xref: /openbmc/linux/drivers/spi/spi.c (revision 483eb062)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44 
45 static void spidev_release(struct device *dev)
46 {
47 	struct spi_device	*spi = to_spi_device(dev);
48 
49 	/* spi masters may cleanup for released devices */
50 	if (spi->master->cleanup)
51 		spi->master->cleanup(spi);
52 
53 	spi_master_put(spi->master);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static struct attribute *spi_dev_attrs[] = {
72 	&dev_attr_modalias.attr,
73 	NULL,
74 };
75 ATTRIBUTE_GROUPS(spi_dev);
76 
77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
78  * and the sysfs version makes coldplug work too.
79  */
80 
81 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
82 						const struct spi_device *sdev)
83 {
84 	while (id->name[0]) {
85 		if (!strcmp(sdev->modalias, id->name))
86 			return id;
87 		id++;
88 	}
89 	return NULL;
90 }
91 
92 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
93 {
94 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
95 
96 	return spi_match_id(sdrv->id_table, sdev);
97 }
98 EXPORT_SYMBOL_GPL(spi_get_device_id);
99 
100 static int spi_match_device(struct device *dev, struct device_driver *drv)
101 {
102 	const struct spi_device	*spi = to_spi_device(dev);
103 	const struct spi_driver	*sdrv = to_spi_driver(drv);
104 
105 	/* Attempt an OF style match */
106 	if (of_driver_match_device(dev, drv))
107 		return 1;
108 
109 	/* Then try ACPI */
110 	if (acpi_driver_match_device(dev, drv))
111 		return 1;
112 
113 	if (sdrv->id_table)
114 		return !!spi_match_id(sdrv->id_table, spi);
115 
116 	return strcmp(spi->modalias, drv->name) == 0;
117 }
118 
119 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
120 {
121 	const struct spi_device		*spi = to_spi_device(dev);
122 	int rc;
123 
124 	rc = acpi_device_uevent_modalias(dev, env);
125 	if (rc != -ENODEV)
126 		return rc;
127 
128 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
129 	return 0;
130 }
131 
132 #ifdef CONFIG_PM_SLEEP
133 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
134 {
135 	int			value = 0;
136 	struct spi_driver	*drv = to_spi_driver(dev->driver);
137 
138 	/* suspend will stop irqs and dma; no more i/o */
139 	if (drv) {
140 		if (drv->suspend)
141 			value = drv->suspend(to_spi_device(dev), message);
142 		else
143 			dev_dbg(dev, "... can't suspend\n");
144 	}
145 	return value;
146 }
147 
148 static int spi_legacy_resume(struct device *dev)
149 {
150 	int			value = 0;
151 	struct spi_driver	*drv = to_spi_driver(dev->driver);
152 
153 	/* resume may restart the i/o queue */
154 	if (drv) {
155 		if (drv->resume)
156 			value = drv->resume(to_spi_device(dev));
157 		else
158 			dev_dbg(dev, "... can't resume\n");
159 	}
160 	return value;
161 }
162 
163 static int spi_pm_suspend(struct device *dev)
164 {
165 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
166 
167 	if (pm)
168 		return pm_generic_suspend(dev);
169 	else
170 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
171 }
172 
173 static int spi_pm_resume(struct device *dev)
174 {
175 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
176 
177 	if (pm)
178 		return pm_generic_resume(dev);
179 	else
180 		return spi_legacy_resume(dev);
181 }
182 
183 static int spi_pm_freeze(struct device *dev)
184 {
185 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
186 
187 	if (pm)
188 		return pm_generic_freeze(dev);
189 	else
190 		return spi_legacy_suspend(dev, PMSG_FREEZE);
191 }
192 
193 static int spi_pm_thaw(struct device *dev)
194 {
195 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
196 
197 	if (pm)
198 		return pm_generic_thaw(dev);
199 	else
200 		return spi_legacy_resume(dev);
201 }
202 
203 static int spi_pm_poweroff(struct device *dev)
204 {
205 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
206 
207 	if (pm)
208 		return pm_generic_poweroff(dev);
209 	else
210 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
211 }
212 
213 static int spi_pm_restore(struct device *dev)
214 {
215 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
216 
217 	if (pm)
218 		return pm_generic_restore(dev);
219 	else
220 		return spi_legacy_resume(dev);
221 }
222 #else
223 #define spi_pm_suspend	NULL
224 #define spi_pm_resume	NULL
225 #define spi_pm_freeze	NULL
226 #define spi_pm_thaw	NULL
227 #define spi_pm_poweroff	NULL
228 #define spi_pm_restore	NULL
229 #endif
230 
231 static const struct dev_pm_ops spi_pm = {
232 	.suspend = spi_pm_suspend,
233 	.resume = spi_pm_resume,
234 	.freeze = spi_pm_freeze,
235 	.thaw = spi_pm_thaw,
236 	.poweroff = spi_pm_poweroff,
237 	.restore = spi_pm_restore,
238 	SET_RUNTIME_PM_OPS(
239 		pm_generic_runtime_suspend,
240 		pm_generic_runtime_resume,
241 		NULL
242 	)
243 };
244 
245 struct bus_type spi_bus_type = {
246 	.name		= "spi",
247 	.dev_groups	= spi_dev_groups,
248 	.match		= spi_match_device,
249 	.uevent		= spi_uevent,
250 	.pm		= &spi_pm,
251 };
252 EXPORT_SYMBOL_GPL(spi_bus_type);
253 
254 
255 static int spi_drv_probe(struct device *dev)
256 {
257 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
258 	struct spi_device		*spi = to_spi_device(dev);
259 	int ret;
260 
261 	acpi_dev_pm_attach(&spi->dev, true);
262 	ret = sdrv->probe(spi);
263 	if (ret)
264 		acpi_dev_pm_detach(&spi->dev, true);
265 
266 	return ret;
267 }
268 
269 static int spi_drv_remove(struct device *dev)
270 {
271 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
272 	struct spi_device		*spi = to_spi_device(dev);
273 	int ret;
274 
275 	ret = sdrv->remove(spi);
276 	acpi_dev_pm_detach(&spi->dev, true);
277 
278 	return ret;
279 }
280 
281 static void spi_drv_shutdown(struct device *dev)
282 {
283 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
284 
285 	sdrv->shutdown(to_spi_device(dev));
286 }
287 
288 /**
289  * spi_register_driver - register a SPI driver
290  * @sdrv: the driver to register
291  * Context: can sleep
292  */
293 int spi_register_driver(struct spi_driver *sdrv)
294 {
295 	sdrv->driver.bus = &spi_bus_type;
296 	if (sdrv->probe)
297 		sdrv->driver.probe = spi_drv_probe;
298 	if (sdrv->remove)
299 		sdrv->driver.remove = spi_drv_remove;
300 	if (sdrv->shutdown)
301 		sdrv->driver.shutdown = spi_drv_shutdown;
302 	return driver_register(&sdrv->driver);
303 }
304 EXPORT_SYMBOL_GPL(spi_register_driver);
305 
306 /*-------------------------------------------------------------------------*/
307 
308 /* SPI devices should normally not be created by SPI device drivers; that
309  * would make them board-specific.  Similarly with SPI master drivers.
310  * Device registration normally goes into like arch/.../mach.../board-YYY.c
311  * with other readonly (flashable) information about mainboard devices.
312  */
313 
314 struct boardinfo {
315 	struct list_head	list;
316 	struct spi_board_info	board_info;
317 };
318 
319 static LIST_HEAD(board_list);
320 static LIST_HEAD(spi_master_list);
321 
322 /*
323  * Used to protect add/del opertion for board_info list and
324  * spi_master list, and their matching process
325  */
326 static DEFINE_MUTEX(board_lock);
327 
328 /**
329  * spi_alloc_device - Allocate a new SPI device
330  * @master: Controller to which device is connected
331  * Context: can sleep
332  *
333  * Allows a driver to allocate and initialize a spi_device without
334  * registering it immediately.  This allows a driver to directly
335  * fill the spi_device with device parameters before calling
336  * spi_add_device() on it.
337  *
338  * Caller is responsible to call spi_add_device() on the returned
339  * spi_device structure to add it to the SPI master.  If the caller
340  * needs to discard the spi_device without adding it, then it should
341  * call spi_dev_put() on it.
342  *
343  * Returns a pointer to the new device, or NULL.
344  */
345 struct spi_device *spi_alloc_device(struct spi_master *master)
346 {
347 	struct spi_device	*spi;
348 	struct device		*dev = master->dev.parent;
349 
350 	if (!spi_master_get(master))
351 		return NULL;
352 
353 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
354 	if (!spi) {
355 		dev_err(dev, "cannot alloc spi_device\n");
356 		spi_master_put(master);
357 		return NULL;
358 	}
359 
360 	spi->master = master;
361 	spi->dev.parent = &master->dev;
362 	spi->dev.bus = &spi_bus_type;
363 	spi->dev.release = spidev_release;
364 	spi->cs_gpio = -ENOENT;
365 	device_initialize(&spi->dev);
366 	return spi;
367 }
368 EXPORT_SYMBOL_GPL(spi_alloc_device);
369 
370 static void spi_dev_set_name(struct spi_device *spi)
371 {
372 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
373 
374 	if (adev) {
375 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
376 		return;
377 	}
378 
379 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
380 		     spi->chip_select);
381 }
382 
383 static int spi_dev_check(struct device *dev, void *data)
384 {
385 	struct spi_device *spi = to_spi_device(dev);
386 	struct spi_device *new_spi = data;
387 
388 	if (spi->master == new_spi->master &&
389 	    spi->chip_select == new_spi->chip_select)
390 		return -EBUSY;
391 	return 0;
392 }
393 
394 /**
395  * spi_add_device - Add spi_device allocated with spi_alloc_device
396  * @spi: spi_device to register
397  *
398  * Companion function to spi_alloc_device.  Devices allocated with
399  * spi_alloc_device can be added onto the spi bus with this function.
400  *
401  * Returns 0 on success; negative errno on failure
402  */
403 int spi_add_device(struct spi_device *spi)
404 {
405 	static DEFINE_MUTEX(spi_add_lock);
406 	struct spi_master *master = spi->master;
407 	struct device *dev = master->dev.parent;
408 	int status;
409 
410 	/* Chipselects are numbered 0..max; validate. */
411 	if (spi->chip_select >= master->num_chipselect) {
412 		dev_err(dev, "cs%d >= max %d\n",
413 			spi->chip_select,
414 			master->num_chipselect);
415 		return -EINVAL;
416 	}
417 
418 	/* Set the bus ID string */
419 	spi_dev_set_name(spi);
420 
421 	/* We need to make sure there's no other device with this
422 	 * chipselect **BEFORE** we call setup(), else we'll trash
423 	 * its configuration.  Lock against concurrent add() calls.
424 	 */
425 	mutex_lock(&spi_add_lock);
426 
427 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
428 	if (status) {
429 		dev_err(dev, "chipselect %d already in use\n",
430 				spi->chip_select);
431 		goto done;
432 	}
433 
434 	if (master->cs_gpios)
435 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
436 
437 	/* Drivers may modify this initial i/o setup, but will
438 	 * normally rely on the device being setup.  Devices
439 	 * using SPI_CS_HIGH can't coexist well otherwise...
440 	 */
441 	status = spi_setup(spi);
442 	if (status < 0) {
443 		dev_err(dev, "can't setup %s, status %d\n",
444 				dev_name(&spi->dev), status);
445 		goto done;
446 	}
447 
448 	/* Device may be bound to an active driver when this returns */
449 	status = device_add(&spi->dev);
450 	if (status < 0)
451 		dev_err(dev, "can't add %s, status %d\n",
452 				dev_name(&spi->dev), status);
453 	else
454 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
455 
456 done:
457 	mutex_unlock(&spi_add_lock);
458 	return status;
459 }
460 EXPORT_SYMBOL_GPL(spi_add_device);
461 
462 /**
463  * spi_new_device - instantiate one new SPI device
464  * @master: Controller to which device is connected
465  * @chip: Describes the SPI device
466  * Context: can sleep
467  *
468  * On typical mainboards, this is purely internal; and it's not needed
469  * after board init creates the hard-wired devices.  Some development
470  * platforms may not be able to use spi_register_board_info though, and
471  * this is exported so that for example a USB or parport based adapter
472  * driver could add devices (which it would learn about out-of-band).
473  *
474  * Returns the new device, or NULL.
475  */
476 struct spi_device *spi_new_device(struct spi_master *master,
477 				  struct spi_board_info *chip)
478 {
479 	struct spi_device	*proxy;
480 	int			status;
481 
482 	/* NOTE:  caller did any chip->bus_num checks necessary.
483 	 *
484 	 * Also, unless we change the return value convention to use
485 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
486 	 * suggests syslogged diagnostics are best here (ugh).
487 	 */
488 
489 	proxy = spi_alloc_device(master);
490 	if (!proxy)
491 		return NULL;
492 
493 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
494 
495 	proxy->chip_select = chip->chip_select;
496 	proxy->max_speed_hz = chip->max_speed_hz;
497 	proxy->mode = chip->mode;
498 	proxy->irq = chip->irq;
499 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
500 	proxy->dev.platform_data = (void *) chip->platform_data;
501 	proxy->controller_data = chip->controller_data;
502 	proxy->controller_state = NULL;
503 
504 	status = spi_add_device(proxy);
505 	if (status < 0) {
506 		spi_dev_put(proxy);
507 		return NULL;
508 	}
509 
510 	return proxy;
511 }
512 EXPORT_SYMBOL_GPL(spi_new_device);
513 
514 static void spi_match_master_to_boardinfo(struct spi_master *master,
515 				struct spi_board_info *bi)
516 {
517 	struct spi_device *dev;
518 
519 	if (master->bus_num != bi->bus_num)
520 		return;
521 
522 	dev = spi_new_device(master, bi);
523 	if (!dev)
524 		dev_err(master->dev.parent, "can't create new device for %s\n",
525 			bi->modalias);
526 }
527 
528 /**
529  * spi_register_board_info - register SPI devices for a given board
530  * @info: array of chip descriptors
531  * @n: how many descriptors are provided
532  * Context: can sleep
533  *
534  * Board-specific early init code calls this (probably during arch_initcall)
535  * with segments of the SPI device table.  Any device nodes are created later,
536  * after the relevant parent SPI controller (bus_num) is defined.  We keep
537  * this table of devices forever, so that reloading a controller driver will
538  * not make Linux forget about these hard-wired devices.
539  *
540  * Other code can also call this, e.g. a particular add-on board might provide
541  * SPI devices through its expansion connector, so code initializing that board
542  * would naturally declare its SPI devices.
543  *
544  * The board info passed can safely be __initdata ... but be careful of
545  * any embedded pointers (platform_data, etc), they're copied as-is.
546  */
547 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
548 {
549 	struct boardinfo *bi;
550 	int i;
551 
552 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
553 	if (!bi)
554 		return -ENOMEM;
555 
556 	for (i = 0; i < n; i++, bi++, info++) {
557 		struct spi_master *master;
558 
559 		memcpy(&bi->board_info, info, sizeof(*info));
560 		mutex_lock(&board_lock);
561 		list_add_tail(&bi->list, &board_list);
562 		list_for_each_entry(master, &spi_master_list, list)
563 			spi_match_master_to_boardinfo(master, &bi->board_info);
564 		mutex_unlock(&board_lock);
565 	}
566 
567 	return 0;
568 }
569 
570 /*-------------------------------------------------------------------------*/
571 
572 static void spi_set_cs(struct spi_device *spi, bool enable)
573 {
574 	if (spi->mode & SPI_CS_HIGH)
575 		enable = !enable;
576 
577 	if (spi->cs_gpio >= 0)
578 		gpio_set_value(spi->cs_gpio, !enable);
579 	else if (spi->master->set_cs)
580 		spi->master->set_cs(spi, !enable);
581 }
582 
583 /*
584  * spi_transfer_one_message - Default implementation of transfer_one_message()
585  *
586  * This is a standard implementation of transfer_one_message() for
587  * drivers which impelment a transfer_one() operation.  It provides
588  * standard handling of delays and chip select management.
589  */
590 static int spi_transfer_one_message(struct spi_master *master,
591 				    struct spi_message *msg)
592 {
593 	struct spi_transfer *xfer;
594 	bool cur_cs = true;
595 	bool keep_cs = false;
596 	int ret = 0;
597 
598 	spi_set_cs(msg->spi, true);
599 
600 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
601 		trace_spi_transfer_start(msg, xfer);
602 
603 		reinit_completion(&master->xfer_completion);
604 
605 		ret = master->transfer_one(master, msg->spi, xfer);
606 		if (ret < 0) {
607 			dev_err(&msg->spi->dev,
608 				"SPI transfer failed: %d\n", ret);
609 			goto out;
610 		}
611 
612 		if (ret > 0) {
613 			ret = 0;
614 			wait_for_completion(&master->xfer_completion);
615 		}
616 
617 		trace_spi_transfer_stop(msg, xfer);
618 
619 		if (msg->status != -EINPROGRESS)
620 			goto out;
621 
622 		if (xfer->delay_usecs)
623 			udelay(xfer->delay_usecs);
624 
625 		if (xfer->cs_change) {
626 			if (list_is_last(&xfer->transfer_list,
627 					 &msg->transfers)) {
628 				keep_cs = true;
629 			} else {
630 				cur_cs = !cur_cs;
631 				spi_set_cs(msg->spi, cur_cs);
632 			}
633 		}
634 
635 		msg->actual_length += xfer->len;
636 	}
637 
638 out:
639 	if (ret != 0 || !keep_cs)
640 		spi_set_cs(msg->spi, false);
641 
642 	if (msg->status == -EINPROGRESS)
643 		msg->status = ret;
644 
645 	spi_finalize_current_message(master);
646 
647 	return ret;
648 }
649 
650 /**
651  * spi_finalize_current_transfer - report completion of a transfer
652  *
653  * Called by SPI drivers using the core transfer_one_message()
654  * implementation to notify it that the current interrupt driven
655  * transfer has finished and the next one may be scheduled.
656  */
657 void spi_finalize_current_transfer(struct spi_master *master)
658 {
659 	complete(&master->xfer_completion);
660 }
661 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
662 
663 /**
664  * spi_pump_messages - kthread work function which processes spi message queue
665  * @work: pointer to kthread work struct contained in the master struct
666  *
667  * This function checks if there is any spi message in the queue that
668  * needs processing and if so call out to the driver to initialize hardware
669  * and transfer each message.
670  *
671  */
672 static void spi_pump_messages(struct kthread_work *work)
673 {
674 	struct spi_master *master =
675 		container_of(work, struct spi_master, pump_messages);
676 	unsigned long flags;
677 	bool was_busy = false;
678 	int ret;
679 
680 	/* Lock queue and check for queue work */
681 	spin_lock_irqsave(&master->queue_lock, flags);
682 	if (list_empty(&master->queue) || !master->running) {
683 		if (!master->busy) {
684 			spin_unlock_irqrestore(&master->queue_lock, flags);
685 			return;
686 		}
687 		master->busy = false;
688 		spin_unlock_irqrestore(&master->queue_lock, flags);
689 		if (master->unprepare_transfer_hardware &&
690 		    master->unprepare_transfer_hardware(master))
691 			dev_err(&master->dev,
692 				"failed to unprepare transfer hardware\n");
693 		if (master->auto_runtime_pm) {
694 			pm_runtime_mark_last_busy(master->dev.parent);
695 			pm_runtime_put_autosuspend(master->dev.parent);
696 		}
697 		trace_spi_master_idle(master);
698 		return;
699 	}
700 
701 	/* Make sure we are not already running a message */
702 	if (master->cur_msg) {
703 		spin_unlock_irqrestore(&master->queue_lock, flags);
704 		return;
705 	}
706 	/* Extract head of queue */
707 	master->cur_msg =
708 		list_first_entry(&master->queue, struct spi_message, queue);
709 
710 	list_del_init(&master->cur_msg->queue);
711 	if (master->busy)
712 		was_busy = true;
713 	else
714 		master->busy = true;
715 	spin_unlock_irqrestore(&master->queue_lock, flags);
716 
717 	if (!was_busy && master->auto_runtime_pm) {
718 		ret = pm_runtime_get_sync(master->dev.parent);
719 		if (ret < 0) {
720 			dev_err(&master->dev, "Failed to power device: %d\n",
721 				ret);
722 			return;
723 		}
724 	}
725 
726 	if (!was_busy)
727 		trace_spi_master_busy(master);
728 
729 	if (!was_busy && master->prepare_transfer_hardware) {
730 		ret = master->prepare_transfer_hardware(master);
731 		if (ret) {
732 			dev_err(&master->dev,
733 				"failed to prepare transfer hardware\n");
734 
735 			if (master->auto_runtime_pm)
736 				pm_runtime_put(master->dev.parent);
737 			return;
738 		}
739 	}
740 
741 	trace_spi_message_start(master->cur_msg);
742 
743 	if (master->prepare_message) {
744 		ret = master->prepare_message(master, master->cur_msg);
745 		if (ret) {
746 			dev_err(&master->dev,
747 				"failed to prepare message: %d\n", ret);
748 			master->cur_msg->status = ret;
749 			spi_finalize_current_message(master);
750 			return;
751 		}
752 		master->cur_msg_prepared = true;
753 	}
754 
755 	ret = master->transfer_one_message(master, master->cur_msg);
756 	if (ret) {
757 		dev_err(&master->dev,
758 			"failed to transfer one message from queue: %d\n", ret);
759 		master->cur_msg->status = ret;
760 		spi_finalize_current_message(master);
761 		return;
762 	}
763 }
764 
765 static int spi_init_queue(struct spi_master *master)
766 {
767 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
768 
769 	INIT_LIST_HEAD(&master->queue);
770 	spin_lock_init(&master->queue_lock);
771 
772 	master->running = false;
773 	master->busy = false;
774 
775 	init_kthread_worker(&master->kworker);
776 	master->kworker_task = kthread_run(kthread_worker_fn,
777 					   &master->kworker, "%s",
778 					   dev_name(&master->dev));
779 	if (IS_ERR(master->kworker_task)) {
780 		dev_err(&master->dev, "failed to create message pump task\n");
781 		return -ENOMEM;
782 	}
783 	init_kthread_work(&master->pump_messages, spi_pump_messages);
784 
785 	/*
786 	 * Master config will indicate if this controller should run the
787 	 * message pump with high (realtime) priority to reduce the transfer
788 	 * latency on the bus by minimising the delay between a transfer
789 	 * request and the scheduling of the message pump thread. Without this
790 	 * setting the message pump thread will remain at default priority.
791 	 */
792 	if (master->rt) {
793 		dev_info(&master->dev,
794 			"will run message pump with realtime priority\n");
795 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
796 	}
797 
798 	return 0;
799 }
800 
801 /**
802  * spi_get_next_queued_message() - called by driver to check for queued
803  * messages
804  * @master: the master to check for queued messages
805  *
806  * If there are more messages in the queue, the next message is returned from
807  * this call.
808  */
809 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
810 {
811 	struct spi_message *next;
812 	unsigned long flags;
813 
814 	/* get a pointer to the next message, if any */
815 	spin_lock_irqsave(&master->queue_lock, flags);
816 	next = list_first_entry_or_null(&master->queue, struct spi_message,
817 					queue);
818 	spin_unlock_irqrestore(&master->queue_lock, flags);
819 
820 	return next;
821 }
822 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
823 
824 /**
825  * spi_finalize_current_message() - the current message is complete
826  * @master: the master to return the message to
827  *
828  * Called by the driver to notify the core that the message in the front of the
829  * queue is complete and can be removed from the queue.
830  */
831 void spi_finalize_current_message(struct spi_master *master)
832 {
833 	struct spi_message *mesg;
834 	unsigned long flags;
835 	int ret;
836 
837 	spin_lock_irqsave(&master->queue_lock, flags);
838 	mesg = master->cur_msg;
839 	master->cur_msg = NULL;
840 
841 	queue_kthread_work(&master->kworker, &master->pump_messages);
842 	spin_unlock_irqrestore(&master->queue_lock, flags);
843 
844 	if (master->cur_msg_prepared && master->unprepare_message) {
845 		ret = master->unprepare_message(master, mesg);
846 		if (ret) {
847 			dev_err(&master->dev,
848 				"failed to unprepare message: %d\n", ret);
849 		}
850 	}
851 	master->cur_msg_prepared = false;
852 
853 	mesg->state = NULL;
854 	if (mesg->complete)
855 		mesg->complete(mesg->context);
856 
857 	trace_spi_message_done(mesg);
858 }
859 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
860 
861 static int spi_start_queue(struct spi_master *master)
862 {
863 	unsigned long flags;
864 
865 	spin_lock_irqsave(&master->queue_lock, flags);
866 
867 	if (master->running || master->busy) {
868 		spin_unlock_irqrestore(&master->queue_lock, flags);
869 		return -EBUSY;
870 	}
871 
872 	master->running = true;
873 	master->cur_msg = NULL;
874 	spin_unlock_irqrestore(&master->queue_lock, flags);
875 
876 	queue_kthread_work(&master->kworker, &master->pump_messages);
877 
878 	return 0;
879 }
880 
881 static int spi_stop_queue(struct spi_master *master)
882 {
883 	unsigned long flags;
884 	unsigned limit = 500;
885 	int ret = 0;
886 
887 	spin_lock_irqsave(&master->queue_lock, flags);
888 
889 	/*
890 	 * This is a bit lame, but is optimized for the common execution path.
891 	 * A wait_queue on the master->busy could be used, but then the common
892 	 * execution path (pump_messages) would be required to call wake_up or
893 	 * friends on every SPI message. Do this instead.
894 	 */
895 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
896 		spin_unlock_irqrestore(&master->queue_lock, flags);
897 		msleep(10);
898 		spin_lock_irqsave(&master->queue_lock, flags);
899 	}
900 
901 	if (!list_empty(&master->queue) || master->busy)
902 		ret = -EBUSY;
903 	else
904 		master->running = false;
905 
906 	spin_unlock_irqrestore(&master->queue_lock, flags);
907 
908 	if (ret) {
909 		dev_warn(&master->dev,
910 			 "could not stop message queue\n");
911 		return ret;
912 	}
913 	return ret;
914 }
915 
916 static int spi_destroy_queue(struct spi_master *master)
917 {
918 	int ret;
919 
920 	ret = spi_stop_queue(master);
921 
922 	/*
923 	 * flush_kthread_worker will block until all work is done.
924 	 * If the reason that stop_queue timed out is that the work will never
925 	 * finish, then it does no good to call flush/stop thread, so
926 	 * return anyway.
927 	 */
928 	if (ret) {
929 		dev_err(&master->dev, "problem destroying queue\n");
930 		return ret;
931 	}
932 
933 	flush_kthread_worker(&master->kworker);
934 	kthread_stop(master->kworker_task);
935 
936 	return 0;
937 }
938 
939 /**
940  * spi_queued_transfer - transfer function for queued transfers
941  * @spi: spi device which is requesting transfer
942  * @msg: spi message which is to handled is queued to driver queue
943  */
944 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
945 {
946 	struct spi_master *master = spi->master;
947 	unsigned long flags;
948 
949 	spin_lock_irqsave(&master->queue_lock, flags);
950 
951 	if (!master->running) {
952 		spin_unlock_irqrestore(&master->queue_lock, flags);
953 		return -ESHUTDOWN;
954 	}
955 	msg->actual_length = 0;
956 	msg->status = -EINPROGRESS;
957 
958 	list_add_tail(&msg->queue, &master->queue);
959 	if (!master->busy)
960 		queue_kthread_work(&master->kworker, &master->pump_messages);
961 
962 	spin_unlock_irqrestore(&master->queue_lock, flags);
963 	return 0;
964 }
965 
966 static int spi_master_initialize_queue(struct spi_master *master)
967 {
968 	int ret;
969 
970 	master->queued = true;
971 	master->transfer = spi_queued_transfer;
972 	if (!master->transfer_one_message)
973 		master->transfer_one_message = spi_transfer_one_message;
974 
975 	/* Initialize and start queue */
976 	ret = spi_init_queue(master);
977 	if (ret) {
978 		dev_err(&master->dev, "problem initializing queue\n");
979 		goto err_init_queue;
980 	}
981 	ret = spi_start_queue(master);
982 	if (ret) {
983 		dev_err(&master->dev, "problem starting queue\n");
984 		goto err_start_queue;
985 	}
986 
987 	return 0;
988 
989 err_start_queue:
990 err_init_queue:
991 	spi_destroy_queue(master);
992 	return ret;
993 }
994 
995 /*-------------------------------------------------------------------------*/
996 
997 #if defined(CONFIG_OF)
998 /**
999  * of_register_spi_devices() - Register child devices onto the SPI bus
1000  * @master:	Pointer to spi_master device
1001  *
1002  * Registers an spi_device for each child node of master node which has a 'reg'
1003  * property.
1004  */
1005 static void of_register_spi_devices(struct spi_master *master)
1006 {
1007 	struct spi_device *spi;
1008 	struct device_node *nc;
1009 	int rc;
1010 	u32 value;
1011 
1012 	if (!master->dev.of_node)
1013 		return;
1014 
1015 	for_each_available_child_of_node(master->dev.of_node, nc) {
1016 		/* Alloc an spi_device */
1017 		spi = spi_alloc_device(master);
1018 		if (!spi) {
1019 			dev_err(&master->dev, "spi_device alloc error for %s\n",
1020 				nc->full_name);
1021 			spi_dev_put(spi);
1022 			continue;
1023 		}
1024 
1025 		/* Select device driver */
1026 		if (of_modalias_node(nc, spi->modalias,
1027 				     sizeof(spi->modalias)) < 0) {
1028 			dev_err(&master->dev, "cannot find modalias for %s\n",
1029 				nc->full_name);
1030 			spi_dev_put(spi);
1031 			continue;
1032 		}
1033 
1034 		/* Device address */
1035 		rc = of_property_read_u32(nc, "reg", &value);
1036 		if (rc) {
1037 			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1038 				nc->full_name, rc);
1039 			spi_dev_put(spi);
1040 			continue;
1041 		}
1042 		spi->chip_select = value;
1043 
1044 		/* Mode (clock phase/polarity/etc.) */
1045 		if (of_find_property(nc, "spi-cpha", NULL))
1046 			spi->mode |= SPI_CPHA;
1047 		if (of_find_property(nc, "spi-cpol", NULL))
1048 			spi->mode |= SPI_CPOL;
1049 		if (of_find_property(nc, "spi-cs-high", NULL))
1050 			spi->mode |= SPI_CS_HIGH;
1051 		if (of_find_property(nc, "spi-3wire", NULL))
1052 			spi->mode |= SPI_3WIRE;
1053 
1054 		/* Device DUAL/QUAD mode */
1055 		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1056 			switch (value) {
1057 			case 1:
1058 				break;
1059 			case 2:
1060 				spi->mode |= SPI_TX_DUAL;
1061 				break;
1062 			case 4:
1063 				spi->mode |= SPI_TX_QUAD;
1064 				break;
1065 			default:
1066 				dev_err(&master->dev,
1067 					"spi-tx-bus-width %d not supported\n",
1068 					value);
1069 				spi_dev_put(spi);
1070 				continue;
1071 			}
1072 		}
1073 
1074 		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1075 			switch (value) {
1076 			case 1:
1077 				break;
1078 			case 2:
1079 				spi->mode |= SPI_RX_DUAL;
1080 				break;
1081 			case 4:
1082 				spi->mode |= SPI_RX_QUAD;
1083 				break;
1084 			default:
1085 				dev_err(&master->dev,
1086 					"spi-rx-bus-width %d not supported\n",
1087 					value);
1088 				spi_dev_put(spi);
1089 				continue;
1090 			}
1091 		}
1092 
1093 		/* Device speed */
1094 		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1095 		if (rc) {
1096 			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1097 				nc->full_name, rc);
1098 			spi_dev_put(spi);
1099 			continue;
1100 		}
1101 		spi->max_speed_hz = value;
1102 
1103 		/* IRQ */
1104 		spi->irq = irq_of_parse_and_map(nc, 0);
1105 
1106 		/* Store a pointer to the node in the device structure */
1107 		of_node_get(nc);
1108 		spi->dev.of_node = nc;
1109 
1110 		/* Register the new device */
1111 		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1112 		rc = spi_add_device(spi);
1113 		if (rc) {
1114 			dev_err(&master->dev, "spi_device register error %s\n",
1115 				nc->full_name);
1116 			spi_dev_put(spi);
1117 		}
1118 
1119 	}
1120 }
1121 #else
1122 static void of_register_spi_devices(struct spi_master *master) { }
1123 #endif
1124 
1125 #ifdef CONFIG_ACPI
1126 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1127 {
1128 	struct spi_device *spi = data;
1129 
1130 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1131 		struct acpi_resource_spi_serialbus *sb;
1132 
1133 		sb = &ares->data.spi_serial_bus;
1134 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1135 			spi->chip_select = sb->device_selection;
1136 			spi->max_speed_hz = sb->connection_speed;
1137 
1138 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1139 				spi->mode |= SPI_CPHA;
1140 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1141 				spi->mode |= SPI_CPOL;
1142 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1143 				spi->mode |= SPI_CS_HIGH;
1144 		}
1145 	} else if (spi->irq < 0) {
1146 		struct resource r;
1147 
1148 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1149 			spi->irq = r.start;
1150 	}
1151 
1152 	/* Always tell the ACPI core to skip this resource */
1153 	return 1;
1154 }
1155 
1156 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1157 				       void *data, void **return_value)
1158 {
1159 	struct spi_master *master = data;
1160 	struct list_head resource_list;
1161 	struct acpi_device *adev;
1162 	struct spi_device *spi;
1163 	int ret;
1164 
1165 	if (acpi_bus_get_device(handle, &adev))
1166 		return AE_OK;
1167 	if (acpi_bus_get_status(adev) || !adev->status.present)
1168 		return AE_OK;
1169 
1170 	spi = spi_alloc_device(master);
1171 	if (!spi) {
1172 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1173 			dev_name(&adev->dev));
1174 		return AE_NO_MEMORY;
1175 	}
1176 
1177 	ACPI_COMPANION_SET(&spi->dev, adev);
1178 	spi->irq = -1;
1179 
1180 	INIT_LIST_HEAD(&resource_list);
1181 	ret = acpi_dev_get_resources(adev, &resource_list,
1182 				     acpi_spi_add_resource, spi);
1183 	acpi_dev_free_resource_list(&resource_list);
1184 
1185 	if (ret < 0 || !spi->max_speed_hz) {
1186 		spi_dev_put(spi);
1187 		return AE_OK;
1188 	}
1189 
1190 	adev->power.flags.ignore_parent = true;
1191 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1192 	if (spi_add_device(spi)) {
1193 		adev->power.flags.ignore_parent = false;
1194 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1195 			dev_name(&adev->dev));
1196 		spi_dev_put(spi);
1197 	}
1198 
1199 	return AE_OK;
1200 }
1201 
1202 static void acpi_register_spi_devices(struct spi_master *master)
1203 {
1204 	acpi_status status;
1205 	acpi_handle handle;
1206 
1207 	handle = ACPI_HANDLE(master->dev.parent);
1208 	if (!handle)
1209 		return;
1210 
1211 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1212 				     acpi_spi_add_device, NULL,
1213 				     master, NULL);
1214 	if (ACPI_FAILURE(status))
1215 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1216 }
1217 #else
1218 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1219 #endif /* CONFIG_ACPI */
1220 
1221 static void spi_master_release(struct device *dev)
1222 {
1223 	struct spi_master *master;
1224 
1225 	master = container_of(dev, struct spi_master, dev);
1226 	kfree(master);
1227 }
1228 
1229 static struct class spi_master_class = {
1230 	.name		= "spi_master",
1231 	.owner		= THIS_MODULE,
1232 	.dev_release	= spi_master_release,
1233 };
1234 
1235 
1236 
1237 /**
1238  * spi_alloc_master - allocate SPI master controller
1239  * @dev: the controller, possibly using the platform_bus
1240  * @size: how much zeroed driver-private data to allocate; the pointer to this
1241  *	memory is in the driver_data field of the returned device,
1242  *	accessible with spi_master_get_devdata().
1243  * Context: can sleep
1244  *
1245  * This call is used only by SPI master controller drivers, which are the
1246  * only ones directly touching chip registers.  It's how they allocate
1247  * an spi_master structure, prior to calling spi_register_master().
1248  *
1249  * This must be called from context that can sleep.  It returns the SPI
1250  * master structure on success, else NULL.
1251  *
1252  * The caller is responsible for assigning the bus number and initializing
1253  * the master's methods before calling spi_register_master(); and (after errors
1254  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1255  * leak.
1256  */
1257 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1258 {
1259 	struct spi_master	*master;
1260 
1261 	if (!dev)
1262 		return NULL;
1263 
1264 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1265 	if (!master)
1266 		return NULL;
1267 
1268 	device_initialize(&master->dev);
1269 	master->bus_num = -1;
1270 	master->num_chipselect = 1;
1271 	master->dev.class = &spi_master_class;
1272 	master->dev.parent = get_device(dev);
1273 	spi_master_set_devdata(master, &master[1]);
1274 
1275 	return master;
1276 }
1277 EXPORT_SYMBOL_GPL(spi_alloc_master);
1278 
1279 #ifdef CONFIG_OF
1280 static int of_spi_register_master(struct spi_master *master)
1281 {
1282 	int nb, i, *cs;
1283 	struct device_node *np = master->dev.of_node;
1284 
1285 	if (!np)
1286 		return 0;
1287 
1288 	nb = of_gpio_named_count(np, "cs-gpios");
1289 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1290 
1291 	/* Return error only for an incorrectly formed cs-gpios property */
1292 	if (nb == 0 || nb == -ENOENT)
1293 		return 0;
1294 	else if (nb < 0)
1295 		return nb;
1296 
1297 	cs = devm_kzalloc(&master->dev,
1298 			  sizeof(int) * master->num_chipselect,
1299 			  GFP_KERNEL);
1300 	master->cs_gpios = cs;
1301 
1302 	if (!master->cs_gpios)
1303 		return -ENOMEM;
1304 
1305 	for (i = 0; i < master->num_chipselect; i++)
1306 		cs[i] = -ENOENT;
1307 
1308 	for (i = 0; i < nb; i++)
1309 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1310 
1311 	return 0;
1312 }
1313 #else
1314 static int of_spi_register_master(struct spi_master *master)
1315 {
1316 	return 0;
1317 }
1318 #endif
1319 
1320 /**
1321  * spi_register_master - register SPI master controller
1322  * @master: initialized master, originally from spi_alloc_master()
1323  * Context: can sleep
1324  *
1325  * SPI master controllers connect to their drivers using some non-SPI bus,
1326  * such as the platform bus.  The final stage of probe() in that code
1327  * includes calling spi_register_master() to hook up to this SPI bus glue.
1328  *
1329  * SPI controllers use board specific (often SOC specific) bus numbers,
1330  * and board-specific addressing for SPI devices combines those numbers
1331  * with chip select numbers.  Since SPI does not directly support dynamic
1332  * device identification, boards need configuration tables telling which
1333  * chip is at which address.
1334  *
1335  * This must be called from context that can sleep.  It returns zero on
1336  * success, else a negative error code (dropping the master's refcount).
1337  * After a successful return, the caller is responsible for calling
1338  * spi_unregister_master().
1339  */
1340 int spi_register_master(struct spi_master *master)
1341 {
1342 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1343 	struct device		*dev = master->dev.parent;
1344 	struct boardinfo	*bi;
1345 	int			status = -ENODEV;
1346 	int			dynamic = 0;
1347 
1348 	if (!dev)
1349 		return -ENODEV;
1350 
1351 	status = of_spi_register_master(master);
1352 	if (status)
1353 		return status;
1354 
1355 	/* even if it's just one always-selected device, there must
1356 	 * be at least one chipselect
1357 	 */
1358 	if (master->num_chipselect == 0)
1359 		return -EINVAL;
1360 
1361 	if ((master->bus_num < 0) && master->dev.of_node)
1362 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1363 
1364 	/* convention:  dynamically assigned bus IDs count down from the max */
1365 	if (master->bus_num < 0) {
1366 		/* FIXME switch to an IDR based scheme, something like
1367 		 * I2C now uses, so we can't run out of "dynamic" IDs
1368 		 */
1369 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1370 		dynamic = 1;
1371 	}
1372 
1373 	spin_lock_init(&master->bus_lock_spinlock);
1374 	mutex_init(&master->bus_lock_mutex);
1375 	master->bus_lock_flag = 0;
1376 	init_completion(&master->xfer_completion);
1377 
1378 	/* register the device, then userspace will see it.
1379 	 * registration fails if the bus ID is in use.
1380 	 */
1381 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1382 	status = device_add(&master->dev);
1383 	if (status < 0)
1384 		goto done;
1385 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1386 			dynamic ? " (dynamic)" : "");
1387 
1388 	/* If we're using a queued driver, start the queue */
1389 	if (master->transfer)
1390 		dev_info(dev, "master is unqueued, this is deprecated\n");
1391 	else {
1392 		status = spi_master_initialize_queue(master);
1393 		if (status) {
1394 			device_del(&master->dev);
1395 			goto done;
1396 		}
1397 	}
1398 
1399 	mutex_lock(&board_lock);
1400 	list_add_tail(&master->list, &spi_master_list);
1401 	list_for_each_entry(bi, &board_list, list)
1402 		spi_match_master_to_boardinfo(master, &bi->board_info);
1403 	mutex_unlock(&board_lock);
1404 
1405 	/* Register devices from the device tree and ACPI */
1406 	of_register_spi_devices(master);
1407 	acpi_register_spi_devices(master);
1408 done:
1409 	return status;
1410 }
1411 EXPORT_SYMBOL_GPL(spi_register_master);
1412 
1413 static void devm_spi_unregister(struct device *dev, void *res)
1414 {
1415 	spi_unregister_master(*(struct spi_master **)res);
1416 }
1417 
1418 /**
1419  * dev_spi_register_master - register managed SPI master controller
1420  * @dev:    device managing SPI master
1421  * @master: initialized master, originally from spi_alloc_master()
1422  * Context: can sleep
1423  *
1424  * Register a SPI device as with spi_register_master() which will
1425  * automatically be unregister
1426  */
1427 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1428 {
1429 	struct spi_master **ptr;
1430 	int ret;
1431 
1432 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1433 	if (!ptr)
1434 		return -ENOMEM;
1435 
1436 	ret = spi_register_master(master);
1437 	if (!ret) {
1438 		*ptr = master;
1439 		devres_add(dev, ptr);
1440 	} else {
1441 		devres_free(ptr);
1442 	}
1443 
1444 	return ret;
1445 }
1446 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1447 
1448 static int __unregister(struct device *dev, void *null)
1449 {
1450 	spi_unregister_device(to_spi_device(dev));
1451 	return 0;
1452 }
1453 
1454 /**
1455  * spi_unregister_master - unregister SPI master controller
1456  * @master: the master being unregistered
1457  * Context: can sleep
1458  *
1459  * This call is used only by SPI master controller drivers, which are the
1460  * only ones directly touching chip registers.
1461  *
1462  * This must be called from context that can sleep.
1463  */
1464 void spi_unregister_master(struct spi_master *master)
1465 {
1466 	int dummy;
1467 
1468 	if (master->queued) {
1469 		if (spi_destroy_queue(master))
1470 			dev_err(&master->dev, "queue remove failed\n");
1471 	}
1472 
1473 	mutex_lock(&board_lock);
1474 	list_del(&master->list);
1475 	mutex_unlock(&board_lock);
1476 
1477 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1478 	device_unregister(&master->dev);
1479 }
1480 EXPORT_SYMBOL_GPL(spi_unregister_master);
1481 
1482 int spi_master_suspend(struct spi_master *master)
1483 {
1484 	int ret;
1485 
1486 	/* Basically no-ops for non-queued masters */
1487 	if (!master->queued)
1488 		return 0;
1489 
1490 	ret = spi_stop_queue(master);
1491 	if (ret)
1492 		dev_err(&master->dev, "queue stop failed\n");
1493 
1494 	return ret;
1495 }
1496 EXPORT_SYMBOL_GPL(spi_master_suspend);
1497 
1498 int spi_master_resume(struct spi_master *master)
1499 {
1500 	int ret;
1501 
1502 	if (!master->queued)
1503 		return 0;
1504 
1505 	ret = spi_start_queue(master);
1506 	if (ret)
1507 		dev_err(&master->dev, "queue restart failed\n");
1508 
1509 	return ret;
1510 }
1511 EXPORT_SYMBOL_GPL(spi_master_resume);
1512 
1513 static int __spi_master_match(struct device *dev, const void *data)
1514 {
1515 	struct spi_master *m;
1516 	const u16 *bus_num = data;
1517 
1518 	m = container_of(dev, struct spi_master, dev);
1519 	return m->bus_num == *bus_num;
1520 }
1521 
1522 /**
1523  * spi_busnum_to_master - look up master associated with bus_num
1524  * @bus_num: the master's bus number
1525  * Context: can sleep
1526  *
1527  * This call may be used with devices that are registered after
1528  * arch init time.  It returns a refcounted pointer to the relevant
1529  * spi_master (which the caller must release), or NULL if there is
1530  * no such master registered.
1531  */
1532 struct spi_master *spi_busnum_to_master(u16 bus_num)
1533 {
1534 	struct device		*dev;
1535 	struct spi_master	*master = NULL;
1536 
1537 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1538 				__spi_master_match);
1539 	if (dev)
1540 		master = container_of(dev, struct spi_master, dev);
1541 	/* reference got in class_find_device */
1542 	return master;
1543 }
1544 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1545 
1546 
1547 /*-------------------------------------------------------------------------*/
1548 
1549 /* Core methods for SPI master protocol drivers.  Some of the
1550  * other core methods are currently defined as inline functions.
1551  */
1552 
1553 /**
1554  * spi_setup - setup SPI mode and clock rate
1555  * @spi: the device whose settings are being modified
1556  * Context: can sleep, and no requests are queued to the device
1557  *
1558  * SPI protocol drivers may need to update the transfer mode if the
1559  * device doesn't work with its default.  They may likewise need
1560  * to update clock rates or word sizes from initial values.  This function
1561  * changes those settings, and must be called from a context that can sleep.
1562  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1563  * effect the next time the device is selected and data is transferred to
1564  * or from it.  When this function returns, the spi device is deselected.
1565  *
1566  * Note that this call will fail if the protocol driver specifies an option
1567  * that the underlying controller or its driver does not support.  For
1568  * example, not all hardware supports wire transfers using nine bit words,
1569  * LSB-first wire encoding, or active-high chipselects.
1570  */
1571 int spi_setup(struct spi_device *spi)
1572 {
1573 	unsigned	bad_bits;
1574 	int		status = 0;
1575 
1576 	/* check mode to prevent that DUAL and QUAD set at the same time
1577 	 */
1578 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1579 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1580 		dev_err(&spi->dev,
1581 		"setup: can not select dual and quad at the same time\n");
1582 		return -EINVAL;
1583 	}
1584 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1585 	 */
1586 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1587 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1588 		return -EINVAL;
1589 	/* help drivers fail *cleanly* when they need options
1590 	 * that aren't supported with their current master
1591 	 */
1592 	bad_bits = spi->mode & ~spi->master->mode_bits;
1593 	if (bad_bits) {
1594 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1595 			bad_bits);
1596 		return -EINVAL;
1597 	}
1598 
1599 	if (!spi->bits_per_word)
1600 		spi->bits_per_word = 8;
1601 
1602 	if (spi->master->setup)
1603 		status = spi->master->setup(spi);
1604 
1605 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1606 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1607 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1608 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1609 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1610 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1611 			spi->bits_per_word, spi->max_speed_hz,
1612 			status);
1613 
1614 	return status;
1615 }
1616 EXPORT_SYMBOL_GPL(spi_setup);
1617 
1618 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1619 {
1620 	struct spi_master *master = spi->master;
1621 	struct spi_transfer *xfer;
1622 
1623 	if (list_empty(&message->transfers))
1624 		return -EINVAL;
1625 	if (!message->complete)
1626 		return -EINVAL;
1627 
1628 	/* Half-duplex links include original MicroWire, and ones with
1629 	 * only one data pin like SPI_3WIRE (switches direction) or where
1630 	 * either MOSI or MISO is missing.  They can also be caused by
1631 	 * software limitations.
1632 	 */
1633 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1634 			|| (spi->mode & SPI_3WIRE)) {
1635 		unsigned flags = master->flags;
1636 
1637 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1638 			if (xfer->rx_buf && xfer->tx_buf)
1639 				return -EINVAL;
1640 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1641 				return -EINVAL;
1642 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1643 				return -EINVAL;
1644 		}
1645 	}
1646 
1647 	/**
1648 	 * Set transfer bits_per_word and max speed as spi device default if
1649 	 * it is not set for this transfer.
1650 	 * Set transfer tx_nbits and rx_nbits as single transfer default
1651 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1652 	 */
1653 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1654 		message->frame_length += xfer->len;
1655 		if (!xfer->bits_per_word)
1656 			xfer->bits_per_word = spi->bits_per_word;
1657 		if (!xfer->speed_hz) {
1658 			xfer->speed_hz = spi->max_speed_hz;
1659 			if (master->max_speed_hz &&
1660 			    xfer->speed_hz > master->max_speed_hz)
1661 				xfer->speed_hz = master->max_speed_hz;
1662 		}
1663 
1664 		if (master->bits_per_word_mask) {
1665 			/* Only 32 bits fit in the mask */
1666 			if (xfer->bits_per_word > 32)
1667 				return -EINVAL;
1668 			if (!(master->bits_per_word_mask &
1669 					BIT(xfer->bits_per_word - 1)))
1670 				return -EINVAL;
1671 		}
1672 
1673 		if (xfer->speed_hz && master->min_speed_hz &&
1674 		    xfer->speed_hz < master->min_speed_hz)
1675 			return -EINVAL;
1676 		if (xfer->speed_hz && master->max_speed_hz &&
1677 		    xfer->speed_hz > master->max_speed_hz)
1678 			return -EINVAL;
1679 
1680 		if (xfer->tx_buf && !xfer->tx_nbits)
1681 			xfer->tx_nbits = SPI_NBITS_SINGLE;
1682 		if (xfer->rx_buf && !xfer->rx_nbits)
1683 			xfer->rx_nbits = SPI_NBITS_SINGLE;
1684 		/* check transfer tx/rx_nbits:
1685 		 * 1. check the value matches one of single, dual and quad
1686 		 * 2. check tx/rx_nbits match the mode in spi_device
1687 		 */
1688 		if (xfer->tx_buf) {
1689 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1690 				xfer->tx_nbits != SPI_NBITS_DUAL &&
1691 				xfer->tx_nbits != SPI_NBITS_QUAD)
1692 				return -EINVAL;
1693 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1694 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1695 				return -EINVAL;
1696 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1697 				!(spi->mode & SPI_TX_QUAD))
1698 				return -EINVAL;
1699 		}
1700 		/* check transfer rx_nbits */
1701 		if (xfer->rx_buf) {
1702 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1703 				xfer->rx_nbits != SPI_NBITS_DUAL &&
1704 				xfer->rx_nbits != SPI_NBITS_QUAD)
1705 				return -EINVAL;
1706 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1707 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1708 				return -EINVAL;
1709 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1710 				!(spi->mode & SPI_RX_QUAD))
1711 				return -EINVAL;
1712 		}
1713 	}
1714 
1715 	message->status = -EINPROGRESS;
1716 
1717 	return 0;
1718 }
1719 
1720 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1721 {
1722 	struct spi_master *master = spi->master;
1723 
1724 	message->spi = spi;
1725 
1726 	trace_spi_message_submit(message);
1727 
1728 	return master->transfer(spi, message);
1729 }
1730 
1731 /**
1732  * spi_async - asynchronous SPI transfer
1733  * @spi: device with which data will be exchanged
1734  * @message: describes the data transfers, including completion callback
1735  * Context: any (irqs may be blocked, etc)
1736  *
1737  * This call may be used in_irq and other contexts which can't sleep,
1738  * as well as from task contexts which can sleep.
1739  *
1740  * The completion callback is invoked in a context which can't sleep.
1741  * Before that invocation, the value of message->status is undefined.
1742  * When the callback is issued, message->status holds either zero (to
1743  * indicate complete success) or a negative error code.  After that
1744  * callback returns, the driver which issued the transfer request may
1745  * deallocate the associated memory; it's no longer in use by any SPI
1746  * core or controller driver code.
1747  *
1748  * Note that although all messages to a spi_device are handled in
1749  * FIFO order, messages may go to different devices in other orders.
1750  * Some device might be higher priority, or have various "hard" access
1751  * time requirements, for example.
1752  *
1753  * On detection of any fault during the transfer, processing of
1754  * the entire message is aborted, and the device is deselected.
1755  * Until returning from the associated message completion callback,
1756  * no other spi_message queued to that device will be processed.
1757  * (This rule applies equally to all the synchronous transfer calls,
1758  * which are wrappers around this core asynchronous primitive.)
1759  */
1760 int spi_async(struct spi_device *spi, struct spi_message *message)
1761 {
1762 	struct spi_master *master = spi->master;
1763 	int ret;
1764 	unsigned long flags;
1765 
1766 	ret = __spi_validate(spi, message);
1767 	if (ret != 0)
1768 		return ret;
1769 
1770 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1771 
1772 	if (master->bus_lock_flag)
1773 		ret = -EBUSY;
1774 	else
1775 		ret = __spi_async(spi, message);
1776 
1777 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1778 
1779 	return ret;
1780 }
1781 EXPORT_SYMBOL_GPL(spi_async);
1782 
1783 /**
1784  * spi_async_locked - version of spi_async with exclusive bus usage
1785  * @spi: device with which data will be exchanged
1786  * @message: describes the data transfers, including completion callback
1787  * Context: any (irqs may be blocked, etc)
1788  *
1789  * This call may be used in_irq and other contexts which can't sleep,
1790  * as well as from task contexts which can sleep.
1791  *
1792  * The completion callback is invoked in a context which can't sleep.
1793  * Before that invocation, the value of message->status is undefined.
1794  * When the callback is issued, message->status holds either zero (to
1795  * indicate complete success) or a negative error code.  After that
1796  * callback returns, the driver which issued the transfer request may
1797  * deallocate the associated memory; it's no longer in use by any SPI
1798  * core or controller driver code.
1799  *
1800  * Note that although all messages to a spi_device are handled in
1801  * FIFO order, messages may go to different devices in other orders.
1802  * Some device might be higher priority, or have various "hard" access
1803  * time requirements, for example.
1804  *
1805  * On detection of any fault during the transfer, processing of
1806  * the entire message is aborted, and the device is deselected.
1807  * Until returning from the associated message completion callback,
1808  * no other spi_message queued to that device will be processed.
1809  * (This rule applies equally to all the synchronous transfer calls,
1810  * which are wrappers around this core asynchronous primitive.)
1811  */
1812 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1813 {
1814 	struct spi_master *master = spi->master;
1815 	int ret;
1816 	unsigned long flags;
1817 
1818 	ret = __spi_validate(spi, message);
1819 	if (ret != 0)
1820 		return ret;
1821 
1822 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1823 
1824 	ret = __spi_async(spi, message);
1825 
1826 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1827 
1828 	return ret;
1829 
1830 }
1831 EXPORT_SYMBOL_GPL(spi_async_locked);
1832 
1833 
1834 /*-------------------------------------------------------------------------*/
1835 
1836 /* Utility methods for SPI master protocol drivers, layered on
1837  * top of the core.  Some other utility methods are defined as
1838  * inline functions.
1839  */
1840 
1841 static void spi_complete(void *arg)
1842 {
1843 	complete(arg);
1844 }
1845 
1846 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1847 		      int bus_locked)
1848 {
1849 	DECLARE_COMPLETION_ONSTACK(done);
1850 	int status;
1851 	struct spi_master *master = spi->master;
1852 
1853 	message->complete = spi_complete;
1854 	message->context = &done;
1855 
1856 	if (!bus_locked)
1857 		mutex_lock(&master->bus_lock_mutex);
1858 
1859 	status = spi_async_locked(spi, message);
1860 
1861 	if (!bus_locked)
1862 		mutex_unlock(&master->bus_lock_mutex);
1863 
1864 	if (status == 0) {
1865 		wait_for_completion(&done);
1866 		status = message->status;
1867 	}
1868 	message->context = NULL;
1869 	return status;
1870 }
1871 
1872 /**
1873  * spi_sync - blocking/synchronous SPI data transfers
1874  * @spi: device with which data will be exchanged
1875  * @message: describes the data transfers
1876  * Context: can sleep
1877  *
1878  * This call may only be used from a context that may sleep.  The sleep
1879  * is non-interruptible, and has no timeout.  Low-overhead controller
1880  * drivers may DMA directly into and out of the message buffers.
1881  *
1882  * Note that the SPI device's chip select is active during the message,
1883  * and then is normally disabled between messages.  Drivers for some
1884  * frequently-used devices may want to minimize costs of selecting a chip,
1885  * by leaving it selected in anticipation that the next message will go
1886  * to the same chip.  (That may increase power usage.)
1887  *
1888  * Also, the caller is guaranteeing that the memory associated with the
1889  * message will not be freed before this call returns.
1890  *
1891  * It returns zero on success, else a negative error code.
1892  */
1893 int spi_sync(struct spi_device *spi, struct spi_message *message)
1894 {
1895 	return __spi_sync(spi, message, 0);
1896 }
1897 EXPORT_SYMBOL_GPL(spi_sync);
1898 
1899 /**
1900  * spi_sync_locked - version of spi_sync with exclusive bus usage
1901  * @spi: device with which data will be exchanged
1902  * @message: describes the data transfers
1903  * Context: can sleep
1904  *
1905  * This call may only be used from a context that may sleep.  The sleep
1906  * is non-interruptible, and has no timeout.  Low-overhead controller
1907  * drivers may DMA directly into and out of the message buffers.
1908  *
1909  * This call should be used by drivers that require exclusive access to the
1910  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1911  * be released by a spi_bus_unlock call when the exclusive access is over.
1912  *
1913  * It returns zero on success, else a negative error code.
1914  */
1915 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1916 {
1917 	return __spi_sync(spi, message, 1);
1918 }
1919 EXPORT_SYMBOL_GPL(spi_sync_locked);
1920 
1921 /**
1922  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1923  * @master: SPI bus master that should be locked for exclusive bus access
1924  * Context: can sleep
1925  *
1926  * This call may only be used from a context that may sleep.  The sleep
1927  * is non-interruptible, and has no timeout.
1928  *
1929  * This call should be used by drivers that require exclusive access to the
1930  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1931  * exclusive access is over. Data transfer must be done by spi_sync_locked
1932  * and spi_async_locked calls when the SPI bus lock is held.
1933  *
1934  * It returns zero on success, else a negative error code.
1935  */
1936 int spi_bus_lock(struct spi_master *master)
1937 {
1938 	unsigned long flags;
1939 
1940 	mutex_lock(&master->bus_lock_mutex);
1941 
1942 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1943 	master->bus_lock_flag = 1;
1944 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1945 
1946 	/* mutex remains locked until spi_bus_unlock is called */
1947 
1948 	return 0;
1949 }
1950 EXPORT_SYMBOL_GPL(spi_bus_lock);
1951 
1952 /**
1953  * spi_bus_unlock - release the lock for exclusive SPI bus usage
1954  * @master: SPI bus master that was locked for exclusive bus access
1955  * Context: can sleep
1956  *
1957  * This call may only be used from a context that may sleep.  The sleep
1958  * is non-interruptible, and has no timeout.
1959  *
1960  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1961  * call.
1962  *
1963  * It returns zero on success, else a negative error code.
1964  */
1965 int spi_bus_unlock(struct spi_master *master)
1966 {
1967 	master->bus_lock_flag = 0;
1968 
1969 	mutex_unlock(&master->bus_lock_mutex);
1970 
1971 	return 0;
1972 }
1973 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1974 
1975 /* portable code must never pass more than 32 bytes */
1976 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
1977 
1978 static u8	*buf;
1979 
1980 /**
1981  * spi_write_then_read - SPI synchronous write followed by read
1982  * @spi: device with which data will be exchanged
1983  * @txbuf: data to be written (need not be dma-safe)
1984  * @n_tx: size of txbuf, in bytes
1985  * @rxbuf: buffer into which data will be read (need not be dma-safe)
1986  * @n_rx: size of rxbuf, in bytes
1987  * Context: can sleep
1988  *
1989  * This performs a half duplex MicroWire style transaction with the
1990  * device, sending txbuf and then reading rxbuf.  The return value
1991  * is zero for success, else a negative errno status code.
1992  * This call may only be used from a context that may sleep.
1993  *
1994  * Parameters to this routine are always copied using a small buffer;
1995  * portable code should never use this for more than 32 bytes.
1996  * Performance-sensitive or bulk transfer code should instead use
1997  * spi_{async,sync}() calls with dma-safe buffers.
1998  */
1999 int spi_write_then_read(struct spi_device *spi,
2000 		const void *txbuf, unsigned n_tx,
2001 		void *rxbuf, unsigned n_rx)
2002 {
2003 	static DEFINE_MUTEX(lock);
2004 
2005 	int			status;
2006 	struct spi_message	message;
2007 	struct spi_transfer	x[2];
2008 	u8			*local_buf;
2009 
2010 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2011 	 * copying here, (as a pure convenience thing), but we can
2012 	 * keep heap costs out of the hot path unless someone else is
2013 	 * using the pre-allocated buffer or the transfer is too large.
2014 	 */
2015 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2016 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2017 				    GFP_KERNEL | GFP_DMA);
2018 		if (!local_buf)
2019 			return -ENOMEM;
2020 	} else {
2021 		local_buf = buf;
2022 	}
2023 
2024 	spi_message_init(&message);
2025 	memset(x, 0, sizeof(x));
2026 	if (n_tx) {
2027 		x[0].len = n_tx;
2028 		spi_message_add_tail(&x[0], &message);
2029 	}
2030 	if (n_rx) {
2031 		x[1].len = n_rx;
2032 		spi_message_add_tail(&x[1], &message);
2033 	}
2034 
2035 	memcpy(local_buf, txbuf, n_tx);
2036 	x[0].tx_buf = local_buf;
2037 	x[1].rx_buf = local_buf + n_tx;
2038 
2039 	/* do the i/o */
2040 	status = spi_sync(spi, &message);
2041 	if (status == 0)
2042 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2043 
2044 	if (x[0].tx_buf == buf)
2045 		mutex_unlock(&lock);
2046 	else
2047 		kfree(local_buf);
2048 
2049 	return status;
2050 }
2051 EXPORT_SYMBOL_GPL(spi_write_then_read);
2052 
2053 /*-------------------------------------------------------------------------*/
2054 
2055 static int __init spi_init(void)
2056 {
2057 	int	status;
2058 
2059 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2060 	if (!buf) {
2061 		status = -ENOMEM;
2062 		goto err0;
2063 	}
2064 
2065 	status = bus_register(&spi_bus_type);
2066 	if (status < 0)
2067 		goto err1;
2068 
2069 	status = class_register(&spi_master_class);
2070 	if (status < 0)
2071 		goto err2;
2072 	return 0;
2073 
2074 err2:
2075 	bus_unregister(&spi_bus_type);
2076 err1:
2077 	kfree(buf);
2078 	buf = NULL;
2079 err0:
2080 	return status;
2081 }
2082 
2083 /* board_info is normally registered in arch_initcall(),
2084  * but even essential drivers wait till later
2085  *
2086  * REVISIT only boardinfo really needs static linking. the rest (device and
2087  * driver registration) _could_ be dynamically linked (modular) ... costs
2088  * include needing to have boardinfo data structures be much more public.
2089  */
2090 postcore_initcall(spi_init);
2091 
2092