xref: /openbmc/linux/drivers/spi/spi.c (revision 36e3cf0c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Empty string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del operation for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 	struct spi_device	*spi;
498 
499 	if (!spi_controller_get(ctlr))
500 		return NULL;
501 
502 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 	if (!spi) {
504 		spi_controller_put(ctlr);
505 		return NULL;
506 	}
507 
508 	spi->master = spi->controller = ctlr;
509 	spi->dev.parent = &ctlr->dev;
510 	spi->dev.bus = &spi_bus_type;
511 	spi->dev.release = spidev_release;
512 	spi->cs_gpio = -ENOENT;
513 	spi->mode = ctlr->buswidth_override_bits;
514 
515 	spin_lock_init(&spi->statistics.lock);
516 
517 	device_initialize(&spi->dev);
518 	return spi;
519 }
520 EXPORT_SYMBOL_GPL(spi_alloc_device);
521 
522 static void spi_dev_set_name(struct spi_device *spi)
523 {
524 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
525 
526 	if (adev) {
527 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
528 		return;
529 	}
530 
531 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
532 		     spi->chip_select);
533 }
534 
535 static int spi_dev_check(struct device *dev, void *data)
536 {
537 	struct spi_device *spi = to_spi_device(dev);
538 	struct spi_device *new_spi = data;
539 
540 	if (spi->controller == new_spi->controller &&
541 	    spi->chip_select == new_spi->chip_select)
542 		return -EBUSY;
543 	return 0;
544 }
545 
546 /**
547  * spi_add_device - Add spi_device allocated with spi_alloc_device
548  * @spi: spi_device to register
549  *
550  * Companion function to spi_alloc_device.  Devices allocated with
551  * spi_alloc_device can be added onto the spi bus with this function.
552  *
553  * Return: 0 on success; negative errno on failure
554  */
555 int spi_add_device(struct spi_device *spi)
556 {
557 	static DEFINE_MUTEX(spi_add_lock);
558 	struct spi_controller *ctlr = spi->controller;
559 	struct device *dev = ctlr->dev.parent;
560 	int status;
561 
562 	/* Chipselects are numbered 0..max; validate. */
563 	if (spi->chip_select >= ctlr->num_chipselect) {
564 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
565 			ctlr->num_chipselect);
566 		return -EINVAL;
567 	}
568 
569 	/* Set the bus ID string */
570 	spi_dev_set_name(spi);
571 
572 	/* We need to make sure there's no other device with this
573 	 * chipselect **BEFORE** we call setup(), else we'll trash
574 	 * its configuration.  Lock against concurrent add() calls.
575 	 */
576 	mutex_lock(&spi_add_lock);
577 
578 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
579 	if (status) {
580 		dev_err(dev, "chipselect %d already in use\n",
581 				spi->chip_select);
582 		goto done;
583 	}
584 
585 	/* Descriptors take precedence */
586 	if (ctlr->cs_gpiods)
587 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
588 	else if (ctlr->cs_gpios)
589 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
590 
591 	/* Drivers may modify this initial i/o setup, but will
592 	 * normally rely on the device being setup.  Devices
593 	 * using SPI_CS_HIGH can't coexist well otherwise...
594 	 */
595 	status = spi_setup(spi);
596 	if (status < 0) {
597 		dev_err(dev, "can't setup %s, status %d\n",
598 				dev_name(&spi->dev), status);
599 		goto done;
600 	}
601 
602 	/* Device may be bound to an active driver when this returns */
603 	status = device_add(&spi->dev);
604 	if (status < 0)
605 		dev_err(dev, "can't add %s, status %d\n",
606 				dev_name(&spi->dev), status);
607 	else
608 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
609 
610 done:
611 	mutex_unlock(&spi_add_lock);
612 	return status;
613 }
614 EXPORT_SYMBOL_GPL(spi_add_device);
615 
616 /**
617  * spi_new_device - instantiate one new SPI device
618  * @ctlr: Controller to which device is connected
619  * @chip: Describes the SPI device
620  * Context: can sleep
621  *
622  * On typical mainboards, this is purely internal; and it's not needed
623  * after board init creates the hard-wired devices.  Some development
624  * platforms may not be able to use spi_register_board_info though, and
625  * this is exported so that for example a USB or parport based adapter
626  * driver could add devices (which it would learn about out-of-band).
627  *
628  * Return: the new device, or NULL.
629  */
630 struct spi_device *spi_new_device(struct spi_controller *ctlr,
631 				  struct spi_board_info *chip)
632 {
633 	struct spi_device	*proxy;
634 	int			status;
635 
636 	/* NOTE:  caller did any chip->bus_num checks necessary.
637 	 *
638 	 * Also, unless we change the return value convention to use
639 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
640 	 * suggests syslogged diagnostics are best here (ugh).
641 	 */
642 
643 	proxy = spi_alloc_device(ctlr);
644 	if (!proxy)
645 		return NULL;
646 
647 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
648 
649 	proxy->chip_select = chip->chip_select;
650 	proxy->max_speed_hz = chip->max_speed_hz;
651 	proxy->mode = chip->mode;
652 	proxy->irq = chip->irq;
653 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
654 	proxy->dev.platform_data = (void *) chip->platform_data;
655 	proxy->controller_data = chip->controller_data;
656 	proxy->controller_state = NULL;
657 
658 	if (chip->properties) {
659 		status = device_add_properties(&proxy->dev, chip->properties);
660 		if (status) {
661 			dev_err(&ctlr->dev,
662 				"failed to add properties to '%s': %d\n",
663 				chip->modalias, status);
664 			goto err_dev_put;
665 		}
666 	}
667 
668 	status = spi_add_device(proxy);
669 	if (status < 0)
670 		goto err_remove_props;
671 
672 	return proxy;
673 
674 err_remove_props:
675 	if (chip->properties)
676 		device_remove_properties(&proxy->dev);
677 err_dev_put:
678 	spi_dev_put(proxy);
679 	return NULL;
680 }
681 EXPORT_SYMBOL_GPL(spi_new_device);
682 
683 /**
684  * spi_unregister_device - unregister a single SPI device
685  * @spi: spi_device to unregister
686  *
687  * Start making the passed SPI device vanish. Normally this would be handled
688  * by spi_unregister_controller().
689  */
690 void spi_unregister_device(struct spi_device *spi)
691 {
692 	if (!spi)
693 		return;
694 
695 	if (spi->dev.of_node) {
696 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
697 		of_node_put(spi->dev.of_node);
698 	}
699 	if (ACPI_COMPANION(&spi->dev))
700 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
701 	device_unregister(&spi->dev);
702 }
703 EXPORT_SYMBOL_GPL(spi_unregister_device);
704 
705 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
706 					      struct spi_board_info *bi)
707 {
708 	struct spi_device *dev;
709 
710 	if (ctlr->bus_num != bi->bus_num)
711 		return;
712 
713 	dev = spi_new_device(ctlr, bi);
714 	if (!dev)
715 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
716 			bi->modalias);
717 }
718 
719 /**
720  * spi_register_board_info - register SPI devices for a given board
721  * @info: array of chip descriptors
722  * @n: how many descriptors are provided
723  * Context: can sleep
724  *
725  * Board-specific early init code calls this (probably during arch_initcall)
726  * with segments of the SPI device table.  Any device nodes are created later,
727  * after the relevant parent SPI controller (bus_num) is defined.  We keep
728  * this table of devices forever, so that reloading a controller driver will
729  * not make Linux forget about these hard-wired devices.
730  *
731  * Other code can also call this, e.g. a particular add-on board might provide
732  * SPI devices through its expansion connector, so code initializing that board
733  * would naturally declare its SPI devices.
734  *
735  * The board info passed can safely be __initdata ... but be careful of
736  * any embedded pointers (platform_data, etc), they're copied as-is.
737  * Device properties are deep-copied though.
738  *
739  * Return: zero on success, else a negative error code.
740  */
741 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
742 {
743 	struct boardinfo *bi;
744 	int i;
745 
746 	if (!n)
747 		return 0;
748 
749 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
750 	if (!bi)
751 		return -ENOMEM;
752 
753 	for (i = 0; i < n; i++, bi++, info++) {
754 		struct spi_controller *ctlr;
755 
756 		memcpy(&bi->board_info, info, sizeof(*info));
757 		if (info->properties) {
758 			bi->board_info.properties =
759 					property_entries_dup(info->properties);
760 			if (IS_ERR(bi->board_info.properties))
761 				return PTR_ERR(bi->board_info.properties);
762 		}
763 
764 		mutex_lock(&board_lock);
765 		list_add_tail(&bi->list, &board_list);
766 		list_for_each_entry(ctlr, &spi_controller_list, list)
767 			spi_match_controller_to_boardinfo(ctlr,
768 							  &bi->board_info);
769 		mutex_unlock(&board_lock);
770 	}
771 
772 	return 0;
773 }
774 
775 /*-------------------------------------------------------------------------*/
776 
777 static void spi_set_cs(struct spi_device *spi, bool enable)
778 {
779 	bool enable1 = enable;
780 
781 	/*
782 	 * Avoid calling into the driver (or doing delays) if the chip select
783 	 * isn't actually changing from the last time this was called.
784 	 */
785 	if ((spi->controller->last_cs_enable == enable) &&
786 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
787 		return;
788 
789 	spi->controller->last_cs_enable = enable;
790 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
791 
792 	if (!spi->controller->set_cs_timing) {
793 		if (enable1)
794 			spi_delay_exec(&spi->controller->cs_setup, NULL);
795 		else
796 			spi_delay_exec(&spi->controller->cs_hold, NULL);
797 	}
798 
799 	if (spi->mode & SPI_CS_HIGH)
800 		enable = !enable;
801 
802 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
803 		/*
804 		 * Honour the SPI_NO_CS flag and invert the enable line, as
805 		 * active low is default for SPI. Execution paths that handle
806 		 * polarity inversion in gpiolib (such as device tree) will
807 		 * enforce active high using the SPI_CS_HIGH resulting in a
808 		 * double inversion through the code above.
809 		 */
810 		if (!(spi->mode & SPI_NO_CS)) {
811 			if (spi->cs_gpiod)
812 				gpiod_set_value_cansleep(spi->cs_gpiod,
813 							 !enable);
814 			else
815 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
816 		}
817 		/* Some SPI masters need both GPIO CS & slave_select */
818 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
819 		    spi->controller->set_cs)
820 			spi->controller->set_cs(spi, !enable);
821 	} else if (spi->controller->set_cs) {
822 		spi->controller->set_cs(spi, !enable);
823 	}
824 
825 	if (!spi->controller->set_cs_timing) {
826 		if (!enable1)
827 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
828 	}
829 }
830 
831 #ifdef CONFIG_HAS_DMA
832 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
833 		struct sg_table *sgt, void *buf, size_t len,
834 		enum dma_data_direction dir)
835 {
836 	const bool vmalloced_buf = is_vmalloc_addr(buf);
837 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
838 #ifdef CONFIG_HIGHMEM
839 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
840 				(unsigned long)buf < (PKMAP_BASE +
841 					(LAST_PKMAP * PAGE_SIZE)));
842 #else
843 	const bool kmap_buf = false;
844 #endif
845 	int desc_len;
846 	int sgs;
847 	struct page *vm_page;
848 	struct scatterlist *sg;
849 	void *sg_buf;
850 	size_t min;
851 	int i, ret;
852 
853 	if (vmalloced_buf || kmap_buf) {
854 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
855 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
856 	} else if (virt_addr_valid(buf)) {
857 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
858 		sgs = DIV_ROUND_UP(len, desc_len);
859 	} else {
860 		return -EINVAL;
861 	}
862 
863 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
864 	if (ret != 0)
865 		return ret;
866 
867 	sg = &sgt->sgl[0];
868 	for (i = 0; i < sgs; i++) {
869 
870 		if (vmalloced_buf || kmap_buf) {
871 			/*
872 			 * Next scatterlist entry size is the minimum between
873 			 * the desc_len and the remaining buffer length that
874 			 * fits in a page.
875 			 */
876 			min = min_t(size_t, desc_len,
877 				    min_t(size_t, len,
878 					  PAGE_SIZE - offset_in_page(buf)));
879 			if (vmalloced_buf)
880 				vm_page = vmalloc_to_page(buf);
881 			else
882 				vm_page = kmap_to_page(buf);
883 			if (!vm_page) {
884 				sg_free_table(sgt);
885 				return -ENOMEM;
886 			}
887 			sg_set_page(sg, vm_page,
888 				    min, offset_in_page(buf));
889 		} else {
890 			min = min_t(size_t, len, desc_len);
891 			sg_buf = buf;
892 			sg_set_buf(sg, sg_buf, min);
893 		}
894 
895 		buf += min;
896 		len -= min;
897 		sg = sg_next(sg);
898 	}
899 
900 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
901 	if (!ret)
902 		ret = -ENOMEM;
903 	if (ret < 0) {
904 		sg_free_table(sgt);
905 		return ret;
906 	}
907 
908 	sgt->nents = ret;
909 
910 	return 0;
911 }
912 
913 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
914 		   struct sg_table *sgt, enum dma_data_direction dir)
915 {
916 	if (sgt->orig_nents) {
917 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
918 		sg_free_table(sgt);
919 	}
920 }
921 
922 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
923 {
924 	struct device *tx_dev, *rx_dev;
925 	struct spi_transfer *xfer;
926 	int ret;
927 
928 	if (!ctlr->can_dma)
929 		return 0;
930 
931 	if (ctlr->dma_tx)
932 		tx_dev = ctlr->dma_tx->device->dev;
933 	else
934 		tx_dev = ctlr->dev.parent;
935 
936 	if (ctlr->dma_rx)
937 		rx_dev = ctlr->dma_rx->device->dev;
938 	else
939 		rx_dev = ctlr->dev.parent;
940 
941 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
942 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
943 			continue;
944 
945 		if (xfer->tx_buf != NULL) {
946 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
947 					  (void *)xfer->tx_buf, xfer->len,
948 					  DMA_TO_DEVICE);
949 			if (ret != 0)
950 				return ret;
951 		}
952 
953 		if (xfer->rx_buf != NULL) {
954 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
955 					  xfer->rx_buf, xfer->len,
956 					  DMA_FROM_DEVICE);
957 			if (ret != 0) {
958 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
959 					      DMA_TO_DEVICE);
960 				return ret;
961 			}
962 		}
963 	}
964 
965 	ctlr->cur_msg_mapped = true;
966 
967 	return 0;
968 }
969 
970 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
971 {
972 	struct spi_transfer *xfer;
973 	struct device *tx_dev, *rx_dev;
974 
975 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
976 		return 0;
977 
978 	if (ctlr->dma_tx)
979 		tx_dev = ctlr->dma_tx->device->dev;
980 	else
981 		tx_dev = ctlr->dev.parent;
982 
983 	if (ctlr->dma_rx)
984 		rx_dev = ctlr->dma_rx->device->dev;
985 	else
986 		rx_dev = ctlr->dev.parent;
987 
988 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
989 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
990 			continue;
991 
992 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
993 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
994 	}
995 
996 	ctlr->cur_msg_mapped = false;
997 
998 	return 0;
999 }
1000 #else /* !CONFIG_HAS_DMA */
1001 static inline int __spi_map_msg(struct spi_controller *ctlr,
1002 				struct spi_message *msg)
1003 {
1004 	return 0;
1005 }
1006 
1007 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1008 				  struct spi_message *msg)
1009 {
1010 	return 0;
1011 }
1012 #endif /* !CONFIG_HAS_DMA */
1013 
1014 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1015 				struct spi_message *msg)
1016 {
1017 	struct spi_transfer *xfer;
1018 
1019 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1020 		/*
1021 		 * Restore the original value of tx_buf or rx_buf if they are
1022 		 * NULL.
1023 		 */
1024 		if (xfer->tx_buf == ctlr->dummy_tx)
1025 			xfer->tx_buf = NULL;
1026 		if (xfer->rx_buf == ctlr->dummy_rx)
1027 			xfer->rx_buf = NULL;
1028 	}
1029 
1030 	return __spi_unmap_msg(ctlr, msg);
1031 }
1032 
1033 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1034 {
1035 	struct spi_transfer *xfer;
1036 	void *tmp;
1037 	unsigned int max_tx, max_rx;
1038 
1039 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1040 		&& !(msg->spi->mode & SPI_3WIRE)) {
1041 		max_tx = 0;
1042 		max_rx = 0;
1043 
1044 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1045 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1046 			    !xfer->tx_buf)
1047 				max_tx = max(xfer->len, max_tx);
1048 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1049 			    !xfer->rx_buf)
1050 				max_rx = max(xfer->len, max_rx);
1051 		}
1052 
1053 		if (max_tx) {
1054 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1055 				       GFP_KERNEL | GFP_DMA);
1056 			if (!tmp)
1057 				return -ENOMEM;
1058 			ctlr->dummy_tx = tmp;
1059 			memset(tmp, 0, max_tx);
1060 		}
1061 
1062 		if (max_rx) {
1063 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1064 				       GFP_KERNEL | GFP_DMA);
1065 			if (!tmp)
1066 				return -ENOMEM;
1067 			ctlr->dummy_rx = tmp;
1068 		}
1069 
1070 		if (max_tx || max_rx) {
1071 			list_for_each_entry(xfer, &msg->transfers,
1072 					    transfer_list) {
1073 				if (!xfer->len)
1074 					continue;
1075 				if (!xfer->tx_buf)
1076 					xfer->tx_buf = ctlr->dummy_tx;
1077 				if (!xfer->rx_buf)
1078 					xfer->rx_buf = ctlr->dummy_rx;
1079 			}
1080 		}
1081 	}
1082 
1083 	return __spi_map_msg(ctlr, msg);
1084 }
1085 
1086 static int spi_transfer_wait(struct spi_controller *ctlr,
1087 			     struct spi_message *msg,
1088 			     struct spi_transfer *xfer)
1089 {
1090 	struct spi_statistics *statm = &ctlr->statistics;
1091 	struct spi_statistics *stats = &msg->spi->statistics;
1092 	unsigned long long ms;
1093 
1094 	if (spi_controller_is_slave(ctlr)) {
1095 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1096 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1097 			return -EINTR;
1098 		}
1099 	} else {
1100 		ms = 8LL * 1000LL * xfer->len;
1101 		do_div(ms, xfer->speed_hz);
1102 		ms += ms + 200; /* some tolerance */
1103 
1104 		if (ms > UINT_MAX)
1105 			ms = UINT_MAX;
1106 
1107 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1108 						 msecs_to_jiffies(ms));
1109 
1110 		if (ms == 0) {
1111 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1112 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1113 			dev_err(&msg->spi->dev,
1114 				"SPI transfer timed out\n");
1115 			return -ETIMEDOUT;
1116 		}
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 static void _spi_transfer_delay_ns(u32 ns)
1123 {
1124 	if (!ns)
1125 		return;
1126 	if (ns <= 1000) {
1127 		ndelay(ns);
1128 	} else {
1129 		u32 us = DIV_ROUND_UP(ns, 1000);
1130 
1131 		if (us <= 10)
1132 			udelay(us);
1133 		else
1134 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1135 	}
1136 }
1137 
1138 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1139 {
1140 	u32 delay = _delay->value;
1141 	u32 unit = _delay->unit;
1142 	u32 hz;
1143 
1144 	if (!delay)
1145 		return 0;
1146 
1147 	switch (unit) {
1148 	case SPI_DELAY_UNIT_USECS:
1149 		delay *= 1000;
1150 		break;
1151 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1152 		break;
1153 	case SPI_DELAY_UNIT_SCK:
1154 		/* clock cycles need to be obtained from spi_transfer */
1155 		if (!xfer)
1156 			return -EINVAL;
1157 		/* if there is no effective speed know, then approximate
1158 		 * by underestimating with half the requested hz
1159 		 */
1160 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1161 		if (!hz)
1162 			return -EINVAL;
1163 		delay *= DIV_ROUND_UP(1000000000, hz);
1164 		break;
1165 	default:
1166 		return -EINVAL;
1167 	}
1168 
1169 	return delay;
1170 }
1171 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1172 
1173 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1174 {
1175 	int delay;
1176 
1177 	might_sleep();
1178 
1179 	if (!_delay)
1180 		return -EINVAL;
1181 
1182 	delay = spi_delay_to_ns(_delay, xfer);
1183 	if (delay < 0)
1184 		return delay;
1185 
1186 	_spi_transfer_delay_ns(delay);
1187 
1188 	return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(spi_delay_exec);
1191 
1192 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1193 					  struct spi_transfer *xfer)
1194 {
1195 	u32 delay = xfer->cs_change_delay.value;
1196 	u32 unit = xfer->cs_change_delay.unit;
1197 	int ret;
1198 
1199 	/* return early on "fast" mode - for everything but USECS */
1200 	if (!delay) {
1201 		if (unit == SPI_DELAY_UNIT_USECS)
1202 			_spi_transfer_delay_ns(10000);
1203 		return;
1204 	}
1205 
1206 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1207 	if (ret) {
1208 		dev_err_once(&msg->spi->dev,
1209 			     "Use of unsupported delay unit %i, using default of 10us\n",
1210 			     unit);
1211 		_spi_transfer_delay_ns(10000);
1212 	}
1213 }
1214 
1215 /*
1216  * spi_transfer_one_message - Default implementation of transfer_one_message()
1217  *
1218  * This is a standard implementation of transfer_one_message() for
1219  * drivers which implement a transfer_one() operation.  It provides
1220  * standard handling of delays and chip select management.
1221  */
1222 static int spi_transfer_one_message(struct spi_controller *ctlr,
1223 				    struct spi_message *msg)
1224 {
1225 	struct spi_transfer *xfer;
1226 	bool keep_cs = false;
1227 	int ret = 0;
1228 	struct spi_statistics *statm = &ctlr->statistics;
1229 	struct spi_statistics *stats = &msg->spi->statistics;
1230 
1231 	spi_set_cs(msg->spi, true);
1232 
1233 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1234 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1235 
1236 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1237 		trace_spi_transfer_start(msg, xfer);
1238 
1239 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1240 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1241 
1242 		if (!ctlr->ptp_sts_supported) {
1243 			xfer->ptp_sts_word_pre = 0;
1244 			ptp_read_system_prets(xfer->ptp_sts);
1245 		}
1246 
1247 		if (xfer->tx_buf || xfer->rx_buf) {
1248 			reinit_completion(&ctlr->xfer_completion);
1249 
1250 fallback_pio:
1251 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1252 			if (ret < 0) {
1253 				if (ctlr->cur_msg_mapped &&
1254 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1255 					__spi_unmap_msg(ctlr, msg);
1256 					ctlr->fallback = true;
1257 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1258 					goto fallback_pio;
1259 				}
1260 
1261 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1262 							       errors);
1263 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1264 							       errors);
1265 				dev_err(&msg->spi->dev,
1266 					"SPI transfer failed: %d\n", ret);
1267 				goto out;
1268 			}
1269 
1270 			if (ret > 0) {
1271 				ret = spi_transfer_wait(ctlr, msg, xfer);
1272 				if (ret < 0)
1273 					msg->status = ret;
1274 			}
1275 		} else {
1276 			if (xfer->len)
1277 				dev_err(&msg->spi->dev,
1278 					"Bufferless transfer has length %u\n",
1279 					xfer->len);
1280 		}
1281 
1282 		if (!ctlr->ptp_sts_supported) {
1283 			ptp_read_system_postts(xfer->ptp_sts);
1284 			xfer->ptp_sts_word_post = xfer->len;
1285 		}
1286 
1287 		trace_spi_transfer_stop(msg, xfer);
1288 
1289 		if (msg->status != -EINPROGRESS)
1290 			goto out;
1291 
1292 		spi_transfer_delay_exec(xfer);
1293 
1294 		if (xfer->cs_change) {
1295 			if (list_is_last(&xfer->transfer_list,
1296 					 &msg->transfers)) {
1297 				keep_cs = true;
1298 			} else {
1299 				spi_set_cs(msg->spi, false);
1300 				_spi_transfer_cs_change_delay(msg, xfer);
1301 				spi_set_cs(msg->spi, true);
1302 			}
1303 		}
1304 
1305 		msg->actual_length += xfer->len;
1306 	}
1307 
1308 out:
1309 	if (ret != 0 || !keep_cs)
1310 		spi_set_cs(msg->spi, false);
1311 
1312 	if (msg->status == -EINPROGRESS)
1313 		msg->status = ret;
1314 
1315 	if (msg->status && ctlr->handle_err)
1316 		ctlr->handle_err(ctlr, msg);
1317 
1318 	spi_res_release(ctlr, msg);
1319 
1320 	spi_finalize_current_message(ctlr);
1321 
1322 	return ret;
1323 }
1324 
1325 /**
1326  * spi_finalize_current_transfer - report completion of a transfer
1327  * @ctlr: the controller reporting completion
1328  *
1329  * Called by SPI drivers using the core transfer_one_message()
1330  * implementation to notify it that the current interrupt driven
1331  * transfer has finished and the next one may be scheduled.
1332  */
1333 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1334 {
1335 	complete(&ctlr->xfer_completion);
1336 }
1337 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1338 
1339 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1340 {
1341 	if (ctlr->auto_runtime_pm) {
1342 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1343 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1344 	}
1345 }
1346 
1347 /**
1348  * __spi_pump_messages - function which processes spi message queue
1349  * @ctlr: controller to process queue for
1350  * @in_kthread: true if we are in the context of the message pump thread
1351  *
1352  * This function checks if there is any spi message in the queue that
1353  * needs processing and if so call out to the driver to initialize hardware
1354  * and transfer each message.
1355  *
1356  * Note that it is called both from the kthread itself and also from
1357  * inside spi_sync(); the queue extraction handling at the top of the
1358  * function should deal with this safely.
1359  */
1360 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1361 {
1362 	struct spi_transfer *xfer;
1363 	struct spi_message *msg;
1364 	bool was_busy = false;
1365 	unsigned long flags;
1366 	int ret;
1367 
1368 	/* Lock queue */
1369 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1370 
1371 	/* Make sure we are not already running a message */
1372 	if (ctlr->cur_msg) {
1373 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1374 		return;
1375 	}
1376 
1377 	/* If another context is idling the device then defer */
1378 	if (ctlr->idling) {
1379 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1380 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1381 		return;
1382 	}
1383 
1384 	/* Check if the queue is idle */
1385 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1386 		if (!ctlr->busy) {
1387 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1388 			return;
1389 		}
1390 
1391 		/* Defer any non-atomic teardown to the thread */
1392 		if (!in_kthread) {
1393 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1394 			    !ctlr->unprepare_transfer_hardware) {
1395 				spi_idle_runtime_pm(ctlr);
1396 				ctlr->busy = false;
1397 				trace_spi_controller_idle(ctlr);
1398 			} else {
1399 				kthread_queue_work(ctlr->kworker,
1400 						   &ctlr->pump_messages);
1401 			}
1402 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1403 			return;
1404 		}
1405 
1406 		ctlr->busy = false;
1407 		ctlr->idling = true;
1408 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1409 
1410 		kfree(ctlr->dummy_rx);
1411 		ctlr->dummy_rx = NULL;
1412 		kfree(ctlr->dummy_tx);
1413 		ctlr->dummy_tx = NULL;
1414 		if (ctlr->unprepare_transfer_hardware &&
1415 		    ctlr->unprepare_transfer_hardware(ctlr))
1416 			dev_err(&ctlr->dev,
1417 				"failed to unprepare transfer hardware\n");
1418 		spi_idle_runtime_pm(ctlr);
1419 		trace_spi_controller_idle(ctlr);
1420 
1421 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1422 		ctlr->idling = false;
1423 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424 		return;
1425 	}
1426 
1427 	/* Extract head of queue */
1428 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1429 	ctlr->cur_msg = msg;
1430 
1431 	list_del_init(&msg->queue);
1432 	if (ctlr->busy)
1433 		was_busy = true;
1434 	else
1435 		ctlr->busy = true;
1436 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1437 
1438 	mutex_lock(&ctlr->io_mutex);
1439 
1440 	if (!was_busy && ctlr->auto_runtime_pm) {
1441 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1442 		if (ret < 0) {
1443 			pm_runtime_put_noidle(ctlr->dev.parent);
1444 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1445 				ret);
1446 			mutex_unlock(&ctlr->io_mutex);
1447 			return;
1448 		}
1449 	}
1450 
1451 	if (!was_busy)
1452 		trace_spi_controller_busy(ctlr);
1453 
1454 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1455 		ret = ctlr->prepare_transfer_hardware(ctlr);
1456 		if (ret) {
1457 			dev_err(&ctlr->dev,
1458 				"failed to prepare transfer hardware: %d\n",
1459 				ret);
1460 
1461 			if (ctlr->auto_runtime_pm)
1462 				pm_runtime_put(ctlr->dev.parent);
1463 
1464 			msg->status = ret;
1465 			spi_finalize_current_message(ctlr);
1466 
1467 			mutex_unlock(&ctlr->io_mutex);
1468 			return;
1469 		}
1470 	}
1471 
1472 	trace_spi_message_start(msg);
1473 
1474 	if (ctlr->prepare_message) {
1475 		ret = ctlr->prepare_message(ctlr, msg);
1476 		if (ret) {
1477 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1478 				ret);
1479 			msg->status = ret;
1480 			spi_finalize_current_message(ctlr);
1481 			goto out;
1482 		}
1483 		ctlr->cur_msg_prepared = true;
1484 	}
1485 
1486 	ret = spi_map_msg(ctlr, msg);
1487 	if (ret) {
1488 		msg->status = ret;
1489 		spi_finalize_current_message(ctlr);
1490 		goto out;
1491 	}
1492 
1493 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1494 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1495 			xfer->ptp_sts_word_pre = 0;
1496 			ptp_read_system_prets(xfer->ptp_sts);
1497 		}
1498 	}
1499 
1500 	ret = ctlr->transfer_one_message(ctlr, msg);
1501 	if (ret) {
1502 		dev_err(&ctlr->dev,
1503 			"failed to transfer one message from queue\n");
1504 		goto out;
1505 	}
1506 
1507 out:
1508 	mutex_unlock(&ctlr->io_mutex);
1509 
1510 	/* Prod the scheduler in case transfer_one() was busy waiting */
1511 	if (!ret)
1512 		cond_resched();
1513 }
1514 
1515 /**
1516  * spi_pump_messages - kthread work function which processes spi message queue
1517  * @work: pointer to kthread work struct contained in the controller struct
1518  */
1519 static void spi_pump_messages(struct kthread_work *work)
1520 {
1521 	struct spi_controller *ctlr =
1522 		container_of(work, struct spi_controller, pump_messages);
1523 
1524 	__spi_pump_messages(ctlr, true);
1525 }
1526 
1527 /**
1528  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1529  *			    TX timestamp for the requested byte from the SPI
1530  *			    transfer. The frequency with which this function
1531  *			    must be called (once per word, once for the whole
1532  *			    transfer, once per batch of words etc) is arbitrary
1533  *			    as long as the @tx buffer offset is greater than or
1534  *			    equal to the requested byte at the time of the
1535  *			    call. The timestamp is only taken once, at the
1536  *			    first such call. It is assumed that the driver
1537  *			    advances its @tx buffer pointer monotonically.
1538  * @ctlr: Pointer to the spi_controller structure of the driver
1539  * @xfer: Pointer to the transfer being timestamped
1540  * @progress: How many words (not bytes) have been transferred so far
1541  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1542  *	      transfer, for less jitter in time measurement. Only compatible
1543  *	      with PIO drivers. If true, must follow up with
1544  *	      spi_take_timestamp_post or otherwise system will crash.
1545  *	      WARNING: for fully predictable results, the CPU frequency must
1546  *	      also be under control (governor).
1547  */
1548 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1549 			    struct spi_transfer *xfer,
1550 			    size_t progress, bool irqs_off)
1551 {
1552 	if (!xfer->ptp_sts)
1553 		return;
1554 
1555 	if (xfer->timestamped)
1556 		return;
1557 
1558 	if (progress > xfer->ptp_sts_word_pre)
1559 		return;
1560 
1561 	/* Capture the resolution of the timestamp */
1562 	xfer->ptp_sts_word_pre = progress;
1563 
1564 	if (irqs_off) {
1565 		local_irq_save(ctlr->irq_flags);
1566 		preempt_disable();
1567 	}
1568 
1569 	ptp_read_system_prets(xfer->ptp_sts);
1570 }
1571 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1572 
1573 /**
1574  * spi_take_timestamp_post - helper for drivers to collect the end of the
1575  *			     TX timestamp for the requested byte from the SPI
1576  *			     transfer. Can be called with an arbitrary
1577  *			     frequency: only the first call where @tx exceeds
1578  *			     or is equal to the requested word will be
1579  *			     timestamped.
1580  * @ctlr: Pointer to the spi_controller structure of the driver
1581  * @xfer: Pointer to the transfer being timestamped
1582  * @progress: How many words (not bytes) have been transferred so far
1583  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1584  */
1585 void spi_take_timestamp_post(struct spi_controller *ctlr,
1586 			     struct spi_transfer *xfer,
1587 			     size_t progress, bool irqs_off)
1588 {
1589 	if (!xfer->ptp_sts)
1590 		return;
1591 
1592 	if (xfer->timestamped)
1593 		return;
1594 
1595 	if (progress < xfer->ptp_sts_word_post)
1596 		return;
1597 
1598 	ptp_read_system_postts(xfer->ptp_sts);
1599 
1600 	if (irqs_off) {
1601 		local_irq_restore(ctlr->irq_flags);
1602 		preempt_enable();
1603 	}
1604 
1605 	/* Capture the resolution of the timestamp */
1606 	xfer->ptp_sts_word_post = progress;
1607 
1608 	xfer->timestamped = true;
1609 }
1610 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1611 
1612 /**
1613  * spi_set_thread_rt - set the controller to pump at realtime priority
1614  * @ctlr: controller to boost priority of
1615  *
1616  * This can be called because the controller requested realtime priority
1617  * (by setting the ->rt value before calling spi_register_controller()) or
1618  * because a device on the bus said that its transfers needed realtime
1619  * priority.
1620  *
1621  * NOTE: at the moment if any device on a bus says it needs realtime then
1622  * the thread will be at realtime priority for all transfers on that
1623  * controller.  If this eventually becomes a problem we may see if we can
1624  * find a way to boost the priority only temporarily during relevant
1625  * transfers.
1626  */
1627 static void spi_set_thread_rt(struct spi_controller *ctlr)
1628 {
1629 	dev_info(&ctlr->dev,
1630 		"will run message pump with realtime priority\n");
1631 	sched_set_fifo(ctlr->kworker->task);
1632 }
1633 
1634 static int spi_init_queue(struct spi_controller *ctlr)
1635 {
1636 	ctlr->running = false;
1637 	ctlr->busy = false;
1638 
1639 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1640 	if (IS_ERR(ctlr->kworker)) {
1641 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1642 		return PTR_ERR(ctlr->kworker);
1643 	}
1644 
1645 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1646 
1647 	/*
1648 	 * Controller config will indicate if this controller should run the
1649 	 * message pump with high (realtime) priority to reduce the transfer
1650 	 * latency on the bus by minimising the delay between a transfer
1651 	 * request and the scheduling of the message pump thread. Without this
1652 	 * setting the message pump thread will remain at default priority.
1653 	 */
1654 	if (ctlr->rt)
1655 		spi_set_thread_rt(ctlr);
1656 
1657 	return 0;
1658 }
1659 
1660 /**
1661  * spi_get_next_queued_message() - called by driver to check for queued
1662  * messages
1663  * @ctlr: the controller to check for queued messages
1664  *
1665  * If there are more messages in the queue, the next message is returned from
1666  * this call.
1667  *
1668  * Return: the next message in the queue, else NULL if the queue is empty.
1669  */
1670 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1671 {
1672 	struct spi_message *next;
1673 	unsigned long flags;
1674 
1675 	/* get a pointer to the next message, if any */
1676 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1677 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1678 					queue);
1679 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1680 
1681 	return next;
1682 }
1683 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1684 
1685 /**
1686  * spi_finalize_current_message() - the current message is complete
1687  * @ctlr: the controller to return the message to
1688  *
1689  * Called by the driver to notify the core that the message in the front of the
1690  * queue is complete and can be removed from the queue.
1691  */
1692 void spi_finalize_current_message(struct spi_controller *ctlr)
1693 {
1694 	struct spi_transfer *xfer;
1695 	struct spi_message *mesg;
1696 	unsigned long flags;
1697 	int ret;
1698 
1699 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1700 	mesg = ctlr->cur_msg;
1701 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1702 
1703 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1704 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1705 			ptp_read_system_postts(xfer->ptp_sts);
1706 			xfer->ptp_sts_word_post = xfer->len;
1707 		}
1708 	}
1709 
1710 	if (unlikely(ctlr->ptp_sts_supported))
1711 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1712 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1713 
1714 	spi_unmap_msg(ctlr, mesg);
1715 
1716 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1717 		ret = ctlr->unprepare_message(ctlr, mesg);
1718 		if (ret) {
1719 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1720 				ret);
1721 		}
1722 	}
1723 
1724 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1725 	ctlr->cur_msg = NULL;
1726 	ctlr->cur_msg_prepared = false;
1727 	ctlr->fallback = false;
1728 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1729 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1730 
1731 	trace_spi_message_done(mesg);
1732 
1733 	mesg->state = NULL;
1734 	if (mesg->complete)
1735 		mesg->complete(mesg->context);
1736 }
1737 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1738 
1739 static int spi_start_queue(struct spi_controller *ctlr)
1740 {
1741 	unsigned long flags;
1742 
1743 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1744 
1745 	if (ctlr->running || ctlr->busy) {
1746 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1747 		return -EBUSY;
1748 	}
1749 
1750 	ctlr->running = true;
1751 	ctlr->cur_msg = NULL;
1752 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1753 
1754 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1755 
1756 	return 0;
1757 }
1758 
1759 static int spi_stop_queue(struct spi_controller *ctlr)
1760 {
1761 	unsigned long flags;
1762 	unsigned limit = 500;
1763 	int ret = 0;
1764 
1765 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1766 
1767 	/*
1768 	 * This is a bit lame, but is optimized for the common execution path.
1769 	 * A wait_queue on the ctlr->busy could be used, but then the common
1770 	 * execution path (pump_messages) would be required to call wake_up or
1771 	 * friends on every SPI message. Do this instead.
1772 	 */
1773 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1774 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1775 		usleep_range(10000, 11000);
1776 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1777 	}
1778 
1779 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1780 		ret = -EBUSY;
1781 	else
1782 		ctlr->running = false;
1783 
1784 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1785 
1786 	if (ret) {
1787 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1788 		return ret;
1789 	}
1790 	return ret;
1791 }
1792 
1793 static int spi_destroy_queue(struct spi_controller *ctlr)
1794 {
1795 	int ret;
1796 
1797 	ret = spi_stop_queue(ctlr);
1798 
1799 	/*
1800 	 * kthread_flush_worker will block until all work is done.
1801 	 * If the reason that stop_queue timed out is that the work will never
1802 	 * finish, then it does no good to call flush/stop thread, so
1803 	 * return anyway.
1804 	 */
1805 	if (ret) {
1806 		dev_err(&ctlr->dev, "problem destroying queue\n");
1807 		return ret;
1808 	}
1809 
1810 	kthread_destroy_worker(ctlr->kworker);
1811 
1812 	return 0;
1813 }
1814 
1815 static int __spi_queued_transfer(struct spi_device *spi,
1816 				 struct spi_message *msg,
1817 				 bool need_pump)
1818 {
1819 	struct spi_controller *ctlr = spi->controller;
1820 	unsigned long flags;
1821 
1822 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1823 
1824 	if (!ctlr->running) {
1825 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1826 		return -ESHUTDOWN;
1827 	}
1828 	msg->actual_length = 0;
1829 	msg->status = -EINPROGRESS;
1830 
1831 	list_add_tail(&msg->queue, &ctlr->queue);
1832 	if (!ctlr->busy && need_pump)
1833 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1834 
1835 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1836 	return 0;
1837 }
1838 
1839 /**
1840  * spi_queued_transfer - transfer function for queued transfers
1841  * @spi: spi device which is requesting transfer
1842  * @msg: spi message which is to handled is queued to driver queue
1843  *
1844  * Return: zero on success, else a negative error code.
1845  */
1846 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1847 {
1848 	return __spi_queued_transfer(spi, msg, true);
1849 }
1850 
1851 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1852 {
1853 	int ret;
1854 
1855 	ctlr->transfer = spi_queued_transfer;
1856 	if (!ctlr->transfer_one_message)
1857 		ctlr->transfer_one_message = spi_transfer_one_message;
1858 
1859 	/* Initialize and start queue */
1860 	ret = spi_init_queue(ctlr);
1861 	if (ret) {
1862 		dev_err(&ctlr->dev, "problem initializing queue\n");
1863 		goto err_init_queue;
1864 	}
1865 	ctlr->queued = true;
1866 	ret = spi_start_queue(ctlr);
1867 	if (ret) {
1868 		dev_err(&ctlr->dev, "problem starting queue\n");
1869 		goto err_start_queue;
1870 	}
1871 
1872 	return 0;
1873 
1874 err_start_queue:
1875 	spi_destroy_queue(ctlr);
1876 err_init_queue:
1877 	return ret;
1878 }
1879 
1880 /**
1881  * spi_flush_queue - Send all pending messages in the queue from the callers'
1882  *		     context
1883  * @ctlr: controller to process queue for
1884  *
1885  * This should be used when one wants to ensure all pending messages have been
1886  * sent before doing something. Is used by the spi-mem code to make sure SPI
1887  * memory operations do not preempt regular SPI transfers that have been queued
1888  * before the spi-mem operation.
1889  */
1890 void spi_flush_queue(struct spi_controller *ctlr)
1891 {
1892 	if (ctlr->transfer == spi_queued_transfer)
1893 		__spi_pump_messages(ctlr, false);
1894 }
1895 
1896 /*-------------------------------------------------------------------------*/
1897 
1898 #if defined(CONFIG_OF)
1899 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1900 			   struct device_node *nc)
1901 {
1902 	u32 value;
1903 	int rc;
1904 
1905 	/* Mode (clock phase/polarity/etc.) */
1906 	if (of_property_read_bool(nc, "spi-cpha"))
1907 		spi->mode |= SPI_CPHA;
1908 	if (of_property_read_bool(nc, "spi-cpol"))
1909 		spi->mode |= SPI_CPOL;
1910 	if (of_property_read_bool(nc, "spi-3wire"))
1911 		spi->mode |= SPI_3WIRE;
1912 	if (of_property_read_bool(nc, "spi-lsb-first"))
1913 		spi->mode |= SPI_LSB_FIRST;
1914 	if (of_property_read_bool(nc, "spi-cs-high"))
1915 		spi->mode |= SPI_CS_HIGH;
1916 
1917 	/* Device DUAL/QUAD mode */
1918 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1919 		switch (value) {
1920 		case 1:
1921 			break;
1922 		case 2:
1923 			spi->mode |= SPI_TX_DUAL;
1924 			break;
1925 		case 4:
1926 			spi->mode |= SPI_TX_QUAD;
1927 			break;
1928 		case 8:
1929 			spi->mode |= SPI_TX_OCTAL;
1930 			break;
1931 		default:
1932 			dev_warn(&ctlr->dev,
1933 				"spi-tx-bus-width %d not supported\n",
1934 				value);
1935 			break;
1936 		}
1937 	}
1938 
1939 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1940 		switch (value) {
1941 		case 1:
1942 			break;
1943 		case 2:
1944 			spi->mode |= SPI_RX_DUAL;
1945 			break;
1946 		case 4:
1947 			spi->mode |= SPI_RX_QUAD;
1948 			break;
1949 		case 8:
1950 			spi->mode |= SPI_RX_OCTAL;
1951 			break;
1952 		default:
1953 			dev_warn(&ctlr->dev,
1954 				"spi-rx-bus-width %d not supported\n",
1955 				value);
1956 			break;
1957 		}
1958 	}
1959 
1960 	if (spi_controller_is_slave(ctlr)) {
1961 		if (!of_node_name_eq(nc, "slave")) {
1962 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1963 				nc);
1964 			return -EINVAL;
1965 		}
1966 		return 0;
1967 	}
1968 
1969 	/* Device address */
1970 	rc = of_property_read_u32(nc, "reg", &value);
1971 	if (rc) {
1972 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1973 			nc, rc);
1974 		return rc;
1975 	}
1976 	spi->chip_select = value;
1977 
1978 	/*
1979 	 * For descriptors associated with the device, polarity inversion is
1980 	 * handled in the gpiolib, so all gpio chip selects are "active high"
1981 	 * in the logical sense, the gpiolib will invert the line if need be.
1982 	 */
1983 	if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1984 	    ctlr->cs_gpiods[spi->chip_select])
1985 		spi->mode |= SPI_CS_HIGH;
1986 
1987 	/* Device speed */
1988 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
1989 		spi->max_speed_hz = value;
1990 
1991 	return 0;
1992 }
1993 
1994 static struct spi_device *
1995 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1996 {
1997 	struct spi_device *spi;
1998 	int rc;
1999 
2000 	/* Alloc an spi_device */
2001 	spi = spi_alloc_device(ctlr);
2002 	if (!spi) {
2003 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2004 		rc = -ENOMEM;
2005 		goto err_out;
2006 	}
2007 
2008 	/* Select device driver */
2009 	rc = of_modalias_node(nc, spi->modalias,
2010 				sizeof(spi->modalias));
2011 	if (rc < 0) {
2012 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2013 		goto err_out;
2014 	}
2015 
2016 	rc = of_spi_parse_dt(ctlr, spi, nc);
2017 	if (rc)
2018 		goto err_out;
2019 
2020 	/* Store a pointer to the node in the device structure */
2021 	of_node_get(nc);
2022 	spi->dev.of_node = nc;
2023 
2024 	/* Register the new device */
2025 	rc = spi_add_device(spi);
2026 	if (rc) {
2027 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2028 		goto err_of_node_put;
2029 	}
2030 
2031 	return spi;
2032 
2033 err_of_node_put:
2034 	of_node_put(nc);
2035 err_out:
2036 	spi_dev_put(spi);
2037 	return ERR_PTR(rc);
2038 }
2039 
2040 /**
2041  * of_register_spi_devices() - Register child devices onto the SPI bus
2042  * @ctlr:	Pointer to spi_controller device
2043  *
2044  * Registers an spi_device for each child node of controller node which
2045  * represents a valid SPI slave.
2046  */
2047 static void of_register_spi_devices(struct spi_controller *ctlr)
2048 {
2049 	struct spi_device *spi;
2050 	struct device_node *nc;
2051 
2052 	if (!ctlr->dev.of_node)
2053 		return;
2054 
2055 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2056 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2057 			continue;
2058 		spi = of_register_spi_device(ctlr, nc);
2059 		if (IS_ERR(spi)) {
2060 			dev_warn(&ctlr->dev,
2061 				 "Failed to create SPI device for %pOF\n", nc);
2062 			of_node_clear_flag(nc, OF_POPULATED);
2063 		}
2064 	}
2065 }
2066 #else
2067 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2068 #endif
2069 
2070 #ifdef CONFIG_ACPI
2071 struct acpi_spi_lookup {
2072 	struct spi_controller 	*ctlr;
2073 	u32			max_speed_hz;
2074 	u32			mode;
2075 	int			irq;
2076 	u8			bits_per_word;
2077 	u8			chip_select;
2078 };
2079 
2080 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2081 					    struct acpi_spi_lookup *lookup)
2082 {
2083 	const union acpi_object *obj;
2084 
2085 	if (!x86_apple_machine)
2086 		return;
2087 
2088 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2089 	    && obj->buffer.length >= 4)
2090 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2091 
2092 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2093 	    && obj->buffer.length == 8)
2094 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2095 
2096 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2097 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2098 		lookup->mode |= SPI_LSB_FIRST;
2099 
2100 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2101 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2102 		lookup->mode |= SPI_CPOL;
2103 
2104 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2105 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2106 		lookup->mode |= SPI_CPHA;
2107 }
2108 
2109 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2110 {
2111 	struct acpi_spi_lookup *lookup = data;
2112 	struct spi_controller *ctlr = lookup->ctlr;
2113 
2114 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2115 		struct acpi_resource_spi_serialbus *sb;
2116 		acpi_handle parent_handle;
2117 		acpi_status status;
2118 
2119 		sb = &ares->data.spi_serial_bus;
2120 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2121 
2122 			status = acpi_get_handle(NULL,
2123 						 sb->resource_source.string_ptr,
2124 						 &parent_handle);
2125 
2126 			if (ACPI_FAILURE(status) ||
2127 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2128 				return -ENODEV;
2129 
2130 			/*
2131 			 * ACPI DeviceSelection numbering is handled by the
2132 			 * host controller driver in Windows and can vary
2133 			 * from driver to driver. In Linux we always expect
2134 			 * 0 .. max - 1 so we need to ask the driver to
2135 			 * translate between the two schemes.
2136 			 */
2137 			if (ctlr->fw_translate_cs) {
2138 				int cs = ctlr->fw_translate_cs(ctlr,
2139 						sb->device_selection);
2140 				if (cs < 0)
2141 					return cs;
2142 				lookup->chip_select = cs;
2143 			} else {
2144 				lookup->chip_select = sb->device_selection;
2145 			}
2146 
2147 			lookup->max_speed_hz = sb->connection_speed;
2148 			lookup->bits_per_word = sb->data_bit_length;
2149 
2150 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2151 				lookup->mode |= SPI_CPHA;
2152 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2153 				lookup->mode |= SPI_CPOL;
2154 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2155 				lookup->mode |= SPI_CS_HIGH;
2156 		}
2157 	} else if (lookup->irq < 0) {
2158 		struct resource r;
2159 
2160 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2161 			lookup->irq = r.start;
2162 	}
2163 
2164 	/* Always tell the ACPI core to skip this resource */
2165 	return 1;
2166 }
2167 
2168 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2169 					    struct acpi_device *adev)
2170 {
2171 	acpi_handle parent_handle = NULL;
2172 	struct list_head resource_list;
2173 	struct acpi_spi_lookup lookup = {};
2174 	struct spi_device *spi;
2175 	int ret;
2176 
2177 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2178 	    acpi_device_enumerated(adev))
2179 		return AE_OK;
2180 
2181 	lookup.ctlr		= ctlr;
2182 	lookup.irq		= -1;
2183 
2184 	INIT_LIST_HEAD(&resource_list);
2185 	ret = acpi_dev_get_resources(adev, &resource_list,
2186 				     acpi_spi_add_resource, &lookup);
2187 	acpi_dev_free_resource_list(&resource_list);
2188 
2189 	if (ret < 0)
2190 		/* found SPI in _CRS but it points to another controller */
2191 		return AE_OK;
2192 
2193 	if (!lookup.max_speed_hz &&
2194 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2195 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2196 		/* Apple does not use _CRS but nested devices for SPI slaves */
2197 		acpi_spi_parse_apple_properties(adev, &lookup);
2198 	}
2199 
2200 	if (!lookup.max_speed_hz)
2201 		return AE_OK;
2202 
2203 	spi = spi_alloc_device(ctlr);
2204 	if (!spi) {
2205 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2206 			dev_name(&adev->dev));
2207 		return AE_NO_MEMORY;
2208 	}
2209 
2210 
2211 	ACPI_COMPANION_SET(&spi->dev, adev);
2212 	spi->max_speed_hz	= lookup.max_speed_hz;
2213 	spi->mode		|= lookup.mode;
2214 	spi->irq		= lookup.irq;
2215 	spi->bits_per_word	= lookup.bits_per_word;
2216 	spi->chip_select	= lookup.chip_select;
2217 
2218 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2219 			  sizeof(spi->modalias));
2220 
2221 	if (spi->irq < 0)
2222 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2223 
2224 	acpi_device_set_enumerated(adev);
2225 
2226 	adev->power.flags.ignore_parent = true;
2227 	if (spi_add_device(spi)) {
2228 		adev->power.flags.ignore_parent = false;
2229 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2230 			dev_name(&adev->dev));
2231 		spi_dev_put(spi);
2232 	}
2233 
2234 	return AE_OK;
2235 }
2236 
2237 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2238 				       void *data, void **return_value)
2239 {
2240 	struct spi_controller *ctlr = data;
2241 	struct acpi_device *adev;
2242 
2243 	if (acpi_bus_get_device(handle, &adev))
2244 		return AE_OK;
2245 
2246 	return acpi_register_spi_device(ctlr, adev);
2247 }
2248 
2249 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2250 
2251 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2252 {
2253 	acpi_status status;
2254 	acpi_handle handle;
2255 
2256 	handle = ACPI_HANDLE(ctlr->dev.parent);
2257 	if (!handle)
2258 		return;
2259 
2260 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2261 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2262 				     acpi_spi_add_device, NULL, ctlr, NULL);
2263 	if (ACPI_FAILURE(status))
2264 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2265 }
2266 #else
2267 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2268 #endif /* CONFIG_ACPI */
2269 
2270 static void spi_controller_release(struct device *dev)
2271 {
2272 	struct spi_controller *ctlr;
2273 
2274 	ctlr = container_of(dev, struct spi_controller, dev);
2275 	kfree(ctlr);
2276 }
2277 
2278 static struct class spi_master_class = {
2279 	.name		= "spi_master",
2280 	.owner		= THIS_MODULE,
2281 	.dev_release	= spi_controller_release,
2282 	.dev_groups	= spi_master_groups,
2283 };
2284 
2285 #ifdef CONFIG_SPI_SLAVE
2286 /**
2287  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2288  *		     controller
2289  * @spi: device used for the current transfer
2290  */
2291 int spi_slave_abort(struct spi_device *spi)
2292 {
2293 	struct spi_controller *ctlr = spi->controller;
2294 
2295 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2296 		return ctlr->slave_abort(ctlr);
2297 
2298 	return -ENOTSUPP;
2299 }
2300 EXPORT_SYMBOL_GPL(spi_slave_abort);
2301 
2302 static int match_true(struct device *dev, void *data)
2303 {
2304 	return 1;
2305 }
2306 
2307 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2308 			  char *buf)
2309 {
2310 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2311 						   dev);
2312 	struct device *child;
2313 
2314 	child = device_find_child(&ctlr->dev, NULL, match_true);
2315 	return sprintf(buf, "%s\n",
2316 		       child ? to_spi_device(child)->modalias : NULL);
2317 }
2318 
2319 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2320 			   const char *buf, size_t count)
2321 {
2322 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2323 						   dev);
2324 	struct spi_device *spi;
2325 	struct device *child;
2326 	char name[32];
2327 	int rc;
2328 
2329 	rc = sscanf(buf, "%31s", name);
2330 	if (rc != 1 || !name[0])
2331 		return -EINVAL;
2332 
2333 	child = device_find_child(&ctlr->dev, NULL, match_true);
2334 	if (child) {
2335 		/* Remove registered slave */
2336 		device_unregister(child);
2337 		put_device(child);
2338 	}
2339 
2340 	if (strcmp(name, "(null)")) {
2341 		/* Register new slave */
2342 		spi = spi_alloc_device(ctlr);
2343 		if (!spi)
2344 			return -ENOMEM;
2345 
2346 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2347 
2348 		rc = spi_add_device(spi);
2349 		if (rc) {
2350 			spi_dev_put(spi);
2351 			return rc;
2352 		}
2353 	}
2354 
2355 	return count;
2356 }
2357 
2358 static DEVICE_ATTR_RW(slave);
2359 
2360 static struct attribute *spi_slave_attrs[] = {
2361 	&dev_attr_slave.attr,
2362 	NULL,
2363 };
2364 
2365 static const struct attribute_group spi_slave_group = {
2366 	.attrs = spi_slave_attrs,
2367 };
2368 
2369 static const struct attribute_group *spi_slave_groups[] = {
2370 	&spi_controller_statistics_group,
2371 	&spi_slave_group,
2372 	NULL,
2373 };
2374 
2375 static struct class spi_slave_class = {
2376 	.name		= "spi_slave",
2377 	.owner		= THIS_MODULE,
2378 	.dev_release	= spi_controller_release,
2379 	.dev_groups	= spi_slave_groups,
2380 };
2381 #else
2382 extern struct class spi_slave_class;	/* dummy */
2383 #endif
2384 
2385 /**
2386  * __spi_alloc_controller - allocate an SPI master or slave controller
2387  * @dev: the controller, possibly using the platform_bus
2388  * @size: how much zeroed driver-private data to allocate; the pointer to this
2389  *	memory is in the driver_data field of the returned device, accessible
2390  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2391  *	drivers granting DMA access to portions of their private data need to
2392  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2393  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2394  *	slave (true) controller
2395  * Context: can sleep
2396  *
2397  * This call is used only by SPI controller drivers, which are the
2398  * only ones directly touching chip registers.  It's how they allocate
2399  * an spi_controller structure, prior to calling spi_register_controller().
2400  *
2401  * This must be called from context that can sleep.
2402  *
2403  * The caller is responsible for assigning the bus number and initializing the
2404  * controller's methods before calling spi_register_controller(); and (after
2405  * errors adding the device) calling spi_controller_put() to prevent a memory
2406  * leak.
2407  *
2408  * Return: the SPI controller structure on success, else NULL.
2409  */
2410 struct spi_controller *__spi_alloc_controller(struct device *dev,
2411 					      unsigned int size, bool slave)
2412 {
2413 	struct spi_controller	*ctlr;
2414 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2415 
2416 	if (!dev)
2417 		return NULL;
2418 
2419 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2420 	if (!ctlr)
2421 		return NULL;
2422 
2423 	device_initialize(&ctlr->dev);
2424 	ctlr->bus_num = -1;
2425 	ctlr->num_chipselect = 1;
2426 	ctlr->slave = slave;
2427 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2428 		ctlr->dev.class = &spi_slave_class;
2429 	else
2430 		ctlr->dev.class = &spi_master_class;
2431 	ctlr->dev.parent = dev;
2432 	pm_suspend_ignore_children(&ctlr->dev, true);
2433 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2434 
2435 	return ctlr;
2436 }
2437 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2438 
2439 #ifdef CONFIG_OF
2440 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2441 {
2442 	int nb, i, *cs;
2443 	struct device_node *np = ctlr->dev.of_node;
2444 
2445 	if (!np)
2446 		return 0;
2447 
2448 	nb = of_gpio_named_count(np, "cs-gpios");
2449 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2450 
2451 	/* Return error only for an incorrectly formed cs-gpios property */
2452 	if (nb == 0 || nb == -ENOENT)
2453 		return 0;
2454 	else if (nb < 0)
2455 		return nb;
2456 
2457 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2458 			  GFP_KERNEL);
2459 	ctlr->cs_gpios = cs;
2460 
2461 	if (!ctlr->cs_gpios)
2462 		return -ENOMEM;
2463 
2464 	for (i = 0; i < ctlr->num_chipselect; i++)
2465 		cs[i] = -ENOENT;
2466 
2467 	for (i = 0; i < nb; i++)
2468 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2469 
2470 	return 0;
2471 }
2472 #else
2473 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2474 {
2475 	return 0;
2476 }
2477 #endif
2478 
2479 /**
2480  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2481  * @ctlr: The SPI master to grab GPIO descriptors for
2482  */
2483 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2484 {
2485 	int nb, i;
2486 	struct gpio_desc **cs;
2487 	struct device *dev = &ctlr->dev;
2488 	unsigned long native_cs_mask = 0;
2489 	unsigned int num_cs_gpios = 0;
2490 
2491 	nb = gpiod_count(dev, "cs");
2492 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2493 
2494 	/* No GPIOs at all is fine, else return the error */
2495 	if (nb == 0 || nb == -ENOENT)
2496 		return 0;
2497 	else if (nb < 0)
2498 		return nb;
2499 
2500 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2501 			  GFP_KERNEL);
2502 	if (!cs)
2503 		return -ENOMEM;
2504 	ctlr->cs_gpiods = cs;
2505 
2506 	for (i = 0; i < nb; i++) {
2507 		/*
2508 		 * Most chipselects are active low, the inverted
2509 		 * semantics are handled by special quirks in gpiolib,
2510 		 * so initializing them GPIOD_OUT_LOW here means
2511 		 * "unasserted", in most cases this will drive the physical
2512 		 * line high.
2513 		 */
2514 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2515 						      GPIOD_OUT_LOW);
2516 		if (IS_ERR(cs[i]))
2517 			return PTR_ERR(cs[i]);
2518 
2519 		if (cs[i]) {
2520 			/*
2521 			 * If we find a CS GPIO, name it after the device and
2522 			 * chip select line.
2523 			 */
2524 			char *gpioname;
2525 
2526 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2527 						  dev_name(dev), i);
2528 			if (!gpioname)
2529 				return -ENOMEM;
2530 			gpiod_set_consumer_name(cs[i], gpioname);
2531 			num_cs_gpios++;
2532 			continue;
2533 		}
2534 
2535 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2536 			dev_err(dev, "Invalid native chip select %d\n", i);
2537 			return -EINVAL;
2538 		}
2539 		native_cs_mask |= BIT(i);
2540 	}
2541 
2542 	ctlr->unused_native_cs = ffz(native_cs_mask);
2543 	if (num_cs_gpios && ctlr->max_native_cs &&
2544 	    ctlr->unused_native_cs >= ctlr->max_native_cs) {
2545 		dev_err(dev, "No unused native chip select available\n");
2546 		return -EINVAL;
2547 	}
2548 
2549 	return 0;
2550 }
2551 
2552 static int spi_controller_check_ops(struct spi_controller *ctlr)
2553 {
2554 	/*
2555 	 * The controller may implement only the high-level SPI-memory like
2556 	 * operations if it does not support regular SPI transfers, and this is
2557 	 * valid use case.
2558 	 * If ->mem_ops is NULL, we request that at least one of the
2559 	 * ->transfer_xxx() method be implemented.
2560 	 */
2561 	if (ctlr->mem_ops) {
2562 		if (!ctlr->mem_ops->exec_op)
2563 			return -EINVAL;
2564 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2565 		   !ctlr->transfer_one_message) {
2566 		return -EINVAL;
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 /**
2573  * spi_register_controller - register SPI master or slave controller
2574  * @ctlr: initialized master, originally from spi_alloc_master() or
2575  *	spi_alloc_slave()
2576  * Context: can sleep
2577  *
2578  * SPI controllers connect to their drivers using some non-SPI bus,
2579  * such as the platform bus.  The final stage of probe() in that code
2580  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2581  *
2582  * SPI controllers use board specific (often SOC specific) bus numbers,
2583  * and board-specific addressing for SPI devices combines those numbers
2584  * with chip select numbers.  Since SPI does not directly support dynamic
2585  * device identification, boards need configuration tables telling which
2586  * chip is at which address.
2587  *
2588  * This must be called from context that can sleep.  It returns zero on
2589  * success, else a negative error code (dropping the controller's refcount).
2590  * After a successful return, the caller is responsible for calling
2591  * spi_unregister_controller().
2592  *
2593  * Return: zero on success, else a negative error code.
2594  */
2595 int spi_register_controller(struct spi_controller *ctlr)
2596 {
2597 	struct device		*dev = ctlr->dev.parent;
2598 	struct boardinfo	*bi;
2599 	int			status;
2600 	int			id, first_dynamic;
2601 
2602 	if (!dev)
2603 		return -ENODEV;
2604 
2605 	/*
2606 	 * Make sure all necessary hooks are implemented before registering
2607 	 * the SPI controller.
2608 	 */
2609 	status = spi_controller_check_ops(ctlr);
2610 	if (status)
2611 		return status;
2612 
2613 	if (ctlr->bus_num >= 0) {
2614 		/* devices with a fixed bus num must check-in with the num */
2615 		mutex_lock(&board_lock);
2616 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2617 			ctlr->bus_num + 1, GFP_KERNEL);
2618 		mutex_unlock(&board_lock);
2619 		if (WARN(id < 0, "couldn't get idr"))
2620 			return id == -ENOSPC ? -EBUSY : id;
2621 		ctlr->bus_num = id;
2622 	} else if (ctlr->dev.of_node) {
2623 		/* allocate dynamic bus number using Linux idr */
2624 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2625 		if (id >= 0) {
2626 			ctlr->bus_num = id;
2627 			mutex_lock(&board_lock);
2628 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2629 				       ctlr->bus_num + 1, GFP_KERNEL);
2630 			mutex_unlock(&board_lock);
2631 			if (WARN(id < 0, "couldn't get idr"))
2632 				return id == -ENOSPC ? -EBUSY : id;
2633 		}
2634 	}
2635 	if (ctlr->bus_num < 0) {
2636 		first_dynamic = of_alias_get_highest_id("spi");
2637 		if (first_dynamic < 0)
2638 			first_dynamic = 0;
2639 		else
2640 			first_dynamic++;
2641 
2642 		mutex_lock(&board_lock);
2643 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2644 			       0, GFP_KERNEL);
2645 		mutex_unlock(&board_lock);
2646 		if (WARN(id < 0, "couldn't get idr"))
2647 			return id;
2648 		ctlr->bus_num = id;
2649 	}
2650 	INIT_LIST_HEAD(&ctlr->queue);
2651 	spin_lock_init(&ctlr->queue_lock);
2652 	spin_lock_init(&ctlr->bus_lock_spinlock);
2653 	mutex_init(&ctlr->bus_lock_mutex);
2654 	mutex_init(&ctlr->io_mutex);
2655 	ctlr->bus_lock_flag = 0;
2656 	init_completion(&ctlr->xfer_completion);
2657 	if (!ctlr->max_dma_len)
2658 		ctlr->max_dma_len = INT_MAX;
2659 
2660 	/* register the device, then userspace will see it.
2661 	 * registration fails if the bus ID is in use.
2662 	 */
2663 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2664 
2665 	if (!spi_controller_is_slave(ctlr)) {
2666 		if (ctlr->use_gpio_descriptors) {
2667 			status = spi_get_gpio_descs(ctlr);
2668 			if (status)
2669 				goto free_bus_id;
2670 			/*
2671 			 * A controller using GPIO descriptors always
2672 			 * supports SPI_CS_HIGH if need be.
2673 			 */
2674 			ctlr->mode_bits |= SPI_CS_HIGH;
2675 		} else {
2676 			/* Legacy code path for GPIOs from DT */
2677 			status = of_spi_get_gpio_numbers(ctlr);
2678 			if (status)
2679 				goto free_bus_id;
2680 		}
2681 	}
2682 
2683 	/*
2684 	 * Even if it's just one always-selected device, there must
2685 	 * be at least one chipselect.
2686 	 */
2687 	if (!ctlr->num_chipselect) {
2688 		status = -EINVAL;
2689 		goto free_bus_id;
2690 	}
2691 
2692 	status = device_add(&ctlr->dev);
2693 	if (status < 0)
2694 		goto free_bus_id;
2695 	dev_dbg(dev, "registered %s %s\n",
2696 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2697 			dev_name(&ctlr->dev));
2698 
2699 	/*
2700 	 * If we're using a queued driver, start the queue. Note that we don't
2701 	 * need the queueing logic if the driver is only supporting high-level
2702 	 * memory operations.
2703 	 */
2704 	if (ctlr->transfer) {
2705 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2706 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2707 		status = spi_controller_initialize_queue(ctlr);
2708 		if (status) {
2709 			device_del(&ctlr->dev);
2710 			goto free_bus_id;
2711 		}
2712 	}
2713 	/* add statistics */
2714 	spin_lock_init(&ctlr->statistics.lock);
2715 
2716 	mutex_lock(&board_lock);
2717 	list_add_tail(&ctlr->list, &spi_controller_list);
2718 	list_for_each_entry(bi, &board_list, list)
2719 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2720 	mutex_unlock(&board_lock);
2721 
2722 	/* Register devices from the device tree and ACPI */
2723 	of_register_spi_devices(ctlr);
2724 	acpi_register_spi_devices(ctlr);
2725 	return status;
2726 
2727 free_bus_id:
2728 	mutex_lock(&board_lock);
2729 	idr_remove(&spi_master_idr, ctlr->bus_num);
2730 	mutex_unlock(&board_lock);
2731 	return status;
2732 }
2733 EXPORT_SYMBOL_GPL(spi_register_controller);
2734 
2735 static void devm_spi_unregister(struct device *dev, void *res)
2736 {
2737 	spi_unregister_controller(*(struct spi_controller **)res);
2738 }
2739 
2740 /**
2741  * devm_spi_register_controller - register managed SPI master or slave
2742  *	controller
2743  * @dev:    device managing SPI controller
2744  * @ctlr: initialized controller, originally from spi_alloc_master() or
2745  *	spi_alloc_slave()
2746  * Context: can sleep
2747  *
2748  * Register a SPI device as with spi_register_controller() which will
2749  * automatically be unregistered and freed.
2750  *
2751  * Return: zero on success, else a negative error code.
2752  */
2753 int devm_spi_register_controller(struct device *dev,
2754 				 struct spi_controller *ctlr)
2755 {
2756 	struct spi_controller **ptr;
2757 	int ret;
2758 
2759 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2760 	if (!ptr)
2761 		return -ENOMEM;
2762 
2763 	ret = spi_register_controller(ctlr);
2764 	if (!ret) {
2765 		*ptr = ctlr;
2766 		devres_add(dev, ptr);
2767 	} else {
2768 		devres_free(ptr);
2769 	}
2770 
2771 	return ret;
2772 }
2773 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2774 
2775 static int __unregister(struct device *dev, void *null)
2776 {
2777 	spi_unregister_device(to_spi_device(dev));
2778 	return 0;
2779 }
2780 
2781 /**
2782  * spi_unregister_controller - unregister SPI master or slave controller
2783  * @ctlr: the controller being unregistered
2784  * Context: can sleep
2785  *
2786  * This call is used only by SPI controller drivers, which are the
2787  * only ones directly touching chip registers.
2788  *
2789  * This must be called from context that can sleep.
2790  *
2791  * Note that this function also drops a reference to the controller.
2792  */
2793 void spi_unregister_controller(struct spi_controller *ctlr)
2794 {
2795 	struct spi_controller *found;
2796 	int id = ctlr->bus_num;
2797 
2798 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2799 
2800 	/* First make sure that this controller was ever added */
2801 	mutex_lock(&board_lock);
2802 	found = idr_find(&spi_master_idr, id);
2803 	mutex_unlock(&board_lock);
2804 	if (ctlr->queued) {
2805 		if (spi_destroy_queue(ctlr))
2806 			dev_err(&ctlr->dev, "queue remove failed\n");
2807 	}
2808 	mutex_lock(&board_lock);
2809 	list_del(&ctlr->list);
2810 	mutex_unlock(&board_lock);
2811 
2812 	device_unregister(&ctlr->dev);
2813 	/* free bus id */
2814 	mutex_lock(&board_lock);
2815 	if (found == ctlr)
2816 		idr_remove(&spi_master_idr, id);
2817 	mutex_unlock(&board_lock);
2818 }
2819 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2820 
2821 int spi_controller_suspend(struct spi_controller *ctlr)
2822 {
2823 	int ret;
2824 
2825 	/* Basically no-ops for non-queued controllers */
2826 	if (!ctlr->queued)
2827 		return 0;
2828 
2829 	ret = spi_stop_queue(ctlr);
2830 	if (ret)
2831 		dev_err(&ctlr->dev, "queue stop failed\n");
2832 
2833 	return ret;
2834 }
2835 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2836 
2837 int spi_controller_resume(struct spi_controller *ctlr)
2838 {
2839 	int ret;
2840 
2841 	if (!ctlr->queued)
2842 		return 0;
2843 
2844 	ret = spi_start_queue(ctlr);
2845 	if (ret)
2846 		dev_err(&ctlr->dev, "queue restart failed\n");
2847 
2848 	return ret;
2849 }
2850 EXPORT_SYMBOL_GPL(spi_controller_resume);
2851 
2852 static int __spi_controller_match(struct device *dev, const void *data)
2853 {
2854 	struct spi_controller *ctlr;
2855 	const u16 *bus_num = data;
2856 
2857 	ctlr = container_of(dev, struct spi_controller, dev);
2858 	return ctlr->bus_num == *bus_num;
2859 }
2860 
2861 /**
2862  * spi_busnum_to_master - look up master associated with bus_num
2863  * @bus_num: the master's bus number
2864  * Context: can sleep
2865  *
2866  * This call may be used with devices that are registered after
2867  * arch init time.  It returns a refcounted pointer to the relevant
2868  * spi_controller (which the caller must release), or NULL if there is
2869  * no such master registered.
2870  *
2871  * Return: the SPI master structure on success, else NULL.
2872  */
2873 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2874 {
2875 	struct device		*dev;
2876 	struct spi_controller	*ctlr = NULL;
2877 
2878 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2879 				__spi_controller_match);
2880 	if (dev)
2881 		ctlr = container_of(dev, struct spi_controller, dev);
2882 	/* reference got in class_find_device */
2883 	return ctlr;
2884 }
2885 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2886 
2887 /*-------------------------------------------------------------------------*/
2888 
2889 /* Core methods for SPI resource management */
2890 
2891 /**
2892  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2893  *                 during the processing of a spi_message while using
2894  *                 spi_transfer_one
2895  * @spi:     the spi device for which we allocate memory
2896  * @release: the release code to execute for this resource
2897  * @size:    size to alloc and return
2898  * @gfp:     GFP allocation flags
2899  *
2900  * Return: the pointer to the allocated data
2901  *
2902  * This may get enhanced in the future to allocate from a memory pool
2903  * of the @spi_device or @spi_controller to avoid repeated allocations.
2904  */
2905 void *spi_res_alloc(struct spi_device *spi,
2906 		    spi_res_release_t release,
2907 		    size_t size, gfp_t gfp)
2908 {
2909 	struct spi_res *sres;
2910 
2911 	sres = kzalloc(sizeof(*sres) + size, gfp);
2912 	if (!sres)
2913 		return NULL;
2914 
2915 	INIT_LIST_HEAD(&sres->entry);
2916 	sres->release = release;
2917 
2918 	return sres->data;
2919 }
2920 EXPORT_SYMBOL_GPL(spi_res_alloc);
2921 
2922 /**
2923  * spi_res_free - free an spi resource
2924  * @res: pointer to the custom data of a resource
2925  *
2926  */
2927 void spi_res_free(void *res)
2928 {
2929 	struct spi_res *sres = container_of(res, struct spi_res, data);
2930 
2931 	if (!res)
2932 		return;
2933 
2934 	WARN_ON(!list_empty(&sres->entry));
2935 	kfree(sres);
2936 }
2937 EXPORT_SYMBOL_GPL(spi_res_free);
2938 
2939 /**
2940  * spi_res_add - add a spi_res to the spi_message
2941  * @message: the spi message
2942  * @res:     the spi_resource
2943  */
2944 void spi_res_add(struct spi_message *message, void *res)
2945 {
2946 	struct spi_res *sres = container_of(res, struct spi_res, data);
2947 
2948 	WARN_ON(!list_empty(&sres->entry));
2949 	list_add_tail(&sres->entry, &message->resources);
2950 }
2951 EXPORT_SYMBOL_GPL(spi_res_add);
2952 
2953 /**
2954  * spi_res_release - release all spi resources for this message
2955  * @ctlr:  the @spi_controller
2956  * @message: the @spi_message
2957  */
2958 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2959 {
2960 	struct spi_res *res, *tmp;
2961 
2962 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2963 		if (res->release)
2964 			res->release(ctlr, message, res->data);
2965 
2966 		list_del(&res->entry);
2967 
2968 		kfree(res);
2969 	}
2970 }
2971 EXPORT_SYMBOL_GPL(spi_res_release);
2972 
2973 /*-------------------------------------------------------------------------*/
2974 
2975 /* Core methods for spi_message alterations */
2976 
2977 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2978 					    struct spi_message *msg,
2979 					    void *res)
2980 {
2981 	struct spi_replaced_transfers *rxfer = res;
2982 	size_t i;
2983 
2984 	/* call extra callback if requested */
2985 	if (rxfer->release)
2986 		rxfer->release(ctlr, msg, res);
2987 
2988 	/* insert replaced transfers back into the message */
2989 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2990 
2991 	/* remove the formerly inserted entries */
2992 	for (i = 0; i < rxfer->inserted; i++)
2993 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2994 }
2995 
2996 /**
2997  * spi_replace_transfers - replace transfers with several transfers
2998  *                         and register change with spi_message.resources
2999  * @msg:           the spi_message we work upon
3000  * @xfer_first:    the first spi_transfer we want to replace
3001  * @remove:        number of transfers to remove
3002  * @insert:        the number of transfers we want to insert instead
3003  * @release:       extra release code necessary in some circumstances
3004  * @extradatasize: extra data to allocate (with alignment guarantees
3005  *                 of struct @spi_transfer)
3006  * @gfp:           gfp flags
3007  *
3008  * Returns: pointer to @spi_replaced_transfers,
3009  *          PTR_ERR(...) in case of errors.
3010  */
3011 struct spi_replaced_transfers *spi_replace_transfers(
3012 	struct spi_message *msg,
3013 	struct spi_transfer *xfer_first,
3014 	size_t remove,
3015 	size_t insert,
3016 	spi_replaced_release_t release,
3017 	size_t extradatasize,
3018 	gfp_t gfp)
3019 {
3020 	struct spi_replaced_transfers *rxfer;
3021 	struct spi_transfer *xfer;
3022 	size_t i;
3023 
3024 	/* allocate the structure using spi_res */
3025 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3026 			      struct_size(rxfer, inserted_transfers, insert)
3027 			      + extradatasize,
3028 			      gfp);
3029 	if (!rxfer)
3030 		return ERR_PTR(-ENOMEM);
3031 
3032 	/* the release code to invoke before running the generic release */
3033 	rxfer->release = release;
3034 
3035 	/* assign extradata */
3036 	if (extradatasize)
3037 		rxfer->extradata =
3038 			&rxfer->inserted_transfers[insert];
3039 
3040 	/* init the replaced_transfers list */
3041 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3042 
3043 	/* assign the list_entry after which we should reinsert
3044 	 * the @replaced_transfers - it may be spi_message.messages!
3045 	 */
3046 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3047 
3048 	/* remove the requested number of transfers */
3049 	for (i = 0; i < remove; i++) {
3050 		/* if the entry after replaced_after it is msg->transfers
3051 		 * then we have been requested to remove more transfers
3052 		 * than are in the list
3053 		 */
3054 		if (rxfer->replaced_after->next == &msg->transfers) {
3055 			dev_err(&msg->spi->dev,
3056 				"requested to remove more spi_transfers than are available\n");
3057 			/* insert replaced transfers back into the message */
3058 			list_splice(&rxfer->replaced_transfers,
3059 				    rxfer->replaced_after);
3060 
3061 			/* free the spi_replace_transfer structure */
3062 			spi_res_free(rxfer);
3063 
3064 			/* and return with an error */
3065 			return ERR_PTR(-EINVAL);
3066 		}
3067 
3068 		/* remove the entry after replaced_after from list of
3069 		 * transfers and add it to list of replaced_transfers
3070 		 */
3071 		list_move_tail(rxfer->replaced_after->next,
3072 			       &rxfer->replaced_transfers);
3073 	}
3074 
3075 	/* create copy of the given xfer with identical settings
3076 	 * based on the first transfer to get removed
3077 	 */
3078 	for (i = 0; i < insert; i++) {
3079 		/* we need to run in reverse order */
3080 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3081 
3082 		/* copy all spi_transfer data */
3083 		memcpy(xfer, xfer_first, sizeof(*xfer));
3084 
3085 		/* add to list */
3086 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3087 
3088 		/* clear cs_change and delay for all but the last */
3089 		if (i) {
3090 			xfer->cs_change = false;
3091 			xfer->delay_usecs = 0;
3092 			xfer->delay.value = 0;
3093 		}
3094 	}
3095 
3096 	/* set up inserted */
3097 	rxfer->inserted = insert;
3098 
3099 	/* and register it with spi_res/spi_message */
3100 	spi_res_add(msg, rxfer);
3101 
3102 	return rxfer;
3103 }
3104 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3105 
3106 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3107 					struct spi_message *msg,
3108 					struct spi_transfer **xferp,
3109 					size_t maxsize,
3110 					gfp_t gfp)
3111 {
3112 	struct spi_transfer *xfer = *xferp, *xfers;
3113 	struct spi_replaced_transfers *srt;
3114 	size_t offset;
3115 	size_t count, i;
3116 
3117 	/* calculate how many we have to replace */
3118 	count = DIV_ROUND_UP(xfer->len, maxsize);
3119 
3120 	/* create replacement */
3121 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3122 	if (IS_ERR(srt))
3123 		return PTR_ERR(srt);
3124 	xfers = srt->inserted_transfers;
3125 
3126 	/* now handle each of those newly inserted spi_transfers
3127 	 * note that the replacements spi_transfers all are preset
3128 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3129 	 * are all identical (as well as most others)
3130 	 * so we just have to fix up len and the pointers.
3131 	 *
3132 	 * this also includes support for the depreciated
3133 	 * spi_message.is_dma_mapped interface
3134 	 */
3135 
3136 	/* the first transfer just needs the length modified, so we
3137 	 * run it outside the loop
3138 	 */
3139 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3140 
3141 	/* all the others need rx_buf/tx_buf also set */
3142 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3143 		/* update rx_buf, tx_buf and dma */
3144 		if (xfers[i].rx_buf)
3145 			xfers[i].rx_buf += offset;
3146 		if (xfers[i].rx_dma)
3147 			xfers[i].rx_dma += offset;
3148 		if (xfers[i].tx_buf)
3149 			xfers[i].tx_buf += offset;
3150 		if (xfers[i].tx_dma)
3151 			xfers[i].tx_dma += offset;
3152 
3153 		/* update length */
3154 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3155 	}
3156 
3157 	/* we set up xferp to the last entry we have inserted,
3158 	 * so that we skip those already split transfers
3159 	 */
3160 	*xferp = &xfers[count - 1];
3161 
3162 	/* increment statistics counters */
3163 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3164 				       transfers_split_maxsize);
3165 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3166 				       transfers_split_maxsize);
3167 
3168 	return 0;
3169 }
3170 
3171 /**
3172  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3173  *                              when an individual transfer exceeds a
3174  *                              certain size
3175  * @ctlr:    the @spi_controller for this transfer
3176  * @msg:   the @spi_message to transform
3177  * @maxsize:  the maximum when to apply this
3178  * @gfp: GFP allocation flags
3179  *
3180  * Return: status of transformation
3181  */
3182 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3183 				struct spi_message *msg,
3184 				size_t maxsize,
3185 				gfp_t gfp)
3186 {
3187 	struct spi_transfer *xfer;
3188 	int ret;
3189 
3190 	/* iterate over the transfer_list,
3191 	 * but note that xfer is advanced to the last transfer inserted
3192 	 * to avoid checking sizes again unnecessarily (also xfer does
3193 	 * potentiall belong to a different list by the time the
3194 	 * replacement has happened
3195 	 */
3196 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3197 		if (xfer->len > maxsize) {
3198 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3199 							   maxsize, gfp);
3200 			if (ret)
3201 				return ret;
3202 		}
3203 	}
3204 
3205 	return 0;
3206 }
3207 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3208 
3209 /*-------------------------------------------------------------------------*/
3210 
3211 /* Core methods for SPI controller protocol drivers.  Some of the
3212  * other core methods are currently defined as inline functions.
3213  */
3214 
3215 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3216 					u8 bits_per_word)
3217 {
3218 	if (ctlr->bits_per_word_mask) {
3219 		/* Only 32 bits fit in the mask */
3220 		if (bits_per_word > 32)
3221 			return -EINVAL;
3222 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3223 			return -EINVAL;
3224 	}
3225 
3226 	return 0;
3227 }
3228 
3229 /**
3230  * spi_setup - setup SPI mode and clock rate
3231  * @spi: the device whose settings are being modified
3232  * Context: can sleep, and no requests are queued to the device
3233  *
3234  * SPI protocol drivers may need to update the transfer mode if the
3235  * device doesn't work with its default.  They may likewise need
3236  * to update clock rates or word sizes from initial values.  This function
3237  * changes those settings, and must be called from a context that can sleep.
3238  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3239  * effect the next time the device is selected and data is transferred to
3240  * or from it.  When this function returns, the spi device is deselected.
3241  *
3242  * Note that this call will fail if the protocol driver specifies an option
3243  * that the underlying controller or its driver does not support.  For
3244  * example, not all hardware supports wire transfers using nine bit words,
3245  * LSB-first wire encoding, or active-high chipselects.
3246  *
3247  * Return: zero on success, else a negative error code.
3248  */
3249 int spi_setup(struct spi_device *spi)
3250 {
3251 	unsigned	bad_bits, ugly_bits;
3252 	int		status;
3253 
3254 	/* check mode to prevent that DUAL and QUAD set at the same time
3255 	 */
3256 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3257 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3258 		dev_err(&spi->dev,
3259 		"setup: can not select dual and quad at the same time\n");
3260 		return -EINVAL;
3261 	}
3262 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3263 	 */
3264 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3265 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3266 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3267 		return -EINVAL;
3268 	/* help drivers fail *cleanly* when they need options
3269 	 * that aren't supported with their current controller
3270 	 * SPI_CS_WORD has a fallback software implementation,
3271 	 * so it is ignored here.
3272 	 */
3273 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3274 	/* nothing prevents from working with active-high CS in case if it
3275 	 * is driven by GPIO.
3276 	 */
3277 	if (gpio_is_valid(spi->cs_gpio))
3278 		bad_bits &= ~SPI_CS_HIGH;
3279 	ugly_bits = bad_bits &
3280 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3281 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3282 	if (ugly_bits) {
3283 		dev_warn(&spi->dev,
3284 			 "setup: ignoring unsupported mode bits %x\n",
3285 			 ugly_bits);
3286 		spi->mode &= ~ugly_bits;
3287 		bad_bits &= ~ugly_bits;
3288 	}
3289 	if (bad_bits) {
3290 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3291 			bad_bits);
3292 		return -EINVAL;
3293 	}
3294 
3295 	if (!spi->bits_per_word)
3296 		spi->bits_per_word = 8;
3297 
3298 	status = __spi_validate_bits_per_word(spi->controller,
3299 					      spi->bits_per_word);
3300 	if (status)
3301 		return status;
3302 
3303 	if (!spi->max_speed_hz)
3304 		spi->max_speed_hz = spi->controller->max_speed_hz;
3305 
3306 	if (spi->controller->setup)
3307 		status = spi->controller->setup(spi);
3308 
3309 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3310 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3311 		if (status < 0) {
3312 			pm_runtime_put_noidle(spi->controller->dev.parent);
3313 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3314 				status);
3315 			return status;
3316 		}
3317 
3318 		/*
3319 		 * We do not want to return positive value from pm_runtime_get,
3320 		 * there are many instances of devices calling spi_setup() and
3321 		 * checking for a non-zero return value instead of a negative
3322 		 * return value.
3323 		 */
3324 		status = 0;
3325 
3326 		spi_set_cs(spi, false);
3327 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3328 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3329 	} else {
3330 		spi_set_cs(spi, false);
3331 	}
3332 
3333 	if (spi->rt && !spi->controller->rt) {
3334 		spi->controller->rt = true;
3335 		spi_set_thread_rt(spi->controller);
3336 	}
3337 
3338 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3339 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3340 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3341 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3342 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3343 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3344 			spi->bits_per_word, spi->max_speed_hz,
3345 			status);
3346 
3347 	return status;
3348 }
3349 EXPORT_SYMBOL_GPL(spi_setup);
3350 
3351 /**
3352  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3353  * @spi: the device that requires specific CS timing configuration
3354  * @setup: CS setup time specified via @spi_delay
3355  * @hold: CS hold time specified via @spi_delay
3356  * @inactive: CS inactive delay between transfers specified via @spi_delay
3357  *
3358  * Return: zero on success, else a negative error code.
3359  */
3360 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3361 		      struct spi_delay *hold, struct spi_delay *inactive)
3362 {
3363 	size_t len;
3364 
3365 	if (spi->controller->set_cs_timing)
3366 		return spi->controller->set_cs_timing(spi, setup, hold,
3367 						      inactive);
3368 
3369 	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3370 	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3371 	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3372 		dev_err(&spi->dev,
3373 			"Clock-cycle delays for CS not supported in SW mode\n");
3374 		return -ENOTSUPP;
3375 	}
3376 
3377 	len = sizeof(struct spi_delay);
3378 
3379 	/* copy delays to controller */
3380 	if (setup)
3381 		memcpy(&spi->controller->cs_setup, setup, len);
3382 	else
3383 		memset(&spi->controller->cs_setup, 0, len);
3384 
3385 	if (hold)
3386 		memcpy(&spi->controller->cs_hold, hold, len);
3387 	else
3388 		memset(&spi->controller->cs_hold, 0, len);
3389 
3390 	if (inactive)
3391 		memcpy(&spi->controller->cs_inactive, inactive, len);
3392 	else
3393 		memset(&spi->controller->cs_inactive, 0, len);
3394 
3395 	return 0;
3396 }
3397 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3398 
3399 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3400 				       struct spi_device *spi)
3401 {
3402 	int delay1, delay2;
3403 
3404 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3405 	if (delay1 < 0)
3406 		return delay1;
3407 
3408 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3409 	if (delay2 < 0)
3410 		return delay2;
3411 
3412 	if (delay1 < delay2)
3413 		memcpy(&xfer->word_delay, &spi->word_delay,
3414 		       sizeof(xfer->word_delay));
3415 
3416 	return 0;
3417 }
3418 
3419 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3420 {
3421 	struct spi_controller *ctlr = spi->controller;
3422 	struct spi_transfer *xfer;
3423 	int w_size;
3424 
3425 	if (list_empty(&message->transfers))
3426 		return -EINVAL;
3427 
3428 	/* If an SPI controller does not support toggling the CS line on each
3429 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3430 	 * for the CS line, we can emulate the CS-per-word hardware function by
3431 	 * splitting transfers into one-word transfers and ensuring that
3432 	 * cs_change is set for each transfer.
3433 	 */
3434 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3435 					  spi->cs_gpiod ||
3436 					  gpio_is_valid(spi->cs_gpio))) {
3437 		size_t maxsize;
3438 		int ret;
3439 
3440 		maxsize = (spi->bits_per_word + 7) / 8;
3441 
3442 		/* spi_split_transfers_maxsize() requires message->spi */
3443 		message->spi = spi;
3444 
3445 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3446 						  GFP_KERNEL);
3447 		if (ret)
3448 			return ret;
3449 
3450 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3451 			/* don't change cs_change on the last entry in the list */
3452 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3453 				break;
3454 			xfer->cs_change = 1;
3455 		}
3456 	}
3457 
3458 	/* Half-duplex links include original MicroWire, and ones with
3459 	 * only one data pin like SPI_3WIRE (switches direction) or where
3460 	 * either MOSI or MISO is missing.  They can also be caused by
3461 	 * software limitations.
3462 	 */
3463 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3464 	    (spi->mode & SPI_3WIRE)) {
3465 		unsigned flags = ctlr->flags;
3466 
3467 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3468 			if (xfer->rx_buf && xfer->tx_buf)
3469 				return -EINVAL;
3470 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3471 				return -EINVAL;
3472 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3473 				return -EINVAL;
3474 		}
3475 	}
3476 
3477 	/**
3478 	 * Set transfer bits_per_word and max speed as spi device default if
3479 	 * it is not set for this transfer.
3480 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3481 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3482 	 * Ensure transfer word_delay is at least as long as that required by
3483 	 * device itself.
3484 	 */
3485 	message->frame_length = 0;
3486 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3487 		xfer->effective_speed_hz = 0;
3488 		message->frame_length += xfer->len;
3489 		if (!xfer->bits_per_word)
3490 			xfer->bits_per_word = spi->bits_per_word;
3491 
3492 		if (!xfer->speed_hz)
3493 			xfer->speed_hz = spi->max_speed_hz;
3494 
3495 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3496 			xfer->speed_hz = ctlr->max_speed_hz;
3497 
3498 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3499 			return -EINVAL;
3500 
3501 		/*
3502 		 * SPI transfer length should be multiple of SPI word size
3503 		 * where SPI word size should be power-of-two multiple
3504 		 */
3505 		if (xfer->bits_per_word <= 8)
3506 			w_size = 1;
3507 		else if (xfer->bits_per_word <= 16)
3508 			w_size = 2;
3509 		else
3510 			w_size = 4;
3511 
3512 		/* No partial transfers accepted */
3513 		if (xfer->len % w_size)
3514 			return -EINVAL;
3515 
3516 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3517 		    xfer->speed_hz < ctlr->min_speed_hz)
3518 			return -EINVAL;
3519 
3520 		if (xfer->tx_buf && !xfer->tx_nbits)
3521 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3522 		if (xfer->rx_buf && !xfer->rx_nbits)
3523 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3524 		/* check transfer tx/rx_nbits:
3525 		 * 1. check the value matches one of single, dual and quad
3526 		 * 2. check tx/rx_nbits match the mode in spi_device
3527 		 */
3528 		if (xfer->tx_buf) {
3529 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3530 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3531 				xfer->tx_nbits != SPI_NBITS_QUAD)
3532 				return -EINVAL;
3533 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3534 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3535 				return -EINVAL;
3536 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3537 				!(spi->mode & SPI_TX_QUAD))
3538 				return -EINVAL;
3539 		}
3540 		/* check transfer rx_nbits */
3541 		if (xfer->rx_buf) {
3542 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3543 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3544 				xfer->rx_nbits != SPI_NBITS_QUAD)
3545 				return -EINVAL;
3546 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3547 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3548 				return -EINVAL;
3549 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3550 				!(spi->mode & SPI_RX_QUAD))
3551 				return -EINVAL;
3552 		}
3553 
3554 		if (_spi_xfer_word_delay_update(xfer, spi))
3555 			return -EINVAL;
3556 	}
3557 
3558 	message->status = -EINPROGRESS;
3559 
3560 	return 0;
3561 }
3562 
3563 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3564 {
3565 	struct spi_controller *ctlr = spi->controller;
3566 	struct spi_transfer *xfer;
3567 
3568 	/*
3569 	 * Some controllers do not support doing regular SPI transfers. Return
3570 	 * ENOTSUPP when this is the case.
3571 	 */
3572 	if (!ctlr->transfer)
3573 		return -ENOTSUPP;
3574 
3575 	message->spi = spi;
3576 
3577 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3578 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3579 
3580 	trace_spi_message_submit(message);
3581 
3582 	if (!ctlr->ptp_sts_supported) {
3583 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3584 			xfer->ptp_sts_word_pre = 0;
3585 			ptp_read_system_prets(xfer->ptp_sts);
3586 		}
3587 	}
3588 
3589 	return ctlr->transfer(spi, message);
3590 }
3591 
3592 /**
3593  * spi_async - asynchronous SPI transfer
3594  * @spi: device with which data will be exchanged
3595  * @message: describes the data transfers, including completion callback
3596  * Context: any (irqs may be blocked, etc)
3597  *
3598  * This call may be used in_irq and other contexts which can't sleep,
3599  * as well as from task contexts which can sleep.
3600  *
3601  * The completion callback is invoked in a context which can't sleep.
3602  * Before that invocation, the value of message->status is undefined.
3603  * When the callback is issued, message->status holds either zero (to
3604  * indicate complete success) or a negative error code.  After that
3605  * callback returns, the driver which issued the transfer request may
3606  * deallocate the associated memory; it's no longer in use by any SPI
3607  * core or controller driver code.
3608  *
3609  * Note that although all messages to a spi_device are handled in
3610  * FIFO order, messages may go to different devices in other orders.
3611  * Some device might be higher priority, or have various "hard" access
3612  * time requirements, for example.
3613  *
3614  * On detection of any fault during the transfer, processing of
3615  * the entire message is aborted, and the device is deselected.
3616  * Until returning from the associated message completion callback,
3617  * no other spi_message queued to that device will be processed.
3618  * (This rule applies equally to all the synchronous transfer calls,
3619  * which are wrappers around this core asynchronous primitive.)
3620  *
3621  * Return: zero on success, else a negative error code.
3622  */
3623 int spi_async(struct spi_device *spi, struct spi_message *message)
3624 {
3625 	struct spi_controller *ctlr = spi->controller;
3626 	int ret;
3627 	unsigned long flags;
3628 
3629 	ret = __spi_validate(spi, message);
3630 	if (ret != 0)
3631 		return ret;
3632 
3633 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3634 
3635 	if (ctlr->bus_lock_flag)
3636 		ret = -EBUSY;
3637 	else
3638 		ret = __spi_async(spi, message);
3639 
3640 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3641 
3642 	return ret;
3643 }
3644 EXPORT_SYMBOL_GPL(spi_async);
3645 
3646 /**
3647  * spi_async_locked - version of spi_async with exclusive bus usage
3648  * @spi: device with which data will be exchanged
3649  * @message: describes the data transfers, including completion callback
3650  * Context: any (irqs may be blocked, etc)
3651  *
3652  * This call may be used in_irq and other contexts which can't sleep,
3653  * as well as from task contexts which can sleep.
3654  *
3655  * The completion callback is invoked in a context which can't sleep.
3656  * Before that invocation, the value of message->status is undefined.
3657  * When the callback is issued, message->status holds either zero (to
3658  * indicate complete success) or a negative error code.  After that
3659  * callback returns, the driver which issued the transfer request may
3660  * deallocate the associated memory; it's no longer in use by any SPI
3661  * core or controller driver code.
3662  *
3663  * Note that although all messages to a spi_device are handled in
3664  * FIFO order, messages may go to different devices in other orders.
3665  * Some device might be higher priority, or have various "hard" access
3666  * time requirements, for example.
3667  *
3668  * On detection of any fault during the transfer, processing of
3669  * the entire message is aborted, and the device is deselected.
3670  * Until returning from the associated message completion callback,
3671  * no other spi_message queued to that device will be processed.
3672  * (This rule applies equally to all the synchronous transfer calls,
3673  * which are wrappers around this core asynchronous primitive.)
3674  *
3675  * Return: zero on success, else a negative error code.
3676  */
3677 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3678 {
3679 	struct spi_controller *ctlr = spi->controller;
3680 	int ret;
3681 	unsigned long flags;
3682 
3683 	ret = __spi_validate(spi, message);
3684 	if (ret != 0)
3685 		return ret;
3686 
3687 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3688 
3689 	ret = __spi_async(spi, message);
3690 
3691 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3692 
3693 	return ret;
3694 
3695 }
3696 EXPORT_SYMBOL_GPL(spi_async_locked);
3697 
3698 /*-------------------------------------------------------------------------*/
3699 
3700 /* Utility methods for SPI protocol drivers, layered on
3701  * top of the core.  Some other utility methods are defined as
3702  * inline functions.
3703  */
3704 
3705 static void spi_complete(void *arg)
3706 {
3707 	complete(arg);
3708 }
3709 
3710 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3711 {
3712 	DECLARE_COMPLETION_ONSTACK(done);
3713 	int status;
3714 	struct spi_controller *ctlr = spi->controller;
3715 	unsigned long flags;
3716 
3717 	status = __spi_validate(spi, message);
3718 	if (status != 0)
3719 		return status;
3720 
3721 	message->complete = spi_complete;
3722 	message->context = &done;
3723 	message->spi = spi;
3724 
3725 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3726 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3727 
3728 	/* If we're not using the legacy transfer method then we will
3729 	 * try to transfer in the calling context so special case.
3730 	 * This code would be less tricky if we could remove the
3731 	 * support for driver implemented message queues.
3732 	 */
3733 	if (ctlr->transfer == spi_queued_transfer) {
3734 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3735 
3736 		trace_spi_message_submit(message);
3737 
3738 		status = __spi_queued_transfer(spi, message, false);
3739 
3740 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3741 	} else {
3742 		status = spi_async_locked(spi, message);
3743 	}
3744 
3745 	if (status == 0) {
3746 		/* Push out the messages in the calling context if we
3747 		 * can.
3748 		 */
3749 		if (ctlr->transfer == spi_queued_transfer) {
3750 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3751 						       spi_sync_immediate);
3752 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3753 						       spi_sync_immediate);
3754 			__spi_pump_messages(ctlr, false);
3755 		}
3756 
3757 		wait_for_completion(&done);
3758 		status = message->status;
3759 	}
3760 	message->context = NULL;
3761 	return status;
3762 }
3763 
3764 /**
3765  * spi_sync - blocking/synchronous SPI data transfers
3766  * @spi: device with which data will be exchanged
3767  * @message: describes the data transfers
3768  * Context: can sleep
3769  *
3770  * This call may only be used from a context that may sleep.  The sleep
3771  * is non-interruptible, and has no timeout.  Low-overhead controller
3772  * drivers may DMA directly into and out of the message buffers.
3773  *
3774  * Note that the SPI device's chip select is active during the message,
3775  * and then is normally disabled between messages.  Drivers for some
3776  * frequently-used devices may want to minimize costs of selecting a chip,
3777  * by leaving it selected in anticipation that the next message will go
3778  * to the same chip.  (That may increase power usage.)
3779  *
3780  * Also, the caller is guaranteeing that the memory associated with the
3781  * message will not be freed before this call returns.
3782  *
3783  * Return: zero on success, else a negative error code.
3784  */
3785 int spi_sync(struct spi_device *spi, struct spi_message *message)
3786 {
3787 	int ret;
3788 
3789 	mutex_lock(&spi->controller->bus_lock_mutex);
3790 	ret = __spi_sync(spi, message);
3791 	mutex_unlock(&spi->controller->bus_lock_mutex);
3792 
3793 	return ret;
3794 }
3795 EXPORT_SYMBOL_GPL(spi_sync);
3796 
3797 /**
3798  * spi_sync_locked - version of spi_sync with exclusive bus usage
3799  * @spi: device with which data will be exchanged
3800  * @message: describes the data transfers
3801  * Context: can sleep
3802  *
3803  * This call may only be used from a context that may sleep.  The sleep
3804  * is non-interruptible, and has no timeout.  Low-overhead controller
3805  * drivers may DMA directly into and out of the message buffers.
3806  *
3807  * This call should be used by drivers that require exclusive access to the
3808  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3809  * be released by a spi_bus_unlock call when the exclusive access is over.
3810  *
3811  * Return: zero on success, else a negative error code.
3812  */
3813 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3814 {
3815 	return __spi_sync(spi, message);
3816 }
3817 EXPORT_SYMBOL_GPL(spi_sync_locked);
3818 
3819 /**
3820  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3821  * @ctlr: SPI bus master that should be locked for exclusive bus access
3822  * Context: can sleep
3823  *
3824  * This call may only be used from a context that may sleep.  The sleep
3825  * is non-interruptible, and has no timeout.
3826  *
3827  * This call should be used by drivers that require exclusive access to the
3828  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3829  * exclusive access is over. Data transfer must be done by spi_sync_locked
3830  * and spi_async_locked calls when the SPI bus lock is held.
3831  *
3832  * Return: always zero.
3833  */
3834 int spi_bus_lock(struct spi_controller *ctlr)
3835 {
3836 	unsigned long flags;
3837 
3838 	mutex_lock(&ctlr->bus_lock_mutex);
3839 
3840 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3841 	ctlr->bus_lock_flag = 1;
3842 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3843 
3844 	/* mutex remains locked until spi_bus_unlock is called */
3845 
3846 	return 0;
3847 }
3848 EXPORT_SYMBOL_GPL(spi_bus_lock);
3849 
3850 /**
3851  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3852  * @ctlr: SPI bus master that was locked for exclusive bus access
3853  * Context: can sleep
3854  *
3855  * This call may only be used from a context that may sleep.  The sleep
3856  * is non-interruptible, and has no timeout.
3857  *
3858  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3859  * call.
3860  *
3861  * Return: always zero.
3862  */
3863 int spi_bus_unlock(struct spi_controller *ctlr)
3864 {
3865 	ctlr->bus_lock_flag = 0;
3866 
3867 	mutex_unlock(&ctlr->bus_lock_mutex);
3868 
3869 	return 0;
3870 }
3871 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3872 
3873 /* portable code must never pass more than 32 bytes */
3874 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3875 
3876 static u8	*buf;
3877 
3878 /**
3879  * spi_write_then_read - SPI synchronous write followed by read
3880  * @spi: device with which data will be exchanged
3881  * @txbuf: data to be written (need not be dma-safe)
3882  * @n_tx: size of txbuf, in bytes
3883  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3884  * @n_rx: size of rxbuf, in bytes
3885  * Context: can sleep
3886  *
3887  * This performs a half duplex MicroWire style transaction with the
3888  * device, sending txbuf and then reading rxbuf.  The return value
3889  * is zero for success, else a negative errno status code.
3890  * This call may only be used from a context that may sleep.
3891  *
3892  * Parameters to this routine are always copied using a small buffer.
3893  * Performance-sensitive or bulk transfer code should instead use
3894  * spi_{async,sync}() calls with dma-safe buffers.
3895  *
3896  * Return: zero on success, else a negative error code.
3897  */
3898 int spi_write_then_read(struct spi_device *spi,
3899 		const void *txbuf, unsigned n_tx,
3900 		void *rxbuf, unsigned n_rx)
3901 {
3902 	static DEFINE_MUTEX(lock);
3903 
3904 	int			status;
3905 	struct spi_message	message;
3906 	struct spi_transfer	x[2];
3907 	u8			*local_buf;
3908 
3909 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3910 	 * copying here, (as a pure convenience thing), but we can
3911 	 * keep heap costs out of the hot path unless someone else is
3912 	 * using the pre-allocated buffer or the transfer is too large.
3913 	 */
3914 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3915 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3916 				    GFP_KERNEL | GFP_DMA);
3917 		if (!local_buf)
3918 			return -ENOMEM;
3919 	} else {
3920 		local_buf = buf;
3921 	}
3922 
3923 	spi_message_init(&message);
3924 	memset(x, 0, sizeof(x));
3925 	if (n_tx) {
3926 		x[0].len = n_tx;
3927 		spi_message_add_tail(&x[0], &message);
3928 	}
3929 	if (n_rx) {
3930 		x[1].len = n_rx;
3931 		spi_message_add_tail(&x[1], &message);
3932 	}
3933 
3934 	memcpy(local_buf, txbuf, n_tx);
3935 	x[0].tx_buf = local_buf;
3936 	x[1].rx_buf = local_buf + n_tx;
3937 
3938 	/* do the i/o */
3939 	status = spi_sync(spi, &message);
3940 	if (status == 0)
3941 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3942 
3943 	if (x[0].tx_buf == buf)
3944 		mutex_unlock(&lock);
3945 	else
3946 		kfree(local_buf);
3947 
3948 	return status;
3949 }
3950 EXPORT_SYMBOL_GPL(spi_write_then_read);
3951 
3952 /*-------------------------------------------------------------------------*/
3953 
3954 #if IS_ENABLED(CONFIG_OF)
3955 /* must call put_device() when done with returned spi_device device */
3956 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3957 {
3958 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3959 
3960 	return dev ? to_spi_device(dev) : NULL;
3961 }
3962 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3963 #endif /* IS_ENABLED(CONFIG_OF) */
3964 
3965 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3966 /* the spi controllers are not using spi_bus, so we find it with another way */
3967 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3968 {
3969 	struct device *dev;
3970 
3971 	dev = class_find_device_by_of_node(&spi_master_class, node);
3972 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3973 		dev = class_find_device_by_of_node(&spi_slave_class, node);
3974 	if (!dev)
3975 		return NULL;
3976 
3977 	/* reference got in class_find_device */
3978 	return container_of(dev, struct spi_controller, dev);
3979 }
3980 
3981 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3982 			 void *arg)
3983 {
3984 	struct of_reconfig_data *rd = arg;
3985 	struct spi_controller *ctlr;
3986 	struct spi_device *spi;
3987 
3988 	switch (of_reconfig_get_state_change(action, arg)) {
3989 	case OF_RECONFIG_CHANGE_ADD:
3990 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3991 		if (ctlr == NULL)
3992 			return NOTIFY_OK;	/* not for us */
3993 
3994 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3995 			put_device(&ctlr->dev);
3996 			return NOTIFY_OK;
3997 		}
3998 
3999 		spi = of_register_spi_device(ctlr, rd->dn);
4000 		put_device(&ctlr->dev);
4001 
4002 		if (IS_ERR(spi)) {
4003 			pr_err("%s: failed to create for '%pOF'\n",
4004 					__func__, rd->dn);
4005 			of_node_clear_flag(rd->dn, OF_POPULATED);
4006 			return notifier_from_errno(PTR_ERR(spi));
4007 		}
4008 		break;
4009 
4010 	case OF_RECONFIG_CHANGE_REMOVE:
4011 		/* already depopulated? */
4012 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4013 			return NOTIFY_OK;
4014 
4015 		/* find our device by node */
4016 		spi = of_find_spi_device_by_node(rd->dn);
4017 		if (spi == NULL)
4018 			return NOTIFY_OK;	/* no? not meant for us */
4019 
4020 		/* unregister takes one ref away */
4021 		spi_unregister_device(spi);
4022 
4023 		/* and put the reference of the find */
4024 		put_device(&spi->dev);
4025 		break;
4026 	}
4027 
4028 	return NOTIFY_OK;
4029 }
4030 
4031 static struct notifier_block spi_of_notifier = {
4032 	.notifier_call = of_spi_notify,
4033 };
4034 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4035 extern struct notifier_block spi_of_notifier;
4036 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4037 
4038 #if IS_ENABLED(CONFIG_ACPI)
4039 static int spi_acpi_controller_match(struct device *dev, const void *data)
4040 {
4041 	return ACPI_COMPANION(dev->parent) == data;
4042 }
4043 
4044 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4045 {
4046 	struct device *dev;
4047 
4048 	dev = class_find_device(&spi_master_class, NULL, adev,
4049 				spi_acpi_controller_match);
4050 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4051 		dev = class_find_device(&spi_slave_class, NULL, adev,
4052 					spi_acpi_controller_match);
4053 	if (!dev)
4054 		return NULL;
4055 
4056 	return container_of(dev, struct spi_controller, dev);
4057 }
4058 
4059 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4060 {
4061 	struct device *dev;
4062 
4063 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4064 	return to_spi_device(dev);
4065 }
4066 
4067 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4068 			   void *arg)
4069 {
4070 	struct acpi_device *adev = arg;
4071 	struct spi_controller *ctlr;
4072 	struct spi_device *spi;
4073 
4074 	switch (value) {
4075 	case ACPI_RECONFIG_DEVICE_ADD:
4076 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4077 		if (!ctlr)
4078 			break;
4079 
4080 		acpi_register_spi_device(ctlr, adev);
4081 		put_device(&ctlr->dev);
4082 		break;
4083 	case ACPI_RECONFIG_DEVICE_REMOVE:
4084 		if (!acpi_device_enumerated(adev))
4085 			break;
4086 
4087 		spi = acpi_spi_find_device_by_adev(adev);
4088 		if (!spi)
4089 			break;
4090 
4091 		spi_unregister_device(spi);
4092 		put_device(&spi->dev);
4093 		break;
4094 	}
4095 
4096 	return NOTIFY_OK;
4097 }
4098 
4099 static struct notifier_block spi_acpi_notifier = {
4100 	.notifier_call = acpi_spi_notify,
4101 };
4102 #else
4103 extern struct notifier_block spi_acpi_notifier;
4104 #endif
4105 
4106 static int __init spi_init(void)
4107 {
4108 	int	status;
4109 
4110 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4111 	if (!buf) {
4112 		status = -ENOMEM;
4113 		goto err0;
4114 	}
4115 
4116 	status = bus_register(&spi_bus_type);
4117 	if (status < 0)
4118 		goto err1;
4119 
4120 	status = class_register(&spi_master_class);
4121 	if (status < 0)
4122 		goto err2;
4123 
4124 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4125 		status = class_register(&spi_slave_class);
4126 		if (status < 0)
4127 			goto err3;
4128 	}
4129 
4130 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4131 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4132 	if (IS_ENABLED(CONFIG_ACPI))
4133 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4134 
4135 	return 0;
4136 
4137 err3:
4138 	class_unregister(&spi_master_class);
4139 err2:
4140 	bus_unregister(&spi_bus_type);
4141 err1:
4142 	kfree(buf);
4143 	buf = NULL;
4144 err0:
4145 	return status;
4146 }
4147 
4148 /* board_info is normally registered in arch_initcall(),
4149  * but even essential drivers wait till later
4150  *
4151  * REVISIT only boardinfo really needs static linking. the rest (device and
4152  * driver registration) _could_ be dynamically linked (modular) ... costs
4153  * include needing to have boardinfo data structures be much more public.
4154  */
4155 postcore_initcall(spi_init);
4156