xref: /openbmc/linux/drivers/spi/spi.c (revision 4e1a33b1)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 #include <linux/highmem.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44 
45 static void spidev_release(struct device *dev)
46 {
47 	struct spi_device	*spi = to_spi_device(dev);
48 
49 	/* spi masters may cleanup for released devices */
50 	if (spi->master->cleanup)
51 		spi->master->cleanup(spi);
52 
53 	spi_master_put(spi->master);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 #define SPI_STATISTICS_ATTRS(field, file)				\
72 static ssize_t spi_master_##field##_show(struct device *dev,		\
73 					 struct device_attribute *attr,	\
74 					 char *buf)			\
75 {									\
76 	struct spi_master *master = container_of(dev,			\
77 						 struct spi_master, dev); \
78 	return spi_statistics_##field##_show(&master->statistics, buf);	\
79 }									\
80 static struct device_attribute dev_attr_spi_master_##field = {		\
81 	.attr = { .name = file, .mode = S_IRUGO },			\
82 	.show = spi_master_##field##_show,				\
83 };									\
84 static ssize_t spi_device_##field##_show(struct device *dev,		\
85 					 struct device_attribute *attr,	\
86 					char *buf)			\
87 {									\
88 	struct spi_device *spi = to_spi_device(dev);			\
89 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
90 }									\
91 static struct device_attribute dev_attr_spi_device_##field = {		\
92 	.attr = { .name = file, .mode = S_IRUGO },			\
93 	.show = spi_device_##field##_show,				\
94 }
95 
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 					    char *buf)			\
99 {									\
100 	unsigned long flags;						\
101 	ssize_t len;							\
102 	spin_lock_irqsave(&stat->lock, flags);				\
103 	len = sprintf(buf, format_string, stat->field);			\
104 	spin_unlock_irqrestore(&stat->lock, flags);			\
105 	return len;							\
106 }									\
107 SPI_STATISTICS_ATTRS(name, file)
108 
109 #define SPI_STATISTICS_SHOW(field, format_string)			\
110 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
111 				 field, format_string)
112 
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117 
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121 
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125 
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
127 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
128 				 "transfer_bytes_histo_" number,	\
129 				 transfer_bytes_histo[index],  "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147 
148 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
149 
150 static struct attribute *spi_dev_attrs[] = {
151 	&dev_attr_modalias.attr,
152 	NULL,
153 };
154 
155 static const struct attribute_group spi_dev_group = {
156 	.attrs  = spi_dev_attrs,
157 };
158 
159 static struct attribute *spi_device_statistics_attrs[] = {
160 	&dev_attr_spi_device_messages.attr,
161 	&dev_attr_spi_device_transfers.attr,
162 	&dev_attr_spi_device_errors.attr,
163 	&dev_attr_spi_device_timedout.attr,
164 	&dev_attr_spi_device_spi_sync.attr,
165 	&dev_attr_spi_device_spi_sync_immediate.attr,
166 	&dev_attr_spi_device_spi_async.attr,
167 	&dev_attr_spi_device_bytes.attr,
168 	&dev_attr_spi_device_bytes_rx.attr,
169 	&dev_attr_spi_device_bytes_tx.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
186 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
187 	&dev_attr_spi_device_transfers_split_maxsize.attr,
188 	NULL,
189 };
190 
191 static const struct attribute_group spi_device_statistics_group = {
192 	.name  = "statistics",
193 	.attrs  = spi_device_statistics_attrs,
194 };
195 
196 static const struct attribute_group *spi_dev_groups[] = {
197 	&spi_dev_group,
198 	&spi_device_statistics_group,
199 	NULL,
200 };
201 
202 static struct attribute *spi_master_statistics_attrs[] = {
203 	&dev_attr_spi_master_messages.attr,
204 	&dev_attr_spi_master_transfers.attr,
205 	&dev_attr_spi_master_errors.attr,
206 	&dev_attr_spi_master_timedout.attr,
207 	&dev_attr_spi_master_spi_sync.attr,
208 	&dev_attr_spi_master_spi_sync_immediate.attr,
209 	&dev_attr_spi_master_spi_async.attr,
210 	&dev_attr_spi_master_bytes.attr,
211 	&dev_attr_spi_master_bytes_rx.attr,
212 	&dev_attr_spi_master_bytes_tx.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
226 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
227 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
228 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
229 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
230 	&dev_attr_spi_master_transfers_split_maxsize.attr,
231 	NULL,
232 };
233 
234 static const struct attribute_group spi_master_statistics_group = {
235 	.name  = "statistics",
236 	.attrs  = spi_master_statistics_attrs,
237 };
238 
239 static const struct attribute_group *spi_master_groups[] = {
240 	&spi_master_statistics_group,
241 	NULL,
242 };
243 
244 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
245 				       struct spi_transfer *xfer,
246 				       struct spi_master *master)
247 {
248 	unsigned long flags;
249 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
250 
251 	if (l2len < 0)
252 		l2len = 0;
253 
254 	spin_lock_irqsave(&stats->lock, flags);
255 
256 	stats->transfers++;
257 	stats->transfer_bytes_histo[l2len]++;
258 
259 	stats->bytes += xfer->len;
260 	if ((xfer->tx_buf) &&
261 	    (xfer->tx_buf != master->dummy_tx))
262 		stats->bytes_tx += xfer->len;
263 	if ((xfer->rx_buf) &&
264 	    (xfer->rx_buf != master->dummy_rx))
265 		stats->bytes_rx += xfer->len;
266 
267 	spin_unlock_irqrestore(&stats->lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
270 
271 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
272  * and the sysfs version makes coldplug work too.
273  */
274 
275 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
276 						const struct spi_device *sdev)
277 {
278 	while (id->name[0]) {
279 		if (!strcmp(sdev->modalias, id->name))
280 			return id;
281 		id++;
282 	}
283 	return NULL;
284 }
285 
286 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
287 {
288 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
289 
290 	return spi_match_id(sdrv->id_table, sdev);
291 }
292 EXPORT_SYMBOL_GPL(spi_get_device_id);
293 
294 static int spi_match_device(struct device *dev, struct device_driver *drv)
295 {
296 	const struct spi_device	*spi = to_spi_device(dev);
297 	const struct spi_driver	*sdrv = to_spi_driver(drv);
298 
299 	/* Attempt an OF style match */
300 	if (of_driver_match_device(dev, drv))
301 		return 1;
302 
303 	/* Then try ACPI */
304 	if (acpi_driver_match_device(dev, drv))
305 		return 1;
306 
307 	if (sdrv->id_table)
308 		return !!spi_match_id(sdrv->id_table, spi);
309 
310 	return strcmp(spi->modalias, drv->name) == 0;
311 }
312 
313 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
314 {
315 	const struct spi_device		*spi = to_spi_device(dev);
316 	int rc;
317 
318 	rc = acpi_device_uevent_modalias(dev, env);
319 	if (rc != -ENODEV)
320 		return rc;
321 
322 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
323 	return 0;
324 }
325 
326 struct bus_type spi_bus_type = {
327 	.name		= "spi",
328 	.dev_groups	= spi_dev_groups,
329 	.match		= spi_match_device,
330 	.uevent		= spi_uevent,
331 };
332 EXPORT_SYMBOL_GPL(spi_bus_type);
333 
334 
335 static int spi_drv_probe(struct device *dev)
336 {
337 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
338 	struct spi_device		*spi = to_spi_device(dev);
339 	int ret;
340 
341 	ret = of_clk_set_defaults(dev->of_node, false);
342 	if (ret)
343 		return ret;
344 
345 	if (dev->of_node) {
346 		spi->irq = of_irq_get(dev->of_node, 0);
347 		if (spi->irq == -EPROBE_DEFER)
348 			return -EPROBE_DEFER;
349 		if (spi->irq < 0)
350 			spi->irq = 0;
351 	}
352 
353 	ret = dev_pm_domain_attach(dev, true);
354 	if (ret != -EPROBE_DEFER) {
355 		ret = sdrv->probe(spi);
356 		if (ret)
357 			dev_pm_domain_detach(dev, true);
358 	}
359 
360 	return ret;
361 }
362 
363 static int spi_drv_remove(struct device *dev)
364 {
365 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
366 	int ret;
367 
368 	ret = sdrv->remove(to_spi_device(dev));
369 	dev_pm_domain_detach(dev, true);
370 
371 	return ret;
372 }
373 
374 static void spi_drv_shutdown(struct device *dev)
375 {
376 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
377 
378 	sdrv->shutdown(to_spi_device(dev));
379 }
380 
381 /**
382  * __spi_register_driver - register a SPI driver
383  * @owner: owner module of the driver to register
384  * @sdrv: the driver to register
385  * Context: can sleep
386  *
387  * Return: zero on success, else a negative error code.
388  */
389 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
390 {
391 	sdrv->driver.owner = owner;
392 	sdrv->driver.bus = &spi_bus_type;
393 	if (sdrv->probe)
394 		sdrv->driver.probe = spi_drv_probe;
395 	if (sdrv->remove)
396 		sdrv->driver.remove = spi_drv_remove;
397 	if (sdrv->shutdown)
398 		sdrv->driver.shutdown = spi_drv_shutdown;
399 	return driver_register(&sdrv->driver);
400 }
401 EXPORT_SYMBOL_GPL(__spi_register_driver);
402 
403 /*-------------------------------------------------------------------------*/
404 
405 /* SPI devices should normally not be created by SPI device drivers; that
406  * would make them board-specific.  Similarly with SPI master drivers.
407  * Device registration normally goes into like arch/.../mach.../board-YYY.c
408  * with other readonly (flashable) information about mainboard devices.
409  */
410 
411 struct boardinfo {
412 	struct list_head	list;
413 	struct spi_board_info	board_info;
414 };
415 
416 static LIST_HEAD(board_list);
417 static LIST_HEAD(spi_master_list);
418 
419 /*
420  * Used to protect add/del opertion for board_info list and
421  * spi_master list, and their matching process
422  */
423 static DEFINE_MUTEX(board_lock);
424 
425 /**
426  * spi_alloc_device - Allocate a new SPI device
427  * @master: Controller to which device is connected
428  * Context: can sleep
429  *
430  * Allows a driver to allocate and initialize a spi_device without
431  * registering it immediately.  This allows a driver to directly
432  * fill the spi_device with device parameters before calling
433  * spi_add_device() on it.
434  *
435  * Caller is responsible to call spi_add_device() on the returned
436  * spi_device structure to add it to the SPI master.  If the caller
437  * needs to discard the spi_device without adding it, then it should
438  * call spi_dev_put() on it.
439  *
440  * Return: a pointer to the new device, or NULL.
441  */
442 struct spi_device *spi_alloc_device(struct spi_master *master)
443 {
444 	struct spi_device	*spi;
445 
446 	if (!spi_master_get(master))
447 		return NULL;
448 
449 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
450 	if (!spi) {
451 		spi_master_put(master);
452 		return NULL;
453 	}
454 
455 	spi->master = master;
456 	spi->dev.parent = &master->dev;
457 	spi->dev.bus = &spi_bus_type;
458 	spi->dev.release = spidev_release;
459 	spi->cs_gpio = -ENOENT;
460 
461 	spin_lock_init(&spi->statistics.lock);
462 
463 	device_initialize(&spi->dev);
464 	return spi;
465 }
466 EXPORT_SYMBOL_GPL(spi_alloc_device);
467 
468 static void spi_dev_set_name(struct spi_device *spi)
469 {
470 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
471 
472 	if (adev) {
473 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
474 		return;
475 	}
476 
477 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
478 		     spi->chip_select);
479 }
480 
481 static int spi_dev_check(struct device *dev, void *data)
482 {
483 	struct spi_device *spi = to_spi_device(dev);
484 	struct spi_device *new_spi = data;
485 
486 	if (spi->master == new_spi->master &&
487 	    spi->chip_select == new_spi->chip_select)
488 		return -EBUSY;
489 	return 0;
490 }
491 
492 /**
493  * spi_add_device - Add spi_device allocated with spi_alloc_device
494  * @spi: spi_device to register
495  *
496  * Companion function to spi_alloc_device.  Devices allocated with
497  * spi_alloc_device can be added onto the spi bus with this function.
498  *
499  * Return: 0 on success; negative errno on failure
500  */
501 int spi_add_device(struct spi_device *spi)
502 {
503 	static DEFINE_MUTEX(spi_add_lock);
504 	struct spi_master *master = spi->master;
505 	struct device *dev = master->dev.parent;
506 	int status;
507 
508 	/* Chipselects are numbered 0..max; validate. */
509 	if (spi->chip_select >= master->num_chipselect) {
510 		dev_err(dev, "cs%d >= max %d\n",
511 			spi->chip_select,
512 			master->num_chipselect);
513 		return -EINVAL;
514 	}
515 
516 	/* Set the bus ID string */
517 	spi_dev_set_name(spi);
518 
519 	/* We need to make sure there's no other device with this
520 	 * chipselect **BEFORE** we call setup(), else we'll trash
521 	 * its configuration.  Lock against concurrent add() calls.
522 	 */
523 	mutex_lock(&spi_add_lock);
524 
525 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
526 	if (status) {
527 		dev_err(dev, "chipselect %d already in use\n",
528 				spi->chip_select);
529 		goto done;
530 	}
531 
532 	if (master->cs_gpios)
533 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
534 
535 	/* Drivers may modify this initial i/o setup, but will
536 	 * normally rely on the device being setup.  Devices
537 	 * using SPI_CS_HIGH can't coexist well otherwise...
538 	 */
539 	status = spi_setup(spi);
540 	if (status < 0) {
541 		dev_err(dev, "can't setup %s, status %d\n",
542 				dev_name(&spi->dev), status);
543 		goto done;
544 	}
545 
546 	/* Device may be bound to an active driver when this returns */
547 	status = device_add(&spi->dev);
548 	if (status < 0)
549 		dev_err(dev, "can't add %s, status %d\n",
550 				dev_name(&spi->dev), status);
551 	else
552 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
553 
554 done:
555 	mutex_unlock(&spi_add_lock);
556 	return status;
557 }
558 EXPORT_SYMBOL_GPL(spi_add_device);
559 
560 /**
561  * spi_new_device - instantiate one new SPI device
562  * @master: Controller to which device is connected
563  * @chip: Describes the SPI device
564  * Context: can sleep
565  *
566  * On typical mainboards, this is purely internal; and it's not needed
567  * after board init creates the hard-wired devices.  Some development
568  * platforms may not be able to use spi_register_board_info though, and
569  * this is exported so that for example a USB or parport based adapter
570  * driver could add devices (which it would learn about out-of-band).
571  *
572  * Return: the new device, or NULL.
573  */
574 struct spi_device *spi_new_device(struct spi_master *master,
575 				  struct spi_board_info *chip)
576 {
577 	struct spi_device	*proxy;
578 	int			status;
579 
580 	/* NOTE:  caller did any chip->bus_num checks necessary.
581 	 *
582 	 * Also, unless we change the return value convention to use
583 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
584 	 * suggests syslogged diagnostics are best here (ugh).
585 	 */
586 
587 	proxy = spi_alloc_device(master);
588 	if (!proxy)
589 		return NULL;
590 
591 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
592 
593 	proxy->chip_select = chip->chip_select;
594 	proxy->max_speed_hz = chip->max_speed_hz;
595 	proxy->mode = chip->mode;
596 	proxy->irq = chip->irq;
597 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
598 	proxy->dev.platform_data = (void *) chip->platform_data;
599 	proxy->controller_data = chip->controller_data;
600 	proxy->controller_state = NULL;
601 
602 	status = spi_add_device(proxy);
603 	if (status < 0) {
604 		spi_dev_put(proxy);
605 		return NULL;
606 	}
607 
608 	return proxy;
609 }
610 EXPORT_SYMBOL_GPL(spi_new_device);
611 
612 /**
613  * spi_unregister_device - unregister a single SPI device
614  * @spi: spi_device to unregister
615  *
616  * Start making the passed SPI device vanish. Normally this would be handled
617  * by spi_unregister_master().
618  */
619 void spi_unregister_device(struct spi_device *spi)
620 {
621 	if (!spi)
622 		return;
623 
624 	if (spi->dev.of_node) {
625 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
626 		of_node_put(spi->dev.of_node);
627 	}
628 	if (ACPI_COMPANION(&spi->dev))
629 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
630 	device_unregister(&spi->dev);
631 }
632 EXPORT_SYMBOL_GPL(spi_unregister_device);
633 
634 static void spi_match_master_to_boardinfo(struct spi_master *master,
635 				struct spi_board_info *bi)
636 {
637 	struct spi_device *dev;
638 
639 	if (master->bus_num != bi->bus_num)
640 		return;
641 
642 	dev = spi_new_device(master, bi);
643 	if (!dev)
644 		dev_err(master->dev.parent, "can't create new device for %s\n",
645 			bi->modalias);
646 }
647 
648 /**
649  * spi_register_board_info - register SPI devices for a given board
650  * @info: array of chip descriptors
651  * @n: how many descriptors are provided
652  * Context: can sleep
653  *
654  * Board-specific early init code calls this (probably during arch_initcall)
655  * with segments of the SPI device table.  Any device nodes are created later,
656  * after the relevant parent SPI controller (bus_num) is defined.  We keep
657  * this table of devices forever, so that reloading a controller driver will
658  * not make Linux forget about these hard-wired devices.
659  *
660  * Other code can also call this, e.g. a particular add-on board might provide
661  * SPI devices through its expansion connector, so code initializing that board
662  * would naturally declare its SPI devices.
663  *
664  * The board info passed can safely be __initdata ... but be careful of
665  * any embedded pointers (platform_data, etc), they're copied as-is.
666  *
667  * Return: zero on success, else a negative error code.
668  */
669 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
670 {
671 	struct boardinfo *bi;
672 	int i;
673 
674 	if (!n)
675 		return -EINVAL;
676 
677 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
678 	if (!bi)
679 		return -ENOMEM;
680 
681 	for (i = 0; i < n; i++, bi++, info++) {
682 		struct spi_master *master;
683 
684 		memcpy(&bi->board_info, info, sizeof(*info));
685 		mutex_lock(&board_lock);
686 		list_add_tail(&bi->list, &board_list);
687 		list_for_each_entry(master, &spi_master_list, list)
688 			spi_match_master_to_boardinfo(master, &bi->board_info);
689 		mutex_unlock(&board_lock);
690 	}
691 
692 	return 0;
693 }
694 
695 /*-------------------------------------------------------------------------*/
696 
697 static void spi_set_cs(struct spi_device *spi, bool enable)
698 {
699 	if (spi->mode & SPI_CS_HIGH)
700 		enable = !enable;
701 
702 	if (gpio_is_valid(spi->cs_gpio)) {
703 		gpio_set_value(spi->cs_gpio, !enable);
704 		/* Some SPI masters need both GPIO CS & slave_select */
705 		if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
706 		    spi->master->set_cs)
707 			spi->master->set_cs(spi, !enable);
708 	} else if (spi->master->set_cs) {
709 		spi->master->set_cs(spi, !enable);
710 	}
711 }
712 
713 #ifdef CONFIG_HAS_DMA
714 static int spi_map_buf(struct spi_master *master, struct device *dev,
715 		       struct sg_table *sgt, void *buf, size_t len,
716 		       enum dma_data_direction dir)
717 {
718 	const bool vmalloced_buf = is_vmalloc_addr(buf);
719 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
720 #ifdef CONFIG_HIGHMEM
721 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
722 				(unsigned long)buf < (PKMAP_BASE +
723 					(LAST_PKMAP * PAGE_SIZE)));
724 #else
725 	const bool kmap_buf = false;
726 #endif
727 	int desc_len;
728 	int sgs;
729 	struct page *vm_page;
730 	struct scatterlist *sg;
731 	void *sg_buf;
732 	size_t min;
733 	int i, ret;
734 
735 	if (vmalloced_buf || kmap_buf) {
736 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
737 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
738 	} else if (virt_addr_valid(buf)) {
739 		desc_len = min_t(int, max_seg_size, master->max_dma_len);
740 		sgs = DIV_ROUND_UP(len, desc_len);
741 	} else {
742 		return -EINVAL;
743 	}
744 
745 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
746 	if (ret != 0)
747 		return ret;
748 
749 	sg = &sgt->sgl[0];
750 	for (i = 0; i < sgs; i++) {
751 
752 		if (vmalloced_buf || kmap_buf) {
753 			min = min_t(size_t,
754 				    len, desc_len - offset_in_page(buf));
755 			if (vmalloced_buf)
756 				vm_page = vmalloc_to_page(buf);
757 			else
758 				vm_page = kmap_to_page(buf);
759 			if (!vm_page) {
760 				sg_free_table(sgt);
761 				return -ENOMEM;
762 			}
763 			sg_set_page(sg, vm_page,
764 				    min, offset_in_page(buf));
765 		} else {
766 			min = min_t(size_t, len, desc_len);
767 			sg_buf = buf;
768 			sg_set_buf(sg, sg_buf, min);
769 		}
770 
771 		buf += min;
772 		len -= min;
773 		sg = sg_next(sg);
774 	}
775 
776 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
777 	if (!ret)
778 		ret = -ENOMEM;
779 	if (ret < 0) {
780 		sg_free_table(sgt);
781 		return ret;
782 	}
783 
784 	sgt->nents = ret;
785 
786 	return 0;
787 }
788 
789 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
790 			  struct sg_table *sgt, enum dma_data_direction dir)
791 {
792 	if (sgt->orig_nents) {
793 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
794 		sg_free_table(sgt);
795 	}
796 }
797 
798 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
799 {
800 	struct device *tx_dev, *rx_dev;
801 	struct spi_transfer *xfer;
802 	int ret;
803 
804 	if (!master->can_dma)
805 		return 0;
806 
807 	if (master->dma_tx)
808 		tx_dev = master->dma_tx->device->dev;
809 	else
810 		tx_dev = master->dev.parent;
811 
812 	if (master->dma_rx)
813 		rx_dev = master->dma_rx->device->dev;
814 	else
815 		rx_dev = master->dev.parent;
816 
817 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
818 		if (!master->can_dma(master, msg->spi, xfer))
819 			continue;
820 
821 		if (xfer->tx_buf != NULL) {
822 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
823 					  (void *)xfer->tx_buf, xfer->len,
824 					  DMA_TO_DEVICE);
825 			if (ret != 0)
826 				return ret;
827 		}
828 
829 		if (xfer->rx_buf != NULL) {
830 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
831 					  xfer->rx_buf, xfer->len,
832 					  DMA_FROM_DEVICE);
833 			if (ret != 0) {
834 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
835 					      DMA_TO_DEVICE);
836 				return ret;
837 			}
838 		}
839 	}
840 
841 	master->cur_msg_mapped = true;
842 
843 	return 0;
844 }
845 
846 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
847 {
848 	struct spi_transfer *xfer;
849 	struct device *tx_dev, *rx_dev;
850 
851 	if (!master->cur_msg_mapped || !master->can_dma)
852 		return 0;
853 
854 	if (master->dma_tx)
855 		tx_dev = master->dma_tx->device->dev;
856 	else
857 		tx_dev = master->dev.parent;
858 
859 	if (master->dma_rx)
860 		rx_dev = master->dma_rx->device->dev;
861 	else
862 		rx_dev = master->dev.parent;
863 
864 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
865 		if (!master->can_dma(master, msg->spi, xfer))
866 			continue;
867 
868 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
869 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
870 	}
871 
872 	return 0;
873 }
874 #else /* !CONFIG_HAS_DMA */
875 static inline int spi_map_buf(struct spi_master *master,
876 			      struct device *dev, struct sg_table *sgt,
877 			      void *buf, size_t len,
878 			      enum dma_data_direction dir)
879 {
880 	return -EINVAL;
881 }
882 
883 static inline void spi_unmap_buf(struct spi_master *master,
884 				 struct device *dev, struct sg_table *sgt,
885 				 enum dma_data_direction dir)
886 {
887 }
888 
889 static inline int __spi_map_msg(struct spi_master *master,
890 				struct spi_message *msg)
891 {
892 	return 0;
893 }
894 
895 static inline int __spi_unmap_msg(struct spi_master *master,
896 				  struct spi_message *msg)
897 {
898 	return 0;
899 }
900 #endif /* !CONFIG_HAS_DMA */
901 
902 static inline int spi_unmap_msg(struct spi_master *master,
903 				struct spi_message *msg)
904 {
905 	struct spi_transfer *xfer;
906 
907 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
908 		/*
909 		 * Restore the original value of tx_buf or rx_buf if they are
910 		 * NULL.
911 		 */
912 		if (xfer->tx_buf == master->dummy_tx)
913 			xfer->tx_buf = NULL;
914 		if (xfer->rx_buf == master->dummy_rx)
915 			xfer->rx_buf = NULL;
916 	}
917 
918 	return __spi_unmap_msg(master, msg);
919 }
920 
921 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
922 {
923 	struct spi_transfer *xfer;
924 	void *tmp;
925 	unsigned int max_tx, max_rx;
926 
927 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
928 		max_tx = 0;
929 		max_rx = 0;
930 
931 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
932 			if ((master->flags & SPI_MASTER_MUST_TX) &&
933 			    !xfer->tx_buf)
934 				max_tx = max(xfer->len, max_tx);
935 			if ((master->flags & SPI_MASTER_MUST_RX) &&
936 			    !xfer->rx_buf)
937 				max_rx = max(xfer->len, max_rx);
938 		}
939 
940 		if (max_tx) {
941 			tmp = krealloc(master->dummy_tx, max_tx,
942 				       GFP_KERNEL | GFP_DMA);
943 			if (!tmp)
944 				return -ENOMEM;
945 			master->dummy_tx = tmp;
946 			memset(tmp, 0, max_tx);
947 		}
948 
949 		if (max_rx) {
950 			tmp = krealloc(master->dummy_rx, max_rx,
951 				       GFP_KERNEL | GFP_DMA);
952 			if (!tmp)
953 				return -ENOMEM;
954 			master->dummy_rx = tmp;
955 		}
956 
957 		if (max_tx || max_rx) {
958 			list_for_each_entry(xfer, &msg->transfers,
959 					    transfer_list) {
960 				if (!xfer->tx_buf)
961 					xfer->tx_buf = master->dummy_tx;
962 				if (!xfer->rx_buf)
963 					xfer->rx_buf = master->dummy_rx;
964 			}
965 		}
966 	}
967 
968 	return __spi_map_msg(master, msg);
969 }
970 
971 /*
972  * spi_transfer_one_message - Default implementation of transfer_one_message()
973  *
974  * This is a standard implementation of transfer_one_message() for
975  * drivers which implement a transfer_one() operation.  It provides
976  * standard handling of delays and chip select management.
977  */
978 static int spi_transfer_one_message(struct spi_master *master,
979 				    struct spi_message *msg)
980 {
981 	struct spi_transfer *xfer;
982 	bool keep_cs = false;
983 	int ret = 0;
984 	unsigned long long ms = 1;
985 	struct spi_statistics *statm = &master->statistics;
986 	struct spi_statistics *stats = &msg->spi->statistics;
987 
988 	spi_set_cs(msg->spi, true);
989 
990 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
991 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
992 
993 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
994 		trace_spi_transfer_start(msg, xfer);
995 
996 		spi_statistics_add_transfer_stats(statm, xfer, master);
997 		spi_statistics_add_transfer_stats(stats, xfer, master);
998 
999 		if (xfer->tx_buf || xfer->rx_buf) {
1000 			reinit_completion(&master->xfer_completion);
1001 
1002 			ret = master->transfer_one(master, msg->spi, xfer);
1003 			if (ret < 0) {
1004 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1005 							       errors);
1006 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1007 							       errors);
1008 				dev_err(&msg->spi->dev,
1009 					"SPI transfer failed: %d\n", ret);
1010 				goto out;
1011 			}
1012 
1013 			if (ret > 0) {
1014 				ret = 0;
1015 				ms = 8LL * 1000LL * xfer->len;
1016 				do_div(ms, xfer->speed_hz);
1017 				ms += ms + 100; /* some tolerance */
1018 
1019 				if (ms > UINT_MAX)
1020 					ms = UINT_MAX;
1021 
1022 				ms = wait_for_completion_timeout(&master->xfer_completion,
1023 								 msecs_to_jiffies(ms));
1024 			}
1025 
1026 			if (ms == 0) {
1027 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1028 							       timedout);
1029 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1030 							       timedout);
1031 				dev_err(&msg->spi->dev,
1032 					"SPI transfer timed out\n");
1033 				msg->status = -ETIMEDOUT;
1034 			}
1035 		} else {
1036 			if (xfer->len)
1037 				dev_err(&msg->spi->dev,
1038 					"Bufferless transfer has length %u\n",
1039 					xfer->len);
1040 		}
1041 
1042 		trace_spi_transfer_stop(msg, xfer);
1043 
1044 		if (msg->status != -EINPROGRESS)
1045 			goto out;
1046 
1047 		if (xfer->delay_usecs) {
1048 			u16 us = xfer->delay_usecs;
1049 
1050 			if (us <= 10)
1051 				udelay(us);
1052 			else
1053 				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1054 		}
1055 
1056 		if (xfer->cs_change) {
1057 			if (list_is_last(&xfer->transfer_list,
1058 					 &msg->transfers)) {
1059 				keep_cs = true;
1060 			} else {
1061 				spi_set_cs(msg->spi, false);
1062 				udelay(10);
1063 				spi_set_cs(msg->spi, true);
1064 			}
1065 		}
1066 
1067 		msg->actual_length += xfer->len;
1068 	}
1069 
1070 out:
1071 	if (ret != 0 || !keep_cs)
1072 		spi_set_cs(msg->spi, false);
1073 
1074 	if (msg->status == -EINPROGRESS)
1075 		msg->status = ret;
1076 
1077 	if (msg->status && master->handle_err)
1078 		master->handle_err(master, msg);
1079 
1080 	spi_res_release(master, msg);
1081 
1082 	spi_finalize_current_message(master);
1083 
1084 	return ret;
1085 }
1086 
1087 /**
1088  * spi_finalize_current_transfer - report completion of a transfer
1089  * @master: the master reporting completion
1090  *
1091  * Called by SPI drivers using the core transfer_one_message()
1092  * implementation to notify it that the current interrupt driven
1093  * transfer has finished and the next one may be scheduled.
1094  */
1095 void spi_finalize_current_transfer(struct spi_master *master)
1096 {
1097 	complete(&master->xfer_completion);
1098 }
1099 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1100 
1101 /**
1102  * __spi_pump_messages - function which processes spi message queue
1103  * @master: master to process queue for
1104  * @in_kthread: true if we are in the context of the message pump thread
1105  *
1106  * This function checks if there is any spi message in the queue that
1107  * needs processing and if so call out to the driver to initialize hardware
1108  * and transfer each message.
1109  *
1110  * Note that it is called both from the kthread itself and also from
1111  * inside spi_sync(); the queue extraction handling at the top of the
1112  * function should deal with this safely.
1113  */
1114 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1115 {
1116 	unsigned long flags;
1117 	bool was_busy = false;
1118 	int ret;
1119 
1120 	/* Lock queue */
1121 	spin_lock_irqsave(&master->queue_lock, flags);
1122 
1123 	/* Make sure we are not already running a message */
1124 	if (master->cur_msg) {
1125 		spin_unlock_irqrestore(&master->queue_lock, flags);
1126 		return;
1127 	}
1128 
1129 	/* If another context is idling the device then defer */
1130 	if (master->idling) {
1131 		kthread_queue_work(&master->kworker, &master->pump_messages);
1132 		spin_unlock_irqrestore(&master->queue_lock, flags);
1133 		return;
1134 	}
1135 
1136 	/* Check if the queue is idle */
1137 	if (list_empty(&master->queue) || !master->running) {
1138 		if (!master->busy) {
1139 			spin_unlock_irqrestore(&master->queue_lock, flags);
1140 			return;
1141 		}
1142 
1143 		/* Only do teardown in the thread */
1144 		if (!in_kthread) {
1145 			kthread_queue_work(&master->kworker,
1146 					   &master->pump_messages);
1147 			spin_unlock_irqrestore(&master->queue_lock, flags);
1148 			return;
1149 		}
1150 
1151 		master->busy = false;
1152 		master->idling = true;
1153 		spin_unlock_irqrestore(&master->queue_lock, flags);
1154 
1155 		kfree(master->dummy_rx);
1156 		master->dummy_rx = NULL;
1157 		kfree(master->dummy_tx);
1158 		master->dummy_tx = NULL;
1159 		if (master->unprepare_transfer_hardware &&
1160 		    master->unprepare_transfer_hardware(master))
1161 			dev_err(&master->dev,
1162 				"failed to unprepare transfer hardware\n");
1163 		if (master->auto_runtime_pm) {
1164 			pm_runtime_mark_last_busy(master->dev.parent);
1165 			pm_runtime_put_autosuspend(master->dev.parent);
1166 		}
1167 		trace_spi_master_idle(master);
1168 
1169 		spin_lock_irqsave(&master->queue_lock, flags);
1170 		master->idling = false;
1171 		spin_unlock_irqrestore(&master->queue_lock, flags);
1172 		return;
1173 	}
1174 
1175 	/* Extract head of queue */
1176 	master->cur_msg =
1177 		list_first_entry(&master->queue, struct spi_message, queue);
1178 
1179 	list_del_init(&master->cur_msg->queue);
1180 	if (master->busy)
1181 		was_busy = true;
1182 	else
1183 		master->busy = true;
1184 	spin_unlock_irqrestore(&master->queue_lock, flags);
1185 
1186 	mutex_lock(&master->io_mutex);
1187 
1188 	if (!was_busy && master->auto_runtime_pm) {
1189 		ret = pm_runtime_get_sync(master->dev.parent);
1190 		if (ret < 0) {
1191 			dev_err(&master->dev, "Failed to power device: %d\n",
1192 				ret);
1193 			mutex_unlock(&master->io_mutex);
1194 			return;
1195 		}
1196 	}
1197 
1198 	if (!was_busy)
1199 		trace_spi_master_busy(master);
1200 
1201 	if (!was_busy && master->prepare_transfer_hardware) {
1202 		ret = master->prepare_transfer_hardware(master);
1203 		if (ret) {
1204 			dev_err(&master->dev,
1205 				"failed to prepare transfer hardware\n");
1206 
1207 			if (master->auto_runtime_pm)
1208 				pm_runtime_put(master->dev.parent);
1209 			mutex_unlock(&master->io_mutex);
1210 			return;
1211 		}
1212 	}
1213 
1214 	trace_spi_message_start(master->cur_msg);
1215 
1216 	if (master->prepare_message) {
1217 		ret = master->prepare_message(master, master->cur_msg);
1218 		if (ret) {
1219 			dev_err(&master->dev,
1220 				"failed to prepare message: %d\n", ret);
1221 			master->cur_msg->status = ret;
1222 			spi_finalize_current_message(master);
1223 			goto out;
1224 		}
1225 		master->cur_msg_prepared = true;
1226 	}
1227 
1228 	ret = spi_map_msg(master, master->cur_msg);
1229 	if (ret) {
1230 		master->cur_msg->status = ret;
1231 		spi_finalize_current_message(master);
1232 		goto out;
1233 	}
1234 
1235 	ret = master->transfer_one_message(master, master->cur_msg);
1236 	if (ret) {
1237 		dev_err(&master->dev,
1238 			"failed to transfer one message from queue\n");
1239 		goto out;
1240 	}
1241 
1242 out:
1243 	mutex_unlock(&master->io_mutex);
1244 
1245 	/* Prod the scheduler in case transfer_one() was busy waiting */
1246 	if (!ret)
1247 		cond_resched();
1248 }
1249 
1250 /**
1251  * spi_pump_messages - kthread work function which processes spi message queue
1252  * @work: pointer to kthread work struct contained in the master struct
1253  */
1254 static void spi_pump_messages(struct kthread_work *work)
1255 {
1256 	struct spi_master *master =
1257 		container_of(work, struct spi_master, pump_messages);
1258 
1259 	__spi_pump_messages(master, true);
1260 }
1261 
1262 static int spi_init_queue(struct spi_master *master)
1263 {
1264 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1265 
1266 	master->running = false;
1267 	master->busy = false;
1268 
1269 	kthread_init_worker(&master->kworker);
1270 	master->kworker_task = kthread_run(kthread_worker_fn,
1271 					   &master->kworker, "%s",
1272 					   dev_name(&master->dev));
1273 	if (IS_ERR(master->kworker_task)) {
1274 		dev_err(&master->dev, "failed to create message pump task\n");
1275 		return PTR_ERR(master->kworker_task);
1276 	}
1277 	kthread_init_work(&master->pump_messages, spi_pump_messages);
1278 
1279 	/*
1280 	 * Master config will indicate if this controller should run the
1281 	 * message pump with high (realtime) priority to reduce the transfer
1282 	 * latency on the bus by minimising the delay between a transfer
1283 	 * request and the scheduling of the message pump thread. Without this
1284 	 * setting the message pump thread will remain at default priority.
1285 	 */
1286 	if (master->rt) {
1287 		dev_info(&master->dev,
1288 			"will run message pump with realtime priority\n");
1289 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1290 	}
1291 
1292 	return 0;
1293 }
1294 
1295 /**
1296  * spi_get_next_queued_message() - called by driver to check for queued
1297  * messages
1298  * @master: the master to check for queued messages
1299  *
1300  * If there are more messages in the queue, the next message is returned from
1301  * this call.
1302  *
1303  * Return: the next message in the queue, else NULL if the queue is empty.
1304  */
1305 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1306 {
1307 	struct spi_message *next;
1308 	unsigned long flags;
1309 
1310 	/* get a pointer to the next message, if any */
1311 	spin_lock_irqsave(&master->queue_lock, flags);
1312 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1313 					queue);
1314 	spin_unlock_irqrestore(&master->queue_lock, flags);
1315 
1316 	return next;
1317 }
1318 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1319 
1320 /**
1321  * spi_finalize_current_message() - the current message is complete
1322  * @master: the master to return the message to
1323  *
1324  * Called by the driver to notify the core that the message in the front of the
1325  * queue is complete and can be removed from the queue.
1326  */
1327 void spi_finalize_current_message(struct spi_master *master)
1328 {
1329 	struct spi_message *mesg;
1330 	unsigned long flags;
1331 	int ret;
1332 
1333 	spin_lock_irqsave(&master->queue_lock, flags);
1334 	mesg = master->cur_msg;
1335 	spin_unlock_irqrestore(&master->queue_lock, flags);
1336 
1337 	spi_unmap_msg(master, mesg);
1338 
1339 	if (master->cur_msg_prepared && master->unprepare_message) {
1340 		ret = master->unprepare_message(master, mesg);
1341 		if (ret) {
1342 			dev_err(&master->dev,
1343 				"failed to unprepare message: %d\n", ret);
1344 		}
1345 	}
1346 
1347 	spin_lock_irqsave(&master->queue_lock, flags);
1348 	master->cur_msg = NULL;
1349 	master->cur_msg_prepared = false;
1350 	kthread_queue_work(&master->kworker, &master->pump_messages);
1351 	spin_unlock_irqrestore(&master->queue_lock, flags);
1352 
1353 	trace_spi_message_done(mesg);
1354 
1355 	mesg->state = NULL;
1356 	if (mesg->complete)
1357 		mesg->complete(mesg->context);
1358 }
1359 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1360 
1361 static int spi_start_queue(struct spi_master *master)
1362 {
1363 	unsigned long flags;
1364 
1365 	spin_lock_irqsave(&master->queue_lock, flags);
1366 
1367 	if (master->running || master->busy) {
1368 		spin_unlock_irqrestore(&master->queue_lock, flags);
1369 		return -EBUSY;
1370 	}
1371 
1372 	master->running = true;
1373 	master->cur_msg = NULL;
1374 	spin_unlock_irqrestore(&master->queue_lock, flags);
1375 
1376 	kthread_queue_work(&master->kworker, &master->pump_messages);
1377 
1378 	return 0;
1379 }
1380 
1381 static int spi_stop_queue(struct spi_master *master)
1382 {
1383 	unsigned long flags;
1384 	unsigned limit = 500;
1385 	int ret = 0;
1386 
1387 	spin_lock_irqsave(&master->queue_lock, flags);
1388 
1389 	/*
1390 	 * This is a bit lame, but is optimized for the common execution path.
1391 	 * A wait_queue on the master->busy could be used, but then the common
1392 	 * execution path (pump_messages) would be required to call wake_up or
1393 	 * friends on every SPI message. Do this instead.
1394 	 */
1395 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1396 		spin_unlock_irqrestore(&master->queue_lock, flags);
1397 		usleep_range(10000, 11000);
1398 		spin_lock_irqsave(&master->queue_lock, flags);
1399 	}
1400 
1401 	if (!list_empty(&master->queue) || master->busy)
1402 		ret = -EBUSY;
1403 	else
1404 		master->running = false;
1405 
1406 	spin_unlock_irqrestore(&master->queue_lock, flags);
1407 
1408 	if (ret) {
1409 		dev_warn(&master->dev,
1410 			 "could not stop message queue\n");
1411 		return ret;
1412 	}
1413 	return ret;
1414 }
1415 
1416 static int spi_destroy_queue(struct spi_master *master)
1417 {
1418 	int ret;
1419 
1420 	ret = spi_stop_queue(master);
1421 
1422 	/*
1423 	 * kthread_flush_worker will block until all work is done.
1424 	 * If the reason that stop_queue timed out is that the work will never
1425 	 * finish, then it does no good to call flush/stop thread, so
1426 	 * return anyway.
1427 	 */
1428 	if (ret) {
1429 		dev_err(&master->dev, "problem destroying queue\n");
1430 		return ret;
1431 	}
1432 
1433 	kthread_flush_worker(&master->kworker);
1434 	kthread_stop(master->kworker_task);
1435 
1436 	return 0;
1437 }
1438 
1439 static int __spi_queued_transfer(struct spi_device *spi,
1440 				 struct spi_message *msg,
1441 				 bool need_pump)
1442 {
1443 	struct spi_master *master = spi->master;
1444 	unsigned long flags;
1445 
1446 	spin_lock_irqsave(&master->queue_lock, flags);
1447 
1448 	if (!master->running) {
1449 		spin_unlock_irqrestore(&master->queue_lock, flags);
1450 		return -ESHUTDOWN;
1451 	}
1452 	msg->actual_length = 0;
1453 	msg->status = -EINPROGRESS;
1454 
1455 	list_add_tail(&msg->queue, &master->queue);
1456 	if (!master->busy && need_pump)
1457 		kthread_queue_work(&master->kworker, &master->pump_messages);
1458 
1459 	spin_unlock_irqrestore(&master->queue_lock, flags);
1460 	return 0;
1461 }
1462 
1463 /**
1464  * spi_queued_transfer - transfer function for queued transfers
1465  * @spi: spi device which is requesting transfer
1466  * @msg: spi message which is to handled is queued to driver queue
1467  *
1468  * Return: zero on success, else a negative error code.
1469  */
1470 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1471 {
1472 	return __spi_queued_transfer(spi, msg, true);
1473 }
1474 
1475 static int spi_master_initialize_queue(struct spi_master *master)
1476 {
1477 	int ret;
1478 
1479 	master->transfer = spi_queued_transfer;
1480 	if (!master->transfer_one_message)
1481 		master->transfer_one_message = spi_transfer_one_message;
1482 
1483 	/* Initialize and start queue */
1484 	ret = spi_init_queue(master);
1485 	if (ret) {
1486 		dev_err(&master->dev, "problem initializing queue\n");
1487 		goto err_init_queue;
1488 	}
1489 	master->queued = true;
1490 	ret = spi_start_queue(master);
1491 	if (ret) {
1492 		dev_err(&master->dev, "problem starting queue\n");
1493 		goto err_start_queue;
1494 	}
1495 
1496 	return 0;
1497 
1498 err_start_queue:
1499 	spi_destroy_queue(master);
1500 err_init_queue:
1501 	return ret;
1502 }
1503 
1504 /*-------------------------------------------------------------------------*/
1505 
1506 #if defined(CONFIG_OF)
1507 static int of_spi_parse_dt(struct spi_master *master, struct spi_device *spi,
1508 			   struct device_node *nc)
1509 {
1510 	u32 value;
1511 	int rc;
1512 
1513 	/* Device address */
1514 	rc = of_property_read_u32(nc, "reg", &value);
1515 	if (rc) {
1516 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1517 			nc->full_name, rc);
1518 		return rc;
1519 	}
1520 	spi->chip_select = value;
1521 
1522 	/* Mode (clock phase/polarity/etc.) */
1523 	if (of_find_property(nc, "spi-cpha", NULL))
1524 		spi->mode |= SPI_CPHA;
1525 	if (of_find_property(nc, "spi-cpol", NULL))
1526 		spi->mode |= SPI_CPOL;
1527 	if (of_find_property(nc, "spi-cs-high", NULL))
1528 		spi->mode |= SPI_CS_HIGH;
1529 	if (of_find_property(nc, "spi-3wire", NULL))
1530 		spi->mode |= SPI_3WIRE;
1531 	if (of_find_property(nc, "spi-lsb-first", NULL))
1532 		spi->mode |= SPI_LSB_FIRST;
1533 
1534 	/* Device DUAL/QUAD mode */
1535 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1536 		switch (value) {
1537 		case 1:
1538 			break;
1539 		case 2:
1540 			spi->mode |= SPI_TX_DUAL;
1541 			break;
1542 		case 4:
1543 			spi->mode |= SPI_TX_QUAD;
1544 			break;
1545 		default:
1546 			dev_warn(&master->dev,
1547 				"spi-tx-bus-width %d not supported\n",
1548 				value);
1549 			break;
1550 		}
1551 	}
1552 
1553 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1554 		switch (value) {
1555 		case 1:
1556 			break;
1557 		case 2:
1558 			spi->mode |= SPI_RX_DUAL;
1559 			break;
1560 		case 4:
1561 			spi->mode |= SPI_RX_QUAD;
1562 			break;
1563 		default:
1564 			dev_warn(&master->dev,
1565 				"spi-rx-bus-width %d not supported\n",
1566 				value);
1567 			break;
1568 		}
1569 	}
1570 
1571 	/* Device speed */
1572 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1573 	if (rc) {
1574 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1575 			nc->full_name, rc);
1576 		return rc;
1577 	}
1578 	spi->max_speed_hz = value;
1579 
1580 	return 0;
1581 }
1582 
1583 static struct spi_device *
1584 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1585 {
1586 	struct spi_device *spi;
1587 	int rc;
1588 
1589 	/* Alloc an spi_device */
1590 	spi = spi_alloc_device(master);
1591 	if (!spi) {
1592 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1593 			nc->full_name);
1594 		rc = -ENOMEM;
1595 		goto err_out;
1596 	}
1597 
1598 	/* Select device driver */
1599 	rc = of_modalias_node(nc, spi->modalias,
1600 				sizeof(spi->modalias));
1601 	if (rc < 0) {
1602 		dev_err(&master->dev, "cannot find modalias for %s\n",
1603 			nc->full_name);
1604 		goto err_out;
1605 	}
1606 
1607 	rc = of_spi_parse_dt(master, spi, nc);
1608 	if (rc)
1609 		goto err_out;
1610 
1611 	/* Store a pointer to the node in the device structure */
1612 	of_node_get(nc);
1613 	spi->dev.of_node = nc;
1614 
1615 	/* Register the new device */
1616 	rc = spi_add_device(spi);
1617 	if (rc) {
1618 		dev_err(&master->dev, "spi_device register error %s\n",
1619 			nc->full_name);
1620 		goto err_of_node_put;
1621 	}
1622 
1623 	return spi;
1624 
1625 err_of_node_put:
1626 	of_node_put(nc);
1627 err_out:
1628 	spi_dev_put(spi);
1629 	return ERR_PTR(rc);
1630 }
1631 
1632 /**
1633  * of_register_spi_devices() - Register child devices onto the SPI bus
1634  * @master:	Pointer to spi_master device
1635  *
1636  * Registers an spi_device for each child node of master node which has a 'reg'
1637  * property.
1638  */
1639 static void of_register_spi_devices(struct spi_master *master)
1640 {
1641 	struct spi_device *spi;
1642 	struct device_node *nc;
1643 
1644 	if (!master->dev.of_node)
1645 		return;
1646 
1647 	for_each_available_child_of_node(master->dev.of_node, nc) {
1648 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1649 			continue;
1650 		spi = of_register_spi_device(master, nc);
1651 		if (IS_ERR(spi)) {
1652 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1653 				nc->full_name);
1654 			of_node_clear_flag(nc, OF_POPULATED);
1655 		}
1656 	}
1657 }
1658 #else
1659 static void of_register_spi_devices(struct spi_master *master) { }
1660 #endif
1661 
1662 #ifdef CONFIG_ACPI
1663 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1664 {
1665 	struct spi_device *spi = data;
1666 	struct spi_master *master = spi->master;
1667 
1668 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1669 		struct acpi_resource_spi_serialbus *sb;
1670 
1671 		sb = &ares->data.spi_serial_bus;
1672 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1673 			/*
1674 			 * ACPI DeviceSelection numbering is handled by the
1675 			 * host controller driver in Windows and can vary
1676 			 * from driver to driver. In Linux we always expect
1677 			 * 0 .. max - 1 so we need to ask the driver to
1678 			 * translate between the two schemes.
1679 			 */
1680 			if (master->fw_translate_cs) {
1681 				int cs = master->fw_translate_cs(master,
1682 						sb->device_selection);
1683 				if (cs < 0)
1684 					return cs;
1685 				spi->chip_select = cs;
1686 			} else {
1687 				spi->chip_select = sb->device_selection;
1688 			}
1689 
1690 			spi->max_speed_hz = sb->connection_speed;
1691 
1692 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1693 				spi->mode |= SPI_CPHA;
1694 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1695 				spi->mode |= SPI_CPOL;
1696 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1697 				spi->mode |= SPI_CS_HIGH;
1698 		}
1699 	} else if (spi->irq < 0) {
1700 		struct resource r;
1701 
1702 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1703 			spi->irq = r.start;
1704 	}
1705 
1706 	/* Always tell the ACPI core to skip this resource */
1707 	return 1;
1708 }
1709 
1710 static acpi_status acpi_register_spi_device(struct spi_master *master,
1711 					    struct acpi_device *adev)
1712 {
1713 	struct list_head resource_list;
1714 	struct spi_device *spi;
1715 	int ret;
1716 
1717 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1718 	    acpi_device_enumerated(adev))
1719 		return AE_OK;
1720 
1721 	spi = spi_alloc_device(master);
1722 	if (!spi) {
1723 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1724 			dev_name(&adev->dev));
1725 		return AE_NO_MEMORY;
1726 	}
1727 
1728 	ACPI_COMPANION_SET(&spi->dev, adev);
1729 	spi->irq = -1;
1730 
1731 	INIT_LIST_HEAD(&resource_list);
1732 	ret = acpi_dev_get_resources(adev, &resource_list,
1733 				     acpi_spi_add_resource, spi);
1734 	acpi_dev_free_resource_list(&resource_list);
1735 
1736 	if (ret < 0 || !spi->max_speed_hz) {
1737 		spi_dev_put(spi);
1738 		return AE_OK;
1739 	}
1740 
1741 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1742 			  sizeof(spi->modalias));
1743 
1744 	if (spi->irq < 0)
1745 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1746 
1747 	acpi_device_set_enumerated(adev);
1748 
1749 	adev->power.flags.ignore_parent = true;
1750 	if (spi_add_device(spi)) {
1751 		adev->power.flags.ignore_parent = false;
1752 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1753 			dev_name(&adev->dev));
1754 		spi_dev_put(spi);
1755 	}
1756 
1757 	return AE_OK;
1758 }
1759 
1760 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1761 				       void *data, void **return_value)
1762 {
1763 	struct spi_master *master = data;
1764 	struct acpi_device *adev;
1765 
1766 	if (acpi_bus_get_device(handle, &adev))
1767 		return AE_OK;
1768 
1769 	return acpi_register_spi_device(master, adev);
1770 }
1771 
1772 static void acpi_register_spi_devices(struct spi_master *master)
1773 {
1774 	acpi_status status;
1775 	acpi_handle handle;
1776 
1777 	handle = ACPI_HANDLE(master->dev.parent);
1778 	if (!handle)
1779 		return;
1780 
1781 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1782 				     acpi_spi_add_device, NULL,
1783 				     master, NULL);
1784 	if (ACPI_FAILURE(status))
1785 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1786 }
1787 #else
1788 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1789 #endif /* CONFIG_ACPI */
1790 
1791 static void spi_master_release(struct device *dev)
1792 {
1793 	struct spi_master *master;
1794 
1795 	master = container_of(dev, struct spi_master, dev);
1796 	kfree(master);
1797 }
1798 
1799 static struct class spi_master_class = {
1800 	.name		= "spi_master",
1801 	.owner		= THIS_MODULE,
1802 	.dev_release	= spi_master_release,
1803 	.dev_groups	= spi_master_groups,
1804 };
1805 
1806 
1807 /**
1808  * spi_alloc_master - allocate SPI master controller
1809  * @dev: the controller, possibly using the platform_bus
1810  * @size: how much zeroed driver-private data to allocate; the pointer to this
1811  *	memory is in the driver_data field of the returned device,
1812  *	accessible with spi_master_get_devdata().
1813  * Context: can sleep
1814  *
1815  * This call is used only by SPI master controller drivers, which are the
1816  * only ones directly touching chip registers.  It's how they allocate
1817  * an spi_master structure, prior to calling spi_register_master().
1818  *
1819  * This must be called from context that can sleep.
1820  *
1821  * The caller is responsible for assigning the bus number and initializing
1822  * the master's methods before calling spi_register_master(); and (after errors
1823  * adding the device) calling spi_master_put() to prevent a memory leak.
1824  *
1825  * Return: the SPI master structure on success, else NULL.
1826  */
1827 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1828 {
1829 	struct spi_master	*master;
1830 
1831 	if (!dev)
1832 		return NULL;
1833 
1834 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1835 	if (!master)
1836 		return NULL;
1837 
1838 	device_initialize(&master->dev);
1839 	master->bus_num = -1;
1840 	master->num_chipselect = 1;
1841 	master->dev.class = &spi_master_class;
1842 	master->dev.parent = dev;
1843 	pm_suspend_ignore_children(&master->dev, true);
1844 	spi_master_set_devdata(master, &master[1]);
1845 
1846 	return master;
1847 }
1848 EXPORT_SYMBOL_GPL(spi_alloc_master);
1849 
1850 #ifdef CONFIG_OF
1851 static int of_spi_register_master(struct spi_master *master)
1852 {
1853 	int nb, i, *cs;
1854 	struct device_node *np = master->dev.of_node;
1855 
1856 	if (!np)
1857 		return 0;
1858 
1859 	nb = of_gpio_named_count(np, "cs-gpios");
1860 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1861 
1862 	/* Return error only for an incorrectly formed cs-gpios property */
1863 	if (nb == 0 || nb == -ENOENT)
1864 		return 0;
1865 	else if (nb < 0)
1866 		return nb;
1867 
1868 	cs = devm_kzalloc(&master->dev,
1869 			  sizeof(int) * master->num_chipselect,
1870 			  GFP_KERNEL);
1871 	master->cs_gpios = cs;
1872 
1873 	if (!master->cs_gpios)
1874 		return -ENOMEM;
1875 
1876 	for (i = 0; i < master->num_chipselect; i++)
1877 		cs[i] = -ENOENT;
1878 
1879 	for (i = 0; i < nb; i++)
1880 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1881 
1882 	return 0;
1883 }
1884 #else
1885 static int of_spi_register_master(struct spi_master *master)
1886 {
1887 	return 0;
1888 }
1889 #endif
1890 
1891 /**
1892  * spi_register_master - register SPI master controller
1893  * @master: initialized master, originally from spi_alloc_master()
1894  * Context: can sleep
1895  *
1896  * SPI master controllers connect to their drivers using some non-SPI bus,
1897  * such as the platform bus.  The final stage of probe() in that code
1898  * includes calling spi_register_master() to hook up to this SPI bus glue.
1899  *
1900  * SPI controllers use board specific (often SOC specific) bus numbers,
1901  * and board-specific addressing for SPI devices combines those numbers
1902  * with chip select numbers.  Since SPI does not directly support dynamic
1903  * device identification, boards need configuration tables telling which
1904  * chip is at which address.
1905  *
1906  * This must be called from context that can sleep.  It returns zero on
1907  * success, else a negative error code (dropping the master's refcount).
1908  * After a successful return, the caller is responsible for calling
1909  * spi_unregister_master().
1910  *
1911  * Return: zero on success, else a negative error code.
1912  */
1913 int spi_register_master(struct spi_master *master)
1914 {
1915 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1916 	struct device		*dev = master->dev.parent;
1917 	struct boardinfo	*bi;
1918 	int			status = -ENODEV;
1919 	int			dynamic = 0;
1920 
1921 	if (!dev)
1922 		return -ENODEV;
1923 
1924 	status = of_spi_register_master(master);
1925 	if (status)
1926 		return status;
1927 
1928 	/* even if it's just one always-selected device, there must
1929 	 * be at least one chipselect
1930 	 */
1931 	if (master->num_chipselect == 0)
1932 		return -EINVAL;
1933 
1934 	if ((master->bus_num < 0) && master->dev.of_node)
1935 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1936 
1937 	/* convention:  dynamically assigned bus IDs count down from the max */
1938 	if (master->bus_num < 0) {
1939 		/* FIXME switch to an IDR based scheme, something like
1940 		 * I2C now uses, so we can't run out of "dynamic" IDs
1941 		 */
1942 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1943 		dynamic = 1;
1944 	}
1945 
1946 	INIT_LIST_HEAD(&master->queue);
1947 	spin_lock_init(&master->queue_lock);
1948 	spin_lock_init(&master->bus_lock_spinlock);
1949 	mutex_init(&master->bus_lock_mutex);
1950 	mutex_init(&master->io_mutex);
1951 	master->bus_lock_flag = 0;
1952 	init_completion(&master->xfer_completion);
1953 	if (!master->max_dma_len)
1954 		master->max_dma_len = INT_MAX;
1955 
1956 	/* register the device, then userspace will see it.
1957 	 * registration fails if the bus ID is in use.
1958 	 */
1959 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1960 	status = device_add(&master->dev);
1961 	if (status < 0)
1962 		goto done;
1963 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1964 			dynamic ? " (dynamic)" : "");
1965 
1966 	/* If we're using a queued driver, start the queue */
1967 	if (master->transfer)
1968 		dev_info(dev, "master is unqueued, this is deprecated\n");
1969 	else {
1970 		status = spi_master_initialize_queue(master);
1971 		if (status) {
1972 			device_del(&master->dev);
1973 			goto done;
1974 		}
1975 	}
1976 	/* add statistics */
1977 	spin_lock_init(&master->statistics.lock);
1978 
1979 	mutex_lock(&board_lock);
1980 	list_add_tail(&master->list, &spi_master_list);
1981 	list_for_each_entry(bi, &board_list, list)
1982 		spi_match_master_to_boardinfo(master, &bi->board_info);
1983 	mutex_unlock(&board_lock);
1984 
1985 	/* Register devices from the device tree and ACPI */
1986 	of_register_spi_devices(master);
1987 	acpi_register_spi_devices(master);
1988 done:
1989 	return status;
1990 }
1991 EXPORT_SYMBOL_GPL(spi_register_master);
1992 
1993 static void devm_spi_unregister(struct device *dev, void *res)
1994 {
1995 	spi_unregister_master(*(struct spi_master **)res);
1996 }
1997 
1998 /**
1999  * dev_spi_register_master - register managed SPI master controller
2000  * @dev:    device managing SPI master
2001  * @master: initialized master, originally from spi_alloc_master()
2002  * Context: can sleep
2003  *
2004  * Register a SPI device as with spi_register_master() which will
2005  * automatically be unregister
2006  *
2007  * Return: zero on success, else a negative error code.
2008  */
2009 int devm_spi_register_master(struct device *dev, struct spi_master *master)
2010 {
2011 	struct spi_master **ptr;
2012 	int ret;
2013 
2014 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2015 	if (!ptr)
2016 		return -ENOMEM;
2017 
2018 	ret = spi_register_master(master);
2019 	if (!ret) {
2020 		*ptr = master;
2021 		devres_add(dev, ptr);
2022 	} else {
2023 		devres_free(ptr);
2024 	}
2025 
2026 	return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(devm_spi_register_master);
2029 
2030 static int __unregister(struct device *dev, void *null)
2031 {
2032 	spi_unregister_device(to_spi_device(dev));
2033 	return 0;
2034 }
2035 
2036 /**
2037  * spi_unregister_master - unregister SPI master controller
2038  * @master: the master being unregistered
2039  * Context: can sleep
2040  *
2041  * This call is used only by SPI master controller drivers, which are the
2042  * only ones directly touching chip registers.
2043  *
2044  * This must be called from context that can sleep.
2045  */
2046 void spi_unregister_master(struct spi_master *master)
2047 {
2048 	int dummy;
2049 
2050 	if (master->queued) {
2051 		if (spi_destroy_queue(master))
2052 			dev_err(&master->dev, "queue remove failed\n");
2053 	}
2054 
2055 	mutex_lock(&board_lock);
2056 	list_del(&master->list);
2057 	mutex_unlock(&board_lock);
2058 
2059 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
2060 	device_unregister(&master->dev);
2061 }
2062 EXPORT_SYMBOL_GPL(spi_unregister_master);
2063 
2064 int spi_master_suspend(struct spi_master *master)
2065 {
2066 	int ret;
2067 
2068 	/* Basically no-ops for non-queued masters */
2069 	if (!master->queued)
2070 		return 0;
2071 
2072 	ret = spi_stop_queue(master);
2073 	if (ret)
2074 		dev_err(&master->dev, "queue stop failed\n");
2075 
2076 	return ret;
2077 }
2078 EXPORT_SYMBOL_GPL(spi_master_suspend);
2079 
2080 int spi_master_resume(struct spi_master *master)
2081 {
2082 	int ret;
2083 
2084 	if (!master->queued)
2085 		return 0;
2086 
2087 	ret = spi_start_queue(master);
2088 	if (ret)
2089 		dev_err(&master->dev, "queue restart failed\n");
2090 
2091 	return ret;
2092 }
2093 EXPORT_SYMBOL_GPL(spi_master_resume);
2094 
2095 static int __spi_master_match(struct device *dev, const void *data)
2096 {
2097 	struct spi_master *m;
2098 	const u16 *bus_num = data;
2099 
2100 	m = container_of(dev, struct spi_master, dev);
2101 	return m->bus_num == *bus_num;
2102 }
2103 
2104 /**
2105  * spi_busnum_to_master - look up master associated with bus_num
2106  * @bus_num: the master's bus number
2107  * Context: can sleep
2108  *
2109  * This call may be used with devices that are registered after
2110  * arch init time.  It returns a refcounted pointer to the relevant
2111  * spi_master (which the caller must release), or NULL if there is
2112  * no such master registered.
2113  *
2114  * Return: the SPI master structure on success, else NULL.
2115  */
2116 struct spi_master *spi_busnum_to_master(u16 bus_num)
2117 {
2118 	struct device		*dev;
2119 	struct spi_master	*master = NULL;
2120 
2121 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2122 				__spi_master_match);
2123 	if (dev)
2124 		master = container_of(dev, struct spi_master, dev);
2125 	/* reference got in class_find_device */
2126 	return master;
2127 }
2128 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2129 
2130 /*-------------------------------------------------------------------------*/
2131 
2132 /* Core methods for SPI resource management */
2133 
2134 /**
2135  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2136  *                 during the processing of a spi_message while using
2137  *                 spi_transfer_one
2138  * @spi:     the spi device for which we allocate memory
2139  * @release: the release code to execute for this resource
2140  * @size:    size to alloc and return
2141  * @gfp:     GFP allocation flags
2142  *
2143  * Return: the pointer to the allocated data
2144  *
2145  * This may get enhanced in the future to allocate from a memory pool
2146  * of the @spi_device or @spi_master to avoid repeated allocations.
2147  */
2148 void *spi_res_alloc(struct spi_device *spi,
2149 		    spi_res_release_t release,
2150 		    size_t size, gfp_t gfp)
2151 {
2152 	struct spi_res *sres;
2153 
2154 	sres = kzalloc(sizeof(*sres) + size, gfp);
2155 	if (!sres)
2156 		return NULL;
2157 
2158 	INIT_LIST_HEAD(&sres->entry);
2159 	sres->release = release;
2160 
2161 	return sres->data;
2162 }
2163 EXPORT_SYMBOL_GPL(spi_res_alloc);
2164 
2165 /**
2166  * spi_res_free - free an spi resource
2167  * @res: pointer to the custom data of a resource
2168  *
2169  */
2170 void spi_res_free(void *res)
2171 {
2172 	struct spi_res *sres = container_of(res, struct spi_res, data);
2173 
2174 	if (!res)
2175 		return;
2176 
2177 	WARN_ON(!list_empty(&sres->entry));
2178 	kfree(sres);
2179 }
2180 EXPORT_SYMBOL_GPL(spi_res_free);
2181 
2182 /**
2183  * spi_res_add - add a spi_res to the spi_message
2184  * @message: the spi message
2185  * @res:     the spi_resource
2186  */
2187 void spi_res_add(struct spi_message *message, void *res)
2188 {
2189 	struct spi_res *sres = container_of(res, struct spi_res, data);
2190 
2191 	WARN_ON(!list_empty(&sres->entry));
2192 	list_add_tail(&sres->entry, &message->resources);
2193 }
2194 EXPORT_SYMBOL_GPL(spi_res_add);
2195 
2196 /**
2197  * spi_res_release - release all spi resources for this message
2198  * @master:  the @spi_master
2199  * @message: the @spi_message
2200  */
2201 void spi_res_release(struct spi_master *master,
2202 		     struct spi_message *message)
2203 {
2204 	struct spi_res *res;
2205 
2206 	while (!list_empty(&message->resources)) {
2207 		res = list_last_entry(&message->resources,
2208 				      struct spi_res, entry);
2209 
2210 		if (res->release)
2211 			res->release(master, message, res->data);
2212 
2213 		list_del(&res->entry);
2214 
2215 		kfree(res);
2216 	}
2217 }
2218 EXPORT_SYMBOL_GPL(spi_res_release);
2219 
2220 /*-------------------------------------------------------------------------*/
2221 
2222 /* Core methods for spi_message alterations */
2223 
2224 static void __spi_replace_transfers_release(struct spi_master *master,
2225 					    struct spi_message *msg,
2226 					    void *res)
2227 {
2228 	struct spi_replaced_transfers *rxfer = res;
2229 	size_t i;
2230 
2231 	/* call extra callback if requested */
2232 	if (rxfer->release)
2233 		rxfer->release(master, msg, res);
2234 
2235 	/* insert replaced transfers back into the message */
2236 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2237 
2238 	/* remove the formerly inserted entries */
2239 	for (i = 0; i < rxfer->inserted; i++)
2240 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2241 }
2242 
2243 /**
2244  * spi_replace_transfers - replace transfers with several transfers
2245  *                         and register change with spi_message.resources
2246  * @msg:           the spi_message we work upon
2247  * @xfer_first:    the first spi_transfer we want to replace
2248  * @remove:        number of transfers to remove
2249  * @insert:        the number of transfers we want to insert instead
2250  * @release:       extra release code necessary in some circumstances
2251  * @extradatasize: extra data to allocate (with alignment guarantees
2252  *                 of struct @spi_transfer)
2253  * @gfp:           gfp flags
2254  *
2255  * Returns: pointer to @spi_replaced_transfers,
2256  *          PTR_ERR(...) in case of errors.
2257  */
2258 struct spi_replaced_transfers *spi_replace_transfers(
2259 	struct spi_message *msg,
2260 	struct spi_transfer *xfer_first,
2261 	size_t remove,
2262 	size_t insert,
2263 	spi_replaced_release_t release,
2264 	size_t extradatasize,
2265 	gfp_t gfp)
2266 {
2267 	struct spi_replaced_transfers *rxfer;
2268 	struct spi_transfer *xfer;
2269 	size_t i;
2270 
2271 	/* allocate the structure using spi_res */
2272 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2273 			      insert * sizeof(struct spi_transfer)
2274 			      + sizeof(struct spi_replaced_transfers)
2275 			      + extradatasize,
2276 			      gfp);
2277 	if (!rxfer)
2278 		return ERR_PTR(-ENOMEM);
2279 
2280 	/* the release code to invoke before running the generic release */
2281 	rxfer->release = release;
2282 
2283 	/* assign extradata */
2284 	if (extradatasize)
2285 		rxfer->extradata =
2286 			&rxfer->inserted_transfers[insert];
2287 
2288 	/* init the replaced_transfers list */
2289 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2290 
2291 	/* assign the list_entry after which we should reinsert
2292 	 * the @replaced_transfers - it may be spi_message.messages!
2293 	 */
2294 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2295 
2296 	/* remove the requested number of transfers */
2297 	for (i = 0; i < remove; i++) {
2298 		/* if the entry after replaced_after it is msg->transfers
2299 		 * then we have been requested to remove more transfers
2300 		 * than are in the list
2301 		 */
2302 		if (rxfer->replaced_after->next == &msg->transfers) {
2303 			dev_err(&msg->spi->dev,
2304 				"requested to remove more spi_transfers than are available\n");
2305 			/* insert replaced transfers back into the message */
2306 			list_splice(&rxfer->replaced_transfers,
2307 				    rxfer->replaced_after);
2308 
2309 			/* free the spi_replace_transfer structure */
2310 			spi_res_free(rxfer);
2311 
2312 			/* and return with an error */
2313 			return ERR_PTR(-EINVAL);
2314 		}
2315 
2316 		/* remove the entry after replaced_after from list of
2317 		 * transfers and add it to list of replaced_transfers
2318 		 */
2319 		list_move_tail(rxfer->replaced_after->next,
2320 			       &rxfer->replaced_transfers);
2321 	}
2322 
2323 	/* create copy of the given xfer with identical settings
2324 	 * based on the first transfer to get removed
2325 	 */
2326 	for (i = 0; i < insert; i++) {
2327 		/* we need to run in reverse order */
2328 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2329 
2330 		/* copy all spi_transfer data */
2331 		memcpy(xfer, xfer_first, sizeof(*xfer));
2332 
2333 		/* add to list */
2334 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2335 
2336 		/* clear cs_change and delay_usecs for all but the last */
2337 		if (i) {
2338 			xfer->cs_change = false;
2339 			xfer->delay_usecs = 0;
2340 		}
2341 	}
2342 
2343 	/* set up inserted */
2344 	rxfer->inserted = insert;
2345 
2346 	/* and register it with spi_res/spi_message */
2347 	spi_res_add(msg, rxfer);
2348 
2349 	return rxfer;
2350 }
2351 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2352 
2353 static int __spi_split_transfer_maxsize(struct spi_master *master,
2354 					struct spi_message *msg,
2355 					struct spi_transfer **xferp,
2356 					size_t maxsize,
2357 					gfp_t gfp)
2358 {
2359 	struct spi_transfer *xfer = *xferp, *xfers;
2360 	struct spi_replaced_transfers *srt;
2361 	size_t offset;
2362 	size_t count, i;
2363 
2364 	/* warn once about this fact that we are splitting a transfer */
2365 	dev_warn_once(&msg->spi->dev,
2366 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2367 		      xfer->len, maxsize);
2368 
2369 	/* calculate how many we have to replace */
2370 	count = DIV_ROUND_UP(xfer->len, maxsize);
2371 
2372 	/* create replacement */
2373 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2374 	if (IS_ERR(srt))
2375 		return PTR_ERR(srt);
2376 	xfers = srt->inserted_transfers;
2377 
2378 	/* now handle each of those newly inserted spi_transfers
2379 	 * note that the replacements spi_transfers all are preset
2380 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2381 	 * are all identical (as well as most others)
2382 	 * so we just have to fix up len and the pointers.
2383 	 *
2384 	 * this also includes support for the depreciated
2385 	 * spi_message.is_dma_mapped interface
2386 	 */
2387 
2388 	/* the first transfer just needs the length modified, so we
2389 	 * run it outside the loop
2390 	 */
2391 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2392 
2393 	/* all the others need rx_buf/tx_buf also set */
2394 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2395 		/* update rx_buf, tx_buf and dma */
2396 		if (xfers[i].rx_buf)
2397 			xfers[i].rx_buf += offset;
2398 		if (xfers[i].rx_dma)
2399 			xfers[i].rx_dma += offset;
2400 		if (xfers[i].tx_buf)
2401 			xfers[i].tx_buf += offset;
2402 		if (xfers[i].tx_dma)
2403 			xfers[i].tx_dma += offset;
2404 
2405 		/* update length */
2406 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2407 	}
2408 
2409 	/* we set up xferp to the last entry we have inserted,
2410 	 * so that we skip those already split transfers
2411 	 */
2412 	*xferp = &xfers[count - 1];
2413 
2414 	/* increment statistics counters */
2415 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2416 				       transfers_split_maxsize);
2417 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2418 				       transfers_split_maxsize);
2419 
2420 	return 0;
2421 }
2422 
2423 /**
2424  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2425  *                              when an individual transfer exceeds a
2426  *                              certain size
2427  * @master:    the @spi_master for this transfer
2428  * @msg:   the @spi_message to transform
2429  * @maxsize:  the maximum when to apply this
2430  * @gfp: GFP allocation flags
2431  *
2432  * Return: status of transformation
2433  */
2434 int spi_split_transfers_maxsize(struct spi_master *master,
2435 				struct spi_message *msg,
2436 				size_t maxsize,
2437 				gfp_t gfp)
2438 {
2439 	struct spi_transfer *xfer;
2440 	int ret;
2441 
2442 	/* iterate over the transfer_list,
2443 	 * but note that xfer is advanced to the last transfer inserted
2444 	 * to avoid checking sizes again unnecessarily (also xfer does
2445 	 * potentiall belong to a different list by the time the
2446 	 * replacement has happened
2447 	 */
2448 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2449 		if (xfer->len > maxsize) {
2450 			ret = __spi_split_transfer_maxsize(
2451 				master, msg, &xfer, maxsize, gfp);
2452 			if (ret)
2453 				return ret;
2454 		}
2455 	}
2456 
2457 	return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2460 
2461 /*-------------------------------------------------------------------------*/
2462 
2463 /* Core methods for SPI master protocol drivers.  Some of the
2464  * other core methods are currently defined as inline functions.
2465  */
2466 
2467 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2468 {
2469 	if (master->bits_per_word_mask) {
2470 		/* Only 32 bits fit in the mask */
2471 		if (bits_per_word > 32)
2472 			return -EINVAL;
2473 		if (!(master->bits_per_word_mask &
2474 				SPI_BPW_MASK(bits_per_word)))
2475 			return -EINVAL;
2476 	}
2477 
2478 	return 0;
2479 }
2480 
2481 /**
2482  * spi_setup - setup SPI mode and clock rate
2483  * @spi: the device whose settings are being modified
2484  * Context: can sleep, and no requests are queued to the device
2485  *
2486  * SPI protocol drivers may need to update the transfer mode if the
2487  * device doesn't work with its default.  They may likewise need
2488  * to update clock rates or word sizes from initial values.  This function
2489  * changes those settings, and must be called from a context that can sleep.
2490  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2491  * effect the next time the device is selected and data is transferred to
2492  * or from it.  When this function returns, the spi device is deselected.
2493  *
2494  * Note that this call will fail if the protocol driver specifies an option
2495  * that the underlying controller or its driver does not support.  For
2496  * example, not all hardware supports wire transfers using nine bit words,
2497  * LSB-first wire encoding, or active-high chipselects.
2498  *
2499  * Return: zero on success, else a negative error code.
2500  */
2501 int spi_setup(struct spi_device *spi)
2502 {
2503 	unsigned	bad_bits, ugly_bits;
2504 	int		status;
2505 
2506 	/* check mode to prevent that DUAL and QUAD set at the same time
2507 	 */
2508 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2509 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2510 		dev_err(&spi->dev,
2511 		"setup: can not select dual and quad at the same time\n");
2512 		return -EINVAL;
2513 	}
2514 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2515 	 */
2516 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2517 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2518 		return -EINVAL;
2519 	/* help drivers fail *cleanly* when they need options
2520 	 * that aren't supported with their current master
2521 	 */
2522 	bad_bits = spi->mode & ~spi->master->mode_bits;
2523 	ugly_bits = bad_bits &
2524 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2525 	if (ugly_bits) {
2526 		dev_warn(&spi->dev,
2527 			 "setup: ignoring unsupported mode bits %x\n",
2528 			 ugly_bits);
2529 		spi->mode &= ~ugly_bits;
2530 		bad_bits &= ~ugly_bits;
2531 	}
2532 	if (bad_bits) {
2533 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2534 			bad_bits);
2535 		return -EINVAL;
2536 	}
2537 
2538 	if (!spi->bits_per_word)
2539 		spi->bits_per_word = 8;
2540 
2541 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2542 	if (status)
2543 		return status;
2544 
2545 	if (!spi->max_speed_hz)
2546 		spi->max_speed_hz = spi->master->max_speed_hz;
2547 
2548 	if (spi->master->setup)
2549 		status = spi->master->setup(spi);
2550 
2551 	spi_set_cs(spi, false);
2552 
2553 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2554 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2555 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2556 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2557 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2558 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2559 			spi->bits_per_word, spi->max_speed_hz,
2560 			status);
2561 
2562 	return status;
2563 }
2564 EXPORT_SYMBOL_GPL(spi_setup);
2565 
2566 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2567 {
2568 	struct spi_master *master = spi->master;
2569 	struct spi_transfer *xfer;
2570 	int w_size;
2571 
2572 	if (list_empty(&message->transfers))
2573 		return -EINVAL;
2574 
2575 	/* Half-duplex links include original MicroWire, and ones with
2576 	 * only one data pin like SPI_3WIRE (switches direction) or where
2577 	 * either MOSI or MISO is missing.  They can also be caused by
2578 	 * software limitations.
2579 	 */
2580 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2581 			|| (spi->mode & SPI_3WIRE)) {
2582 		unsigned flags = master->flags;
2583 
2584 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2585 			if (xfer->rx_buf && xfer->tx_buf)
2586 				return -EINVAL;
2587 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2588 				return -EINVAL;
2589 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2590 				return -EINVAL;
2591 		}
2592 	}
2593 
2594 	/**
2595 	 * Set transfer bits_per_word and max speed as spi device default if
2596 	 * it is not set for this transfer.
2597 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2598 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2599 	 */
2600 	message->frame_length = 0;
2601 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2602 		message->frame_length += xfer->len;
2603 		if (!xfer->bits_per_word)
2604 			xfer->bits_per_word = spi->bits_per_word;
2605 
2606 		if (!xfer->speed_hz)
2607 			xfer->speed_hz = spi->max_speed_hz;
2608 		if (!xfer->speed_hz)
2609 			xfer->speed_hz = master->max_speed_hz;
2610 
2611 		if (master->max_speed_hz &&
2612 		    xfer->speed_hz > master->max_speed_hz)
2613 			xfer->speed_hz = master->max_speed_hz;
2614 
2615 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2616 			return -EINVAL;
2617 
2618 		/*
2619 		 * SPI transfer length should be multiple of SPI word size
2620 		 * where SPI word size should be power-of-two multiple
2621 		 */
2622 		if (xfer->bits_per_word <= 8)
2623 			w_size = 1;
2624 		else if (xfer->bits_per_word <= 16)
2625 			w_size = 2;
2626 		else
2627 			w_size = 4;
2628 
2629 		/* No partial transfers accepted */
2630 		if (xfer->len % w_size)
2631 			return -EINVAL;
2632 
2633 		if (xfer->speed_hz && master->min_speed_hz &&
2634 		    xfer->speed_hz < master->min_speed_hz)
2635 			return -EINVAL;
2636 
2637 		if (xfer->tx_buf && !xfer->tx_nbits)
2638 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2639 		if (xfer->rx_buf && !xfer->rx_nbits)
2640 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2641 		/* check transfer tx/rx_nbits:
2642 		 * 1. check the value matches one of single, dual and quad
2643 		 * 2. check tx/rx_nbits match the mode in spi_device
2644 		 */
2645 		if (xfer->tx_buf) {
2646 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2647 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2648 				xfer->tx_nbits != SPI_NBITS_QUAD)
2649 				return -EINVAL;
2650 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2651 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2652 				return -EINVAL;
2653 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2654 				!(spi->mode & SPI_TX_QUAD))
2655 				return -EINVAL;
2656 		}
2657 		/* check transfer rx_nbits */
2658 		if (xfer->rx_buf) {
2659 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2660 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2661 				xfer->rx_nbits != SPI_NBITS_QUAD)
2662 				return -EINVAL;
2663 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2664 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2665 				return -EINVAL;
2666 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2667 				!(spi->mode & SPI_RX_QUAD))
2668 				return -EINVAL;
2669 		}
2670 	}
2671 
2672 	message->status = -EINPROGRESS;
2673 
2674 	return 0;
2675 }
2676 
2677 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2678 {
2679 	struct spi_master *master = spi->master;
2680 
2681 	message->spi = spi;
2682 
2683 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2684 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2685 
2686 	trace_spi_message_submit(message);
2687 
2688 	return master->transfer(spi, message);
2689 }
2690 
2691 /**
2692  * spi_async - asynchronous SPI transfer
2693  * @spi: device with which data will be exchanged
2694  * @message: describes the data transfers, including completion callback
2695  * Context: any (irqs may be blocked, etc)
2696  *
2697  * This call may be used in_irq and other contexts which can't sleep,
2698  * as well as from task contexts which can sleep.
2699  *
2700  * The completion callback is invoked in a context which can't sleep.
2701  * Before that invocation, the value of message->status is undefined.
2702  * When the callback is issued, message->status holds either zero (to
2703  * indicate complete success) or a negative error code.  After that
2704  * callback returns, the driver which issued the transfer request may
2705  * deallocate the associated memory; it's no longer in use by any SPI
2706  * core or controller driver code.
2707  *
2708  * Note that although all messages to a spi_device are handled in
2709  * FIFO order, messages may go to different devices in other orders.
2710  * Some device might be higher priority, or have various "hard" access
2711  * time requirements, for example.
2712  *
2713  * On detection of any fault during the transfer, processing of
2714  * the entire message is aborted, and the device is deselected.
2715  * Until returning from the associated message completion callback,
2716  * no other spi_message queued to that device will be processed.
2717  * (This rule applies equally to all the synchronous transfer calls,
2718  * which are wrappers around this core asynchronous primitive.)
2719  *
2720  * Return: zero on success, else a negative error code.
2721  */
2722 int spi_async(struct spi_device *spi, struct spi_message *message)
2723 {
2724 	struct spi_master *master = spi->master;
2725 	int ret;
2726 	unsigned long flags;
2727 
2728 	ret = __spi_validate(spi, message);
2729 	if (ret != 0)
2730 		return ret;
2731 
2732 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2733 
2734 	if (master->bus_lock_flag)
2735 		ret = -EBUSY;
2736 	else
2737 		ret = __spi_async(spi, message);
2738 
2739 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2740 
2741 	return ret;
2742 }
2743 EXPORT_SYMBOL_GPL(spi_async);
2744 
2745 /**
2746  * spi_async_locked - version of spi_async with exclusive bus usage
2747  * @spi: device with which data will be exchanged
2748  * @message: describes the data transfers, including completion callback
2749  * Context: any (irqs may be blocked, etc)
2750  *
2751  * This call may be used in_irq and other contexts which can't sleep,
2752  * as well as from task contexts which can sleep.
2753  *
2754  * The completion callback is invoked in a context which can't sleep.
2755  * Before that invocation, the value of message->status is undefined.
2756  * When the callback is issued, message->status holds either zero (to
2757  * indicate complete success) or a negative error code.  After that
2758  * callback returns, the driver which issued the transfer request may
2759  * deallocate the associated memory; it's no longer in use by any SPI
2760  * core or controller driver code.
2761  *
2762  * Note that although all messages to a spi_device are handled in
2763  * FIFO order, messages may go to different devices in other orders.
2764  * Some device might be higher priority, or have various "hard" access
2765  * time requirements, for example.
2766  *
2767  * On detection of any fault during the transfer, processing of
2768  * the entire message is aborted, and the device is deselected.
2769  * Until returning from the associated message completion callback,
2770  * no other spi_message queued to that device will be processed.
2771  * (This rule applies equally to all the synchronous transfer calls,
2772  * which are wrappers around this core asynchronous primitive.)
2773  *
2774  * Return: zero on success, else a negative error code.
2775  */
2776 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2777 {
2778 	struct spi_master *master = spi->master;
2779 	int ret;
2780 	unsigned long flags;
2781 
2782 	ret = __spi_validate(spi, message);
2783 	if (ret != 0)
2784 		return ret;
2785 
2786 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2787 
2788 	ret = __spi_async(spi, message);
2789 
2790 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2791 
2792 	return ret;
2793 
2794 }
2795 EXPORT_SYMBOL_GPL(spi_async_locked);
2796 
2797 
2798 int spi_flash_read(struct spi_device *spi,
2799 		   struct spi_flash_read_message *msg)
2800 
2801 {
2802 	struct spi_master *master = spi->master;
2803 	struct device *rx_dev = NULL;
2804 	int ret;
2805 
2806 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2807 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2808 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2809 		return -EINVAL;
2810 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2811 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2812 	    !(spi->mode & SPI_TX_QUAD))
2813 		return -EINVAL;
2814 	if (msg->data_nbits == SPI_NBITS_DUAL &&
2815 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2816 		return -EINVAL;
2817 	if (msg->data_nbits == SPI_NBITS_QUAD &&
2818 	    !(spi->mode &  SPI_RX_QUAD))
2819 		return -EINVAL;
2820 
2821 	if (master->auto_runtime_pm) {
2822 		ret = pm_runtime_get_sync(master->dev.parent);
2823 		if (ret < 0) {
2824 			dev_err(&master->dev, "Failed to power device: %d\n",
2825 				ret);
2826 			return ret;
2827 		}
2828 	}
2829 
2830 	mutex_lock(&master->bus_lock_mutex);
2831 	mutex_lock(&master->io_mutex);
2832 	if (master->dma_rx) {
2833 		rx_dev = master->dma_rx->device->dev;
2834 		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2835 				  msg->buf, msg->len,
2836 				  DMA_FROM_DEVICE);
2837 		if (!ret)
2838 			msg->cur_msg_mapped = true;
2839 	}
2840 	ret = master->spi_flash_read(spi, msg);
2841 	if (msg->cur_msg_mapped)
2842 		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2843 			      DMA_FROM_DEVICE);
2844 	mutex_unlock(&master->io_mutex);
2845 	mutex_unlock(&master->bus_lock_mutex);
2846 
2847 	if (master->auto_runtime_pm)
2848 		pm_runtime_put(master->dev.parent);
2849 
2850 	return ret;
2851 }
2852 EXPORT_SYMBOL_GPL(spi_flash_read);
2853 
2854 /*-------------------------------------------------------------------------*/
2855 
2856 /* Utility methods for SPI master protocol drivers, layered on
2857  * top of the core.  Some other utility methods are defined as
2858  * inline functions.
2859  */
2860 
2861 static void spi_complete(void *arg)
2862 {
2863 	complete(arg);
2864 }
2865 
2866 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2867 {
2868 	DECLARE_COMPLETION_ONSTACK(done);
2869 	int status;
2870 	struct spi_master *master = spi->master;
2871 	unsigned long flags;
2872 
2873 	status = __spi_validate(spi, message);
2874 	if (status != 0)
2875 		return status;
2876 
2877 	message->complete = spi_complete;
2878 	message->context = &done;
2879 	message->spi = spi;
2880 
2881 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2882 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2883 
2884 	/* If we're not using the legacy transfer method then we will
2885 	 * try to transfer in the calling context so special case.
2886 	 * This code would be less tricky if we could remove the
2887 	 * support for driver implemented message queues.
2888 	 */
2889 	if (master->transfer == spi_queued_transfer) {
2890 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2891 
2892 		trace_spi_message_submit(message);
2893 
2894 		status = __spi_queued_transfer(spi, message, false);
2895 
2896 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2897 	} else {
2898 		status = spi_async_locked(spi, message);
2899 	}
2900 
2901 	if (status == 0) {
2902 		/* Push out the messages in the calling context if we
2903 		 * can.
2904 		 */
2905 		if (master->transfer == spi_queued_transfer) {
2906 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2907 						       spi_sync_immediate);
2908 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2909 						       spi_sync_immediate);
2910 			__spi_pump_messages(master, false);
2911 		}
2912 
2913 		wait_for_completion(&done);
2914 		status = message->status;
2915 	}
2916 	message->context = NULL;
2917 	return status;
2918 }
2919 
2920 /**
2921  * spi_sync - blocking/synchronous SPI data transfers
2922  * @spi: device with which data will be exchanged
2923  * @message: describes the data transfers
2924  * Context: can sleep
2925  *
2926  * This call may only be used from a context that may sleep.  The sleep
2927  * is non-interruptible, and has no timeout.  Low-overhead controller
2928  * drivers may DMA directly into and out of the message buffers.
2929  *
2930  * Note that the SPI device's chip select is active during the message,
2931  * and then is normally disabled between messages.  Drivers for some
2932  * frequently-used devices may want to minimize costs of selecting a chip,
2933  * by leaving it selected in anticipation that the next message will go
2934  * to the same chip.  (That may increase power usage.)
2935  *
2936  * Also, the caller is guaranteeing that the memory associated with the
2937  * message will not be freed before this call returns.
2938  *
2939  * Return: zero on success, else a negative error code.
2940  */
2941 int spi_sync(struct spi_device *spi, struct spi_message *message)
2942 {
2943 	int ret;
2944 
2945 	mutex_lock(&spi->master->bus_lock_mutex);
2946 	ret = __spi_sync(spi, message);
2947 	mutex_unlock(&spi->master->bus_lock_mutex);
2948 
2949 	return ret;
2950 }
2951 EXPORT_SYMBOL_GPL(spi_sync);
2952 
2953 /**
2954  * spi_sync_locked - version of spi_sync with exclusive bus usage
2955  * @spi: device with which data will be exchanged
2956  * @message: describes the data transfers
2957  * Context: can sleep
2958  *
2959  * This call may only be used from a context that may sleep.  The sleep
2960  * is non-interruptible, and has no timeout.  Low-overhead controller
2961  * drivers may DMA directly into and out of the message buffers.
2962  *
2963  * This call should be used by drivers that require exclusive access to the
2964  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2965  * be released by a spi_bus_unlock call when the exclusive access is over.
2966  *
2967  * Return: zero on success, else a negative error code.
2968  */
2969 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2970 {
2971 	return __spi_sync(spi, message);
2972 }
2973 EXPORT_SYMBOL_GPL(spi_sync_locked);
2974 
2975 /**
2976  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2977  * @master: SPI bus master that should be locked for exclusive bus access
2978  * Context: can sleep
2979  *
2980  * This call may only be used from a context that may sleep.  The sleep
2981  * is non-interruptible, and has no timeout.
2982  *
2983  * This call should be used by drivers that require exclusive access to the
2984  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2985  * exclusive access is over. Data transfer must be done by spi_sync_locked
2986  * and spi_async_locked calls when the SPI bus lock is held.
2987  *
2988  * Return: always zero.
2989  */
2990 int spi_bus_lock(struct spi_master *master)
2991 {
2992 	unsigned long flags;
2993 
2994 	mutex_lock(&master->bus_lock_mutex);
2995 
2996 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2997 	master->bus_lock_flag = 1;
2998 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2999 
3000 	/* mutex remains locked until spi_bus_unlock is called */
3001 
3002 	return 0;
3003 }
3004 EXPORT_SYMBOL_GPL(spi_bus_lock);
3005 
3006 /**
3007  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3008  * @master: SPI bus master that was locked for exclusive bus access
3009  * Context: can sleep
3010  *
3011  * This call may only be used from a context that may sleep.  The sleep
3012  * is non-interruptible, and has no timeout.
3013  *
3014  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3015  * call.
3016  *
3017  * Return: always zero.
3018  */
3019 int spi_bus_unlock(struct spi_master *master)
3020 {
3021 	master->bus_lock_flag = 0;
3022 
3023 	mutex_unlock(&master->bus_lock_mutex);
3024 
3025 	return 0;
3026 }
3027 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3028 
3029 /* portable code must never pass more than 32 bytes */
3030 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3031 
3032 static u8	*buf;
3033 
3034 /**
3035  * spi_write_then_read - SPI synchronous write followed by read
3036  * @spi: device with which data will be exchanged
3037  * @txbuf: data to be written (need not be dma-safe)
3038  * @n_tx: size of txbuf, in bytes
3039  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3040  * @n_rx: size of rxbuf, in bytes
3041  * Context: can sleep
3042  *
3043  * This performs a half duplex MicroWire style transaction with the
3044  * device, sending txbuf and then reading rxbuf.  The return value
3045  * is zero for success, else a negative errno status code.
3046  * This call may only be used from a context that may sleep.
3047  *
3048  * Parameters to this routine are always copied using a small buffer;
3049  * portable code should never use this for more than 32 bytes.
3050  * Performance-sensitive or bulk transfer code should instead use
3051  * spi_{async,sync}() calls with dma-safe buffers.
3052  *
3053  * Return: zero on success, else a negative error code.
3054  */
3055 int spi_write_then_read(struct spi_device *spi,
3056 		const void *txbuf, unsigned n_tx,
3057 		void *rxbuf, unsigned n_rx)
3058 {
3059 	static DEFINE_MUTEX(lock);
3060 
3061 	int			status;
3062 	struct spi_message	message;
3063 	struct spi_transfer	x[2];
3064 	u8			*local_buf;
3065 
3066 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3067 	 * copying here, (as a pure convenience thing), but we can
3068 	 * keep heap costs out of the hot path unless someone else is
3069 	 * using the pre-allocated buffer or the transfer is too large.
3070 	 */
3071 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3072 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3073 				    GFP_KERNEL | GFP_DMA);
3074 		if (!local_buf)
3075 			return -ENOMEM;
3076 	} else {
3077 		local_buf = buf;
3078 	}
3079 
3080 	spi_message_init(&message);
3081 	memset(x, 0, sizeof(x));
3082 	if (n_tx) {
3083 		x[0].len = n_tx;
3084 		spi_message_add_tail(&x[0], &message);
3085 	}
3086 	if (n_rx) {
3087 		x[1].len = n_rx;
3088 		spi_message_add_tail(&x[1], &message);
3089 	}
3090 
3091 	memcpy(local_buf, txbuf, n_tx);
3092 	x[0].tx_buf = local_buf;
3093 	x[1].rx_buf = local_buf + n_tx;
3094 
3095 	/* do the i/o */
3096 	status = spi_sync(spi, &message);
3097 	if (status == 0)
3098 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3099 
3100 	if (x[0].tx_buf == buf)
3101 		mutex_unlock(&lock);
3102 	else
3103 		kfree(local_buf);
3104 
3105 	return status;
3106 }
3107 EXPORT_SYMBOL_GPL(spi_write_then_read);
3108 
3109 /*-------------------------------------------------------------------------*/
3110 
3111 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3112 static int __spi_of_device_match(struct device *dev, void *data)
3113 {
3114 	return dev->of_node == data;
3115 }
3116 
3117 /* must call put_device() when done with returned spi_device device */
3118 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3119 {
3120 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3121 						__spi_of_device_match);
3122 	return dev ? to_spi_device(dev) : NULL;
3123 }
3124 
3125 static int __spi_of_master_match(struct device *dev, const void *data)
3126 {
3127 	return dev->of_node == data;
3128 }
3129 
3130 /* the spi masters are not using spi_bus, so we find it with another way */
3131 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3132 {
3133 	struct device *dev;
3134 
3135 	dev = class_find_device(&spi_master_class, NULL, node,
3136 				__spi_of_master_match);
3137 	if (!dev)
3138 		return NULL;
3139 
3140 	/* reference got in class_find_device */
3141 	return container_of(dev, struct spi_master, dev);
3142 }
3143 
3144 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3145 			 void *arg)
3146 {
3147 	struct of_reconfig_data *rd = arg;
3148 	struct spi_master *master;
3149 	struct spi_device *spi;
3150 
3151 	switch (of_reconfig_get_state_change(action, arg)) {
3152 	case OF_RECONFIG_CHANGE_ADD:
3153 		master = of_find_spi_master_by_node(rd->dn->parent);
3154 		if (master == NULL)
3155 			return NOTIFY_OK;	/* not for us */
3156 
3157 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3158 			put_device(&master->dev);
3159 			return NOTIFY_OK;
3160 		}
3161 
3162 		spi = of_register_spi_device(master, rd->dn);
3163 		put_device(&master->dev);
3164 
3165 		if (IS_ERR(spi)) {
3166 			pr_err("%s: failed to create for '%s'\n",
3167 					__func__, rd->dn->full_name);
3168 			of_node_clear_flag(rd->dn, OF_POPULATED);
3169 			return notifier_from_errno(PTR_ERR(spi));
3170 		}
3171 		break;
3172 
3173 	case OF_RECONFIG_CHANGE_REMOVE:
3174 		/* already depopulated? */
3175 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3176 			return NOTIFY_OK;
3177 
3178 		/* find our device by node */
3179 		spi = of_find_spi_device_by_node(rd->dn);
3180 		if (spi == NULL)
3181 			return NOTIFY_OK;	/* no? not meant for us */
3182 
3183 		/* unregister takes one ref away */
3184 		spi_unregister_device(spi);
3185 
3186 		/* and put the reference of the find */
3187 		put_device(&spi->dev);
3188 		break;
3189 	}
3190 
3191 	return NOTIFY_OK;
3192 }
3193 
3194 static struct notifier_block spi_of_notifier = {
3195 	.notifier_call = of_spi_notify,
3196 };
3197 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3198 extern struct notifier_block spi_of_notifier;
3199 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3200 
3201 #if IS_ENABLED(CONFIG_ACPI)
3202 static int spi_acpi_master_match(struct device *dev, const void *data)
3203 {
3204 	return ACPI_COMPANION(dev->parent) == data;
3205 }
3206 
3207 static int spi_acpi_device_match(struct device *dev, void *data)
3208 {
3209 	return ACPI_COMPANION(dev) == data;
3210 }
3211 
3212 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3213 {
3214 	struct device *dev;
3215 
3216 	dev = class_find_device(&spi_master_class, NULL, adev,
3217 				spi_acpi_master_match);
3218 	if (!dev)
3219 		return NULL;
3220 
3221 	return container_of(dev, struct spi_master, dev);
3222 }
3223 
3224 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3225 {
3226 	struct device *dev;
3227 
3228 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3229 
3230 	return dev ? to_spi_device(dev) : NULL;
3231 }
3232 
3233 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3234 			   void *arg)
3235 {
3236 	struct acpi_device *adev = arg;
3237 	struct spi_master *master;
3238 	struct spi_device *spi;
3239 
3240 	switch (value) {
3241 	case ACPI_RECONFIG_DEVICE_ADD:
3242 		master = acpi_spi_find_master_by_adev(adev->parent);
3243 		if (!master)
3244 			break;
3245 
3246 		acpi_register_spi_device(master, adev);
3247 		put_device(&master->dev);
3248 		break;
3249 	case ACPI_RECONFIG_DEVICE_REMOVE:
3250 		if (!acpi_device_enumerated(adev))
3251 			break;
3252 
3253 		spi = acpi_spi_find_device_by_adev(adev);
3254 		if (!spi)
3255 			break;
3256 
3257 		spi_unregister_device(spi);
3258 		put_device(&spi->dev);
3259 		break;
3260 	}
3261 
3262 	return NOTIFY_OK;
3263 }
3264 
3265 static struct notifier_block spi_acpi_notifier = {
3266 	.notifier_call = acpi_spi_notify,
3267 };
3268 #else
3269 extern struct notifier_block spi_acpi_notifier;
3270 #endif
3271 
3272 static int __init spi_init(void)
3273 {
3274 	int	status;
3275 
3276 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3277 	if (!buf) {
3278 		status = -ENOMEM;
3279 		goto err0;
3280 	}
3281 
3282 	status = bus_register(&spi_bus_type);
3283 	if (status < 0)
3284 		goto err1;
3285 
3286 	status = class_register(&spi_master_class);
3287 	if (status < 0)
3288 		goto err2;
3289 
3290 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3291 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3292 	if (IS_ENABLED(CONFIG_ACPI))
3293 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3294 
3295 	return 0;
3296 
3297 err2:
3298 	bus_unregister(&spi_bus_type);
3299 err1:
3300 	kfree(buf);
3301 	buf = NULL;
3302 err0:
3303 	return status;
3304 }
3305 
3306 /* board_info is normally registered in arch_initcall(),
3307  * but even essential drivers wait till later
3308  *
3309  * REVISIT only boardinfo really needs static linking. the rest (device and
3310  * driver registration) _could_ be dynamically linked (modular) ... costs
3311  * include needing to have boardinfo data structures be much more public.
3312  */
3313 postcore_initcall(spi_init);
3314 
3315