: 4218 if (!acpi_device_enumerated(adev)) 4219 break; 4220 4221 spi = acpi_spi_find_device_by_adev(adev); 4222 if (!spi) 4223 break; 4224 4225 spi_unregister_device(spi); 4226 put_device(&spi->dev); 4227 break; 4228 } 4229 4230 return NOTIFY_OK; 4231 } 4232 4233 static struct notifier_block spi_acpi_notifier = { 4234 .notifier_call = acpi_spi_notify, 4235 }; 4236 #else 4237 extern struct notifier_block spi_acpi_notifier; 4238 #endif 4239 4240 static int __init spi_init(void) 4241 { 4242 int status; 4243 4244 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4245 if (!buf) { 4246 status = -ENOMEM; 4247 goto err0; 4248 } 4249 4250 status = bus_register(&spi_bus_type); 4251 if (status < 0) 4252 goto err1; 4253 4254 status = class_register(&spi_master_class); 4255 if (status < 0) 4256 goto err2; 4257 4258 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4259 status = class_register(&spi_slave_class); 4260 if (status < 0) 4261 goto err3; 4262 } 4263 4264 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4265 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4266 if (IS_ENABLED(CONFIG_ACPI)) 4267 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4268 4269 return 0; 4270 4271 err3: 4272 class_unregister(&spi_master_class); 4273 err2: 4274 bus_unregister(&spi_bus_type); 4275 err1: 4276 kfree(buf); 4277 buf = NULL; 4278 err0: 4279 return status; 4280 } 4281 4282 /* board_info is normally registered in arch_initcall(), 4283 * but even essential drivers wait till later 4284 * 4285 * REVISIT only boardinfo really needs static linking. the rest (device and 4286 * driver registration) _could_ be dynamically linked (modular) ... costs 4287 * include needing to have boardinfo data structures be much more public. 4288 */ 4289 postcore_initcall(spi_init); 4290