1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_controller *ctlr) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if ((xfer->tx_buf) && 332 (xfer->tx_buf != ctlr->dummy_tx)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if ((xfer->rx_buf) && 335 (xfer->rx_buf != ctlr->dummy_rx)) 336 u64_stats_add(&stats->bytes_rx, xfer->len); 337 338 u64_stats_update_end(&stats->syncp); 339 put_cpu(); 340 } 341 342 /* 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 344 * and the sysfs version makes coldplug work too. 345 */ 346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 347 { 348 while (id->name[0]) { 349 if (!strcmp(name, id->name)) 350 return id; 351 id++; 352 } 353 return NULL; 354 } 355 356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 357 { 358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 359 360 return spi_match_id(sdrv->id_table, sdev->modalias); 361 } 362 EXPORT_SYMBOL_GPL(spi_get_device_id); 363 364 const void *spi_get_device_match_data(const struct spi_device *sdev) 365 { 366 const void *match; 367 368 match = device_get_match_data(&sdev->dev); 369 if (match) 370 return match; 371 372 return (const void *)spi_get_device_id(sdev)->driver_data; 373 } 374 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 375 376 static int spi_match_device(struct device *dev, struct device_driver *drv) 377 { 378 const struct spi_device *spi = to_spi_device(dev); 379 const struct spi_driver *sdrv = to_spi_driver(drv); 380 381 /* Check override first, and if set, only use the named driver */ 382 if (spi->driver_override) 383 return strcmp(spi->driver_override, drv->name) == 0; 384 385 /* Attempt an OF style match */ 386 if (of_driver_match_device(dev, drv)) 387 return 1; 388 389 /* Then try ACPI */ 390 if (acpi_driver_match_device(dev, drv)) 391 return 1; 392 393 if (sdrv->id_table) 394 return !!spi_match_id(sdrv->id_table, spi->modalias); 395 396 return strcmp(spi->modalias, drv->name) == 0; 397 } 398 399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 400 { 401 const struct spi_device *spi = to_spi_device(dev); 402 int rc; 403 404 rc = acpi_device_uevent_modalias(dev, env); 405 if (rc != -ENODEV) 406 return rc; 407 408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 409 } 410 411 static int spi_probe(struct device *dev) 412 { 413 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 414 struct spi_device *spi = to_spi_device(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (dev->of_node) { 422 spi->irq = of_irq_get(dev->of_node, 0); 423 if (spi->irq == -EPROBE_DEFER) 424 return -EPROBE_DEFER; 425 if (spi->irq < 0) 426 spi->irq = 0; 427 } 428 429 if (has_acpi_companion(dev) && spi->irq < 0) { 430 struct acpi_device *adev = to_acpi_device_node(dev->fwnode); 431 432 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 433 if (spi->irq == -EPROBE_DEFER) 434 return -EPROBE_DEFER; 435 if (spi->irq < 0) 436 spi->irq = 0; 437 } 438 439 ret = dev_pm_domain_attach(dev, true); 440 if (ret) 441 return ret; 442 443 if (sdrv->probe) { 444 ret = sdrv->probe(spi); 445 if (ret) 446 dev_pm_domain_detach(dev, true); 447 } 448 449 return ret; 450 } 451 452 static void spi_remove(struct device *dev) 453 { 454 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 455 456 if (sdrv->remove) 457 sdrv->remove(to_spi_device(dev)); 458 459 dev_pm_domain_detach(dev, true); 460 } 461 462 static void spi_shutdown(struct device *dev) 463 { 464 if (dev->driver) { 465 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 466 467 if (sdrv->shutdown) 468 sdrv->shutdown(to_spi_device(dev)); 469 } 470 } 471 472 struct bus_type spi_bus_type = { 473 .name = "spi", 474 .dev_groups = spi_dev_groups, 475 .match = spi_match_device, 476 .uevent = spi_uevent, 477 .probe = spi_probe, 478 .remove = spi_remove, 479 .shutdown = spi_shutdown, 480 }; 481 EXPORT_SYMBOL_GPL(spi_bus_type); 482 483 /** 484 * __spi_register_driver - register a SPI driver 485 * @owner: owner module of the driver to register 486 * @sdrv: the driver to register 487 * Context: can sleep 488 * 489 * Return: zero on success, else a negative error code. 490 */ 491 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 492 { 493 sdrv->driver.owner = owner; 494 sdrv->driver.bus = &spi_bus_type; 495 496 /* 497 * For Really Good Reasons we use spi: modaliases not of: 498 * modaliases for DT so module autoloading won't work if we 499 * don't have a spi_device_id as well as a compatible string. 500 */ 501 if (sdrv->driver.of_match_table) { 502 const struct of_device_id *of_id; 503 504 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 505 of_id++) { 506 const char *of_name; 507 508 /* Strip off any vendor prefix */ 509 of_name = strnchr(of_id->compatible, 510 sizeof(of_id->compatible), ','); 511 if (of_name) 512 of_name++; 513 else 514 of_name = of_id->compatible; 515 516 if (sdrv->id_table) { 517 const struct spi_device_id *spi_id; 518 519 spi_id = spi_match_id(sdrv->id_table, of_name); 520 if (spi_id) 521 continue; 522 } else { 523 if (strcmp(sdrv->driver.name, of_name) == 0) 524 continue; 525 } 526 527 pr_warn("SPI driver %s has no spi_device_id for %s\n", 528 sdrv->driver.name, of_id->compatible); 529 } 530 } 531 532 return driver_register(&sdrv->driver); 533 } 534 EXPORT_SYMBOL_GPL(__spi_register_driver); 535 536 /*-------------------------------------------------------------------------*/ 537 538 /* 539 * SPI devices should normally not be created by SPI device drivers; that 540 * would make them board-specific. Similarly with SPI controller drivers. 541 * Device registration normally goes into like arch/.../mach.../board-YYY.c 542 * with other readonly (flashable) information about mainboard devices. 543 */ 544 545 struct boardinfo { 546 struct list_head list; 547 struct spi_board_info board_info; 548 }; 549 550 static LIST_HEAD(board_list); 551 static LIST_HEAD(spi_controller_list); 552 553 /* 554 * Used to protect add/del operation for board_info list and 555 * spi_controller list, and their matching process also used 556 * to protect object of type struct idr. 557 */ 558 static DEFINE_MUTEX(board_lock); 559 560 /** 561 * spi_alloc_device - Allocate a new SPI device 562 * @ctlr: Controller to which device is connected 563 * Context: can sleep 564 * 565 * Allows a driver to allocate and initialize a spi_device without 566 * registering it immediately. This allows a driver to directly 567 * fill the spi_device with device parameters before calling 568 * spi_add_device() on it. 569 * 570 * Caller is responsible to call spi_add_device() on the returned 571 * spi_device structure to add it to the SPI controller. If the caller 572 * needs to discard the spi_device without adding it, then it should 573 * call spi_dev_put() on it. 574 * 575 * Return: a pointer to the new device, or NULL. 576 */ 577 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 578 { 579 struct spi_device *spi; 580 581 if (!spi_controller_get(ctlr)) 582 return NULL; 583 584 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 585 if (!spi) { 586 spi_controller_put(ctlr); 587 return NULL; 588 } 589 590 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 591 if (!spi->pcpu_statistics) { 592 kfree(spi); 593 spi_controller_put(ctlr); 594 return NULL; 595 } 596 597 spi->master = spi->controller = ctlr; 598 spi->dev.parent = &ctlr->dev; 599 spi->dev.bus = &spi_bus_type; 600 spi->dev.release = spidev_release; 601 spi->mode = ctlr->buswidth_override_bits; 602 603 device_initialize(&spi->dev); 604 return spi; 605 } 606 EXPORT_SYMBOL_GPL(spi_alloc_device); 607 608 static void spi_dev_set_name(struct spi_device *spi) 609 { 610 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 611 612 if (adev) { 613 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 614 return; 615 } 616 617 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 618 spi_get_chipselect(spi, 0)); 619 } 620 621 static int spi_dev_check(struct device *dev, void *data) 622 { 623 struct spi_device *spi = to_spi_device(dev); 624 struct spi_device *new_spi = data; 625 626 if (spi->controller == new_spi->controller && 627 spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0)) 628 return -EBUSY; 629 return 0; 630 } 631 632 static void spi_cleanup(struct spi_device *spi) 633 { 634 if (spi->controller->cleanup) 635 spi->controller->cleanup(spi); 636 } 637 638 static int __spi_add_device(struct spi_device *spi) 639 { 640 struct spi_controller *ctlr = spi->controller; 641 struct device *dev = ctlr->dev.parent; 642 int status; 643 644 /* Chipselects are numbered 0..max; validate. */ 645 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) { 646 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0), 647 ctlr->num_chipselect); 648 return -EINVAL; 649 } 650 651 /* Set the bus ID string */ 652 spi_dev_set_name(spi); 653 654 /* 655 * We need to make sure there's no other device with this 656 * chipselect **BEFORE** we call setup(), else we'll trash 657 * its configuration. 658 */ 659 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 660 if (status) { 661 dev_err(dev, "chipselect %d already in use\n", 662 spi_get_chipselect(spi, 0)); 663 return status; 664 } 665 666 /* Controller may unregister concurrently */ 667 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 668 !device_is_registered(&ctlr->dev)) { 669 return -ENODEV; 670 } 671 672 if (ctlr->cs_gpiods) 673 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]); 674 675 /* 676 * Drivers may modify this initial i/o setup, but will 677 * normally rely on the device being setup. Devices 678 * using SPI_CS_HIGH can't coexist well otherwise... 679 */ 680 status = spi_setup(spi); 681 if (status < 0) { 682 dev_err(dev, "can't setup %s, status %d\n", 683 dev_name(&spi->dev), status); 684 return status; 685 } 686 687 /* Device may be bound to an active driver when this returns */ 688 status = device_add(&spi->dev); 689 if (status < 0) { 690 dev_err(dev, "can't add %s, status %d\n", 691 dev_name(&spi->dev), status); 692 spi_cleanup(spi); 693 } else { 694 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 695 } 696 697 return status; 698 } 699 700 /** 701 * spi_add_device - Add spi_device allocated with spi_alloc_device 702 * @spi: spi_device to register 703 * 704 * Companion function to spi_alloc_device. Devices allocated with 705 * spi_alloc_device can be added onto the SPI bus with this function. 706 * 707 * Return: 0 on success; negative errno on failure 708 */ 709 int spi_add_device(struct spi_device *spi) 710 { 711 struct spi_controller *ctlr = spi->controller; 712 int status; 713 714 mutex_lock(&ctlr->add_lock); 715 status = __spi_add_device(spi); 716 mutex_unlock(&ctlr->add_lock); 717 return status; 718 } 719 EXPORT_SYMBOL_GPL(spi_add_device); 720 721 /** 722 * spi_new_device - instantiate one new SPI device 723 * @ctlr: Controller to which device is connected 724 * @chip: Describes the SPI device 725 * Context: can sleep 726 * 727 * On typical mainboards, this is purely internal; and it's not needed 728 * after board init creates the hard-wired devices. Some development 729 * platforms may not be able to use spi_register_board_info though, and 730 * this is exported so that for example a USB or parport based adapter 731 * driver could add devices (which it would learn about out-of-band). 732 * 733 * Return: the new device, or NULL. 734 */ 735 struct spi_device *spi_new_device(struct spi_controller *ctlr, 736 struct spi_board_info *chip) 737 { 738 struct spi_device *proxy; 739 int status; 740 741 /* 742 * NOTE: caller did any chip->bus_num checks necessary. 743 * 744 * Also, unless we change the return value convention to use 745 * error-or-pointer (not NULL-or-pointer), troubleshootability 746 * suggests syslogged diagnostics are best here (ugh). 747 */ 748 749 proxy = spi_alloc_device(ctlr); 750 if (!proxy) 751 return NULL; 752 753 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 754 755 spi_set_chipselect(proxy, 0, chip->chip_select); 756 proxy->max_speed_hz = chip->max_speed_hz; 757 proxy->mode = chip->mode; 758 proxy->irq = chip->irq; 759 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 760 proxy->dev.platform_data = (void *) chip->platform_data; 761 proxy->controller_data = chip->controller_data; 762 proxy->controller_state = NULL; 763 764 if (chip->swnode) { 765 status = device_add_software_node(&proxy->dev, chip->swnode); 766 if (status) { 767 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 768 chip->modalias, status); 769 goto err_dev_put; 770 } 771 } 772 773 status = spi_add_device(proxy); 774 if (status < 0) 775 goto err_dev_put; 776 777 return proxy; 778 779 err_dev_put: 780 device_remove_software_node(&proxy->dev); 781 spi_dev_put(proxy); 782 return NULL; 783 } 784 EXPORT_SYMBOL_GPL(spi_new_device); 785 786 /** 787 * spi_unregister_device - unregister a single SPI device 788 * @spi: spi_device to unregister 789 * 790 * Start making the passed SPI device vanish. Normally this would be handled 791 * by spi_unregister_controller(). 792 */ 793 void spi_unregister_device(struct spi_device *spi) 794 { 795 if (!spi) 796 return; 797 798 if (spi->dev.of_node) { 799 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 800 of_node_put(spi->dev.of_node); 801 } 802 if (ACPI_COMPANION(&spi->dev)) 803 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 804 device_remove_software_node(&spi->dev); 805 device_del(&spi->dev); 806 spi_cleanup(spi); 807 put_device(&spi->dev); 808 } 809 EXPORT_SYMBOL_GPL(spi_unregister_device); 810 811 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 812 struct spi_board_info *bi) 813 { 814 struct spi_device *dev; 815 816 if (ctlr->bus_num != bi->bus_num) 817 return; 818 819 dev = spi_new_device(ctlr, bi); 820 if (!dev) 821 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 822 bi->modalias); 823 } 824 825 /** 826 * spi_register_board_info - register SPI devices for a given board 827 * @info: array of chip descriptors 828 * @n: how many descriptors are provided 829 * Context: can sleep 830 * 831 * Board-specific early init code calls this (probably during arch_initcall) 832 * with segments of the SPI device table. Any device nodes are created later, 833 * after the relevant parent SPI controller (bus_num) is defined. We keep 834 * this table of devices forever, so that reloading a controller driver will 835 * not make Linux forget about these hard-wired devices. 836 * 837 * Other code can also call this, e.g. a particular add-on board might provide 838 * SPI devices through its expansion connector, so code initializing that board 839 * would naturally declare its SPI devices. 840 * 841 * The board info passed can safely be __initdata ... but be careful of 842 * any embedded pointers (platform_data, etc), they're copied as-is. 843 * 844 * Return: zero on success, else a negative error code. 845 */ 846 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 847 { 848 struct boardinfo *bi; 849 int i; 850 851 if (!n) 852 return 0; 853 854 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 855 if (!bi) 856 return -ENOMEM; 857 858 for (i = 0; i < n; i++, bi++, info++) { 859 struct spi_controller *ctlr; 860 861 memcpy(&bi->board_info, info, sizeof(*info)); 862 863 mutex_lock(&board_lock); 864 list_add_tail(&bi->list, &board_list); 865 list_for_each_entry(ctlr, &spi_controller_list, list) 866 spi_match_controller_to_boardinfo(ctlr, 867 &bi->board_info); 868 mutex_unlock(&board_lock); 869 } 870 871 return 0; 872 } 873 874 /*-------------------------------------------------------------------------*/ 875 876 /* Core methods for SPI resource management */ 877 878 /** 879 * spi_res_alloc - allocate a spi resource that is life-cycle managed 880 * during the processing of a spi_message while using 881 * spi_transfer_one 882 * @spi: the SPI device for which we allocate memory 883 * @release: the release code to execute for this resource 884 * @size: size to alloc and return 885 * @gfp: GFP allocation flags 886 * 887 * Return: the pointer to the allocated data 888 * 889 * This may get enhanced in the future to allocate from a memory pool 890 * of the @spi_device or @spi_controller to avoid repeated allocations. 891 */ 892 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 893 size_t size, gfp_t gfp) 894 { 895 struct spi_res *sres; 896 897 sres = kzalloc(sizeof(*sres) + size, gfp); 898 if (!sres) 899 return NULL; 900 901 INIT_LIST_HEAD(&sres->entry); 902 sres->release = release; 903 904 return sres->data; 905 } 906 907 /** 908 * spi_res_free - free an SPI resource 909 * @res: pointer to the custom data of a resource 910 */ 911 static void spi_res_free(void *res) 912 { 913 struct spi_res *sres = container_of(res, struct spi_res, data); 914 915 if (!res) 916 return; 917 918 WARN_ON(!list_empty(&sres->entry)); 919 kfree(sres); 920 } 921 922 /** 923 * spi_res_add - add a spi_res to the spi_message 924 * @message: the SPI message 925 * @res: the spi_resource 926 */ 927 static void spi_res_add(struct spi_message *message, void *res) 928 { 929 struct spi_res *sres = container_of(res, struct spi_res, data); 930 931 WARN_ON(!list_empty(&sres->entry)); 932 list_add_tail(&sres->entry, &message->resources); 933 } 934 935 /** 936 * spi_res_release - release all SPI resources for this message 937 * @ctlr: the @spi_controller 938 * @message: the @spi_message 939 */ 940 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 941 { 942 struct spi_res *res, *tmp; 943 944 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 945 if (res->release) 946 res->release(ctlr, message, res->data); 947 948 list_del(&res->entry); 949 950 kfree(res); 951 } 952 } 953 954 /*-------------------------------------------------------------------------*/ 955 956 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 957 { 958 bool activate = enable; 959 960 /* 961 * Avoid calling into the driver (or doing delays) if the chip select 962 * isn't actually changing from the last time this was called. 963 */ 964 if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) || 965 (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) && 966 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 967 return; 968 969 trace_spi_set_cs(spi, activate); 970 971 spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1; 972 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 973 974 if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate) 975 spi_delay_exec(&spi->cs_hold, NULL); 976 977 if (spi->mode & SPI_CS_HIGH) 978 enable = !enable; 979 980 if (spi_get_csgpiod(spi, 0)) { 981 if (!(spi->mode & SPI_NO_CS)) { 982 /* 983 * Historically ACPI has no means of the GPIO polarity and 984 * thus the SPISerialBus() resource defines it on the per-chip 985 * basis. In order to avoid a chain of negations, the GPIO 986 * polarity is considered being Active High. Even for the cases 987 * when _DSD() is involved (in the updated versions of ACPI) 988 * the GPIO CS polarity must be defined Active High to avoid 989 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 990 * into account. 991 */ 992 if (has_acpi_companion(&spi->dev)) 993 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable); 994 else 995 /* Polarity handled by GPIO library */ 996 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate); 997 } 998 /* Some SPI masters need both GPIO CS & slave_select */ 999 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1000 spi->controller->set_cs) 1001 spi->controller->set_cs(spi, !enable); 1002 } else if (spi->controller->set_cs) { 1003 spi->controller->set_cs(spi, !enable); 1004 } 1005 1006 if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) { 1007 if (activate) 1008 spi_delay_exec(&spi->cs_setup, NULL); 1009 else 1010 spi_delay_exec(&spi->cs_inactive, NULL); 1011 } 1012 } 1013 1014 #ifdef CONFIG_HAS_DMA 1015 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1016 struct sg_table *sgt, void *buf, size_t len, 1017 enum dma_data_direction dir, unsigned long attrs) 1018 { 1019 const bool vmalloced_buf = is_vmalloc_addr(buf); 1020 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1021 #ifdef CONFIG_HIGHMEM 1022 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1023 (unsigned long)buf < (PKMAP_BASE + 1024 (LAST_PKMAP * PAGE_SIZE))); 1025 #else 1026 const bool kmap_buf = false; 1027 #endif 1028 int desc_len; 1029 int sgs; 1030 struct page *vm_page; 1031 struct scatterlist *sg; 1032 void *sg_buf; 1033 size_t min; 1034 int i, ret; 1035 1036 if (vmalloced_buf || kmap_buf) { 1037 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1038 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1039 } else if (virt_addr_valid(buf)) { 1040 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1041 sgs = DIV_ROUND_UP(len, desc_len); 1042 } else { 1043 return -EINVAL; 1044 } 1045 1046 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1047 if (ret != 0) 1048 return ret; 1049 1050 sg = &sgt->sgl[0]; 1051 for (i = 0; i < sgs; i++) { 1052 1053 if (vmalloced_buf || kmap_buf) { 1054 /* 1055 * Next scatterlist entry size is the minimum between 1056 * the desc_len and the remaining buffer length that 1057 * fits in a page. 1058 */ 1059 min = min_t(size_t, desc_len, 1060 min_t(size_t, len, 1061 PAGE_SIZE - offset_in_page(buf))); 1062 if (vmalloced_buf) 1063 vm_page = vmalloc_to_page(buf); 1064 else 1065 vm_page = kmap_to_page(buf); 1066 if (!vm_page) { 1067 sg_free_table(sgt); 1068 return -ENOMEM; 1069 } 1070 sg_set_page(sg, vm_page, 1071 min, offset_in_page(buf)); 1072 } else { 1073 min = min_t(size_t, len, desc_len); 1074 sg_buf = buf; 1075 sg_set_buf(sg, sg_buf, min); 1076 } 1077 1078 buf += min; 1079 len -= min; 1080 sg = sg_next(sg); 1081 } 1082 1083 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1084 if (ret < 0) { 1085 sg_free_table(sgt); 1086 return ret; 1087 } 1088 1089 return 0; 1090 } 1091 1092 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1093 struct sg_table *sgt, void *buf, size_t len, 1094 enum dma_data_direction dir) 1095 { 1096 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1097 } 1098 1099 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1100 struct device *dev, struct sg_table *sgt, 1101 enum dma_data_direction dir, 1102 unsigned long attrs) 1103 { 1104 if (sgt->orig_nents) { 1105 dma_unmap_sgtable(dev, sgt, dir, attrs); 1106 sg_free_table(sgt); 1107 sgt->orig_nents = 0; 1108 sgt->nents = 0; 1109 } 1110 } 1111 1112 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1113 struct sg_table *sgt, enum dma_data_direction dir) 1114 { 1115 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1116 } 1117 1118 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1119 { 1120 struct device *tx_dev, *rx_dev; 1121 struct spi_transfer *xfer; 1122 int ret; 1123 1124 if (!ctlr->can_dma) 1125 return 0; 1126 1127 if (ctlr->dma_tx) 1128 tx_dev = ctlr->dma_tx->device->dev; 1129 else if (ctlr->dma_map_dev) 1130 tx_dev = ctlr->dma_map_dev; 1131 else 1132 tx_dev = ctlr->dev.parent; 1133 1134 if (ctlr->dma_rx) 1135 rx_dev = ctlr->dma_rx->device->dev; 1136 else if (ctlr->dma_map_dev) 1137 rx_dev = ctlr->dma_map_dev; 1138 else 1139 rx_dev = ctlr->dev.parent; 1140 1141 ret = -ENOMSG; 1142 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1143 /* The sync is done before each transfer. */ 1144 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1145 1146 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1147 continue; 1148 1149 if (xfer->tx_buf != NULL) { 1150 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1151 (void *)xfer->tx_buf, 1152 xfer->len, DMA_TO_DEVICE, 1153 attrs); 1154 if (ret != 0) 1155 return ret; 1156 } 1157 1158 if (xfer->rx_buf != NULL) { 1159 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1160 xfer->rx_buf, xfer->len, 1161 DMA_FROM_DEVICE, attrs); 1162 if (ret != 0) { 1163 spi_unmap_buf_attrs(ctlr, tx_dev, 1164 &xfer->tx_sg, DMA_TO_DEVICE, 1165 attrs); 1166 1167 return ret; 1168 } 1169 } 1170 } 1171 /* No transfer has been mapped, bail out with success */ 1172 if (ret) 1173 return 0; 1174 1175 ctlr->cur_rx_dma_dev = rx_dev; 1176 ctlr->cur_tx_dma_dev = tx_dev; 1177 ctlr->cur_msg_mapped = true; 1178 1179 return 0; 1180 } 1181 1182 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1183 { 1184 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1185 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1186 struct spi_transfer *xfer; 1187 1188 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1189 return 0; 1190 1191 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1192 /* The sync has already been done after each transfer. */ 1193 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1194 1195 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1196 continue; 1197 1198 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1199 DMA_FROM_DEVICE, attrs); 1200 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1201 DMA_TO_DEVICE, attrs); 1202 } 1203 1204 ctlr->cur_msg_mapped = false; 1205 1206 return 0; 1207 } 1208 1209 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1210 struct spi_transfer *xfer) 1211 { 1212 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1213 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1214 1215 if (!ctlr->cur_msg_mapped) 1216 return; 1217 1218 if (xfer->tx_sg.orig_nents) 1219 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1220 if (xfer->rx_sg.orig_nents) 1221 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1222 } 1223 1224 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1225 struct spi_transfer *xfer) 1226 { 1227 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1228 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1229 1230 if (!ctlr->cur_msg_mapped) 1231 return; 1232 1233 if (xfer->rx_sg.orig_nents) 1234 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1235 if (xfer->tx_sg.orig_nents) 1236 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1237 } 1238 #else /* !CONFIG_HAS_DMA */ 1239 static inline int __spi_map_msg(struct spi_controller *ctlr, 1240 struct spi_message *msg) 1241 { 1242 return 0; 1243 } 1244 1245 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1246 struct spi_message *msg) 1247 { 1248 return 0; 1249 } 1250 1251 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1252 struct spi_transfer *xfer) 1253 { 1254 } 1255 1256 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1257 struct spi_transfer *xfer) 1258 { 1259 } 1260 #endif /* !CONFIG_HAS_DMA */ 1261 1262 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1263 struct spi_message *msg) 1264 { 1265 struct spi_transfer *xfer; 1266 1267 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1268 /* 1269 * Restore the original value of tx_buf or rx_buf if they are 1270 * NULL. 1271 */ 1272 if (xfer->tx_buf == ctlr->dummy_tx) 1273 xfer->tx_buf = NULL; 1274 if (xfer->rx_buf == ctlr->dummy_rx) 1275 xfer->rx_buf = NULL; 1276 } 1277 1278 return __spi_unmap_msg(ctlr, msg); 1279 } 1280 1281 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1282 { 1283 struct spi_transfer *xfer; 1284 void *tmp; 1285 unsigned int max_tx, max_rx; 1286 1287 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1288 && !(msg->spi->mode & SPI_3WIRE)) { 1289 max_tx = 0; 1290 max_rx = 0; 1291 1292 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1293 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1294 !xfer->tx_buf) 1295 max_tx = max(xfer->len, max_tx); 1296 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1297 !xfer->rx_buf) 1298 max_rx = max(xfer->len, max_rx); 1299 } 1300 1301 if (max_tx) { 1302 tmp = krealloc(ctlr->dummy_tx, max_tx, 1303 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1304 if (!tmp) 1305 return -ENOMEM; 1306 ctlr->dummy_tx = tmp; 1307 } 1308 1309 if (max_rx) { 1310 tmp = krealloc(ctlr->dummy_rx, max_rx, 1311 GFP_KERNEL | GFP_DMA); 1312 if (!tmp) 1313 return -ENOMEM; 1314 ctlr->dummy_rx = tmp; 1315 } 1316 1317 if (max_tx || max_rx) { 1318 list_for_each_entry(xfer, &msg->transfers, 1319 transfer_list) { 1320 if (!xfer->len) 1321 continue; 1322 if (!xfer->tx_buf) 1323 xfer->tx_buf = ctlr->dummy_tx; 1324 if (!xfer->rx_buf) 1325 xfer->rx_buf = ctlr->dummy_rx; 1326 } 1327 } 1328 } 1329 1330 return __spi_map_msg(ctlr, msg); 1331 } 1332 1333 static int spi_transfer_wait(struct spi_controller *ctlr, 1334 struct spi_message *msg, 1335 struct spi_transfer *xfer) 1336 { 1337 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1338 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1339 u32 speed_hz = xfer->speed_hz; 1340 unsigned long long ms; 1341 1342 if (spi_controller_is_slave(ctlr)) { 1343 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1344 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1345 return -EINTR; 1346 } 1347 } else { 1348 if (!speed_hz) 1349 speed_hz = 100000; 1350 1351 /* 1352 * For each byte we wait for 8 cycles of the SPI clock. 1353 * Since speed is defined in Hz and we want milliseconds, 1354 * use respective multiplier, but before the division, 1355 * otherwise we may get 0 for short transfers. 1356 */ 1357 ms = 8LL * MSEC_PER_SEC * xfer->len; 1358 do_div(ms, speed_hz); 1359 1360 /* 1361 * Increase it twice and add 200 ms tolerance, use 1362 * predefined maximum in case of overflow. 1363 */ 1364 ms += ms + 200; 1365 if (ms > UINT_MAX) 1366 ms = UINT_MAX; 1367 1368 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1369 msecs_to_jiffies(ms)); 1370 1371 if (ms == 0) { 1372 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1373 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1374 dev_err(&msg->spi->dev, 1375 "SPI transfer timed out\n"); 1376 return -ETIMEDOUT; 1377 } 1378 } 1379 1380 return 0; 1381 } 1382 1383 static void _spi_transfer_delay_ns(u32 ns) 1384 { 1385 if (!ns) 1386 return; 1387 if (ns <= NSEC_PER_USEC) { 1388 ndelay(ns); 1389 } else { 1390 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1391 1392 if (us <= 10) 1393 udelay(us); 1394 else 1395 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1396 } 1397 } 1398 1399 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1400 { 1401 u32 delay = _delay->value; 1402 u32 unit = _delay->unit; 1403 u32 hz; 1404 1405 if (!delay) 1406 return 0; 1407 1408 switch (unit) { 1409 case SPI_DELAY_UNIT_USECS: 1410 delay *= NSEC_PER_USEC; 1411 break; 1412 case SPI_DELAY_UNIT_NSECS: 1413 /* Nothing to do here */ 1414 break; 1415 case SPI_DELAY_UNIT_SCK: 1416 /* Clock cycles need to be obtained from spi_transfer */ 1417 if (!xfer) 1418 return -EINVAL; 1419 /* 1420 * If there is unknown effective speed, approximate it 1421 * by underestimating with half of the requested Hz. 1422 */ 1423 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1424 if (!hz) 1425 return -EINVAL; 1426 1427 /* Convert delay to nanoseconds */ 1428 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1429 break; 1430 default: 1431 return -EINVAL; 1432 } 1433 1434 return delay; 1435 } 1436 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1437 1438 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1439 { 1440 int delay; 1441 1442 might_sleep(); 1443 1444 if (!_delay) 1445 return -EINVAL; 1446 1447 delay = spi_delay_to_ns(_delay, xfer); 1448 if (delay < 0) 1449 return delay; 1450 1451 _spi_transfer_delay_ns(delay); 1452 1453 return 0; 1454 } 1455 EXPORT_SYMBOL_GPL(spi_delay_exec); 1456 1457 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1458 struct spi_transfer *xfer) 1459 { 1460 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1461 u32 delay = xfer->cs_change_delay.value; 1462 u32 unit = xfer->cs_change_delay.unit; 1463 int ret; 1464 1465 /* Return early on "fast" mode - for everything but USECS */ 1466 if (!delay) { 1467 if (unit == SPI_DELAY_UNIT_USECS) 1468 _spi_transfer_delay_ns(default_delay_ns); 1469 return; 1470 } 1471 1472 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1473 if (ret) { 1474 dev_err_once(&msg->spi->dev, 1475 "Use of unsupported delay unit %i, using default of %luus\n", 1476 unit, default_delay_ns / NSEC_PER_USEC); 1477 _spi_transfer_delay_ns(default_delay_ns); 1478 } 1479 } 1480 1481 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1482 struct spi_transfer *xfer) 1483 { 1484 _spi_transfer_cs_change_delay(msg, xfer); 1485 } 1486 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1487 1488 /* 1489 * spi_transfer_one_message - Default implementation of transfer_one_message() 1490 * 1491 * This is a standard implementation of transfer_one_message() for 1492 * drivers which implement a transfer_one() operation. It provides 1493 * standard handling of delays and chip select management. 1494 */ 1495 static int spi_transfer_one_message(struct spi_controller *ctlr, 1496 struct spi_message *msg) 1497 { 1498 struct spi_transfer *xfer; 1499 bool keep_cs = false; 1500 int ret = 0; 1501 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1502 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1503 1504 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1505 spi_set_cs(msg->spi, !xfer->cs_off, false); 1506 1507 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1508 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1509 1510 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1511 trace_spi_transfer_start(msg, xfer); 1512 1513 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1514 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1515 1516 if (!ctlr->ptp_sts_supported) { 1517 xfer->ptp_sts_word_pre = 0; 1518 ptp_read_system_prets(xfer->ptp_sts); 1519 } 1520 1521 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1522 reinit_completion(&ctlr->xfer_completion); 1523 1524 fallback_pio: 1525 spi_dma_sync_for_device(ctlr, xfer); 1526 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1527 if (ret < 0) { 1528 spi_dma_sync_for_cpu(ctlr, xfer); 1529 1530 if (ctlr->cur_msg_mapped && 1531 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1532 __spi_unmap_msg(ctlr, msg); 1533 ctlr->fallback = true; 1534 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1535 goto fallback_pio; 1536 } 1537 1538 SPI_STATISTICS_INCREMENT_FIELD(statm, 1539 errors); 1540 SPI_STATISTICS_INCREMENT_FIELD(stats, 1541 errors); 1542 dev_err(&msg->spi->dev, 1543 "SPI transfer failed: %d\n", ret); 1544 goto out; 1545 } 1546 1547 if (ret > 0) { 1548 ret = spi_transfer_wait(ctlr, msg, xfer); 1549 if (ret < 0) 1550 msg->status = ret; 1551 } 1552 1553 spi_dma_sync_for_cpu(ctlr, xfer); 1554 } else { 1555 if (xfer->len) 1556 dev_err(&msg->spi->dev, 1557 "Bufferless transfer has length %u\n", 1558 xfer->len); 1559 } 1560 1561 if (!ctlr->ptp_sts_supported) { 1562 ptp_read_system_postts(xfer->ptp_sts); 1563 xfer->ptp_sts_word_post = xfer->len; 1564 } 1565 1566 trace_spi_transfer_stop(msg, xfer); 1567 1568 if (msg->status != -EINPROGRESS) 1569 goto out; 1570 1571 spi_transfer_delay_exec(xfer); 1572 1573 if (xfer->cs_change) { 1574 if (list_is_last(&xfer->transfer_list, 1575 &msg->transfers)) { 1576 keep_cs = true; 1577 } else { 1578 if (!xfer->cs_off) 1579 spi_set_cs(msg->spi, false, false); 1580 _spi_transfer_cs_change_delay(msg, xfer); 1581 if (!list_next_entry(xfer, transfer_list)->cs_off) 1582 spi_set_cs(msg->spi, true, false); 1583 } 1584 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1585 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1586 spi_set_cs(msg->spi, xfer->cs_off, false); 1587 } 1588 1589 msg->actual_length += xfer->len; 1590 } 1591 1592 out: 1593 if (ret != 0 || !keep_cs) 1594 spi_set_cs(msg->spi, false, false); 1595 1596 if (msg->status == -EINPROGRESS) 1597 msg->status = ret; 1598 1599 if (msg->status && ctlr->handle_err) 1600 ctlr->handle_err(ctlr, msg); 1601 1602 spi_finalize_current_message(ctlr); 1603 1604 return ret; 1605 } 1606 1607 /** 1608 * spi_finalize_current_transfer - report completion of a transfer 1609 * @ctlr: the controller reporting completion 1610 * 1611 * Called by SPI drivers using the core transfer_one_message() 1612 * implementation to notify it that the current interrupt driven 1613 * transfer has finished and the next one may be scheduled. 1614 */ 1615 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1616 { 1617 complete(&ctlr->xfer_completion); 1618 } 1619 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1620 1621 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1622 { 1623 if (ctlr->auto_runtime_pm) { 1624 pm_runtime_mark_last_busy(ctlr->dev.parent); 1625 pm_runtime_put_autosuspend(ctlr->dev.parent); 1626 } 1627 } 1628 1629 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1630 struct spi_message *msg, bool was_busy) 1631 { 1632 struct spi_transfer *xfer; 1633 int ret; 1634 1635 if (!was_busy && ctlr->auto_runtime_pm) { 1636 ret = pm_runtime_get_sync(ctlr->dev.parent); 1637 if (ret < 0) { 1638 pm_runtime_put_noidle(ctlr->dev.parent); 1639 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1640 ret); 1641 1642 msg->status = ret; 1643 spi_finalize_current_message(ctlr); 1644 1645 return ret; 1646 } 1647 } 1648 1649 if (!was_busy) 1650 trace_spi_controller_busy(ctlr); 1651 1652 if (!was_busy && ctlr->prepare_transfer_hardware) { 1653 ret = ctlr->prepare_transfer_hardware(ctlr); 1654 if (ret) { 1655 dev_err(&ctlr->dev, 1656 "failed to prepare transfer hardware: %d\n", 1657 ret); 1658 1659 if (ctlr->auto_runtime_pm) 1660 pm_runtime_put(ctlr->dev.parent); 1661 1662 msg->status = ret; 1663 spi_finalize_current_message(ctlr); 1664 1665 return ret; 1666 } 1667 } 1668 1669 trace_spi_message_start(msg); 1670 1671 ret = spi_split_transfers_maxsize(ctlr, msg, 1672 spi_max_transfer_size(msg->spi), 1673 GFP_KERNEL | GFP_DMA); 1674 if (ret) { 1675 msg->status = ret; 1676 spi_finalize_current_message(ctlr); 1677 return ret; 1678 } 1679 1680 if (ctlr->prepare_message) { 1681 ret = ctlr->prepare_message(ctlr, msg); 1682 if (ret) { 1683 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1684 ret); 1685 msg->status = ret; 1686 spi_finalize_current_message(ctlr); 1687 return ret; 1688 } 1689 msg->prepared = true; 1690 } 1691 1692 ret = spi_map_msg(ctlr, msg); 1693 if (ret) { 1694 msg->status = ret; 1695 spi_finalize_current_message(ctlr); 1696 return ret; 1697 } 1698 1699 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1700 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1701 xfer->ptp_sts_word_pre = 0; 1702 ptp_read_system_prets(xfer->ptp_sts); 1703 } 1704 } 1705 1706 /* 1707 * Drivers implementation of transfer_one_message() must arrange for 1708 * spi_finalize_current_message() to get called. Most drivers will do 1709 * this in the calling context, but some don't. For those cases, a 1710 * completion is used to guarantee that this function does not return 1711 * until spi_finalize_current_message() is done accessing 1712 * ctlr->cur_msg. 1713 * Use of the following two flags enable to opportunistically skip the 1714 * use of the completion since its use involves expensive spin locks. 1715 * In case of a race with the context that calls 1716 * spi_finalize_current_message() the completion will always be used, 1717 * due to strict ordering of these flags using barriers. 1718 */ 1719 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1720 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1721 reinit_completion(&ctlr->cur_msg_completion); 1722 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1723 1724 ret = ctlr->transfer_one_message(ctlr, msg); 1725 if (ret) { 1726 dev_err(&ctlr->dev, 1727 "failed to transfer one message from queue\n"); 1728 return ret; 1729 } 1730 1731 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1732 smp_mb(); /* See spi_finalize_current_message()... */ 1733 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1734 wait_for_completion(&ctlr->cur_msg_completion); 1735 1736 return 0; 1737 } 1738 1739 /** 1740 * __spi_pump_messages - function which processes SPI message queue 1741 * @ctlr: controller to process queue for 1742 * @in_kthread: true if we are in the context of the message pump thread 1743 * 1744 * This function checks if there is any SPI message in the queue that 1745 * needs processing and if so call out to the driver to initialize hardware 1746 * and transfer each message. 1747 * 1748 * Note that it is called both from the kthread itself and also from 1749 * inside spi_sync(); the queue extraction handling at the top of the 1750 * function should deal with this safely. 1751 */ 1752 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1753 { 1754 struct spi_message *msg; 1755 bool was_busy = false; 1756 unsigned long flags; 1757 int ret; 1758 1759 /* Take the I/O mutex */ 1760 mutex_lock(&ctlr->io_mutex); 1761 1762 /* Lock queue */ 1763 spin_lock_irqsave(&ctlr->queue_lock, flags); 1764 1765 /* Make sure we are not already running a message */ 1766 if (ctlr->cur_msg) 1767 goto out_unlock; 1768 1769 /* Check if the queue is idle */ 1770 if (list_empty(&ctlr->queue) || !ctlr->running) { 1771 if (!ctlr->busy) 1772 goto out_unlock; 1773 1774 /* Defer any non-atomic teardown to the thread */ 1775 if (!in_kthread) { 1776 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1777 !ctlr->unprepare_transfer_hardware) { 1778 spi_idle_runtime_pm(ctlr); 1779 ctlr->busy = false; 1780 ctlr->queue_empty = true; 1781 trace_spi_controller_idle(ctlr); 1782 } else { 1783 kthread_queue_work(ctlr->kworker, 1784 &ctlr->pump_messages); 1785 } 1786 goto out_unlock; 1787 } 1788 1789 ctlr->busy = false; 1790 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1791 1792 kfree(ctlr->dummy_rx); 1793 ctlr->dummy_rx = NULL; 1794 kfree(ctlr->dummy_tx); 1795 ctlr->dummy_tx = NULL; 1796 if (ctlr->unprepare_transfer_hardware && 1797 ctlr->unprepare_transfer_hardware(ctlr)) 1798 dev_err(&ctlr->dev, 1799 "failed to unprepare transfer hardware\n"); 1800 spi_idle_runtime_pm(ctlr); 1801 trace_spi_controller_idle(ctlr); 1802 1803 spin_lock_irqsave(&ctlr->queue_lock, flags); 1804 ctlr->queue_empty = true; 1805 goto out_unlock; 1806 } 1807 1808 /* Extract head of queue */ 1809 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1810 ctlr->cur_msg = msg; 1811 1812 list_del_init(&msg->queue); 1813 if (ctlr->busy) 1814 was_busy = true; 1815 else 1816 ctlr->busy = true; 1817 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1818 1819 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1820 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1821 1822 ctlr->cur_msg = NULL; 1823 ctlr->fallback = false; 1824 1825 mutex_unlock(&ctlr->io_mutex); 1826 1827 /* Prod the scheduler in case transfer_one() was busy waiting */ 1828 if (!ret) 1829 cond_resched(); 1830 return; 1831 1832 out_unlock: 1833 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1834 mutex_unlock(&ctlr->io_mutex); 1835 } 1836 1837 /** 1838 * spi_pump_messages - kthread work function which processes spi message queue 1839 * @work: pointer to kthread work struct contained in the controller struct 1840 */ 1841 static void spi_pump_messages(struct kthread_work *work) 1842 { 1843 struct spi_controller *ctlr = 1844 container_of(work, struct spi_controller, pump_messages); 1845 1846 __spi_pump_messages(ctlr, true); 1847 } 1848 1849 /** 1850 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1851 * @ctlr: Pointer to the spi_controller structure of the driver 1852 * @xfer: Pointer to the transfer being timestamped 1853 * @progress: How many words (not bytes) have been transferred so far 1854 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1855 * transfer, for less jitter in time measurement. Only compatible 1856 * with PIO drivers. If true, must follow up with 1857 * spi_take_timestamp_post or otherwise system will crash. 1858 * WARNING: for fully predictable results, the CPU frequency must 1859 * also be under control (governor). 1860 * 1861 * This is a helper for drivers to collect the beginning of the TX timestamp 1862 * for the requested byte from the SPI transfer. The frequency with which this 1863 * function must be called (once per word, once for the whole transfer, once 1864 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1865 * greater than or equal to the requested byte at the time of the call. The 1866 * timestamp is only taken once, at the first such call. It is assumed that 1867 * the driver advances its @tx buffer pointer monotonically. 1868 */ 1869 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1870 struct spi_transfer *xfer, 1871 size_t progress, bool irqs_off) 1872 { 1873 if (!xfer->ptp_sts) 1874 return; 1875 1876 if (xfer->timestamped) 1877 return; 1878 1879 if (progress > xfer->ptp_sts_word_pre) 1880 return; 1881 1882 /* Capture the resolution of the timestamp */ 1883 xfer->ptp_sts_word_pre = progress; 1884 1885 if (irqs_off) { 1886 local_irq_save(ctlr->irq_flags); 1887 preempt_disable(); 1888 } 1889 1890 ptp_read_system_prets(xfer->ptp_sts); 1891 } 1892 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1893 1894 /** 1895 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1896 * @ctlr: Pointer to the spi_controller structure of the driver 1897 * @xfer: Pointer to the transfer being timestamped 1898 * @progress: How many words (not bytes) have been transferred so far 1899 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1900 * 1901 * This is a helper for drivers to collect the end of the TX timestamp for 1902 * the requested byte from the SPI transfer. Can be called with an arbitrary 1903 * frequency: only the first call where @tx exceeds or is equal to the 1904 * requested word will be timestamped. 1905 */ 1906 void spi_take_timestamp_post(struct spi_controller *ctlr, 1907 struct spi_transfer *xfer, 1908 size_t progress, bool irqs_off) 1909 { 1910 if (!xfer->ptp_sts) 1911 return; 1912 1913 if (xfer->timestamped) 1914 return; 1915 1916 if (progress < xfer->ptp_sts_word_post) 1917 return; 1918 1919 ptp_read_system_postts(xfer->ptp_sts); 1920 1921 if (irqs_off) { 1922 local_irq_restore(ctlr->irq_flags); 1923 preempt_enable(); 1924 } 1925 1926 /* Capture the resolution of the timestamp */ 1927 xfer->ptp_sts_word_post = progress; 1928 1929 xfer->timestamped = 1; 1930 } 1931 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1932 1933 /** 1934 * spi_set_thread_rt - set the controller to pump at realtime priority 1935 * @ctlr: controller to boost priority of 1936 * 1937 * This can be called because the controller requested realtime priority 1938 * (by setting the ->rt value before calling spi_register_controller()) or 1939 * because a device on the bus said that its transfers needed realtime 1940 * priority. 1941 * 1942 * NOTE: at the moment if any device on a bus says it needs realtime then 1943 * the thread will be at realtime priority for all transfers on that 1944 * controller. If this eventually becomes a problem we may see if we can 1945 * find a way to boost the priority only temporarily during relevant 1946 * transfers. 1947 */ 1948 static void spi_set_thread_rt(struct spi_controller *ctlr) 1949 { 1950 dev_info(&ctlr->dev, 1951 "will run message pump with realtime priority\n"); 1952 sched_set_fifo(ctlr->kworker->task); 1953 } 1954 1955 static int spi_init_queue(struct spi_controller *ctlr) 1956 { 1957 ctlr->running = false; 1958 ctlr->busy = false; 1959 ctlr->queue_empty = true; 1960 1961 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1962 if (IS_ERR(ctlr->kworker)) { 1963 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1964 return PTR_ERR(ctlr->kworker); 1965 } 1966 1967 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1968 1969 /* 1970 * Controller config will indicate if this controller should run the 1971 * message pump with high (realtime) priority to reduce the transfer 1972 * latency on the bus by minimising the delay between a transfer 1973 * request and the scheduling of the message pump thread. Without this 1974 * setting the message pump thread will remain at default priority. 1975 */ 1976 if (ctlr->rt) 1977 spi_set_thread_rt(ctlr); 1978 1979 return 0; 1980 } 1981 1982 /** 1983 * spi_get_next_queued_message() - called by driver to check for queued 1984 * messages 1985 * @ctlr: the controller to check for queued messages 1986 * 1987 * If there are more messages in the queue, the next message is returned from 1988 * this call. 1989 * 1990 * Return: the next message in the queue, else NULL if the queue is empty. 1991 */ 1992 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1993 { 1994 struct spi_message *next; 1995 unsigned long flags; 1996 1997 /* Get a pointer to the next message, if any */ 1998 spin_lock_irqsave(&ctlr->queue_lock, flags); 1999 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2000 queue); 2001 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2002 2003 return next; 2004 } 2005 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2006 2007 /** 2008 * spi_finalize_current_message() - the current message is complete 2009 * @ctlr: the controller to return the message to 2010 * 2011 * Called by the driver to notify the core that the message in the front of the 2012 * queue is complete and can be removed from the queue. 2013 */ 2014 void spi_finalize_current_message(struct spi_controller *ctlr) 2015 { 2016 struct spi_transfer *xfer; 2017 struct spi_message *mesg; 2018 int ret; 2019 2020 mesg = ctlr->cur_msg; 2021 2022 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2023 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2024 ptp_read_system_postts(xfer->ptp_sts); 2025 xfer->ptp_sts_word_post = xfer->len; 2026 } 2027 } 2028 2029 if (unlikely(ctlr->ptp_sts_supported)) 2030 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2031 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2032 2033 spi_unmap_msg(ctlr, mesg); 2034 2035 /* 2036 * In the prepare_messages callback the SPI bus has the opportunity 2037 * to split a transfer to smaller chunks. 2038 * 2039 * Release the split transfers here since spi_map_msg() is done on 2040 * the split transfers. 2041 */ 2042 spi_res_release(ctlr, mesg); 2043 2044 if (mesg->prepared && ctlr->unprepare_message) { 2045 ret = ctlr->unprepare_message(ctlr, mesg); 2046 if (ret) { 2047 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2048 ret); 2049 } 2050 } 2051 2052 mesg->prepared = false; 2053 2054 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2055 smp_mb(); /* See __spi_pump_transfer_message()... */ 2056 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2057 complete(&ctlr->cur_msg_completion); 2058 2059 trace_spi_message_done(mesg); 2060 2061 mesg->state = NULL; 2062 if (mesg->complete) 2063 mesg->complete(mesg->context); 2064 } 2065 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2066 2067 static int spi_start_queue(struct spi_controller *ctlr) 2068 { 2069 unsigned long flags; 2070 2071 spin_lock_irqsave(&ctlr->queue_lock, flags); 2072 2073 if (ctlr->running || ctlr->busy) { 2074 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2075 return -EBUSY; 2076 } 2077 2078 ctlr->running = true; 2079 ctlr->cur_msg = NULL; 2080 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2081 2082 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2083 2084 return 0; 2085 } 2086 2087 static int spi_stop_queue(struct spi_controller *ctlr) 2088 { 2089 unsigned long flags; 2090 unsigned limit = 500; 2091 int ret = 0; 2092 2093 spin_lock_irqsave(&ctlr->queue_lock, flags); 2094 2095 /* 2096 * This is a bit lame, but is optimized for the common execution path. 2097 * A wait_queue on the ctlr->busy could be used, but then the common 2098 * execution path (pump_messages) would be required to call wake_up or 2099 * friends on every SPI message. Do this instead. 2100 */ 2101 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2102 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2103 usleep_range(10000, 11000); 2104 spin_lock_irqsave(&ctlr->queue_lock, flags); 2105 } 2106 2107 if (!list_empty(&ctlr->queue) || ctlr->busy) 2108 ret = -EBUSY; 2109 else 2110 ctlr->running = false; 2111 2112 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2113 2114 if (ret) { 2115 dev_warn(&ctlr->dev, "could not stop message queue\n"); 2116 return ret; 2117 } 2118 return ret; 2119 } 2120 2121 static int spi_destroy_queue(struct spi_controller *ctlr) 2122 { 2123 int ret; 2124 2125 ret = spi_stop_queue(ctlr); 2126 2127 /* 2128 * kthread_flush_worker will block until all work is done. 2129 * If the reason that stop_queue timed out is that the work will never 2130 * finish, then it does no good to call flush/stop thread, so 2131 * return anyway. 2132 */ 2133 if (ret) { 2134 dev_err(&ctlr->dev, "problem destroying queue\n"); 2135 return ret; 2136 } 2137 2138 kthread_destroy_worker(ctlr->kworker); 2139 2140 return 0; 2141 } 2142 2143 static int __spi_queued_transfer(struct spi_device *spi, 2144 struct spi_message *msg, 2145 bool need_pump) 2146 { 2147 struct spi_controller *ctlr = spi->controller; 2148 unsigned long flags; 2149 2150 spin_lock_irqsave(&ctlr->queue_lock, flags); 2151 2152 if (!ctlr->running) { 2153 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2154 return -ESHUTDOWN; 2155 } 2156 msg->actual_length = 0; 2157 msg->status = -EINPROGRESS; 2158 2159 list_add_tail(&msg->queue, &ctlr->queue); 2160 ctlr->queue_empty = false; 2161 if (!ctlr->busy && need_pump) 2162 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2163 2164 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2165 return 0; 2166 } 2167 2168 /** 2169 * spi_queued_transfer - transfer function for queued transfers 2170 * @spi: SPI device which is requesting transfer 2171 * @msg: SPI message which is to handled is queued to driver queue 2172 * 2173 * Return: zero on success, else a negative error code. 2174 */ 2175 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2176 { 2177 return __spi_queued_transfer(spi, msg, true); 2178 } 2179 2180 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2181 { 2182 int ret; 2183 2184 ctlr->transfer = spi_queued_transfer; 2185 if (!ctlr->transfer_one_message) 2186 ctlr->transfer_one_message = spi_transfer_one_message; 2187 2188 /* Initialize and start queue */ 2189 ret = spi_init_queue(ctlr); 2190 if (ret) { 2191 dev_err(&ctlr->dev, "problem initializing queue\n"); 2192 goto err_init_queue; 2193 } 2194 ctlr->queued = true; 2195 ret = spi_start_queue(ctlr); 2196 if (ret) { 2197 dev_err(&ctlr->dev, "problem starting queue\n"); 2198 goto err_start_queue; 2199 } 2200 2201 return 0; 2202 2203 err_start_queue: 2204 spi_destroy_queue(ctlr); 2205 err_init_queue: 2206 return ret; 2207 } 2208 2209 /** 2210 * spi_flush_queue - Send all pending messages in the queue from the callers' 2211 * context 2212 * @ctlr: controller to process queue for 2213 * 2214 * This should be used when one wants to ensure all pending messages have been 2215 * sent before doing something. Is used by the spi-mem code to make sure SPI 2216 * memory operations do not preempt regular SPI transfers that have been queued 2217 * before the spi-mem operation. 2218 */ 2219 void spi_flush_queue(struct spi_controller *ctlr) 2220 { 2221 if (ctlr->transfer == spi_queued_transfer) 2222 __spi_pump_messages(ctlr, false); 2223 } 2224 2225 /*-------------------------------------------------------------------------*/ 2226 2227 #if defined(CONFIG_OF) 2228 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2229 struct spi_delay *delay, const char *prop) 2230 { 2231 u32 value; 2232 2233 if (!of_property_read_u32(nc, prop, &value)) { 2234 if (value > U16_MAX) { 2235 delay->value = DIV_ROUND_UP(value, 1000); 2236 delay->unit = SPI_DELAY_UNIT_USECS; 2237 } else { 2238 delay->value = value; 2239 delay->unit = SPI_DELAY_UNIT_NSECS; 2240 } 2241 } 2242 } 2243 2244 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2245 struct device_node *nc) 2246 { 2247 u32 value; 2248 int rc; 2249 2250 /* Mode (clock phase/polarity/etc.) */ 2251 if (of_property_read_bool(nc, "spi-cpha")) 2252 spi->mode |= SPI_CPHA; 2253 if (of_property_read_bool(nc, "spi-cpol")) 2254 spi->mode |= SPI_CPOL; 2255 if (of_property_read_bool(nc, "spi-3wire")) 2256 spi->mode |= SPI_3WIRE; 2257 if (of_property_read_bool(nc, "spi-lsb-first")) 2258 spi->mode |= SPI_LSB_FIRST; 2259 if (of_property_read_bool(nc, "spi-cs-high")) 2260 spi->mode |= SPI_CS_HIGH; 2261 2262 /* Device DUAL/QUAD mode */ 2263 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2264 switch (value) { 2265 case 0: 2266 spi->mode |= SPI_NO_TX; 2267 break; 2268 case 1: 2269 break; 2270 case 2: 2271 spi->mode |= SPI_TX_DUAL; 2272 break; 2273 case 4: 2274 spi->mode |= SPI_TX_QUAD; 2275 break; 2276 case 8: 2277 spi->mode |= SPI_TX_OCTAL; 2278 break; 2279 default: 2280 dev_warn(&ctlr->dev, 2281 "spi-tx-bus-width %d not supported\n", 2282 value); 2283 break; 2284 } 2285 } 2286 2287 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2288 switch (value) { 2289 case 0: 2290 spi->mode |= SPI_NO_RX; 2291 break; 2292 case 1: 2293 break; 2294 case 2: 2295 spi->mode |= SPI_RX_DUAL; 2296 break; 2297 case 4: 2298 spi->mode |= SPI_RX_QUAD; 2299 break; 2300 case 8: 2301 spi->mode |= SPI_RX_OCTAL; 2302 break; 2303 default: 2304 dev_warn(&ctlr->dev, 2305 "spi-rx-bus-width %d not supported\n", 2306 value); 2307 break; 2308 } 2309 } 2310 2311 if (spi_controller_is_slave(ctlr)) { 2312 if (!of_node_name_eq(nc, "slave")) { 2313 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2314 nc); 2315 return -EINVAL; 2316 } 2317 return 0; 2318 } 2319 2320 /* Device address */ 2321 rc = of_property_read_u32(nc, "reg", &value); 2322 if (rc) { 2323 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2324 nc, rc); 2325 return rc; 2326 } 2327 spi_set_chipselect(spi, 0, value); 2328 2329 /* Device speed */ 2330 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2331 spi->max_speed_hz = value; 2332 2333 /* Device CS delays */ 2334 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2335 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2336 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2337 2338 return 0; 2339 } 2340 2341 static struct spi_device * 2342 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2343 { 2344 struct spi_device *spi; 2345 int rc; 2346 2347 /* Alloc an spi_device */ 2348 spi = spi_alloc_device(ctlr); 2349 if (!spi) { 2350 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2351 rc = -ENOMEM; 2352 goto err_out; 2353 } 2354 2355 /* Select device driver */ 2356 rc = of_alias_from_compatible(nc, spi->modalias, 2357 sizeof(spi->modalias)); 2358 if (rc < 0) { 2359 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2360 goto err_out; 2361 } 2362 2363 rc = of_spi_parse_dt(ctlr, spi, nc); 2364 if (rc) 2365 goto err_out; 2366 2367 /* Store a pointer to the node in the device structure */ 2368 of_node_get(nc); 2369 2370 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2371 2372 /* Register the new device */ 2373 rc = spi_add_device(spi); 2374 if (rc) { 2375 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2376 goto err_of_node_put; 2377 } 2378 2379 return spi; 2380 2381 err_of_node_put: 2382 of_node_put(nc); 2383 err_out: 2384 spi_dev_put(spi); 2385 return ERR_PTR(rc); 2386 } 2387 2388 /** 2389 * of_register_spi_devices() - Register child devices onto the SPI bus 2390 * @ctlr: Pointer to spi_controller device 2391 * 2392 * Registers an spi_device for each child node of controller node which 2393 * represents a valid SPI slave. 2394 */ 2395 static void of_register_spi_devices(struct spi_controller *ctlr) 2396 { 2397 struct spi_device *spi; 2398 struct device_node *nc; 2399 2400 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2401 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2402 continue; 2403 spi = of_register_spi_device(ctlr, nc); 2404 if (IS_ERR(spi)) { 2405 dev_warn(&ctlr->dev, 2406 "Failed to create SPI device for %pOF\n", nc); 2407 of_node_clear_flag(nc, OF_POPULATED); 2408 } 2409 } 2410 } 2411 #else 2412 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2413 #endif 2414 2415 /** 2416 * spi_new_ancillary_device() - Register ancillary SPI device 2417 * @spi: Pointer to the main SPI device registering the ancillary device 2418 * @chip_select: Chip Select of the ancillary device 2419 * 2420 * Register an ancillary SPI device; for example some chips have a chip-select 2421 * for normal device usage and another one for setup/firmware upload. 2422 * 2423 * This may only be called from main SPI device's probe routine. 2424 * 2425 * Return: 0 on success; negative errno on failure 2426 */ 2427 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2428 u8 chip_select) 2429 { 2430 struct spi_controller *ctlr = spi->controller; 2431 struct spi_device *ancillary; 2432 int rc = 0; 2433 2434 /* Alloc an spi_device */ 2435 ancillary = spi_alloc_device(ctlr); 2436 if (!ancillary) { 2437 rc = -ENOMEM; 2438 goto err_out; 2439 } 2440 2441 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2442 2443 /* Use provided chip-select for ancillary device */ 2444 spi_set_chipselect(ancillary, 0, chip_select); 2445 2446 /* Take over SPI mode/speed from SPI main device */ 2447 ancillary->max_speed_hz = spi->max_speed_hz; 2448 ancillary->mode = spi->mode; 2449 2450 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2451 2452 /* Register the new device */ 2453 rc = __spi_add_device(ancillary); 2454 if (rc) { 2455 dev_err(&spi->dev, "failed to register ancillary device\n"); 2456 goto err_out; 2457 } 2458 2459 return ancillary; 2460 2461 err_out: 2462 spi_dev_put(ancillary); 2463 return ERR_PTR(rc); 2464 } 2465 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2466 2467 #ifdef CONFIG_ACPI 2468 struct acpi_spi_lookup { 2469 struct spi_controller *ctlr; 2470 u32 max_speed_hz; 2471 u32 mode; 2472 int irq; 2473 u8 bits_per_word; 2474 u8 chip_select; 2475 int n; 2476 int index; 2477 }; 2478 2479 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2480 { 2481 struct acpi_resource_spi_serialbus *sb; 2482 int *count = data; 2483 2484 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2485 return 1; 2486 2487 sb = &ares->data.spi_serial_bus; 2488 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2489 return 1; 2490 2491 *count = *count + 1; 2492 2493 return 1; 2494 } 2495 2496 /** 2497 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2498 * @adev: ACPI device 2499 * 2500 * Return: the number of SpiSerialBus resources in the ACPI-device's 2501 * resource-list; or a negative error code. 2502 */ 2503 int acpi_spi_count_resources(struct acpi_device *adev) 2504 { 2505 LIST_HEAD(r); 2506 int count = 0; 2507 int ret; 2508 2509 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2510 if (ret < 0) 2511 return ret; 2512 2513 acpi_dev_free_resource_list(&r); 2514 2515 return count; 2516 } 2517 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2518 2519 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2520 struct acpi_spi_lookup *lookup) 2521 { 2522 const union acpi_object *obj; 2523 2524 if (!x86_apple_machine) 2525 return; 2526 2527 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2528 && obj->buffer.length >= 4) 2529 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2530 2531 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2532 && obj->buffer.length == 8) 2533 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2534 2535 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2536 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2537 lookup->mode |= SPI_LSB_FIRST; 2538 2539 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2540 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2541 lookup->mode |= SPI_CPOL; 2542 2543 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2544 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2545 lookup->mode |= SPI_CPHA; 2546 } 2547 2548 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 2549 2550 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2551 { 2552 struct acpi_spi_lookup *lookup = data; 2553 struct spi_controller *ctlr = lookup->ctlr; 2554 2555 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2556 struct acpi_resource_spi_serialbus *sb; 2557 acpi_handle parent_handle; 2558 acpi_status status; 2559 2560 sb = &ares->data.spi_serial_bus; 2561 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2562 2563 if (lookup->index != -1 && lookup->n++ != lookup->index) 2564 return 1; 2565 2566 status = acpi_get_handle(NULL, 2567 sb->resource_source.string_ptr, 2568 &parent_handle); 2569 2570 if (ACPI_FAILURE(status)) 2571 return -ENODEV; 2572 2573 if (ctlr) { 2574 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2575 return -ENODEV; 2576 } else { 2577 struct acpi_device *adev; 2578 2579 adev = acpi_fetch_acpi_dev(parent_handle); 2580 if (!adev) 2581 return -ENODEV; 2582 2583 ctlr = acpi_spi_find_controller_by_adev(adev); 2584 if (!ctlr) 2585 return -EPROBE_DEFER; 2586 2587 lookup->ctlr = ctlr; 2588 } 2589 2590 /* 2591 * ACPI DeviceSelection numbering is handled by the 2592 * host controller driver in Windows and can vary 2593 * from driver to driver. In Linux we always expect 2594 * 0 .. max - 1 so we need to ask the driver to 2595 * translate between the two schemes. 2596 */ 2597 if (ctlr->fw_translate_cs) { 2598 int cs = ctlr->fw_translate_cs(ctlr, 2599 sb->device_selection); 2600 if (cs < 0) 2601 return cs; 2602 lookup->chip_select = cs; 2603 } else { 2604 lookup->chip_select = sb->device_selection; 2605 } 2606 2607 lookup->max_speed_hz = sb->connection_speed; 2608 lookup->bits_per_word = sb->data_bit_length; 2609 2610 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2611 lookup->mode |= SPI_CPHA; 2612 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2613 lookup->mode |= SPI_CPOL; 2614 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2615 lookup->mode |= SPI_CS_HIGH; 2616 } 2617 } else if (lookup->irq < 0) { 2618 struct resource r; 2619 2620 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2621 lookup->irq = r.start; 2622 } 2623 2624 /* Always tell the ACPI core to skip this resource */ 2625 return 1; 2626 } 2627 2628 /** 2629 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2630 * @ctlr: controller to which the spi device belongs 2631 * @adev: ACPI Device for the spi device 2632 * @index: Index of the spi resource inside the ACPI Node 2633 * 2634 * This should be used to allocate a new SPI device from and ACPI Device node. 2635 * The caller is responsible for calling spi_add_device to register the SPI device. 2636 * 2637 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2638 * using the resource. 2639 * If index is set to -1, index is not used. 2640 * Note: If index is -1, ctlr must be set. 2641 * 2642 * Return: a pointer to the new device, or ERR_PTR on error. 2643 */ 2644 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2645 struct acpi_device *adev, 2646 int index) 2647 { 2648 acpi_handle parent_handle = NULL; 2649 struct list_head resource_list; 2650 struct acpi_spi_lookup lookup = {}; 2651 struct spi_device *spi; 2652 int ret; 2653 2654 if (!ctlr && index == -1) 2655 return ERR_PTR(-EINVAL); 2656 2657 lookup.ctlr = ctlr; 2658 lookup.irq = -1; 2659 lookup.index = index; 2660 lookup.n = 0; 2661 2662 INIT_LIST_HEAD(&resource_list); 2663 ret = acpi_dev_get_resources(adev, &resource_list, 2664 acpi_spi_add_resource, &lookup); 2665 acpi_dev_free_resource_list(&resource_list); 2666 2667 if (ret < 0) 2668 /* Found SPI in _CRS but it points to another controller */ 2669 return ERR_PTR(ret); 2670 2671 if (!lookup.max_speed_hz && 2672 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2673 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2674 /* Apple does not use _CRS but nested devices for SPI slaves */ 2675 acpi_spi_parse_apple_properties(adev, &lookup); 2676 } 2677 2678 if (!lookup.max_speed_hz) 2679 return ERR_PTR(-ENODEV); 2680 2681 spi = spi_alloc_device(lookup.ctlr); 2682 if (!spi) { 2683 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2684 dev_name(&adev->dev)); 2685 return ERR_PTR(-ENOMEM); 2686 } 2687 2688 ACPI_COMPANION_SET(&spi->dev, adev); 2689 spi->max_speed_hz = lookup.max_speed_hz; 2690 spi->mode |= lookup.mode; 2691 spi->irq = lookup.irq; 2692 spi->bits_per_word = lookup.bits_per_word; 2693 spi_set_chipselect(spi, 0, lookup.chip_select); 2694 2695 return spi; 2696 } 2697 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2698 2699 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2700 struct acpi_device *adev) 2701 { 2702 struct spi_device *spi; 2703 2704 if (acpi_bus_get_status(adev) || !adev->status.present || 2705 acpi_device_enumerated(adev)) 2706 return AE_OK; 2707 2708 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2709 if (IS_ERR(spi)) { 2710 if (PTR_ERR(spi) == -ENOMEM) 2711 return AE_NO_MEMORY; 2712 else 2713 return AE_OK; 2714 } 2715 2716 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2717 sizeof(spi->modalias)); 2718 2719 acpi_device_set_enumerated(adev); 2720 2721 adev->power.flags.ignore_parent = true; 2722 if (spi_add_device(spi)) { 2723 adev->power.flags.ignore_parent = false; 2724 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2725 dev_name(&adev->dev)); 2726 spi_dev_put(spi); 2727 } 2728 2729 return AE_OK; 2730 } 2731 2732 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2733 void *data, void **return_value) 2734 { 2735 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2736 struct spi_controller *ctlr = data; 2737 2738 if (!adev) 2739 return AE_OK; 2740 2741 return acpi_register_spi_device(ctlr, adev); 2742 } 2743 2744 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2745 2746 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2747 { 2748 acpi_status status; 2749 acpi_handle handle; 2750 2751 handle = ACPI_HANDLE(ctlr->dev.parent); 2752 if (!handle) 2753 return; 2754 2755 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2756 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2757 acpi_spi_add_device, NULL, ctlr, NULL); 2758 if (ACPI_FAILURE(status)) 2759 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2760 } 2761 #else 2762 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2763 #endif /* CONFIG_ACPI */ 2764 2765 static void spi_controller_release(struct device *dev) 2766 { 2767 struct spi_controller *ctlr; 2768 2769 ctlr = container_of(dev, struct spi_controller, dev); 2770 kfree(ctlr); 2771 } 2772 2773 static struct class spi_master_class = { 2774 .name = "spi_master", 2775 .dev_release = spi_controller_release, 2776 .dev_groups = spi_master_groups, 2777 }; 2778 2779 #ifdef CONFIG_SPI_SLAVE 2780 /** 2781 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2782 * controller 2783 * @spi: device used for the current transfer 2784 */ 2785 int spi_slave_abort(struct spi_device *spi) 2786 { 2787 struct spi_controller *ctlr = spi->controller; 2788 2789 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2790 return ctlr->slave_abort(ctlr); 2791 2792 return -ENOTSUPP; 2793 } 2794 EXPORT_SYMBOL_GPL(spi_slave_abort); 2795 2796 int spi_target_abort(struct spi_device *spi) 2797 { 2798 struct spi_controller *ctlr = spi->controller; 2799 2800 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2801 return ctlr->target_abort(ctlr); 2802 2803 return -ENOTSUPP; 2804 } 2805 EXPORT_SYMBOL_GPL(spi_target_abort); 2806 2807 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2808 char *buf) 2809 { 2810 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2811 dev); 2812 struct device *child; 2813 2814 child = device_find_any_child(&ctlr->dev); 2815 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2816 } 2817 2818 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2819 const char *buf, size_t count) 2820 { 2821 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2822 dev); 2823 struct spi_device *spi; 2824 struct device *child; 2825 char name[32]; 2826 int rc; 2827 2828 rc = sscanf(buf, "%31s", name); 2829 if (rc != 1 || !name[0]) 2830 return -EINVAL; 2831 2832 child = device_find_any_child(&ctlr->dev); 2833 if (child) { 2834 /* Remove registered slave */ 2835 device_unregister(child); 2836 put_device(child); 2837 } 2838 2839 if (strcmp(name, "(null)")) { 2840 /* Register new slave */ 2841 spi = spi_alloc_device(ctlr); 2842 if (!spi) 2843 return -ENOMEM; 2844 2845 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2846 2847 rc = spi_add_device(spi); 2848 if (rc) { 2849 spi_dev_put(spi); 2850 return rc; 2851 } 2852 } 2853 2854 return count; 2855 } 2856 2857 static DEVICE_ATTR_RW(slave); 2858 2859 static struct attribute *spi_slave_attrs[] = { 2860 &dev_attr_slave.attr, 2861 NULL, 2862 }; 2863 2864 static const struct attribute_group spi_slave_group = { 2865 .attrs = spi_slave_attrs, 2866 }; 2867 2868 static const struct attribute_group *spi_slave_groups[] = { 2869 &spi_controller_statistics_group, 2870 &spi_slave_group, 2871 NULL, 2872 }; 2873 2874 static struct class spi_slave_class = { 2875 .name = "spi_slave", 2876 .dev_release = spi_controller_release, 2877 .dev_groups = spi_slave_groups, 2878 }; 2879 #else 2880 extern struct class spi_slave_class; /* dummy */ 2881 #endif 2882 2883 /** 2884 * __spi_alloc_controller - allocate an SPI master or slave controller 2885 * @dev: the controller, possibly using the platform_bus 2886 * @size: how much zeroed driver-private data to allocate; the pointer to this 2887 * memory is in the driver_data field of the returned device, accessible 2888 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2889 * drivers granting DMA access to portions of their private data need to 2890 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2891 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2892 * slave (true) controller 2893 * Context: can sleep 2894 * 2895 * This call is used only by SPI controller drivers, which are the 2896 * only ones directly touching chip registers. It's how they allocate 2897 * an spi_controller structure, prior to calling spi_register_controller(). 2898 * 2899 * This must be called from context that can sleep. 2900 * 2901 * The caller is responsible for assigning the bus number and initializing the 2902 * controller's methods before calling spi_register_controller(); and (after 2903 * errors adding the device) calling spi_controller_put() to prevent a memory 2904 * leak. 2905 * 2906 * Return: the SPI controller structure on success, else NULL. 2907 */ 2908 struct spi_controller *__spi_alloc_controller(struct device *dev, 2909 unsigned int size, bool slave) 2910 { 2911 struct spi_controller *ctlr; 2912 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2913 2914 if (!dev) 2915 return NULL; 2916 2917 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2918 if (!ctlr) 2919 return NULL; 2920 2921 device_initialize(&ctlr->dev); 2922 INIT_LIST_HEAD(&ctlr->queue); 2923 spin_lock_init(&ctlr->queue_lock); 2924 spin_lock_init(&ctlr->bus_lock_spinlock); 2925 mutex_init(&ctlr->bus_lock_mutex); 2926 mutex_init(&ctlr->io_mutex); 2927 mutex_init(&ctlr->add_lock); 2928 ctlr->bus_num = -1; 2929 ctlr->num_chipselect = 1; 2930 ctlr->slave = slave; 2931 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2932 ctlr->dev.class = &spi_slave_class; 2933 else 2934 ctlr->dev.class = &spi_master_class; 2935 ctlr->dev.parent = dev; 2936 pm_suspend_ignore_children(&ctlr->dev, true); 2937 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2938 2939 return ctlr; 2940 } 2941 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2942 2943 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2944 { 2945 spi_controller_put(*(struct spi_controller **)ctlr); 2946 } 2947 2948 /** 2949 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2950 * @dev: physical device of SPI controller 2951 * @size: how much zeroed driver-private data to allocate 2952 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2953 * Context: can sleep 2954 * 2955 * Allocate an SPI controller and automatically release a reference on it 2956 * when @dev is unbound from its driver. Drivers are thus relieved from 2957 * having to call spi_controller_put(). 2958 * 2959 * The arguments to this function are identical to __spi_alloc_controller(). 2960 * 2961 * Return: the SPI controller structure on success, else NULL. 2962 */ 2963 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2964 unsigned int size, 2965 bool slave) 2966 { 2967 struct spi_controller **ptr, *ctlr; 2968 2969 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2970 GFP_KERNEL); 2971 if (!ptr) 2972 return NULL; 2973 2974 ctlr = __spi_alloc_controller(dev, size, slave); 2975 if (ctlr) { 2976 ctlr->devm_allocated = true; 2977 *ptr = ctlr; 2978 devres_add(dev, ptr); 2979 } else { 2980 devres_free(ptr); 2981 } 2982 2983 return ctlr; 2984 } 2985 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2986 2987 /** 2988 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2989 * @ctlr: The SPI master to grab GPIO descriptors for 2990 */ 2991 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2992 { 2993 int nb, i; 2994 struct gpio_desc **cs; 2995 struct device *dev = &ctlr->dev; 2996 unsigned long native_cs_mask = 0; 2997 unsigned int num_cs_gpios = 0; 2998 2999 nb = gpiod_count(dev, "cs"); 3000 if (nb < 0) { 3001 /* No GPIOs at all is fine, else return the error */ 3002 if (nb == -ENOENT) 3003 return 0; 3004 return nb; 3005 } 3006 3007 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3008 3009 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3010 GFP_KERNEL); 3011 if (!cs) 3012 return -ENOMEM; 3013 ctlr->cs_gpiods = cs; 3014 3015 for (i = 0; i < nb; i++) { 3016 /* 3017 * Most chipselects are active low, the inverted 3018 * semantics are handled by special quirks in gpiolib, 3019 * so initializing them GPIOD_OUT_LOW here means 3020 * "unasserted", in most cases this will drive the physical 3021 * line high. 3022 */ 3023 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3024 GPIOD_OUT_LOW); 3025 if (IS_ERR(cs[i])) 3026 return PTR_ERR(cs[i]); 3027 3028 if (cs[i]) { 3029 /* 3030 * If we find a CS GPIO, name it after the device and 3031 * chip select line. 3032 */ 3033 char *gpioname; 3034 3035 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3036 dev_name(dev), i); 3037 if (!gpioname) 3038 return -ENOMEM; 3039 gpiod_set_consumer_name(cs[i], gpioname); 3040 num_cs_gpios++; 3041 continue; 3042 } 3043 3044 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3045 dev_err(dev, "Invalid native chip select %d\n", i); 3046 return -EINVAL; 3047 } 3048 native_cs_mask |= BIT(i); 3049 } 3050 3051 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3052 3053 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3054 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3055 dev_err(dev, "No unused native chip select available\n"); 3056 return -EINVAL; 3057 } 3058 3059 return 0; 3060 } 3061 3062 static int spi_controller_check_ops(struct spi_controller *ctlr) 3063 { 3064 /* 3065 * The controller may implement only the high-level SPI-memory like 3066 * operations if it does not support regular SPI transfers, and this is 3067 * valid use case. 3068 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3069 * one of the ->transfer_xxx() method be implemented. 3070 */ 3071 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3072 if (!ctlr->transfer && !ctlr->transfer_one && 3073 !ctlr->transfer_one_message) { 3074 return -EINVAL; 3075 } 3076 } 3077 3078 return 0; 3079 } 3080 3081 /* Allocate dynamic bus number using Linux idr */ 3082 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3083 { 3084 int id; 3085 3086 mutex_lock(&board_lock); 3087 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3088 mutex_unlock(&board_lock); 3089 if (WARN(id < 0, "couldn't get idr")) 3090 return id == -ENOSPC ? -EBUSY : id; 3091 ctlr->bus_num = id; 3092 return 0; 3093 } 3094 3095 /** 3096 * spi_register_controller - register SPI master or slave controller 3097 * @ctlr: initialized master, originally from spi_alloc_master() or 3098 * spi_alloc_slave() 3099 * Context: can sleep 3100 * 3101 * SPI controllers connect to their drivers using some non-SPI bus, 3102 * such as the platform bus. The final stage of probe() in that code 3103 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3104 * 3105 * SPI controllers use board specific (often SOC specific) bus numbers, 3106 * and board-specific addressing for SPI devices combines those numbers 3107 * with chip select numbers. Since SPI does not directly support dynamic 3108 * device identification, boards need configuration tables telling which 3109 * chip is at which address. 3110 * 3111 * This must be called from context that can sleep. It returns zero on 3112 * success, else a negative error code (dropping the controller's refcount). 3113 * After a successful return, the caller is responsible for calling 3114 * spi_unregister_controller(). 3115 * 3116 * Return: zero on success, else a negative error code. 3117 */ 3118 int spi_register_controller(struct spi_controller *ctlr) 3119 { 3120 struct device *dev = ctlr->dev.parent; 3121 struct boardinfo *bi; 3122 int first_dynamic; 3123 int status; 3124 3125 if (!dev) 3126 return -ENODEV; 3127 3128 /* 3129 * Make sure all necessary hooks are implemented before registering 3130 * the SPI controller. 3131 */ 3132 status = spi_controller_check_ops(ctlr); 3133 if (status) 3134 return status; 3135 3136 if (ctlr->bus_num < 0) 3137 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3138 if (ctlr->bus_num >= 0) { 3139 /* Devices with a fixed bus num must check-in with the num */ 3140 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3141 if (status) 3142 return status; 3143 } 3144 if (ctlr->bus_num < 0) { 3145 first_dynamic = of_alias_get_highest_id("spi"); 3146 if (first_dynamic < 0) 3147 first_dynamic = 0; 3148 else 3149 first_dynamic++; 3150 3151 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3152 if (status) 3153 return status; 3154 } 3155 ctlr->bus_lock_flag = 0; 3156 init_completion(&ctlr->xfer_completion); 3157 init_completion(&ctlr->cur_msg_completion); 3158 if (!ctlr->max_dma_len) 3159 ctlr->max_dma_len = INT_MAX; 3160 3161 /* 3162 * Register the device, then userspace will see it. 3163 * Registration fails if the bus ID is in use. 3164 */ 3165 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3166 3167 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3168 status = spi_get_gpio_descs(ctlr); 3169 if (status) 3170 goto free_bus_id; 3171 /* 3172 * A controller using GPIO descriptors always 3173 * supports SPI_CS_HIGH if need be. 3174 */ 3175 ctlr->mode_bits |= SPI_CS_HIGH; 3176 } 3177 3178 /* 3179 * Even if it's just one always-selected device, there must 3180 * be at least one chipselect. 3181 */ 3182 if (!ctlr->num_chipselect) { 3183 status = -EINVAL; 3184 goto free_bus_id; 3185 } 3186 3187 /* Setting last_cs to -1 means no chip selected */ 3188 ctlr->last_cs = -1; 3189 3190 status = device_add(&ctlr->dev); 3191 if (status < 0) 3192 goto free_bus_id; 3193 dev_dbg(dev, "registered %s %s\n", 3194 spi_controller_is_slave(ctlr) ? "slave" : "master", 3195 dev_name(&ctlr->dev)); 3196 3197 /* 3198 * If we're using a queued driver, start the queue. Note that we don't 3199 * need the queueing logic if the driver is only supporting high-level 3200 * memory operations. 3201 */ 3202 if (ctlr->transfer) { 3203 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3204 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3205 status = spi_controller_initialize_queue(ctlr); 3206 if (status) { 3207 device_del(&ctlr->dev); 3208 goto free_bus_id; 3209 } 3210 } 3211 /* Add statistics */ 3212 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3213 if (!ctlr->pcpu_statistics) { 3214 dev_err(dev, "Error allocating per-cpu statistics\n"); 3215 status = -ENOMEM; 3216 goto destroy_queue; 3217 } 3218 3219 mutex_lock(&board_lock); 3220 list_add_tail(&ctlr->list, &spi_controller_list); 3221 list_for_each_entry(bi, &board_list, list) 3222 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3223 mutex_unlock(&board_lock); 3224 3225 /* Register devices from the device tree and ACPI */ 3226 of_register_spi_devices(ctlr); 3227 acpi_register_spi_devices(ctlr); 3228 return status; 3229 3230 destroy_queue: 3231 spi_destroy_queue(ctlr); 3232 free_bus_id: 3233 mutex_lock(&board_lock); 3234 idr_remove(&spi_master_idr, ctlr->bus_num); 3235 mutex_unlock(&board_lock); 3236 return status; 3237 } 3238 EXPORT_SYMBOL_GPL(spi_register_controller); 3239 3240 static void devm_spi_unregister(struct device *dev, void *res) 3241 { 3242 spi_unregister_controller(*(struct spi_controller **)res); 3243 } 3244 3245 /** 3246 * devm_spi_register_controller - register managed SPI master or slave 3247 * controller 3248 * @dev: device managing SPI controller 3249 * @ctlr: initialized controller, originally from spi_alloc_master() or 3250 * spi_alloc_slave() 3251 * Context: can sleep 3252 * 3253 * Register a SPI device as with spi_register_controller() which will 3254 * automatically be unregistered and freed. 3255 * 3256 * Return: zero on success, else a negative error code. 3257 */ 3258 int devm_spi_register_controller(struct device *dev, 3259 struct spi_controller *ctlr) 3260 { 3261 struct spi_controller **ptr; 3262 int ret; 3263 3264 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3265 if (!ptr) 3266 return -ENOMEM; 3267 3268 ret = spi_register_controller(ctlr); 3269 if (!ret) { 3270 *ptr = ctlr; 3271 devres_add(dev, ptr); 3272 } else { 3273 devres_free(ptr); 3274 } 3275 3276 return ret; 3277 } 3278 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3279 3280 static int __unregister(struct device *dev, void *null) 3281 { 3282 spi_unregister_device(to_spi_device(dev)); 3283 return 0; 3284 } 3285 3286 /** 3287 * spi_unregister_controller - unregister SPI master or slave controller 3288 * @ctlr: the controller being unregistered 3289 * Context: can sleep 3290 * 3291 * This call is used only by SPI controller drivers, which are the 3292 * only ones directly touching chip registers. 3293 * 3294 * This must be called from context that can sleep. 3295 * 3296 * Note that this function also drops a reference to the controller. 3297 */ 3298 void spi_unregister_controller(struct spi_controller *ctlr) 3299 { 3300 struct spi_controller *found; 3301 int id = ctlr->bus_num; 3302 3303 /* Prevent addition of new devices, unregister existing ones */ 3304 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3305 mutex_lock(&ctlr->add_lock); 3306 3307 device_for_each_child(&ctlr->dev, NULL, __unregister); 3308 3309 /* First make sure that this controller was ever added */ 3310 mutex_lock(&board_lock); 3311 found = idr_find(&spi_master_idr, id); 3312 mutex_unlock(&board_lock); 3313 if (ctlr->queued) { 3314 if (spi_destroy_queue(ctlr)) 3315 dev_err(&ctlr->dev, "queue remove failed\n"); 3316 } 3317 mutex_lock(&board_lock); 3318 list_del(&ctlr->list); 3319 mutex_unlock(&board_lock); 3320 3321 device_del(&ctlr->dev); 3322 3323 /* Free bus id */ 3324 mutex_lock(&board_lock); 3325 if (found == ctlr) 3326 idr_remove(&spi_master_idr, id); 3327 mutex_unlock(&board_lock); 3328 3329 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3330 mutex_unlock(&ctlr->add_lock); 3331 3332 /* 3333 * Release the last reference on the controller if its driver 3334 * has not yet been converted to devm_spi_alloc_master/slave(). 3335 */ 3336 if (!ctlr->devm_allocated) 3337 put_device(&ctlr->dev); 3338 } 3339 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3340 3341 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3342 { 3343 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3344 } 3345 3346 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3347 { 3348 mutex_lock(&ctlr->bus_lock_mutex); 3349 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3350 mutex_unlock(&ctlr->bus_lock_mutex); 3351 } 3352 3353 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3354 { 3355 mutex_lock(&ctlr->bus_lock_mutex); 3356 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3357 mutex_unlock(&ctlr->bus_lock_mutex); 3358 } 3359 3360 int spi_controller_suspend(struct spi_controller *ctlr) 3361 { 3362 int ret = 0; 3363 3364 /* Basically no-ops for non-queued controllers */ 3365 if (ctlr->queued) { 3366 ret = spi_stop_queue(ctlr); 3367 if (ret) 3368 dev_err(&ctlr->dev, "queue stop failed\n"); 3369 } 3370 3371 __spi_mark_suspended(ctlr); 3372 return ret; 3373 } 3374 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3375 3376 int spi_controller_resume(struct spi_controller *ctlr) 3377 { 3378 int ret = 0; 3379 3380 __spi_mark_resumed(ctlr); 3381 3382 if (ctlr->queued) { 3383 ret = spi_start_queue(ctlr); 3384 if (ret) 3385 dev_err(&ctlr->dev, "queue restart failed\n"); 3386 } 3387 return ret; 3388 } 3389 EXPORT_SYMBOL_GPL(spi_controller_resume); 3390 3391 /*-------------------------------------------------------------------------*/ 3392 3393 /* Core methods for spi_message alterations */ 3394 3395 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3396 struct spi_message *msg, 3397 void *res) 3398 { 3399 struct spi_replaced_transfers *rxfer = res; 3400 size_t i; 3401 3402 /* Call extra callback if requested */ 3403 if (rxfer->release) 3404 rxfer->release(ctlr, msg, res); 3405 3406 /* Insert replaced transfers back into the message */ 3407 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3408 3409 /* Remove the formerly inserted entries */ 3410 for (i = 0; i < rxfer->inserted; i++) 3411 list_del(&rxfer->inserted_transfers[i].transfer_list); 3412 } 3413 3414 /** 3415 * spi_replace_transfers - replace transfers with several transfers 3416 * and register change with spi_message.resources 3417 * @msg: the spi_message we work upon 3418 * @xfer_first: the first spi_transfer we want to replace 3419 * @remove: number of transfers to remove 3420 * @insert: the number of transfers we want to insert instead 3421 * @release: extra release code necessary in some circumstances 3422 * @extradatasize: extra data to allocate (with alignment guarantees 3423 * of struct @spi_transfer) 3424 * @gfp: gfp flags 3425 * 3426 * Returns: pointer to @spi_replaced_transfers, 3427 * PTR_ERR(...) in case of errors. 3428 */ 3429 static struct spi_replaced_transfers *spi_replace_transfers( 3430 struct spi_message *msg, 3431 struct spi_transfer *xfer_first, 3432 size_t remove, 3433 size_t insert, 3434 spi_replaced_release_t release, 3435 size_t extradatasize, 3436 gfp_t gfp) 3437 { 3438 struct spi_replaced_transfers *rxfer; 3439 struct spi_transfer *xfer; 3440 size_t i; 3441 3442 /* Allocate the structure using spi_res */ 3443 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3444 struct_size(rxfer, inserted_transfers, insert) 3445 + extradatasize, 3446 gfp); 3447 if (!rxfer) 3448 return ERR_PTR(-ENOMEM); 3449 3450 /* The release code to invoke before running the generic release */ 3451 rxfer->release = release; 3452 3453 /* Assign extradata */ 3454 if (extradatasize) 3455 rxfer->extradata = 3456 &rxfer->inserted_transfers[insert]; 3457 3458 /* Init the replaced_transfers list */ 3459 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3460 3461 /* 3462 * Assign the list_entry after which we should reinsert 3463 * the @replaced_transfers - it may be spi_message.messages! 3464 */ 3465 rxfer->replaced_after = xfer_first->transfer_list.prev; 3466 3467 /* Remove the requested number of transfers */ 3468 for (i = 0; i < remove; i++) { 3469 /* 3470 * If the entry after replaced_after it is msg->transfers 3471 * then we have been requested to remove more transfers 3472 * than are in the list. 3473 */ 3474 if (rxfer->replaced_after->next == &msg->transfers) { 3475 dev_err(&msg->spi->dev, 3476 "requested to remove more spi_transfers than are available\n"); 3477 /* Insert replaced transfers back into the message */ 3478 list_splice(&rxfer->replaced_transfers, 3479 rxfer->replaced_after); 3480 3481 /* Free the spi_replace_transfer structure... */ 3482 spi_res_free(rxfer); 3483 3484 /* ...and return with an error */ 3485 return ERR_PTR(-EINVAL); 3486 } 3487 3488 /* 3489 * Remove the entry after replaced_after from list of 3490 * transfers and add it to list of replaced_transfers. 3491 */ 3492 list_move_tail(rxfer->replaced_after->next, 3493 &rxfer->replaced_transfers); 3494 } 3495 3496 /* 3497 * Create copy of the given xfer with identical settings 3498 * based on the first transfer to get removed. 3499 */ 3500 for (i = 0; i < insert; i++) { 3501 /* We need to run in reverse order */ 3502 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3503 3504 /* Copy all spi_transfer data */ 3505 memcpy(xfer, xfer_first, sizeof(*xfer)); 3506 3507 /* Add to list */ 3508 list_add(&xfer->transfer_list, rxfer->replaced_after); 3509 3510 /* Clear cs_change and delay for all but the last */ 3511 if (i) { 3512 xfer->cs_change = false; 3513 xfer->delay.value = 0; 3514 } 3515 } 3516 3517 /* Set up inserted... */ 3518 rxfer->inserted = insert; 3519 3520 /* ...and register it with spi_res/spi_message */ 3521 spi_res_add(msg, rxfer); 3522 3523 return rxfer; 3524 } 3525 3526 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3527 struct spi_message *msg, 3528 struct spi_transfer **xferp, 3529 size_t maxsize, 3530 gfp_t gfp) 3531 { 3532 struct spi_transfer *xfer = *xferp, *xfers; 3533 struct spi_replaced_transfers *srt; 3534 size_t offset; 3535 size_t count, i; 3536 3537 /* Calculate how many we have to replace */ 3538 count = DIV_ROUND_UP(xfer->len, maxsize); 3539 3540 /* Create replacement */ 3541 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3542 if (IS_ERR(srt)) 3543 return PTR_ERR(srt); 3544 xfers = srt->inserted_transfers; 3545 3546 /* 3547 * Now handle each of those newly inserted spi_transfers. 3548 * Note that the replacements spi_transfers all are preset 3549 * to the same values as *xferp, so tx_buf, rx_buf and len 3550 * are all identical (as well as most others) 3551 * so we just have to fix up len and the pointers. 3552 * 3553 * This also includes support for the depreciated 3554 * spi_message.is_dma_mapped interface. 3555 */ 3556 3557 /* 3558 * The first transfer just needs the length modified, so we 3559 * run it outside the loop. 3560 */ 3561 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3562 3563 /* All the others need rx_buf/tx_buf also set */ 3564 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3565 /* Update rx_buf, tx_buf and DMA */ 3566 if (xfers[i].rx_buf) 3567 xfers[i].rx_buf += offset; 3568 if (xfers[i].rx_dma) 3569 xfers[i].rx_dma += offset; 3570 if (xfers[i].tx_buf) 3571 xfers[i].tx_buf += offset; 3572 if (xfers[i].tx_dma) 3573 xfers[i].tx_dma += offset; 3574 3575 /* Update length */ 3576 xfers[i].len = min(maxsize, xfers[i].len - offset); 3577 } 3578 3579 /* 3580 * We set up xferp to the last entry we have inserted, 3581 * so that we skip those already split transfers. 3582 */ 3583 *xferp = &xfers[count - 1]; 3584 3585 /* Increment statistics counters */ 3586 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3587 transfers_split_maxsize); 3588 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3589 transfers_split_maxsize); 3590 3591 return 0; 3592 } 3593 3594 /** 3595 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3596 * when an individual transfer exceeds a 3597 * certain size 3598 * @ctlr: the @spi_controller for this transfer 3599 * @msg: the @spi_message to transform 3600 * @maxsize: the maximum when to apply this 3601 * @gfp: GFP allocation flags 3602 * 3603 * Return: status of transformation 3604 */ 3605 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3606 struct spi_message *msg, 3607 size_t maxsize, 3608 gfp_t gfp) 3609 { 3610 struct spi_transfer *xfer; 3611 int ret; 3612 3613 /* 3614 * Iterate over the transfer_list, 3615 * but note that xfer is advanced to the last transfer inserted 3616 * to avoid checking sizes again unnecessarily (also xfer does 3617 * potentially belong to a different list by the time the 3618 * replacement has happened). 3619 */ 3620 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3621 if (xfer->len > maxsize) { 3622 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3623 maxsize, gfp); 3624 if (ret) 3625 return ret; 3626 } 3627 } 3628 3629 return 0; 3630 } 3631 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3632 3633 3634 /** 3635 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3636 * when an individual transfer exceeds a 3637 * certain number of SPI words 3638 * @ctlr: the @spi_controller for this transfer 3639 * @msg: the @spi_message to transform 3640 * @maxwords: the number of words to limit each transfer to 3641 * @gfp: GFP allocation flags 3642 * 3643 * Return: status of transformation 3644 */ 3645 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3646 struct spi_message *msg, 3647 size_t maxwords, 3648 gfp_t gfp) 3649 { 3650 struct spi_transfer *xfer; 3651 3652 /* 3653 * Iterate over the transfer_list, 3654 * but note that xfer is advanced to the last transfer inserted 3655 * to avoid checking sizes again unnecessarily (also xfer does 3656 * potentially belong to a different list by the time the 3657 * replacement has happened). 3658 */ 3659 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3660 size_t maxsize; 3661 int ret; 3662 3663 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3664 if (xfer->len > maxsize) { 3665 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3666 maxsize, gfp); 3667 if (ret) 3668 return ret; 3669 } 3670 } 3671 3672 return 0; 3673 } 3674 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3675 3676 /*-------------------------------------------------------------------------*/ 3677 3678 /* 3679 * Core methods for SPI controller protocol drivers. Some of the 3680 * other core methods are currently defined as inline functions. 3681 */ 3682 3683 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3684 u8 bits_per_word) 3685 { 3686 if (ctlr->bits_per_word_mask) { 3687 /* Only 32 bits fit in the mask */ 3688 if (bits_per_word > 32) 3689 return -EINVAL; 3690 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3691 return -EINVAL; 3692 } 3693 3694 return 0; 3695 } 3696 3697 /** 3698 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3699 * @spi: the device that requires specific CS timing configuration 3700 * 3701 * Return: zero on success, else a negative error code. 3702 */ 3703 static int spi_set_cs_timing(struct spi_device *spi) 3704 { 3705 struct device *parent = spi->controller->dev.parent; 3706 int status = 0; 3707 3708 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3709 if (spi->controller->auto_runtime_pm) { 3710 status = pm_runtime_get_sync(parent); 3711 if (status < 0) { 3712 pm_runtime_put_noidle(parent); 3713 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3714 status); 3715 return status; 3716 } 3717 3718 status = spi->controller->set_cs_timing(spi); 3719 pm_runtime_mark_last_busy(parent); 3720 pm_runtime_put_autosuspend(parent); 3721 } else { 3722 status = spi->controller->set_cs_timing(spi); 3723 } 3724 } 3725 return status; 3726 } 3727 3728 /** 3729 * spi_setup - setup SPI mode and clock rate 3730 * @spi: the device whose settings are being modified 3731 * Context: can sleep, and no requests are queued to the device 3732 * 3733 * SPI protocol drivers may need to update the transfer mode if the 3734 * device doesn't work with its default. They may likewise need 3735 * to update clock rates or word sizes from initial values. This function 3736 * changes those settings, and must be called from a context that can sleep. 3737 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3738 * effect the next time the device is selected and data is transferred to 3739 * or from it. When this function returns, the SPI device is deselected. 3740 * 3741 * Note that this call will fail if the protocol driver specifies an option 3742 * that the underlying controller or its driver does not support. For 3743 * example, not all hardware supports wire transfers using nine bit words, 3744 * LSB-first wire encoding, or active-high chipselects. 3745 * 3746 * Return: zero on success, else a negative error code. 3747 */ 3748 int spi_setup(struct spi_device *spi) 3749 { 3750 unsigned bad_bits, ugly_bits; 3751 int status = 0; 3752 3753 /* 3754 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3755 * are set at the same time. 3756 */ 3757 if ((hweight_long(spi->mode & 3758 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3759 (hweight_long(spi->mode & 3760 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3761 dev_err(&spi->dev, 3762 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3763 return -EINVAL; 3764 } 3765 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3766 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3767 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3768 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3769 return -EINVAL; 3770 /* 3771 * Help drivers fail *cleanly* when they need options 3772 * that aren't supported with their current controller. 3773 * SPI_CS_WORD has a fallback software implementation, 3774 * so it is ignored here. 3775 */ 3776 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3777 SPI_NO_TX | SPI_NO_RX); 3778 ugly_bits = bad_bits & 3779 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3780 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3781 if (ugly_bits) { 3782 dev_warn(&spi->dev, 3783 "setup: ignoring unsupported mode bits %x\n", 3784 ugly_bits); 3785 spi->mode &= ~ugly_bits; 3786 bad_bits &= ~ugly_bits; 3787 } 3788 if (bad_bits) { 3789 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3790 bad_bits); 3791 return -EINVAL; 3792 } 3793 3794 if (!spi->bits_per_word) { 3795 spi->bits_per_word = 8; 3796 } else { 3797 /* 3798 * Some controllers may not support the default 8 bits-per-word 3799 * so only perform the check when this is explicitly provided. 3800 */ 3801 status = __spi_validate_bits_per_word(spi->controller, 3802 spi->bits_per_word); 3803 if (status) 3804 return status; 3805 } 3806 3807 if (spi->controller->max_speed_hz && 3808 (!spi->max_speed_hz || 3809 spi->max_speed_hz > spi->controller->max_speed_hz)) 3810 spi->max_speed_hz = spi->controller->max_speed_hz; 3811 3812 mutex_lock(&spi->controller->io_mutex); 3813 3814 if (spi->controller->setup) { 3815 status = spi->controller->setup(spi); 3816 if (status) { 3817 mutex_unlock(&spi->controller->io_mutex); 3818 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3819 status); 3820 return status; 3821 } 3822 } 3823 3824 status = spi_set_cs_timing(spi); 3825 if (status) { 3826 mutex_unlock(&spi->controller->io_mutex); 3827 return status; 3828 } 3829 3830 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3831 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3832 if (status < 0) { 3833 mutex_unlock(&spi->controller->io_mutex); 3834 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3835 status); 3836 return status; 3837 } 3838 3839 /* 3840 * We do not want to return positive value from pm_runtime_get, 3841 * there are many instances of devices calling spi_setup() and 3842 * checking for a non-zero return value instead of a negative 3843 * return value. 3844 */ 3845 status = 0; 3846 3847 spi_set_cs(spi, false, true); 3848 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3849 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3850 } else { 3851 spi_set_cs(spi, false, true); 3852 } 3853 3854 mutex_unlock(&spi->controller->io_mutex); 3855 3856 if (spi->rt && !spi->controller->rt) { 3857 spi->controller->rt = true; 3858 spi_set_thread_rt(spi->controller); 3859 } 3860 3861 trace_spi_setup(spi, status); 3862 3863 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3864 spi->mode & SPI_MODE_X_MASK, 3865 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3866 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3867 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3868 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3869 spi->bits_per_word, spi->max_speed_hz, 3870 status); 3871 3872 return status; 3873 } 3874 EXPORT_SYMBOL_GPL(spi_setup); 3875 3876 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3877 struct spi_device *spi) 3878 { 3879 int delay1, delay2; 3880 3881 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3882 if (delay1 < 0) 3883 return delay1; 3884 3885 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3886 if (delay2 < 0) 3887 return delay2; 3888 3889 if (delay1 < delay2) 3890 memcpy(&xfer->word_delay, &spi->word_delay, 3891 sizeof(xfer->word_delay)); 3892 3893 return 0; 3894 } 3895 3896 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3897 { 3898 struct spi_controller *ctlr = spi->controller; 3899 struct spi_transfer *xfer; 3900 int w_size; 3901 3902 if (list_empty(&message->transfers)) 3903 return -EINVAL; 3904 3905 /* 3906 * If an SPI controller does not support toggling the CS line on each 3907 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3908 * for the CS line, we can emulate the CS-per-word hardware function by 3909 * splitting transfers into one-word transfers and ensuring that 3910 * cs_change is set for each transfer. 3911 */ 3912 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3913 spi_get_csgpiod(spi, 0))) { 3914 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word); 3915 int ret; 3916 3917 /* spi_split_transfers_maxsize() requires message->spi */ 3918 message->spi = spi; 3919 3920 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3921 GFP_KERNEL); 3922 if (ret) 3923 return ret; 3924 3925 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3926 /* Don't change cs_change on the last entry in the list */ 3927 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3928 break; 3929 xfer->cs_change = 1; 3930 } 3931 } 3932 3933 /* 3934 * Half-duplex links include original MicroWire, and ones with 3935 * only one data pin like SPI_3WIRE (switches direction) or where 3936 * either MOSI or MISO is missing. They can also be caused by 3937 * software limitations. 3938 */ 3939 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3940 (spi->mode & SPI_3WIRE)) { 3941 unsigned flags = ctlr->flags; 3942 3943 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3944 if (xfer->rx_buf && xfer->tx_buf) 3945 return -EINVAL; 3946 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3947 return -EINVAL; 3948 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3949 return -EINVAL; 3950 } 3951 } 3952 3953 /* 3954 * Set transfer bits_per_word and max speed as spi device default if 3955 * it is not set for this transfer. 3956 * Set transfer tx_nbits and rx_nbits as single transfer default 3957 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3958 * Ensure transfer word_delay is at least as long as that required by 3959 * device itself. 3960 */ 3961 message->frame_length = 0; 3962 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3963 xfer->effective_speed_hz = 0; 3964 message->frame_length += xfer->len; 3965 if (!xfer->bits_per_word) 3966 xfer->bits_per_word = spi->bits_per_word; 3967 3968 if (!xfer->speed_hz) 3969 xfer->speed_hz = spi->max_speed_hz; 3970 3971 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3972 xfer->speed_hz = ctlr->max_speed_hz; 3973 3974 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3975 return -EINVAL; 3976 3977 /* 3978 * SPI transfer length should be multiple of SPI word size 3979 * where SPI word size should be power-of-two multiple. 3980 */ 3981 if (xfer->bits_per_word <= 8) 3982 w_size = 1; 3983 else if (xfer->bits_per_word <= 16) 3984 w_size = 2; 3985 else 3986 w_size = 4; 3987 3988 /* No partial transfers accepted */ 3989 if (xfer->len % w_size) 3990 return -EINVAL; 3991 3992 if (xfer->speed_hz && ctlr->min_speed_hz && 3993 xfer->speed_hz < ctlr->min_speed_hz) 3994 return -EINVAL; 3995 3996 if (xfer->tx_buf && !xfer->tx_nbits) 3997 xfer->tx_nbits = SPI_NBITS_SINGLE; 3998 if (xfer->rx_buf && !xfer->rx_nbits) 3999 xfer->rx_nbits = SPI_NBITS_SINGLE; 4000 /* 4001 * Check transfer tx/rx_nbits: 4002 * 1. check the value matches one of single, dual and quad 4003 * 2. check tx/rx_nbits match the mode in spi_device 4004 */ 4005 if (xfer->tx_buf) { 4006 if (spi->mode & SPI_NO_TX) 4007 return -EINVAL; 4008 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4009 xfer->tx_nbits != SPI_NBITS_DUAL && 4010 xfer->tx_nbits != SPI_NBITS_QUAD && 4011 xfer->tx_nbits != SPI_NBITS_OCTAL) 4012 return -EINVAL; 4013 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4014 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4015 return -EINVAL; 4016 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4017 !(spi->mode & SPI_TX_QUAD)) 4018 return -EINVAL; 4019 } 4020 /* Check transfer rx_nbits */ 4021 if (xfer->rx_buf) { 4022 if (spi->mode & SPI_NO_RX) 4023 return -EINVAL; 4024 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4025 xfer->rx_nbits != SPI_NBITS_DUAL && 4026 xfer->rx_nbits != SPI_NBITS_QUAD && 4027 xfer->rx_nbits != SPI_NBITS_OCTAL) 4028 return -EINVAL; 4029 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4030 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4031 return -EINVAL; 4032 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4033 !(spi->mode & SPI_RX_QUAD)) 4034 return -EINVAL; 4035 } 4036 4037 if (_spi_xfer_word_delay_update(xfer, spi)) 4038 return -EINVAL; 4039 } 4040 4041 message->status = -EINPROGRESS; 4042 4043 return 0; 4044 } 4045 4046 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4047 { 4048 struct spi_controller *ctlr = spi->controller; 4049 struct spi_transfer *xfer; 4050 4051 /* 4052 * Some controllers do not support doing regular SPI transfers. Return 4053 * ENOTSUPP when this is the case. 4054 */ 4055 if (!ctlr->transfer) 4056 return -ENOTSUPP; 4057 4058 message->spi = spi; 4059 4060 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4061 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4062 4063 trace_spi_message_submit(message); 4064 4065 if (!ctlr->ptp_sts_supported) { 4066 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4067 xfer->ptp_sts_word_pre = 0; 4068 ptp_read_system_prets(xfer->ptp_sts); 4069 } 4070 } 4071 4072 return ctlr->transfer(spi, message); 4073 } 4074 4075 /** 4076 * spi_async - asynchronous SPI transfer 4077 * @spi: device with which data will be exchanged 4078 * @message: describes the data transfers, including completion callback 4079 * Context: any (IRQs may be blocked, etc) 4080 * 4081 * This call may be used in_irq and other contexts which can't sleep, 4082 * as well as from task contexts which can sleep. 4083 * 4084 * The completion callback is invoked in a context which can't sleep. 4085 * Before that invocation, the value of message->status is undefined. 4086 * When the callback is issued, message->status holds either zero (to 4087 * indicate complete success) or a negative error code. After that 4088 * callback returns, the driver which issued the transfer request may 4089 * deallocate the associated memory; it's no longer in use by any SPI 4090 * core or controller driver code. 4091 * 4092 * Note that although all messages to a spi_device are handled in 4093 * FIFO order, messages may go to different devices in other orders. 4094 * Some device might be higher priority, or have various "hard" access 4095 * time requirements, for example. 4096 * 4097 * On detection of any fault during the transfer, processing of 4098 * the entire message is aborted, and the device is deselected. 4099 * Until returning from the associated message completion callback, 4100 * no other spi_message queued to that device will be processed. 4101 * (This rule applies equally to all the synchronous transfer calls, 4102 * which are wrappers around this core asynchronous primitive.) 4103 * 4104 * Return: zero on success, else a negative error code. 4105 */ 4106 int spi_async(struct spi_device *spi, struct spi_message *message) 4107 { 4108 struct spi_controller *ctlr = spi->controller; 4109 int ret; 4110 unsigned long flags; 4111 4112 ret = __spi_validate(spi, message); 4113 if (ret != 0) 4114 return ret; 4115 4116 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4117 4118 if (ctlr->bus_lock_flag) 4119 ret = -EBUSY; 4120 else 4121 ret = __spi_async(spi, message); 4122 4123 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4124 4125 return ret; 4126 } 4127 EXPORT_SYMBOL_GPL(spi_async); 4128 4129 /** 4130 * spi_async_locked - version of spi_async with exclusive bus usage 4131 * @spi: device with which data will be exchanged 4132 * @message: describes the data transfers, including completion callback 4133 * Context: any (IRQs may be blocked, etc) 4134 * 4135 * This call may be used in_irq and other contexts which can't sleep, 4136 * as well as from task contexts which can sleep. 4137 * 4138 * The completion callback is invoked in a context which can't sleep. 4139 * Before that invocation, the value of message->status is undefined. 4140 * When the callback is issued, message->status holds either zero (to 4141 * indicate complete success) or a negative error code. After that 4142 * callback returns, the driver which issued the transfer request may 4143 * deallocate the associated memory; it's no longer in use by any SPI 4144 * core or controller driver code. 4145 * 4146 * Note that although all messages to a spi_device are handled in 4147 * FIFO order, messages may go to different devices in other orders. 4148 * Some device might be higher priority, or have various "hard" access 4149 * time requirements, for example. 4150 * 4151 * On detection of any fault during the transfer, processing of 4152 * the entire message is aborted, and the device is deselected. 4153 * Until returning from the associated message completion callback, 4154 * no other spi_message queued to that device will be processed. 4155 * (This rule applies equally to all the synchronous transfer calls, 4156 * which are wrappers around this core asynchronous primitive.) 4157 * 4158 * Return: zero on success, else a negative error code. 4159 */ 4160 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 4161 { 4162 struct spi_controller *ctlr = spi->controller; 4163 int ret; 4164 unsigned long flags; 4165 4166 ret = __spi_validate(spi, message); 4167 if (ret != 0) 4168 return ret; 4169 4170 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4171 4172 ret = __spi_async(spi, message); 4173 4174 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4175 4176 return ret; 4177 4178 } 4179 4180 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4181 { 4182 bool was_busy; 4183 int ret; 4184 4185 mutex_lock(&ctlr->io_mutex); 4186 4187 was_busy = ctlr->busy; 4188 4189 ctlr->cur_msg = msg; 4190 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4191 if (ret) 4192 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4193 ctlr->cur_msg = NULL; 4194 ctlr->fallback = false; 4195 4196 if (!was_busy) { 4197 kfree(ctlr->dummy_rx); 4198 ctlr->dummy_rx = NULL; 4199 kfree(ctlr->dummy_tx); 4200 ctlr->dummy_tx = NULL; 4201 if (ctlr->unprepare_transfer_hardware && 4202 ctlr->unprepare_transfer_hardware(ctlr)) 4203 dev_err(&ctlr->dev, 4204 "failed to unprepare transfer hardware\n"); 4205 spi_idle_runtime_pm(ctlr); 4206 } 4207 4208 mutex_unlock(&ctlr->io_mutex); 4209 } 4210 4211 /*-------------------------------------------------------------------------*/ 4212 4213 /* 4214 * Utility methods for SPI protocol drivers, layered on 4215 * top of the core. Some other utility methods are defined as 4216 * inline functions. 4217 */ 4218 4219 static void spi_complete(void *arg) 4220 { 4221 complete(arg); 4222 } 4223 4224 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4225 { 4226 DECLARE_COMPLETION_ONSTACK(done); 4227 int status; 4228 struct spi_controller *ctlr = spi->controller; 4229 4230 if (__spi_check_suspended(ctlr)) { 4231 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4232 return -ESHUTDOWN; 4233 } 4234 4235 status = __spi_validate(spi, message); 4236 if (status != 0) 4237 return status; 4238 4239 message->spi = spi; 4240 4241 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4242 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4243 4244 /* 4245 * Checking queue_empty here only guarantees async/sync message 4246 * ordering when coming from the same context. It does not need to 4247 * guard against reentrancy from a different context. The io_mutex 4248 * will catch those cases. 4249 */ 4250 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4251 message->actual_length = 0; 4252 message->status = -EINPROGRESS; 4253 4254 trace_spi_message_submit(message); 4255 4256 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4257 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4258 4259 __spi_transfer_message_noqueue(ctlr, message); 4260 4261 return message->status; 4262 } 4263 4264 /* 4265 * There are messages in the async queue that could have originated 4266 * from the same context, so we need to preserve ordering. 4267 * Therefor we send the message to the async queue and wait until they 4268 * are completed. 4269 */ 4270 message->complete = spi_complete; 4271 message->context = &done; 4272 status = spi_async_locked(spi, message); 4273 if (status == 0) { 4274 wait_for_completion(&done); 4275 status = message->status; 4276 } 4277 message->complete = NULL; 4278 message->context = NULL; 4279 4280 return status; 4281 } 4282 4283 /** 4284 * spi_sync - blocking/synchronous SPI data transfers 4285 * @spi: device with which data will be exchanged 4286 * @message: describes the data transfers 4287 * Context: can sleep 4288 * 4289 * This call may only be used from a context that may sleep. The sleep 4290 * is non-interruptible, and has no timeout. Low-overhead controller 4291 * drivers may DMA directly into and out of the message buffers. 4292 * 4293 * Note that the SPI device's chip select is active during the message, 4294 * and then is normally disabled between messages. Drivers for some 4295 * frequently-used devices may want to minimize costs of selecting a chip, 4296 * by leaving it selected in anticipation that the next message will go 4297 * to the same chip. (That may increase power usage.) 4298 * 4299 * Also, the caller is guaranteeing that the memory associated with the 4300 * message will not be freed before this call returns. 4301 * 4302 * Return: zero on success, else a negative error code. 4303 */ 4304 int spi_sync(struct spi_device *spi, struct spi_message *message) 4305 { 4306 int ret; 4307 4308 mutex_lock(&spi->controller->bus_lock_mutex); 4309 ret = __spi_sync(spi, message); 4310 mutex_unlock(&spi->controller->bus_lock_mutex); 4311 4312 return ret; 4313 } 4314 EXPORT_SYMBOL_GPL(spi_sync); 4315 4316 /** 4317 * spi_sync_locked - version of spi_sync with exclusive bus usage 4318 * @spi: device with which data will be exchanged 4319 * @message: describes the data transfers 4320 * Context: can sleep 4321 * 4322 * This call may only be used from a context that may sleep. The sleep 4323 * is non-interruptible, and has no timeout. Low-overhead controller 4324 * drivers may DMA directly into and out of the message buffers. 4325 * 4326 * This call should be used by drivers that require exclusive access to the 4327 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4328 * be released by a spi_bus_unlock call when the exclusive access is over. 4329 * 4330 * Return: zero on success, else a negative error code. 4331 */ 4332 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4333 { 4334 return __spi_sync(spi, message); 4335 } 4336 EXPORT_SYMBOL_GPL(spi_sync_locked); 4337 4338 /** 4339 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4340 * @ctlr: SPI bus master that should be locked for exclusive bus access 4341 * Context: can sleep 4342 * 4343 * This call may only be used from a context that may sleep. The sleep 4344 * is non-interruptible, and has no timeout. 4345 * 4346 * This call should be used by drivers that require exclusive access to the 4347 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4348 * exclusive access is over. Data transfer must be done by spi_sync_locked 4349 * and spi_async_locked calls when the SPI bus lock is held. 4350 * 4351 * Return: always zero. 4352 */ 4353 int spi_bus_lock(struct spi_controller *ctlr) 4354 { 4355 unsigned long flags; 4356 4357 mutex_lock(&ctlr->bus_lock_mutex); 4358 4359 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4360 ctlr->bus_lock_flag = 1; 4361 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4362 4363 /* Mutex remains locked until spi_bus_unlock() is called */ 4364 4365 return 0; 4366 } 4367 EXPORT_SYMBOL_GPL(spi_bus_lock); 4368 4369 /** 4370 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4371 * @ctlr: SPI bus master that was locked for exclusive bus access 4372 * Context: can sleep 4373 * 4374 * This call may only be used from a context that may sleep. The sleep 4375 * is non-interruptible, and has no timeout. 4376 * 4377 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4378 * call. 4379 * 4380 * Return: always zero. 4381 */ 4382 int spi_bus_unlock(struct spi_controller *ctlr) 4383 { 4384 ctlr->bus_lock_flag = 0; 4385 4386 mutex_unlock(&ctlr->bus_lock_mutex); 4387 4388 return 0; 4389 } 4390 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4391 4392 /* Portable code must never pass more than 32 bytes */ 4393 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4394 4395 static u8 *buf; 4396 4397 /** 4398 * spi_write_then_read - SPI synchronous write followed by read 4399 * @spi: device with which data will be exchanged 4400 * @txbuf: data to be written (need not be DMA-safe) 4401 * @n_tx: size of txbuf, in bytes 4402 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4403 * @n_rx: size of rxbuf, in bytes 4404 * Context: can sleep 4405 * 4406 * This performs a half duplex MicroWire style transaction with the 4407 * device, sending txbuf and then reading rxbuf. The return value 4408 * is zero for success, else a negative errno status code. 4409 * This call may only be used from a context that may sleep. 4410 * 4411 * Parameters to this routine are always copied using a small buffer. 4412 * Performance-sensitive or bulk transfer code should instead use 4413 * spi_{async,sync}() calls with DMA-safe buffers. 4414 * 4415 * Return: zero on success, else a negative error code. 4416 */ 4417 int spi_write_then_read(struct spi_device *spi, 4418 const void *txbuf, unsigned n_tx, 4419 void *rxbuf, unsigned n_rx) 4420 { 4421 static DEFINE_MUTEX(lock); 4422 4423 int status; 4424 struct spi_message message; 4425 struct spi_transfer x[2]; 4426 u8 *local_buf; 4427 4428 /* 4429 * Use preallocated DMA-safe buffer if we can. We can't avoid 4430 * copying here, (as a pure convenience thing), but we can 4431 * keep heap costs out of the hot path unless someone else is 4432 * using the pre-allocated buffer or the transfer is too large. 4433 */ 4434 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4435 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4436 GFP_KERNEL | GFP_DMA); 4437 if (!local_buf) 4438 return -ENOMEM; 4439 } else { 4440 local_buf = buf; 4441 } 4442 4443 spi_message_init(&message); 4444 memset(x, 0, sizeof(x)); 4445 if (n_tx) { 4446 x[0].len = n_tx; 4447 spi_message_add_tail(&x[0], &message); 4448 } 4449 if (n_rx) { 4450 x[1].len = n_rx; 4451 spi_message_add_tail(&x[1], &message); 4452 } 4453 4454 memcpy(local_buf, txbuf, n_tx); 4455 x[0].tx_buf = local_buf; 4456 x[1].rx_buf = local_buf + n_tx; 4457 4458 /* Do the I/O */ 4459 status = spi_sync(spi, &message); 4460 if (status == 0) 4461 memcpy(rxbuf, x[1].rx_buf, n_rx); 4462 4463 if (x[0].tx_buf == buf) 4464 mutex_unlock(&lock); 4465 else 4466 kfree(local_buf); 4467 4468 return status; 4469 } 4470 EXPORT_SYMBOL_GPL(spi_write_then_read); 4471 4472 /*-------------------------------------------------------------------------*/ 4473 4474 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4475 /* Must call put_device() when done with returned spi_device device */ 4476 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4477 { 4478 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4479 4480 return dev ? to_spi_device(dev) : NULL; 4481 } 4482 4483 /* The spi controllers are not using spi_bus, so we find it with another way */ 4484 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4485 { 4486 struct device *dev; 4487 4488 dev = class_find_device_by_of_node(&spi_master_class, node); 4489 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4490 dev = class_find_device_by_of_node(&spi_slave_class, node); 4491 if (!dev) 4492 return NULL; 4493 4494 /* Reference got in class_find_device */ 4495 return container_of(dev, struct spi_controller, dev); 4496 } 4497 4498 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4499 void *arg) 4500 { 4501 struct of_reconfig_data *rd = arg; 4502 struct spi_controller *ctlr; 4503 struct spi_device *spi; 4504 4505 switch (of_reconfig_get_state_change(action, arg)) { 4506 case OF_RECONFIG_CHANGE_ADD: 4507 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4508 if (ctlr == NULL) 4509 return NOTIFY_OK; /* Not for us */ 4510 4511 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4512 put_device(&ctlr->dev); 4513 return NOTIFY_OK; 4514 } 4515 4516 /* 4517 * Clear the flag before adding the device so that fw_devlink 4518 * doesn't skip adding consumers to this device. 4519 */ 4520 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4521 spi = of_register_spi_device(ctlr, rd->dn); 4522 put_device(&ctlr->dev); 4523 4524 if (IS_ERR(spi)) { 4525 pr_err("%s: failed to create for '%pOF'\n", 4526 __func__, rd->dn); 4527 of_node_clear_flag(rd->dn, OF_POPULATED); 4528 return notifier_from_errno(PTR_ERR(spi)); 4529 } 4530 break; 4531 4532 case OF_RECONFIG_CHANGE_REMOVE: 4533 /* Already depopulated? */ 4534 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4535 return NOTIFY_OK; 4536 4537 /* Find our device by node */ 4538 spi = of_find_spi_device_by_node(rd->dn); 4539 if (spi == NULL) 4540 return NOTIFY_OK; /* No? not meant for us */ 4541 4542 /* Unregister takes one ref away */ 4543 spi_unregister_device(spi); 4544 4545 /* And put the reference of the find */ 4546 put_device(&spi->dev); 4547 break; 4548 } 4549 4550 return NOTIFY_OK; 4551 } 4552 4553 static struct notifier_block spi_of_notifier = { 4554 .notifier_call = of_spi_notify, 4555 }; 4556 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4557 extern struct notifier_block spi_of_notifier; 4558 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4559 4560 #if IS_ENABLED(CONFIG_ACPI) 4561 static int spi_acpi_controller_match(struct device *dev, const void *data) 4562 { 4563 return ACPI_COMPANION(dev->parent) == data; 4564 } 4565 4566 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4567 { 4568 struct device *dev; 4569 4570 dev = class_find_device(&spi_master_class, NULL, adev, 4571 spi_acpi_controller_match); 4572 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4573 dev = class_find_device(&spi_slave_class, NULL, adev, 4574 spi_acpi_controller_match); 4575 if (!dev) 4576 return NULL; 4577 4578 return container_of(dev, struct spi_controller, dev); 4579 } 4580 4581 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4582 { 4583 struct device *dev; 4584 4585 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4586 return to_spi_device(dev); 4587 } 4588 4589 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4590 void *arg) 4591 { 4592 struct acpi_device *adev = arg; 4593 struct spi_controller *ctlr; 4594 struct spi_device *spi; 4595 4596 switch (value) { 4597 case ACPI_RECONFIG_DEVICE_ADD: 4598 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4599 if (!ctlr) 4600 break; 4601 4602 acpi_register_spi_device(ctlr, adev); 4603 put_device(&ctlr->dev); 4604 break; 4605 case ACPI_RECONFIG_DEVICE_REMOVE: 4606 if (!acpi_device_enumerated(adev)) 4607 break; 4608 4609 spi = acpi_spi_find_device_by_adev(adev); 4610 if (!spi) 4611 break; 4612 4613 spi_unregister_device(spi); 4614 put_device(&spi->dev); 4615 break; 4616 } 4617 4618 return NOTIFY_OK; 4619 } 4620 4621 static struct notifier_block spi_acpi_notifier = { 4622 .notifier_call = acpi_spi_notify, 4623 }; 4624 #else 4625 extern struct notifier_block spi_acpi_notifier; 4626 #endif 4627 4628 static int __init spi_init(void) 4629 { 4630 int status; 4631 4632 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4633 if (!buf) { 4634 status = -ENOMEM; 4635 goto err0; 4636 } 4637 4638 status = bus_register(&spi_bus_type); 4639 if (status < 0) 4640 goto err1; 4641 4642 status = class_register(&spi_master_class); 4643 if (status < 0) 4644 goto err2; 4645 4646 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4647 status = class_register(&spi_slave_class); 4648 if (status < 0) 4649 goto err3; 4650 } 4651 4652 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4653 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4654 if (IS_ENABLED(CONFIG_ACPI)) 4655 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4656 4657 return 0; 4658 4659 err3: 4660 class_unregister(&spi_master_class); 4661 err2: 4662 bus_unregister(&spi_bus_type); 4663 err1: 4664 kfree(buf); 4665 buf = NULL; 4666 err0: 4667 return status; 4668 } 4669 4670 /* 4671 * A board_info is normally registered in arch_initcall(), 4672 * but even essential drivers wait till later. 4673 * 4674 * REVISIT only boardinfo really needs static linking. The rest (device and 4675 * driver registration) _could_ be dynamically linked (modular) ... Costs 4676 * include needing to have boardinfo data structures be much more public. 4677 */ 4678 postcore_initcall(spi_init); 4679