1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del operation for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /** 479 * spi_alloc_device - Allocate a new SPI device 480 * @ctlr: Controller to which device is connected 481 * Context: can sleep 482 * 483 * Allows a driver to allocate and initialize a spi_device without 484 * registering it immediately. This allows a driver to directly 485 * fill the spi_device with device parameters before calling 486 * spi_add_device() on it. 487 * 488 * Caller is responsible to call spi_add_device() on the returned 489 * spi_device structure to add it to the SPI controller. If the caller 490 * needs to discard the spi_device without adding it, then it should 491 * call spi_dev_put() on it. 492 * 493 * Return: a pointer to the new device, or NULL. 494 */ 495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 496 { 497 struct spi_device *spi; 498 499 if (!spi_controller_get(ctlr)) 500 return NULL; 501 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 503 if (!spi) { 504 spi_controller_put(ctlr); 505 return NULL; 506 } 507 508 spi->master = spi->controller = ctlr; 509 spi->dev.parent = &ctlr->dev; 510 spi->dev.bus = &spi_bus_type; 511 spi->dev.release = spidev_release; 512 spi->cs_gpio = -ENOENT; 513 spi->mode = ctlr->buswidth_override_bits; 514 515 spin_lock_init(&spi->statistics.lock); 516 517 device_initialize(&spi->dev); 518 return spi; 519 } 520 EXPORT_SYMBOL_GPL(spi_alloc_device); 521 522 static void spi_dev_set_name(struct spi_device *spi) 523 { 524 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 525 526 if (adev) { 527 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 528 return; 529 } 530 531 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 532 spi->chip_select); 533 } 534 535 static int spi_dev_check(struct device *dev, void *data) 536 { 537 struct spi_device *spi = to_spi_device(dev); 538 struct spi_device *new_spi = data; 539 540 if (spi->controller == new_spi->controller && 541 spi->chip_select == new_spi->chip_select) 542 return -EBUSY; 543 return 0; 544 } 545 546 /** 547 * spi_add_device - Add spi_device allocated with spi_alloc_device 548 * @spi: spi_device to register 549 * 550 * Companion function to spi_alloc_device. Devices allocated with 551 * spi_alloc_device can be added onto the spi bus with this function. 552 * 553 * Return: 0 on success; negative errno on failure 554 */ 555 int spi_add_device(struct spi_device *spi) 556 { 557 static DEFINE_MUTEX(spi_add_lock); 558 struct spi_controller *ctlr = spi->controller; 559 struct device *dev = ctlr->dev.parent; 560 int status; 561 562 /* Chipselects are numbered 0..max; validate. */ 563 if (spi->chip_select >= ctlr->num_chipselect) { 564 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 565 ctlr->num_chipselect); 566 return -EINVAL; 567 } 568 569 /* Set the bus ID string */ 570 spi_dev_set_name(spi); 571 572 /* We need to make sure there's no other device with this 573 * chipselect **BEFORE** we call setup(), else we'll trash 574 * its configuration. Lock against concurrent add() calls. 575 */ 576 mutex_lock(&spi_add_lock); 577 578 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 579 if (status) { 580 dev_err(dev, "chipselect %d already in use\n", 581 spi->chip_select); 582 goto done; 583 } 584 585 /* Descriptors take precedence */ 586 if (ctlr->cs_gpiods) 587 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 588 else if (ctlr->cs_gpios) 589 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 590 591 /* Drivers may modify this initial i/o setup, but will 592 * normally rely on the device being setup. Devices 593 * using SPI_CS_HIGH can't coexist well otherwise... 594 */ 595 status = spi_setup(spi); 596 if (status < 0) { 597 dev_err(dev, "can't setup %s, status %d\n", 598 dev_name(&spi->dev), status); 599 goto done; 600 } 601 602 /* Device may be bound to an active driver when this returns */ 603 status = device_add(&spi->dev); 604 if (status < 0) 605 dev_err(dev, "can't add %s, status %d\n", 606 dev_name(&spi->dev), status); 607 else 608 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 609 610 done: 611 mutex_unlock(&spi_add_lock); 612 return status; 613 } 614 EXPORT_SYMBOL_GPL(spi_add_device); 615 616 /** 617 * spi_new_device - instantiate one new SPI device 618 * @ctlr: Controller to which device is connected 619 * @chip: Describes the SPI device 620 * Context: can sleep 621 * 622 * On typical mainboards, this is purely internal; and it's not needed 623 * after board init creates the hard-wired devices. Some development 624 * platforms may not be able to use spi_register_board_info though, and 625 * this is exported so that for example a USB or parport based adapter 626 * driver could add devices (which it would learn about out-of-band). 627 * 628 * Return: the new device, or NULL. 629 */ 630 struct spi_device *spi_new_device(struct spi_controller *ctlr, 631 struct spi_board_info *chip) 632 { 633 struct spi_device *proxy; 634 int status; 635 636 /* NOTE: caller did any chip->bus_num checks necessary. 637 * 638 * Also, unless we change the return value convention to use 639 * error-or-pointer (not NULL-or-pointer), troubleshootability 640 * suggests syslogged diagnostics are best here (ugh). 641 */ 642 643 proxy = spi_alloc_device(ctlr); 644 if (!proxy) 645 return NULL; 646 647 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 648 649 proxy->chip_select = chip->chip_select; 650 proxy->max_speed_hz = chip->max_speed_hz; 651 proxy->mode = chip->mode; 652 proxy->irq = chip->irq; 653 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 654 proxy->dev.platform_data = (void *) chip->platform_data; 655 proxy->controller_data = chip->controller_data; 656 proxy->controller_state = NULL; 657 658 if (chip->properties) { 659 status = device_add_properties(&proxy->dev, chip->properties); 660 if (status) { 661 dev_err(&ctlr->dev, 662 "failed to add properties to '%s': %d\n", 663 chip->modalias, status); 664 goto err_dev_put; 665 } 666 } 667 668 status = spi_add_device(proxy); 669 if (status < 0) 670 goto err_remove_props; 671 672 return proxy; 673 674 err_remove_props: 675 if (chip->properties) 676 device_remove_properties(&proxy->dev); 677 err_dev_put: 678 spi_dev_put(proxy); 679 return NULL; 680 } 681 EXPORT_SYMBOL_GPL(spi_new_device); 682 683 /** 684 * spi_unregister_device - unregister a single SPI device 685 * @spi: spi_device to unregister 686 * 687 * Start making the passed SPI device vanish. Normally this would be handled 688 * by spi_unregister_controller(). 689 */ 690 void spi_unregister_device(struct spi_device *spi) 691 { 692 if (!spi) 693 return; 694 695 if (spi->dev.of_node) { 696 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 697 of_node_put(spi->dev.of_node); 698 } 699 if (ACPI_COMPANION(&spi->dev)) 700 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 701 device_unregister(&spi->dev); 702 } 703 EXPORT_SYMBOL_GPL(spi_unregister_device); 704 705 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 706 struct spi_board_info *bi) 707 { 708 struct spi_device *dev; 709 710 if (ctlr->bus_num != bi->bus_num) 711 return; 712 713 dev = spi_new_device(ctlr, bi); 714 if (!dev) 715 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 716 bi->modalias); 717 } 718 719 /** 720 * spi_register_board_info - register SPI devices for a given board 721 * @info: array of chip descriptors 722 * @n: how many descriptors are provided 723 * Context: can sleep 724 * 725 * Board-specific early init code calls this (probably during arch_initcall) 726 * with segments of the SPI device table. Any device nodes are created later, 727 * after the relevant parent SPI controller (bus_num) is defined. We keep 728 * this table of devices forever, so that reloading a controller driver will 729 * not make Linux forget about these hard-wired devices. 730 * 731 * Other code can also call this, e.g. a particular add-on board might provide 732 * SPI devices through its expansion connector, so code initializing that board 733 * would naturally declare its SPI devices. 734 * 735 * The board info passed can safely be __initdata ... but be careful of 736 * any embedded pointers (platform_data, etc), they're copied as-is. 737 * Device properties are deep-copied though. 738 * 739 * Return: zero on success, else a negative error code. 740 */ 741 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 742 { 743 struct boardinfo *bi; 744 int i; 745 746 if (!n) 747 return 0; 748 749 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 750 if (!bi) 751 return -ENOMEM; 752 753 for (i = 0; i < n; i++, bi++, info++) { 754 struct spi_controller *ctlr; 755 756 memcpy(&bi->board_info, info, sizeof(*info)); 757 if (info->properties) { 758 bi->board_info.properties = 759 property_entries_dup(info->properties); 760 if (IS_ERR(bi->board_info.properties)) 761 return PTR_ERR(bi->board_info.properties); 762 } 763 764 mutex_lock(&board_lock); 765 list_add_tail(&bi->list, &board_list); 766 list_for_each_entry(ctlr, &spi_controller_list, list) 767 spi_match_controller_to_boardinfo(ctlr, 768 &bi->board_info); 769 mutex_unlock(&board_lock); 770 } 771 772 return 0; 773 } 774 775 /*-------------------------------------------------------------------------*/ 776 777 static void spi_set_cs(struct spi_device *spi, bool enable) 778 { 779 bool enable1 = enable; 780 781 /* 782 * Avoid calling into the driver (or doing delays) if the chip select 783 * isn't actually changing from the last time this was called. 784 */ 785 if ((spi->controller->last_cs_enable == enable) && 786 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 787 return; 788 789 spi->controller->last_cs_enable = enable; 790 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 791 792 if (!spi->controller->set_cs_timing) { 793 if (enable1) 794 spi_delay_exec(&spi->controller->cs_setup, NULL); 795 else 796 spi_delay_exec(&spi->controller->cs_hold, NULL); 797 } 798 799 if (spi->mode & SPI_CS_HIGH) 800 enable = !enable; 801 802 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 803 /* 804 * Honour the SPI_NO_CS flag and invert the enable line, as 805 * active low is default for SPI. Execution paths that handle 806 * polarity inversion in gpiolib (such as device tree) will 807 * enforce active high using the SPI_CS_HIGH resulting in a 808 * double inversion through the code above. 809 */ 810 if (!(spi->mode & SPI_NO_CS)) { 811 if (spi->cs_gpiod) 812 gpiod_set_value_cansleep(spi->cs_gpiod, 813 !enable); 814 else 815 gpio_set_value_cansleep(spi->cs_gpio, !enable); 816 } 817 /* Some SPI masters need both GPIO CS & slave_select */ 818 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 819 spi->controller->set_cs) 820 spi->controller->set_cs(spi, !enable); 821 } else if (spi->controller->set_cs) { 822 spi->controller->set_cs(spi, !enable); 823 } 824 825 if (!spi->controller->set_cs_timing) { 826 if (!enable1) 827 spi_delay_exec(&spi->controller->cs_inactive, NULL); 828 } 829 } 830 831 #ifdef CONFIG_HAS_DMA 832 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 833 struct sg_table *sgt, void *buf, size_t len, 834 enum dma_data_direction dir) 835 { 836 const bool vmalloced_buf = is_vmalloc_addr(buf); 837 unsigned int max_seg_size = dma_get_max_seg_size(dev); 838 #ifdef CONFIG_HIGHMEM 839 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 840 (unsigned long)buf < (PKMAP_BASE + 841 (LAST_PKMAP * PAGE_SIZE))); 842 #else 843 const bool kmap_buf = false; 844 #endif 845 int desc_len; 846 int sgs; 847 struct page *vm_page; 848 struct scatterlist *sg; 849 void *sg_buf; 850 size_t min; 851 int i, ret; 852 853 if (vmalloced_buf || kmap_buf) { 854 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 855 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 856 } else if (virt_addr_valid(buf)) { 857 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 858 sgs = DIV_ROUND_UP(len, desc_len); 859 } else { 860 return -EINVAL; 861 } 862 863 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 864 if (ret != 0) 865 return ret; 866 867 sg = &sgt->sgl[0]; 868 for (i = 0; i < sgs; i++) { 869 870 if (vmalloced_buf || kmap_buf) { 871 /* 872 * Next scatterlist entry size is the minimum between 873 * the desc_len and the remaining buffer length that 874 * fits in a page. 875 */ 876 min = min_t(size_t, desc_len, 877 min_t(size_t, len, 878 PAGE_SIZE - offset_in_page(buf))); 879 if (vmalloced_buf) 880 vm_page = vmalloc_to_page(buf); 881 else 882 vm_page = kmap_to_page(buf); 883 if (!vm_page) { 884 sg_free_table(sgt); 885 return -ENOMEM; 886 } 887 sg_set_page(sg, vm_page, 888 min, offset_in_page(buf)); 889 } else { 890 min = min_t(size_t, len, desc_len); 891 sg_buf = buf; 892 sg_set_buf(sg, sg_buf, min); 893 } 894 895 buf += min; 896 len -= min; 897 sg = sg_next(sg); 898 } 899 900 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 901 if (!ret) 902 ret = -ENOMEM; 903 if (ret < 0) { 904 sg_free_table(sgt); 905 return ret; 906 } 907 908 sgt->nents = ret; 909 910 return 0; 911 } 912 913 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 914 struct sg_table *sgt, enum dma_data_direction dir) 915 { 916 if (sgt->orig_nents) { 917 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 918 sg_free_table(sgt); 919 } 920 } 921 922 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 923 { 924 struct device *tx_dev, *rx_dev; 925 struct spi_transfer *xfer; 926 int ret; 927 928 if (!ctlr->can_dma) 929 return 0; 930 931 if (ctlr->dma_tx) 932 tx_dev = ctlr->dma_tx->device->dev; 933 else 934 tx_dev = ctlr->dev.parent; 935 936 if (ctlr->dma_rx) 937 rx_dev = ctlr->dma_rx->device->dev; 938 else 939 rx_dev = ctlr->dev.parent; 940 941 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 942 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 943 continue; 944 945 if (xfer->tx_buf != NULL) { 946 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 947 (void *)xfer->tx_buf, xfer->len, 948 DMA_TO_DEVICE); 949 if (ret != 0) 950 return ret; 951 } 952 953 if (xfer->rx_buf != NULL) { 954 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 955 xfer->rx_buf, xfer->len, 956 DMA_FROM_DEVICE); 957 if (ret != 0) { 958 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 959 DMA_TO_DEVICE); 960 return ret; 961 } 962 } 963 } 964 965 ctlr->cur_msg_mapped = true; 966 967 return 0; 968 } 969 970 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 971 { 972 struct spi_transfer *xfer; 973 struct device *tx_dev, *rx_dev; 974 975 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 976 return 0; 977 978 if (ctlr->dma_tx) 979 tx_dev = ctlr->dma_tx->device->dev; 980 else 981 tx_dev = ctlr->dev.parent; 982 983 if (ctlr->dma_rx) 984 rx_dev = ctlr->dma_rx->device->dev; 985 else 986 rx_dev = ctlr->dev.parent; 987 988 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 989 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 990 continue; 991 992 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 993 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 994 } 995 996 ctlr->cur_msg_mapped = false; 997 998 return 0; 999 } 1000 #else /* !CONFIG_HAS_DMA */ 1001 static inline int __spi_map_msg(struct spi_controller *ctlr, 1002 struct spi_message *msg) 1003 { 1004 return 0; 1005 } 1006 1007 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1008 struct spi_message *msg) 1009 { 1010 return 0; 1011 } 1012 #endif /* !CONFIG_HAS_DMA */ 1013 1014 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1015 struct spi_message *msg) 1016 { 1017 struct spi_transfer *xfer; 1018 1019 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1020 /* 1021 * Restore the original value of tx_buf or rx_buf if they are 1022 * NULL. 1023 */ 1024 if (xfer->tx_buf == ctlr->dummy_tx) 1025 xfer->tx_buf = NULL; 1026 if (xfer->rx_buf == ctlr->dummy_rx) 1027 xfer->rx_buf = NULL; 1028 } 1029 1030 return __spi_unmap_msg(ctlr, msg); 1031 } 1032 1033 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1034 { 1035 struct spi_transfer *xfer; 1036 void *tmp; 1037 unsigned int max_tx, max_rx; 1038 1039 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1040 && !(msg->spi->mode & SPI_3WIRE)) { 1041 max_tx = 0; 1042 max_rx = 0; 1043 1044 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1045 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1046 !xfer->tx_buf) 1047 max_tx = max(xfer->len, max_tx); 1048 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1049 !xfer->rx_buf) 1050 max_rx = max(xfer->len, max_rx); 1051 } 1052 1053 if (max_tx) { 1054 tmp = krealloc(ctlr->dummy_tx, max_tx, 1055 GFP_KERNEL | GFP_DMA); 1056 if (!tmp) 1057 return -ENOMEM; 1058 ctlr->dummy_tx = tmp; 1059 memset(tmp, 0, max_tx); 1060 } 1061 1062 if (max_rx) { 1063 tmp = krealloc(ctlr->dummy_rx, max_rx, 1064 GFP_KERNEL | GFP_DMA); 1065 if (!tmp) 1066 return -ENOMEM; 1067 ctlr->dummy_rx = tmp; 1068 } 1069 1070 if (max_tx || max_rx) { 1071 list_for_each_entry(xfer, &msg->transfers, 1072 transfer_list) { 1073 if (!xfer->len) 1074 continue; 1075 if (!xfer->tx_buf) 1076 xfer->tx_buf = ctlr->dummy_tx; 1077 if (!xfer->rx_buf) 1078 xfer->rx_buf = ctlr->dummy_rx; 1079 } 1080 } 1081 } 1082 1083 return __spi_map_msg(ctlr, msg); 1084 } 1085 1086 static int spi_transfer_wait(struct spi_controller *ctlr, 1087 struct spi_message *msg, 1088 struct spi_transfer *xfer) 1089 { 1090 struct spi_statistics *statm = &ctlr->statistics; 1091 struct spi_statistics *stats = &msg->spi->statistics; 1092 unsigned long long ms; 1093 1094 if (spi_controller_is_slave(ctlr)) { 1095 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1096 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1097 return -EINTR; 1098 } 1099 } else { 1100 ms = 8LL * 1000LL * xfer->len; 1101 do_div(ms, xfer->speed_hz); 1102 ms += ms + 200; /* some tolerance */ 1103 1104 if (ms > UINT_MAX) 1105 ms = UINT_MAX; 1106 1107 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1108 msecs_to_jiffies(ms)); 1109 1110 if (ms == 0) { 1111 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1112 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1113 dev_err(&msg->spi->dev, 1114 "SPI transfer timed out\n"); 1115 return -ETIMEDOUT; 1116 } 1117 } 1118 1119 return 0; 1120 } 1121 1122 static void _spi_transfer_delay_ns(u32 ns) 1123 { 1124 if (!ns) 1125 return; 1126 if (ns <= 1000) { 1127 ndelay(ns); 1128 } else { 1129 u32 us = DIV_ROUND_UP(ns, 1000); 1130 1131 if (us <= 10) 1132 udelay(us); 1133 else 1134 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1135 } 1136 } 1137 1138 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1139 { 1140 u32 delay = _delay->value; 1141 u32 unit = _delay->unit; 1142 u32 hz; 1143 1144 if (!delay) 1145 return 0; 1146 1147 switch (unit) { 1148 case SPI_DELAY_UNIT_USECS: 1149 delay *= 1000; 1150 break; 1151 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1152 break; 1153 case SPI_DELAY_UNIT_SCK: 1154 /* clock cycles need to be obtained from spi_transfer */ 1155 if (!xfer) 1156 return -EINVAL; 1157 /* if there is no effective speed know, then approximate 1158 * by underestimating with half the requested hz 1159 */ 1160 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1161 if (!hz) 1162 return -EINVAL; 1163 delay *= DIV_ROUND_UP(1000000000, hz); 1164 break; 1165 default: 1166 return -EINVAL; 1167 } 1168 1169 return delay; 1170 } 1171 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1172 1173 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1174 { 1175 int delay; 1176 1177 might_sleep(); 1178 1179 if (!_delay) 1180 return -EINVAL; 1181 1182 delay = spi_delay_to_ns(_delay, xfer); 1183 if (delay < 0) 1184 return delay; 1185 1186 _spi_transfer_delay_ns(delay); 1187 1188 return 0; 1189 } 1190 EXPORT_SYMBOL_GPL(spi_delay_exec); 1191 1192 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1193 struct spi_transfer *xfer) 1194 { 1195 u32 delay = xfer->cs_change_delay.value; 1196 u32 unit = xfer->cs_change_delay.unit; 1197 int ret; 1198 1199 /* return early on "fast" mode - for everything but USECS */ 1200 if (!delay) { 1201 if (unit == SPI_DELAY_UNIT_USECS) 1202 _spi_transfer_delay_ns(10000); 1203 return; 1204 } 1205 1206 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1207 if (ret) { 1208 dev_err_once(&msg->spi->dev, 1209 "Use of unsupported delay unit %i, using default of 10us\n", 1210 unit); 1211 _spi_transfer_delay_ns(10000); 1212 } 1213 } 1214 1215 /* 1216 * spi_transfer_one_message - Default implementation of transfer_one_message() 1217 * 1218 * This is a standard implementation of transfer_one_message() for 1219 * drivers which implement a transfer_one() operation. It provides 1220 * standard handling of delays and chip select management. 1221 */ 1222 static int spi_transfer_one_message(struct spi_controller *ctlr, 1223 struct spi_message *msg) 1224 { 1225 struct spi_transfer *xfer; 1226 bool keep_cs = false; 1227 int ret = 0; 1228 struct spi_statistics *statm = &ctlr->statistics; 1229 struct spi_statistics *stats = &msg->spi->statistics; 1230 1231 spi_set_cs(msg->spi, true); 1232 1233 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1234 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1235 1236 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1237 trace_spi_transfer_start(msg, xfer); 1238 1239 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1240 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1241 1242 if (!ctlr->ptp_sts_supported) { 1243 xfer->ptp_sts_word_pre = 0; 1244 ptp_read_system_prets(xfer->ptp_sts); 1245 } 1246 1247 if (xfer->tx_buf || xfer->rx_buf) { 1248 reinit_completion(&ctlr->xfer_completion); 1249 1250 fallback_pio: 1251 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1252 if (ret < 0) { 1253 if (ctlr->cur_msg_mapped && 1254 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1255 __spi_unmap_msg(ctlr, msg); 1256 ctlr->fallback = true; 1257 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1258 goto fallback_pio; 1259 } 1260 1261 SPI_STATISTICS_INCREMENT_FIELD(statm, 1262 errors); 1263 SPI_STATISTICS_INCREMENT_FIELD(stats, 1264 errors); 1265 dev_err(&msg->spi->dev, 1266 "SPI transfer failed: %d\n", ret); 1267 goto out; 1268 } 1269 1270 if (ret > 0) { 1271 ret = spi_transfer_wait(ctlr, msg, xfer); 1272 if (ret < 0) 1273 msg->status = ret; 1274 } 1275 } else { 1276 if (xfer->len) 1277 dev_err(&msg->spi->dev, 1278 "Bufferless transfer has length %u\n", 1279 xfer->len); 1280 } 1281 1282 if (!ctlr->ptp_sts_supported) { 1283 ptp_read_system_postts(xfer->ptp_sts); 1284 xfer->ptp_sts_word_post = xfer->len; 1285 } 1286 1287 trace_spi_transfer_stop(msg, xfer); 1288 1289 if (msg->status != -EINPROGRESS) 1290 goto out; 1291 1292 spi_transfer_delay_exec(xfer); 1293 1294 if (xfer->cs_change) { 1295 if (list_is_last(&xfer->transfer_list, 1296 &msg->transfers)) { 1297 keep_cs = true; 1298 } else { 1299 spi_set_cs(msg->spi, false); 1300 _spi_transfer_cs_change_delay(msg, xfer); 1301 spi_set_cs(msg->spi, true); 1302 } 1303 } 1304 1305 msg->actual_length += xfer->len; 1306 } 1307 1308 out: 1309 if (ret != 0 || !keep_cs) 1310 spi_set_cs(msg->spi, false); 1311 1312 if (msg->status == -EINPROGRESS) 1313 msg->status = ret; 1314 1315 if (msg->status && ctlr->handle_err) 1316 ctlr->handle_err(ctlr, msg); 1317 1318 spi_res_release(ctlr, msg); 1319 1320 spi_finalize_current_message(ctlr); 1321 1322 return ret; 1323 } 1324 1325 /** 1326 * spi_finalize_current_transfer - report completion of a transfer 1327 * @ctlr: the controller reporting completion 1328 * 1329 * Called by SPI drivers using the core transfer_one_message() 1330 * implementation to notify it that the current interrupt driven 1331 * transfer has finished and the next one may be scheduled. 1332 */ 1333 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1334 { 1335 complete(&ctlr->xfer_completion); 1336 } 1337 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1338 1339 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1340 { 1341 if (ctlr->auto_runtime_pm) { 1342 pm_runtime_mark_last_busy(ctlr->dev.parent); 1343 pm_runtime_put_autosuspend(ctlr->dev.parent); 1344 } 1345 } 1346 1347 /** 1348 * __spi_pump_messages - function which processes spi message queue 1349 * @ctlr: controller to process queue for 1350 * @in_kthread: true if we are in the context of the message pump thread 1351 * 1352 * This function checks if there is any spi message in the queue that 1353 * needs processing and if so call out to the driver to initialize hardware 1354 * and transfer each message. 1355 * 1356 * Note that it is called both from the kthread itself and also from 1357 * inside spi_sync(); the queue extraction handling at the top of the 1358 * function should deal with this safely. 1359 */ 1360 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1361 { 1362 struct spi_transfer *xfer; 1363 struct spi_message *msg; 1364 bool was_busy = false; 1365 unsigned long flags; 1366 int ret; 1367 1368 /* Lock queue */ 1369 spin_lock_irqsave(&ctlr->queue_lock, flags); 1370 1371 /* Make sure we are not already running a message */ 1372 if (ctlr->cur_msg) { 1373 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1374 return; 1375 } 1376 1377 /* If another context is idling the device then defer */ 1378 if (ctlr->idling) { 1379 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1380 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1381 return; 1382 } 1383 1384 /* Check if the queue is idle */ 1385 if (list_empty(&ctlr->queue) || !ctlr->running) { 1386 if (!ctlr->busy) { 1387 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1388 return; 1389 } 1390 1391 /* Defer any non-atomic teardown to the thread */ 1392 if (!in_kthread) { 1393 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1394 !ctlr->unprepare_transfer_hardware) { 1395 spi_idle_runtime_pm(ctlr); 1396 ctlr->busy = false; 1397 trace_spi_controller_idle(ctlr); 1398 } else { 1399 kthread_queue_work(ctlr->kworker, 1400 &ctlr->pump_messages); 1401 } 1402 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1403 return; 1404 } 1405 1406 ctlr->busy = false; 1407 ctlr->idling = true; 1408 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1409 1410 kfree(ctlr->dummy_rx); 1411 ctlr->dummy_rx = NULL; 1412 kfree(ctlr->dummy_tx); 1413 ctlr->dummy_tx = NULL; 1414 if (ctlr->unprepare_transfer_hardware && 1415 ctlr->unprepare_transfer_hardware(ctlr)) 1416 dev_err(&ctlr->dev, 1417 "failed to unprepare transfer hardware\n"); 1418 spi_idle_runtime_pm(ctlr); 1419 trace_spi_controller_idle(ctlr); 1420 1421 spin_lock_irqsave(&ctlr->queue_lock, flags); 1422 ctlr->idling = false; 1423 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1424 return; 1425 } 1426 1427 /* Extract head of queue */ 1428 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1429 ctlr->cur_msg = msg; 1430 1431 list_del_init(&msg->queue); 1432 if (ctlr->busy) 1433 was_busy = true; 1434 else 1435 ctlr->busy = true; 1436 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1437 1438 mutex_lock(&ctlr->io_mutex); 1439 1440 if (!was_busy && ctlr->auto_runtime_pm) { 1441 ret = pm_runtime_get_sync(ctlr->dev.parent); 1442 if (ret < 0) { 1443 pm_runtime_put_noidle(ctlr->dev.parent); 1444 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1445 ret); 1446 mutex_unlock(&ctlr->io_mutex); 1447 return; 1448 } 1449 } 1450 1451 if (!was_busy) 1452 trace_spi_controller_busy(ctlr); 1453 1454 if (!was_busy && ctlr->prepare_transfer_hardware) { 1455 ret = ctlr->prepare_transfer_hardware(ctlr); 1456 if (ret) { 1457 dev_err(&ctlr->dev, 1458 "failed to prepare transfer hardware: %d\n", 1459 ret); 1460 1461 if (ctlr->auto_runtime_pm) 1462 pm_runtime_put(ctlr->dev.parent); 1463 1464 msg->status = ret; 1465 spi_finalize_current_message(ctlr); 1466 1467 mutex_unlock(&ctlr->io_mutex); 1468 return; 1469 } 1470 } 1471 1472 trace_spi_message_start(msg); 1473 1474 if (ctlr->prepare_message) { 1475 ret = ctlr->prepare_message(ctlr, msg); 1476 if (ret) { 1477 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1478 ret); 1479 msg->status = ret; 1480 spi_finalize_current_message(ctlr); 1481 goto out; 1482 } 1483 ctlr->cur_msg_prepared = true; 1484 } 1485 1486 ret = spi_map_msg(ctlr, msg); 1487 if (ret) { 1488 msg->status = ret; 1489 spi_finalize_current_message(ctlr); 1490 goto out; 1491 } 1492 1493 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1494 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1495 xfer->ptp_sts_word_pre = 0; 1496 ptp_read_system_prets(xfer->ptp_sts); 1497 } 1498 } 1499 1500 ret = ctlr->transfer_one_message(ctlr, msg); 1501 if (ret) { 1502 dev_err(&ctlr->dev, 1503 "failed to transfer one message from queue\n"); 1504 goto out; 1505 } 1506 1507 out: 1508 mutex_unlock(&ctlr->io_mutex); 1509 1510 /* Prod the scheduler in case transfer_one() was busy waiting */ 1511 if (!ret) 1512 cond_resched(); 1513 } 1514 1515 /** 1516 * spi_pump_messages - kthread work function which processes spi message queue 1517 * @work: pointer to kthread work struct contained in the controller struct 1518 */ 1519 static void spi_pump_messages(struct kthread_work *work) 1520 { 1521 struct spi_controller *ctlr = 1522 container_of(work, struct spi_controller, pump_messages); 1523 1524 __spi_pump_messages(ctlr, true); 1525 } 1526 1527 /** 1528 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1529 * TX timestamp for the requested byte from the SPI 1530 * transfer. The frequency with which this function 1531 * must be called (once per word, once for the whole 1532 * transfer, once per batch of words etc) is arbitrary 1533 * as long as the @tx buffer offset is greater than or 1534 * equal to the requested byte at the time of the 1535 * call. The timestamp is only taken once, at the 1536 * first such call. It is assumed that the driver 1537 * advances its @tx buffer pointer monotonically. 1538 * @ctlr: Pointer to the spi_controller structure of the driver 1539 * @xfer: Pointer to the transfer being timestamped 1540 * @progress: How many words (not bytes) have been transferred so far 1541 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1542 * transfer, for less jitter in time measurement. Only compatible 1543 * with PIO drivers. If true, must follow up with 1544 * spi_take_timestamp_post or otherwise system will crash. 1545 * WARNING: for fully predictable results, the CPU frequency must 1546 * also be under control (governor). 1547 */ 1548 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1549 struct spi_transfer *xfer, 1550 size_t progress, bool irqs_off) 1551 { 1552 if (!xfer->ptp_sts) 1553 return; 1554 1555 if (xfer->timestamped) 1556 return; 1557 1558 if (progress > xfer->ptp_sts_word_pre) 1559 return; 1560 1561 /* Capture the resolution of the timestamp */ 1562 xfer->ptp_sts_word_pre = progress; 1563 1564 if (irqs_off) { 1565 local_irq_save(ctlr->irq_flags); 1566 preempt_disable(); 1567 } 1568 1569 ptp_read_system_prets(xfer->ptp_sts); 1570 } 1571 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1572 1573 /** 1574 * spi_take_timestamp_post - helper for drivers to collect the end of the 1575 * TX timestamp for the requested byte from the SPI 1576 * transfer. Can be called with an arbitrary 1577 * frequency: only the first call where @tx exceeds 1578 * or is equal to the requested word will be 1579 * timestamped. 1580 * @ctlr: Pointer to the spi_controller structure of the driver 1581 * @xfer: Pointer to the transfer being timestamped 1582 * @progress: How many words (not bytes) have been transferred so far 1583 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1584 */ 1585 void spi_take_timestamp_post(struct spi_controller *ctlr, 1586 struct spi_transfer *xfer, 1587 size_t progress, bool irqs_off) 1588 { 1589 if (!xfer->ptp_sts) 1590 return; 1591 1592 if (xfer->timestamped) 1593 return; 1594 1595 if (progress < xfer->ptp_sts_word_post) 1596 return; 1597 1598 ptp_read_system_postts(xfer->ptp_sts); 1599 1600 if (irqs_off) { 1601 local_irq_restore(ctlr->irq_flags); 1602 preempt_enable(); 1603 } 1604 1605 /* Capture the resolution of the timestamp */ 1606 xfer->ptp_sts_word_post = progress; 1607 1608 xfer->timestamped = true; 1609 } 1610 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1611 1612 /** 1613 * spi_set_thread_rt - set the controller to pump at realtime priority 1614 * @ctlr: controller to boost priority of 1615 * 1616 * This can be called because the controller requested realtime priority 1617 * (by setting the ->rt value before calling spi_register_controller()) or 1618 * because a device on the bus said that its transfers needed realtime 1619 * priority. 1620 * 1621 * NOTE: at the moment if any device on a bus says it needs realtime then 1622 * the thread will be at realtime priority for all transfers on that 1623 * controller. If this eventually becomes a problem we may see if we can 1624 * find a way to boost the priority only temporarily during relevant 1625 * transfers. 1626 */ 1627 static void spi_set_thread_rt(struct spi_controller *ctlr) 1628 { 1629 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 }; 1630 1631 dev_info(&ctlr->dev, 1632 "will run message pump with realtime priority\n"); 1633 sched_setscheduler(ctlr->kworker->task, SCHED_FIFO, ¶m); 1634 } 1635 1636 static int spi_init_queue(struct spi_controller *ctlr) 1637 { 1638 ctlr->running = false; 1639 ctlr->busy = false; 1640 1641 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1642 if (IS_ERR(ctlr->kworker)) { 1643 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1644 return PTR_ERR(ctlr->kworker); 1645 } 1646 1647 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1648 1649 /* 1650 * Controller config will indicate if this controller should run the 1651 * message pump with high (realtime) priority to reduce the transfer 1652 * latency on the bus by minimising the delay between a transfer 1653 * request and the scheduling of the message pump thread. Without this 1654 * setting the message pump thread will remain at default priority. 1655 */ 1656 if (ctlr->rt) 1657 spi_set_thread_rt(ctlr); 1658 1659 return 0; 1660 } 1661 1662 /** 1663 * spi_get_next_queued_message() - called by driver to check for queued 1664 * messages 1665 * @ctlr: the controller to check for queued messages 1666 * 1667 * If there are more messages in the queue, the next message is returned from 1668 * this call. 1669 * 1670 * Return: the next message in the queue, else NULL if the queue is empty. 1671 */ 1672 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1673 { 1674 struct spi_message *next; 1675 unsigned long flags; 1676 1677 /* get a pointer to the next message, if any */ 1678 spin_lock_irqsave(&ctlr->queue_lock, flags); 1679 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1680 queue); 1681 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1682 1683 return next; 1684 } 1685 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1686 1687 /** 1688 * spi_finalize_current_message() - the current message is complete 1689 * @ctlr: the controller to return the message to 1690 * 1691 * Called by the driver to notify the core that the message in the front of the 1692 * queue is complete and can be removed from the queue. 1693 */ 1694 void spi_finalize_current_message(struct spi_controller *ctlr) 1695 { 1696 struct spi_transfer *xfer; 1697 struct spi_message *mesg; 1698 unsigned long flags; 1699 int ret; 1700 1701 spin_lock_irqsave(&ctlr->queue_lock, flags); 1702 mesg = ctlr->cur_msg; 1703 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1704 1705 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1706 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1707 ptp_read_system_postts(xfer->ptp_sts); 1708 xfer->ptp_sts_word_post = xfer->len; 1709 } 1710 } 1711 1712 if (unlikely(ctlr->ptp_sts_supported)) 1713 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1714 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1715 1716 spi_unmap_msg(ctlr, mesg); 1717 1718 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1719 ret = ctlr->unprepare_message(ctlr, mesg); 1720 if (ret) { 1721 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1722 ret); 1723 } 1724 } 1725 1726 spin_lock_irqsave(&ctlr->queue_lock, flags); 1727 ctlr->cur_msg = NULL; 1728 ctlr->cur_msg_prepared = false; 1729 ctlr->fallback = false; 1730 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1731 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1732 1733 trace_spi_message_done(mesg); 1734 1735 mesg->state = NULL; 1736 if (mesg->complete) 1737 mesg->complete(mesg->context); 1738 } 1739 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1740 1741 static int spi_start_queue(struct spi_controller *ctlr) 1742 { 1743 unsigned long flags; 1744 1745 spin_lock_irqsave(&ctlr->queue_lock, flags); 1746 1747 if (ctlr->running || ctlr->busy) { 1748 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1749 return -EBUSY; 1750 } 1751 1752 ctlr->running = true; 1753 ctlr->cur_msg = NULL; 1754 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1755 1756 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1757 1758 return 0; 1759 } 1760 1761 static int spi_stop_queue(struct spi_controller *ctlr) 1762 { 1763 unsigned long flags; 1764 unsigned limit = 500; 1765 int ret = 0; 1766 1767 spin_lock_irqsave(&ctlr->queue_lock, flags); 1768 1769 /* 1770 * This is a bit lame, but is optimized for the common execution path. 1771 * A wait_queue on the ctlr->busy could be used, but then the common 1772 * execution path (pump_messages) would be required to call wake_up or 1773 * friends on every SPI message. Do this instead. 1774 */ 1775 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1776 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1777 usleep_range(10000, 11000); 1778 spin_lock_irqsave(&ctlr->queue_lock, flags); 1779 } 1780 1781 if (!list_empty(&ctlr->queue) || ctlr->busy) 1782 ret = -EBUSY; 1783 else 1784 ctlr->running = false; 1785 1786 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1787 1788 if (ret) { 1789 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1790 return ret; 1791 } 1792 return ret; 1793 } 1794 1795 static int spi_destroy_queue(struct spi_controller *ctlr) 1796 { 1797 int ret; 1798 1799 ret = spi_stop_queue(ctlr); 1800 1801 /* 1802 * kthread_flush_worker will block until all work is done. 1803 * If the reason that stop_queue timed out is that the work will never 1804 * finish, then it does no good to call flush/stop thread, so 1805 * return anyway. 1806 */ 1807 if (ret) { 1808 dev_err(&ctlr->dev, "problem destroying queue\n"); 1809 return ret; 1810 } 1811 1812 kthread_destroy_worker(ctlr->kworker); 1813 1814 return 0; 1815 } 1816 1817 static int __spi_queued_transfer(struct spi_device *spi, 1818 struct spi_message *msg, 1819 bool need_pump) 1820 { 1821 struct spi_controller *ctlr = spi->controller; 1822 unsigned long flags; 1823 1824 spin_lock_irqsave(&ctlr->queue_lock, flags); 1825 1826 if (!ctlr->running) { 1827 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1828 return -ESHUTDOWN; 1829 } 1830 msg->actual_length = 0; 1831 msg->status = -EINPROGRESS; 1832 1833 list_add_tail(&msg->queue, &ctlr->queue); 1834 if (!ctlr->busy && need_pump) 1835 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1836 1837 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1838 return 0; 1839 } 1840 1841 /** 1842 * spi_queued_transfer - transfer function for queued transfers 1843 * @spi: spi device which is requesting transfer 1844 * @msg: spi message which is to handled is queued to driver queue 1845 * 1846 * Return: zero on success, else a negative error code. 1847 */ 1848 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1849 { 1850 return __spi_queued_transfer(spi, msg, true); 1851 } 1852 1853 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1854 { 1855 int ret; 1856 1857 ctlr->transfer = spi_queued_transfer; 1858 if (!ctlr->transfer_one_message) 1859 ctlr->transfer_one_message = spi_transfer_one_message; 1860 1861 /* Initialize and start queue */ 1862 ret = spi_init_queue(ctlr); 1863 if (ret) { 1864 dev_err(&ctlr->dev, "problem initializing queue\n"); 1865 goto err_init_queue; 1866 } 1867 ctlr->queued = true; 1868 ret = spi_start_queue(ctlr); 1869 if (ret) { 1870 dev_err(&ctlr->dev, "problem starting queue\n"); 1871 goto err_start_queue; 1872 } 1873 1874 return 0; 1875 1876 err_start_queue: 1877 spi_destroy_queue(ctlr); 1878 err_init_queue: 1879 return ret; 1880 } 1881 1882 /** 1883 * spi_flush_queue - Send all pending messages in the queue from the callers' 1884 * context 1885 * @ctlr: controller to process queue for 1886 * 1887 * This should be used when one wants to ensure all pending messages have been 1888 * sent before doing something. Is used by the spi-mem code to make sure SPI 1889 * memory operations do not preempt regular SPI transfers that have been queued 1890 * before the spi-mem operation. 1891 */ 1892 void spi_flush_queue(struct spi_controller *ctlr) 1893 { 1894 if (ctlr->transfer == spi_queued_transfer) 1895 __spi_pump_messages(ctlr, false); 1896 } 1897 1898 /*-------------------------------------------------------------------------*/ 1899 1900 #if defined(CONFIG_OF) 1901 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1902 struct device_node *nc) 1903 { 1904 u32 value; 1905 int rc; 1906 1907 /* Mode (clock phase/polarity/etc.) */ 1908 if (of_property_read_bool(nc, "spi-cpha")) 1909 spi->mode |= SPI_CPHA; 1910 if (of_property_read_bool(nc, "spi-cpol")) 1911 spi->mode |= SPI_CPOL; 1912 if (of_property_read_bool(nc, "spi-3wire")) 1913 spi->mode |= SPI_3WIRE; 1914 if (of_property_read_bool(nc, "spi-lsb-first")) 1915 spi->mode |= SPI_LSB_FIRST; 1916 if (of_property_read_bool(nc, "spi-cs-high")) 1917 spi->mode |= SPI_CS_HIGH; 1918 1919 /* Device DUAL/QUAD mode */ 1920 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1921 switch (value) { 1922 case 1: 1923 break; 1924 case 2: 1925 spi->mode |= SPI_TX_DUAL; 1926 break; 1927 case 4: 1928 spi->mode |= SPI_TX_QUAD; 1929 break; 1930 case 8: 1931 spi->mode |= SPI_TX_OCTAL; 1932 break; 1933 default: 1934 dev_warn(&ctlr->dev, 1935 "spi-tx-bus-width %d not supported\n", 1936 value); 1937 break; 1938 } 1939 } 1940 1941 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1942 switch (value) { 1943 case 1: 1944 break; 1945 case 2: 1946 spi->mode |= SPI_RX_DUAL; 1947 break; 1948 case 4: 1949 spi->mode |= SPI_RX_QUAD; 1950 break; 1951 case 8: 1952 spi->mode |= SPI_RX_OCTAL; 1953 break; 1954 default: 1955 dev_warn(&ctlr->dev, 1956 "spi-rx-bus-width %d not supported\n", 1957 value); 1958 break; 1959 } 1960 } 1961 1962 if (spi_controller_is_slave(ctlr)) { 1963 if (!of_node_name_eq(nc, "slave")) { 1964 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1965 nc); 1966 return -EINVAL; 1967 } 1968 return 0; 1969 } 1970 1971 /* Device address */ 1972 rc = of_property_read_u32(nc, "reg", &value); 1973 if (rc) { 1974 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1975 nc, rc); 1976 return rc; 1977 } 1978 spi->chip_select = value; 1979 1980 /* 1981 * For descriptors associated with the device, polarity inversion is 1982 * handled in the gpiolib, so all gpio chip selects are "active high" 1983 * in the logical sense, the gpiolib will invert the line if need be. 1984 */ 1985 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods && 1986 ctlr->cs_gpiods[spi->chip_select]) 1987 spi->mode |= SPI_CS_HIGH; 1988 1989 /* Device speed */ 1990 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 1991 spi->max_speed_hz = value; 1992 1993 return 0; 1994 } 1995 1996 static struct spi_device * 1997 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1998 { 1999 struct spi_device *spi; 2000 int rc; 2001 2002 /* Alloc an spi_device */ 2003 spi = spi_alloc_device(ctlr); 2004 if (!spi) { 2005 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2006 rc = -ENOMEM; 2007 goto err_out; 2008 } 2009 2010 /* Select device driver */ 2011 rc = of_modalias_node(nc, spi->modalias, 2012 sizeof(spi->modalias)); 2013 if (rc < 0) { 2014 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2015 goto err_out; 2016 } 2017 2018 rc = of_spi_parse_dt(ctlr, spi, nc); 2019 if (rc) 2020 goto err_out; 2021 2022 /* Store a pointer to the node in the device structure */ 2023 of_node_get(nc); 2024 spi->dev.of_node = nc; 2025 2026 /* Register the new device */ 2027 rc = spi_add_device(spi); 2028 if (rc) { 2029 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2030 goto err_of_node_put; 2031 } 2032 2033 return spi; 2034 2035 err_of_node_put: 2036 of_node_put(nc); 2037 err_out: 2038 spi_dev_put(spi); 2039 return ERR_PTR(rc); 2040 } 2041 2042 /** 2043 * of_register_spi_devices() - Register child devices onto the SPI bus 2044 * @ctlr: Pointer to spi_controller device 2045 * 2046 * Registers an spi_device for each child node of controller node which 2047 * represents a valid SPI slave. 2048 */ 2049 static void of_register_spi_devices(struct spi_controller *ctlr) 2050 { 2051 struct spi_device *spi; 2052 struct device_node *nc; 2053 2054 if (!ctlr->dev.of_node) 2055 return; 2056 2057 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2058 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2059 continue; 2060 spi = of_register_spi_device(ctlr, nc); 2061 if (IS_ERR(spi)) { 2062 dev_warn(&ctlr->dev, 2063 "Failed to create SPI device for %pOF\n", nc); 2064 of_node_clear_flag(nc, OF_POPULATED); 2065 } 2066 } 2067 } 2068 #else 2069 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2070 #endif 2071 2072 #ifdef CONFIG_ACPI 2073 struct acpi_spi_lookup { 2074 struct spi_controller *ctlr; 2075 u32 max_speed_hz; 2076 u32 mode; 2077 int irq; 2078 u8 bits_per_word; 2079 u8 chip_select; 2080 }; 2081 2082 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2083 struct acpi_spi_lookup *lookup) 2084 { 2085 const union acpi_object *obj; 2086 2087 if (!x86_apple_machine) 2088 return; 2089 2090 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2091 && obj->buffer.length >= 4) 2092 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2093 2094 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2095 && obj->buffer.length == 8) 2096 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2097 2098 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2099 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2100 lookup->mode |= SPI_LSB_FIRST; 2101 2102 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2103 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2104 lookup->mode |= SPI_CPOL; 2105 2106 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2107 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2108 lookup->mode |= SPI_CPHA; 2109 } 2110 2111 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2112 { 2113 struct acpi_spi_lookup *lookup = data; 2114 struct spi_controller *ctlr = lookup->ctlr; 2115 2116 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2117 struct acpi_resource_spi_serialbus *sb; 2118 acpi_handle parent_handle; 2119 acpi_status status; 2120 2121 sb = &ares->data.spi_serial_bus; 2122 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2123 2124 status = acpi_get_handle(NULL, 2125 sb->resource_source.string_ptr, 2126 &parent_handle); 2127 2128 if (ACPI_FAILURE(status) || 2129 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2130 return -ENODEV; 2131 2132 /* 2133 * ACPI DeviceSelection numbering is handled by the 2134 * host controller driver in Windows and can vary 2135 * from driver to driver. In Linux we always expect 2136 * 0 .. max - 1 so we need to ask the driver to 2137 * translate between the two schemes. 2138 */ 2139 if (ctlr->fw_translate_cs) { 2140 int cs = ctlr->fw_translate_cs(ctlr, 2141 sb->device_selection); 2142 if (cs < 0) 2143 return cs; 2144 lookup->chip_select = cs; 2145 } else { 2146 lookup->chip_select = sb->device_selection; 2147 } 2148 2149 lookup->max_speed_hz = sb->connection_speed; 2150 lookup->bits_per_word = sb->data_bit_length; 2151 2152 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2153 lookup->mode |= SPI_CPHA; 2154 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2155 lookup->mode |= SPI_CPOL; 2156 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2157 lookup->mode |= SPI_CS_HIGH; 2158 } 2159 } else if (lookup->irq < 0) { 2160 struct resource r; 2161 2162 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2163 lookup->irq = r.start; 2164 } 2165 2166 /* Always tell the ACPI core to skip this resource */ 2167 return 1; 2168 } 2169 2170 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2171 struct acpi_device *adev) 2172 { 2173 acpi_handle parent_handle = NULL; 2174 struct list_head resource_list; 2175 struct acpi_spi_lookup lookup = {}; 2176 struct spi_device *spi; 2177 int ret; 2178 2179 if (acpi_bus_get_status(adev) || !adev->status.present || 2180 acpi_device_enumerated(adev)) 2181 return AE_OK; 2182 2183 lookup.ctlr = ctlr; 2184 lookup.irq = -1; 2185 2186 INIT_LIST_HEAD(&resource_list); 2187 ret = acpi_dev_get_resources(adev, &resource_list, 2188 acpi_spi_add_resource, &lookup); 2189 acpi_dev_free_resource_list(&resource_list); 2190 2191 if (ret < 0) 2192 /* found SPI in _CRS but it points to another controller */ 2193 return AE_OK; 2194 2195 if (!lookup.max_speed_hz && 2196 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 2197 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2198 /* Apple does not use _CRS but nested devices for SPI slaves */ 2199 acpi_spi_parse_apple_properties(adev, &lookup); 2200 } 2201 2202 if (!lookup.max_speed_hz) 2203 return AE_OK; 2204 2205 spi = spi_alloc_device(ctlr); 2206 if (!spi) { 2207 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2208 dev_name(&adev->dev)); 2209 return AE_NO_MEMORY; 2210 } 2211 2212 2213 ACPI_COMPANION_SET(&spi->dev, adev); 2214 spi->max_speed_hz = lookup.max_speed_hz; 2215 spi->mode |= lookup.mode; 2216 spi->irq = lookup.irq; 2217 spi->bits_per_word = lookup.bits_per_word; 2218 spi->chip_select = lookup.chip_select; 2219 2220 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2221 sizeof(spi->modalias)); 2222 2223 if (spi->irq < 0) 2224 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2225 2226 acpi_device_set_enumerated(adev); 2227 2228 adev->power.flags.ignore_parent = true; 2229 if (spi_add_device(spi)) { 2230 adev->power.flags.ignore_parent = false; 2231 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2232 dev_name(&adev->dev)); 2233 spi_dev_put(spi); 2234 } 2235 2236 return AE_OK; 2237 } 2238 2239 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2240 void *data, void **return_value) 2241 { 2242 struct spi_controller *ctlr = data; 2243 struct acpi_device *adev; 2244 2245 if (acpi_bus_get_device(handle, &adev)) 2246 return AE_OK; 2247 2248 return acpi_register_spi_device(ctlr, adev); 2249 } 2250 2251 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2252 2253 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2254 { 2255 acpi_status status; 2256 acpi_handle handle; 2257 2258 handle = ACPI_HANDLE(ctlr->dev.parent); 2259 if (!handle) 2260 return; 2261 2262 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2263 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2264 acpi_spi_add_device, NULL, ctlr, NULL); 2265 if (ACPI_FAILURE(status)) 2266 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2267 } 2268 #else 2269 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2270 #endif /* CONFIG_ACPI */ 2271 2272 static void spi_controller_release(struct device *dev) 2273 { 2274 struct spi_controller *ctlr; 2275 2276 ctlr = container_of(dev, struct spi_controller, dev); 2277 kfree(ctlr); 2278 } 2279 2280 static struct class spi_master_class = { 2281 .name = "spi_master", 2282 .owner = THIS_MODULE, 2283 .dev_release = spi_controller_release, 2284 .dev_groups = spi_master_groups, 2285 }; 2286 2287 #ifdef CONFIG_SPI_SLAVE 2288 /** 2289 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2290 * controller 2291 * @spi: device used for the current transfer 2292 */ 2293 int spi_slave_abort(struct spi_device *spi) 2294 { 2295 struct spi_controller *ctlr = spi->controller; 2296 2297 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2298 return ctlr->slave_abort(ctlr); 2299 2300 return -ENOTSUPP; 2301 } 2302 EXPORT_SYMBOL_GPL(spi_slave_abort); 2303 2304 static int match_true(struct device *dev, void *data) 2305 { 2306 return 1; 2307 } 2308 2309 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2310 char *buf) 2311 { 2312 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2313 dev); 2314 struct device *child; 2315 2316 child = device_find_child(&ctlr->dev, NULL, match_true); 2317 return sprintf(buf, "%s\n", 2318 child ? to_spi_device(child)->modalias : NULL); 2319 } 2320 2321 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2322 const char *buf, size_t count) 2323 { 2324 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2325 dev); 2326 struct spi_device *spi; 2327 struct device *child; 2328 char name[32]; 2329 int rc; 2330 2331 rc = sscanf(buf, "%31s", name); 2332 if (rc != 1 || !name[0]) 2333 return -EINVAL; 2334 2335 child = device_find_child(&ctlr->dev, NULL, match_true); 2336 if (child) { 2337 /* Remove registered slave */ 2338 device_unregister(child); 2339 put_device(child); 2340 } 2341 2342 if (strcmp(name, "(null)")) { 2343 /* Register new slave */ 2344 spi = spi_alloc_device(ctlr); 2345 if (!spi) 2346 return -ENOMEM; 2347 2348 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2349 2350 rc = spi_add_device(spi); 2351 if (rc) { 2352 spi_dev_put(spi); 2353 return rc; 2354 } 2355 } 2356 2357 return count; 2358 } 2359 2360 static DEVICE_ATTR_RW(slave); 2361 2362 static struct attribute *spi_slave_attrs[] = { 2363 &dev_attr_slave.attr, 2364 NULL, 2365 }; 2366 2367 static const struct attribute_group spi_slave_group = { 2368 .attrs = spi_slave_attrs, 2369 }; 2370 2371 static const struct attribute_group *spi_slave_groups[] = { 2372 &spi_controller_statistics_group, 2373 &spi_slave_group, 2374 NULL, 2375 }; 2376 2377 static struct class spi_slave_class = { 2378 .name = "spi_slave", 2379 .owner = THIS_MODULE, 2380 .dev_release = spi_controller_release, 2381 .dev_groups = spi_slave_groups, 2382 }; 2383 #else 2384 extern struct class spi_slave_class; /* dummy */ 2385 #endif 2386 2387 /** 2388 * __spi_alloc_controller - allocate an SPI master or slave controller 2389 * @dev: the controller, possibly using the platform_bus 2390 * @size: how much zeroed driver-private data to allocate; the pointer to this 2391 * memory is in the driver_data field of the returned device, accessible 2392 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2393 * drivers granting DMA access to portions of their private data need to 2394 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2395 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2396 * slave (true) controller 2397 * Context: can sleep 2398 * 2399 * This call is used only by SPI controller drivers, which are the 2400 * only ones directly touching chip registers. It's how they allocate 2401 * an spi_controller structure, prior to calling spi_register_controller(). 2402 * 2403 * This must be called from context that can sleep. 2404 * 2405 * The caller is responsible for assigning the bus number and initializing the 2406 * controller's methods before calling spi_register_controller(); and (after 2407 * errors adding the device) calling spi_controller_put() to prevent a memory 2408 * leak. 2409 * 2410 * Return: the SPI controller structure on success, else NULL. 2411 */ 2412 struct spi_controller *__spi_alloc_controller(struct device *dev, 2413 unsigned int size, bool slave) 2414 { 2415 struct spi_controller *ctlr; 2416 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2417 2418 if (!dev) 2419 return NULL; 2420 2421 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2422 if (!ctlr) 2423 return NULL; 2424 2425 device_initialize(&ctlr->dev); 2426 ctlr->bus_num = -1; 2427 ctlr->num_chipselect = 1; 2428 ctlr->slave = slave; 2429 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2430 ctlr->dev.class = &spi_slave_class; 2431 else 2432 ctlr->dev.class = &spi_master_class; 2433 ctlr->dev.parent = dev; 2434 pm_suspend_ignore_children(&ctlr->dev, true); 2435 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2436 2437 return ctlr; 2438 } 2439 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2440 2441 #ifdef CONFIG_OF 2442 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2443 { 2444 int nb, i, *cs; 2445 struct device_node *np = ctlr->dev.of_node; 2446 2447 if (!np) 2448 return 0; 2449 2450 nb = of_gpio_named_count(np, "cs-gpios"); 2451 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2452 2453 /* Return error only for an incorrectly formed cs-gpios property */ 2454 if (nb == 0 || nb == -ENOENT) 2455 return 0; 2456 else if (nb < 0) 2457 return nb; 2458 2459 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2460 GFP_KERNEL); 2461 ctlr->cs_gpios = cs; 2462 2463 if (!ctlr->cs_gpios) 2464 return -ENOMEM; 2465 2466 for (i = 0; i < ctlr->num_chipselect; i++) 2467 cs[i] = -ENOENT; 2468 2469 for (i = 0; i < nb; i++) 2470 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2471 2472 return 0; 2473 } 2474 #else 2475 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2476 { 2477 return 0; 2478 } 2479 #endif 2480 2481 /** 2482 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2483 * @ctlr: The SPI master to grab GPIO descriptors for 2484 */ 2485 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2486 { 2487 int nb, i; 2488 struct gpio_desc **cs; 2489 struct device *dev = &ctlr->dev; 2490 unsigned long native_cs_mask = 0; 2491 unsigned int num_cs_gpios = 0; 2492 2493 nb = gpiod_count(dev, "cs"); 2494 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2495 2496 /* No GPIOs at all is fine, else return the error */ 2497 if (nb == 0 || nb == -ENOENT) 2498 return 0; 2499 else if (nb < 0) 2500 return nb; 2501 2502 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2503 GFP_KERNEL); 2504 if (!cs) 2505 return -ENOMEM; 2506 ctlr->cs_gpiods = cs; 2507 2508 for (i = 0; i < nb; i++) { 2509 /* 2510 * Most chipselects are active low, the inverted 2511 * semantics are handled by special quirks in gpiolib, 2512 * so initializing them GPIOD_OUT_LOW here means 2513 * "unasserted", in most cases this will drive the physical 2514 * line high. 2515 */ 2516 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2517 GPIOD_OUT_LOW); 2518 if (IS_ERR(cs[i])) 2519 return PTR_ERR(cs[i]); 2520 2521 if (cs[i]) { 2522 /* 2523 * If we find a CS GPIO, name it after the device and 2524 * chip select line. 2525 */ 2526 char *gpioname; 2527 2528 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2529 dev_name(dev), i); 2530 if (!gpioname) 2531 return -ENOMEM; 2532 gpiod_set_consumer_name(cs[i], gpioname); 2533 num_cs_gpios++; 2534 continue; 2535 } 2536 2537 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2538 dev_err(dev, "Invalid native chip select %d\n", i); 2539 return -EINVAL; 2540 } 2541 native_cs_mask |= BIT(i); 2542 } 2543 2544 ctlr->unused_native_cs = ffz(native_cs_mask); 2545 if (num_cs_gpios && ctlr->max_native_cs && 2546 ctlr->unused_native_cs >= ctlr->max_native_cs) { 2547 dev_err(dev, "No unused native chip select available\n"); 2548 return -EINVAL; 2549 } 2550 2551 return 0; 2552 } 2553 2554 static int spi_controller_check_ops(struct spi_controller *ctlr) 2555 { 2556 /* 2557 * The controller may implement only the high-level SPI-memory like 2558 * operations if it does not support regular SPI transfers, and this is 2559 * valid use case. 2560 * If ->mem_ops is NULL, we request that at least one of the 2561 * ->transfer_xxx() method be implemented. 2562 */ 2563 if (ctlr->mem_ops) { 2564 if (!ctlr->mem_ops->exec_op) 2565 return -EINVAL; 2566 } else if (!ctlr->transfer && !ctlr->transfer_one && 2567 !ctlr->transfer_one_message) { 2568 return -EINVAL; 2569 } 2570 2571 return 0; 2572 } 2573 2574 /** 2575 * spi_register_controller - register SPI master or slave controller 2576 * @ctlr: initialized master, originally from spi_alloc_master() or 2577 * spi_alloc_slave() 2578 * Context: can sleep 2579 * 2580 * SPI controllers connect to their drivers using some non-SPI bus, 2581 * such as the platform bus. The final stage of probe() in that code 2582 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2583 * 2584 * SPI controllers use board specific (often SOC specific) bus numbers, 2585 * and board-specific addressing for SPI devices combines those numbers 2586 * with chip select numbers. Since SPI does not directly support dynamic 2587 * device identification, boards need configuration tables telling which 2588 * chip is at which address. 2589 * 2590 * This must be called from context that can sleep. It returns zero on 2591 * success, else a negative error code (dropping the controller's refcount). 2592 * After a successful return, the caller is responsible for calling 2593 * spi_unregister_controller(). 2594 * 2595 * Return: zero on success, else a negative error code. 2596 */ 2597 int spi_register_controller(struct spi_controller *ctlr) 2598 { 2599 struct device *dev = ctlr->dev.parent; 2600 struct boardinfo *bi; 2601 int status; 2602 int id, first_dynamic; 2603 2604 if (!dev) 2605 return -ENODEV; 2606 2607 /* 2608 * Make sure all necessary hooks are implemented before registering 2609 * the SPI controller. 2610 */ 2611 status = spi_controller_check_ops(ctlr); 2612 if (status) 2613 return status; 2614 2615 if (ctlr->bus_num >= 0) { 2616 /* devices with a fixed bus num must check-in with the num */ 2617 mutex_lock(&board_lock); 2618 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2619 ctlr->bus_num + 1, GFP_KERNEL); 2620 mutex_unlock(&board_lock); 2621 if (WARN(id < 0, "couldn't get idr")) 2622 return id == -ENOSPC ? -EBUSY : id; 2623 ctlr->bus_num = id; 2624 } else if (ctlr->dev.of_node) { 2625 /* allocate dynamic bus number using Linux idr */ 2626 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2627 if (id >= 0) { 2628 ctlr->bus_num = id; 2629 mutex_lock(&board_lock); 2630 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2631 ctlr->bus_num + 1, GFP_KERNEL); 2632 mutex_unlock(&board_lock); 2633 if (WARN(id < 0, "couldn't get idr")) 2634 return id == -ENOSPC ? -EBUSY : id; 2635 } 2636 } 2637 if (ctlr->bus_num < 0) { 2638 first_dynamic = of_alias_get_highest_id("spi"); 2639 if (first_dynamic < 0) 2640 first_dynamic = 0; 2641 else 2642 first_dynamic++; 2643 2644 mutex_lock(&board_lock); 2645 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2646 0, GFP_KERNEL); 2647 mutex_unlock(&board_lock); 2648 if (WARN(id < 0, "couldn't get idr")) 2649 return id; 2650 ctlr->bus_num = id; 2651 } 2652 INIT_LIST_HEAD(&ctlr->queue); 2653 spin_lock_init(&ctlr->queue_lock); 2654 spin_lock_init(&ctlr->bus_lock_spinlock); 2655 mutex_init(&ctlr->bus_lock_mutex); 2656 mutex_init(&ctlr->io_mutex); 2657 ctlr->bus_lock_flag = 0; 2658 init_completion(&ctlr->xfer_completion); 2659 if (!ctlr->max_dma_len) 2660 ctlr->max_dma_len = INT_MAX; 2661 2662 /* register the device, then userspace will see it. 2663 * registration fails if the bus ID is in use. 2664 */ 2665 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2666 2667 if (!spi_controller_is_slave(ctlr)) { 2668 if (ctlr->use_gpio_descriptors) { 2669 status = spi_get_gpio_descs(ctlr); 2670 if (status) 2671 goto free_bus_id; 2672 /* 2673 * A controller using GPIO descriptors always 2674 * supports SPI_CS_HIGH if need be. 2675 */ 2676 ctlr->mode_bits |= SPI_CS_HIGH; 2677 } else { 2678 /* Legacy code path for GPIOs from DT */ 2679 status = of_spi_get_gpio_numbers(ctlr); 2680 if (status) 2681 goto free_bus_id; 2682 } 2683 } 2684 2685 /* 2686 * Even if it's just one always-selected device, there must 2687 * be at least one chipselect. 2688 */ 2689 if (!ctlr->num_chipselect) { 2690 status = -EINVAL; 2691 goto free_bus_id; 2692 } 2693 2694 status = device_add(&ctlr->dev); 2695 if (status < 0) 2696 goto free_bus_id; 2697 dev_dbg(dev, "registered %s %s\n", 2698 spi_controller_is_slave(ctlr) ? "slave" : "master", 2699 dev_name(&ctlr->dev)); 2700 2701 /* 2702 * If we're using a queued driver, start the queue. Note that we don't 2703 * need the queueing logic if the driver is only supporting high-level 2704 * memory operations. 2705 */ 2706 if (ctlr->transfer) { 2707 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2708 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2709 status = spi_controller_initialize_queue(ctlr); 2710 if (status) { 2711 device_del(&ctlr->dev); 2712 goto free_bus_id; 2713 } 2714 } 2715 /* add statistics */ 2716 spin_lock_init(&ctlr->statistics.lock); 2717 2718 mutex_lock(&board_lock); 2719 list_add_tail(&ctlr->list, &spi_controller_list); 2720 list_for_each_entry(bi, &board_list, list) 2721 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2722 mutex_unlock(&board_lock); 2723 2724 /* Register devices from the device tree and ACPI */ 2725 of_register_spi_devices(ctlr); 2726 acpi_register_spi_devices(ctlr); 2727 return status; 2728 2729 free_bus_id: 2730 mutex_lock(&board_lock); 2731 idr_remove(&spi_master_idr, ctlr->bus_num); 2732 mutex_unlock(&board_lock); 2733 return status; 2734 } 2735 EXPORT_SYMBOL_GPL(spi_register_controller); 2736 2737 static void devm_spi_unregister(struct device *dev, void *res) 2738 { 2739 spi_unregister_controller(*(struct spi_controller **)res); 2740 } 2741 2742 /** 2743 * devm_spi_register_controller - register managed SPI master or slave 2744 * controller 2745 * @dev: device managing SPI controller 2746 * @ctlr: initialized controller, originally from spi_alloc_master() or 2747 * spi_alloc_slave() 2748 * Context: can sleep 2749 * 2750 * Register a SPI device as with spi_register_controller() which will 2751 * automatically be unregistered and freed. 2752 * 2753 * Return: zero on success, else a negative error code. 2754 */ 2755 int devm_spi_register_controller(struct device *dev, 2756 struct spi_controller *ctlr) 2757 { 2758 struct spi_controller **ptr; 2759 int ret; 2760 2761 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2762 if (!ptr) 2763 return -ENOMEM; 2764 2765 ret = spi_register_controller(ctlr); 2766 if (!ret) { 2767 *ptr = ctlr; 2768 devres_add(dev, ptr); 2769 } else { 2770 devres_free(ptr); 2771 } 2772 2773 return ret; 2774 } 2775 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2776 2777 static int __unregister(struct device *dev, void *null) 2778 { 2779 spi_unregister_device(to_spi_device(dev)); 2780 return 0; 2781 } 2782 2783 /** 2784 * spi_unregister_controller - unregister SPI master or slave controller 2785 * @ctlr: the controller being unregistered 2786 * Context: can sleep 2787 * 2788 * This call is used only by SPI controller drivers, which are the 2789 * only ones directly touching chip registers. 2790 * 2791 * This must be called from context that can sleep. 2792 * 2793 * Note that this function also drops a reference to the controller. 2794 */ 2795 void spi_unregister_controller(struct spi_controller *ctlr) 2796 { 2797 struct spi_controller *found; 2798 int id = ctlr->bus_num; 2799 2800 device_for_each_child(&ctlr->dev, NULL, __unregister); 2801 2802 /* First make sure that this controller was ever added */ 2803 mutex_lock(&board_lock); 2804 found = idr_find(&spi_master_idr, id); 2805 mutex_unlock(&board_lock); 2806 if (ctlr->queued) { 2807 if (spi_destroy_queue(ctlr)) 2808 dev_err(&ctlr->dev, "queue remove failed\n"); 2809 } 2810 mutex_lock(&board_lock); 2811 list_del(&ctlr->list); 2812 mutex_unlock(&board_lock); 2813 2814 device_unregister(&ctlr->dev); 2815 /* free bus id */ 2816 mutex_lock(&board_lock); 2817 if (found == ctlr) 2818 idr_remove(&spi_master_idr, id); 2819 mutex_unlock(&board_lock); 2820 } 2821 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2822 2823 int spi_controller_suspend(struct spi_controller *ctlr) 2824 { 2825 int ret; 2826 2827 /* Basically no-ops for non-queued controllers */ 2828 if (!ctlr->queued) 2829 return 0; 2830 2831 ret = spi_stop_queue(ctlr); 2832 if (ret) 2833 dev_err(&ctlr->dev, "queue stop failed\n"); 2834 2835 return ret; 2836 } 2837 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2838 2839 int spi_controller_resume(struct spi_controller *ctlr) 2840 { 2841 int ret; 2842 2843 if (!ctlr->queued) 2844 return 0; 2845 2846 ret = spi_start_queue(ctlr); 2847 if (ret) 2848 dev_err(&ctlr->dev, "queue restart failed\n"); 2849 2850 return ret; 2851 } 2852 EXPORT_SYMBOL_GPL(spi_controller_resume); 2853 2854 static int __spi_controller_match(struct device *dev, const void *data) 2855 { 2856 struct spi_controller *ctlr; 2857 const u16 *bus_num = data; 2858 2859 ctlr = container_of(dev, struct spi_controller, dev); 2860 return ctlr->bus_num == *bus_num; 2861 } 2862 2863 /** 2864 * spi_busnum_to_master - look up master associated with bus_num 2865 * @bus_num: the master's bus number 2866 * Context: can sleep 2867 * 2868 * This call may be used with devices that are registered after 2869 * arch init time. It returns a refcounted pointer to the relevant 2870 * spi_controller (which the caller must release), or NULL if there is 2871 * no such master registered. 2872 * 2873 * Return: the SPI master structure on success, else NULL. 2874 */ 2875 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2876 { 2877 struct device *dev; 2878 struct spi_controller *ctlr = NULL; 2879 2880 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2881 __spi_controller_match); 2882 if (dev) 2883 ctlr = container_of(dev, struct spi_controller, dev); 2884 /* reference got in class_find_device */ 2885 return ctlr; 2886 } 2887 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2888 2889 /*-------------------------------------------------------------------------*/ 2890 2891 /* Core methods for SPI resource management */ 2892 2893 /** 2894 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2895 * during the processing of a spi_message while using 2896 * spi_transfer_one 2897 * @spi: the spi device for which we allocate memory 2898 * @release: the release code to execute for this resource 2899 * @size: size to alloc and return 2900 * @gfp: GFP allocation flags 2901 * 2902 * Return: the pointer to the allocated data 2903 * 2904 * This may get enhanced in the future to allocate from a memory pool 2905 * of the @spi_device or @spi_controller to avoid repeated allocations. 2906 */ 2907 void *spi_res_alloc(struct spi_device *spi, 2908 spi_res_release_t release, 2909 size_t size, gfp_t gfp) 2910 { 2911 struct spi_res *sres; 2912 2913 sres = kzalloc(sizeof(*sres) + size, gfp); 2914 if (!sres) 2915 return NULL; 2916 2917 INIT_LIST_HEAD(&sres->entry); 2918 sres->release = release; 2919 2920 return sres->data; 2921 } 2922 EXPORT_SYMBOL_GPL(spi_res_alloc); 2923 2924 /** 2925 * spi_res_free - free an spi resource 2926 * @res: pointer to the custom data of a resource 2927 * 2928 */ 2929 void spi_res_free(void *res) 2930 { 2931 struct spi_res *sres = container_of(res, struct spi_res, data); 2932 2933 if (!res) 2934 return; 2935 2936 WARN_ON(!list_empty(&sres->entry)); 2937 kfree(sres); 2938 } 2939 EXPORT_SYMBOL_GPL(spi_res_free); 2940 2941 /** 2942 * spi_res_add - add a spi_res to the spi_message 2943 * @message: the spi message 2944 * @res: the spi_resource 2945 */ 2946 void spi_res_add(struct spi_message *message, void *res) 2947 { 2948 struct spi_res *sres = container_of(res, struct spi_res, data); 2949 2950 WARN_ON(!list_empty(&sres->entry)); 2951 list_add_tail(&sres->entry, &message->resources); 2952 } 2953 EXPORT_SYMBOL_GPL(spi_res_add); 2954 2955 /** 2956 * spi_res_release - release all spi resources for this message 2957 * @ctlr: the @spi_controller 2958 * @message: the @spi_message 2959 */ 2960 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2961 { 2962 struct spi_res *res, *tmp; 2963 2964 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 2965 if (res->release) 2966 res->release(ctlr, message, res->data); 2967 2968 list_del(&res->entry); 2969 2970 kfree(res); 2971 } 2972 } 2973 EXPORT_SYMBOL_GPL(spi_res_release); 2974 2975 /*-------------------------------------------------------------------------*/ 2976 2977 /* Core methods for spi_message alterations */ 2978 2979 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2980 struct spi_message *msg, 2981 void *res) 2982 { 2983 struct spi_replaced_transfers *rxfer = res; 2984 size_t i; 2985 2986 /* call extra callback if requested */ 2987 if (rxfer->release) 2988 rxfer->release(ctlr, msg, res); 2989 2990 /* insert replaced transfers back into the message */ 2991 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2992 2993 /* remove the formerly inserted entries */ 2994 for (i = 0; i < rxfer->inserted; i++) 2995 list_del(&rxfer->inserted_transfers[i].transfer_list); 2996 } 2997 2998 /** 2999 * spi_replace_transfers - replace transfers with several transfers 3000 * and register change with spi_message.resources 3001 * @msg: the spi_message we work upon 3002 * @xfer_first: the first spi_transfer we want to replace 3003 * @remove: number of transfers to remove 3004 * @insert: the number of transfers we want to insert instead 3005 * @release: extra release code necessary in some circumstances 3006 * @extradatasize: extra data to allocate (with alignment guarantees 3007 * of struct @spi_transfer) 3008 * @gfp: gfp flags 3009 * 3010 * Returns: pointer to @spi_replaced_transfers, 3011 * PTR_ERR(...) in case of errors. 3012 */ 3013 struct spi_replaced_transfers *spi_replace_transfers( 3014 struct spi_message *msg, 3015 struct spi_transfer *xfer_first, 3016 size_t remove, 3017 size_t insert, 3018 spi_replaced_release_t release, 3019 size_t extradatasize, 3020 gfp_t gfp) 3021 { 3022 struct spi_replaced_transfers *rxfer; 3023 struct spi_transfer *xfer; 3024 size_t i; 3025 3026 /* allocate the structure using spi_res */ 3027 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3028 struct_size(rxfer, inserted_transfers, insert) 3029 + extradatasize, 3030 gfp); 3031 if (!rxfer) 3032 return ERR_PTR(-ENOMEM); 3033 3034 /* the release code to invoke before running the generic release */ 3035 rxfer->release = release; 3036 3037 /* assign extradata */ 3038 if (extradatasize) 3039 rxfer->extradata = 3040 &rxfer->inserted_transfers[insert]; 3041 3042 /* init the replaced_transfers list */ 3043 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3044 3045 /* assign the list_entry after which we should reinsert 3046 * the @replaced_transfers - it may be spi_message.messages! 3047 */ 3048 rxfer->replaced_after = xfer_first->transfer_list.prev; 3049 3050 /* remove the requested number of transfers */ 3051 for (i = 0; i < remove; i++) { 3052 /* if the entry after replaced_after it is msg->transfers 3053 * then we have been requested to remove more transfers 3054 * than are in the list 3055 */ 3056 if (rxfer->replaced_after->next == &msg->transfers) { 3057 dev_err(&msg->spi->dev, 3058 "requested to remove more spi_transfers than are available\n"); 3059 /* insert replaced transfers back into the message */ 3060 list_splice(&rxfer->replaced_transfers, 3061 rxfer->replaced_after); 3062 3063 /* free the spi_replace_transfer structure */ 3064 spi_res_free(rxfer); 3065 3066 /* and return with an error */ 3067 return ERR_PTR(-EINVAL); 3068 } 3069 3070 /* remove the entry after replaced_after from list of 3071 * transfers and add it to list of replaced_transfers 3072 */ 3073 list_move_tail(rxfer->replaced_after->next, 3074 &rxfer->replaced_transfers); 3075 } 3076 3077 /* create copy of the given xfer with identical settings 3078 * based on the first transfer to get removed 3079 */ 3080 for (i = 0; i < insert; i++) { 3081 /* we need to run in reverse order */ 3082 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3083 3084 /* copy all spi_transfer data */ 3085 memcpy(xfer, xfer_first, sizeof(*xfer)); 3086 3087 /* add to list */ 3088 list_add(&xfer->transfer_list, rxfer->replaced_after); 3089 3090 /* clear cs_change and delay for all but the last */ 3091 if (i) { 3092 xfer->cs_change = false; 3093 xfer->delay_usecs = 0; 3094 xfer->delay.value = 0; 3095 } 3096 } 3097 3098 /* set up inserted */ 3099 rxfer->inserted = insert; 3100 3101 /* and register it with spi_res/spi_message */ 3102 spi_res_add(msg, rxfer); 3103 3104 return rxfer; 3105 } 3106 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3107 3108 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3109 struct spi_message *msg, 3110 struct spi_transfer **xferp, 3111 size_t maxsize, 3112 gfp_t gfp) 3113 { 3114 struct spi_transfer *xfer = *xferp, *xfers; 3115 struct spi_replaced_transfers *srt; 3116 size_t offset; 3117 size_t count, i; 3118 3119 /* calculate how many we have to replace */ 3120 count = DIV_ROUND_UP(xfer->len, maxsize); 3121 3122 /* create replacement */ 3123 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3124 if (IS_ERR(srt)) 3125 return PTR_ERR(srt); 3126 xfers = srt->inserted_transfers; 3127 3128 /* now handle each of those newly inserted spi_transfers 3129 * note that the replacements spi_transfers all are preset 3130 * to the same values as *xferp, so tx_buf, rx_buf and len 3131 * are all identical (as well as most others) 3132 * so we just have to fix up len and the pointers. 3133 * 3134 * this also includes support for the depreciated 3135 * spi_message.is_dma_mapped interface 3136 */ 3137 3138 /* the first transfer just needs the length modified, so we 3139 * run it outside the loop 3140 */ 3141 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3142 3143 /* all the others need rx_buf/tx_buf also set */ 3144 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3145 /* update rx_buf, tx_buf and dma */ 3146 if (xfers[i].rx_buf) 3147 xfers[i].rx_buf += offset; 3148 if (xfers[i].rx_dma) 3149 xfers[i].rx_dma += offset; 3150 if (xfers[i].tx_buf) 3151 xfers[i].tx_buf += offset; 3152 if (xfers[i].tx_dma) 3153 xfers[i].tx_dma += offset; 3154 3155 /* update length */ 3156 xfers[i].len = min(maxsize, xfers[i].len - offset); 3157 } 3158 3159 /* we set up xferp to the last entry we have inserted, 3160 * so that we skip those already split transfers 3161 */ 3162 *xferp = &xfers[count - 1]; 3163 3164 /* increment statistics counters */ 3165 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3166 transfers_split_maxsize); 3167 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3168 transfers_split_maxsize); 3169 3170 return 0; 3171 } 3172 3173 /** 3174 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 3175 * when an individual transfer exceeds a 3176 * certain size 3177 * @ctlr: the @spi_controller for this transfer 3178 * @msg: the @spi_message to transform 3179 * @maxsize: the maximum when to apply this 3180 * @gfp: GFP allocation flags 3181 * 3182 * Return: status of transformation 3183 */ 3184 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3185 struct spi_message *msg, 3186 size_t maxsize, 3187 gfp_t gfp) 3188 { 3189 struct spi_transfer *xfer; 3190 int ret; 3191 3192 /* iterate over the transfer_list, 3193 * but note that xfer is advanced to the last transfer inserted 3194 * to avoid checking sizes again unnecessarily (also xfer does 3195 * potentiall belong to a different list by the time the 3196 * replacement has happened 3197 */ 3198 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3199 if (xfer->len > maxsize) { 3200 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3201 maxsize, gfp); 3202 if (ret) 3203 return ret; 3204 } 3205 } 3206 3207 return 0; 3208 } 3209 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3210 3211 /*-------------------------------------------------------------------------*/ 3212 3213 /* Core methods for SPI controller protocol drivers. Some of the 3214 * other core methods are currently defined as inline functions. 3215 */ 3216 3217 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3218 u8 bits_per_word) 3219 { 3220 if (ctlr->bits_per_word_mask) { 3221 /* Only 32 bits fit in the mask */ 3222 if (bits_per_word > 32) 3223 return -EINVAL; 3224 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3225 return -EINVAL; 3226 } 3227 3228 return 0; 3229 } 3230 3231 /** 3232 * spi_setup - setup SPI mode and clock rate 3233 * @spi: the device whose settings are being modified 3234 * Context: can sleep, and no requests are queued to the device 3235 * 3236 * SPI protocol drivers may need to update the transfer mode if the 3237 * device doesn't work with its default. They may likewise need 3238 * to update clock rates or word sizes from initial values. This function 3239 * changes those settings, and must be called from a context that can sleep. 3240 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3241 * effect the next time the device is selected and data is transferred to 3242 * or from it. When this function returns, the spi device is deselected. 3243 * 3244 * Note that this call will fail if the protocol driver specifies an option 3245 * that the underlying controller or its driver does not support. For 3246 * example, not all hardware supports wire transfers using nine bit words, 3247 * LSB-first wire encoding, or active-high chipselects. 3248 * 3249 * Return: zero on success, else a negative error code. 3250 */ 3251 int spi_setup(struct spi_device *spi) 3252 { 3253 unsigned bad_bits, ugly_bits; 3254 int status; 3255 3256 /* check mode to prevent that DUAL and QUAD set at the same time 3257 */ 3258 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3259 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3260 dev_err(&spi->dev, 3261 "setup: can not select dual and quad at the same time\n"); 3262 return -EINVAL; 3263 } 3264 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3265 */ 3266 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3267 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3268 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3269 return -EINVAL; 3270 /* help drivers fail *cleanly* when they need options 3271 * that aren't supported with their current controller 3272 * SPI_CS_WORD has a fallback software implementation, 3273 * so it is ignored here. 3274 */ 3275 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3276 /* nothing prevents from working with active-high CS in case if it 3277 * is driven by GPIO. 3278 */ 3279 if (gpio_is_valid(spi->cs_gpio)) 3280 bad_bits &= ~SPI_CS_HIGH; 3281 ugly_bits = bad_bits & 3282 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3283 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3284 if (ugly_bits) { 3285 dev_warn(&spi->dev, 3286 "setup: ignoring unsupported mode bits %x\n", 3287 ugly_bits); 3288 spi->mode &= ~ugly_bits; 3289 bad_bits &= ~ugly_bits; 3290 } 3291 if (bad_bits) { 3292 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3293 bad_bits); 3294 return -EINVAL; 3295 } 3296 3297 if (!spi->bits_per_word) 3298 spi->bits_per_word = 8; 3299 3300 status = __spi_validate_bits_per_word(spi->controller, 3301 spi->bits_per_word); 3302 if (status) 3303 return status; 3304 3305 if (!spi->max_speed_hz) 3306 spi->max_speed_hz = spi->controller->max_speed_hz; 3307 3308 if (spi->controller->setup) 3309 status = spi->controller->setup(spi); 3310 3311 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3312 status = pm_runtime_get_sync(spi->controller->dev.parent); 3313 if (status < 0) { 3314 pm_runtime_put_noidle(spi->controller->dev.parent); 3315 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3316 status); 3317 return status; 3318 } 3319 3320 /* 3321 * We do not want to return positive value from pm_runtime_get, 3322 * there are many instances of devices calling spi_setup() and 3323 * checking for a non-zero return value instead of a negative 3324 * return value. 3325 */ 3326 status = 0; 3327 3328 spi_set_cs(spi, false); 3329 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3330 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3331 } else { 3332 spi_set_cs(spi, false); 3333 } 3334 3335 if (spi->rt && !spi->controller->rt) { 3336 spi->controller->rt = true; 3337 spi_set_thread_rt(spi->controller); 3338 } 3339 3340 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3341 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3342 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3343 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3344 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3345 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3346 spi->bits_per_word, spi->max_speed_hz, 3347 status); 3348 3349 return status; 3350 } 3351 EXPORT_SYMBOL_GPL(spi_setup); 3352 3353 /** 3354 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3355 * @spi: the device that requires specific CS timing configuration 3356 * @setup: CS setup time specified via @spi_delay 3357 * @hold: CS hold time specified via @spi_delay 3358 * @inactive: CS inactive delay between transfers specified via @spi_delay 3359 * 3360 * Return: zero on success, else a negative error code. 3361 */ 3362 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3363 struct spi_delay *hold, struct spi_delay *inactive) 3364 { 3365 size_t len; 3366 3367 if (spi->controller->set_cs_timing) 3368 return spi->controller->set_cs_timing(spi, setup, hold, 3369 inactive); 3370 3371 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3372 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3373 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3374 dev_err(&spi->dev, 3375 "Clock-cycle delays for CS not supported in SW mode\n"); 3376 return -ENOTSUPP; 3377 } 3378 3379 len = sizeof(struct spi_delay); 3380 3381 /* copy delays to controller */ 3382 if (setup) 3383 memcpy(&spi->controller->cs_setup, setup, len); 3384 else 3385 memset(&spi->controller->cs_setup, 0, len); 3386 3387 if (hold) 3388 memcpy(&spi->controller->cs_hold, hold, len); 3389 else 3390 memset(&spi->controller->cs_hold, 0, len); 3391 3392 if (inactive) 3393 memcpy(&spi->controller->cs_inactive, inactive, len); 3394 else 3395 memset(&spi->controller->cs_inactive, 0, len); 3396 3397 return 0; 3398 } 3399 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3400 3401 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3402 struct spi_device *spi) 3403 { 3404 int delay1, delay2; 3405 3406 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3407 if (delay1 < 0) 3408 return delay1; 3409 3410 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3411 if (delay2 < 0) 3412 return delay2; 3413 3414 if (delay1 < delay2) 3415 memcpy(&xfer->word_delay, &spi->word_delay, 3416 sizeof(xfer->word_delay)); 3417 3418 return 0; 3419 } 3420 3421 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3422 { 3423 struct spi_controller *ctlr = spi->controller; 3424 struct spi_transfer *xfer; 3425 int w_size; 3426 3427 if (list_empty(&message->transfers)) 3428 return -EINVAL; 3429 3430 /* If an SPI controller does not support toggling the CS line on each 3431 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3432 * for the CS line, we can emulate the CS-per-word hardware function by 3433 * splitting transfers into one-word transfers and ensuring that 3434 * cs_change is set for each transfer. 3435 */ 3436 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3437 spi->cs_gpiod || 3438 gpio_is_valid(spi->cs_gpio))) { 3439 size_t maxsize; 3440 int ret; 3441 3442 maxsize = (spi->bits_per_word + 7) / 8; 3443 3444 /* spi_split_transfers_maxsize() requires message->spi */ 3445 message->spi = spi; 3446 3447 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3448 GFP_KERNEL); 3449 if (ret) 3450 return ret; 3451 3452 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3453 /* don't change cs_change on the last entry in the list */ 3454 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3455 break; 3456 xfer->cs_change = 1; 3457 } 3458 } 3459 3460 /* Half-duplex links include original MicroWire, and ones with 3461 * only one data pin like SPI_3WIRE (switches direction) or where 3462 * either MOSI or MISO is missing. They can also be caused by 3463 * software limitations. 3464 */ 3465 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3466 (spi->mode & SPI_3WIRE)) { 3467 unsigned flags = ctlr->flags; 3468 3469 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3470 if (xfer->rx_buf && xfer->tx_buf) 3471 return -EINVAL; 3472 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3473 return -EINVAL; 3474 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3475 return -EINVAL; 3476 } 3477 } 3478 3479 /** 3480 * Set transfer bits_per_word and max speed as spi device default if 3481 * it is not set for this transfer. 3482 * Set transfer tx_nbits and rx_nbits as single transfer default 3483 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3484 * Ensure transfer word_delay is at least as long as that required by 3485 * device itself. 3486 */ 3487 message->frame_length = 0; 3488 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3489 xfer->effective_speed_hz = 0; 3490 message->frame_length += xfer->len; 3491 if (!xfer->bits_per_word) 3492 xfer->bits_per_word = spi->bits_per_word; 3493 3494 if (!xfer->speed_hz) 3495 xfer->speed_hz = spi->max_speed_hz; 3496 3497 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3498 xfer->speed_hz = ctlr->max_speed_hz; 3499 3500 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3501 return -EINVAL; 3502 3503 /* 3504 * SPI transfer length should be multiple of SPI word size 3505 * where SPI word size should be power-of-two multiple 3506 */ 3507 if (xfer->bits_per_word <= 8) 3508 w_size = 1; 3509 else if (xfer->bits_per_word <= 16) 3510 w_size = 2; 3511 else 3512 w_size = 4; 3513 3514 /* No partial transfers accepted */ 3515 if (xfer->len % w_size) 3516 return -EINVAL; 3517 3518 if (xfer->speed_hz && ctlr->min_speed_hz && 3519 xfer->speed_hz < ctlr->min_speed_hz) 3520 return -EINVAL; 3521 3522 if (xfer->tx_buf && !xfer->tx_nbits) 3523 xfer->tx_nbits = SPI_NBITS_SINGLE; 3524 if (xfer->rx_buf && !xfer->rx_nbits) 3525 xfer->rx_nbits = SPI_NBITS_SINGLE; 3526 /* check transfer tx/rx_nbits: 3527 * 1. check the value matches one of single, dual and quad 3528 * 2. check tx/rx_nbits match the mode in spi_device 3529 */ 3530 if (xfer->tx_buf) { 3531 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3532 xfer->tx_nbits != SPI_NBITS_DUAL && 3533 xfer->tx_nbits != SPI_NBITS_QUAD) 3534 return -EINVAL; 3535 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3536 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3537 return -EINVAL; 3538 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3539 !(spi->mode & SPI_TX_QUAD)) 3540 return -EINVAL; 3541 } 3542 /* check transfer rx_nbits */ 3543 if (xfer->rx_buf) { 3544 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3545 xfer->rx_nbits != SPI_NBITS_DUAL && 3546 xfer->rx_nbits != SPI_NBITS_QUAD) 3547 return -EINVAL; 3548 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3549 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3550 return -EINVAL; 3551 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3552 !(spi->mode & SPI_RX_QUAD)) 3553 return -EINVAL; 3554 } 3555 3556 if (_spi_xfer_word_delay_update(xfer, spi)) 3557 return -EINVAL; 3558 } 3559 3560 message->status = -EINPROGRESS; 3561 3562 return 0; 3563 } 3564 3565 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3566 { 3567 struct spi_controller *ctlr = spi->controller; 3568 struct spi_transfer *xfer; 3569 3570 /* 3571 * Some controllers do not support doing regular SPI transfers. Return 3572 * ENOTSUPP when this is the case. 3573 */ 3574 if (!ctlr->transfer) 3575 return -ENOTSUPP; 3576 3577 message->spi = spi; 3578 3579 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3580 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3581 3582 trace_spi_message_submit(message); 3583 3584 if (!ctlr->ptp_sts_supported) { 3585 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3586 xfer->ptp_sts_word_pre = 0; 3587 ptp_read_system_prets(xfer->ptp_sts); 3588 } 3589 } 3590 3591 return ctlr->transfer(spi, message); 3592 } 3593 3594 /** 3595 * spi_async - asynchronous SPI transfer 3596 * @spi: device with which data will be exchanged 3597 * @message: describes the data transfers, including completion callback 3598 * Context: any (irqs may be blocked, etc) 3599 * 3600 * This call may be used in_irq and other contexts which can't sleep, 3601 * as well as from task contexts which can sleep. 3602 * 3603 * The completion callback is invoked in a context which can't sleep. 3604 * Before that invocation, the value of message->status is undefined. 3605 * When the callback is issued, message->status holds either zero (to 3606 * indicate complete success) or a negative error code. After that 3607 * callback returns, the driver which issued the transfer request may 3608 * deallocate the associated memory; it's no longer in use by any SPI 3609 * core or controller driver code. 3610 * 3611 * Note that although all messages to a spi_device are handled in 3612 * FIFO order, messages may go to different devices in other orders. 3613 * Some device might be higher priority, or have various "hard" access 3614 * time requirements, for example. 3615 * 3616 * On detection of any fault during the transfer, processing of 3617 * the entire message is aborted, and the device is deselected. 3618 * Until returning from the associated message completion callback, 3619 * no other spi_message queued to that device will be processed. 3620 * (This rule applies equally to all the synchronous transfer calls, 3621 * which are wrappers around this core asynchronous primitive.) 3622 * 3623 * Return: zero on success, else a negative error code. 3624 */ 3625 int spi_async(struct spi_device *spi, struct spi_message *message) 3626 { 3627 struct spi_controller *ctlr = spi->controller; 3628 int ret; 3629 unsigned long flags; 3630 3631 ret = __spi_validate(spi, message); 3632 if (ret != 0) 3633 return ret; 3634 3635 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3636 3637 if (ctlr->bus_lock_flag) 3638 ret = -EBUSY; 3639 else 3640 ret = __spi_async(spi, message); 3641 3642 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3643 3644 return ret; 3645 } 3646 EXPORT_SYMBOL_GPL(spi_async); 3647 3648 /** 3649 * spi_async_locked - version of spi_async with exclusive bus usage 3650 * @spi: device with which data will be exchanged 3651 * @message: describes the data transfers, including completion callback 3652 * Context: any (irqs may be blocked, etc) 3653 * 3654 * This call may be used in_irq and other contexts which can't sleep, 3655 * as well as from task contexts which can sleep. 3656 * 3657 * The completion callback is invoked in a context which can't sleep. 3658 * Before that invocation, the value of message->status is undefined. 3659 * When the callback is issued, message->status holds either zero (to 3660 * indicate complete success) or a negative error code. After that 3661 * callback returns, the driver which issued the transfer request may 3662 * deallocate the associated memory; it's no longer in use by any SPI 3663 * core or controller driver code. 3664 * 3665 * Note that although all messages to a spi_device are handled in 3666 * FIFO order, messages may go to different devices in other orders. 3667 * Some device might be higher priority, or have various "hard" access 3668 * time requirements, for example. 3669 * 3670 * On detection of any fault during the transfer, processing of 3671 * the entire message is aborted, and the device is deselected. 3672 * Until returning from the associated message completion callback, 3673 * no other spi_message queued to that device will be processed. 3674 * (This rule applies equally to all the synchronous transfer calls, 3675 * which are wrappers around this core asynchronous primitive.) 3676 * 3677 * Return: zero on success, else a negative error code. 3678 */ 3679 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3680 { 3681 struct spi_controller *ctlr = spi->controller; 3682 int ret; 3683 unsigned long flags; 3684 3685 ret = __spi_validate(spi, message); 3686 if (ret != 0) 3687 return ret; 3688 3689 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3690 3691 ret = __spi_async(spi, message); 3692 3693 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3694 3695 return ret; 3696 3697 } 3698 EXPORT_SYMBOL_GPL(spi_async_locked); 3699 3700 /*-------------------------------------------------------------------------*/ 3701 3702 /* Utility methods for SPI protocol drivers, layered on 3703 * top of the core. Some other utility methods are defined as 3704 * inline functions. 3705 */ 3706 3707 static void spi_complete(void *arg) 3708 { 3709 complete(arg); 3710 } 3711 3712 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3713 { 3714 DECLARE_COMPLETION_ONSTACK(done); 3715 int status; 3716 struct spi_controller *ctlr = spi->controller; 3717 unsigned long flags; 3718 3719 status = __spi_validate(spi, message); 3720 if (status != 0) 3721 return status; 3722 3723 message->complete = spi_complete; 3724 message->context = &done; 3725 message->spi = spi; 3726 3727 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3728 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3729 3730 /* If we're not using the legacy transfer method then we will 3731 * try to transfer in the calling context so special case. 3732 * This code would be less tricky if we could remove the 3733 * support for driver implemented message queues. 3734 */ 3735 if (ctlr->transfer == spi_queued_transfer) { 3736 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3737 3738 trace_spi_message_submit(message); 3739 3740 status = __spi_queued_transfer(spi, message, false); 3741 3742 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3743 } else { 3744 status = spi_async_locked(spi, message); 3745 } 3746 3747 if (status == 0) { 3748 /* Push out the messages in the calling context if we 3749 * can. 3750 */ 3751 if (ctlr->transfer == spi_queued_transfer) { 3752 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3753 spi_sync_immediate); 3754 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3755 spi_sync_immediate); 3756 __spi_pump_messages(ctlr, false); 3757 } 3758 3759 wait_for_completion(&done); 3760 status = message->status; 3761 } 3762 message->context = NULL; 3763 return status; 3764 } 3765 3766 /** 3767 * spi_sync - blocking/synchronous SPI data transfers 3768 * @spi: device with which data will be exchanged 3769 * @message: describes the data transfers 3770 * Context: can sleep 3771 * 3772 * This call may only be used from a context that may sleep. The sleep 3773 * is non-interruptible, and has no timeout. Low-overhead controller 3774 * drivers may DMA directly into and out of the message buffers. 3775 * 3776 * Note that the SPI device's chip select is active during the message, 3777 * and then is normally disabled between messages. Drivers for some 3778 * frequently-used devices may want to minimize costs of selecting a chip, 3779 * by leaving it selected in anticipation that the next message will go 3780 * to the same chip. (That may increase power usage.) 3781 * 3782 * Also, the caller is guaranteeing that the memory associated with the 3783 * message will not be freed before this call returns. 3784 * 3785 * Return: zero on success, else a negative error code. 3786 */ 3787 int spi_sync(struct spi_device *spi, struct spi_message *message) 3788 { 3789 int ret; 3790 3791 mutex_lock(&spi->controller->bus_lock_mutex); 3792 ret = __spi_sync(spi, message); 3793 mutex_unlock(&spi->controller->bus_lock_mutex); 3794 3795 return ret; 3796 } 3797 EXPORT_SYMBOL_GPL(spi_sync); 3798 3799 /** 3800 * spi_sync_locked - version of spi_sync with exclusive bus usage 3801 * @spi: device with which data will be exchanged 3802 * @message: describes the data transfers 3803 * Context: can sleep 3804 * 3805 * This call may only be used from a context that may sleep. The sleep 3806 * is non-interruptible, and has no timeout. Low-overhead controller 3807 * drivers may DMA directly into and out of the message buffers. 3808 * 3809 * This call should be used by drivers that require exclusive access to the 3810 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3811 * be released by a spi_bus_unlock call when the exclusive access is over. 3812 * 3813 * Return: zero on success, else a negative error code. 3814 */ 3815 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3816 { 3817 return __spi_sync(spi, message); 3818 } 3819 EXPORT_SYMBOL_GPL(spi_sync_locked); 3820 3821 /** 3822 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3823 * @ctlr: SPI bus master that should be locked for exclusive bus access 3824 * Context: can sleep 3825 * 3826 * This call may only be used from a context that may sleep. The sleep 3827 * is non-interruptible, and has no timeout. 3828 * 3829 * This call should be used by drivers that require exclusive access to the 3830 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3831 * exclusive access is over. Data transfer must be done by spi_sync_locked 3832 * and spi_async_locked calls when the SPI bus lock is held. 3833 * 3834 * Return: always zero. 3835 */ 3836 int spi_bus_lock(struct spi_controller *ctlr) 3837 { 3838 unsigned long flags; 3839 3840 mutex_lock(&ctlr->bus_lock_mutex); 3841 3842 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3843 ctlr->bus_lock_flag = 1; 3844 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3845 3846 /* mutex remains locked until spi_bus_unlock is called */ 3847 3848 return 0; 3849 } 3850 EXPORT_SYMBOL_GPL(spi_bus_lock); 3851 3852 /** 3853 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3854 * @ctlr: SPI bus master that was locked for exclusive bus access 3855 * Context: can sleep 3856 * 3857 * This call may only be used from a context that may sleep. The sleep 3858 * is non-interruptible, and has no timeout. 3859 * 3860 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3861 * call. 3862 * 3863 * Return: always zero. 3864 */ 3865 int spi_bus_unlock(struct spi_controller *ctlr) 3866 { 3867 ctlr->bus_lock_flag = 0; 3868 3869 mutex_unlock(&ctlr->bus_lock_mutex); 3870 3871 return 0; 3872 } 3873 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3874 3875 /* portable code must never pass more than 32 bytes */ 3876 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3877 3878 static u8 *buf; 3879 3880 /** 3881 * spi_write_then_read - SPI synchronous write followed by read 3882 * @spi: device with which data will be exchanged 3883 * @txbuf: data to be written (need not be dma-safe) 3884 * @n_tx: size of txbuf, in bytes 3885 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3886 * @n_rx: size of rxbuf, in bytes 3887 * Context: can sleep 3888 * 3889 * This performs a half duplex MicroWire style transaction with the 3890 * device, sending txbuf and then reading rxbuf. The return value 3891 * is zero for success, else a negative errno status code. 3892 * This call may only be used from a context that may sleep. 3893 * 3894 * Parameters to this routine are always copied using a small buffer. 3895 * Performance-sensitive or bulk transfer code should instead use 3896 * spi_{async,sync}() calls with dma-safe buffers. 3897 * 3898 * Return: zero on success, else a negative error code. 3899 */ 3900 int spi_write_then_read(struct spi_device *spi, 3901 const void *txbuf, unsigned n_tx, 3902 void *rxbuf, unsigned n_rx) 3903 { 3904 static DEFINE_MUTEX(lock); 3905 3906 int status; 3907 struct spi_message message; 3908 struct spi_transfer x[2]; 3909 u8 *local_buf; 3910 3911 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3912 * copying here, (as a pure convenience thing), but we can 3913 * keep heap costs out of the hot path unless someone else is 3914 * using the pre-allocated buffer or the transfer is too large. 3915 */ 3916 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3917 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3918 GFP_KERNEL | GFP_DMA); 3919 if (!local_buf) 3920 return -ENOMEM; 3921 } else { 3922 local_buf = buf; 3923 } 3924 3925 spi_message_init(&message); 3926 memset(x, 0, sizeof(x)); 3927 if (n_tx) { 3928 x[0].len = n_tx; 3929 spi_message_add_tail(&x[0], &message); 3930 } 3931 if (n_rx) { 3932 x[1].len = n_rx; 3933 spi_message_add_tail(&x[1], &message); 3934 } 3935 3936 memcpy(local_buf, txbuf, n_tx); 3937 x[0].tx_buf = local_buf; 3938 x[1].rx_buf = local_buf + n_tx; 3939 3940 /* do the i/o */ 3941 status = spi_sync(spi, &message); 3942 if (status == 0) 3943 memcpy(rxbuf, x[1].rx_buf, n_rx); 3944 3945 if (x[0].tx_buf == buf) 3946 mutex_unlock(&lock); 3947 else 3948 kfree(local_buf); 3949 3950 return status; 3951 } 3952 EXPORT_SYMBOL_GPL(spi_write_then_read); 3953 3954 /*-------------------------------------------------------------------------*/ 3955 3956 #if IS_ENABLED(CONFIG_OF) 3957 /* must call put_device() when done with returned spi_device device */ 3958 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3959 { 3960 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 3961 3962 return dev ? to_spi_device(dev) : NULL; 3963 } 3964 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3965 #endif /* IS_ENABLED(CONFIG_OF) */ 3966 3967 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3968 /* the spi controllers are not using spi_bus, so we find it with another way */ 3969 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3970 { 3971 struct device *dev; 3972 3973 dev = class_find_device_by_of_node(&spi_master_class, node); 3974 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3975 dev = class_find_device_by_of_node(&spi_slave_class, node); 3976 if (!dev) 3977 return NULL; 3978 3979 /* reference got in class_find_device */ 3980 return container_of(dev, struct spi_controller, dev); 3981 } 3982 3983 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3984 void *arg) 3985 { 3986 struct of_reconfig_data *rd = arg; 3987 struct spi_controller *ctlr; 3988 struct spi_device *spi; 3989 3990 switch (of_reconfig_get_state_change(action, arg)) { 3991 case OF_RECONFIG_CHANGE_ADD: 3992 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3993 if (ctlr == NULL) 3994 return NOTIFY_OK; /* not for us */ 3995 3996 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3997 put_device(&ctlr->dev); 3998 return NOTIFY_OK; 3999 } 4000 4001 spi = of_register_spi_device(ctlr, rd->dn); 4002 put_device(&ctlr->dev); 4003 4004 if (IS_ERR(spi)) { 4005 pr_err("%s: failed to create for '%pOF'\n", 4006 __func__, rd->dn); 4007 of_node_clear_flag(rd->dn, OF_POPULATED); 4008 return notifier_from_errno(PTR_ERR(spi)); 4009 } 4010 break; 4011 4012 case OF_RECONFIG_CHANGE_REMOVE: 4013 /* already depopulated? */ 4014 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4015 return NOTIFY_OK; 4016 4017 /* find our device by node */ 4018 spi = of_find_spi_device_by_node(rd->dn); 4019 if (spi == NULL) 4020 return NOTIFY_OK; /* no? not meant for us */ 4021 4022 /* unregister takes one ref away */ 4023 spi_unregister_device(spi); 4024 4025 /* and put the reference of the find */ 4026 put_device(&spi->dev); 4027 break; 4028 } 4029 4030 return NOTIFY_OK; 4031 } 4032 4033 static struct notifier_block spi_of_notifier = { 4034 .notifier_call = of_spi_notify, 4035 }; 4036 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4037 extern struct notifier_block spi_of_notifier; 4038 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4039 4040 #if IS_ENABLED(CONFIG_ACPI) 4041 static int spi_acpi_controller_match(struct device *dev, const void *data) 4042 { 4043 return ACPI_COMPANION(dev->parent) == data; 4044 } 4045 4046 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4047 { 4048 struct device *dev; 4049 4050 dev = class_find_device(&spi_master_class, NULL, adev, 4051 spi_acpi_controller_match); 4052 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4053 dev = class_find_device(&spi_slave_class, NULL, adev, 4054 spi_acpi_controller_match); 4055 if (!dev) 4056 return NULL; 4057 4058 return container_of(dev, struct spi_controller, dev); 4059 } 4060 4061 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4062 { 4063 struct device *dev; 4064 4065 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4066 return to_spi_device(dev); 4067 } 4068 4069 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4070 void *arg) 4071 { 4072 struct acpi_device *adev = arg; 4073 struct spi_controller *ctlr; 4074 struct spi_device *spi; 4075 4076 switch (value) { 4077 case ACPI_RECONFIG_DEVICE_ADD: 4078 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4079 if (!ctlr) 4080 break; 4081 4082 acpi_register_spi_device(ctlr, adev); 4083 put_device(&ctlr->dev); 4084 break; 4085 case ACPI_RECONFIG_DEVICE_REMOVE: 4086 if (!acpi_device_enumerated(adev)) 4087 break; 4088 4089 spi = acpi_spi_find_device_by_adev(adev); 4090 if (!spi) 4091 break; 4092 4093 spi_unregister_device(spi); 4094 put_device(&spi->dev); 4095 break; 4096 } 4097 4098 return NOTIFY_OK; 4099 } 4100 4101 static struct notifier_block spi_acpi_notifier = { 4102 .notifier_call = acpi_spi_notify, 4103 }; 4104 #else 4105 extern struct notifier_block spi_acpi_notifier; 4106 #endif 4107 4108 static int __init spi_init(void) 4109 { 4110 int status; 4111 4112 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4113 if (!buf) { 4114 status = -ENOMEM; 4115 goto err0; 4116 } 4117 4118 status = bus_register(&spi_bus_type); 4119 if (status < 0) 4120 goto err1; 4121 4122 status = class_register(&spi_master_class); 4123 if (status < 0) 4124 goto err2; 4125 4126 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4127 status = class_register(&spi_slave_class); 4128 if (status < 0) 4129 goto err3; 4130 } 4131 4132 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4133 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4134 if (IS_ENABLED(CONFIG_ACPI)) 4135 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4136 4137 return 0; 4138 4139 err3: 4140 class_unregister(&spi_master_class); 4141 err2: 4142 bus_unregister(&spi_bus_type); 4143 err1: 4144 kfree(buf); 4145 buf = NULL; 4146 err0: 4147 return status; 4148 } 4149 4150 /* board_info is normally registered in arch_initcall(), 4151 * but even essential drivers wait till later 4152 * 4153 * REVISIT only boardinfo really needs static linking. the rest (device and 4154 * driver registration) _could_ be dynamically linked (modular) ... costs 4155 * include needing to have boardinfo data structures be much more public. 4156 */ 4157 postcore_initcall(spi_init); 4158