1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_controller *ctlr) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if ((xfer->tx_buf) && 332 (xfer->tx_buf != ctlr->dummy_tx)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if ((xfer->rx_buf) && 335 (xfer->rx_buf != ctlr->dummy_rx)) 336 u64_stats_add(&stats->bytes_rx, xfer->len); 337 338 u64_stats_update_end(&stats->syncp); 339 put_cpu(); 340 } 341 342 /* 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 344 * and the sysfs version makes coldplug work too. 345 */ 346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 347 { 348 while (id->name[0]) { 349 if (!strcmp(name, id->name)) 350 return id; 351 id++; 352 } 353 return NULL; 354 } 355 356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 357 { 358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 359 360 return spi_match_id(sdrv->id_table, sdev->modalias); 361 } 362 EXPORT_SYMBOL_GPL(spi_get_device_id); 363 364 const void *spi_get_device_match_data(const struct spi_device *sdev) 365 { 366 const void *match; 367 368 match = device_get_match_data(&sdev->dev); 369 if (match) 370 return match; 371 372 return (const void *)spi_get_device_id(sdev)->driver_data; 373 } 374 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 375 376 static int spi_match_device(struct device *dev, struct device_driver *drv) 377 { 378 const struct spi_device *spi = to_spi_device(dev); 379 const struct spi_driver *sdrv = to_spi_driver(drv); 380 381 /* Check override first, and if set, only use the named driver */ 382 if (spi->driver_override) 383 return strcmp(spi->driver_override, drv->name) == 0; 384 385 /* Attempt an OF style match */ 386 if (of_driver_match_device(dev, drv)) 387 return 1; 388 389 /* Then try ACPI */ 390 if (acpi_driver_match_device(dev, drv)) 391 return 1; 392 393 if (sdrv->id_table) 394 return !!spi_match_id(sdrv->id_table, spi->modalias); 395 396 return strcmp(spi->modalias, drv->name) == 0; 397 } 398 399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 400 { 401 const struct spi_device *spi = to_spi_device(dev); 402 int rc; 403 404 rc = acpi_device_uevent_modalias(dev, env); 405 if (rc != -ENODEV) 406 return rc; 407 408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 409 } 410 411 static int spi_probe(struct device *dev) 412 { 413 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 414 struct spi_device *spi = to_spi_device(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (dev->of_node) { 422 spi->irq = of_irq_get(dev->of_node, 0); 423 if (spi->irq == -EPROBE_DEFER) 424 return -EPROBE_DEFER; 425 if (spi->irq < 0) 426 spi->irq = 0; 427 } 428 429 ret = dev_pm_domain_attach(dev, true); 430 if (ret) 431 return ret; 432 433 if (sdrv->probe) { 434 ret = sdrv->probe(spi); 435 if (ret) 436 dev_pm_domain_detach(dev, true); 437 } 438 439 return ret; 440 } 441 442 static void spi_remove(struct device *dev) 443 { 444 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 445 446 if (sdrv->remove) 447 sdrv->remove(to_spi_device(dev)); 448 449 dev_pm_domain_detach(dev, true); 450 } 451 452 static void spi_shutdown(struct device *dev) 453 { 454 if (dev->driver) { 455 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 456 457 if (sdrv->shutdown) 458 sdrv->shutdown(to_spi_device(dev)); 459 } 460 } 461 462 struct bus_type spi_bus_type = { 463 .name = "spi", 464 .dev_groups = spi_dev_groups, 465 .match = spi_match_device, 466 .uevent = spi_uevent, 467 .probe = spi_probe, 468 .remove = spi_remove, 469 .shutdown = spi_shutdown, 470 }; 471 EXPORT_SYMBOL_GPL(spi_bus_type); 472 473 /** 474 * __spi_register_driver - register a SPI driver 475 * @owner: owner module of the driver to register 476 * @sdrv: the driver to register 477 * Context: can sleep 478 * 479 * Return: zero on success, else a negative error code. 480 */ 481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 482 { 483 sdrv->driver.owner = owner; 484 sdrv->driver.bus = &spi_bus_type; 485 486 /* 487 * For Really Good Reasons we use spi: modaliases not of: 488 * modaliases for DT so module autoloading won't work if we 489 * don't have a spi_device_id as well as a compatible string. 490 */ 491 if (sdrv->driver.of_match_table) { 492 const struct of_device_id *of_id; 493 494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 495 of_id++) { 496 const char *of_name; 497 498 /* Strip off any vendor prefix */ 499 of_name = strnchr(of_id->compatible, 500 sizeof(of_id->compatible), ','); 501 if (of_name) 502 of_name++; 503 else 504 of_name = of_id->compatible; 505 506 if (sdrv->id_table) { 507 const struct spi_device_id *spi_id; 508 509 spi_id = spi_match_id(sdrv->id_table, of_name); 510 if (spi_id) 511 continue; 512 } else { 513 if (strcmp(sdrv->driver.name, of_name) == 0) 514 continue; 515 } 516 517 pr_warn("SPI driver %s has no spi_device_id for %s\n", 518 sdrv->driver.name, of_id->compatible); 519 } 520 } 521 522 return driver_register(&sdrv->driver); 523 } 524 EXPORT_SYMBOL_GPL(__spi_register_driver); 525 526 /*-------------------------------------------------------------------------*/ 527 528 /* 529 * SPI devices should normally not be created by SPI device drivers; that 530 * would make them board-specific. Similarly with SPI controller drivers. 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c 532 * with other readonly (flashable) information about mainboard devices. 533 */ 534 535 struct boardinfo { 536 struct list_head list; 537 struct spi_board_info board_info; 538 }; 539 540 static LIST_HEAD(board_list); 541 static LIST_HEAD(spi_controller_list); 542 543 /* 544 * Used to protect add/del operation for board_info list and 545 * spi_controller list, and their matching process also used 546 * to protect object of type struct idr. 547 */ 548 static DEFINE_MUTEX(board_lock); 549 550 /** 551 * spi_alloc_device - Allocate a new SPI device 552 * @ctlr: Controller to which device is connected 553 * Context: can sleep 554 * 555 * Allows a driver to allocate and initialize a spi_device without 556 * registering it immediately. This allows a driver to directly 557 * fill the spi_device with device parameters before calling 558 * spi_add_device() on it. 559 * 560 * Caller is responsible to call spi_add_device() on the returned 561 * spi_device structure to add it to the SPI controller. If the caller 562 * needs to discard the spi_device without adding it, then it should 563 * call spi_dev_put() on it. 564 * 565 * Return: a pointer to the new device, or NULL. 566 */ 567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 568 { 569 struct spi_device *spi; 570 571 if (!spi_controller_get(ctlr)) 572 return NULL; 573 574 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 575 if (!spi) { 576 spi_controller_put(ctlr); 577 return NULL; 578 } 579 580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 581 if (!spi->pcpu_statistics) { 582 kfree(spi); 583 spi_controller_put(ctlr); 584 return NULL; 585 } 586 587 spi->master = spi->controller = ctlr; 588 spi->dev.parent = &ctlr->dev; 589 spi->dev.bus = &spi_bus_type; 590 spi->dev.release = spidev_release; 591 spi->mode = ctlr->buswidth_override_bits; 592 593 device_initialize(&spi->dev); 594 return spi; 595 } 596 EXPORT_SYMBOL_GPL(spi_alloc_device); 597 598 static void spi_dev_set_name(struct spi_device *spi) 599 { 600 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 601 602 if (adev) { 603 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 604 return; 605 } 606 607 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 608 spi_get_chipselect(spi, 0)); 609 } 610 611 static int spi_dev_check(struct device *dev, void *data) 612 { 613 struct spi_device *spi = to_spi_device(dev); 614 struct spi_device *new_spi = data; 615 616 if (spi->controller == new_spi->controller && 617 spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0)) 618 return -EBUSY; 619 return 0; 620 } 621 622 static void spi_cleanup(struct spi_device *spi) 623 { 624 if (spi->controller->cleanup) 625 spi->controller->cleanup(spi); 626 } 627 628 static int __spi_add_device(struct spi_device *spi) 629 { 630 struct spi_controller *ctlr = spi->controller; 631 struct device *dev = ctlr->dev.parent; 632 int status; 633 634 /* Chipselects are numbered 0..max; validate. */ 635 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) { 636 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0), 637 ctlr->num_chipselect); 638 return -EINVAL; 639 } 640 641 /* Set the bus ID string */ 642 spi_dev_set_name(spi); 643 644 /* 645 * We need to make sure there's no other device with this 646 * chipselect **BEFORE** we call setup(), else we'll trash 647 * its configuration. 648 */ 649 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 650 if (status) { 651 dev_err(dev, "chipselect %d already in use\n", 652 spi_get_chipselect(spi, 0)); 653 return status; 654 } 655 656 /* Controller may unregister concurrently */ 657 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 658 !device_is_registered(&ctlr->dev)) { 659 return -ENODEV; 660 } 661 662 if (ctlr->cs_gpiods) 663 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]); 664 665 /* 666 * Drivers may modify this initial i/o setup, but will 667 * normally rely on the device being setup. Devices 668 * using SPI_CS_HIGH can't coexist well otherwise... 669 */ 670 status = spi_setup(spi); 671 if (status < 0) { 672 dev_err(dev, "can't setup %s, status %d\n", 673 dev_name(&spi->dev), status); 674 return status; 675 } 676 677 /* Device may be bound to an active driver when this returns */ 678 status = device_add(&spi->dev); 679 if (status < 0) { 680 dev_err(dev, "can't add %s, status %d\n", 681 dev_name(&spi->dev), status); 682 spi_cleanup(spi); 683 } else { 684 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 685 } 686 687 return status; 688 } 689 690 /** 691 * spi_add_device - Add spi_device allocated with spi_alloc_device 692 * @spi: spi_device to register 693 * 694 * Companion function to spi_alloc_device. Devices allocated with 695 * spi_alloc_device can be added onto the SPI bus with this function. 696 * 697 * Return: 0 on success; negative errno on failure 698 */ 699 int spi_add_device(struct spi_device *spi) 700 { 701 struct spi_controller *ctlr = spi->controller; 702 int status; 703 704 mutex_lock(&ctlr->add_lock); 705 status = __spi_add_device(spi); 706 mutex_unlock(&ctlr->add_lock); 707 return status; 708 } 709 EXPORT_SYMBOL_GPL(spi_add_device); 710 711 /** 712 * spi_new_device - instantiate one new SPI device 713 * @ctlr: Controller to which device is connected 714 * @chip: Describes the SPI device 715 * Context: can sleep 716 * 717 * On typical mainboards, this is purely internal; and it's not needed 718 * after board init creates the hard-wired devices. Some development 719 * platforms may not be able to use spi_register_board_info though, and 720 * this is exported so that for example a USB or parport based adapter 721 * driver could add devices (which it would learn about out-of-band). 722 * 723 * Return: the new device, or NULL. 724 */ 725 struct spi_device *spi_new_device(struct spi_controller *ctlr, 726 struct spi_board_info *chip) 727 { 728 struct spi_device *proxy; 729 int status; 730 731 /* 732 * NOTE: caller did any chip->bus_num checks necessary. 733 * 734 * Also, unless we change the return value convention to use 735 * error-or-pointer (not NULL-or-pointer), troubleshootability 736 * suggests syslogged diagnostics are best here (ugh). 737 */ 738 739 proxy = spi_alloc_device(ctlr); 740 if (!proxy) 741 return NULL; 742 743 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 744 745 spi_set_chipselect(proxy, 0, chip->chip_select); 746 proxy->max_speed_hz = chip->max_speed_hz; 747 proxy->mode = chip->mode; 748 proxy->irq = chip->irq; 749 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 750 proxy->dev.platform_data = (void *) chip->platform_data; 751 proxy->controller_data = chip->controller_data; 752 proxy->controller_state = NULL; 753 754 if (chip->swnode) { 755 status = device_add_software_node(&proxy->dev, chip->swnode); 756 if (status) { 757 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 758 chip->modalias, status); 759 goto err_dev_put; 760 } 761 } 762 763 status = spi_add_device(proxy); 764 if (status < 0) 765 goto err_dev_put; 766 767 return proxy; 768 769 err_dev_put: 770 device_remove_software_node(&proxy->dev); 771 spi_dev_put(proxy); 772 return NULL; 773 } 774 EXPORT_SYMBOL_GPL(spi_new_device); 775 776 /** 777 * spi_unregister_device - unregister a single SPI device 778 * @spi: spi_device to unregister 779 * 780 * Start making the passed SPI device vanish. Normally this would be handled 781 * by spi_unregister_controller(). 782 */ 783 void spi_unregister_device(struct spi_device *spi) 784 { 785 if (!spi) 786 return; 787 788 if (spi->dev.of_node) { 789 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 790 of_node_put(spi->dev.of_node); 791 } 792 if (ACPI_COMPANION(&spi->dev)) 793 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 794 device_remove_software_node(&spi->dev); 795 device_del(&spi->dev); 796 spi_cleanup(spi); 797 put_device(&spi->dev); 798 } 799 EXPORT_SYMBOL_GPL(spi_unregister_device); 800 801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 802 struct spi_board_info *bi) 803 { 804 struct spi_device *dev; 805 806 if (ctlr->bus_num != bi->bus_num) 807 return; 808 809 dev = spi_new_device(ctlr, bi); 810 if (!dev) 811 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 812 bi->modalias); 813 } 814 815 /** 816 * spi_register_board_info - register SPI devices for a given board 817 * @info: array of chip descriptors 818 * @n: how many descriptors are provided 819 * Context: can sleep 820 * 821 * Board-specific early init code calls this (probably during arch_initcall) 822 * with segments of the SPI device table. Any device nodes are created later, 823 * after the relevant parent SPI controller (bus_num) is defined. We keep 824 * this table of devices forever, so that reloading a controller driver will 825 * not make Linux forget about these hard-wired devices. 826 * 827 * Other code can also call this, e.g. a particular add-on board might provide 828 * SPI devices through its expansion connector, so code initializing that board 829 * would naturally declare its SPI devices. 830 * 831 * The board info passed can safely be __initdata ... but be careful of 832 * any embedded pointers (platform_data, etc), they're copied as-is. 833 * 834 * Return: zero on success, else a negative error code. 835 */ 836 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 837 { 838 struct boardinfo *bi; 839 int i; 840 841 if (!n) 842 return 0; 843 844 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 845 if (!bi) 846 return -ENOMEM; 847 848 for (i = 0; i < n; i++, bi++, info++) { 849 struct spi_controller *ctlr; 850 851 memcpy(&bi->board_info, info, sizeof(*info)); 852 853 mutex_lock(&board_lock); 854 list_add_tail(&bi->list, &board_list); 855 list_for_each_entry(ctlr, &spi_controller_list, list) 856 spi_match_controller_to_boardinfo(ctlr, 857 &bi->board_info); 858 mutex_unlock(&board_lock); 859 } 860 861 return 0; 862 } 863 864 /*-------------------------------------------------------------------------*/ 865 866 /* Core methods for SPI resource management */ 867 868 /** 869 * spi_res_alloc - allocate a spi resource that is life-cycle managed 870 * during the processing of a spi_message while using 871 * spi_transfer_one 872 * @spi: the SPI device for which we allocate memory 873 * @release: the release code to execute for this resource 874 * @size: size to alloc and return 875 * @gfp: GFP allocation flags 876 * 877 * Return: the pointer to the allocated data 878 * 879 * This may get enhanced in the future to allocate from a memory pool 880 * of the @spi_device or @spi_controller to avoid repeated allocations. 881 */ 882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 883 size_t size, gfp_t gfp) 884 { 885 struct spi_res *sres; 886 887 sres = kzalloc(sizeof(*sres) + size, gfp); 888 if (!sres) 889 return NULL; 890 891 INIT_LIST_HEAD(&sres->entry); 892 sres->release = release; 893 894 return sres->data; 895 } 896 897 /** 898 * spi_res_free - free an SPI resource 899 * @res: pointer to the custom data of a resource 900 */ 901 static void spi_res_free(void *res) 902 { 903 struct spi_res *sres = container_of(res, struct spi_res, data); 904 905 if (!res) 906 return; 907 908 WARN_ON(!list_empty(&sres->entry)); 909 kfree(sres); 910 } 911 912 /** 913 * spi_res_add - add a spi_res to the spi_message 914 * @message: the SPI message 915 * @res: the spi_resource 916 */ 917 static void spi_res_add(struct spi_message *message, void *res) 918 { 919 struct spi_res *sres = container_of(res, struct spi_res, data); 920 921 WARN_ON(!list_empty(&sres->entry)); 922 list_add_tail(&sres->entry, &message->resources); 923 } 924 925 /** 926 * spi_res_release - release all SPI resources for this message 927 * @ctlr: the @spi_controller 928 * @message: the @spi_message 929 */ 930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 931 { 932 struct spi_res *res, *tmp; 933 934 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 935 if (res->release) 936 res->release(ctlr, message, res->data); 937 938 list_del(&res->entry); 939 940 kfree(res); 941 } 942 } 943 944 /*-------------------------------------------------------------------------*/ 945 946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 947 { 948 bool activate = enable; 949 950 /* 951 * Avoid calling into the driver (or doing delays) if the chip select 952 * isn't actually changing from the last time this was called. 953 */ 954 if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) || 955 (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) && 956 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 957 return; 958 959 trace_spi_set_cs(spi, activate); 960 961 spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1; 962 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 963 964 if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate) 965 spi_delay_exec(&spi->cs_hold, NULL); 966 967 if (spi->mode & SPI_CS_HIGH) 968 enable = !enable; 969 970 if (spi_get_csgpiod(spi, 0)) { 971 if (!(spi->mode & SPI_NO_CS)) { 972 /* 973 * Historically ACPI has no means of the GPIO polarity and 974 * thus the SPISerialBus() resource defines it on the per-chip 975 * basis. In order to avoid a chain of negations, the GPIO 976 * polarity is considered being Active High. Even for the cases 977 * when _DSD() is involved (in the updated versions of ACPI) 978 * the GPIO CS polarity must be defined Active High to avoid 979 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 980 * into account. 981 */ 982 if (has_acpi_companion(&spi->dev)) 983 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable); 984 else 985 /* Polarity handled by GPIO library */ 986 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate); 987 } 988 /* Some SPI masters need both GPIO CS & slave_select */ 989 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 990 spi->controller->set_cs) 991 spi->controller->set_cs(spi, !enable); 992 } else if (spi->controller->set_cs) { 993 spi->controller->set_cs(spi, !enable); 994 } 995 996 if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) { 997 if (activate) 998 spi_delay_exec(&spi->cs_setup, NULL); 999 else 1000 spi_delay_exec(&spi->cs_inactive, NULL); 1001 } 1002 } 1003 1004 #ifdef CONFIG_HAS_DMA 1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1006 struct sg_table *sgt, void *buf, size_t len, 1007 enum dma_data_direction dir, unsigned long attrs) 1008 { 1009 const bool vmalloced_buf = is_vmalloc_addr(buf); 1010 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1011 #ifdef CONFIG_HIGHMEM 1012 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1013 (unsigned long)buf < (PKMAP_BASE + 1014 (LAST_PKMAP * PAGE_SIZE))); 1015 #else 1016 const bool kmap_buf = false; 1017 #endif 1018 int desc_len; 1019 int sgs; 1020 struct page *vm_page; 1021 struct scatterlist *sg; 1022 void *sg_buf; 1023 size_t min; 1024 int i, ret; 1025 1026 if (vmalloced_buf || kmap_buf) { 1027 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1028 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1029 } else if (virt_addr_valid(buf)) { 1030 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1031 sgs = DIV_ROUND_UP(len, desc_len); 1032 } else { 1033 return -EINVAL; 1034 } 1035 1036 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1037 if (ret != 0) 1038 return ret; 1039 1040 sg = &sgt->sgl[0]; 1041 for (i = 0; i < sgs; i++) { 1042 1043 if (vmalloced_buf || kmap_buf) { 1044 /* 1045 * Next scatterlist entry size is the minimum between 1046 * the desc_len and the remaining buffer length that 1047 * fits in a page. 1048 */ 1049 min = min_t(size_t, desc_len, 1050 min_t(size_t, len, 1051 PAGE_SIZE - offset_in_page(buf))); 1052 if (vmalloced_buf) 1053 vm_page = vmalloc_to_page(buf); 1054 else 1055 vm_page = kmap_to_page(buf); 1056 if (!vm_page) { 1057 sg_free_table(sgt); 1058 return -ENOMEM; 1059 } 1060 sg_set_page(sg, vm_page, 1061 min, offset_in_page(buf)); 1062 } else { 1063 min = min_t(size_t, len, desc_len); 1064 sg_buf = buf; 1065 sg_set_buf(sg, sg_buf, min); 1066 } 1067 1068 buf += min; 1069 len -= min; 1070 sg = sg_next(sg); 1071 } 1072 1073 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1074 if (ret < 0) { 1075 sg_free_table(sgt); 1076 return ret; 1077 } 1078 1079 return 0; 1080 } 1081 1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1083 struct sg_table *sgt, void *buf, size_t len, 1084 enum dma_data_direction dir) 1085 { 1086 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1087 } 1088 1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1090 struct device *dev, struct sg_table *sgt, 1091 enum dma_data_direction dir, 1092 unsigned long attrs) 1093 { 1094 if (sgt->orig_nents) { 1095 dma_unmap_sgtable(dev, sgt, dir, attrs); 1096 sg_free_table(sgt); 1097 sgt->orig_nents = 0; 1098 sgt->nents = 0; 1099 } 1100 } 1101 1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1103 struct sg_table *sgt, enum dma_data_direction dir) 1104 { 1105 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1106 } 1107 1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1109 { 1110 struct device *tx_dev, *rx_dev; 1111 struct spi_transfer *xfer; 1112 int ret; 1113 1114 if (!ctlr->can_dma) 1115 return 0; 1116 1117 if (ctlr->dma_tx) 1118 tx_dev = ctlr->dma_tx->device->dev; 1119 else if (ctlr->dma_map_dev) 1120 tx_dev = ctlr->dma_map_dev; 1121 else 1122 tx_dev = ctlr->dev.parent; 1123 1124 if (ctlr->dma_rx) 1125 rx_dev = ctlr->dma_rx->device->dev; 1126 else if (ctlr->dma_map_dev) 1127 rx_dev = ctlr->dma_map_dev; 1128 else 1129 rx_dev = ctlr->dev.parent; 1130 1131 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1132 /* The sync is done before each transfer. */ 1133 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1134 1135 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1136 continue; 1137 1138 if (xfer->tx_buf != NULL) { 1139 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1140 (void *)xfer->tx_buf, 1141 xfer->len, DMA_TO_DEVICE, 1142 attrs); 1143 if (ret != 0) 1144 return ret; 1145 } 1146 1147 if (xfer->rx_buf != NULL) { 1148 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1149 xfer->rx_buf, xfer->len, 1150 DMA_FROM_DEVICE, attrs); 1151 if (ret != 0) { 1152 spi_unmap_buf_attrs(ctlr, tx_dev, 1153 &xfer->tx_sg, DMA_TO_DEVICE, 1154 attrs); 1155 1156 return ret; 1157 } 1158 } 1159 } 1160 1161 ctlr->cur_rx_dma_dev = rx_dev; 1162 ctlr->cur_tx_dma_dev = tx_dev; 1163 ctlr->cur_msg_mapped = true; 1164 1165 return 0; 1166 } 1167 1168 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1169 { 1170 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1171 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1172 struct spi_transfer *xfer; 1173 1174 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1175 return 0; 1176 1177 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1178 /* The sync has already been done after each transfer. */ 1179 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1180 1181 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1182 continue; 1183 1184 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1185 DMA_FROM_DEVICE, attrs); 1186 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1187 DMA_TO_DEVICE, attrs); 1188 } 1189 1190 ctlr->cur_msg_mapped = false; 1191 1192 return 0; 1193 } 1194 1195 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1196 struct spi_transfer *xfer) 1197 { 1198 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1199 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1200 1201 if (!ctlr->cur_msg_mapped) 1202 return; 1203 1204 if (xfer->tx_sg.orig_nents) 1205 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1206 if (xfer->rx_sg.orig_nents) 1207 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1208 } 1209 1210 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1211 struct spi_transfer *xfer) 1212 { 1213 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1214 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1215 1216 if (!ctlr->cur_msg_mapped) 1217 return; 1218 1219 if (xfer->rx_sg.orig_nents) 1220 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1221 if (xfer->tx_sg.orig_nents) 1222 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1223 } 1224 #else /* !CONFIG_HAS_DMA */ 1225 static inline int __spi_map_msg(struct spi_controller *ctlr, 1226 struct spi_message *msg) 1227 { 1228 return 0; 1229 } 1230 1231 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1232 struct spi_message *msg) 1233 { 1234 return 0; 1235 } 1236 1237 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1238 struct spi_transfer *xfer) 1239 { 1240 } 1241 1242 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1243 struct spi_transfer *xfer) 1244 { 1245 } 1246 #endif /* !CONFIG_HAS_DMA */ 1247 1248 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1249 struct spi_message *msg) 1250 { 1251 struct spi_transfer *xfer; 1252 1253 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1254 /* 1255 * Restore the original value of tx_buf or rx_buf if they are 1256 * NULL. 1257 */ 1258 if (xfer->tx_buf == ctlr->dummy_tx) 1259 xfer->tx_buf = NULL; 1260 if (xfer->rx_buf == ctlr->dummy_rx) 1261 xfer->rx_buf = NULL; 1262 } 1263 1264 return __spi_unmap_msg(ctlr, msg); 1265 } 1266 1267 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1268 { 1269 struct spi_transfer *xfer; 1270 void *tmp; 1271 unsigned int max_tx, max_rx; 1272 1273 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1274 && !(msg->spi->mode & SPI_3WIRE)) { 1275 max_tx = 0; 1276 max_rx = 0; 1277 1278 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1279 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1280 !xfer->tx_buf) 1281 max_tx = max(xfer->len, max_tx); 1282 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1283 !xfer->rx_buf) 1284 max_rx = max(xfer->len, max_rx); 1285 } 1286 1287 if (max_tx) { 1288 tmp = krealloc(ctlr->dummy_tx, max_tx, 1289 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1290 if (!tmp) 1291 return -ENOMEM; 1292 ctlr->dummy_tx = tmp; 1293 } 1294 1295 if (max_rx) { 1296 tmp = krealloc(ctlr->dummy_rx, max_rx, 1297 GFP_KERNEL | GFP_DMA); 1298 if (!tmp) 1299 return -ENOMEM; 1300 ctlr->dummy_rx = tmp; 1301 } 1302 1303 if (max_tx || max_rx) { 1304 list_for_each_entry(xfer, &msg->transfers, 1305 transfer_list) { 1306 if (!xfer->len) 1307 continue; 1308 if (!xfer->tx_buf) 1309 xfer->tx_buf = ctlr->dummy_tx; 1310 if (!xfer->rx_buf) 1311 xfer->rx_buf = ctlr->dummy_rx; 1312 } 1313 } 1314 } 1315 1316 return __spi_map_msg(ctlr, msg); 1317 } 1318 1319 static int spi_transfer_wait(struct spi_controller *ctlr, 1320 struct spi_message *msg, 1321 struct spi_transfer *xfer) 1322 { 1323 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1324 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1325 u32 speed_hz = xfer->speed_hz; 1326 unsigned long long ms; 1327 1328 if (spi_controller_is_slave(ctlr)) { 1329 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1330 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1331 return -EINTR; 1332 } 1333 } else { 1334 if (!speed_hz) 1335 speed_hz = 100000; 1336 1337 /* 1338 * For each byte we wait for 8 cycles of the SPI clock. 1339 * Since speed is defined in Hz and we want milliseconds, 1340 * use respective multiplier, but before the division, 1341 * otherwise we may get 0 for short transfers. 1342 */ 1343 ms = 8LL * MSEC_PER_SEC * xfer->len; 1344 do_div(ms, speed_hz); 1345 1346 /* 1347 * Increase it twice and add 200 ms tolerance, use 1348 * predefined maximum in case of overflow. 1349 */ 1350 ms += ms + 200; 1351 if (ms > UINT_MAX) 1352 ms = UINT_MAX; 1353 1354 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1355 msecs_to_jiffies(ms)); 1356 1357 if (ms == 0) { 1358 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1359 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1360 dev_err(&msg->spi->dev, 1361 "SPI transfer timed out\n"); 1362 return -ETIMEDOUT; 1363 } 1364 } 1365 1366 return 0; 1367 } 1368 1369 static void _spi_transfer_delay_ns(u32 ns) 1370 { 1371 if (!ns) 1372 return; 1373 if (ns <= NSEC_PER_USEC) { 1374 ndelay(ns); 1375 } else { 1376 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1377 1378 if (us <= 10) 1379 udelay(us); 1380 else 1381 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1382 } 1383 } 1384 1385 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1386 { 1387 u32 delay = _delay->value; 1388 u32 unit = _delay->unit; 1389 u32 hz; 1390 1391 if (!delay) 1392 return 0; 1393 1394 switch (unit) { 1395 case SPI_DELAY_UNIT_USECS: 1396 delay *= NSEC_PER_USEC; 1397 break; 1398 case SPI_DELAY_UNIT_NSECS: 1399 /* Nothing to do here */ 1400 break; 1401 case SPI_DELAY_UNIT_SCK: 1402 /* Clock cycles need to be obtained from spi_transfer */ 1403 if (!xfer) 1404 return -EINVAL; 1405 /* 1406 * If there is unknown effective speed, approximate it 1407 * by underestimating with half of the requested Hz. 1408 */ 1409 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1410 if (!hz) 1411 return -EINVAL; 1412 1413 /* Convert delay to nanoseconds */ 1414 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1415 break; 1416 default: 1417 return -EINVAL; 1418 } 1419 1420 return delay; 1421 } 1422 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1423 1424 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1425 { 1426 int delay; 1427 1428 might_sleep(); 1429 1430 if (!_delay) 1431 return -EINVAL; 1432 1433 delay = spi_delay_to_ns(_delay, xfer); 1434 if (delay < 0) 1435 return delay; 1436 1437 _spi_transfer_delay_ns(delay); 1438 1439 return 0; 1440 } 1441 EXPORT_SYMBOL_GPL(spi_delay_exec); 1442 1443 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1444 struct spi_transfer *xfer) 1445 { 1446 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1447 u32 delay = xfer->cs_change_delay.value; 1448 u32 unit = xfer->cs_change_delay.unit; 1449 int ret; 1450 1451 /* Return early on "fast" mode - for everything but USECS */ 1452 if (!delay) { 1453 if (unit == SPI_DELAY_UNIT_USECS) 1454 _spi_transfer_delay_ns(default_delay_ns); 1455 return; 1456 } 1457 1458 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1459 if (ret) { 1460 dev_err_once(&msg->spi->dev, 1461 "Use of unsupported delay unit %i, using default of %luus\n", 1462 unit, default_delay_ns / NSEC_PER_USEC); 1463 _spi_transfer_delay_ns(default_delay_ns); 1464 } 1465 } 1466 1467 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1468 struct spi_transfer *xfer) 1469 { 1470 _spi_transfer_cs_change_delay(msg, xfer); 1471 } 1472 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1473 1474 /* 1475 * spi_transfer_one_message - Default implementation of transfer_one_message() 1476 * 1477 * This is a standard implementation of transfer_one_message() for 1478 * drivers which implement a transfer_one() operation. It provides 1479 * standard handling of delays and chip select management. 1480 */ 1481 static int spi_transfer_one_message(struct spi_controller *ctlr, 1482 struct spi_message *msg) 1483 { 1484 struct spi_transfer *xfer; 1485 bool keep_cs = false; 1486 int ret = 0; 1487 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1488 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1489 1490 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1491 spi_set_cs(msg->spi, !xfer->cs_off, false); 1492 1493 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1494 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1495 1496 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1497 trace_spi_transfer_start(msg, xfer); 1498 1499 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1500 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1501 1502 if (!ctlr->ptp_sts_supported) { 1503 xfer->ptp_sts_word_pre = 0; 1504 ptp_read_system_prets(xfer->ptp_sts); 1505 } 1506 1507 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1508 reinit_completion(&ctlr->xfer_completion); 1509 1510 fallback_pio: 1511 spi_dma_sync_for_device(ctlr, xfer); 1512 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1513 if (ret < 0) { 1514 spi_dma_sync_for_cpu(ctlr, xfer); 1515 1516 if (ctlr->cur_msg_mapped && 1517 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1518 __spi_unmap_msg(ctlr, msg); 1519 ctlr->fallback = true; 1520 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1521 goto fallback_pio; 1522 } 1523 1524 SPI_STATISTICS_INCREMENT_FIELD(statm, 1525 errors); 1526 SPI_STATISTICS_INCREMENT_FIELD(stats, 1527 errors); 1528 dev_err(&msg->spi->dev, 1529 "SPI transfer failed: %d\n", ret); 1530 goto out; 1531 } 1532 1533 if (ret > 0) { 1534 ret = spi_transfer_wait(ctlr, msg, xfer); 1535 if (ret < 0) 1536 msg->status = ret; 1537 } 1538 1539 spi_dma_sync_for_cpu(ctlr, xfer); 1540 } else { 1541 if (xfer->len) 1542 dev_err(&msg->spi->dev, 1543 "Bufferless transfer has length %u\n", 1544 xfer->len); 1545 } 1546 1547 if (!ctlr->ptp_sts_supported) { 1548 ptp_read_system_postts(xfer->ptp_sts); 1549 xfer->ptp_sts_word_post = xfer->len; 1550 } 1551 1552 trace_spi_transfer_stop(msg, xfer); 1553 1554 if (msg->status != -EINPROGRESS) 1555 goto out; 1556 1557 spi_transfer_delay_exec(xfer); 1558 1559 if (xfer->cs_change) { 1560 if (list_is_last(&xfer->transfer_list, 1561 &msg->transfers)) { 1562 keep_cs = true; 1563 } else { 1564 if (!xfer->cs_off) 1565 spi_set_cs(msg->spi, false, false); 1566 _spi_transfer_cs_change_delay(msg, xfer); 1567 if (!list_next_entry(xfer, transfer_list)->cs_off) 1568 spi_set_cs(msg->spi, true, false); 1569 } 1570 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1571 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1572 spi_set_cs(msg->spi, xfer->cs_off, false); 1573 } 1574 1575 msg->actual_length += xfer->len; 1576 } 1577 1578 out: 1579 if (ret != 0 || !keep_cs) 1580 spi_set_cs(msg->spi, false, false); 1581 1582 if (msg->status == -EINPROGRESS) 1583 msg->status = ret; 1584 1585 if (msg->status && ctlr->handle_err) 1586 ctlr->handle_err(ctlr, msg); 1587 1588 spi_finalize_current_message(ctlr); 1589 1590 return ret; 1591 } 1592 1593 /** 1594 * spi_finalize_current_transfer - report completion of a transfer 1595 * @ctlr: the controller reporting completion 1596 * 1597 * Called by SPI drivers using the core transfer_one_message() 1598 * implementation to notify it that the current interrupt driven 1599 * transfer has finished and the next one may be scheduled. 1600 */ 1601 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1602 { 1603 complete(&ctlr->xfer_completion); 1604 } 1605 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1606 1607 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1608 { 1609 if (ctlr->auto_runtime_pm) { 1610 pm_runtime_mark_last_busy(ctlr->dev.parent); 1611 pm_runtime_put_autosuspend(ctlr->dev.parent); 1612 } 1613 } 1614 1615 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1616 struct spi_message *msg, bool was_busy) 1617 { 1618 struct spi_transfer *xfer; 1619 int ret; 1620 1621 if (!was_busy && ctlr->auto_runtime_pm) { 1622 ret = pm_runtime_get_sync(ctlr->dev.parent); 1623 if (ret < 0) { 1624 pm_runtime_put_noidle(ctlr->dev.parent); 1625 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1626 ret); 1627 return ret; 1628 } 1629 } 1630 1631 if (!was_busy) 1632 trace_spi_controller_busy(ctlr); 1633 1634 if (!was_busy && ctlr->prepare_transfer_hardware) { 1635 ret = ctlr->prepare_transfer_hardware(ctlr); 1636 if (ret) { 1637 dev_err(&ctlr->dev, 1638 "failed to prepare transfer hardware: %d\n", 1639 ret); 1640 1641 if (ctlr->auto_runtime_pm) 1642 pm_runtime_put(ctlr->dev.parent); 1643 1644 msg->status = ret; 1645 spi_finalize_current_message(ctlr); 1646 1647 return ret; 1648 } 1649 } 1650 1651 trace_spi_message_start(msg); 1652 1653 ret = spi_split_transfers_maxsize(ctlr, msg, 1654 spi_max_transfer_size(msg->spi), 1655 GFP_KERNEL | GFP_DMA); 1656 if (ret) { 1657 msg->status = ret; 1658 spi_finalize_current_message(ctlr); 1659 return ret; 1660 } 1661 1662 if (ctlr->prepare_message) { 1663 ret = ctlr->prepare_message(ctlr, msg); 1664 if (ret) { 1665 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1666 ret); 1667 msg->status = ret; 1668 spi_finalize_current_message(ctlr); 1669 return ret; 1670 } 1671 msg->prepared = true; 1672 } 1673 1674 ret = spi_map_msg(ctlr, msg); 1675 if (ret) { 1676 msg->status = ret; 1677 spi_finalize_current_message(ctlr); 1678 return ret; 1679 } 1680 1681 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1682 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1683 xfer->ptp_sts_word_pre = 0; 1684 ptp_read_system_prets(xfer->ptp_sts); 1685 } 1686 } 1687 1688 /* 1689 * Drivers implementation of transfer_one_message() must arrange for 1690 * spi_finalize_current_message() to get called. Most drivers will do 1691 * this in the calling context, but some don't. For those cases, a 1692 * completion is used to guarantee that this function does not return 1693 * until spi_finalize_current_message() is done accessing 1694 * ctlr->cur_msg. 1695 * Use of the following two flags enable to opportunistically skip the 1696 * use of the completion since its use involves expensive spin locks. 1697 * In case of a race with the context that calls 1698 * spi_finalize_current_message() the completion will always be used, 1699 * due to strict ordering of these flags using barriers. 1700 */ 1701 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1702 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1703 reinit_completion(&ctlr->cur_msg_completion); 1704 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1705 1706 ret = ctlr->transfer_one_message(ctlr, msg); 1707 if (ret) { 1708 dev_err(&ctlr->dev, 1709 "failed to transfer one message from queue\n"); 1710 return ret; 1711 } 1712 1713 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1714 smp_mb(); /* See spi_finalize_current_message()... */ 1715 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1716 wait_for_completion(&ctlr->cur_msg_completion); 1717 1718 return 0; 1719 } 1720 1721 /** 1722 * __spi_pump_messages - function which processes SPI message queue 1723 * @ctlr: controller to process queue for 1724 * @in_kthread: true if we are in the context of the message pump thread 1725 * 1726 * This function checks if there is any SPI message in the queue that 1727 * needs processing and if so call out to the driver to initialize hardware 1728 * and transfer each message. 1729 * 1730 * Note that it is called both from the kthread itself and also from 1731 * inside spi_sync(); the queue extraction handling at the top of the 1732 * function should deal with this safely. 1733 */ 1734 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1735 { 1736 struct spi_message *msg; 1737 bool was_busy = false; 1738 unsigned long flags; 1739 int ret; 1740 1741 /* Take the I/O mutex */ 1742 mutex_lock(&ctlr->io_mutex); 1743 1744 /* Lock queue */ 1745 spin_lock_irqsave(&ctlr->queue_lock, flags); 1746 1747 /* Make sure we are not already running a message */ 1748 if (ctlr->cur_msg) 1749 goto out_unlock; 1750 1751 /* Check if the queue is idle */ 1752 if (list_empty(&ctlr->queue) || !ctlr->running) { 1753 if (!ctlr->busy) 1754 goto out_unlock; 1755 1756 /* Defer any non-atomic teardown to the thread */ 1757 if (!in_kthread) { 1758 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1759 !ctlr->unprepare_transfer_hardware) { 1760 spi_idle_runtime_pm(ctlr); 1761 ctlr->busy = false; 1762 ctlr->queue_empty = true; 1763 trace_spi_controller_idle(ctlr); 1764 } else { 1765 kthread_queue_work(ctlr->kworker, 1766 &ctlr->pump_messages); 1767 } 1768 goto out_unlock; 1769 } 1770 1771 ctlr->busy = false; 1772 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1773 1774 kfree(ctlr->dummy_rx); 1775 ctlr->dummy_rx = NULL; 1776 kfree(ctlr->dummy_tx); 1777 ctlr->dummy_tx = NULL; 1778 if (ctlr->unprepare_transfer_hardware && 1779 ctlr->unprepare_transfer_hardware(ctlr)) 1780 dev_err(&ctlr->dev, 1781 "failed to unprepare transfer hardware\n"); 1782 spi_idle_runtime_pm(ctlr); 1783 trace_spi_controller_idle(ctlr); 1784 1785 spin_lock_irqsave(&ctlr->queue_lock, flags); 1786 ctlr->queue_empty = true; 1787 goto out_unlock; 1788 } 1789 1790 /* Extract head of queue */ 1791 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1792 ctlr->cur_msg = msg; 1793 1794 list_del_init(&msg->queue); 1795 if (ctlr->busy) 1796 was_busy = true; 1797 else 1798 ctlr->busy = true; 1799 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1800 1801 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1802 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1803 1804 ctlr->cur_msg = NULL; 1805 ctlr->fallback = false; 1806 1807 mutex_unlock(&ctlr->io_mutex); 1808 1809 /* Prod the scheduler in case transfer_one() was busy waiting */ 1810 if (!ret) 1811 cond_resched(); 1812 return; 1813 1814 out_unlock: 1815 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1816 mutex_unlock(&ctlr->io_mutex); 1817 } 1818 1819 /** 1820 * spi_pump_messages - kthread work function which processes spi message queue 1821 * @work: pointer to kthread work struct contained in the controller struct 1822 */ 1823 static void spi_pump_messages(struct kthread_work *work) 1824 { 1825 struct spi_controller *ctlr = 1826 container_of(work, struct spi_controller, pump_messages); 1827 1828 __spi_pump_messages(ctlr, true); 1829 } 1830 1831 /** 1832 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1833 * @ctlr: Pointer to the spi_controller structure of the driver 1834 * @xfer: Pointer to the transfer being timestamped 1835 * @progress: How many words (not bytes) have been transferred so far 1836 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1837 * transfer, for less jitter in time measurement. Only compatible 1838 * with PIO drivers. If true, must follow up with 1839 * spi_take_timestamp_post or otherwise system will crash. 1840 * WARNING: for fully predictable results, the CPU frequency must 1841 * also be under control (governor). 1842 * 1843 * This is a helper for drivers to collect the beginning of the TX timestamp 1844 * for the requested byte from the SPI transfer. The frequency with which this 1845 * function must be called (once per word, once for the whole transfer, once 1846 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1847 * greater than or equal to the requested byte at the time of the call. The 1848 * timestamp is only taken once, at the first such call. It is assumed that 1849 * the driver advances its @tx buffer pointer monotonically. 1850 */ 1851 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1852 struct spi_transfer *xfer, 1853 size_t progress, bool irqs_off) 1854 { 1855 if (!xfer->ptp_sts) 1856 return; 1857 1858 if (xfer->timestamped) 1859 return; 1860 1861 if (progress > xfer->ptp_sts_word_pre) 1862 return; 1863 1864 /* Capture the resolution of the timestamp */ 1865 xfer->ptp_sts_word_pre = progress; 1866 1867 if (irqs_off) { 1868 local_irq_save(ctlr->irq_flags); 1869 preempt_disable(); 1870 } 1871 1872 ptp_read_system_prets(xfer->ptp_sts); 1873 } 1874 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1875 1876 /** 1877 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1878 * @ctlr: Pointer to the spi_controller structure of the driver 1879 * @xfer: Pointer to the transfer being timestamped 1880 * @progress: How many words (not bytes) have been transferred so far 1881 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1882 * 1883 * This is a helper for drivers to collect the end of the TX timestamp for 1884 * the requested byte from the SPI transfer. Can be called with an arbitrary 1885 * frequency: only the first call where @tx exceeds or is equal to the 1886 * requested word will be timestamped. 1887 */ 1888 void spi_take_timestamp_post(struct spi_controller *ctlr, 1889 struct spi_transfer *xfer, 1890 size_t progress, bool irqs_off) 1891 { 1892 if (!xfer->ptp_sts) 1893 return; 1894 1895 if (xfer->timestamped) 1896 return; 1897 1898 if (progress < xfer->ptp_sts_word_post) 1899 return; 1900 1901 ptp_read_system_postts(xfer->ptp_sts); 1902 1903 if (irqs_off) { 1904 local_irq_restore(ctlr->irq_flags); 1905 preempt_enable(); 1906 } 1907 1908 /* Capture the resolution of the timestamp */ 1909 xfer->ptp_sts_word_post = progress; 1910 1911 xfer->timestamped = 1; 1912 } 1913 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1914 1915 /** 1916 * spi_set_thread_rt - set the controller to pump at realtime priority 1917 * @ctlr: controller to boost priority of 1918 * 1919 * This can be called because the controller requested realtime priority 1920 * (by setting the ->rt value before calling spi_register_controller()) or 1921 * because a device on the bus said that its transfers needed realtime 1922 * priority. 1923 * 1924 * NOTE: at the moment if any device on a bus says it needs realtime then 1925 * the thread will be at realtime priority for all transfers on that 1926 * controller. If this eventually becomes a problem we may see if we can 1927 * find a way to boost the priority only temporarily during relevant 1928 * transfers. 1929 */ 1930 static void spi_set_thread_rt(struct spi_controller *ctlr) 1931 { 1932 dev_info(&ctlr->dev, 1933 "will run message pump with realtime priority\n"); 1934 sched_set_fifo(ctlr->kworker->task); 1935 } 1936 1937 static int spi_init_queue(struct spi_controller *ctlr) 1938 { 1939 ctlr->running = false; 1940 ctlr->busy = false; 1941 ctlr->queue_empty = true; 1942 1943 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1944 if (IS_ERR(ctlr->kworker)) { 1945 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1946 return PTR_ERR(ctlr->kworker); 1947 } 1948 1949 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1950 1951 /* 1952 * Controller config will indicate if this controller should run the 1953 * message pump with high (realtime) priority to reduce the transfer 1954 * latency on the bus by minimising the delay between a transfer 1955 * request and the scheduling of the message pump thread. Without this 1956 * setting the message pump thread will remain at default priority. 1957 */ 1958 if (ctlr->rt) 1959 spi_set_thread_rt(ctlr); 1960 1961 return 0; 1962 } 1963 1964 /** 1965 * spi_get_next_queued_message() - called by driver to check for queued 1966 * messages 1967 * @ctlr: the controller to check for queued messages 1968 * 1969 * If there are more messages in the queue, the next message is returned from 1970 * this call. 1971 * 1972 * Return: the next message in the queue, else NULL if the queue is empty. 1973 */ 1974 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1975 { 1976 struct spi_message *next; 1977 unsigned long flags; 1978 1979 /* Get a pointer to the next message, if any */ 1980 spin_lock_irqsave(&ctlr->queue_lock, flags); 1981 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1982 queue); 1983 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1984 1985 return next; 1986 } 1987 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1988 1989 /** 1990 * spi_finalize_current_message() - the current message is complete 1991 * @ctlr: the controller to return the message to 1992 * 1993 * Called by the driver to notify the core that the message in the front of the 1994 * queue is complete and can be removed from the queue. 1995 */ 1996 void spi_finalize_current_message(struct spi_controller *ctlr) 1997 { 1998 struct spi_transfer *xfer; 1999 struct spi_message *mesg; 2000 int ret; 2001 2002 mesg = ctlr->cur_msg; 2003 2004 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2005 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2006 ptp_read_system_postts(xfer->ptp_sts); 2007 xfer->ptp_sts_word_post = xfer->len; 2008 } 2009 } 2010 2011 if (unlikely(ctlr->ptp_sts_supported)) 2012 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2013 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2014 2015 spi_unmap_msg(ctlr, mesg); 2016 2017 /* 2018 * In the prepare_messages callback the SPI bus has the opportunity 2019 * to split a transfer to smaller chunks. 2020 * 2021 * Release the split transfers here since spi_map_msg() is done on 2022 * the split transfers. 2023 */ 2024 spi_res_release(ctlr, mesg); 2025 2026 if (mesg->prepared && ctlr->unprepare_message) { 2027 ret = ctlr->unprepare_message(ctlr, mesg); 2028 if (ret) { 2029 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2030 ret); 2031 } 2032 } 2033 2034 mesg->prepared = false; 2035 2036 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2037 smp_mb(); /* See __spi_pump_transfer_message()... */ 2038 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2039 complete(&ctlr->cur_msg_completion); 2040 2041 trace_spi_message_done(mesg); 2042 2043 mesg->state = NULL; 2044 if (mesg->complete) 2045 mesg->complete(mesg->context); 2046 } 2047 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2048 2049 static int spi_start_queue(struct spi_controller *ctlr) 2050 { 2051 unsigned long flags; 2052 2053 spin_lock_irqsave(&ctlr->queue_lock, flags); 2054 2055 if (ctlr->running || ctlr->busy) { 2056 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2057 return -EBUSY; 2058 } 2059 2060 ctlr->running = true; 2061 ctlr->cur_msg = NULL; 2062 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2063 2064 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2065 2066 return 0; 2067 } 2068 2069 static int spi_stop_queue(struct spi_controller *ctlr) 2070 { 2071 unsigned long flags; 2072 unsigned limit = 500; 2073 int ret = 0; 2074 2075 spin_lock_irqsave(&ctlr->queue_lock, flags); 2076 2077 /* 2078 * This is a bit lame, but is optimized for the common execution path. 2079 * A wait_queue on the ctlr->busy could be used, but then the common 2080 * execution path (pump_messages) would be required to call wake_up or 2081 * friends on every SPI message. Do this instead. 2082 */ 2083 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2084 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2085 usleep_range(10000, 11000); 2086 spin_lock_irqsave(&ctlr->queue_lock, flags); 2087 } 2088 2089 if (!list_empty(&ctlr->queue) || ctlr->busy) 2090 ret = -EBUSY; 2091 else 2092 ctlr->running = false; 2093 2094 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2095 2096 if (ret) { 2097 dev_warn(&ctlr->dev, "could not stop message queue\n"); 2098 return ret; 2099 } 2100 return ret; 2101 } 2102 2103 static int spi_destroy_queue(struct spi_controller *ctlr) 2104 { 2105 int ret; 2106 2107 ret = spi_stop_queue(ctlr); 2108 2109 /* 2110 * kthread_flush_worker will block until all work is done. 2111 * If the reason that stop_queue timed out is that the work will never 2112 * finish, then it does no good to call flush/stop thread, so 2113 * return anyway. 2114 */ 2115 if (ret) { 2116 dev_err(&ctlr->dev, "problem destroying queue\n"); 2117 return ret; 2118 } 2119 2120 kthread_destroy_worker(ctlr->kworker); 2121 2122 return 0; 2123 } 2124 2125 static int __spi_queued_transfer(struct spi_device *spi, 2126 struct spi_message *msg, 2127 bool need_pump) 2128 { 2129 struct spi_controller *ctlr = spi->controller; 2130 unsigned long flags; 2131 2132 spin_lock_irqsave(&ctlr->queue_lock, flags); 2133 2134 if (!ctlr->running) { 2135 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2136 return -ESHUTDOWN; 2137 } 2138 msg->actual_length = 0; 2139 msg->status = -EINPROGRESS; 2140 2141 list_add_tail(&msg->queue, &ctlr->queue); 2142 ctlr->queue_empty = false; 2143 if (!ctlr->busy && need_pump) 2144 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2145 2146 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2147 return 0; 2148 } 2149 2150 /** 2151 * spi_queued_transfer - transfer function for queued transfers 2152 * @spi: SPI device which is requesting transfer 2153 * @msg: SPI message which is to handled is queued to driver queue 2154 * 2155 * Return: zero on success, else a negative error code. 2156 */ 2157 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2158 { 2159 return __spi_queued_transfer(spi, msg, true); 2160 } 2161 2162 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2163 { 2164 int ret; 2165 2166 ctlr->transfer = spi_queued_transfer; 2167 if (!ctlr->transfer_one_message) 2168 ctlr->transfer_one_message = spi_transfer_one_message; 2169 2170 /* Initialize and start queue */ 2171 ret = spi_init_queue(ctlr); 2172 if (ret) { 2173 dev_err(&ctlr->dev, "problem initializing queue\n"); 2174 goto err_init_queue; 2175 } 2176 ctlr->queued = true; 2177 ret = spi_start_queue(ctlr); 2178 if (ret) { 2179 dev_err(&ctlr->dev, "problem starting queue\n"); 2180 goto err_start_queue; 2181 } 2182 2183 return 0; 2184 2185 err_start_queue: 2186 spi_destroy_queue(ctlr); 2187 err_init_queue: 2188 return ret; 2189 } 2190 2191 /** 2192 * spi_flush_queue - Send all pending messages in the queue from the callers' 2193 * context 2194 * @ctlr: controller to process queue for 2195 * 2196 * This should be used when one wants to ensure all pending messages have been 2197 * sent before doing something. Is used by the spi-mem code to make sure SPI 2198 * memory operations do not preempt regular SPI transfers that have been queued 2199 * before the spi-mem operation. 2200 */ 2201 void spi_flush_queue(struct spi_controller *ctlr) 2202 { 2203 if (ctlr->transfer == spi_queued_transfer) 2204 __spi_pump_messages(ctlr, false); 2205 } 2206 2207 /*-------------------------------------------------------------------------*/ 2208 2209 #if defined(CONFIG_OF) 2210 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2211 struct spi_delay *delay, const char *prop) 2212 { 2213 u32 value; 2214 2215 if (!of_property_read_u32(nc, prop, &value)) { 2216 if (value > U16_MAX) { 2217 delay->value = DIV_ROUND_UP(value, 1000); 2218 delay->unit = SPI_DELAY_UNIT_USECS; 2219 } else { 2220 delay->value = value; 2221 delay->unit = SPI_DELAY_UNIT_NSECS; 2222 } 2223 } 2224 } 2225 2226 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2227 struct device_node *nc) 2228 { 2229 u32 value; 2230 int rc; 2231 2232 /* Mode (clock phase/polarity/etc.) */ 2233 if (of_property_read_bool(nc, "spi-cpha")) 2234 spi->mode |= SPI_CPHA; 2235 if (of_property_read_bool(nc, "spi-cpol")) 2236 spi->mode |= SPI_CPOL; 2237 if (of_property_read_bool(nc, "spi-3wire")) 2238 spi->mode |= SPI_3WIRE; 2239 if (of_property_read_bool(nc, "spi-lsb-first")) 2240 spi->mode |= SPI_LSB_FIRST; 2241 if (of_property_read_bool(nc, "spi-cs-high")) 2242 spi->mode |= SPI_CS_HIGH; 2243 2244 /* Device DUAL/QUAD mode */ 2245 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2246 switch (value) { 2247 case 0: 2248 spi->mode |= SPI_NO_TX; 2249 break; 2250 case 1: 2251 break; 2252 case 2: 2253 spi->mode |= SPI_TX_DUAL; 2254 break; 2255 case 4: 2256 spi->mode |= SPI_TX_QUAD; 2257 break; 2258 case 8: 2259 spi->mode |= SPI_TX_OCTAL; 2260 break; 2261 default: 2262 dev_warn(&ctlr->dev, 2263 "spi-tx-bus-width %d not supported\n", 2264 value); 2265 break; 2266 } 2267 } 2268 2269 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2270 switch (value) { 2271 case 0: 2272 spi->mode |= SPI_NO_RX; 2273 break; 2274 case 1: 2275 break; 2276 case 2: 2277 spi->mode |= SPI_RX_DUAL; 2278 break; 2279 case 4: 2280 spi->mode |= SPI_RX_QUAD; 2281 break; 2282 case 8: 2283 spi->mode |= SPI_RX_OCTAL; 2284 break; 2285 default: 2286 dev_warn(&ctlr->dev, 2287 "spi-rx-bus-width %d not supported\n", 2288 value); 2289 break; 2290 } 2291 } 2292 2293 if (spi_controller_is_slave(ctlr)) { 2294 if (!of_node_name_eq(nc, "slave")) { 2295 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2296 nc); 2297 return -EINVAL; 2298 } 2299 return 0; 2300 } 2301 2302 /* Device address */ 2303 rc = of_property_read_u32(nc, "reg", &value); 2304 if (rc) { 2305 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2306 nc, rc); 2307 return rc; 2308 } 2309 spi_set_chipselect(spi, 0, value); 2310 2311 /* Device speed */ 2312 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2313 spi->max_speed_hz = value; 2314 2315 /* Device CS delays */ 2316 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2317 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2318 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2319 2320 return 0; 2321 } 2322 2323 static struct spi_device * 2324 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2325 { 2326 struct spi_device *spi; 2327 int rc; 2328 2329 /* Alloc an spi_device */ 2330 spi = spi_alloc_device(ctlr); 2331 if (!spi) { 2332 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2333 rc = -ENOMEM; 2334 goto err_out; 2335 } 2336 2337 /* Select device driver */ 2338 rc = of_alias_from_compatible(nc, spi->modalias, 2339 sizeof(spi->modalias)); 2340 if (rc < 0) { 2341 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2342 goto err_out; 2343 } 2344 2345 rc = of_spi_parse_dt(ctlr, spi, nc); 2346 if (rc) 2347 goto err_out; 2348 2349 /* Store a pointer to the node in the device structure */ 2350 of_node_get(nc); 2351 2352 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2353 2354 /* Register the new device */ 2355 rc = spi_add_device(spi); 2356 if (rc) { 2357 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2358 goto err_of_node_put; 2359 } 2360 2361 return spi; 2362 2363 err_of_node_put: 2364 of_node_put(nc); 2365 err_out: 2366 spi_dev_put(spi); 2367 return ERR_PTR(rc); 2368 } 2369 2370 /** 2371 * of_register_spi_devices() - Register child devices onto the SPI bus 2372 * @ctlr: Pointer to spi_controller device 2373 * 2374 * Registers an spi_device for each child node of controller node which 2375 * represents a valid SPI slave. 2376 */ 2377 static void of_register_spi_devices(struct spi_controller *ctlr) 2378 { 2379 struct spi_device *spi; 2380 struct device_node *nc; 2381 2382 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2383 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2384 continue; 2385 spi = of_register_spi_device(ctlr, nc); 2386 if (IS_ERR(spi)) { 2387 dev_warn(&ctlr->dev, 2388 "Failed to create SPI device for %pOF\n", nc); 2389 of_node_clear_flag(nc, OF_POPULATED); 2390 } 2391 } 2392 } 2393 #else 2394 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2395 #endif 2396 2397 /** 2398 * spi_new_ancillary_device() - Register ancillary SPI device 2399 * @spi: Pointer to the main SPI device registering the ancillary device 2400 * @chip_select: Chip Select of the ancillary device 2401 * 2402 * Register an ancillary SPI device; for example some chips have a chip-select 2403 * for normal device usage and another one for setup/firmware upload. 2404 * 2405 * This may only be called from main SPI device's probe routine. 2406 * 2407 * Return: 0 on success; negative errno on failure 2408 */ 2409 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2410 u8 chip_select) 2411 { 2412 struct spi_controller *ctlr = spi->controller; 2413 struct spi_device *ancillary; 2414 int rc = 0; 2415 2416 /* Alloc an spi_device */ 2417 ancillary = spi_alloc_device(ctlr); 2418 if (!ancillary) { 2419 rc = -ENOMEM; 2420 goto err_out; 2421 } 2422 2423 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2424 2425 /* Use provided chip-select for ancillary device */ 2426 spi_set_chipselect(ancillary, 0, chip_select); 2427 2428 /* Take over SPI mode/speed from SPI main device */ 2429 ancillary->max_speed_hz = spi->max_speed_hz; 2430 ancillary->mode = spi->mode; 2431 2432 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2433 2434 /* Register the new device */ 2435 rc = __spi_add_device(ancillary); 2436 if (rc) { 2437 dev_err(&spi->dev, "failed to register ancillary device\n"); 2438 goto err_out; 2439 } 2440 2441 return ancillary; 2442 2443 err_out: 2444 spi_dev_put(ancillary); 2445 return ERR_PTR(rc); 2446 } 2447 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2448 2449 #ifdef CONFIG_ACPI 2450 struct acpi_spi_lookup { 2451 struct spi_controller *ctlr; 2452 u32 max_speed_hz; 2453 u32 mode; 2454 int irq; 2455 u8 bits_per_word; 2456 u8 chip_select; 2457 int n; 2458 int index; 2459 }; 2460 2461 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2462 { 2463 struct acpi_resource_spi_serialbus *sb; 2464 int *count = data; 2465 2466 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2467 return 1; 2468 2469 sb = &ares->data.spi_serial_bus; 2470 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2471 return 1; 2472 2473 *count = *count + 1; 2474 2475 return 1; 2476 } 2477 2478 /** 2479 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2480 * @adev: ACPI device 2481 * 2482 * Return: the number of SpiSerialBus resources in the ACPI-device's 2483 * resource-list; or a negative error code. 2484 */ 2485 int acpi_spi_count_resources(struct acpi_device *adev) 2486 { 2487 LIST_HEAD(r); 2488 int count = 0; 2489 int ret; 2490 2491 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2492 if (ret < 0) 2493 return ret; 2494 2495 acpi_dev_free_resource_list(&r); 2496 2497 return count; 2498 } 2499 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2500 2501 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2502 struct acpi_spi_lookup *lookup) 2503 { 2504 const union acpi_object *obj; 2505 2506 if (!x86_apple_machine) 2507 return; 2508 2509 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2510 && obj->buffer.length >= 4) 2511 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2512 2513 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2514 && obj->buffer.length == 8) 2515 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2516 2517 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2518 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2519 lookup->mode |= SPI_LSB_FIRST; 2520 2521 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2522 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2523 lookup->mode |= SPI_CPOL; 2524 2525 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2526 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2527 lookup->mode |= SPI_CPHA; 2528 } 2529 2530 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 2531 2532 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2533 { 2534 struct acpi_spi_lookup *lookup = data; 2535 struct spi_controller *ctlr = lookup->ctlr; 2536 2537 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2538 struct acpi_resource_spi_serialbus *sb; 2539 acpi_handle parent_handle; 2540 acpi_status status; 2541 2542 sb = &ares->data.spi_serial_bus; 2543 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2544 2545 if (lookup->index != -1 && lookup->n++ != lookup->index) 2546 return 1; 2547 2548 status = acpi_get_handle(NULL, 2549 sb->resource_source.string_ptr, 2550 &parent_handle); 2551 2552 if (ACPI_FAILURE(status)) 2553 return -ENODEV; 2554 2555 if (ctlr) { 2556 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2557 return -ENODEV; 2558 } else { 2559 struct acpi_device *adev; 2560 2561 adev = acpi_fetch_acpi_dev(parent_handle); 2562 if (!adev) 2563 return -ENODEV; 2564 2565 ctlr = acpi_spi_find_controller_by_adev(adev); 2566 if (!ctlr) 2567 return -EPROBE_DEFER; 2568 2569 lookup->ctlr = ctlr; 2570 } 2571 2572 /* 2573 * ACPI DeviceSelection numbering is handled by the 2574 * host controller driver in Windows and can vary 2575 * from driver to driver. In Linux we always expect 2576 * 0 .. max - 1 so we need to ask the driver to 2577 * translate between the two schemes. 2578 */ 2579 if (ctlr->fw_translate_cs) { 2580 int cs = ctlr->fw_translate_cs(ctlr, 2581 sb->device_selection); 2582 if (cs < 0) 2583 return cs; 2584 lookup->chip_select = cs; 2585 } else { 2586 lookup->chip_select = sb->device_selection; 2587 } 2588 2589 lookup->max_speed_hz = sb->connection_speed; 2590 lookup->bits_per_word = sb->data_bit_length; 2591 2592 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2593 lookup->mode |= SPI_CPHA; 2594 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2595 lookup->mode |= SPI_CPOL; 2596 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2597 lookup->mode |= SPI_CS_HIGH; 2598 } 2599 } else if (lookup->irq < 0) { 2600 struct resource r; 2601 2602 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2603 lookup->irq = r.start; 2604 } 2605 2606 /* Always tell the ACPI core to skip this resource */ 2607 return 1; 2608 } 2609 2610 /** 2611 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2612 * @ctlr: controller to which the spi device belongs 2613 * @adev: ACPI Device for the spi device 2614 * @index: Index of the spi resource inside the ACPI Node 2615 * 2616 * This should be used to allocate a new SPI device from and ACPI Device node. 2617 * The caller is responsible for calling spi_add_device to register the SPI device. 2618 * 2619 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2620 * using the resource. 2621 * If index is set to -1, index is not used. 2622 * Note: If index is -1, ctlr must be set. 2623 * 2624 * Return: a pointer to the new device, or ERR_PTR on error. 2625 */ 2626 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2627 struct acpi_device *adev, 2628 int index) 2629 { 2630 acpi_handle parent_handle = NULL; 2631 struct list_head resource_list; 2632 struct acpi_spi_lookup lookup = {}; 2633 struct spi_device *spi; 2634 int ret; 2635 2636 if (!ctlr && index == -1) 2637 return ERR_PTR(-EINVAL); 2638 2639 lookup.ctlr = ctlr; 2640 lookup.irq = -1; 2641 lookup.index = index; 2642 lookup.n = 0; 2643 2644 INIT_LIST_HEAD(&resource_list); 2645 ret = acpi_dev_get_resources(adev, &resource_list, 2646 acpi_spi_add_resource, &lookup); 2647 acpi_dev_free_resource_list(&resource_list); 2648 2649 if (ret < 0) 2650 /* Found SPI in _CRS but it points to another controller */ 2651 return ERR_PTR(ret); 2652 2653 if (!lookup.max_speed_hz && 2654 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2655 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2656 /* Apple does not use _CRS but nested devices for SPI slaves */ 2657 acpi_spi_parse_apple_properties(adev, &lookup); 2658 } 2659 2660 if (!lookup.max_speed_hz) 2661 return ERR_PTR(-ENODEV); 2662 2663 spi = spi_alloc_device(lookup.ctlr); 2664 if (!spi) { 2665 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2666 dev_name(&adev->dev)); 2667 return ERR_PTR(-ENOMEM); 2668 } 2669 2670 ACPI_COMPANION_SET(&spi->dev, adev); 2671 spi->max_speed_hz = lookup.max_speed_hz; 2672 spi->mode |= lookup.mode; 2673 spi->irq = lookup.irq; 2674 spi->bits_per_word = lookup.bits_per_word; 2675 spi_set_chipselect(spi, 0, lookup.chip_select); 2676 2677 return spi; 2678 } 2679 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2680 2681 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2682 struct acpi_device *adev) 2683 { 2684 struct spi_device *spi; 2685 2686 if (acpi_bus_get_status(adev) || !adev->status.present || 2687 acpi_device_enumerated(adev)) 2688 return AE_OK; 2689 2690 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2691 if (IS_ERR(spi)) { 2692 if (PTR_ERR(spi) == -ENOMEM) 2693 return AE_NO_MEMORY; 2694 else 2695 return AE_OK; 2696 } 2697 2698 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2699 sizeof(spi->modalias)); 2700 2701 if (spi->irq < 0) 2702 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2703 2704 acpi_device_set_enumerated(adev); 2705 2706 adev->power.flags.ignore_parent = true; 2707 if (spi_add_device(spi)) { 2708 adev->power.flags.ignore_parent = false; 2709 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2710 dev_name(&adev->dev)); 2711 spi_dev_put(spi); 2712 } 2713 2714 return AE_OK; 2715 } 2716 2717 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2718 void *data, void **return_value) 2719 { 2720 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2721 struct spi_controller *ctlr = data; 2722 2723 if (!adev) 2724 return AE_OK; 2725 2726 return acpi_register_spi_device(ctlr, adev); 2727 } 2728 2729 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2730 2731 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2732 { 2733 acpi_status status; 2734 acpi_handle handle; 2735 2736 handle = ACPI_HANDLE(ctlr->dev.parent); 2737 if (!handle) 2738 return; 2739 2740 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2741 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2742 acpi_spi_add_device, NULL, ctlr, NULL); 2743 if (ACPI_FAILURE(status)) 2744 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2745 } 2746 #else 2747 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2748 #endif /* CONFIG_ACPI */ 2749 2750 static void spi_controller_release(struct device *dev) 2751 { 2752 struct spi_controller *ctlr; 2753 2754 ctlr = container_of(dev, struct spi_controller, dev); 2755 kfree(ctlr); 2756 } 2757 2758 static struct class spi_master_class = { 2759 .name = "spi_master", 2760 .dev_release = spi_controller_release, 2761 .dev_groups = spi_master_groups, 2762 }; 2763 2764 #ifdef CONFIG_SPI_SLAVE 2765 /** 2766 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2767 * controller 2768 * @spi: device used for the current transfer 2769 */ 2770 int spi_slave_abort(struct spi_device *spi) 2771 { 2772 struct spi_controller *ctlr = spi->controller; 2773 2774 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2775 return ctlr->slave_abort(ctlr); 2776 2777 return -ENOTSUPP; 2778 } 2779 EXPORT_SYMBOL_GPL(spi_slave_abort); 2780 2781 int spi_target_abort(struct spi_device *spi) 2782 { 2783 struct spi_controller *ctlr = spi->controller; 2784 2785 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2786 return ctlr->target_abort(ctlr); 2787 2788 return -ENOTSUPP; 2789 } 2790 EXPORT_SYMBOL_GPL(spi_target_abort); 2791 2792 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2793 char *buf) 2794 { 2795 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2796 dev); 2797 struct device *child; 2798 2799 child = device_find_any_child(&ctlr->dev); 2800 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2801 } 2802 2803 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2804 const char *buf, size_t count) 2805 { 2806 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2807 dev); 2808 struct spi_device *spi; 2809 struct device *child; 2810 char name[32]; 2811 int rc; 2812 2813 rc = sscanf(buf, "%31s", name); 2814 if (rc != 1 || !name[0]) 2815 return -EINVAL; 2816 2817 child = device_find_any_child(&ctlr->dev); 2818 if (child) { 2819 /* Remove registered slave */ 2820 device_unregister(child); 2821 put_device(child); 2822 } 2823 2824 if (strcmp(name, "(null)")) { 2825 /* Register new slave */ 2826 spi = spi_alloc_device(ctlr); 2827 if (!spi) 2828 return -ENOMEM; 2829 2830 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2831 2832 rc = spi_add_device(spi); 2833 if (rc) { 2834 spi_dev_put(spi); 2835 return rc; 2836 } 2837 } 2838 2839 return count; 2840 } 2841 2842 static DEVICE_ATTR_RW(slave); 2843 2844 static struct attribute *spi_slave_attrs[] = { 2845 &dev_attr_slave.attr, 2846 NULL, 2847 }; 2848 2849 static const struct attribute_group spi_slave_group = { 2850 .attrs = spi_slave_attrs, 2851 }; 2852 2853 static const struct attribute_group *spi_slave_groups[] = { 2854 &spi_controller_statistics_group, 2855 &spi_slave_group, 2856 NULL, 2857 }; 2858 2859 static struct class spi_slave_class = { 2860 .name = "spi_slave", 2861 .dev_release = spi_controller_release, 2862 .dev_groups = spi_slave_groups, 2863 }; 2864 #else 2865 extern struct class spi_slave_class; /* dummy */ 2866 #endif 2867 2868 /** 2869 * __spi_alloc_controller - allocate an SPI master or slave controller 2870 * @dev: the controller, possibly using the platform_bus 2871 * @size: how much zeroed driver-private data to allocate; the pointer to this 2872 * memory is in the driver_data field of the returned device, accessible 2873 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2874 * drivers granting DMA access to portions of their private data need to 2875 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2876 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2877 * slave (true) controller 2878 * Context: can sleep 2879 * 2880 * This call is used only by SPI controller drivers, which are the 2881 * only ones directly touching chip registers. It's how they allocate 2882 * an spi_controller structure, prior to calling spi_register_controller(). 2883 * 2884 * This must be called from context that can sleep. 2885 * 2886 * The caller is responsible for assigning the bus number and initializing the 2887 * controller's methods before calling spi_register_controller(); and (after 2888 * errors adding the device) calling spi_controller_put() to prevent a memory 2889 * leak. 2890 * 2891 * Return: the SPI controller structure on success, else NULL. 2892 */ 2893 struct spi_controller *__spi_alloc_controller(struct device *dev, 2894 unsigned int size, bool slave) 2895 { 2896 struct spi_controller *ctlr; 2897 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2898 2899 if (!dev) 2900 return NULL; 2901 2902 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2903 if (!ctlr) 2904 return NULL; 2905 2906 device_initialize(&ctlr->dev); 2907 INIT_LIST_HEAD(&ctlr->queue); 2908 spin_lock_init(&ctlr->queue_lock); 2909 spin_lock_init(&ctlr->bus_lock_spinlock); 2910 mutex_init(&ctlr->bus_lock_mutex); 2911 mutex_init(&ctlr->io_mutex); 2912 mutex_init(&ctlr->add_lock); 2913 ctlr->bus_num = -1; 2914 ctlr->num_chipselect = 1; 2915 ctlr->slave = slave; 2916 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2917 ctlr->dev.class = &spi_slave_class; 2918 else 2919 ctlr->dev.class = &spi_master_class; 2920 ctlr->dev.parent = dev; 2921 pm_suspend_ignore_children(&ctlr->dev, true); 2922 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2923 2924 return ctlr; 2925 } 2926 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2927 2928 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2929 { 2930 spi_controller_put(*(struct spi_controller **)ctlr); 2931 } 2932 2933 /** 2934 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2935 * @dev: physical device of SPI controller 2936 * @size: how much zeroed driver-private data to allocate 2937 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2938 * Context: can sleep 2939 * 2940 * Allocate an SPI controller and automatically release a reference on it 2941 * when @dev is unbound from its driver. Drivers are thus relieved from 2942 * having to call spi_controller_put(). 2943 * 2944 * The arguments to this function are identical to __spi_alloc_controller(). 2945 * 2946 * Return: the SPI controller structure on success, else NULL. 2947 */ 2948 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2949 unsigned int size, 2950 bool slave) 2951 { 2952 struct spi_controller **ptr, *ctlr; 2953 2954 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2955 GFP_KERNEL); 2956 if (!ptr) 2957 return NULL; 2958 2959 ctlr = __spi_alloc_controller(dev, size, slave); 2960 if (ctlr) { 2961 ctlr->devm_allocated = true; 2962 *ptr = ctlr; 2963 devres_add(dev, ptr); 2964 } else { 2965 devres_free(ptr); 2966 } 2967 2968 return ctlr; 2969 } 2970 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2971 2972 /** 2973 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2974 * @ctlr: The SPI master to grab GPIO descriptors for 2975 */ 2976 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2977 { 2978 int nb, i; 2979 struct gpio_desc **cs; 2980 struct device *dev = &ctlr->dev; 2981 unsigned long native_cs_mask = 0; 2982 unsigned int num_cs_gpios = 0; 2983 2984 nb = gpiod_count(dev, "cs"); 2985 if (nb < 0) { 2986 /* No GPIOs at all is fine, else return the error */ 2987 if (nb == -ENOENT) 2988 return 0; 2989 return nb; 2990 } 2991 2992 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2993 2994 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2995 GFP_KERNEL); 2996 if (!cs) 2997 return -ENOMEM; 2998 ctlr->cs_gpiods = cs; 2999 3000 for (i = 0; i < nb; i++) { 3001 /* 3002 * Most chipselects are active low, the inverted 3003 * semantics are handled by special quirks in gpiolib, 3004 * so initializing them GPIOD_OUT_LOW here means 3005 * "unasserted", in most cases this will drive the physical 3006 * line high. 3007 */ 3008 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3009 GPIOD_OUT_LOW); 3010 if (IS_ERR(cs[i])) 3011 return PTR_ERR(cs[i]); 3012 3013 if (cs[i]) { 3014 /* 3015 * If we find a CS GPIO, name it after the device and 3016 * chip select line. 3017 */ 3018 char *gpioname; 3019 3020 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3021 dev_name(dev), i); 3022 if (!gpioname) 3023 return -ENOMEM; 3024 gpiod_set_consumer_name(cs[i], gpioname); 3025 num_cs_gpios++; 3026 continue; 3027 } 3028 3029 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3030 dev_err(dev, "Invalid native chip select %d\n", i); 3031 return -EINVAL; 3032 } 3033 native_cs_mask |= BIT(i); 3034 } 3035 3036 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3037 3038 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3039 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3040 dev_err(dev, "No unused native chip select available\n"); 3041 return -EINVAL; 3042 } 3043 3044 return 0; 3045 } 3046 3047 static int spi_controller_check_ops(struct spi_controller *ctlr) 3048 { 3049 /* 3050 * The controller may implement only the high-level SPI-memory like 3051 * operations if it does not support regular SPI transfers, and this is 3052 * valid use case. 3053 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3054 * one of the ->transfer_xxx() method be implemented. 3055 */ 3056 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3057 if (!ctlr->transfer && !ctlr->transfer_one && 3058 !ctlr->transfer_one_message) { 3059 return -EINVAL; 3060 } 3061 } 3062 3063 return 0; 3064 } 3065 3066 /* Allocate dynamic bus number using Linux idr */ 3067 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3068 { 3069 int id; 3070 3071 mutex_lock(&board_lock); 3072 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3073 mutex_unlock(&board_lock); 3074 if (WARN(id < 0, "couldn't get idr")) 3075 return id == -ENOSPC ? -EBUSY : id; 3076 ctlr->bus_num = id; 3077 return 0; 3078 } 3079 3080 /** 3081 * spi_register_controller - register SPI master or slave controller 3082 * @ctlr: initialized master, originally from spi_alloc_master() or 3083 * spi_alloc_slave() 3084 * Context: can sleep 3085 * 3086 * SPI controllers connect to their drivers using some non-SPI bus, 3087 * such as the platform bus. The final stage of probe() in that code 3088 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3089 * 3090 * SPI controllers use board specific (often SOC specific) bus numbers, 3091 * and board-specific addressing for SPI devices combines those numbers 3092 * with chip select numbers. Since SPI does not directly support dynamic 3093 * device identification, boards need configuration tables telling which 3094 * chip is at which address. 3095 * 3096 * This must be called from context that can sleep. It returns zero on 3097 * success, else a negative error code (dropping the controller's refcount). 3098 * After a successful return, the caller is responsible for calling 3099 * spi_unregister_controller(). 3100 * 3101 * Return: zero on success, else a negative error code. 3102 */ 3103 int spi_register_controller(struct spi_controller *ctlr) 3104 { 3105 struct device *dev = ctlr->dev.parent; 3106 struct boardinfo *bi; 3107 int first_dynamic; 3108 int status; 3109 3110 if (!dev) 3111 return -ENODEV; 3112 3113 /* 3114 * Make sure all necessary hooks are implemented before registering 3115 * the SPI controller. 3116 */ 3117 status = spi_controller_check_ops(ctlr); 3118 if (status) 3119 return status; 3120 3121 if (ctlr->bus_num < 0) 3122 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3123 if (ctlr->bus_num >= 0) { 3124 /* Devices with a fixed bus num must check-in with the num */ 3125 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3126 if (status) 3127 return status; 3128 } 3129 if (ctlr->bus_num < 0) { 3130 first_dynamic = of_alias_get_highest_id("spi"); 3131 if (first_dynamic < 0) 3132 first_dynamic = 0; 3133 else 3134 first_dynamic++; 3135 3136 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3137 if (status) 3138 return status; 3139 } 3140 ctlr->bus_lock_flag = 0; 3141 init_completion(&ctlr->xfer_completion); 3142 init_completion(&ctlr->cur_msg_completion); 3143 if (!ctlr->max_dma_len) 3144 ctlr->max_dma_len = INT_MAX; 3145 3146 /* 3147 * Register the device, then userspace will see it. 3148 * Registration fails if the bus ID is in use. 3149 */ 3150 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3151 3152 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3153 status = spi_get_gpio_descs(ctlr); 3154 if (status) 3155 goto free_bus_id; 3156 /* 3157 * A controller using GPIO descriptors always 3158 * supports SPI_CS_HIGH if need be. 3159 */ 3160 ctlr->mode_bits |= SPI_CS_HIGH; 3161 } 3162 3163 /* 3164 * Even if it's just one always-selected device, there must 3165 * be at least one chipselect. 3166 */ 3167 if (!ctlr->num_chipselect) { 3168 status = -EINVAL; 3169 goto free_bus_id; 3170 } 3171 3172 /* Setting last_cs to -1 means no chip selected */ 3173 ctlr->last_cs = -1; 3174 3175 status = device_add(&ctlr->dev); 3176 if (status < 0) 3177 goto free_bus_id; 3178 dev_dbg(dev, "registered %s %s\n", 3179 spi_controller_is_slave(ctlr) ? "slave" : "master", 3180 dev_name(&ctlr->dev)); 3181 3182 /* 3183 * If we're using a queued driver, start the queue. Note that we don't 3184 * need the queueing logic if the driver is only supporting high-level 3185 * memory operations. 3186 */ 3187 if (ctlr->transfer) { 3188 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3189 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3190 status = spi_controller_initialize_queue(ctlr); 3191 if (status) { 3192 device_del(&ctlr->dev); 3193 goto free_bus_id; 3194 } 3195 } 3196 /* Add statistics */ 3197 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3198 if (!ctlr->pcpu_statistics) { 3199 dev_err(dev, "Error allocating per-cpu statistics\n"); 3200 status = -ENOMEM; 3201 goto destroy_queue; 3202 } 3203 3204 mutex_lock(&board_lock); 3205 list_add_tail(&ctlr->list, &spi_controller_list); 3206 list_for_each_entry(bi, &board_list, list) 3207 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3208 mutex_unlock(&board_lock); 3209 3210 /* Register devices from the device tree and ACPI */ 3211 of_register_spi_devices(ctlr); 3212 acpi_register_spi_devices(ctlr); 3213 return status; 3214 3215 destroy_queue: 3216 spi_destroy_queue(ctlr); 3217 free_bus_id: 3218 mutex_lock(&board_lock); 3219 idr_remove(&spi_master_idr, ctlr->bus_num); 3220 mutex_unlock(&board_lock); 3221 return status; 3222 } 3223 EXPORT_SYMBOL_GPL(spi_register_controller); 3224 3225 static void devm_spi_unregister(struct device *dev, void *res) 3226 { 3227 spi_unregister_controller(*(struct spi_controller **)res); 3228 } 3229 3230 /** 3231 * devm_spi_register_controller - register managed SPI master or slave 3232 * controller 3233 * @dev: device managing SPI controller 3234 * @ctlr: initialized controller, originally from spi_alloc_master() or 3235 * spi_alloc_slave() 3236 * Context: can sleep 3237 * 3238 * Register a SPI device as with spi_register_controller() which will 3239 * automatically be unregistered and freed. 3240 * 3241 * Return: zero on success, else a negative error code. 3242 */ 3243 int devm_spi_register_controller(struct device *dev, 3244 struct spi_controller *ctlr) 3245 { 3246 struct spi_controller **ptr; 3247 int ret; 3248 3249 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3250 if (!ptr) 3251 return -ENOMEM; 3252 3253 ret = spi_register_controller(ctlr); 3254 if (!ret) { 3255 *ptr = ctlr; 3256 devres_add(dev, ptr); 3257 } else { 3258 devres_free(ptr); 3259 } 3260 3261 return ret; 3262 } 3263 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3264 3265 static int __unregister(struct device *dev, void *null) 3266 { 3267 spi_unregister_device(to_spi_device(dev)); 3268 return 0; 3269 } 3270 3271 /** 3272 * spi_unregister_controller - unregister SPI master or slave controller 3273 * @ctlr: the controller being unregistered 3274 * Context: can sleep 3275 * 3276 * This call is used only by SPI controller drivers, which are the 3277 * only ones directly touching chip registers. 3278 * 3279 * This must be called from context that can sleep. 3280 * 3281 * Note that this function also drops a reference to the controller. 3282 */ 3283 void spi_unregister_controller(struct spi_controller *ctlr) 3284 { 3285 struct spi_controller *found; 3286 int id = ctlr->bus_num; 3287 3288 /* Prevent addition of new devices, unregister existing ones */ 3289 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3290 mutex_lock(&ctlr->add_lock); 3291 3292 device_for_each_child(&ctlr->dev, NULL, __unregister); 3293 3294 /* First make sure that this controller was ever added */ 3295 mutex_lock(&board_lock); 3296 found = idr_find(&spi_master_idr, id); 3297 mutex_unlock(&board_lock); 3298 if (ctlr->queued) { 3299 if (spi_destroy_queue(ctlr)) 3300 dev_err(&ctlr->dev, "queue remove failed\n"); 3301 } 3302 mutex_lock(&board_lock); 3303 list_del(&ctlr->list); 3304 mutex_unlock(&board_lock); 3305 3306 device_del(&ctlr->dev); 3307 3308 /* Free bus id */ 3309 mutex_lock(&board_lock); 3310 if (found == ctlr) 3311 idr_remove(&spi_master_idr, id); 3312 mutex_unlock(&board_lock); 3313 3314 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3315 mutex_unlock(&ctlr->add_lock); 3316 3317 /* 3318 * Release the last reference on the controller if its driver 3319 * has not yet been converted to devm_spi_alloc_master/slave(). 3320 */ 3321 if (!ctlr->devm_allocated) 3322 put_device(&ctlr->dev); 3323 } 3324 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3325 3326 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3327 { 3328 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3329 } 3330 3331 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3332 { 3333 mutex_lock(&ctlr->bus_lock_mutex); 3334 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3335 mutex_unlock(&ctlr->bus_lock_mutex); 3336 } 3337 3338 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3339 { 3340 mutex_lock(&ctlr->bus_lock_mutex); 3341 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3342 mutex_unlock(&ctlr->bus_lock_mutex); 3343 } 3344 3345 int spi_controller_suspend(struct spi_controller *ctlr) 3346 { 3347 int ret = 0; 3348 3349 /* Basically no-ops for non-queued controllers */ 3350 if (ctlr->queued) { 3351 ret = spi_stop_queue(ctlr); 3352 if (ret) 3353 dev_err(&ctlr->dev, "queue stop failed\n"); 3354 } 3355 3356 __spi_mark_suspended(ctlr); 3357 return ret; 3358 } 3359 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3360 3361 int spi_controller_resume(struct spi_controller *ctlr) 3362 { 3363 int ret = 0; 3364 3365 __spi_mark_resumed(ctlr); 3366 3367 if (ctlr->queued) { 3368 ret = spi_start_queue(ctlr); 3369 if (ret) 3370 dev_err(&ctlr->dev, "queue restart failed\n"); 3371 } 3372 return ret; 3373 } 3374 EXPORT_SYMBOL_GPL(spi_controller_resume); 3375 3376 /*-------------------------------------------------------------------------*/ 3377 3378 /* Core methods for spi_message alterations */ 3379 3380 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3381 struct spi_message *msg, 3382 void *res) 3383 { 3384 struct spi_replaced_transfers *rxfer = res; 3385 size_t i; 3386 3387 /* Call extra callback if requested */ 3388 if (rxfer->release) 3389 rxfer->release(ctlr, msg, res); 3390 3391 /* Insert replaced transfers back into the message */ 3392 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3393 3394 /* Remove the formerly inserted entries */ 3395 for (i = 0; i < rxfer->inserted; i++) 3396 list_del(&rxfer->inserted_transfers[i].transfer_list); 3397 } 3398 3399 /** 3400 * spi_replace_transfers - replace transfers with several transfers 3401 * and register change with spi_message.resources 3402 * @msg: the spi_message we work upon 3403 * @xfer_first: the first spi_transfer we want to replace 3404 * @remove: number of transfers to remove 3405 * @insert: the number of transfers we want to insert instead 3406 * @release: extra release code necessary in some circumstances 3407 * @extradatasize: extra data to allocate (with alignment guarantees 3408 * of struct @spi_transfer) 3409 * @gfp: gfp flags 3410 * 3411 * Returns: pointer to @spi_replaced_transfers, 3412 * PTR_ERR(...) in case of errors. 3413 */ 3414 static struct spi_replaced_transfers *spi_replace_transfers( 3415 struct spi_message *msg, 3416 struct spi_transfer *xfer_first, 3417 size_t remove, 3418 size_t insert, 3419 spi_replaced_release_t release, 3420 size_t extradatasize, 3421 gfp_t gfp) 3422 { 3423 struct spi_replaced_transfers *rxfer; 3424 struct spi_transfer *xfer; 3425 size_t i; 3426 3427 /* Allocate the structure using spi_res */ 3428 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3429 struct_size(rxfer, inserted_transfers, insert) 3430 + extradatasize, 3431 gfp); 3432 if (!rxfer) 3433 return ERR_PTR(-ENOMEM); 3434 3435 /* The release code to invoke before running the generic release */ 3436 rxfer->release = release; 3437 3438 /* Assign extradata */ 3439 if (extradatasize) 3440 rxfer->extradata = 3441 &rxfer->inserted_transfers[insert]; 3442 3443 /* Init the replaced_transfers list */ 3444 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3445 3446 /* 3447 * Assign the list_entry after which we should reinsert 3448 * the @replaced_transfers - it may be spi_message.messages! 3449 */ 3450 rxfer->replaced_after = xfer_first->transfer_list.prev; 3451 3452 /* Remove the requested number of transfers */ 3453 for (i = 0; i < remove; i++) { 3454 /* 3455 * If the entry after replaced_after it is msg->transfers 3456 * then we have been requested to remove more transfers 3457 * than are in the list. 3458 */ 3459 if (rxfer->replaced_after->next == &msg->transfers) { 3460 dev_err(&msg->spi->dev, 3461 "requested to remove more spi_transfers than are available\n"); 3462 /* Insert replaced transfers back into the message */ 3463 list_splice(&rxfer->replaced_transfers, 3464 rxfer->replaced_after); 3465 3466 /* Free the spi_replace_transfer structure... */ 3467 spi_res_free(rxfer); 3468 3469 /* ...and return with an error */ 3470 return ERR_PTR(-EINVAL); 3471 } 3472 3473 /* 3474 * Remove the entry after replaced_after from list of 3475 * transfers and add it to list of replaced_transfers. 3476 */ 3477 list_move_tail(rxfer->replaced_after->next, 3478 &rxfer->replaced_transfers); 3479 } 3480 3481 /* 3482 * Create copy of the given xfer with identical settings 3483 * based on the first transfer to get removed. 3484 */ 3485 for (i = 0; i < insert; i++) { 3486 /* We need to run in reverse order */ 3487 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3488 3489 /* Copy all spi_transfer data */ 3490 memcpy(xfer, xfer_first, sizeof(*xfer)); 3491 3492 /* Add to list */ 3493 list_add(&xfer->transfer_list, rxfer->replaced_after); 3494 3495 /* Clear cs_change and delay for all but the last */ 3496 if (i) { 3497 xfer->cs_change = false; 3498 xfer->delay.value = 0; 3499 } 3500 } 3501 3502 /* Set up inserted... */ 3503 rxfer->inserted = insert; 3504 3505 /* ...and register it with spi_res/spi_message */ 3506 spi_res_add(msg, rxfer); 3507 3508 return rxfer; 3509 } 3510 3511 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3512 struct spi_message *msg, 3513 struct spi_transfer **xferp, 3514 size_t maxsize, 3515 gfp_t gfp) 3516 { 3517 struct spi_transfer *xfer = *xferp, *xfers; 3518 struct spi_replaced_transfers *srt; 3519 size_t offset; 3520 size_t count, i; 3521 3522 /* Calculate how many we have to replace */ 3523 count = DIV_ROUND_UP(xfer->len, maxsize); 3524 3525 /* Create replacement */ 3526 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3527 if (IS_ERR(srt)) 3528 return PTR_ERR(srt); 3529 xfers = srt->inserted_transfers; 3530 3531 /* 3532 * Now handle each of those newly inserted spi_transfers. 3533 * Note that the replacements spi_transfers all are preset 3534 * to the same values as *xferp, so tx_buf, rx_buf and len 3535 * are all identical (as well as most others) 3536 * so we just have to fix up len and the pointers. 3537 * 3538 * This also includes support for the depreciated 3539 * spi_message.is_dma_mapped interface. 3540 */ 3541 3542 /* 3543 * The first transfer just needs the length modified, so we 3544 * run it outside the loop. 3545 */ 3546 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3547 3548 /* All the others need rx_buf/tx_buf also set */ 3549 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3550 /* Update rx_buf, tx_buf and DMA */ 3551 if (xfers[i].rx_buf) 3552 xfers[i].rx_buf += offset; 3553 if (xfers[i].rx_dma) 3554 xfers[i].rx_dma += offset; 3555 if (xfers[i].tx_buf) 3556 xfers[i].tx_buf += offset; 3557 if (xfers[i].tx_dma) 3558 xfers[i].tx_dma += offset; 3559 3560 /* Update length */ 3561 xfers[i].len = min(maxsize, xfers[i].len - offset); 3562 } 3563 3564 /* 3565 * We set up xferp to the last entry we have inserted, 3566 * so that we skip those already split transfers. 3567 */ 3568 *xferp = &xfers[count - 1]; 3569 3570 /* Increment statistics counters */ 3571 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3572 transfers_split_maxsize); 3573 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3574 transfers_split_maxsize); 3575 3576 return 0; 3577 } 3578 3579 /** 3580 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3581 * when an individual transfer exceeds a 3582 * certain size 3583 * @ctlr: the @spi_controller for this transfer 3584 * @msg: the @spi_message to transform 3585 * @maxsize: the maximum when to apply this 3586 * @gfp: GFP allocation flags 3587 * 3588 * Return: status of transformation 3589 */ 3590 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3591 struct spi_message *msg, 3592 size_t maxsize, 3593 gfp_t gfp) 3594 { 3595 struct spi_transfer *xfer; 3596 int ret; 3597 3598 /* 3599 * Iterate over the transfer_list, 3600 * but note that xfer is advanced to the last transfer inserted 3601 * to avoid checking sizes again unnecessarily (also xfer does 3602 * potentially belong to a different list by the time the 3603 * replacement has happened). 3604 */ 3605 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3606 if (xfer->len > maxsize) { 3607 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3608 maxsize, gfp); 3609 if (ret) 3610 return ret; 3611 } 3612 } 3613 3614 return 0; 3615 } 3616 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3617 3618 3619 /** 3620 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3621 * when an individual transfer exceeds a 3622 * certain number of SPI words 3623 * @ctlr: the @spi_controller for this transfer 3624 * @msg: the @spi_message to transform 3625 * @maxwords: the number of words to limit each transfer to 3626 * @gfp: GFP allocation flags 3627 * 3628 * Return: status of transformation 3629 */ 3630 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3631 struct spi_message *msg, 3632 size_t maxwords, 3633 gfp_t gfp) 3634 { 3635 struct spi_transfer *xfer; 3636 3637 /* 3638 * Iterate over the transfer_list, 3639 * but note that xfer is advanced to the last transfer inserted 3640 * to avoid checking sizes again unnecessarily (also xfer does 3641 * potentially belong to a different list by the time the 3642 * replacement has happened). 3643 */ 3644 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3645 size_t maxsize; 3646 int ret; 3647 3648 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3649 if (xfer->len > maxsize) { 3650 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3651 maxsize, gfp); 3652 if (ret) 3653 return ret; 3654 } 3655 } 3656 3657 return 0; 3658 } 3659 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3660 3661 /*-------------------------------------------------------------------------*/ 3662 3663 /* 3664 * Core methods for SPI controller protocol drivers. Some of the 3665 * other core methods are currently defined as inline functions. 3666 */ 3667 3668 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3669 u8 bits_per_word) 3670 { 3671 if (ctlr->bits_per_word_mask) { 3672 /* Only 32 bits fit in the mask */ 3673 if (bits_per_word > 32) 3674 return -EINVAL; 3675 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3676 return -EINVAL; 3677 } 3678 3679 return 0; 3680 } 3681 3682 /** 3683 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3684 * @spi: the device that requires specific CS timing configuration 3685 * 3686 * Return: zero on success, else a negative error code. 3687 */ 3688 static int spi_set_cs_timing(struct spi_device *spi) 3689 { 3690 struct device *parent = spi->controller->dev.parent; 3691 int status = 0; 3692 3693 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3694 if (spi->controller->auto_runtime_pm) { 3695 status = pm_runtime_get_sync(parent); 3696 if (status < 0) { 3697 pm_runtime_put_noidle(parent); 3698 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3699 status); 3700 return status; 3701 } 3702 3703 status = spi->controller->set_cs_timing(spi); 3704 pm_runtime_mark_last_busy(parent); 3705 pm_runtime_put_autosuspend(parent); 3706 } else { 3707 status = spi->controller->set_cs_timing(spi); 3708 } 3709 } 3710 return status; 3711 } 3712 3713 /** 3714 * spi_setup - setup SPI mode and clock rate 3715 * @spi: the device whose settings are being modified 3716 * Context: can sleep, and no requests are queued to the device 3717 * 3718 * SPI protocol drivers may need to update the transfer mode if the 3719 * device doesn't work with its default. They may likewise need 3720 * to update clock rates or word sizes from initial values. This function 3721 * changes those settings, and must be called from a context that can sleep. 3722 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3723 * effect the next time the device is selected and data is transferred to 3724 * or from it. When this function returns, the SPI device is deselected. 3725 * 3726 * Note that this call will fail if the protocol driver specifies an option 3727 * that the underlying controller or its driver does not support. For 3728 * example, not all hardware supports wire transfers using nine bit words, 3729 * LSB-first wire encoding, or active-high chipselects. 3730 * 3731 * Return: zero on success, else a negative error code. 3732 */ 3733 int spi_setup(struct spi_device *spi) 3734 { 3735 unsigned bad_bits, ugly_bits; 3736 int status = 0; 3737 3738 /* 3739 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3740 * are set at the same time. 3741 */ 3742 if ((hweight_long(spi->mode & 3743 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3744 (hweight_long(spi->mode & 3745 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3746 dev_err(&spi->dev, 3747 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3748 return -EINVAL; 3749 } 3750 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3751 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3752 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3753 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3754 return -EINVAL; 3755 /* 3756 * Help drivers fail *cleanly* when they need options 3757 * that aren't supported with their current controller. 3758 * SPI_CS_WORD has a fallback software implementation, 3759 * so it is ignored here. 3760 */ 3761 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3762 SPI_NO_TX | SPI_NO_RX); 3763 ugly_bits = bad_bits & 3764 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3765 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3766 if (ugly_bits) { 3767 dev_warn(&spi->dev, 3768 "setup: ignoring unsupported mode bits %x\n", 3769 ugly_bits); 3770 spi->mode &= ~ugly_bits; 3771 bad_bits &= ~ugly_bits; 3772 } 3773 if (bad_bits) { 3774 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3775 bad_bits); 3776 return -EINVAL; 3777 } 3778 3779 if (!spi->bits_per_word) { 3780 spi->bits_per_word = 8; 3781 } else { 3782 /* 3783 * Some controllers may not support the default 8 bits-per-word 3784 * so only perform the check when this is explicitly provided. 3785 */ 3786 status = __spi_validate_bits_per_word(spi->controller, 3787 spi->bits_per_word); 3788 if (status) 3789 return status; 3790 } 3791 3792 if (spi->controller->max_speed_hz && 3793 (!spi->max_speed_hz || 3794 spi->max_speed_hz > spi->controller->max_speed_hz)) 3795 spi->max_speed_hz = spi->controller->max_speed_hz; 3796 3797 mutex_lock(&spi->controller->io_mutex); 3798 3799 if (spi->controller->setup) { 3800 status = spi->controller->setup(spi); 3801 if (status) { 3802 mutex_unlock(&spi->controller->io_mutex); 3803 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3804 status); 3805 return status; 3806 } 3807 } 3808 3809 status = spi_set_cs_timing(spi); 3810 if (status) { 3811 mutex_unlock(&spi->controller->io_mutex); 3812 return status; 3813 } 3814 3815 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3816 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3817 if (status < 0) { 3818 mutex_unlock(&spi->controller->io_mutex); 3819 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3820 status); 3821 return status; 3822 } 3823 3824 /* 3825 * We do not want to return positive value from pm_runtime_get, 3826 * there are many instances of devices calling spi_setup() and 3827 * checking for a non-zero return value instead of a negative 3828 * return value. 3829 */ 3830 status = 0; 3831 3832 spi_set_cs(spi, false, true); 3833 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3834 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3835 } else { 3836 spi_set_cs(spi, false, true); 3837 } 3838 3839 mutex_unlock(&spi->controller->io_mutex); 3840 3841 if (spi->rt && !spi->controller->rt) { 3842 spi->controller->rt = true; 3843 spi_set_thread_rt(spi->controller); 3844 } 3845 3846 trace_spi_setup(spi, status); 3847 3848 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3849 spi->mode & SPI_MODE_X_MASK, 3850 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3851 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3852 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3853 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3854 spi->bits_per_word, spi->max_speed_hz, 3855 status); 3856 3857 return status; 3858 } 3859 EXPORT_SYMBOL_GPL(spi_setup); 3860 3861 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3862 struct spi_device *spi) 3863 { 3864 int delay1, delay2; 3865 3866 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3867 if (delay1 < 0) 3868 return delay1; 3869 3870 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3871 if (delay2 < 0) 3872 return delay2; 3873 3874 if (delay1 < delay2) 3875 memcpy(&xfer->word_delay, &spi->word_delay, 3876 sizeof(xfer->word_delay)); 3877 3878 return 0; 3879 } 3880 3881 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3882 { 3883 struct spi_controller *ctlr = spi->controller; 3884 struct spi_transfer *xfer; 3885 int w_size; 3886 3887 if (list_empty(&message->transfers)) 3888 return -EINVAL; 3889 3890 /* 3891 * If an SPI controller does not support toggling the CS line on each 3892 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3893 * for the CS line, we can emulate the CS-per-word hardware function by 3894 * splitting transfers into one-word transfers and ensuring that 3895 * cs_change is set for each transfer. 3896 */ 3897 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3898 spi_get_csgpiod(spi, 0))) { 3899 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word); 3900 int ret; 3901 3902 /* spi_split_transfers_maxsize() requires message->spi */ 3903 message->spi = spi; 3904 3905 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3906 GFP_KERNEL); 3907 if (ret) 3908 return ret; 3909 3910 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3911 /* Don't change cs_change on the last entry in the list */ 3912 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3913 break; 3914 xfer->cs_change = 1; 3915 } 3916 } 3917 3918 /* 3919 * Half-duplex links include original MicroWire, and ones with 3920 * only one data pin like SPI_3WIRE (switches direction) or where 3921 * either MOSI or MISO is missing. They can also be caused by 3922 * software limitations. 3923 */ 3924 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3925 (spi->mode & SPI_3WIRE)) { 3926 unsigned flags = ctlr->flags; 3927 3928 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3929 if (xfer->rx_buf && xfer->tx_buf) 3930 return -EINVAL; 3931 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3932 return -EINVAL; 3933 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3934 return -EINVAL; 3935 } 3936 } 3937 3938 /* 3939 * Set transfer bits_per_word and max speed as spi device default if 3940 * it is not set for this transfer. 3941 * Set transfer tx_nbits and rx_nbits as single transfer default 3942 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3943 * Ensure transfer word_delay is at least as long as that required by 3944 * device itself. 3945 */ 3946 message->frame_length = 0; 3947 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3948 xfer->effective_speed_hz = 0; 3949 message->frame_length += xfer->len; 3950 if (!xfer->bits_per_word) 3951 xfer->bits_per_word = spi->bits_per_word; 3952 3953 if (!xfer->speed_hz) 3954 xfer->speed_hz = spi->max_speed_hz; 3955 3956 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3957 xfer->speed_hz = ctlr->max_speed_hz; 3958 3959 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3960 return -EINVAL; 3961 3962 /* 3963 * SPI transfer length should be multiple of SPI word size 3964 * where SPI word size should be power-of-two multiple. 3965 */ 3966 if (xfer->bits_per_word <= 8) 3967 w_size = 1; 3968 else if (xfer->bits_per_word <= 16) 3969 w_size = 2; 3970 else 3971 w_size = 4; 3972 3973 /* No partial transfers accepted */ 3974 if (xfer->len % w_size) 3975 return -EINVAL; 3976 3977 if (xfer->speed_hz && ctlr->min_speed_hz && 3978 xfer->speed_hz < ctlr->min_speed_hz) 3979 return -EINVAL; 3980 3981 if (xfer->tx_buf && !xfer->tx_nbits) 3982 xfer->tx_nbits = SPI_NBITS_SINGLE; 3983 if (xfer->rx_buf && !xfer->rx_nbits) 3984 xfer->rx_nbits = SPI_NBITS_SINGLE; 3985 /* 3986 * Check transfer tx/rx_nbits: 3987 * 1. check the value matches one of single, dual and quad 3988 * 2. check tx/rx_nbits match the mode in spi_device 3989 */ 3990 if (xfer->tx_buf) { 3991 if (spi->mode & SPI_NO_TX) 3992 return -EINVAL; 3993 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3994 xfer->tx_nbits != SPI_NBITS_DUAL && 3995 xfer->tx_nbits != SPI_NBITS_QUAD) 3996 return -EINVAL; 3997 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3998 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3999 return -EINVAL; 4000 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4001 !(spi->mode & SPI_TX_QUAD)) 4002 return -EINVAL; 4003 } 4004 /* Check transfer rx_nbits */ 4005 if (xfer->rx_buf) { 4006 if (spi->mode & SPI_NO_RX) 4007 return -EINVAL; 4008 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4009 xfer->rx_nbits != SPI_NBITS_DUAL && 4010 xfer->rx_nbits != SPI_NBITS_QUAD) 4011 return -EINVAL; 4012 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4013 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4014 return -EINVAL; 4015 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4016 !(spi->mode & SPI_RX_QUAD)) 4017 return -EINVAL; 4018 } 4019 4020 if (_spi_xfer_word_delay_update(xfer, spi)) 4021 return -EINVAL; 4022 } 4023 4024 message->status = -EINPROGRESS; 4025 4026 return 0; 4027 } 4028 4029 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4030 { 4031 struct spi_controller *ctlr = spi->controller; 4032 struct spi_transfer *xfer; 4033 4034 /* 4035 * Some controllers do not support doing regular SPI transfers. Return 4036 * ENOTSUPP when this is the case. 4037 */ 4038 if (!ctlr->transfer) 4039 return -ENOTSUPP; 4040 4041 message->spi = spi; 4042 4043 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4044 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4045 4046 trace_spi_message_submit(message); 4047 4048 if (!ctlr->ptp_sts_supported) { 4049 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4050 xfer->ptp_sts_word_pre = 0; 4051 ptp_read_system_prets(xfer->ptp_sts); 4052 } 4053 } 4054 4055 return ctlr->transfer(spi, message); 4056 } 4057 4058 /** 4059 * spi_async - asynchronous SPI transfer 4060 * @spi: device with which data will be exchanged 4061 * @message: describes the data transfers, including completion callback 4062 * Context: any (IRQs may be blocked, etc) 4063 * 4064 * This call may be used in_irq and other contexts which can't sleep, 4065 * as well as from task contexts which can sleep. 4066 * 4067 * The completion callback is invoked in a context which can't sleep. 4068 * Before that invocation, the value of message->status is undefined. 4069 * When the callback is issued, message->status holds either zero (to 4070 * indicate complete success) or a negative error code. After that 4071 * callback returns, the driver which issued the transfer request may 4072 * deallocate the associated memory; it's no longer in use by any SPI 4073 * core or controller driver code. 4074 * 4075 * Note that although all messages to a spi_device are handled in 4076 * FIFO order, messages may go to different devices in other orders. 4077 * Some device might be higher priority, or have various "hard" access 4078 * time requirements, for example. 4079 * 4080 * On detection of any fault during the transfer, processing of 4081 * the entire message is aborted, and the device is deselected. 4082 * Until returning from the associated message completion callback, 4083 * no other spi_message queued to that device will be processed. 4084 * (This rule applies equally to all the synchronous transfer calls, 4085 * which are wrappers around this core asynchronous primitive.) 4086 * 4087 * Return: zero on success, else a negative error code. 4088 */ 4089 int spi_async(struct spi_device *spi, struct spi_message *message) 4090 { 4091 struct spi_controller *ctlr = spi->controller; 4092 int ret; 4093 unsigned long flags; 4094 4095 ret = __spi_validate(spi, message); 4096 if (ret != 0) 4097 return ret; 4098 4099 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4100 4101 if (ctlr->bus_lock_flag) 4102 ret = -EBUSY; 4103 else 4104 ret = __spi_async(spi, message); 4105 4106 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4107 4108 return ret; 4109 } 4110 EXPORT_SYMBOL_GPL(spi_async); 4111 4112 /** 4113 * spi_async_locked - version of spi_async with exclusive bus usage 4114 * @spi: device with which data will be exchanged 4115 * @message: describes the data transfers, including completion callback 4116 * Context: any (IRQs may be blocked, etc) 4117 * 4118 * This call may be used in_irq and other contexts which can't sleep, 4119 * as well as from task contexts which can sleep. 4120 * 4121 * The completion callback is invoked in a context which can't sleep. 4122 * Before that invocation, the value of message->status is undefined. 4123 * When the callback is issued, message->status holds either zero (to 4124 * indicate complete success) or a negative error code. After that 4125 * callback returns, the driver which issued the transfer request may 4126 * deallocate the associated memory; it's no longer in use by any SPI 4127 * core or controller driver code. 4128 * 4129 * Note that although all messages to a spi_device are handled in 4130 * FIFO order, messages may go to different devices in other orders. 4131 * Some device might be higher priority, or have various "hard" access 4132 * time requirements, for example. 4133 * 4134 * On detection of any fault during the transfer, processing of 4135 * the entire message is aborted, and the device is deselected. 4136 * Until returning from the associated message completion callback, 4137 * no other spi_message queued to that device will be processed. 4138 * (This rule applies equally to all the synchronous transfer calls, 4139 * which are wrappers around this core asynchronous primitive.) 4140 * 4141 * Return: zero on success, else a negative error code. 4142 */ 4143 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 4144 { 4145 struct spi_controller *ctlr = spi->controller; 4146 int ret; 4147 unsigned long flags; 4148 4149 ret = __spi_validate(spi, message); 4150 if (ret != 0) 4151 return ret; 4152 4153 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4154 4155 ret = __spi_async(spi, message); 4156 4157 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4158 4159 return ret; 4160 4161 } 4162 4163 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4164 { 4165 bool was_busy; 4166 int ret; 4167 4168 mutex_lock(&ctlr->io_mutex); 4169 4170 was_busy = ctlr->busy; 4171 4172 ctlr->cur_msg = msg; 4173 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4174 if (ret) 4175 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4176 ctlr->cur_msg = NULL; 4177 ctlr->fallback = false; 4178 4179 if (!was_busy) { 4180 kfree(ctlr->dummy_rx); 4181 ctlr->dummy_rx = NULL; 4182 kfree(ctlr->dummy_tx); 4183 ctlr->dummy_tx = NULL; 4184 if (ctlr->unprepare_transfer_hardware && 4185 ctlr->unprepare_transfer_hardware(ctlr)) 4186 dev_err(&ctlr->dev, 4187 "failed to unprepare transfer hardware\n"); 4188 spi_idle_runtime_pm(ctlr); 4189 } 4190 4191 mutex_unlock(&ctlr->io_mutex); 4192 } 4193 4194 /*-------------------------------------------------------------------------*/ 4195 4196 /* 4197 * Utility methods for SPI protocol drivers, layered on 4198 * top of the core. Some other utility methods are defined as 4199 * inline functions. 4200 */ 4201 4202 static void spi_complete(void *arg) 4203 { 4204 complete(arg); 4205 } 4206 4207 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4208 { 4209 DECLARE_COMPLETION_ONSTACK(done); 4210 int status; 4211 struct spi_controller *ctlr = spi->controller; 4212 4213 if (__spi_check_suspended(ctlr)) { 4214 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4215 return -ESHUTDOWN; 4216 } 4217 4218 status = __spi_validate(spi, message); 4219 if (status != 0) 4220 return status; 4221 4222 message->spi = spi; 4223 4224 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4225 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4226 4227 /* 4228 * Checking queue_empty here only guarantees async/sync message 4229 * ordering when coming from the same context. It does not need to 4230 * guard against reentrancy from a different context. The io_mutex 4231 * will catch those cases. 4232 */ 4233 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4234 message->actual_length = 0; 4235 message->status = -EINPROGRESS; 4236 4237 trace_spi_message_submit(message); 4238 4239 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4240 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4241 4242 __spi_transfer_message_noqueue(ctlr, message); 4243 4244 return message->status; 4245 } 4246 4247 /* 4248 * There are messages in the async queue that could have originated 4249 * from the same context, so we need to preserve ordering. 4250 * Therefor we send the message to the async queue and wait until they 4251 * are completed. 4252 */ 4253 message->complete = spi_complete; 4254 message->context = &done; 4255 status = spi_async_locked(spi, message); 4256 if (status == 0) { 4257 wait_for_completion(&done); 4258 status = message->status; 4259 } 4260 message->context = NULL; 4261 4262 return status; 4263 } 4264 4265 /** 4266 * spi_sync - blocking/synchronous SPI data transfers 4267 * @spi: device with which data will be exchanged 4268 * @message: describes the data transfers 4269 * Context: can sleep 4270 * 4271 * This call may only be used from a context that may sleep. The sleep 4272 * is non-interruptible, and has no timeout. Low-overhead controller 4273 * drivers may DMA directly into and out of the message buffers. 4274 * 4275 * Note that the SPI device's chip select is active during the message, 4276 * and then is normally disabled between messages. Drivers for some 4277 * frequently-used devices may want to minimize costs of selecting a chip, 4278 * by leaving it selected in anticipation that the next message will go 4279 * to the same chip. (That may increase power usage.) 4280 * 4281 * Also, the caller is guaranteeing that the memory associated with the 4282 * message will not be freed before this call returns. 4283 * 4284 * Return: zero on success, else a negative error code. 4285 */ 4286 int spi_sync(struct spi_device *spi, struct spi_message *message) 4287 { 4288 int ret; 4289 4290 mutex_lock(&spi->controller->bus_lock_mutex); 4291 ret = __spi_sync(spi, message); 4292 mutex_unlock(&spi->controller->bus_lock_mutex); 4293 4294 return ret; 4295 } 4296 EXPORT_SYMBOL_GPL(spi_sync); 4297 4298 /** 4299 * spi_sync_locked - version of spi_sync with exclusive bus usage 4300 * @spi: device with which data will be exchanged 4301 * @message: describes the data transfers 4302 * Context: can sleep 4303 * 4304 * This call may only be used from a context that may sleep. The sleep 4305 * is non-interruptible, and has no timeout. Low-overhead controller 4306 * drivers may DMA directly into and out of the message buffers. 4307 * 4308 * This call should be used by drivers that require exclusive access to the 4309 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4310 * be released by a spi_bus_unlock call when the exclusive access is over. 4311 * 4312 * Return: zero on success, else a negative error code. 4313 */ 4314 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4315 { 4316 return __spi_sync(spi, message); 4317 } 4318 EXPORT_SYMBOL_GPL(spi_sync_locked); 4319 4320 /** 4321 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4322 * @ctlr: SPI bus master that should be locked for exclusive bus access 4323 * Context: can sleep 4324 * 4325 * This call may only be used from a context that may sleep. The sleep 4326 * is non-interruptible, and has no timeout. 4327 * 4328 * This call should be used by drivers that require exclusive access to the 4329 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4330 * exclusive access is over. Data transfer must be done by spi_sync_locked 4331 * and spi_async_locked calls when the SPI bus lock is held. 4332 * 4333 * Return: always zero. 4334 */ 4335 int spi_bus_lock(struct spi_controller *ctlr) 4336 { 4337 unsigned long flags; 4338 4339 mutex_lock(&ctlr->bus_lock_mutex); 4340 4341 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4342 ctlr->bus_lock_flag = 1; 4343 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4344 4345 /* Mutex remains locked until spi_bus_unlock() is called */ 4346 4347 return 0; 4348 } 4349 EXPORT_SYMBOL_GPL(spi_bus_lock); 4350 4351 /** 4352 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4353 * @ctlr: SPI bus master that was locked for exclusive bus access 4354 * Context: can sleep 4355 * 4356 * This call may only be used from a context that may sleep. The sleep 4357 * is non-interruptible, and has no timeout. 4358 * 4359 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4360 * call. 4361 * 4362 * Return: always zero. 4363 */ 4364 int spi_bus_unlock(struct spi_controller *ctlr) 4365 { 4366 ctlr->bus_lock_flag = 0; 4367 4368 mutex_unlock(&ctlr->bus_lock_mutex); 4369 4370 return 0; 4371 } 4372 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4373 4374 /* Portable code must never pass more than 32 bytes */ 4375 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4376 4377 static u8 *buf; 4378 4379 /** 4380 * spi_write_then_read - SPI synchronous write followed by read 4381 * @spi: device with which data will be exchanged 4382 * @txbuf: data to be written (need not be DMA-safe) 4383 * @n_tx: size of txbuf, in bytes 4384 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4385 * @n_rx: size of rxbuf, in bytes 4386 * Context: can sleep 4387 * 4388 * This performs a half duplex MicroWire style transaction with the 4389 * device, sending txbuf and then reading rxbuf. The return value 4390 * is zero for success, else a negative errno status code. 4391 * This call may only be used from a context that may sleep. 4392 * 4393 * Parameters to this routine are always copied using a small buffer. 4394 * Performance-sensitive or bulk transfer code should instead use 4395 * spi_{async,sync}() calls with DMA-safe buffers. 4396 * 4397 * Return: zero on success, else a negative error code. 4398 */ 4399 int spi_write_then_read(struct spi_device *spi, 4400 const void *txbuf, unsigned n_tx, 4401 void *rxbuf, unsigned n_rx) 4402 { 4403 static DEFINE_MUTEX(lock); 4404 4405 int status; 4406 struct spi_message message; 4407 struct spi_transfer x[2]; 4408 u8 *local_buf; 4409 4410 /* 4411 * Use preallocated DMA-safe buffer if we can. We can't avoid 4412 * copying here, (as a pure convenience thing), but we can 4413 * keep heap costs out of the hot path unless someone else is 4414 * using the pre-allocated buffer or the transfer is too large. 4415 */ 4416 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4417 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4418 GFP_KERNEL | GFP_DMA); 4419 if (!local_buf) 4420 return -ENOMEM; 4421 } else { 4422 local_buf = buf; 4423 } 4424 4425 spi_message_init(&message); 4426 memset(x, 0, sizeof(x)); 4427 if (n_tx) { 4428 x[0].len = n_tx; 4429 spi_message_add_tail(&x[0], &message); 4430 } 4431 if (n_rx) { 4432 x[1].len = n_rx; 4433 spi_message_add_tail(&x[1], &message); 4434 } 4435 4436 memcpy(local_buf, txbuf, n_tx); 4437 x[0].tx_buf = local_buf; 4438 x[1].rx_buf = local_buf + n_tx; 4439 4440 /* Do the I/O */ 4441 status = spi_sync(spi, &message); 4442 if (status == 0) 4443 memcpy(rxbuf, x[1].rx_buf, n_rx); 4444 4445 if (x[0].tx_buf == buf) 4446 mutex_unlock(&lock); 4447 else 4448 kfree(local_buf); 4449 4450 return status; 4451 } 4452 EXPORT_SYMBOL_GPL(spi_write_then_read); 4453 4454 /*-------------------------------------------------------------------------*/ 4455 4456 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4457 /* Must call put_device() when done with returned spi_device device */ 4458 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4459 { 4460 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4461 4462 return dev ? to_spi_device(dev) : NULL; 4463 } 4464 4465 /* The spi controllers are not using spi_bus, so we find it with another way */ 4466 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4467 { 4468 struct device *dev; 4469 4470 dev = class_find_device_by_of_node(&spi_master_class, node); 4471 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4472 dev = class_find_device_by_of_node(&spi_slave_class, node); 4473 if (!dev) 4474 return NULL; 4475 4476 /* Reference got in class_find_device */ 4477 return container_of(dev, struct spi_controller, dev); 4478 } 4479 4480 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4481 void *arg) 4482 { 4483 struct of_reconfig_data *rd = arg; 4484 struct spi_controller *ctlr; 4485 struct spi_device *spi; 4486 4487 switch (of_reconfig_get_state_change(action, arg)) { 4488 case OF_RECONFIG_CHANGE_ADD: 4489 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4490 if (ctlr == NULL) 4491 return NOTIFY_OK; /* Not for us */ 4492 4493 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4494 put_device(&ctlr->dev); 4495 return NOTIFY_OK; 4496 } 4497 4498 /* 4499 * Clear the flag before adding the device so that fw_devlink 4500 * doesn't skip adding consumers to this device. 4501 */ 4502 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4503 spi = of_register_spi_device(ctlr, rd->dn); 4504 put_device(&ctlr->dev); 4505 4506 if (IS_ERR(spi)) { 4507 pr_err("%s: failed to create for '%pOF'\n", 4508 __func__, rd->dn); 4509 of_node_clear_flag(rd->dn, OF_POPULATED); 4510 return notifier_from_errno(PTR_ERR(spi)); 4511 } 4512 break; 4513 4514 case OF_RECONFIG_CHANGE_REMOVE: 4515 /* Already depopulated? */ 4516 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4517 return NOTIFY_OK; 4518 4519 /* Find our device by node */ 4520 spi = of_find_spi_device_by_node(rd->dn); 4521 if (spi == NULL) 4522 return NOTIFY_OK; /* No? not meant for us */ 4523 4524 /* Unregister takes one ref away */ 4525 spi_unregister_device(spi); 4526 4527 /* And put the reference of the find */ 4528 put_device(&spi->dev); 4529 break; 4530 } 4531 4532 return NOTIFY_OK; 4533 } 4534 4535 static struct notifier_block spi_of_notifier = { 4536 .notifier_call = of_spi_notify, 4537 }; 4538 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4539 extern struct notifier_block spi_of_notifier; 4540 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4541 4542 #if IS_ENABLED(CONFIG_ACPI) 4543 static int spi_acpi_controller_match(struct device *dev, const void *data) 4544 { 4545 return ACPI_COMPANION(dev->parent) == data; 4546 } 4547 4548 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4549 { 4550 struct device *dev; 4551 4552 dev = class_find_device(&spi_master_class, NULL, adev, 4553 spi_acpi_controller_match); 4554 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4555 dev = class_find_device(&spi_slave_class, NULL, adev, 4556 spi_acpi_controller_match); 4557 if (!dev) 4558 return NULL; 4559 4560 return container_of(dev, struct spi_controller, dev); 4561 } 4562 4563 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4564 { 4565 struct device *dev; 4566 4567 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4568 return to_spi_device(dev); 4569 } 4570 4571 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4572 void *arg) 4573 { 4574 struct acpi_device *adev = arg; 4575 struct spi_controller *ctlr; 4576 struct spi_device *spi; 4577 4578 switch (value) { 4579 case ACPI_RECONFIG_DEVICE_ADD: 4580 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4581 if (!ctlr) 4582 break; 4583 4584 acpi_register_spi_device(ctlr, adev); 4585 put_device(&ctlr->dev); 4586 break; 4587 case ACPI_RECONFIG_DEVICE_REMOVE: 4588 if (!acpi_device_enumerated(adev)) 4589 break; 4590 4591 spi = acpi_spi_find_device_by_adev(adev); 4592 if (!spi) 4593 break; 4594 4595 spi_unregister_device(spi); 4596 put_device(&spi->dev); 4597 break; 4598 } 4599 4600 return NOTIFY_OK; 4601 } 4602 4603 static struct notifier_block spi_acpi_notifier = { 4604 .notifier_call = acpi_spi_notify, 4605 }; 4606 #else 4607 extern struct notifier_block spi_acpi_notifier; 4608 #endif 4609 4610 static int __init spi_init(void) 4611 { 4612 int status; 4613 4614 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4615 if (!buf) { 4616 status = -ENOMEM; 4617 goto err0; 4618 } 4619 4620 status = bus_register(&spi_bus_type); 4621 if (status < 0) 4622 goto err1; 4623 4624 status = class_register(&spi_master_class); 4625 if (status < 0) 4626 goto err2; 4627 4628 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4629 status = class_register(&spi_slave_class); 4630 if (status < 0) 4631 goto err3; 4632 } 4633 4634 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4635 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4636 if (IS_ENABLED(CONFIG_ACPI)) 4637 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4638 4639 return 0; 4640 4641 err3: 4642 class_unregister(&spi_master_class); 4643 err2: 4644 bus_unregister(&spi_bus_type); 4645 err1: 4646 kfree(buf); 4647 buf = NULL; 4648 err0: 4649 return status; 4650 } 4651 4652 /* 4653 * A board_info is normally registered in arch_initcall(), 4654 * but even essential drivers wait till later. 4655 * 4656 * REVISIT only boardinfo really needs static linking. The rest (device and 4657 * driver registration) _could_ be dynamically linked (modular) ... Costs 4658 * include needing to have boardinfo data structures be much more public. 4659 */ 4660 postcore_initcall(spi_init); 4661