1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del operation for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /** 479 * spi_alloc_device - Allocate a new SPI device 480 * @ctlr: Controller to which device is connected 481 * Context: can sleep 482 * 483 * Allows a driver to allocate and initialize a spi_device without 484 * registering it immediately. This allows a driver to directly 485 * fill the spi_device with device parameters before calling 486 * spi_add_device() on it. 487 * 488 * Caller is responsible to call spi_add_device() on the returned 489 * spi_device structure to add it to the SPI controller. If the caller 490 * needs to discard the spi_device without adding it, then it should 491 * call spi_dev_put() on it. 492 * 493 * Return: a pointer to the new device, or NULL. 494 */ 495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 496 { 497 struct spi_device *spi; 498 499 if (!spi_controller_get(ctlr)) 500 return NULL; 501 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 503 if (!spi) { 504 spi_controller_put(ctlr); 505 return NULL; 506 } 507 508 spi->master = spi->controller = ctlr; 509 spi->dev.parent = &ctlr->dev; 510 spi->dev.bus = &spi_bus_type; 511 spi->dev.release = spidev_release; 512 spi->cs_gpio = -ENOENT; 513 spi->mode = ctlr->buswidth_override_bits; 514 515 spin_lock_init(&spi->statistics.lock); 516 517 device_initialize(&spi->dev); 518 return spi; 519 } 520 EXPORT_SYMBOL_GPL(spi_alloc_device); 521 522 static void spi_dev_set_name(struct spi_device *spi) 523 { 524 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 525 526 if (adev) { 527 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 528 return; 529 } 530 531 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 532 spi->chip_select); 533 } 534 535 static int spi_dev_check(struct device *dev, void *data) 536 { 537 struct spi_device *spi = to_spi_device(dev); 538 struct spi_device *new_spi = data; 539 540 if (spi->controller == new_spi->controller && 541 spi->chip_select == new_spi->chip_select) 542 return -EBUSY; 543 return 0; 544 } 545 546 /** 547 * spi_add_device - Add spi_device allocated with spi_alloc_device 548 * @spi: spi_device to register 549 * 550 * Companion function to spi_alloc_device. Devices allocated with 551 * spi_alloc_device can be added onto the spi bus with this function. 552 * 553 * Return: 0 on success; negative errno on failure 554 */ 555 int spi_add_device(struct spi_device *spi) 556 { 557 static DEFINE_MUTEX(spi_add_lock); 558 struct spi_controller *ctlr = spi->controller; 559 struct device *dev = ctlr->dev.parent; 560 int status; 561 562 /* Chipselects are numbered 0..max; validate. */ 563 if (spi->chip_select >= ctlr->num_chipselect) { 564 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 565 ctlr->num_chipselect); 566 return -EINVAL; 567 } 568 569 /* Set the bus ID string */ 570 spi_dev_set_name(spi); 571 572 /* We need to make sure there's no other device with this 573 * chipselect **BEFORE** we call setup(), else we'll trash 574 * its configuration. Lock against concurrent add() calls. 575 */ 576 mutex_lock(&spi_add_lock); 577 578 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 579 if (status) { 580 dev_err(dev, "chipselect %d already in use\n", 581 spi->chip_select); 582 goto done; 583 } 584 585 /* Descriptors take precedence */ 586 if (ctlr->cs_gpiods) 587 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 588 else if (ctlr->cs_gpios) 589 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 590 591 /* Drivers may modify this initial i/o setup, but will 592 * normally rely on the device being setup. Devices 593 * using SPI_CS_HIGH can't coexist well otherwise... 594 */ 595 status = spi_setup(spi); 596 if (status < 0) { 597 dev_err(dev, "can't setup %s, status %d\n", 598 dev_name(&spi->dev), status); 599 goto done; 600 } 601 602 /* Device may be bound to an active driver when this returns */ 603 status = device_add(&spi->dev); 604 if (status < 0) 605 dev_err(dev, "can't add %s, status %d\n", 606 dev_name(&spi->dev), status); 607 else 608 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 609 610 done: 611 mutex_unlock(&spi_add_lock); 612 return status; 613 } 614 EXPORT_SYMBOL_GPL(spi_add_device); 615 616 /** 617 * spi_new_device - instantiate one new SPI device 618 * @ctlr: Controller to which device is connected 619 * @chip: Describes the SPI device 620 * Context: can sleep 621 * 622 * On typical mainboards, this is purely internal; and it's not needed 623 * after board init creates the hard-wired devices. Some development 624 * platforms may not be able to use spi_register_board_info though, and 625 * this is exported so that for example a USB or parport based adapter 626 * driver could add devices (which it would learn about out-of-band). 627 * 628 * Return: the new device, or NULL. 629 */ 630 struct spi_device *spi_new_device(struct spi_controller *ctlr, 631 struct spi_board_info *chip) 632 { 633 struct spi_device *proxy; 634 int status; 635 636 /* NOTE: caller did any chip->bus_num checks necessary. 637 * 638 * Also, unless we change the return value convention to use 639 * error-or-pointer (not NULL-or-pointer), troubleshootability 640 * suggests syslogged diagnostics are best here (ugh). 641 */ 642 643 proxy = spi_alloc_device(ctlr); 644 if (!proxy) 645 return NULL; 646 647 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 648 649 proxy->chip_select = chip->chip_select; 650 proxy->max_speed_hz = chip->max_speed_hz; 651 proxy->mode = chip->mode; 652 proxy->irq = chip->irq; 653 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 654 proxy->dev.platform_data = (void *) chip->platform_data; 655 proxy->controller_data = chip->controller_data; 656 proxy->controller_state = NULL; 657 658 if (chip->properties) { 659 status = device_add_properties(&proxy->dev, chip->properties); 660 if (status) { 661 dev_err(&ctlr->dev, 662 "failed to add properties to '%s': %d\n", 663 chip->modalias, status); 664 goto err_dev_put; 665 } 666 } 667 668 status = spi_add_device(proxy); 669 if (status < 0) 670 goto err_remove_props; 671 672 return proxy; 673 674 err_remove_props: 675 if (chip->properties) 676 device_remove_properties(&proxy->dev); 677 err_dev_put: 678 spi_dev_put(proxy); 679 return NULL; 680 } 681 EXPORT_SYMBOL_GPL(spi_new_device); 682 683 /** 684 * spi_unregister_device - unregister a single SPI device 685 * @spi: spi_device to unregister 686 * 687 * Start making the passed SPI device vanish. Normally this would be handled 688 * by spi_unregister_controller(). 689 */ 690 void spi_unregister_device(struct spi_device *spi) 691 { 692 if (!spi) 693 return; 694 695 if (spi->dev.of_node) { 696 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 697 of_node_put(spi->dev.of_node); 698 } 699 if (ACPI_COMPANION(&spi->dev)) 700 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 701 device_unregister(&spi->dev); 702 } 703 EXPORT_SYMBOL_GPL(spi_unregister_device); 704 705 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 706 struct spi_board_info *bi) 707 { 708 struct spi_device *dev; 709 710 if (ctlr->bus_num != bi->bus_num) 711 return; 712 713 dev = spi_new_device(ctlr, bi); 714 if (!dev) 715 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 716 bi->modalias); 717 } 718 719 /** 720 * spi_register_board_info - register SPI devices for a given board 721 * @info: array of chip descriptors 722 * @n: how many descriptors are provided 723 * Context: can sleep 724 * 725 * Board-specific early init code calls this (probably during arch_initcall) 726 * with segments of the SPI device table. Any device nodes are created later, 727 * after the relevant parent SPI controller (bus_num) is defined. We keep 728 * this table of devices forever, so that reloading a controller driver will 729 * not make Linux forget about these hard-wired devices. 730 * 731 * Other code can also call this, e.g. a particular add-on board might provide 732 * SPI devices through its expansion connector, so code initializing that board 733 * would naturally declare its SPI devices. 734 * 735 * The board info passed can safely be __initdata ... but be careful of 736 * any embedded pointers (platform_data, etc), they're copied as-is. 737 * Device properties are deep-copied though. 738 * 739 * Return: zero on success, else a negative error code. 740 */ 741 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 742 { 743 struct boardinfo *bi; 744 int i; 745 746 if (!n) 747 return 0; 748 749 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 750 if (!bi) 751 return -ENOMEM; 752 753 for (i = 0; i < n; i++, bi++, info++) { 754 struct spi_controller *ctlr; 755 756 memcpy(&bi->board_info, info, sizeof(*info)); 757 if (info->properties) { 758 bi->board_info.properties = 759 property_entries_dup(info->properties); 760 if (IS_ERR(bi->board_info.properties)) 761 return PTR_ERR(bi->board_info.properties); 762 } 763 764 mutex_lock(&board_lock); 765 list_add_tail(&bi->list, &board_list); 766 list_for_each_entry(ctlr, &spi_controller_list, list) 767 spi_match_controller_to_boardinfo(ctlr, 768 &bi->board_info); 769 mutex_unlock(&board_lock); 770 } 771 772 return 0; 773 } 774 775 /*-------------------------------------------------------------------------*/ 776 777 static void spi_set_cs(struct spi_device *spi, bool enable) 778 { 779 bool enable1 = enable; 780 781 /* 782 * Avoid calling into the driver (or doing delays) if the chip select 783 * isn't actually changing from the last time this was called. 784 */ 785 if ((spi->controller->last_cs_enable == enable) && 786 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 787 return; 788 789 spi->controller->last_cs_enable = enable; 790 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 791 792 if (!spi->controller->set_cs_timing) { 793 if (enable1) 794 spi_delay_exec(&spi->controller->cs_setup, NULL); 795 else 796 spi_delay_exec(&spi->controller->cs_hold, NULL); 797 } 798 799 if (spi->mode & SPI_CS_HIGH) 800 enable = !enable; 801 802 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 803 /* 804 * Honour the SPI_NO_CS flag and invert the enable line, as 805 * active low is default for SPI. Execution paths that handle 806 * polarity inversion in gpiolib (such as device tree) will 807 * enforce active high using the SPI_CS_HIGH resulting in a 808 * double inversion through the code above. 809 */ 810 if (!(spi->mode & SPI_NO_CS)) { 811 if (spi->cs_gpiod) 812 gpiod_set_value_cansleep(spi->cs_gpiod, 813 !enable); 814 else 815 gpio_set_value_cansleep(spi->cs_gpio, !enable); 816 } 817 /* Some SPI masters need both GPIO CS & slave_select */ 818 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 819 spi->controller->set_cs) 820 spi->controller->set_cs(spi, !enable); 821 } else if (spi->controller->set_cs) { 822 spi->controller->set_cs(spi, !enable); 823 } 824 825 if (!spi->controller->set_cs_timing) { 826 if (!enable1) 827 spi_delay_exec(&spi->controller->cs_inactive, NULL); 828 } 829 } 830 831 #ifdef CONFIG_HAS_DMA 832 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 833 struct sg_table *sgt, void *buf, size_t len, 834 enum dma_data_direction dir) 835 { 836 const bool vmalloced_buf = is_vmalloc_addr(buf); 837 unsigned int max_seg_size = dma_get_max_seg_size(dev); 838 #ifdef CONFIG_HIGHMEM 839 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 840 (unsigned long)buf < (PKMAP_BASE + 841 (LAST_PKMAP * PAGE_SIZE))); 842 #else 843 const bool kmap_buf = false; 844 #endif 845 int desc_len; 846 int sgs; 847 struct page *vm_page; 848 struct scatterlist *sg; 849 void *sg_buf; 850 size_t min; 851 int i, ret; 852 853 if (vmalloced_buf || kmap_buf) { 854 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 855 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 856 } else if (virt_addr_valid(buf)) { 857 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 858 sgs = DIV_ROUND_UP(len, desc_len); 859 } else { 860 return -EINVAL; 861 } 862 863 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 864 if (ret != 0) 865 return ret; 866 867 sg = &sgt->sgl[0]; 868 for (i = 0; i < sgs; i++) { 869 870 if (vmalloced_buf || kmap_buf) { 871 /* 872 * Next scatterlist entry size is the minimum between 873 * the desc_len and the remaining buffer length that 874 * fits in a page. 875 */ 876 min = min_t(size_t, desc_len, 877 min_t(size_t, len, 878 PAGE_SIZE - offset_in_page(buf))); 879 if (vmalloced_buf) 880 vm_page = vmalloc_to_page(buf); 881 else 882 vm_page = kmap_to_page(buf); 883 if (!vm_page) { 884 sg_free_table(sgt); 885 return -ENOMEM; 886 } 887 sg_set_page(sg, vm_page, 888 min, offset_in_page(buf)); 889 } else { 890 min = min_t(size_t, len, desc_len); 891 sg_buf = buf; 892 sg_set_buf(sg, sg_buf, min); 893 } 894 895 buf += min; 896 len -= min; 897 sg = sg_next(sg); 898 } 899 900 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 901 if (!ret) 902 ret = -ENOMEM; 903 if (ret < 0) { 904 sg_free_table(sgt); 905 return ret; 906 } 907 908 sgt->nents = ret; 909 910 return 0; 911 } 912 913 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 914 struct sg_table *sgt, enum dma_data_direction dir) 915 { 916 if (sgt->orig_nents) { 917 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 918 sg_free_table(sgt); 919 } 920 } 921 922 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 923 { 924 struct device *tx_dev, *rx_dev; 925 struct spi_transfer *xfer; 926 int ret; 927 928 if (!ctlr->can_dma) 929 return 0; 930 931 if (ctlr->dma_tx) 932 tx_dev = ctlr->dma_tx->device->dev; 933 else 934 tx_dev = ctlr->dev.parent; 935 936 if (ctlr->dma_rx) 937 rx_dev = ctlr->dma_rx->device->dev; 938 else 939 rx_dev = ctlr->dev.parent; 940 941 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 942 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 943 continue; 944 945 if (xfer->tx_buf != NULL) { 946 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 947 (void *)xfer->tx_buf, xfer->len, 948 DMA_TO_DEVICE); 949 if (ret != 0) 950 return ret; 951 } 952 953 if (xfer->rx_buf != NULL) { 954 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 955 xfer->rx_buf, xfer->len, 956 DMA_FROM_DEVICE); 957 if (ret != 0) { 958 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 959 DMA_TO_DEVICE); 960 return ret; 961 } 962 } 963 } 964 965 ctlr->cur_msg_mapped = true; 966 967 return 0; 968 } 969 970 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 971 { 972 struct spi_transfer *xfer; 973 struct device *tx_dev, *rx_dev; 974 975 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 976 return 0; 977 978 if (ctlr->dma_tx) 979 tx_dev = ctlr->dma_tx->device->dev; 980 else 981 tx_dev = ctlr->dev.parent; 982 983 if (ctlr->dma_rx) 984 rx_dev = ctlr->dma_rx->device->dev; 985 else 986 rx_dev = ctlr->dev.parent; 987 988 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 989 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 990 continue; 991 992 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 993 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 994 } 995 996 ctlr->cur_msg_mapped = false; 997 998 return 0; 999 } 1000 #else /* !CONFIG_HAS_DMA */ 1001 static inline int __spi_map_msg(struct spi_controller *ctlr, 1002 struct spi_message *msg) 1003 { 1004 return 0; 1005 } 1006 1007 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1008 struct spi_message *msg) 1009 { 1010 return 0; 1011 } 1012 #endif /* !CONFIG_HAS_DMA */ 1013 1014 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1015 struct spi_message *msg) 1016 { 1017 struct spi_transfer *xfer; 1018 1019 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1020 /* 1021 * Restore the original value of tx_buf or rx_buf if they are 1022 * NULL. 1023 */ 1024 if (xfer->tx_buf == ctlr->dummy_tx) 1025 xfer->tx_buf = NULL; 1026 if (xfer->rx_buf == ctlr->dummy_rx) 1027 xfer->rx_buf = NULL; 1028 } 1029 1030 return __spi_unmap_msg(ctlr, msg); 1031 } 1032 1033 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1034 { 1035 struct spi_transfer *xfer; 1036 void *tmp; 1037 unsigned int max_tx, max_rx; 1038 1039 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1040 && !(msg->spi->mode & SPI_3WIRE)) { 1041 max_tx = 0; 1042 max_rx = 0; 1043 1044 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1045 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1046 !xfer->tx_buf) 1047 max_tx = max(xfer->len, max_tx); 1048 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1049 !xfer->rx_buf) 1050 max_rx = max(xfer->len, max_rx); 1051 } 1052 1053 if (max_tx) { 1054 tmp = krealloc(ctlr->dummy_tx, max_tx, 1055 GFP_KERNEL | GFP_DMA); 1056 if (!tmp) 1057 return -ENOMEM; 1058 ctlr->dummy_tx = tmp; 1059 memset(tmp, 0, max_tx); 1060 } 1061 1062 if (max_rx) { 1063 tmp = krealloc(ctlr->dummy_rx, max_rx, 1064 GFP_KERNEL | GFP_DMA); 1065 if (!tmp) 1066 return -ENOMEM; 1067 ctlr->dummy_rx = tmp; 1068 } 1069 1070 if (max_tx || max_rx) { 1071 list_for_each_entry(xfer, &msg->transfers, 1072 transfer_list) { 1073 if (!xfer->len) 1074 continue; 1075 if (!xfer->tx_buf) 1076 xfer->tx_buf = ctlr->dummy_tx; 1077 if (!xfer->rx_buf) 1078 xfer->rx_buf = ctlr->dummy_rx; 1079 } 1080 } 1081 } 1082 1083 return __spi_map_msg(ctlr, msg); 1084 } 1085 1086 static int spi_transfer_wait(struct spi_controller *ctlr, 1087 struct spi_message *msg, 1088 struct spi_transfer *xfer) 1089 { 1090 struct spi_statistics *statm = &ctlr->statistics; 1091 struct spi_statistics *stats = &msg->spi->statistics; 1092 unsigned long long ms; 1093 1094 if (spi_controller_is_slave(ctlr)) { 1095 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1096 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1097 return -EINTR; 1098 } 1099 } else { 1100 ms = 8LL * 1000LL * xfer->len; 1101 do_div(ms, xfer->speed_hz); 1102 ms += ms + 200; /* some tolerance */ 1103 1104 if (ms > UINT_MAX) 1105 ms = UINT_MAX; 1106 1107 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1108 msecs_to_jiffies(ms)); 1109 1110 if (ms == 0) { 1111 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1112 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1113 dev_err(&msg->spi->dev, 1114 "SPI transfer timed out\n"); 1115 return -ETIMEDOUT; 1116 } 1117 } 1118 1119 return 0; 1120 } 1121 1122 static void _spi_transfer_delay_ns(u32 ns) 1123 { 1124 if (!ns) 1125 return; 1126 if (ns <= 1000) { 1127 ndelay(ns); 1128 } else { 1129 u32 us = DIV_ROUND_UP(ns, 1000); 1130 1131 if (us <= 10) 1132 udelay(us); 1133 else 1134 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1135 } 1136 } 1137 1138 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1139 { 1140 u32 delay = _delay->value; 1141 u32 unit = _delay->unit; 1142 u32 hz; 1143 1144 if (!delay) 1145 return 0; 1146 1147 switch (unit) { 1148 case SPI_DELAY_UNIT_USECS: 1149 delay *= 1000; 1150 break; 1151 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1152 break; 1153 case SPI_DELAY_UNIT_SCK: 1154 /* clock cycles need to be obtained from spi_transfer */ 1155 if (!xfer) 1156 return -EINVAL; 1157 /* if there is no effective speed know, then approximate 1158 * by underestimating with half the requested hz 1159 */ 1160 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1161 if (!hz) 1162 return -EINVAL; 1163 delay *= DIV_ROUND_UP(1000000000, hz); 1164 break; 1165 default: 1166 return -EINVAL; 1167 } 1168 1169 return delay; 1170 } 1171 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1172 1173 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1174 { 1175 int delay; 1176 1177 might_sleep(); 1178 1179 if (!_delay) 1180 return -EINVAL; 1181 1182 delay = spi_delay_to_ns(_delay, xfer); 1183 if (delay < 0) 1184 return delay; 1185 1186 _spi_transfer_delay_ns(delay); 1187 1188 return 0; 1189 } 1190 EXPORT_SYMBOL_GPL(spi_delay_exec); 1191 1192 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1193 struct spi_transfer *xfer) 1194 { 1195 u32 delay = xfer->cs_change_delay.value; 1196 u32 unit = xfer->cs_change_delay.unit; 1197 int ret; 1198 1199 /* return early on "fast" mode - for everything but USECS */ 1200 if (!delay) { 1201 if (unit == SPI_DELAY_UNIT_USECS) 1202 _spi_transfer_delay_ns(10000); 1203 return; 1204 } 1205 1206 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1207 if (ret) { 1208 dev_err_once(&msg->spi->dev, 1209 "Use of unsupported delay unit %i, using default of 10us\n", 1210 unit); 1211 _spi_transfer_delay_ns(10000); 1212 } 1213 } 1214 1215 /* 1216 * spi_transfer_one_message - Default implementation of transfer_one_message() 1217 * 1218 * This is a standard implementation of transfer_one_message() for 1219 * drivers which implement a transfer_one() operation. It provides 1220 * standard handling of delays and chip select management. 1221 */ 1222 static int spi_transfer_one_message(struct spi_controller *ctlr, 1223 struct spi_message *msg) 1224 { 1225 struct spi_transfer *xfer; 1226 bool keep_cs = false; 1227 int ret = 0; 1228 struct spi_statistics *statm = &ctlr->statistics; 1229 struct spi_statistics *stats = &msg->spi->statistics; 1230 1231 spi_set_cs(msg->spi, true); 1232 1233 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1234 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1235 1236 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1237 trace_spi_transfer_start(msg, xfer); 1238 1239 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1240 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1241 1242 if (!ctlr->ptp_sts_supported) { 1243 xfer->ptp_sts_word_pre = 0; 1244 ptp_read_system_prets(xfer->ptp_sts); 1245 } 1246 1247 if (xfer->tx_buf || xfer->rx_buf) { 1248 reinit_completion(&ctlr->xfer_completion); 1249 1250 fallback_pio: 1251 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1252 if (ret < 0) { 1253 if (ctlr->cur_msg_mapped && 1254 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1255 __spi_unmap_msg(ctlr, msg); 1256 ctlr->fallback = true; 1257 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1258 goto fallback_pio; 1259 } 1260 1261 SPI_STATISTICS_INCREMENT_FIELD(statm, 1262 errors); 1263 SPI_STATISTICS_INCREMENT_FIELD(stats, 1264 errors); 1265 dev_err(&msg->spi->dev, 1266 "SPI transfer failed: %d\n", ret); 1267 goto out; 1268 } 1269 1270 if (ret > 0) { 1271 ret = spi_transfer_wait(ctlr, msg, xfer); 1272 if (ret < 0) 1273 msg->status = ret; 1274 } 1275 } else { 1276 if (xfer->len) 1277 dev_err(&msg->spi->dev, 1278 "Bufferless transfer has length %u\n", 1279 xfer->len); 1280 } 1281 1282 if (!ctlr->ptp_sts_supported) { 1283 ptp_read_system_postts(xfer->ptp_sts); 1284 xfer->ptp_sts_word_post = xfer->len; 1285 } 1286 1287 trace_spi_transfer_stop(msg, xfer); 1288 1289 if (msg->status != -EINPROGRESS) 1290 goto out; 1291 1292 spi_transfer_delay_exec(xfer); 1293 1294 if (xfer->cs_change) { 1295 if (list_is_last(&xfer->transfer_list, 1296 &msg->transfers)) { 1297 keep_cs = true; 1298 } else { 1299 spi_set_cs(msg->spi, false); 1300 _spi_transfer_cs_change_delay(msg, xfer); 1301 spi_set_cs(msg->spi, true); 1302 } 1303 } 1304 1305 msg->actual_length += xfer->len; 1306 } 1307 1308 out: 1309 if (ret != 0 || !keep_cs) 1310 spi_set_cs(msg->spi, false); 1311 1312 if (msg->status == -EINPROGRESS) 1313 msg->status = ret; 1314 1315 if (msg->status && ctlr->handle_err) 1316 ctlr->handle_err(ctlr, msg); 1317 1318 spi_res_release(ctlr, msg); 1319 1320 spi_finalize_current_message(ctlr); 1321 1322 return ret; 1323 } 1324 1325 /** 1326 * spi_finalize_current_transfer - report completion of a transfer 1327 * @ctlr: the controller reporting completion 1328 * 1329 * Called by SPI drivers using the core transfer_one_message() 1330 * implementation to notify it that the current interrupt driven 1331 * transfer has finished and the next one may be scheduled. 1332 */ 1333 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1334 { 1335 complete(&ctlr->xfer_completion); 1336 } 1337 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1338 1339 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1340 { 1341 if (ctlr->auto_runtime_pm) { 1342 pm_runtime_mark_last_busy(ctlr->dev.parent); 1343 pm_runtime_put_autosuspend(ctlr->dev.parent); 1344 } 1345 } 1346 1347 /** 1348 * __spi_pump_messages - function which processes spi message queue 1349 * @ctlr: controller to process queue for 1350 * @in_kthread: true if we are in the context of the message pump thread 1351 * 1352 * This function checks if there is any spi message in the queue that 1353 * needs processing and if so call out to the driver to initialize hardware 1354 * and transfer each message. 1355 * 1356 * Note that it is called both from the kthread itself and also from 1357 * inside spi_sync(); the queue extraction handling at the top of the 1358 * function should deal with this safely. 1359 */ 1360 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1361 { 1362 struct spi_transfer *xfer; 1363 struct spi_message *msg; 1364 bool was_busy = false; 1365 unsigned long flags; 1366 int ret; 1367 1368 /* Lock queue */ 1369 spin_lock_irqsave(&ctlr->queue_lock, flags); 1370 1371 /* Make sure we are not already running a message */ 1372 if (ctlr->cur_msg) { 1373 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1374 return; 1375 } 1376 1377 /* If another context is idling the device then defer */ 1378 if (ctlr->idling) { 1379 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1380 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1381 return; 1382 } 1383 1384 /* Check if the queue is idle */ 1385 if (list_empty(&ctlr->queue) || !ctlr->running) { 1386 if (!ctlr->busy) { 1387 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1388 return; 1389 } 1390 1391 /* Defer any non-atomic teardown to the thread */ 1392 if (!in_kthread) { 1393 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1394 !ctlr->unprepare_transfer_hardware) { 1395 spi_idle_runtime_pm(ctlr); 1396 ctlr->busy = false; 1397 trace_spi_controller_idle(ctlr); 1398 } else { 1399 kthread_queue_work(ctlr->kworker, 1400 &ctlr->pump_messages); 1401 } 1402 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1403 return; 1404 } 1405 1406 ctlr->busy = false; 1407 ctlr->idling = true; 1408 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1409 1410 kfree(ctlr->dummy_rx); 1411 ctlr->dummy_rx = NULL; 1412 kfree(ctlr->dummy_tx); 1413 ctlr->dummy_tx = NULL; 1414 if (ctlr->unprepare_transfer_hardware && 1415 ctlr->unprepare_transfer_hardware(ctlr)) 1416 dev_err(&ctlr->dev, 1417 "failed to unprepare transfer hardware\n"); 1418 spi_idle_runtime_pm(ctlr); 1419 trace_spi_controller_idle(ctlr); 1420 1421 spin_lock_irqsave(&ctlr->queue_lock, flags); 1422 ctlr->idling = false; 1423 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1424 return; 1425 } 1426 1427 /* Extract head of queue */ 1428 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1429 ctlr->cur_msg = msg; 1430 1431 list_del_init(&msg->queue); 1432 if (ctlr->busy) 1433 was_busy = true; 1434 else 1435 ctlr->busy = true; 1436 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1437 1438 mutex_lock(&ctlr->io_mutex); 1439 1440 if (!was_busy && ctlr->auto_runtime_pm) { 1441 ret = pm_runtime_get_sync(ctlr->dev.parent); 1442 if (ret < 0) { 1443 pm_runtime_put_noidle(ctlr->dev.parent); 1444 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1445 ret); 1446 mutex_unlock(&ctlr->io_mutex); 1447 return; 1448 } 1449 } 1450 1451 if (!was_busy) 1452 trace_spi_controller_busy(ctlr); 1453 1454 if (!was_busy && ctlr->prepare_transfer_hardware) { 1455 ret = ctlr->prepare_transfer_hardware(ctlr); 1456 if (ret) { 1457 dev_err(&ctlr->dev, 1458 "failed to prepare transfer hardware: %d\n", 1459 ret); 1460 1461 if (ctlr->auto_runtime_pm) 1462 pm_runtime_put(ctlr->dev.parent); 1463 1464 msg->status = ret; 1465 spi_finalize_current_message(ctlr); 1466 1467 mutex_unlock(&ctlr->io_mutex); 1468 return; 1469 } 1470 } 1471 1472 trace_spi_message_start(msg); 1473 1474 if (ctlr->prepare_message) { 1475 ret = ctlr->prepare_message(ctlr, msg); 1476 if (ret) { 1477 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1478 ret); 1479 msg->status = ret; 1480 spi_finalize_current_message(ctlr); 1481 goto out; 1482 } 1483 ctlr->cur_msg_prepared = true; 1484 } 1485 1486 ret = spi_map_msg(ctlr, msg); 1487 if (ret) { 1488 msg->status = ret; 1489 spi_finalize_current_message(ctlr); 1490 goto out; 1491 } 1492 1493 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1494 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1495 xfer->ptp_sts_word_pre = 0; 1496 ptp_read_system_prets(xfer->ptp_sts); 1497 } 1498 } 1499 1500 ret = ctlr->transfer_one_message(ctlr, msg); 1501 if (ret) { 1502 dev_err(&ctlr->dev, 1503 "failed to transfer one message from queue\n"); 1504 goto out; 1505 } 1506 1507 out: 1508 mutex_unlock(&ctlr->io_mutex); 1509 1510 /* Prod the scheduler in case transfer_one() was busy waiting */ 1511 if (!ret) 1512 cond_resched(); 1513 } 1514 1515 /** 1516 * spi_pump_messages - kthread work function which processes spi message queue 1517 * @work: pointer to kthread work struct contained in the controller struct 1518 */ 1519 static void spi_pump_messages(struct kthread_work *work) 1520 { 1521 struct spi_controller *ctlr = 1522 container_of(work, struct spi_controller, pump_messages); 1523 1524 __spi_pump_messages(ctlr, true); 1525 } 1526 1527 /** 1528 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1529 * TX timestamp for the requested byte from the SPI 1530 * transfer. The frequency with which this function 1531 * must be called (once per word, once for the whole 1532 * transfer, once per batch of words etc) is arbitrary 1533 * as long as the @tx buffer offset is greater than or 1534 * equal to the requested byte at the time of the 1535 * call. The timestamp is only taken once, at the 1536 * first such call. It is assumed that the driver 1537 * advances its @tx buffer pointer monotonically. 1538 * @ctlr: Pointer to the spi_controller structure of the driver 1539 * @xfer: Pointer to the transfer being timestamped 1540 * @progress: How many words (not bytes) have been transferred so far 1541 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1542 * transfer, for less jitter in time measurement. Only compatible 1543 * with PIO drivers. If true, must follow up with 1544 * spi_take_timestamp_post or otherwise system will crash. 1545 * WARNING: for fully predictable results, the CPU frequency must 1546 * also be under control (governor). 1547 */ 1548 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1549 struct spi_transfer *xfer, 1550 size_t progress, bool irqs_off) 1551 { 1552 if (!xfer->ptp_sts) 1553 return; 1554 1555 if (xfer->timestamped) 1556 return; 1557 1558 if (progress > xfer->ptp_sts_word_pre) 1559 return; 1560 1561 /* Capture the resolution of the timestamp */ 1562 xfer->ptp_sts_word_pre = progress; 1563 1564 if (irqs_off) { 1565 local_irq_save(ctlr->irq_flags); 1566 preempt_disable(); 1567 } 1568 1569 ptp_read_system_prets(xfer->ptp_sts); 1570 } 1571 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1572 1573 /** 1574 * spi_take_timestamp_post - helper for drivers to collect the end of the 1575 * TX timestamp for the requested byte from the SPI 1576 * transfer. Can be called with an arbitrary 1577 * frequency: only the first call where @tx exceeds 1578 * or is equal to the requested word will be 1579 * timestamped. 1580 * @ctlr: Pointer to the spi_controller structure of the driver 1581 * @xfer: Pointer to the transfer being timestamped 1582 * @progress: How many words (not bytes) have been transferred so far 1583 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1584 */ 1585 void spi_take_timestamp_post(struct spi_controller *ctlr, 1586 struct spi_transfer *xfer, 1587 size_t progress, bool irqs_off) 1588 { 1589 if (!xfer->ptp_sts) 1590 return; 1591 1592 if (xfer->timestamped) 1593 return; 1594 1595 if (progress < xfer->ptp_sts_word_post) 1596 return; 1597 1598 ptp_read_system_postts(xfer->ptp_sts); 1599 1600 if (irqs_off) { 1601 local_irq_restore(ctlr->irq_flags); 1602 preempt_enable(); 1603 } 1604 1605 /* Capture the resolution of the timestamp */ 1606 xfer->ptp_sts_word_post = progress; 1607 1608 xfer->timestamped = true; 1609 } 1610 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1611 1612 /** 1613 * spi_set_thread_rt - set the controller to pump at realtime priority 1614 * @ctlr: controller to boost priority of 1615 * 1616 * This can be called because the controller requested realtime priority 1617 * (by setting the ->rt value before calling spi_register_controller()) or 1618 * because a device on the bus said that its transfers needed realtime 1619 * priority. 1620 * 1621 * NOTE: at the moment if any device on a bus says it needs realtime then 1622 * the thread will be at realtime priority for all transfers on that 1623 * controller. If this eventually becomes a problem we may see if we can 1624 * find a way to boost the priority only temporarily during relevant 1625 * transfers. 1626 */ 1627 static void spi_set_thread_rt(struct spi_controller *ctlr) 1628 { 1629 dev_info(&ctlr->dev, 1630 "will run message pump with realtime priority\n"); 1631 sched_set_fifo(ctlr->kworker->task); 1632 } 1633 1634 static int spi_init_queue(struct spi_controller *ctlr) 1635 { 1636 ctlr->running = false; 1637 ctlr->busy = false; 1638 1639 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1640 if (IS_ERR(ctlr->kworker)) { 1641 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1642 return PTR_ERR(ctlr->kworker); 1643 } 1644 1645 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1646 1647 /* 1648 * Controller config will indicate if this controller should run the 1649 * message pump with high (realtime) priority to reduce the transfer 1650 * latency on the bus by minimising the delay between a transfer 1651 * request and the scheduling of the message pump thread. Without this 1652 * setting the message pump thread will remain at default priority. 1653 */ 1654 if (ctlr->rt) 1655 spi_set_thread_rt(ctlr); 1656 1657 return 0; 1658 } 1659 1660 /** 1661 * spi_get_next_queued_message() - called by driver to check for queued 1662 * messages 1663 * @ctlr: the controller to check for queued messages 1664 * 1665 * If there are more messages in the queue, the next message is returned from 1666 * this call. 1667 * 1668 * Return: the next message in the queue, else NULL if the queue is empty. 1669 */ 1670 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1671 { 1672 struct spi_message *next; 1673 unsigned long flags; 1674 1675 /* get a pointer to the next message, if any */ 1676 spin_lock_irqsave(&ctlr->queue_lock, flags); 1677 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1678 queue); 1679 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1680 1681 return next; 1682 } 1683 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1684 1685 /** 1686 * spi_finalize_current_message() - the current message is complete 1687 * @ctlr: the controller to return the message to 1688 * 1689 * Called by the driver to notify the core that the message in the front of the 1690 * queue is complete and can be removed from the queue. 1691 */ 1692 void spi_finalize_current_message(struct spi_controller *ctlr) 1693 { 1694 struct spi_transfer *xfer; 1695 struct spi_message *mesg; 1696 unsigned long flags; 1697 int ret; 1698 1699 spin_lock_irqsave(&ctlr->queue_lock, flags); 1700 mesg = ctlr->cur_msg; 1701 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1702 1703 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1704 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1705 ptp_read_system_postts(xfer->ptp_sts); 1706 xfer->ptp_sts_word_post = xfer->len; 1707 } 1708 } 1709 1710 if (unlikely(ctlr->ptp_sts_supported)) 1711 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1712 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1713 1714 spi_unmap_msg(ctlr, mesg); 1715 1716 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1717 ret = ctlr->unprepare_message(ctlr, mesg); 1718 if (ret) { 1719 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1720 ret); 1721 } 1722 } 1723 1724 spin_lock_irqsave(&ctlr->queue_lock, flags); 1725 ctlr->cur_msg = NULL; 1726 ctlr->cur_msg_prepared = false; 1727 ctlr->fallback = false; 1728 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1729 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1730 1731 trace_spi_message_done(mesg); 1732 1733 mesg->state = NULL; 1734 if (mesg->complete) 1735 mesg->complete(mesg->context); 1736 } 1737 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1738 1739 static int spi_start_queue(struct spi_controller *ctlr) 1740 { 1741 unsigned long flags; 1742 1743 spin_lock_irqsave(&ctlr->queue_lock, flags); 1744 1745 if (ctlr->running || ctlr->busy) { 1746 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1747 return -EBUSY; 1748 } 1749 1750 ctlr->running = true; 1751 ctlr->cur_msg = NULL; 1752 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1753 1754 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1755 1756 return 0; 1757 } 1758 1759 static int spi_stop_queue(struct spi_controller *ctlr) 1760 { 1761 unsigned long flags; 1762 unsigned limit = 500; 1763 int ret = 0; 1764 1765 spin_lock_irqsave(&ctlr->queue_lock, flags); 1766 1767 /* 1768 * This is a bit lame, but is optimized for the common execution path. 1769 * A wait_queue on the ctlr->busy could be used, but then the common 1770 * execution path (pump_messages) would be required to call wake_up or 1771 * friends on every SPI message. Do this instead. 1772 */ 1773 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1774 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1775 usleep_range(10000, 11000); 1776 spin_lock_irqsave(&ctlr->queue_lock, flags); 1777 } 1778 1779 if (!list_empty(&ctlr->queue) || ctlr->busy) 1780 ret = -EBUSY; 1781 else 1782 ctlr->running = false; 1783 1784 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1785 1786 if (ret) { 1787 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1788 return ret; 1789 } 1790 return ret; 1791 } 1792 1793 static int spi_destroy_queue(struct spi_controller *ctlr) 1794 { 1795 int ret; 1796 1797 ret = spi_stop_queue(ctlr); 1798 1799 /* 1800 * kthread_flush_worker will block until all work is done. 1801 * If the reason that stop_queue timed out is that the work will never 1802 * finish, then it does no good to call flush/stop thread, so 1803 * return anyway. 1804 */ 1805 if (ret) { 1806 dev_err(&ctlr->dev, "problem destroying queue\n"); 1807 return ret; 1808 } 1809 1810 kthread_destroy_worker(ctlr->kworker); 1811 1812 return 0; 1813 } 1814 1815 static int __spi_queued_transfer(struct spi_device *spi, 1816 struct spi_message *msg, 1817 bool need_pump) 1818 { 1819 struct spi_controller *ctlr = spi->controller; 1820 unsigned long flags; 1821 1822 spin_lock_irqsave(&ctlr->queue_lock, flags); 1823 1824 if (!ctlr->running) { 1825 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1826 return -ESHUTDOWN; 1827 } 1828 msg->actual_length = 0; 1829 msg->status = -EINPROGRESS; 1830 1831 list_add_tail(&msg->queue, &ctlr->queue); 1832 if (!ctlr->busy && need_pump) 1833 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1834 1835 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1836 return 0; 1837 } 1838 1839 /** 1840 * spi_queued_transfer - transfer function for queued transfers 1841 * @spi: spi device which is requesting transfer 1842 * @msg: spi message which is to handled is queued to driver queue 1843 * 1844 * Return: zero on success, else a negative error code. 1845 */ 1846 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1847 { 1848 return __spi_queued_transfer(spi, msg, true); 1849 } 1850 1851 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1852 { 1853 int ret; 1854 1855 ctlr->transfer = spi_queued_transfer; 1856 if (!ctlr->transfer_one_message) 1857 ctlr->transfer_one_message = spi_transfer_one_message; 1858 1859 /* Initialize and start queue */ 1860 ret = spi_init_queue(ctlr); 1861 if (ret) { 1862 dev_err(&ctlr->dev, "problem initializing queue\n"); 1863 goto err_init_queue; 1864 } 1865 ctlr->queued = true; 1866 ret = spi_start_queue(ctlr); 1867 if (ret) { 1868 dev_err(&ctlr->dev, "problem starting queue\n"); 1869 goto err_start_queue; 1870 } 1871 1872 return 0; 1873 1874 err_start_queue: 1875 spi_destroy_queue(ctlr); 1876 err_init_queue: 1877 return ret; 1878 } 1879 1880 /** 1881 * spi_flush_queue - Send all pending messages in the queue from the callers' 1882 * context 1883 * @ctlr: controller to process queue for 1884 * 1885 * This should be used when one wants to ensure all pending messages have been 1886 * sent before doing something. Is used by the spi-mem code to make sure SPI 1887 * memory operations do not preempt regular SPI transfers that have been queued 1888 * before the spi-mem operation. 1889 */ 1890 void spi_flush_queue(struct spi_controller *ctlr) 1891 { 1892 if (ctlr->transfer == spi_queued_transfer) 1893 __spi_pump_messages(ctlr, false); 1894 } 1895 1896 /*-------------------------------------------------------------------------*/ 1897 1898 #if defined(CONFIG_OF) 1899 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1900 struct device_node *nc) 1901 { 1902 u32 value; 1903 int rc; 1904 1905 /* Mode (clock phase/polarity/etc.) */ 1906 if (of_property_read_bool(nc, "spi-cpha")) 1907 spi->mode |= SPI_CPHA; 1908 if (of_property_read_bool(nc, "spi-cpol")) 1909 spi->mode |= SPI_CPOL; 1910 if (of_property_read_bool(nc, "spi-3wire")) 1911 spi->mode |= SPI_3WIRE; 1912 if (of_property_read_bool(nc, "spi-lsb-first")) 1913 spi->mode |= SPI_LSB_FIRST; 1914 if (of_property_read_bool(nc, "spi-cs-high")) 1915 spi->mode |= SPI_CS_HIGH; 1916 1917 /* Device DUAL/QUAD mode */ 1918 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1919 switch (value) { 1920 case 1: 1921 break; 1922 case 2: 1923 spi->mode |= SPI_TX_DUAL; 1924 break; 1925 case 4: 1926 spi->mode |= SPI_TX_QUAD; 1927 break; 1928 case 8: 1929 spi->mode |= SPI_TX_OCTAL; 1930 break; 1931 default: 1932 dev_warn(&ctlr->dev, 1933 "spi-tx-bus-width %d not supported\n", 1934 value); 1935 break; 1936 } 1937 } 1938 1939 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1940 switch (value) { 1941 case 1: 1942 break; 1943 case 2: 1944 spi->mode |= SPI_RX_DUAL; 1945 break; 1946 case 4: 1947 spi->mode |= SPI_RX_QUAD; 1948 break; 1949 case 8: 1950 spi->mode |= SPI_RX_OCTAL; 1951 break; 1952 default: 1953 dev_warn(&ctlr->dev, 1954 "spi-rx-bus-width %d not supported\n", 1955 value); 1956 break; 1957 } 1958 } 1959 1960 if (spi_controller_is_slave(ctlr)) { 1961 if (!of_node_name_eq(nc, "slave")) { 1962 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1963 nc); 1964 return -EINVAL; 1965 } 1966 return 0; 1967 } 1968 1969 /* Device address */ 1970 rc = of_property_read_u32(nc, "reg", &value); 1971 if (rc) { 1972 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1973 nc, rc); 1974 return rc; 1975 } 1976 spi->chip_select = value; 1977 1978 /* 1979 * For descriptors associated with the device, polarity inversion is 1980 * handled in the gpiolib, so all gpio chip selects are "active high" 1981 * in the logical sense, the gpiolib will invert the line if need be. 1982 */ 1983 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods && 1984 ctlr->cs_gpiods[spi->chip_select]) 1985 spi->mode |= SPI_CS_HIGH; 1986 1987 /* Device speed */ 1988 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 1989 spi->max_speed_hz = value; 1990 1991 return 0; 1992 } 1993 1994 static struct spi_device * 1995 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1996 { 1997 struct spi_device *spi; 1998 int rc; 1999 2000 /* Alloc an spi_device */ 2001 spi = spi_alloc_device(ctlr); 2002 if (!spi) { 2003 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2004 rc = -ENOMEM; 2005 goto err_out; 2006 } 2007 2008 /* Select device driver */ 2009 rc = of_modalias_node(nc, spi->modalias, 2010 sizeof(spi->modalias)); 2011 if (rc < 0) { 2012 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2013 goto err_out; 2014 } 2015 2016 rc = of_spi_parse_dt(ctlr, spi, nc); 2017 if (rc) 2018 goto err_out; 2019 2020 /* Store a pointer to the node in the device structure */ 2021 of_node_get(nc); 2022 spi->dev.of_node = nc; 2023 2024 /* Register the new device */ 2025 rc = spi_add_device(spi); 2026 if (rc) { 2027 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2028 goto err_of_node_put; 2029 } 2030 2031 return spi; 2032 2033 err_of_node_put: 2034 of_node_put(nc); 2035 err_out: 2036 spi_dev_put(spi); 2037 return ERR_PTR(rc); 2038 } 2039 2040 /** 2041 * of_register_spi_devices() - Register child devices onto the SPI bus 2042 * @ctlr: Pointer to spi_controller device 2043 * 2044 * Registers an spi_device for each child node of controller node which 2045 * represents a valid SPI slave. 2046 */ 2047 static void of_register_spi_devices(struct spi_controller *ctlr) 2048 { 2049 struct spi_device *spi; 2050 struct device_node *nc; 2051 2052 if (!ctlr->dev.of_node) 2053 return; 2054 2055 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2056 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2057 continue; 2058 spi = of_register_spi_device(ctlr, nc); 2059 if (IS_ERR(spi)) { 2060 dev_warn(&ctlr->dev, 2061 "Failed to create SPI device for %pOF\n", nc); 2062 of_node_clear_flag(nc, OF_POPULATED); 2063 } 2064 } 2065 } 2066 #else 2067 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2068 #endif 2069 2070 #ifdef CONFIG_ACPI 2071 struct acpi_spi_lookup { 2072 struct spi_controller *ctlr; 2073 u32 max_speed_hz; 2074 u32 mode; 2075 int irq; 2076 u8 bits_per_word; 2077 u8 chip_select; 2078 }; 2079 2080 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2081 struct acpi_spi_lookup *lookup) 2082 { 2083 const union acpi_object *obj; 2084 2085 if (!x86_apple_machine) 2086 return; 2087 2088 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2089 && obj->buffer.length >= 4) 2090 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2091 2092 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2093 && obj->buffer.length == 8) 2094 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2095 2096 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2097 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2098 lookup->mode |= SPI_LSB_FIRST; 2099 2100 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2101 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2102 lookup->mode |= SPI_CPOL; 2103 2104 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2105 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2106 lookup->mode |= SPI_CPHA; 2107 } 2108 2109 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2110 { 2111 struct acpi_spi_lookup *lookup = data; 2112 struct spi_controller *ctlr = lookup->ctlr; 2113 2114 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2115 struct acpi_resource_spi_serialbus *sb; 2116 acpi_handle parent_handle; 2117 acpi_status status; 2118 2119 sb = &ares->data.spi_serial_bus; 2120 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2121 2122 status = acpi_get_handle(NULL, 2123 sb->resource_source.string_ptr, 2124 &parent_handle); 2125 2126 if (ACPI_FAILURE(status) || 2127 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2128 return -ENODEV; 2129 2130 /* 2131 * ACPI DeviceSelection numbering is handled by the 2132 * host controller driver in Windows and can vary 2133 * from driver to driver. In Linux we always expect 2134 * 0 .. max - 1 so we need to ask the driver to 2135 * translate between the two schemes. 2136 */ 2137 if (ctlr->fw_translate_cs) { 2138 int cs = ctlr->fw_translate_cs(ctlr, 2139 sb->device_selection); 2140 if (cs < 0) 2141 return cs; 2142 lookup->chip_select = cs; 2143 } else { 2144 lookup->chip_select = sb->device_selection; 2145 } 2146 2147 lookup->max_speed_hz = sb->connection_speed; 2148 lookup->bits_per_word = sb->data_bit_length; 2149 2150 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2151 lookup->mode |= SPI_CPHA; 2152 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2153 lookup->mode |= SPI_CPOL; 2154 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2155 lookup->mode |= SPI_CS_HIGH; 2156 } 2157 } else if (lookup->irq < 0) { 2158 struct resource r; 2159 2160 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2161 lookup->irq = r.start; 2162 } 2163 2164 /* Always tell the ACPI core to skip this resource */ 2165 return 1; 2166 } 2167 2168 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2169 struct acpi_device *adev) 2170 { 2171 acpi_handle parent_handle = NULL; 2172 struct list_head resource_list; 2173 struct acpi_spi_lookup lookup = {}; 2174 struct spi_device *spi; 2175 int ret; 2176 2177 if (acpi_bus_get_status(adev) || !adev->status.present || 2178 acpi_device_enumerated(adev)) 2179 return AE_OK; 2180 2181 lookup.ctlr = ctlr; 2182 lookup.irq = -1; 2183 2184 INIT_LIST_HEAD(&resource_list); 2185 ret = acpi_dev_get_resources(adev, &resource_list, 2186 acpi_spi_add_resource, &lookup); 2187 acpi_dev_free_resource_list(&resource_list); 2188 2189 if (ret < 0) 2190 /* found SPI in _CRS but it points to another controller */ 2191 return AE_OK; 2192 2193 if (!lookup.max_speed_hz && 2194 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 2195 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2196 /* Apple does not use _CRS but nested devices for SPI slaves */ 2197 acpi_spi_parse_apple_properties(adev, &lookup); 2198 } 2199 2200 if (!lookup.max_speed_hz) 2201 return AE_OK; 2202 2203 spi = spi_alloc_device(ctlr); 2204 if (!spi) { 2205 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2206 dev_name(&adev->dev)); 2207 return AE_NO_MEMORY; 2208 } 2209 2210 2211 ACPI_COMPANION_SET(&spi->dev, adev); 2212 spi->max_speed_hz = lookup.max_speed_hz; 2213 spi->mode |= lookup.mode; 2214 spi->irq = lookup.irq; 2215 spi->bits_per_word = lookup.bits_per_word; 2216 spi->chip_select = lookup.chip_select; 2217 2218 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2219 sizeof(spi->modalias)); 2220 2221 if (spi->irq < 0) 2222 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2223 2224 acpi_device_set_enumerated(adev); 2225 2226 adev->power.flags.ignore_parent = true; 2227 if (spi_add_device(spi)) { 2228 adev->power.flags.ignore_parent = false; 2229 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2230 dev_name(&adev->dev)); 2231 spi_dev_put(spi); 2232 } 2233 2234 return AE_OK; 2235 } 2236 2237 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2238 void *data, void **return_value) 2239 { 2240 struct spi_controller *ctlr = data; 2241 struct acpi_device *adev; 2242 2243 if (acpi_bus_get_device(handle, &adev)) 2244 return AE_OK; 2245 2246 return acpi_register_spi_device(ctlr, adev); 2247 } 2248 2249 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2250 2251 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2252 { 2253 acpi_status status; 2254 acpi_handle handle; 2255 2256 handle = ACPI_HANDLE(ctlr->dev.parent); 2257 if (!handle) 2258 return; 2259 2260 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2261 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2262 acpi_spi_add_device, NULL, ctlr, NULL); 2263 if (ACPI_FAILURE(status)) 2264 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2265 } 2266 #else 2267 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2268 #endif /* CONFIG_ACPI */ 2269 2270 static void spi_controller_release(struct device *dev) 2271 { 2272 struct spi_controller *ctlr; 2273 2274 ctlr = container_of(dev, struct spi_controller, dev); 2275 kfree(ctlr); 2276 } 2277 2278 static struct class spi_master_class = { 2279 .name = "spi_master", 2280 .owner = THIS_MODULE, 2281 .dev_release = spi_controller_release, 2282 .dev_groups = spi_master_groups, 2283 }; 2284 2285 #ifdef CONFIG_SPI_SLAVE 2286 /** 2287 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2288 * controller 2289 * @spi: device used for the current transfer 2290 */ 2291 int spi_slave_abort(struct spi_device *spi) 2292 { 2293 struct spi_controller *ctlr = spi->controller; 2294 2295 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2296 return ctlr->slave_abort(ctlr); 2297 2298 return -ENOTSUPP; 2299 } 2300 EXPORT_SYMBOL_GPL(spi_slave_abort); 2301 2302 static int match_true(struct device *dev, void *data) 2303 { 2304 return 1; 2305 } 2306 2307 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2308 char *buf) 2309 { 2310 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2311 dev); 2312 struct device *child; 2313 2314 child = device_find_child(&ctlr->dev, NULL, match_true); 2315 return sprintf(buf, "%s\n", 2316 child ? to_spi_device(child)->modalias : NULL); 2317 } 2318 2319 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2320 const char *buf, size_t count) 2321 { 2322 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2323 dev); 2324 struct spi_device *spi; 2325 struct device *child; 2326 char name[32]; 2327 int rc; 2328 2329 rc = sscanf(buf, "%31s", name); 2330 if (rc != 1 || !name[0]) 2331 return -EINVAL; 2332 2333 child = device_find_child(&ctlr->dev, NULL, match_true); 2334 if (child) { 2335 /* Remove registered slave */ 2336 device_unregister(child); 2337 put_device(child); 2338 } 2339 2340 if (strcmp(name, "(null)")) { 2341 /* Register new slave */ 2342 spi = spi_alloc_device(ctlr); 2343 if (!spi) 2344 return -ENOMEM; 2345 2346 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2347 2348 rc = spi_add_device(spi); 2349 if (rc) { 2350 spi_dev_put(spi); 2351 return rc; 2352 } 2353 } 2354 2355 return count; 2356 } 2357 2358 static DEVICE_ATTR_RW(slave); 2359 2360 static struct attribute *spi_slave_attrs[] = { 2361 &dev_attr_slave.attr, 2362 NULL, 2363 }; 2364 2365 static const struct attribute_group spi_slave_group = { 2366 .attrs = spi_slave_attrs, 2367 }; 2368 2369 static const struct attribute_group *spi_slave_groups[] = { 2370 &spi_controller_statistics_group, 2371 &spi_slave_group, 2372 NULL, 2373 }; 2374 2375 static struct class spi_slave_class = { 2376 .name = "spi_slave", 2377 .owner = THIS_MODULE, 2378 .dev_release = spi_controller_release, 2379 .dev_groups = spi_slave_groups, 2380 }; 2381 #else 2382 extern struct class spi_slave_class; /* dummy */ 2383 #endif 2384 2385 /** 2386 * __spi_alloc_controller - allocate an SPI master or slave controller 2387 * @dev: the controller, possibly using the platform_bus 2388 * @size: how much zeroed driver-private data to allocate; the pointer to this 2389 * memory is in the driver_data field of the returned device, accessible 2390 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2391 * drivers granting DMA access to portions of their private data need to 2392 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2393 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2394 * slave (true) controller 2395 * Context: can sleep 2396 * 2397 * This call is used only by SPI controller drivers, which are the 2398 * only ones directly touching chip registers. It's how they allocate 2399 * an spi_controller structure, prior to calling spi_register_controller(). 2400 * 2401 * This must be called from context that can sleep. 2402 * 2403 * The caller is responsible for assigning the bus number and initializing the 2404 * controller's methods before calling spi_register_controller(); and (after 2405 * errors adding the device) calling spi_controller_put() to prevent a memory 2406 * leak. 2407 * 2408 * Return: the SPI controller structure on success, else NULL. 2409 */ 2410 struct spi_controller *__spi_alloc_controller(struct device *dev, 2411 unsigned int size, bool slave) 2412 { 2413 struct spi_controller *ctlr; 2414 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2415 2416 if (!dev) 2417 return NULL; 2418 2419 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2420 if (!ctlr) 2421 return NULL; 2422 2423 device_initialize(&ctlr->dev); 2424 ctlr->bus_num = -1; 2425 ctlr->num_chipselect = 1; 2426 ctlr->slave = slave; 2427 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2428 ctlr->dev.class = &spi_slave_class; 2429 else 2430 ctlr->dev.class = &spi_master_class; 2431 ctlr->dev.parent = dev; 2432 pm_suspend_ignore_children(&ctlr->dev, true); 2433 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2434 2435 return ctlr; 2436 } 2437 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2438 2439 #ifdef CONFIG_OF 2440 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2441 { 2442 int nb, i, *cs; 2443 struct device_node *np = ctlr->dev.of_node; 2444 2445 if (!np) 2446 return 0; 2447 2448 nb = of_gpio_named_count(np, "cs-gpios"); 2449 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2450 2451 /* Return error only for an incorrectly formed cs-gpios property */ 2452 if (nb == 0 || nb == -ENOENT) 2453 return 0; 2454 else if (nb < 0) 2455 return nb; 2456 2457 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2458 GFP_KERNEL); 2459 ctlr->cs_gpios = cs; 2460 2461 if (!ctlr->cs_gpios) 2462 return -ENOMEM; 2463 2464 for (i = 0; i < ctlr->num_chipselect; i++) 2465 cs[i] = -ENOENT; 2466 2467 for (i = 0; i < nb; i++) 2468 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2469 2470 return 0; 2471 } 2472 #else 2473 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2474 { 2475 return 0; 2476 } 2477 #endif 2478 2479 /** 2480 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2481 * @ctlr: The SPI master to grab GPIO descriptors for 2482 */ 2483 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2484 { 2485 int nb, i; 2486 struct gpio_desc **cs; 2487 struct device *dev = &ctlr->dev; 2488 unsigned long native_cs_mask = 0; 2489 unsigned int num_cs_gpios = 0; 2490 2491 nb = gpiod_count(dev, "cs"); 2492 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2493 2494 /* No GPIOs at all is fine, else return the error */ 2495 if (nb == 0 || nb == -ENOENT) 2496 return 0; 2497 else if (nb < 0) 2498 return nb; 2499 2500 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2501 GFP_KERNEL); 2502 if (!cs) 2503 return -ENOMEM; 2504 ctlr->cs_gpiods = cs; 2505 2506 for (i = 0; i < nb; i++) { 2507 /* 2508 * Most chipselects are active low, the inverted 2509 * semantics are handled by special quirks in gpiolib, 2510 * so initializing them GPIOD_OUT_LOW here means 2511 * "unasserted", in most cases this will drive the physical 2512 * line high. 2513 */ 2514 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2515 GPIOD_OUT_LOW); 2516 if (IS_ERR(cs[i])) 2517 return PTR_ERR(cs[i]); 2518 2519 if (cs[i]) { 2520 /* 2521 * If we find a CS GPIO, name it after the device and 2522 * chip select line. 2523 */ 2524 char *gpioname; 2525 2526 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2527 dev_name(dev), i); 2528 if (!gpioname) 2529 return -ENOMEM; 2530 gpiod_set_consumer_name(cs[i], gpioname); 2531 num_cs_gpios++; 2532 continue; 2533 } 2534 2535 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2536 dev_err(dev, "Invalid native chip select %d\n", i); 2537 return -EINVAL; 2538 } 2539 native_cs_mask |= BIT(i); 2540 } 2541 2542 ctlr->unused_native_cs = ffz(native_cs_mask); 2543 if (num_cs_gpios && ctlr->max_native_cs && 2544 ctlr->unused_native_cs >= ctlr->max_native_cs) { 2545 dev_err(dev, "No unused native chip select available\n"); 2546 return -EINVAL; 2547 } 2548 2549 return 0; 2550 } 2551 2552 static int spi_controller_check_ops(struct spi_controller *ctlr) 2553 { 2554 /* 2555 * The controller may implement only the high-level SPI-memory like 2556 * operations if it does not support regular SPI transfers, and this is 2557 * valid use case. 2558 * If ->mem_ops is NULL, we request that at least one of the 2559 * ->transfer_xxx() method be implemented. 2560 */ 2561 if (ctlr->mem_ops) { 2562 if (!ctlr->mem_ops->exec_op) 2563 return -EINVAL; 2564 } else if (!ctlr->transfer && !ctlr->transfer_one && 2565 !ctlr->transfer_one_message) { 2566 return -EINVAL; 2567 } 2568 2569 return 0; 2570 } 2571 2572 /** 2573 * spi_register_controller - register SPI master or slave controller 2574 * @ctlr: initialized master, originally from spi_alloc_master() or 2575 * spi_alloc_slave() 2576 * Context: can sleep 2577 * 2578 * SPI controllers connect to their drivers using some non-SPI bus, 2579 * such as the platform bus. The final stage of probe() in that code 2580 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2581 * 2582 * SPI controllers use board specific (often SOC specific) bus numbers, 2583 * and board-specific addressing for SPI devices combines those numbers 2584 * with chip select numbers. Since SPI does not directly support dynamic 2585 * device identification, boards need configuration tables telling which 2586 * chip is at which address. 2587 * 2588 * This must be called from context that can sleep. It returns zero on 2589 * success, else a negative error code (dropping the controller's refcount). 2590 * After a successful return, the caller is responsible for calling 2591 * spi_unregister_controller(). 2592 * 2593 * Return: zero on success, else a negative error code. 2594 */ 2595 int spi_register_controller(struct spi_controller *ctlr) 2596 { 2597 struct device *dev = ctlr->dev.parent; 2598 struct boardinfo *bi; 2599 int status; 2600 int id, first_dynamic; 2601 2602 if (!dev) 2603 return -ENODEV; 2604 2605 /* 2606 * Make sure all necessary hooks are implemented before registering 2607 * the SPI controller. 2608 */ 2609 status = spi_controller_check_ops(ctlr); 2610 if (status) 2611 return status; 2612 2613 if (ctlr->bus_num >= 0) { 2614 /* devices with a fixed bus num must check-in with the num */ 2615 mutex_lock(&board_lock); 2616 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2617 ctlr->bus_num + 1, GFP_KERNEL); 2618 mutex_unlock(&board_lock); 2619 if (WARN(id < 0, "couldn't get idr")) 2620 return id == -ENOSPC ? -EBUSY : id; 2621 ctlr->bus_num = id; 2622 } else if (ctlr->dev.of_node) { 2623 /* allocate dynamic bus number using Linux idr */ 2624 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2625 if (id >= 0) { 2626 ctlr->bus_num = id; 2627 mutex_lock(&board_lock); 2628 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2629 ctlr->bus_num + 1, GFP_KERNEL); 2630 mutex_unlock(&board_lock); 2631 if (WARN(id < 0, "couldn't get idr")) 2632 return id == -ENOSPC ? -EBUSY : id; 2633 } 2634 } 2635 if (ctlr->bus_num < 0) { 2636 first_dynamic = of_alias_get_highest_id("spi"); 2637 if (first_dynamic < 0) 2638 first_dynamic = 0; 2639 else 2640 first_dynamic++; 2641 2642 mutex_lock(&board_lock); 2643 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2644 0, GFP_KERNEL); 2645 mutex_unlock(&board_lock); 2646 if (WARN(id < 0, "couldn't get idr")) 2647 return id; 2648 ctlr->bus_num = id; 2649 } 2650 INIT_LIST_HEAD(&ctlr->queue); 2651 spin_lock_init(&ctlr->queue_lock); 2652 spin_lock_init(&ctlr->bus_lock_spinlock); 2653 mutex_init(&ctlr->bus_lock_mutex); 2654 mutex_init(&ctlr->io_mutex); 2655 ctlr->bus_lock_flag = 0; 2656 init_completion(&ctlr->xfer_completion); 2657 if (!ctlr->max_dma_len) 2658 ctlr->max_dma_len = INT_MAX; 2659 2660 /* register the device, then userspace will see it. 2661 * registration fails if the bus ID is in use. 2662 */ 2663 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2664 2665 if (!spi_controller_is_slave(ctlr)) { 2666 if (ctlr->use_gpio_descriptors) { 2667 status = spi_get_gpio_descs(ctlr); 2668 if (status) 2669 goto free_bus_id; 2670 /* 2671 * A controller using GPIO descriptors always 2672 * supports SPI_CS_HIGH if need be. 2673 */ 2674 ctlr->mode_bits |= SPI_CS_HIGH; 2675 } else { 2676 /* Legacy code path for GPIOs from DT */ 2677 status = of_spi_get_gpio_numbers(ctlr); 2678 if (status) 2679 goto free_bus_id; 2680 } 2681 } 2682 2683 /* 2684 * Even if it's just one always-selected device, there must 2685 * be at least one chipselect. 2686 */ 2687 if (!ctlr->num_chipselect) { 2688 status = -EINVAL; 2689 goto free_bus_id; 2690 } 2691 2692 status = device_add(&ctlr->dev); 2693 if (status < 0) 2694 goto free_bus_id; 2695 dev_dbg(dev, "registered %s %s\n", 2696 spi_controller_is_slave(ctlr) ? "slave" : "master", 2697 dev_name(&ctlr->dev)); 2698 2699 /* 2700 * If we're using a queued driver, start the queue. Note that we don't 2701 * need the queueing logic if the driver is only supporting high-level 2702 * memory operations. 2703 */ 2704 if (ctlr->transfer) { 2705 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2706 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2707 status = spi_controller_initialize_queue(ctlr); 2708 if (status) { 2709 device_del(&ctlr->dev); 2710 goto free_bus_id; 2711 } 2712 } 2713 /* add statistics */ 2714 spin_lock_init(&ctlr->statistics.lock); 2715 2716 mutex_lock(&board_lock); 2717 list_add_tail(&ctlr->list, &spi_controller_list); 2718 list_for_each_entry(bi, &board_list, list) 2719 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2720 mutex_unlock(&board_lock); 2721 2722 /* Register devices from the device tree and ACPI */ 2723 of_register_spi_devices(ctlr); 2724 acpi_register_spi_devices(ctlr); 2725 return status; 2726 2727 free_bus_id: 2728 mutex_lock(&board_lock); 2729 idr_remove(&spi_master_idr, ctlr->bus_num); 2730 mutex_unlock(&board_lock); 2731 return status; 2732 } 2733 EXPORT_SYMBOL_GPL(spi_register_controller); 2734 2735 static void devm_spi_unregister(struct device *dev, void *res) 2736 { 2737 spi_unregister_controller(*(struct spi_controller **)res); 2738 } 2739 2740 /** 2741 * devm_spi_register_controller - register managed SPI master or slave 2742 * controller 2743 * @dev: device managing SPI controller 2744 * @ctlr: initialized controller, originally from spi_alloc_master() or 2745 * spi_alloc_slave() 2746 * Context: can sleep 2747 * 2748 * Register a SPI device as with spi_register_controller() which will 2749 * automatically be unregistered and freed. 2750 * 2751 * Return: zero on success, else a negative error code. 2752 */ 2753 int devm_spi_register_controller(struct device *dev, 2754 struct spi_controller *ctlr) 2755 { 2756 struct spi_controller **ptr; 2757 int ret; 2758 2759 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2760 if (!ptr) 2761 return -ENOMEM; 2762 2763 ret = spi_register_controller(ctlr); 2764 if (!ret) { 2765 *ptr = ctlr; 2766 devres_add(dev, ptr); 2767 } else { 2768 devres_free(ptr); 2769 } 2770 2771 return ret; 2772 } 2773 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2774 2775 static int __unregister(struct device *dev, void *null) 2776 { 2777 spi_unregister_device(to_spi_device(dev)); 2778 return 0; 2779 } 2780 2781 /** 2782 * spi_unregister_controller - unregister SPI master or slave controller 2783 * @ctlr: the controller being unregistered 2784 * Context: can sleep 2785 * 2786 * This call is used only by SPI controller drivers, which are the 2787 * only ones directly touching chip registers. 2788 * 2789 * This must be called from context that can sleep. 2790 * 2791 * Note that this function also drops a reference to the controller. 2792 */ 2793 void spi_unregister_controller(struct spi_controller *ctlr) 2794 { 2795 struct spi_controller *found; 2796 int id = ctlr->bus_num; 2797 2798 device_for_each_child(&ctlr->dev, NULL, __unregister); 2799 2800 /* First make sure that this controller was ever added */ 2801 mutex_lock(&board_lock); 2802 found = idr_find(&spi_master_idr, id); 2803 mutex_unlock(&board_lock); 2804 if (ctlr->queued) { 2805 if (spi_destroy_queue(ctlr)) 2806 dev_err(&ctlr->dev, "queue remove failed\n"); 2807 } 2808 mutex_lock(&board_lock); 2809 list_del(&ctlr->list); 2810 mutex_unlock(&board_lock); 2811 2812 device_unregister(&ctlr->dev); 2813 /* free bus id */ 2814 mutex_lock(&board_lock); 2815 if (found == ctlr) 2816 idr_remove(&spi_master_idr, id); 2817 mutex_unlock(&board_lock); 2818 } 2819 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2820 2821 int spi_controller_suspend(struct spi_controller *ctlr) 2822 { 2823 int ret; 2824 2825 /* Basically no-ops for non-queued controllers */ 2826 if (!ctlr->queued) 2827 return 0; 2828 2829 ret = spi_stop_queue(ctlr); 2830 if (ret) 2831 dev_err(&ctlr->dev, "queue stop failed\n"); 2832 2833 return ret; 2834 } 2835 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2836 2837 int spi_controller_resume(struct spi_controller *ctlr) 2838 { 2839 int ret; 2840 2841 if (!ctlr->queued) 2842 return 0; 2843 2844 ret = spi_start_queue(ctlr); 2845 if (ret) 2846 dev_err(&ctlr->dev, "queue restart failed\n"); 2847 2848 return ret; 2849 } 2850 EXPORT_SYMBOL_GPL(spi_controller_resume); 2851 2852 static int __spi_controller_match(struct device *dev, const void *data) 2853 { 2854 struct spi_controller *ctlr; 2855 const u16 *bus_num = data; 2856 2857 ctlr = container_of(dev, struct spi_controller, dev); 2858 return ctlr->bus_num == *bus_num; 2859 } 2860 2861 /** 2862 * spi_busnum_to_master - look up master associated with bus_num 2863 * @bus_num: the master's bus number 2864 * Context: can sleep 2865 * 2866 * This call may be used with devices that are registered after 2867 * arch init time. It returns a refcounted pointer to the relevant 2868 * spi_controller (which the caller must release), or NULL if there is 2869 * no such master registered. 2870 * 2871 * Return: the SPI master structure on success, else NULL. 2872 */ 2873 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2874 { 2875 struct device *dev; 2876 struct spi_controller *ctlr = NULL; 2877 2878 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2879 __spi_controller_match); 2880 if (dev) 2881 ctlr = container_of(dev, struct spi_controller, dev); 2882 /* reference got in class_find_device */ 2883 return ctlr; 2884 } 2885 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2886 2887 /*-------------------------------------------------------------------------*/ 2888 2889 /* Core methods for SPI resource management */ 2890 2891 /** 2892 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2893 * during the processing of a spi_message while using 2894 * spi_transfer_one 2895 * @spi: the spi device for which we allocate memory 2896 * @release: the release code to execute for this resource 2897 * @size: size to alloc and return 2898 * @gfp: GFP allocation flags 2899 * 2900 * Return: the pointer to the allocated data 2901 * 2902 * This may get enhanced in the future to allocate from a memory pool 2903 * of the @spi_device or @spi_controller to avoid repeated allocations. 2904 */ 2905 void *spi_res_alloc(struct spi_device *spi, 2906 spi_res_release_t release, 2907 size_t size, gfp_t gfp) 2908 { 2909 struct spi_res *sres; 2910 2911 sres = kzalloc(sizeof(*sres) + size, gfp); 2912 if (!sres) 2913 return NULL; 2914 2915 INIT_LIST_HEAD(&sres->entry); 2916 sres->release = release; 2917 2918 return sres->data; 2919 } 2920 EXPORT_SYMBOL_GPL(spi_res_alloc); 2921 2922 /** 2923 * spi_res_free - free an spi resource 2924 * @res: pointer to the custom data of a resource 2925 * 2926 */ 2927 void spi_res_free(void *res) 2928 { 2929 struct spi_res *sres = container_of(res, struct spi_res, data); 2930 2931 if (!res) 2932 return; 2933 2934 WARN_ON(!list_empty(&sres->entry)); 2935 kfree(sres); 2936 } 2937 EXPORT_SYMBOL_GPL(spi_res_free); 2938 2939 /** 2940 * spi_res_add - add a spi_res to the spi_message 2941 * @message: the spi message 2942 * @res: the spi_resource 2943 */ 2944 void spi_res_add(struct spi_message *message, void *res) 2945 { 2946 struct spi_res *sres = container_of(res, struct spi_res, data); 2947 2948 WARN_ON(!list_empty(&sres->entry)); 2949 list_add_tail(&sres->entry, &message->resources); 2950 } 2951 EXPORT_SYMBOL_GPL(spi_res_add); 2952 2953 /** 2954 * spi_res_release - release all spi resources for this message 2955 * @ctlr: the @spi_controller 2956 * @message: the @spi_message 2957 */ 2958 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2959 { 2960 struct spi_res *res, *tmp; 2961 2962 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 2963 if (res->release) 2964 res->release(ctlr, message, res->data); 2965 2966 list_del(&res->entry); 2967 2968 kfree(res); 2969 } 2970 } 2971 EXPORT_SYMBOL_GPL(spi_res_release); 2972 2973 /*-------------------------------------------------------------------------*/ 2974 2975 /* Core methods for spi_message alterations */ 2976 2977 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2978 struct spi_message *msg, 2979 void *res) 2980 { 2981 struct spi_replaced_transfers *rxfer = res; 2982 size_t i; 2983 2984 /* call extra callback if requested */ 2985 if (rxfer->release) 2986 rxfer->release(ctlr, msg, res); 2987 2988 /* insert replaced transfers back into the message */ 2989 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2990 2991 /* remove the formerly inserted entries */ 2992 for (i = 0; i < rxfer->inserted; i++) 2993 list_del(&rxfer->inserted_transfers[i].transfer_list); 2994 } 2995 2996 /** 2997 * spi_replace_transfers - replace transfers with several transfers 2998 * and register change with spi_message.resources 2999 * @msg: the spi_message we work upon 3000 * @xfer_first: the first spi_transfer we want to replace 3001 * @remove: number of transfers to remove 3002 * @insert: the number of transfers we want to insert instead 3003 * @release: extra release code necessary in some circumstances 3004 * @extradatasize: extra data to allocate (with alignment guarantees 3005 * of struct @spi_transfer) 3006 * @gfp: gfp flags 3007 * 3008 * Returns: pointer to @spi_replaced_transfers, 3009 * PTR_ERR(...) in case of errors. 3010 */ 3011 struct spi_replaced_transfers *spi_replace_transfers( 3012 struct spi_message *msg, 3013 struct spi_transfer *xfer_first, 3014 size_t remove, 3015 size_t insert, 3016 spi_replaced_release_t release, 3017 size_t extradatasize, 3018 gfp_t gfp) 3019 { 3020 struct spi_replaced_transfers *rxfer; 3021 struct spi_transfer *xfer; 3022 size_t i; 3023 3024 /* allocate the structure using spi_res */ 3025 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3026 struct_size(rxfer, inserted_transfers, insert) 3027 + extradatasize, 3028 gfp); 3029 if (!rxfer) 3030 return ERR_PTR(-ENOMEM); 3031 3032 /* the release code to invoke before running the generic release */ 3033 rxfer->release = release; 3034 3035 /* assign extradata */ 3036 if (extradatasize) 3037 rxfer->extradata = 3038 &rxfer->inserted_transfers[insert]; 3039 3040 /* init the replaced_transfers list */ 3041 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3042 3043 /* assign the list_entry after which we should reinsert 3044 * the @replaced_transfers - it may be spi_message.messages! 3045 */ 3046 rxfer->replaced_after = xfer_first->transfer_list.prev; 3047 3048 /* remove the requested number of transfers */ 3049 for (i = 0; i < remove; i++) { 3050 /* if the entry after replaced_after it is msg->transfers 3051 * then we have been requested to remove more transfers 3052 * than are in the list 3053 */ 3054 if (rxfer->replaced_after->next == &msg->transfers) { 3055 dev_err(&msg->spi->dev, 3056 "requested to remove more spi_transfers than are available\n"); 3057 /* insert replaced transfers back into the message */ 3058 list_splice(&rxfer->replaced_transfers, 3059 rxfer->replaced_after); 3060 3061 /* free the spi_replace_transfer structure */ 3062 spi_res_free(rxfer); 3063 3064 /* and return with an error */ 3065 return ERR_PTR(-EINVAL); 3066 } 3067 3068 /* remove the entry after replaced_after from list of 3069 * transfers and add it to list of replaced_transfers 3070 */ 3071 list_move_tail(rxfer->replaced_after->next, 3072 &rxfer->replaced_transfers); 3073 } 3074 3075 /* create copy of the given xfer with identical settings 3076 * based on the first transfer to get removed 3077 */ 3078 for (i = 0; i < insert; i++) { 3079 /* we need to run in reverse order */ 3080 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3081 3082 /* copy all spi_transfer data */ 3083 memcpy(xfer, xfer_first, sizeof(*xfer)); 3084 3085 /* add to list */ 3086 list_add(&xfer->transfer_list, rxfer->replaced_after); 3087 3088 /* clear cs_change and delay for all but the last */ 3089 if (i) { 3090 xfer->cs_change = false; 3091 xfer->delay_usecs = 0; 3092 xfer->delay.value = 0; 3093 } 3094 } 3095 3096 /* set up inserted */ 3097 rxfer->inserted = insert; 3098 3099 /* and register it with spi_res/spi_message */ 3100 spi_res_add(msg, rxfer); 3101 3102 return rxfer; 3103 } 3104 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3105 3106 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3107 struct spi_message *msg, 3108 struct spi_transfer **xferp, 3109 size_t maxsize, 3110 gfp_t gfp) 3111 { 3112 struct spi_transfer *xfer = *xferp, *xfers; 3113 struct spi_replaced_transfers *srt; 3114 size_t offset; 3115 size_t count, i; 3116 3117 /* calculate how many we have to replace */ 3118 count = DIV_ROUND_UP(xfer->len, maxsize); 3119 3120 /* create replacement */ 3121 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3122 if (IS_ERR(srt)) 3123 return PTR_ERR(srt); 3124 xfers = srt->inserted_transfers; 3125 3126 /* now handle each of those newly inserted spi_transfers 3127 * note that the replacements spi_transfers all are preset 3128 * to the same values as *xferp, so tx_buf, rx_buf and len 3129 * are all identical (as well as most others) 3130 * so we just have to fix up len and the pointers. 3131 * 3132 * this also includes support for the depreciated 3133 * spi_message.is_dma_mapped interface 3134 */ 3135 3136 /* the first transfer just needs the length modified, so we 3137 * run it outside the loop 3138 */ 3139 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3140 3141 /* all the others need rx_buf/tx_buf also set */ 3142 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3143 /* update rx_buf, tx_buf and dma */ 3144 if (xfers[i].rx_buf) 3145 xfers[i].rx_buf += offset; 3146 if (xfers[i].rx_dma) 3147 xfers[i].rx_dma += offset; 3148 if (xfers[i].tx_buf) 3149 xfers[i].tx_buf += offset; 3150 if (xfers[i].tx_dma) 3151 xfers[i].tx_dma += offset; 3152 3153 /* update length */ 3154 xfers[i].len = min(maxsize, xfers[i].len - offset); 3155 } 3156 3157 /* we set up xferp to the last entry we have inserted, 3158 * so that we skip those already split transfers 3159 */ 3160 *xferp = &xfers[count - 1]; 3161 3162 /* increment statistics counters */ 3163 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3164 transfers_split_maxsize); 3165 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3166 transfers_split_maxsize); 3167 3168 return 0; 3169 } 3170 3171 /** 3172 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 3173 * when an individual transfer exceeds a 3174 * certain size 3175 * @ctlr: the @spi_controller for this transfer 3176 * @msg: the @spi_message to transform 3177 * @maxsize: the maximum when to apply this 3178 * @gfp: GFP allocation flags 3179 * 3180 * Return: status of transformation 3181 */ 3182 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3183 struct spi_message *msg, 3184 size_t maxsize, 3185 gfp_t gfp) 3186 { 3187 struct spi_transfer *xfer; 3188 int ret; 3189 3190 /* iterate over the transfer_list, 3191 * but note that xfer is advanced to the last transfer inserted 3192 * to avoid checking sizes again unnecessarily (also xfer does 3193 * potentiall belong to a different list by the time the 3194 * replacement has happened 3195 */ 3196 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3197 if (xfer->len > maxsize) { 3198 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3199 maxsize, gfp); 3200 if (ret) 3201 return ret; 3202 } 3203 } 3204 3205 return 0; 3206 } 3207 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3208 3209 /*-------------------------------------------------------------------------*/ 3210 3211 /* Core methods for SPI controller protocol drivers. Some of the 3212 * other core methods are currently defined as inline functions. 3213 */ 3214 3215 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3216 u8 bits_per_word) 3217 { 3218 if (ctlr->bits_per_word_mask) { 3219 /* Only 32 bits fit in the mask */ 3220 if (bits_per_word > 32) 3221 return -EINVAL; 3222 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3223 return -EINVAL; 3224 } 3225 3226 return 0; 3227 } 3228 3229 /** 3230 * spi_setup - setup SPI mode and clock rate 3231 * @spi: the device whose settings are being modified 3232 * Context: can sleep, and no requests are queued to the device 3233 * 3234 * SPI protocol drivers may need to update the transfer mode if the 3235 * device doesn't work with its default. They may likewise need 3236 * to update clock rates or word sizes from initial values. This function 3237 * changes those settings, and must be called from a context that can sleep. 3238 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3239 * effect the next time the device is selected and data is transferred to 3240 * or from it. When this function returns, the spi device is deselected. 3241 * 3242 * Note that this call will fail if the protocol driver specifies an option 3243 * that the underlying controller or its driver does not support. For 3244 * example, not all hardware supports wire transfers using nine bit words, 3245 * LSB-first wire encoding, or active-high chipselects. 3246 * 3247 * Return: zero on success, else a negative error code. 3248 */ 3249 int spi_setup(struct spi_device *spi) 3250 { 3251 unsigned bad_bits, ugly_bits; 3252 int status; 3253 3254 /* check mode to prevent that DUAL and QUAD set at the same time 3255 */ 3256 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3257 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3258 dev_err(&spi->dev, 3259 "setup: can not select dual and quad at the same time\n"); 3260 return -EINVAL; 3261 } 3262 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3263 */ 3264 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3265 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3266 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3267 return -EINVAL; 3268 /* help drivers fail *cleanly* when they need options 3269 * that aren't supported with their current controller 3270 * SPI_CS_WORD has a fallback software implementation, 3271 * so it is ignored here. 3272 */ 3273 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3274 /* nothing prevents from working with active-high CS in case if it 3275 * is driven by GPIO. 3276 */ 3277 if (gpio_is_valid(spi->cs_gpio)) 3278 bad_bits &= ~SPI_CS_HIGH; 3279 ugly_bits = bad_bits & 3280 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3281 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3282 if (ugly_bits) { 3283 dev_warn(&spi->dev, 3284 "setup: ignoring unsupported mode bits %x\n", 3285 ugly_bits); 3286 spi->mode &= ~ugly_bits; 3287 bad_bits &= ~ugly_bits; 3288 } 3289 if (bad_bits) { 3290 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3291 bad_bits); 3292 return -EINVAL; 3293 } 3294 3295 if (!spi->bits_per_word) 3296 spi->bits_per_word = 8; 3297 3298 status = __spi_validate_bits_per_word(spi->controller, 3299 spi->bits_per_word); 3300 if (status) 3301 return status; 3302 3303 if (!spi->max_speed_hz) 3304 spi->max_speed_hz = spi->controller->max_speed_hz; 3305 3306 if (spi->controller->setup) 3307 status = spi->controller->setup(spi); 3308 3309 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3310 status = pm_runtime_get_sync(spi->controller->dev.parent); 3311 if (status < 0) { 3312 pm_runtime_put_noidle(spi->controller->dev.parent); 3313 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3314 status); 3315 return status; 3316 } 3317 3318 /* 3319 * We do not want to return positive value from pm_runtime_get, 3320 * there are many instances of devices calling spi_setup() and 3321 * checking for a non-zero return value instead of a negative 3322 * return value. 3323 */ 3324 status = 0; 3325 3326 spi_set_cs(spi, false); 3327 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3328 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3329 } else { 3330 spi_set_cs(spi, false); 3331 } 3332 3333 if (spi->rt && !spi->controller->rt) { 3334 spi->controller->rt = true; 3335 spi_set_thread_rt(spi->controller); 3336 } 3337 3338 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3339 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3340 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3341 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3342 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3343 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3344 spi->bits_per_word, spi->max_speed_hz, 3345 status); 3346 3347 return status; 3348 } 3349 EXPORT_SYMBOL_GPL(spi_setup); 3350 3351 /** 3352 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3353 * @spi: the device that requires specific CS timing configuration 3354 * @setup: CS setup time specified via @spi_delay 3355 * @hold: CS hold time specified via @spi_delay 3356 * @inactive: CS inactive delay between transfers specified via @spi_delay 3357 * 3358 * Return: zero on success, else a negative error code. 3359 */ 3360 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3361 struct spi_delay *hold, struct spi_delay *inactive) 3362 { 3363 size_t len; 3364 3365 if (spi->controller->set_cs_timing) 3366 return spi->controller->set_cs_timing(spi, setup, hold, 3367 inactive); 3368 3369 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3370 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3371 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3372 dev_err(&spi->dev, 3373 "Clock-cycle delays for CS not supported in SW mode\n"); 3374 return -ENOTSUPP; 3375 } 3376 3377 len = sizeof(struct spi_delay); 3378 3379 /* copy delays to controller */ 3380 if (setup) 3381 memcpy(&spi->controller->cs_setup, setup, len); 3382 else 3383 memset(&spi->controller->cs_setup, 0, len); 3384 3385 if (hold) 3386 memcpy(&spi->controller->cs_hold, hold, len); 3387 else 3388 memset(&spi->controller->cs_hold, 0, len); 3389 3390 if (inactive) 3391 memcpy(&spi->controller->cs_inactive, inactive, len); 3392 else 3393 memset(&spi->controller->cs_inactive, 0, len); 3394 3395 return 0; 3396 } 3397 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3398 3399 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3400 struct spi_device *spi) 3401 { 3402 int delay1, delay2; 3403 3404 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3405 if (delay1 < 0) 3406 return delay1; 3407 3408 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3409 if (delay2 < 0) 3410 return delay2; 3411 3412 if (delay1 < delay2) 3413 memcpy(&xfer->word_delay, &spi->word_delay, 3414 sizeof(xfer->word_delay)); 3415 3416 return 0; 3417 } 3418 3419 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3420 { 3421 struct spi_controller *ctlr = spi->controller; 3422 struct spi_transfer *xfer; 3423 int w_size; 3424 3425 if (list_empty(&message->transfers)) 3426 return -EINVAL; 3427 3428 /* If an SPI controller does not support toggling the CS line on each 3429 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3430 * for the CS line, we can emulate the CS-per-word hardware function by 3431 * splitting transfers into one-word transfers and ensuring that 3432 * cs_change is set for each transfer. 3433 */ 3434 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3435 spi->cs_gpiod || 3436 gpio_is_valid(spi->cs_gpio))) { 3437 size_t maxsize; 3438 int ret; 3439 3440 maxsize = (spi->bits_per_word + 7) / 8; 3441 3442 /* spi_split_transfers_maxsize() requires message->spi */ 3443 message->spi = spi; 3444 3445 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3446 GFP_KERNEL); 3447 if (ret) 3448 return ret; 3449 3450 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3451 /* don't change cs_change on the last entry in the list */ 3452 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3453 break; 3454 xfer->cs_change = 1; 3455 } 3456 } 3457 3458 /* Half-duplex links include original MicroWire, and ones with 3459 * only one data pin like SPI_3WIRE (switches direction) or where 3460 * either MOSI or MISO is missing. They can also be caused by 3461 * software limitations. 3462 */ 3463 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3464 (spi->mode & SPI_3WIRE)) { 3465 unsigned flags = ctlr->flags; 3466 3467 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3468 if (xfer->rx_buf && xfer->tx_buf) 3469 return -EINVAL; 3470 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3471 return -EINVAL; 3472 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3473 return -EINVAL; 3474 } 3475 } 3476 3477 /** 3478 * Set transfer bits_per_word and max speed as spi device default if 3479 * it is not set for this transfer. 3480 * Set transfer tx_nbits and rx_nbits as single transfer default 3481 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3482 * Ensure transfer word_delay is at least as long as that required by 3483 * device itself. 3484 */ 3485 message->frame_length = 0; 3486 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3487 xfer->effective_speed_hz = 0; 3488 message->frame_length += xfer->len; 3489 if (!xfer->bits_per_word) 3490 xfer->bits_per_word = spi->bits_per_word; 3491 3492 if (!xfer->speed_hz) 3493 xfer->speed_hz = spi->max_speed_hz; 3494 3495 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3496 xfer->speed_hz = ctlr->max_speed_hz; 3497 3498 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3499 return -EINVAL; 3500 3501 /* 3502 * SPI transfer length should be multiple of SPI word size 3503 * where SPI word size should be power-of-two multiple 3504 */ 3505 if (xfer->bits_per_word <= 8) 3506 w_size = 1; 3507 else if (xfer->bits_per_word <= 16) 3508 w_size = 2; 3509 else 3510 w_size = 4; 3511 3512 /* No partial transfers accepted */ 3513 if (xfer->len % w_size) 3514 return -EINVAL; 3515 3516 if (xfer->speed_hz && ctlr->min_speed_hz && 3517 xfer->speed_hz < ctlr->min_speed_hz) 3518 return -EINVAL; 3519 3520 if (xfer->tx_buf && !xfer->tx_nbits) 3521 xfer->tx_nbits = SPI_NBITS_SINGLE; 3522 if (xfer->rx_buf && !xfer->rx_nbits) 3523 xfer->rx_nbits = SPI_NBITS_SINGLE; 3524 /* check transfer tx/rx_nbits: 3525 * 1. check the value matches one of single, dual and quad 3526 * 2. check tx/rx_nbits match the mode in spi_device 3527 */ 3528 if (xfer->tx_buf) { 3529 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3530 xfer->tx_nbits != SPI_NBITS_DUAL && 3531 xfer->tx_nbits != SPI_NBITS_QUAD) 3532 return -EINVAL; 3533 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3534 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3535 return -EINVAL; 3536 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3537 !(spi->mode & SPI_TX_QUAD)) 3538 return -EINVAL; 3539 } 3540 /* check transfer rx_nbits */ 3541 if (xfer->rx_buf) { 3542 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3543 xfer->rx_nbits != SPI_NBITS_DUAL && 3544 xfer->rx_nbits != SPI_NBITS_QUAD) 3545 return -EINVAL; 3546 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3547 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3548 return -EINVAL; 3549 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3550 !(spi->mode & SPI_RX_QUAD)) 3551 return -EINVAL; 3552 } 3553 3554 if (_spi_xfer_word_delay_update(xfer, spi)) 3555 return -EINVAL; 3556 } 3557 3558 message->status = -EINPROGRESS; 3559 3560 return 0; 3561 } 3562 3563 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3564 { 3565 struct spi_controller *ctlr = spi->controller; 3566 struct spi_transfer *xfer; 3567 3568 /* 3569 * Some controllers do not support doing regular SPI transfers. Return 3570 * ENOTSUPP when this is the case. 3571 */ 3572 if (!ctlr->transfer) 3573 return -ENOTSUPP; 3574 3575 message->spi = spi; 3576 3577 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3578 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3579 3580 trace_spi_message_submit(message); 3581 3582 if (!ctlr->ptp_sts_supported) { 3583 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3584 xfer->ptp_sts_word_pre = 0; 3585 ptp_read_system_prets(xfer->ptp_sts); 3586 } 3587 } 3588 3589 return ctlr->transfer(spi, message); 3590 } 3591 3592 /** 3593 * spi_async - asynchronous SPI transfer 3594 * @spi: device with which data will be exchanged 3595 * @message: describes the data transfers, including completion callback 3596 * Context: any (irqs may be blocked, etc) 3597 * 3598 * This call may be used in_irq and other contexts which can't sleep, 3599 * as well as from task contexts which can sleep. 3600 * 3601 * The completion callback is invoked in a context which can't sleep. 3602 * Before that invocation, the value of message->status is undefined. 3603 * When the callback is issued, message->status holds either zero (to 3604 * indicate complete success) or a negative error code. After that 3605 * callback returns, the driver which issued the transfer request may 3606 * deallocate the associated memory; it's no longer in use by any SPI 3607 * core or controller driver code. 3608 * 3609 * Note that although all messages to a spi_device are handled in 3610 * FIFO order, messages may go to different devices in other orders. 3611 * Some device might be higher priority, or have various "hard" access 3612 * time requirements, for example. 3613 * 3614 * On detection of any fault during the transfer, processing of 3615 * the entire message is aborted, and the device is deselected. 3616 * Until returning from the associated message completion callback, 3617 * no other spi_message queued to that device will be processed. 3618 * (This rule applies equally to all the synchronous transfer calls, 3619 * which are wrappers around this core asynchronous primitive.) 3620 * 3621 * Return: zero on success, else a negative error code. 3622 */ 3623 int spi_async(struct spi_device *spi, struct spi_message *message) 3624 { 3625 struct spi_controller *ctlr = spi->controller; 3626 int ret; 3627 unsigned long flags; 3628 3629 ret = __spi_validate(spi, message); 3630 if (ret != 0) 3631 return ret; 3632 3633 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3634 3635 if (ctlr->bus_lock_flag) 3636 ret = -EBUSY; 3637 else 3638 ret = __spi_async(spi, message); 3639 3640 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3641 3642 return ret; 3643 } 3644 EXPORT_SYMBOL_GPL(spi_async); 3645 3646 /** 3647 * spi_async_locked - version of spi_async with exclusive bus usage 3648 * @spi: device with which data will be exchanged 3649 * @message: describes the data transfers, including completion callback 3650 * Context: any (irqs may be blocked, etc) 3651 * 3652 * This call may be used in_irq and other contexts which can't sleep, 3653 * as well as from task contexts which can sleep. 3654 * 3655 * The completion callback is invoked in a context which can't sleep. 3656 * Before that invocation, the value of message->status is undefined. 3657 * When the callback is issued, message->status holds either zero (to 3658 * indicate complete success) or a negative error code. After that 3659 * callback returns, the driver which issued the transfer request may 3660 * deallocate the associated memory; it's no longer in use by any SPI 3661 * core or controller driver code. 3662 * 3663 * Note that although all messages to a spi_device are handled in 3664 * FIFO order, messages may go to different devices in other orders. 3665 * Some device might be higher priority, or have various "hard" access 3666 * time requirements, for example. 3667 * 3668 * On detection of any fault during the transfer, processing of 3669 * the entire message is aborted, and the device is deselected. 3670 * Until returning from the associated message completion callback, 3671 * no other spi_message queued to that device will be processed. 3672 * (This rule applies equally to all the synchronous transfer calls, 3673 * which are wrappers around this core asynchronous primitive.) 3674 * 3675 * Return: zero on success, else a negative error code. 3676 */ 3677 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3678 { 3679 struct spi_controller *ctlr = spi->controller; 3680 int ret; 3681 unsigned long flags; 3682 3683 ret = __spi_validate(spi, message); 3684 if (ret != 0) 3685 return ret; 3686 3687 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3688 3689 ret = __spi_async(spi, message); 3690 3691 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3692 3693 return ret; 3694 3695 } 3696 EXPORT_SYMBOL_GPL(spi_async_locked); 3697 3698 /*-------------------------------------------------------------------------*/ 3699 3700 /* Utility methods for SPI protocol drivers, layered on 3701 * top of the core. Some other utility methods are defined as 3702 * inline functions. 3703 */ 3704 3705 static void spi_complete(void *arg) 3706 { 3707 complete(arg); 3708 } 3709 3710 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3711 { 3712 DECLARE_COMPLETION_ONSTACK(done); 3713 int status; 3714 struct spi_controller *ctlr = spi->controller; 3715 unsigned long flags; 3716 3717 status = __spi_validate(spi, message); 3718 if (status != 0) 3719 return status; 3720 3721 message->complete = spi_complete; 3722 message->context = &done; 3723 message->spi = spi; 3724 3725 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3726 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3727 3728 /* If we're not using the legacy transfer method then we will 3729 * try to transfer in the calling context so special case. 3730 * This code would be less tricky if we could remove the 3731 * support for driver implemented message queues. 3732 */ 3733 if (ctlr->transfer == spi_queued_transfer) { 3734 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3735 3736 trace_spi_message_submit(message); 3737 3738 status = __spi_queued_transfer(spi, message, false); 3739 3740 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3741 } else { 3742 status = spi_async_locked(spi, message); 3743 } 3744 3745 if (status == 0) { 3746 /* Push out the messages in the calling context if we 3747 * can. 3748 */ 3749 if (ctlr->transfer == spi_queued_transfer) { 3750 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3751 spi_sync_immediate); 3752 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3753 spi_sync_immediate); 3754 __spi_pump_messages(ctlr, false); 3755 } 3756 3757 wait_for_completion(&done); 3758 status = message->status; 3759 } 3760 message->context = NULL; 3761 return status; 3762 } 3763 3764 /** 3765 * spi_sync - blocking/synchronous SPI data transfers 3766 * @spi: device with which data will be exchanged 3767 * @message: describes the data transfers 3768 * Context: can sleep 3769 * 3770 * This call may only be used from a context that may sleep. The sleep 3771 * is non-interruptible, and has no timeout. Low-overhead controller 3772 * drivers may DMA directly into and out of the message buffers. 3773 * 3774 * Note that the SPI device's chip select is active during the message, 3775 * and then is normally disabled between messages. Drivers for some 3776 * frequently-used devices may want to minimize costs of selecting a chip, 3777 * by leaving it selected in anticipation that the next message will go 3778 * to the same chip. (That may increase power usage.) 3779 * 3780 * Also, the caller is guaranteeing that the memory associated with the 3781 * message will not be freed before this call returns. 3782 * 3783 * Return: zero on success, else a negative error code. 3784 */ 3785 int spi_sync(struct spi_device *spi, struct spi_message *message) 3786 { 3787 int ret; 3788 3789 mutex_lock(&spi->controller->bus_lock_mutex); 3790 ret = __spi_sync(spi, message); 3791 mutex_unlock(&spi->controller->bus_lock_mutex); 3792 3793 return ret; 3794 } 3795 EXPORT_SYMBOL_GPL(spi_sync); 3796 3797 /** 3798 * spi_sync_locked - version of spi_sync with exclusive bus usage 3799 * @spi: device with which data will be exchanged 3800 * @message: describes the data transfers 3801 * Context: can sleep 3802 * 3803 * This call may only be used from a context that may sleep. The sleep 3804 * is non-interruptible, and has no timeout. Low-overhead controller 3805 * drivers may DMA directly into and out of the message buffers. 3806 * 3807 * This call should be used by drivers that require exclusive access to the 3808 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3809 * be released by a spi_bus_unlock call when the exclusive access is over. 3810 * 3811 * Return: zero on success, else a negative error code. 3812 */ 3813 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3814 { 3815 return __spi_sync(spi, message); 3816 } 3817 EXPORT_SYMBOL_GPL(spi_sync_locked); 3818 3819 /** 3820 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3821 * @ctlr: SPI bus master that should be locked for exclusive bus access 3822 * Context: can sleep 3823 * 3824 * This call may only be used from a context that may sleep. The sleep 3825 * is non-interruptible, and has no timeout. 3826 * 3827 * This call should be used by drivers that require exclusive access to the 3828 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3829 * exclusive access is over. Data transfer must be done by spi_sync_locked 3830 * and spi_async_locked calls when the SPI bus lock is held. 3831 * 3832 * Return: always zero. 3833 */ 3834 int spi_bus_lock(struct spi_controller *ctlr) 3835 { 3836 unsigned long flags; 3837 3838 mutex_lock(&ctlr->bus_lock_mutex); 3839 3840 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3841 ctlr->bus_lock_flag = 1; 3842 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3843 3844 /* mutex remains locked until spi_bus_unlock is called */ 3845 3846 return 0; 3847 } 3848 EXPORT_SYMBOL_GPL(spi_bus_lock); 3849 3850 /** 3851 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3852 * @ctlr: SPI bus master that was locked for exclusive bus access 3853 * Context: can sleep 3854 * 3855 * This call may only be used from a context that may sleep. The sleep 3856 * is non-interruptible, and has no timeout. 3857 * 3858 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3859 * call. 3860 * 3861 * Return: always zero. 3862 */ 3863 int spi_bus_unlock(struct spi_controller *ctlr) 3864 { 3865 ctlr->bus_lock_flag = 0; 3866 3867 mutex_unlock(&ctlr->bus_lock_mutex); 3868 3869 return 0; 3870 } 3871 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3872 3873 /* portable code must never pass more than 32 bytes */ 3874 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3875 3876 static u8 *buf; 3877 3878 /** 3879 * spi_write_then_read - SPI synchronous write followed by read 3880 * @spi: device with which data will be exchanged 3881 * @txbuf: data to be written (need not be dma-safe) 3882 * @n_tx: size of txbuf, in bytes 3883 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3884 * @n_rx: size of rxbuf, in bytes 3885 * Context: can sleep 3886 * 3887 * This performs a half duplex MicroWire style transaction with the 3888 * device, sending txbuf and then reading rxbuf. The return value 3889 * is zero for success, else a negative errno status code. 3890 * This call may only be used from a context that may sleep. 3891 * 3892 * Parameters to this routine are always copied using a small buffer. 3893 * Performance-sensitive or bulk transfer code should instead use 3894 * spi_{async,sync}() calls with dma-safe buffers. 3895 * 3896 * Return: zero on success, else a negative error code. 3897 */ 3898 int spi_write_then_read(struct spi_device *spi, 3899 const void *txbuf, unsigned n_tx, 3900 void *rxbuf, unsigned n_rx) 3901 { 3902 static DEFINE_MUTEX(lock); 3903 3904 int status; 3905 struct spi_message message; 3906 struct spi_transfer x[2]; 3907 u8 *local_buf; 3908 3909 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3910 * copying here, (as a pure convenience thing), but we can 3911 * keep heap costs out of the hot path unless someone else is 3912 * using the pre-allocated buffer or the transfer is too large. 3913 */ 3914 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3915 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3916 GFP_KERNEL | GFP_DMA); 3917 if (!local_buf) 3918 return -ENOMEM; 3919 } else { 3920 local_buf = buf; 3921 } 3922 3923 spi_message_init(&message); 3924 memset(x, 0, sizeof(x)); 3925 if (n_tx) { 3926 x[0].len = n_tx; 3927 spi_message_add_tail(&x[0], &message); 3928 } 3929 if (n_rx) { 3930 x[1].len = n_rx; 3931 spi_message_add_tail(&x[1], &message); 3932 } 3933 3934 memcpy(local_buf, txbuf, n_tx); 3935 x[0].tx_buf = local_buf; 3936 x[1].rx_buf = local_buf + n_tx; 3937 3938 /* do the i/o */ 3939 status = spi_sync(spi, &message); 3940 if (status == 0) 3941 memcpy(rxbuf, x[1].rx_buf, n_rx); 3942 3943 if (x[0].tx_buf == buf) 3944 mutex_unlock(&lock); 3945 else 3946 kfree(local_buf); 3947 3948 return status; 3949 } 3950 EXPORT_SYMBOL_GPL(spi_write_then_read); 3951 3952 /*-------------------------------------------------------------------------*/ 3953 3954 #if IS_ENABLED(CONFIG_OF) 3955 /* must call put_device() when done with returned spi_device device */ 3956 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3957 { 3958 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 3959 3960 return dev ? to_spi_device(dev) : NULL; 3961 } 3962 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3963 #endif /* IS_ENABLED(CONFIG_OF) */ 3964 3965 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3966 /* the spi controllers are not using spi_bus, so we find it with another way */ 3967 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3968 { 3969 struct device *dev; 3970 3971 dev = class_find_device_by_of_node(&spi_master_class, node); 3972 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3973 dev = class_find_device_by_of_node(&spi_slave_class, node); 3974 if (!dev) 3975 return NULL; 3976 3977 /* reference got in class_find_device */ 3978 return container_of(dev, struct spi_controller, dev); 3979 } 3980 3981 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3982 void *arg) 3983 { 3984 struct of_reconfig_data *rd = arg; 3985 struct spi_controller *ctlr; 3986 struct spi_device *spi; 3987 3988 switch (of_reconfig_get_state_change(action, arg)) { 3989 case OF_RECONFIG_CHANGE_ADD: 3990 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3991 if (ctlr == NULL) 3992 return NOTIFY_OK; /* not for us */ 3993 3994 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3995 put_device(&ctlr->dev); 3996 return NOTIFY_OK; 3997 } 3998 3999 spi = of_register_spi_device(ctlr, rd->dn); 4000 put_device(&ctlr->dev); 4001 4002 if (IS_ERR(spi)) { 4003 pr_err("%s: failed to create for '%pOF'\n", 4004 __func__, rd->dn); 4005 of_node_clear_flag(rd->dn, OF_POPULATED); 4006 return notifier_from_errno(PTR_ERR(spi)); 4007 } 4008 break; 4009 4010 case OF_RECONFIG_CHANGE_REMOVE: 4011 /* already depopulated? */ 4012 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4013 return NOTIFY_OK; 4014 4015 /* find our device by node */ 4016 spi = of_find_spi_device_by_node(rd->dn); 4017 if (spi == NULL) 4018 return NOTIFY_OK; /* no? not meant for us */ 4019 4020 /* unregister takes one ref away */ 4021 spi_unregister_device(spi); 4022 4023 /* and put the reference of the find */ 4024 put_device(&spi->dev); 4025 break; 4026 } 4027 4028 return NOTIFY_OK; 4029 } 4030 4031 static struct notifier_block spi_of_notifier = { 4032 .notifier_call = of_spi_notify, 4033 }; 4034 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4035 extern struct notifier_block spi_of_notifier; 4036 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4037 4038 #if IS_ENABLED(CONFIG_ACPI) 4039 static int spi_acpi_controller_match(struct device *dev, const void *data) 4040 { 4041 return ACPI_COMPANION(dev->parent) == data; 4042 } 4043 4044 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4045 { 4046 struct device *dev; 4047 4048 dev = class_find_device(&spi_master_class, NULL, adev, 4049 spi_acpi_controller_match); 4050 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4051 dev = class_find_device(&spi_slave_class, NULL, adev, 4052 spi_acpi_controller_match); 4053 if (!dev) 4054 return NULL; 4055 4056 return container_of(dev, struct spi_controller, dev); 4057 } 4058 4059 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4060 { 4061 struct device *dev; 4062 4063 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4064 return to_spi_device(dev); 4065 } 4066 4067 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4068 void *arg) 4069 { 4070 struct acpi_device *adev = arg; 4071 struct spi_controller *ctlr; 4072 struct spi_device *spi; 4073 4074 switch (value) { 4075 case ACPI_RECONFIG_DEVICE_ADD: 4076 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4077 if (!ctlr) 4078 break; 4079 4080 acpi_register_spi_device(ctlr, adev); 4081 put_device(&ctlr->dev); 4082 break; 4083 case ACPI_RECONFIG_DEVICE_REMOVE: 4084 if (!acpi_device_enumerated(adev)) 4085 break; 4086 4087 spi = acpi_spi_find_device_by_adev(adev); 4088 if (!spi) 4089 break; 4090 4091 spi_unregister_device(spi); 4092 put_device(&spi->dev); 4093 break; 4094 } 4095 4096 return NOTIFY_OK; 4097 } 4098 4099 static struct notifier_block spi_acpi_notifier = { 4100 .notifier_call = acpi_spi_notify, 4101 }; 4102 #else 4103 extern struct notifier_block spi_acpi_notifier; 4104 #endif 4105 4106 static int __init spi_init(void) 4107 { 4108 int status; 4109 4110 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4111 if (!buf) { 4112 status = -ENOMEM; 4113 goto err0; 4114 } 4115 4116 status = bus_register(&spi_bus_type); 4117 if (status < 0) 4118 goto err1; 4119 4120 status = class_register(&spi_master_class); 4121 if (status < 0) 4122 goto err2; 4123 4124 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4125 status = class_register(&spi_slave_class); 4126 if (status < 0) 4127 goto err3; 4128 } 4129 4130 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4131 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4132 if (IS_ENABLED(CONFIG_ACPI)) 4133 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4134 4135 return 0; 4136 4137 err3: 4138 class_unregister(&spi_master_class); 4139 err2: 4140 bus_unregister(&spi_bus_type); 4141 err1: 4142 kfree(buf); 4143 buf = NULL; 4144 err0: 4145 return status; 4146 } 4147 4148 /* board_info is normally registered in arch_initcall(), 4149 * but even essential drivers wait till later 4150 * 4151 * REVISIT only boardinfo really needs static linking. the rest (device and 4152 * driver registration) _could_ be dynamically linked (modular) ... costs 4153 * include needing to have boardinfo data structures be much more public. 4154 */ 4155 postcore_initcall(spi_init); 4156