xref: /openbmc/linux/drivers/spi/spi.c (revision 325f8ab7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 				   char *buf, size_t offset)
122 {
123 	u64 val = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i) {
127 		const struct spi_statistics *pcpu_stats;
128 		u64_stats_t *field;
129 		unsigned int start;
130 		u64 inc;
131 
132 		pcpu_stats = per_cpu_ptr(stat, i);
133 		field = (void *)pcpu_stats + offset;
134 		do {
135 			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 			inc = u64_stats_read(field);
137 		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 		val += inc;
139 	}
140 	return sysfs_emit(buf, "%llu\n", val);
141 }
142 
143 #define SPI_STATISTICS_ATTRS(field, file)				\
144 static ssize_t spi_controller_##field##_show(struct device *dev,	\
145 					     struct device_attribute *attr, \
146 					     char *buf)			\
147 {									\
148 	struct spi_controller *ctlr = container_of(dev,			\
149 					 struct spi_controller, dev);	\
150 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }									\
152 static struct device_attribute dev_attr_spi_controller_##field = {	\
153 	.attr = { .name = file, .mode = 0444 },				\
154 	.show = spi_controller_##field##_show,				\
155 };									\
156 static ssize_t spi_device_##field##_show(struct device *dev,		\
157 					 struct device_attribute *attr,	\
158 					char *buf)			\
159 {									\
160 	struct spi_device *spi = to_spi_device(dev);			\
161 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }									\
163 static struct device_attribute dev_attr_spi_device_##field = {		\
164 	.attr = { .name = file, .mode = 0444 },				\
165 	.show = spi_device_##field##_show,				\
166 }
167 
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 					    char *buf)			\
171 {									\
172 	return spi_emit_pcpu_stats(stat, buf,				\
173 			offsetof(struct spi_statistics, field));	\
174 }									\
175 SPI_STATISTICS_ATTRS(name, file)
176 
177 #define SPI_STATISTICS_SHOW(field)					\
178 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
179 				 field)
180 
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185 
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189 
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193 
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
195 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
196 				 "transfer_bytes_histo_" number,	\
197 				 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215 
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217 
218 static struct attribute *spi_dev_attrs[] = {
219 	&dev_attr_modalias.attr,
220 	&dev_attr_driver_override.attr,
221 	NULL,
222 };
223 
224 static const struct attribute_group spi_dev_group = {
225 	.attrs  = spi_dev_attrs,
226 };
227 
228 static struct attribute *spi_device_statistics_attrs[] = {
229 	&dev_attr_spi_device_messages.attr,
230 	&dev_attr_spi_device_transfers.attr,
231 	&dev_attr_spi_device_errors.attr,
232 	&dev_attr_spi_device_timedout.attr,
233 	&dev_attr_spi_device_spi_sync.attr,
234 	&dev_attr_spi_device_spi_sync_immediate.attr,
235 	&dev_attr_spi_device_spi_async.attr,
236 	&dev_attr_spi_device_bytes.attr,
237 	&dev_attr_spi_device_bytes_rx.attr,
238 	&dev_attr_spi_device_bytes_tx.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
255 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
256 	&dev_attr_spi_device_transfers_split_maxsize.attr,
257 	NULL,
258 };
259 
260 static const struct attribute_group spi_device_statistics_group = {
261 	.name  = "statistics",
262 	.attrs  = spi_device_statistics_attrs,
263 };
264 
265 static const struct attribute_group *spi_dev_groups[] = {
266 	&spi_dev_group,
267 	&spi_device_statistics_group,
268 	NULL,
269 };
270 
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 	&dev_attr_spi_controller_messages.attr,
273 	&dev_attr_spi_controller_transfers.attr,
274 	&dev_attr_spi_controller_errors.attr,
275 	&dev_attr_spi_controller_timedout.attr,
276 	&dev_attr_spi_controller_spi_sync.attr,
277 	&dev_attr_spi_controller_spi_sync_immediate.attr,
278 	&dev_attr_spi_controller_spi_async.attr,
279 	&dev_attr_spi_controller_bytes.attr,
280 	&dev_attr_spi_controller_bytes_rx.attr,
281 	&dev_attr_spi_controller_bytes_tx.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
300 	NULL,
301 };
302 
303 static const struct attribute_group spi_controller_statistics_group = {
304 	.name  = "statistics",
305 	.attrs  = spi_controller_statistics_attrs,
306 };
307 
308 static const struct attribute_group *spi_master_groups[] = {
309 	&spi_controller_statistics_group,
310 	NULL,
311 };
312 
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 					      struct spi_transfer *xfer,
315 					      struct spi_controller *ctlr)
316 {
317 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 	struct spi_statistics *stats;
319 
320 	if (l2len < 0)
321 		l2len = 0;
322 
323 	get_cpu();
324 	stats = this_cpu_ptr(pcpu_stats);
325 	u64_stats_update_begin(&stats->syncp);
326 
327 	u64_stats_inc(&stats->transfers);
328 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329 
330 	u64_stats_add(&stats->bytes, xfer->len);
331 	if ((xfer->tx_buf) &&
332 	    (xfer->tx_buf != ctlr->dummy_tx))
333 		u64_stats_add(&stats->bytes_tx, xfer->len);
334 	if ((xfer->rx_buf) &&
335 	    (xfer->rx_buf != ctlr->dummy_rx))
336 		u64_stats_add(&stats->bytes_rx, xfer->len);
337 
338 	u64_stats_update_end(&stats->syncp);
339 	put_cpu();
340 }
341 
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348 	while (id->name[0]) {
349 		if (!strcmp(name, id->name))
350 			return id;
351 		id++;
352 	}
353 	return NULL;
354 }
355 
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359 
360 	return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363 
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366 	const void *match;
367 
368 	match = device_get_match_data(&sdev->dev);
369 	if (match)
370 		return match;
371 
372 	return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375 
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378 	const struct spi_device	*spi = to_spi_device(dev);
379 	const struct spi_driver	*sdrv = to_spi_driver(drv);
380 
381 	/* Check override first, and if set, only use the named driver */
382 	if (spi->driver_override)
383 		return strcmp(spi->driver_override, drv->name) == 0;
384 
385 	/* Attempt an OF style match */
386 	if (of_driver_match_device(dev, drv))
387 		return 1;
388 
389 	/* Then try ACPI */
390 	if (acpi_driver_match_device(dev, drv))
391 		return 1;
392 
393 	if (sdrv->id_table)
394 		return !!spi_match_id(sdrv->id_table, spi->modalias);
395 
396 	return strcmp(spi->modalias, drv->name) == 0;
397 }
398 
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401 	const struct spi_device		*spi = to_spi_device(dev);
402 	int rc;
403 
404 	rc = acpi_device_uevent_modalias(dev, env);
405 	if (rc != -ENODEV)
406 		return rc;
407 
408 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410 
411 static int spi_probe(struct device *dev)
412 {
413 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
414 	struct spi_device		*spi = to_spi_device(dev);
415 	int ret;
416 
417 	ret = of_clk_set_defaults(dev->of_node, false);
418 	if (ret)
419 		return ret;
420 
421 	if (dev->of_node) {
422 		spi->irq = of_irq_get(dev->of_node, 0);
423 		if (spi->irq == -EPROBE_DEFER)
424 			return -EPROBE_DEFER;
425 		if (spi->irq < 0)
426 			spi->irq = 0;
427 	}
428 
429 	ret = dev_pm_domain_attach(dev, true);
430 	if (ret)
431 		return ret;
432 
433 	if (sdrv->probe) {
434 		ret = sdrv->probe(spi);
435 		if (ret)
436 			dev_pm_domain_detach(dev, true);
437 	}
438 
439 	return ret;
440 }
441 
442 static void spi_remove(struct device *dev)
443 {
444 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
445 
446 	if (sdrv->remove)
447 		sdrv->remove(to_spi_device(dev));
448 
449 	dev_pm_domain_detach(dev, true);
450 }
451 
452 static void spi_shutdown(struct device *dev)
453 {
454 	if (dev->driver) {
455 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
456 
457 		if (sdrv->shutdown)
458 			sdrv->shutdown(to_spi_device(dev));
459 	}
460 }
461 
462 struct bus_type spi_bus_type = {
463 	.name		= "spi",
464 	.dev_groups	= spi_dev_groups,
465 	.match		= spi_match_device,
466 	.uevent		= spi_uevent,
467 	.probe		= spi_probe,
468 	.remove		= spi_remove,
469 	.shutdown	= spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472 
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483 	sdrv->driver.owner = owner;
484 	sdrv->driver.bus = &spi_bus_type;
485 
486 	/*
487 	 * For Really Good Reasons we use spi: modaliases not of:
488 	 * modaliases for DT so module autoloading won't work if we
489 	 * don't have a spi_device_id as well as a compatible string.
490 	 */
491 	if (sdrv->driver.of_match_table) {
492 		const struct of_device_id *of_id;
493 
494 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495 		     of_id++) {
496 			const char *of_name;
497 
498 			/* Strip off any vendor prefix */
499 			of_name = strnchr(of_id->compatible,
500 					  sizeof(of_id->compatible), ',');
501 			if (of_name)
502 				of_name++;
503 			else
504 				of_name = of_id->compatible;
505 
506 			if (sdrv->id_table) {
507 				const struct spi_device_id *spi_id;
508 
509 				spi_id = spi_match_id(sdrv->id_table, of_name);
510 				if (spi_id)
511 					continue;
512 			} else {
513 				if (strcmp(sdrv->driver.name, of_name) == 0)
514 					continue;
515 			}
516 
517 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 				sdrv->driver.name, of_id->compatible);
519 		}
520 	}
521 
522 	return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525 
526 /*-------------------------------------------------------------------------*/
527 
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534 
535 struct boardinfo {
536 	struct list_head	list;
537 	struct spi_board_info	board_info;
538 };
539 
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542 
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549 
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569 	struct spi_device	*spi;
570 
571 	if (!spi_controller_get(ctlr))
572 		return NULL;
573 
574 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575 	if (!spi) {
576 		spi_controller_put(ctlr);
577 		return NULL;
578 	}
579 
580 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 	if (!spi->pcpu_statistics) {
582 		kfree(spi);
583 		spi_controller_put(ctlr);
584 		return NULL;
585 	}
586 
587 	spi->master = spi->controller = ctlr;
588 	spi->dev.parent = &ctlr->dev;
589 	spi->dev.bus = &spi_bus_type;
590 	spi->dev.release = spidev_release;
591 	spi->mode = ctlr->buswidth_override_bits;
592 
593 	device_initialize(&spi->dev);
594 	return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597 
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601 
602 	if (adev) {
603 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604 		return;
605 	}
606 
607 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608 		     spi_get_chipselect(spi, 0));
609 }
610 
611 static int spi_dev_check(struct device *dev, void *data)
612 {
613 	struct spi_device *spi = to_spi_device(dev);
614 	struct spi_device *new_spi = data;
615 
616 	if (spi->controller == new_spi->controller &&
617 	    spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
618 		return -EBUSY;
619 	return 0;
620 }
621 
622 static void spi_cleanup(struct spi_device *spi)
623 {
624 	if (spi->controller->cleanup)
625 		spi->controller->cleanup(spi);
626 }
627 
628 static int __spi_add_device(struct spi_device *spi)
629 {
630 	struct spi_controller *ctlr = spi->controller;
631 	struct device *dev = ctlr->dev.parent;
632 	int status;
633 
634 	/* Chipselects are numbered 0..max; validate. */
635 	if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
636 		dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
637 			ctlr->num_chipselect);
638 		return -EINVAL;
639 	}
640 
641 	/* Set the bus ID string */
642 	spi_dev_set_name(spi);
643 
644 	/*
645 	 * We need to make sure there's no other device with this
646 	 * chipselect **BEFORE** we call setup(), else we'll trash
647 	 * its configuration.
648 	 */
649 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
650 	if (status) {
651 		dev_err(dev, "chipselect %d already in use\n",
652 				spi_get_chipselect(spi, 0));
653 		return status;
654 	}
655 
656 	/* Controller may unregister concurrently */
657 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
658 	    !device_is_registered(&ctlr->dev)) {
659 		return -ENODEV;
660 	}
661 
662 	if (ctlr->cs_gpiods)
663 		spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
664 
665 	/*
666 	 * Drivers may modify this initial i/o setup, but will
667 	 * normally rely on the device being setup.  Devices
668 	 * using SPI_CS_HIGH can't coexist well otherwise...
669 	 */
670 	status = spi_setup(spi);
671 	if (status < 0) {
672 		dev_err(dev, "can't setup %s, status %d\n",
673 				dev_name(&spi->dev), status);
674 		return status;
675 	}
676 
677 	/* Device may be bound to an active driver when this returns */
678 	status = device_add(&spi->dev);
679 	if (status < 0) {
680 		dev_err(dev, "can't add %s, status %d\n",
681 				dev_name(&spi->dev), status);
682 		spi_cleanup(spi);
683 	} else {
684 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
685 	}
686 
687 	return status;
688 }
689 
690 /**
691  * spi_add_device - Add spi_device allocated with spi_alloc_device
692  * @spi: spi_device to register
693  *
694  * Companion function to spi_alloc_device.  Devices allocated with
695  * spi_alloc_device can be added onto the SPI bus with this function.
696  *
697  * Return: 0 on success; negative errno on failure
698  */
699 int spi_add_device(struct spi_device *spi)
700 {
701 	struct spi_controller *ctlr = spi->controller;
702 	int status;
703 
704 	mutex_lock(&ctlr->add_lock);
705 	status = __spi_add_device(spi);
706 	mutex_unlock(&ctlr->add_lock);
707 	return status;
708 }
709 EXPORT_SYMBOL_GPL(spi_add_device);
710 
711 /**
712  * spi_new_device - instantiate one new SPI device
713  * @ctlr: Controller to which device is connected
714  * @chip: Describes the SPI device
715  * Context: can sleep
716  *
717  * On typical mainboards, this is purely internal; and it's not needed
718  * after board init creates the hard-wired devices.  Some development
719  * platforms may not be able to use spi_register_board_info though, and
720  * this is exported so that for example a USB or parport based adapter
721  * driver could add devices (which it would learn about out-of-band).
722  *
723  * Return: the new device, or NULL.
724  */
725 struct spi_device *spi_new_device(struct spi_controller *ctlr,
726 				  struct spi_board_info *chip)
727 {
728 	struct spi_device	*proxy;
729 	int			status;
730 
731 	/*
732 	 * NOTE:  caller did any chip->bus_num checks necessary.
733 	 *
734 	 * Also, unless we change the return value convention to use
735 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
736 	 * suggests syslogged diagnostics are best here (ugh).
737 	 */
738 
739 	proxy = spi_alloc_device(ctlr);
740 	if (!proxy)
741 		return NULL;
742 
743 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
744 
745 	spi_set_chipselect(proxy, 0, chip->chip_select);
746 	proxy->max_speed_hz = chip->max_speed_hz;
747 	proxy->mode = chip->mode;
748 	proxy->irq = chip->irq;
749 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
750 	proxy->dev.platform_data = (void *) chip->platform_data;
751 	proxy->controller_data = chip->controller_data;
752 	proxy->controller_state = NULL;
753 
754 	if (chip->swnode) {
755 		status = device_add_software_node(&proxy->dev, chip->swnode);
756 		if (status) {
757 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
758 				chip->modalias, status);
759 			goto err_dev_put;
760 		}
761 	}
762 
763 	status = spi_add_device(proxy);
764 	if (status < 0)
765 		goto err_dev_put;
766 
767 	return proxy;
768 
769 err_dev_put:
770 	device_remove_software_node(&proxy->dev);
771 	spi_dev_put(proxy);
772 	return NULL;
773 }
774 EXPORT_SYMBOL_GPL(spi_new_device);
775 
776 /**
777  * spi_unregister_device - unregister a single SPI device
778  * @spi: spi_device to unregister
779  *
780  * Start making the passed SPI device vanish. Normally this would be handled
781  * by spi_unregister_controller().
782  */
783 void spi_unregister_device(struct spi_device *spi)
784 {
785 	if (!spi)
786 		return;
787 
788 	if (spi->dev.of_node) {
789 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
790 		of_node_put(spi->dev.of_node);
791 	}
792 	if (ACPI_COMPANION(&spi->dev))
793 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
794 	device_remove_software_node(&spi->dev);
795 	device_del(&spi->dev);
796 	spi_cleanup(spi);
797 	put_device(&spi->dev);
798 }
799 EXPORT_SYMBOL_GPL(spi_unregister_device);
800 
801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
802 					      struct spi_board_info *bi)
803 {
804 	struct spi_device *dev;
805 
806 	if (ctlr->bus_num != bi->bus_num)
807 		return;
808 
809 	dev = spi_new_device(ctlr, bi);
810 	if (!dev)
811 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
812 			bi->modalias);
813 }
814 
815 /**
816  * spi_register_board_info - register SPI devices for a given board
817  * @info: array of chip descriptors
818  * @n: how many descriptors are provided
819  * Context: can sleep
820  *
821  * Board-specific early init code calls this (probably during arch_initcall)
822  * with segments of the SPI device table.  Any device nodes are created later,
823  * after the relevant parent SPI controller (bus_num) is defined.  We keep
824  * this table of devices forever, so that reloading a controller driver will
825  * not make Linux forget about these hard-wired devices.
826  *
827  * Other code can also call this, e.g. a particular add-on board might provide
828  * SPI devices through its expansion connector, so code initializing that board
829  * would naturally declare its SPI devices.
830  *
831  * The board info passed can safely be __initdata ... but be careful of
832  * any embedded pointers (platform_data, etc), they're copied as-is.
833  *
834  * Return: zero on success, else a negative error code.
835  */
836 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
837 {
838 	struct boardinfo *bi;
839 	int i;
840 
841 	if (!n)
842 		return 0;
843 
844 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
845 	if (!bi)
846 		return -ENOMEM;
847 
848 	for (i = 0; i < n; i++, bi++, info++) {
849 		struct spi_controller *ctlr;
850 
851 		memcpy(&bi->board_info, info, sizeof(*info));
852 
853 		mutex_lock(&board_lock);
854 		list_add_tail(&bi->list, &board_list);
855 		list_for_each_entry(ctlr, &spi_controller_list, list)
856 			spi_match_controller_to_boardinfo(ctlr,
857 							  &bi->board_info);
858 		mutex_unlock(&board_lock);
859 	}
860 
861 	return 0;
862 }
863 
864 /*-------------------------------------------------------------------------*/
865 
866 /* Core methods for SPI resource management */
867 
868 /**
869  * spi_res_alloc - allocate a spi resource that is life-cycle managed
870  *                 during the processing of a spi_message while using
871  *                 spi_transfer_one
872  * @spi:     the SPI device for which we allocate memory
873  * @release: the release code to execute for this resource
874  * @size:    size to alloc and return
875  * @gfp:     GFP allocation flags
876  *
877  * Return: the pointer to the allocated data
878  *
879  * This may get enhanced in the future to allocate from a memory pool
880  * of the @spi_device or @spi_controller to avoid repeated allocations.
881  */
882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
883 			   size_t size, gfp_t gfp)
884 {
885 	struct spi_res *sres;
886 
887 	sres = kzalloc(sizeof(*sres) + size, gfp);
888 	if (!sres)
889 		return NULL;
890 
891 	INIT_LIST_HEAD(&sres->entry);
892 	sres->release = release;
893 
894 	return sres->data;
895 }
896 
897 /**
898  * spi_res_free - free an SPI resource
899  * @res: pointer to the custom data of a resource
900  */
901 static void spi_res_free(void *res)
902 {
903 	struct spi_res *sres = container_of(res, struct spi_res, data);
904 
905 	if (!res)
906 		return;
907 
908 	WARN_ON(!list_empty(&sres->entry));
909 	kfree(sres);
910 }
911 
912 /**
913  * spi_res_add - add a spi_res to the spi_message
914  * @message: the SPI message
915  * @res:     the spi_resource
916  */
917 static void spi_res_add(struct spi_message *message, void *res)
918 {
919 	struct spi_res *sres = container_of(res, struct spi_res, data);
920 
921 	WARN_ON(!list_empty(&sres->entry));
922 	list_add_tail(&sres->entry, &message->resources);
923 }
924 
925 /**
926  * spi_res_release - release all SPI resources for this message
927  * @ctlr:  the @spi_controller
928  * @message: the @spi_message
929  */
930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
931 {
932 	struct spi_res *res, *tmp;
933 
934 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
935 		if (res->release)
936 			res->release(ctlr, message, res->data);
937 
938 		list_del(&res->entry);
939 
940 		kfree(res);
941 	}
942 }
943 
944 /*-------------------------------------------------------------------------*/
945 
946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
947 {
948 	bool activate = enable;
949 
950 	/*
951 	 * Avoid calling into the driver (or doing delays) if the chip select
952 	 * isn't actually changing from the last time this was called.
953 	 */
954 	if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
955 		       (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
956 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
957 		return;
958 
959 	trace_spi_set_cs(spi, activate);
960 
961 	spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
962 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
963 
964 	if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
965 		spi_delay_exec(&spi->cs_hold, NULL);
966 
967 	if (spi->mode & SPI_CS_HIGH)
968 		enable = !enable;
969 
970 	if (spi_get_csgpiod(spi, 0)) {
971 		if (!(spi->mode & SPI_NO_CS)) {
972 			/*
973 			 * Historically ACPI has no means of the GPIO polarity and
974 			 * thus the SPISerialBus() resource defines it on the per-chip
975 			 * basis. In order to avoid a chain of negations, the GPIO
976 			 * polarity is considered being Active High. Even for the cases
977 			 * when _DSD() is involved (in the updated versions of ACPI)
978 			 * the GPIO CS polarity must be defined Active High to avoid
979 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
980 			 * into account.
981 			 */
982 			if (has_acpi_companion(&spi->dev))
983 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
984 			else
985 				/* Polarity handled by GPIO library */
986 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
987 		}
988 		/* Some SPI masters need both GPIO CS & slave_select */
989 		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
990 		    spi->controller->set_cs)
991 			spi->controller->set_cs(spi, !enable);
992 	} else if (spi->controller->set_cs) {
993 		spi->controller->set_cs(spi, !enable);
994 	}
995 
996 	if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
997 		if (activate)
998 			spi_delay_exec(&spi->cs_setup, NULL);
999 		else
1000 			spi_delay_exec(&spi->cs_inactive, NULL);
1001 	}
1002 }
1003 
1004 #ifdef CONFIG_HAS_DMA
1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1006 			     struct sg_table *sgt, void *buf, size_t len,
1007 			     enum dma_data_direction dir, unsigned long attrs)
1008 {
1009 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1010 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1011 #ifdef CONFIG_HIGHMEM
1012 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1013 				(unsigned long)buf < (PKMAP_BASE +
1014 					(LAST_PKMAP * PAGE_SIZE)));
1015 #else
1016 	const bool kmap_buf = false;
1017 #endif
1018 	int desc_len;
1019 	int sgs;
1020 	struct page *vm_page;
1021 	struct scatterlist *sg;
1022 	void *sg_buf;
1023 	size_t min;
1024 	int i, ret;
1025 
1026 	if (vmalloced_buf || kmap_buf) {
1027 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1028 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1029 	} else if (virt_addr_valid(buf)) {
1030 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1031 		sgs = DIV_ROUND_UP(len, desc_len);
1032 	} else {
1033 		return -EINVAL;
1034 	}
1035 
1036 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1037 	if (ret != 0)
1038 		return ret;
1039 
1040 	sg = &sgt->sgl[0];
1041 	for (i = 0; i < sgs; i++) {
1042 
1043 		if (vmalloced_buf || kmap_buf) {
1044 			/*
1045 			 * Next scatterlist entry size is the minimum between
1046 			 * the desc_len and the remaining buffer length that
1047 			 * fits in a page.
1048 			 */
1049 			min = min_t(size_t, desc_len,
1050 				    min_t(size_t, len,
1051 					  PAGE_SIZE - offset_in_page(buf)));
1052 			if (vmalloced_buf)
1053 				vm_page = vmalloc_to_page(buf);
1054 			else
1055 				vm_page = kmap_to_page(buf);
1056 			if (!vm_page) {
1057 				sg_free_table(sgt);
1058 				return -ENOMEM;
1059 			}
1060 			sg_set_page(sg, vm_page,
1061 				    min, offset_in_page(buf));
1062 		} else {
1063 			min = min_t(size_t, len, desc_len);
1064 			sg_buf = buf;
1065 			sg_set_buf(sg, sg_buf, min);
1066 		}
1067 
1068 		buf += min;
1069 		len -= min;
1070 		sg = sg_next(sg);
1071 	}
1072 
1073 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1074 	if (ret < 0) {
1075 		sg_free_table(sgt);
1076 		return ret;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1083 		struct sg_table *sgt, void *buf, size_t len,
1084 		enum dma_data_direction dir)
1085 {
1086 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1087 }
1088 
1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1090 				struct device *dev, struct sg_table *sgt,
1091 				enum dma_data_direction dir,
1092 				unsigned long attrs)
1093 {
1094 	if (sgt->orig_nents) {
1095 		dma_unmap_sgtable(dev, sgt, dir, attrs);
1096 		sg_free_table(sgt);
1097 		sgt->orig_nents = 0;
1098 		sgt->nents = 0;
1099 	}
1100 }
1101 
1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1103 		   struct sg_table *sgt, enum dma_data_direction dir)
1104 {
1105 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1106 }
1107 
1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1109 {
1110 	struct device *tx_dev, *rx_dev;
1111 	struct spi_transfer *xfer;
1112 	int ret;
1113 
1114 	if (!ctlr->can_dma)
1115 		return 0;
1116 
1117 	if (ctlr->dma_tx)
1118 		tx_dev = ctlr->dma_tx->device->dev;
1119 	else if (ctlr->dma_map_dev)
1120 		tx_dev = ctlr->dma_map_dev;
1121 	else
1122 		tx_dev = ctlr->dev.parent;
1123 
1124 	if (ctlr->dma_rx)
1125 		rx_dev = ctlr->dma_rx->device->dev;
1126 	else if (ctlr->dma_map_dev)
1127 		rx_dev = ctlr->dma_map_dev;
1128 	else
1129 		rx_dev = ctlr->dev.parent;
1130 
1131 	ret = -ENOMSG;
1132 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1133 		/* The sync is done before each transfer. */
1134 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1135 
1136 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1137 			continue;
1138 
1139 		if (xfer->tx_buf != NULL) {
1140 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1141 						(void *)xfer->tx_buf,
1142 						xfer->len, DMA_TO_DEVICE,
1143 						attrs);
1144 			if (ret != 0)
1145 				return ret;
1146 		}
1147 
1148 		if (xfer->rx_buf != NULL) {
1149 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1150 						xfer->rx_buf, xfer->len,
1151 						DMA_FROM_DEVICE, attrs);
1152 			if (ret != 0) {
1153 				spi_unmap_buf_attrs(ctlr, tx_dev,
1154 						&xfer->tx_sg, DMA_TO_DEVICE,
1155 						attrs);
1156 
1157 				return ret;
1158 			}
1159 		}
1160 	}
1161 	/* No transfer has been mapped, bail out with success */
1162 	if (ret)
1163 		return 0;
1164 
1165 	ctlr->cur_rx_dma_dev = rx_dev;
1166 	ctlr->cur_tx_dma_dev = tx_dev;
1167 	ctlr->cur_msg_mapped = true;
1168 
1169 	return 0;
1170 }
1171 
1172 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1173 {
1174 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1175 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1176 	struct spi_transfer *xfer;
1177 
1178 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1179 		return 0;
1180 
1181 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1182 		/* The sync has already been done after each transfer. */
1183 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1184 
1185 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1186 			continue;
1187 
1188 		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1189 				    DMA_FROM_DEVICE, attrs);
1190 		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1191 				    DMA_TO_DEVICE, attrs);
1192 	}
1193 
1194 	ctlr->cur_msg_mapped = false;
1195 
1196 	return 0;
1197 }
1198 
1199 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1200 				    struct spi_transfer *xfer)
1201 {
1202 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1203 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1204 
1205 	if (!ctlr->cur_msg_mapped)
1206 		return;
1207 
1208 	if (xfer->tx_sg.orig_nents)
1209 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1210 	if (xfer->rx_sg.orig_nents)
1211 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1212 }
1213 
1214 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1215 				 struct spi_transfer *xfer)
1216 {
1217 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1218 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1219 
1220 	if (!ctlr->cur_msg_mapped)
1221 		return;
1222 
1223 	if (xfer->rx_sg.orig_nents)
1224 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1225 	if (xfer->tx_sg.orig_nents)
1226 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1227 }
1228 #else /* !CONFIG_HAS_DMA */
1229 static inline int __spi_map_msg(struct spi_controller *ctlr,
1230 				struct spi_message *msg)
1231 {
1232 	return 0;
1233 }
1234 
1235 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1236 				  struct spi_message *msg)
1237 {
1238 	return 0;
1239 }
1240 
1241 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1242 				    struct spi_transfer *xfer)
1243 {
1244 }
1245 
1246 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1247 				 struct spi_transfer *xfer)
1248 {
1249 }
1250 #endif /* !CONFIG_HAS_DMA */
1251 
1252 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1253 				struct spi_message *msg)
1254 {
1255 	struct spi_transfer *xfer;
1256 
1257 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1258 		/*
1259 		 * Restore the original value of tx_buf or rx_buf if they are
1260 		 * NULL.
1261 		 */
1262 		if (xfer->tx_buf == ctlr->dummy_tx)
1263 			xfer->tx_buf = NULL;
1264 		if (xfer->rx_buf == ctlr->dummy_rx)
1265 			xfer->rx_buf = NULL;
1266 	}
1267 
1268 	return __spi_unmap_msg(ctlr, msg);
1269 }
1270 
1271 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1272 {
1273 	struct spi_transfer *xfer;
1274 	void *tmp;
1275 	unsigned int max_tx, max_rx;
1276 
1277 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1278 		&& !(msg->spi->mode & SPI_3WIRE)) {
1279 		max_tx = 0;
1280 		max_rx = 0;
1281 
1282 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1283 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1284 			    !xfer->tx_buf)
1285 				max_tx = max(xfer->len, max_tx);
1286 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1287 			    !xfer->rx_buf)
1288 				max_rx = max(xfer->len, max_rx);
1289 		}
1290 
1291 		if (max_tx) {
1292 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1293 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1294 			if (!tmp)
1295 				return -ENOMEM;
1296 			ctlr->dummy_tx = tmp;
1297 		}
1298 
1299 		if (max_rx) {
1300 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1301 				       GFP_KERNEL | GFP_DMA);
1302 			if (!tmp)
1303 				return -ENOMEM;
1304 			ctlr->dummy_rx = tmp;
1305 		}
1306 
1307 		if (max_tx || max_rx) {
1308 			list_for_each_entry(xfer, &msg->transfers,
1309 					    transfer_list) {
1310 				if (!xfer->len)
1311 					continue;
1312 				if (!xfer->tx_buf)
1313 					xfer->tx_buf = ctlr->dummy_tx;
1314 				if (!xfer->rx_buf)
1315 					xfer->rx_buf = ctlr->dummy_rx;
1316 			}
1317 		}
1318 	}
1319 
1320 	return __spi_map_msg(ctlr, msg);
1321 }
1322 
1323 static int spi_transfer_wait(struct spi_controller *ctlr,
1324 			     struct spi_message *msg,
1325 			     struct spi_transfer *xfer)
1326 {
1327 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1328 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1329 	u32 speed_hz = xfer->speed_hz;
1330 	unsigned long long ms;
1331 
1332 	if (spi_controller_is_slave(ctlr)) {
1333 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1334 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1335 			return -EINTR;
1336 		}
1337 	} else {
1338 		if (!speed_hz)
1339 			speed_hz = 100000;
1340 
1341 		/*
1342 		 * For each byte we wait for 8 cycles of the SPI clock.
1343 		 * Since speed is defined in Hz and we want milliseconds,
1344 		 * use respective multiplier, but before the division,
1345 		 * otherwise we may get 0 for short transfers.
1346 		 */
1347 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1348 		do_div(ms, speed_hz);
1349 
1350 		/*
1351 		 * Increase it twice and add 200 ms tolerance, use
1352 		 * predefined maximum in case of overflow.
1353 		 */
1354 		ms += ms + 200;
1355 		if (ms > UINT_MAX)
1356 			ms = UINT_MAX;
1357 
1358 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1359 						 msecs_to_jiffies(ms));
1360 
1361 		if (ms == 0) {
1362 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1363 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1364 			dev_err(&msg->spi->dev,
1365 				"SPI transfer timed out\n");
1366 			return -ETIMEDOUT;
1367 		}
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static void _spi_transfer_delay_ns(u32 ns)
1374 {
1375 	if (!ns)
1376 		return;
1377 	if (ns <= NSEC_PER_USEC) {
1378 		ndelay(ns);
1379 	} else {
1380 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1381 
1382 		if (us <= 10)
1383 			udelay(us);
1384 		else
1385 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1386 	}
1387 }
1388 
1389 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1390 {
1391 	u32 delay = _delay->value;
1392 	u32 unit = _delay->unit;
1393 	u32 hz;
1394 
1395 	if (!delay)
1396 		return 0;
1397 
1398 	switch (unit) {
1399 	case SPI_DELAY_UNIT_USECS:
1400 		delay *= NSEC_PER_USEC;
1401 		break;
1402 	case SPI_DELAY_UNIT_NSECS:
1403 		/* Nothing to do here */
1404 		break;
1405 	case SPI_DELAY_UNIT_SCK:
1406 		/* Clock cycles need to be obtained from spi_transfer */
1407 		if (!xfer)
1408 			return -EINVAL;
1409 		/*
1410 		 * If there is unknown effective speed, approximate it
1411 		 * by underestimating with half of the requested Hz.
1412 		 */
1413 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1414 		if (!hz)
1415 			return -EINVAL;
1416 
1417 		/* Convert delay to nanoseconds */
1418 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1419 		break;
1420 	default:
1421 		return -EINVAL;
1422 	}
1423 
1424 	return delay;
1425 }
1426 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1427 
1428 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1429 {
1430 	int delay;
1431 
1432 	might_sleep();
1433 
1434 	if (!_delay)
1435 		return -EINVAL;
1436 
1437 	delay = spi_delay_to_ns(_delay, xfer);
1438 	if (delay < 0)
1439 		return delay;
1440 
1441 	_spi_transfer_delay_ns(delay);
1442 
1443 	return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(spi_delay_exec);
1446 
1447 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1448 					  struct spi_transfer *xfer)
1449 {
1450 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1451 	u32 delay = xfer->cs_change_delay.value;
1452 	u32 unit = xfer->cs_change_delay.unit;
1453 	int ret;
1454 
1455 	/* Return early on "fast" mode - for everything but USECS */
1456 	if (!delay) {
1457 		if (unit == SPI_DELAY_UNIT_USECS)
1458 			_spi_transfer_delay_ns(default_delay_ns);
1459 		return;
1460 	}
1461 
1462 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1463 	if (ret) {
1464 		dev_err_once(&msg->spi->dev,
1465 			     "Use of unsupported delay unit %i, using default of %luus\n",
1466 			     unit, default_delay_ns / NSEC_PER_USEC);
1467 		_spi_transfer_delay_ns(default_delay_ns);
1468 	}
1469 }
1470 
1471 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1472 						  struct spi_transfer *xfer)
1473 {
1474 	_spi_transfer_cs_change_delay(msg, xfer);
1475 }
1476 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1477 
1478 /*
1479  * spi_transfer_one_message - Default implementation of transfer_one_message()
1480  *
1481  * This is a standard implementation of transfer_one_message() for
1482  * drivers which implement a transfer_one() operation.  It provides
1483  * standard handling of delays and chip select management.
1484  */
1485 static int spi_transfer_one_message(struct spi_controller *ctlr,
1486 				    struct spi_message *msg)
1487 {
1488 	struct spi_transfer *xfer;
1489 	bool keep_cs = false;
1490 	int ret = 0;
1491 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1492 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1493 
1494 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1495 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1496 
1497 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1498 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1499 
1500 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1501 		trace_spi_transfer_start(msg, xfer);
1502 
1503 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1504 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1505 
1506 		if (!ctlr->ptp_sts_supported) {
1507 			xfer->ptp_sts_word_pre = 0;
1508 			ptp_read_system_prets(xfer->ptp_sts);
1509 		}
1510 
1511 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1512 			reinit_completion(&ctlr->xfer_completion);
1513 
1514 fallback_pio:
1515 			spi_dma_sync_for_device(ctlr, xfer);
1516 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1517 			if (ret < 0) {
1518 				spi_dma_sync_for_cpu(ctlr, xfer);
1519 
1520 				if (ctlr->cur_msg_mapped &&
1521 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1522 					__spi_unmap_msg(ctlr, msg);
1523 					ctlr->fallback = true;
1524 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1525 					goto fallback_pio;
1526 				}
1527 
1528 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1529 							       errors);
1530 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1531 							       errors);
1532 				dev_err(&msg->spi->dev,
1533 					"SPI transfer failed: %d\n", ret);
1534 				goto out;
1535 			}
1536 
1537 			if (ret > 0) {
1538 				ret = spi_transfer_wait(ctlr, msg, xfer);
1539 				if (ret < 0)
1540 					msg->status = ret;
1541 			}
1542 
1543 			spi_dma_sync_for_cpu(ctlr, xfer);
1544 		} else {
1545 			if (xfer->len)
1546 				dev_err(&msg->spi->dev,
1547 					"Bufferless transfer has length %u\n",
1548 					xfer->len);
1549 		}
1550 
1551 		if (!ctlr->ptp_sts_supported) {
1552 			ptp_read_system_postts(xfer->ptp_sts);
1553 			xfer->ptp_sts_word_post = xfer->len;
1554 		}
1555 
1556 		trace_spi_transfer_stop(msg, xfer);
1557 
1558 		if (msg->status != -EINPROGRESS)
1559 			goto out;
1560 
1561 		spi_transfer_delay_exec(xfer);
1562 
1563 		if (xfer->cs_change) {
1564 			if (list_is_last(&xfer->transfer_list,
1565 					 &msg->transfers)) {
1566 				keep_cs = true;
1567 			} else {
1568 				if (!xfer->cs_off)
1569 					spi_set_cs(msg->spi, false, false);
1570 				_spi_transfer_cs_change_delay(msg, xfer);
1571 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1572 					spi_set_cs(msg->spi, true, false);
1573 			}
1574 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1575 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1576 			spi_set_cs(msg->spi, xfer->cs_off, false);
1577 		}
1578 
1579 		msg->actual_length += xfer->len;
1580 	}
1581 
1582 out:
1583 	if (ret != 0 || !keep_cs)
1584 		spi_set_cs(msg->spi, false, false);
1585 
1586 	if (msg->status == -EINPROGRESS)
1587 		msg->status = ret;
1588 
1589 	if (msg->status && ctlr->handle_err)
1590 		ctlr->handle_err(ctlr, msg);
1591 
1592 	spi_finalize_current_message(ctlr);
1593 
1594 	return ret;
1595 }
1596 
1597 /**
1598  * spi_finalize_current_transfer - report completion of a transfer
1599  * @ctlr: the controller reporting completion
1600  *
1601  * Called by SPI drivers using the core transfer_one_message()
1602  * implementation to notify it that the current interrupt driven
1603  * transfer has finished and the next one may be scheduled.
1604  */
1605 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1606 {
1607 	complete(&ctlr->xfer_completion);
1608 }
1609 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1610 
1611 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1612 {
1613 	if (ctlr->auto_runtime_pm) {
1614 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1615 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1616 	}
1617 }
1618 
1619 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1620 		struct spi_message *msg, bool was_busy)
1621 {
1622 	struct spi_transfer *xfer;
1623 	int ret;
1624 
1625 	if (!was_busy && ctlr->auto_runtime_pm) {
1626 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1627 		if (ret < 0) {
1628 			pm_runtime_put_noidle(ctlr->dev.parent);
1629 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1630 				ret);
1631 
1632 			msg->status = ret;
1633 			spi_finalize_current_message(ctlr);
1634 
1635 			return ret;
1636 		}
1637 	}
1638 
1639 	if (!was_busy)
1640 		trace_spi_controller_busy(ctlr);
1641 
1642 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1643 		ret = ctlr->prepare_transfer_hardware(ctlr);
1644 		if (ret) {
1645 			dev_err(&ctlr->dev,
1646 				"failed to prepare transfer hardware: %d\n",
1647 				ret);
1648 
1649 			if (ctlr->auto_runtime_pm)
1650 				pm_runtime_put(ctlr->dev.parent);
1651 
1652 			msg->status = ret;
1653 			spi_finalize_current_message(ctlr);
1654 
1655 			return ret;
1656 		}
1657 	}
1658 
1659 	trace_spi_message_start(msg);
1660 
1661 	ret = spi_split_transfers_maxsize(ctlr, msg,
1662 					  spi_max_transfer_size(msg->spi),
1663 					  GFP_KERNEL | GFP_DMA);
1664 	if (ret) {
1665 		msg->status = ret;
1666 		spi_finalize_current_message(ctlr);
1667 		return ret;
1668 	}
1669 
1670 	if (ctlr->prepare_message) {
1671 		ret = ctlr->prepare_message(ctlr, msg);
1672 		if (ret) {
1673 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1674 				ret);
1675 			msg->status = ret;
1676 			spi_finalize_current_message(ctlr);
1677 			return ret;
1678 		}
1679 		msg->prepared = true;
1680 	}
1681 
1682 	ret = spi_map_msg(ctlr, msg);
1683 	if (ret) {
1684 		msg->status = ret;
1685 		spi_finalize_current_message(ctlr);
1686 		return ret;
1687 	}
1688 
1689 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1690 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1691 			xfer->ptp_sts_word_pre = 0;
1692 			ptp_read_system_prets(xfer->ptp_sts);
1693 		}
1694 	}
1695 
1696 	/*
1697 	 * Drivers implementation of transfer_one_message() must arrange for
1698 	 * spi_finalize_current_message() to get called. Most drivers will do
1699 	 * this in the calling context, but some don't. For those cases, a
1700 	 * completion is used to guarantee that this function does not return
1701 	 * until spi_finalize_current_message() is done accessing
1702 	 * ctlr->cur_msg.
1703 	 * Use of the following two flags enable to opportunistically skip the
1704 	 * use of the completion since its use involves expensive spin locks.
1705 	 * In case of a race with the context that calls
1706 	 * spi_finalize_current_message() the completion will always be used,
1707 	 * due to strict ordering of these flags using barriers.
1708 	 */
1709 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1710 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1711 	reinit_completion(&ctlr->cur_msg_completion);
1712 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1713 
1714 	ret = ctlr->transfer_one_message(ctlr, msg);
1715 	if (ret) {
1716 		dev_err(&ctlr->dev,
1717 			"failed to transfer one message from queue\n");
1718 		return ret;
1719 	}
1720 
1721 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1722 	smp_mb(); /* See spi_finalize_current_message()... */
1723 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1724 		wait_for_completion(&ctlr->cur_msg_completion);
1725 
1726 	return 0;
1727 }
1728 
1729 /**
1730  * __spi_pump_messages - function which processes SPI message queue
1731  * @ctlr: controller to process queue for
1732  * @in_kthread: true if we are in the context of the message pump thread
1733  *
1734  * This function checks if there is any SPI message in the queue that
1735  * needs processing and if so call out to the driver to initialize hardware
1736  * and transfer each message.
1737  *
1738  * Note that it is called both from the kthread itself and also from
1739  * inside spi_sync(); the queue extraction handling at the top of the
1740  * function should deal with this safely.
1741  */
1742 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1743 {
1744 	struct spi_message *msg;
1745 	bool was_busy = false;
1746 	unsigned long flags;
1747 	int ret;
1748 
1749 	/* Take the I/O mutex */
1750 	mutex_lock(&ctlr->io_mutex);
1751 
1752 	/* Lock queue */
1753 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1754 
1755 	/* Make sure we are not already running a message */
1756 	if (ctlr->cur_msg)
1757 		goto out_unlock;
1758 
1759 	/* Check if the queue is idle */
1760 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1761 		if (!ctlr->busy)
1762 			goto out_unlock;
1763 
1764 		/* Defer any non-atomic teardown to the thread */
1765 		if (!in_kthread) {
1766 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1767 			    !ctlr->unprepare_transfer_hardware) {
1768 				spi_idle_runtime_pm(ctlr);
1769 				ctlr->busy = false;
1770 				ctlr->queue_empty = true;
1771 				trace_spi_controller_idle(ctlr);
1772 			} else {
1773 				kthread_queue_work(ctlr->kworker,
1774 						   &ctlr->pump_messages);
1775 			}
1776 			goto out_unlock;
1777 		}
1778 
1779 		ctlr->busy = false;
1780 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1781 
1782 		kfree(ctlr->dummy_rx);
1783 		ctlr->dummy_rx = NULL;
1784 		kfree(ctlr->dummy_tx);
1785 		ctlr->dummy_tx = NULL;
1786 		if (ctlr->unprepare_transfer_hardware &&
1787 		    ctlr->unprepare_transfer_hardware(ctlr))
1788 			dev_err(&ctlr->dev,
1789 				"failed to unprepare transfer hardware\n");
1790 		spi_idle_runtime_pm(ctlr);
1791 		trace_spi_controller_idle(ctlr);
1792 
1793 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1794 		ctlr->queue_empty = true;
1795 		goto out_unlock;
1796 	}
1797 
1798 	/* Extract head of queue */
1799 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1800 	ctlr->cur_msg = msg;
1801 
1802 	list_del_init(&msg->queue);
1803 	if (ctlr->busy)
1804 		was_busy = true;
1805 	else
1806 		ctlr->busy = true;
1807 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1808 
1809 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1810 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1811 
1812 	ctlr->cur_msg = NULL;
1813 	ctlr->fallback = false;
1814 
1815 	mutex_unlock(&ctlr->io_mutex);
1816 
1817 	/* Prod the scheduler in case transfer_one() was busy waiting */
1818 	if (!ret)
1819 		cond_resched();
1820 	return;
1821 
1822 out_unlock:
1823 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1824 	mutex_unlock(&ctlr->io_mutex);
1825 }
1826 
1827 /**
1828  * spi_pump_messages - kthread work function which processes spi message queue
1829  * @work: pointer to kthread work struct contained in the controller struct
1830  */
1831 static void spi_pump_messages(struct kthread_work *work)
1832 {
1833 	struct spi_controller *ctlr =
1834 		container_of(work, struct spi_controller, pump_messages);
1835 
1836 	__spi_pump_messages(ctlr, true);
1837 }
1838 
1839 /**
1840  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1841  * @ctlr: Pointer to the spi_controller structure of the driver
1842  * @xfer: Pointer to the transfer being timestamped
1843  * @progress: How many words (not bytes) have been transferred so far
1844  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1845  *	      transfer, for less jitter in time measurement. Only compatible
1846  *	      with PIO drivers. If true, must follow up with
1847  *	      spi_take_timestamp_post or otherwise system will crash.
1848  *	      WARNING: for fully predictable results, the CPU frequency must
1849  *	      also be under control (governor).
1850  *
1851  * This is a helper for drivers to collect the beginning of the TX timestamp
1852  * for the requested byte from the SPI transfer. The frequency with which this
1853  * function must be called (once per word, once for the whole transfer, once
1854  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1855  * greater than or equal to the requested byte at the time of the call. The
1856  * timestamp is only taken once, at the first such call. It is assumed that
1857  * the driver advances its @tx buffer pointer monotonically.
1858  */
1859 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1860 			    struct spi_transfer *xfer,
1861 			    size_t progress, bool irqs_off)
1862 {
1863 	if (!xfer->ptp_sts)
1864 		return;
1865 
1866 	if (xfer->timestamped)
1867 		return;
1868 
1869 	if (progress > xfer->ptp_sts_word_pre)
1870 		return;
1871 
1872 	/* Capture the resolution of the timestamp */
1873 	xfer->ptp_sts_word_pre = progress;
1874 
1875 	if (irqs_off) {
1876 		local_irq_save(ctlr->irq_flags);
1877 		preempt_disable();
1878 	}
1879 
1880 	ptp_read_system_prets(xfer->ptp_sts);
1881 }
1882 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1883 
1884 /**
1885  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1886  * @ctlr: Pointer to the spi_controller structure of the driver
1887  * @xfer: Pointer to the transfer being timestamped
1888  * @progress: How many words (not bytes) have been transferred so far
1889  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1890  *
1891  * This is a helper for drivers to collect the end of the TX timestamp for
1892  * the requested byte from the SPI transfer. Can be called with an arbitrary
1893  * frequency: only the first call where @tx exceeds or is equal to the
1894  * requested word will be timestamped.
1895  */
1896 void spi_take_timestamp_post(struct spi_controller *ctlr,
1897 			     struct spi_transfer *xfer,
1898 			     size_t progress, bool irqs_off)
1899 {
1900 	if (!xfer->ptp_sts)
1901 		return;
1902 
1903 	if (xfer->timestamped)
1904 		return;
1905 
1906 	if (progress < xfer->ptp_sts_word_post)
1907 		return;
1908 
1909 	ptp_read_system_postts(xfer->ptp_sts);
1910 
1911 	if (irqs_off) {
1912 		local_irq_restore(ctlr->irq_flags);
1913 		preempt_enable();
1914 	}
1915 
1916 	/* Capture the resolution of the timestamp */
1917 	xfer->ptp_sts_word_post = progress;
1918 
1919 	xfer->timestamped = 1;
1920 }
1921 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1922 
1923 /**
1924  * spi_set_thread_rt - set the controller to pump at realtime priority
1925  * @ctlr: controller to boost priority of
1926  *
1927  * This can be called because the controller requested realtime priority
1928  * (by setting the ->rt value before calling spi_register_controller()) or
1929  * because a device on the bus said that its transfers needed realtime
1930  * priority.
1931  *
1932  * NOTE: at the moment if any device on a bus says it needs realtime then
1933  * the thread will be at realtime priority for all transfers on that
1934  * controller.  If this eventually becomes a problem we may see if we can
1935  * find a way to boost the priority only temporarily during relevant
1936  * transfers.
1937  */
1938 static void spi_set_thread_rt(struct spi_controller *ctlr)
1939 {
1940 	dev_info(&ctlr->dev,
1941 		"will run message pump with realtime priority\n");
1942 	sched_set_fifo(ctlr->kworker->task);
1943 }
1944 
1945 static int spi_init_queue(struct spi_controller *ctlr)
1946 {
1947 	ctlr->running = false;
1948 	ctlr->busy = false;
1949 	ctlr->queue_empty = true;
1950 
1951 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1952 	if (IS_ERR(ctlr->kworker)) {
1953 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1954 		return PTR_ERR(ctlr->kworker);
1955 	}
1956 
1957 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1958 
1959 	/*
1960 	 * Controller config will indicate if this controller should run the
1961 	 * message pump with high (realtime) priority to reduce the transfer
1962 	 * latency on the bus by minimising the delay between a transfer
1963 	 * request and the scheduling of the message pump thread. Without this
1964 	 * setting the message pump thread will remain at default priority.
1965 	 */
1966 	if (ctlr->rt)
1967 		spi_set_thread_rt(ctlr);
1968 
1969 	return 0;
1970 }
1971 
1972 /**
1973  * spi_get_next_queued_message() - called by driver to check for queued
1974  * messages
1975  * @ctlr: the controller to check for queued messages
1976  *
1977  * If there are more messages in the queue, the next message is returned from
1978  * this call.
1979  *
1980  * Return: the next message in the queue, else NULL if the queue is empty.
1981  */
1982 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1983 {
1984 	struct spi_message *next;
1985 	unsigned long flags;
1986 
1987 	/* Get a pointer to the next message, if any */
1988 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1989 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1990 					queue);
1991 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1992 
1993 	return next;
1994 }
1995 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1996 
1997 /**
1998  * spi_finalize_current_message() - the current message is complete
1999  * @ctlr: the controller to return the message to
2000  *
2001  * Called by the driver to notify the core that the message in the front of the
2002  * queue is complete and can be removed from the queue.
2003  */
2004 void spi_finalize_current_message(struct spi_controller *ctlr)
2005 {
2006 	struct spi_transfer *xfer;
2007 	struct spi_message *mesg;
2008 	int ret;
2009 
2010 	mesg = ctlr->cur_msg;
2011 
2012 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2013 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2014 			ptp_read_system_postts(xfer->ptp_sts);
2015 			xfer->ptp_sts_word_post = xfer->len;
2016 		}
2017 	}
2018 
2019 	if (unlikely(ctlr->ptp_sts_supported))
2020 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2021 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2022 
2023 	spi_unmap_msg(ctlr, mesg);
2024 
2025 	/*
2026 	 * In the prepare_messages callback the SPI bus has the opportunity
2027 	 * to split a transfer to smaller chunks.
2028 	 *
2029 	 * Release the split transfers here since spi_map_msg() is done on
2030 	 * the split transfers.
2031 	 */
2032 	spi_res_release(ctlr, mesg);
2033 
2034 	if (mesg->prepared && ctlr->unprepare_message) {
2035 		ret = ctlr->unprepare_message(ctlr, mesg);
2036 		if (ret) {
2037 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2038 				ret);
2039 		}
2040 	}
2041 
2042 	mesg->prepared = false;
2043 
2044 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2045 	smp_mb(); /* See __spi_pump_transfer_message()... */
2046 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2047 		complete(&ctlr->cur_msg_completion);
2048 
2049 	trace_spi_message_done(mesg);
2050 
2051 	mesg->state = NULL;
2052 	if (mesg->complete)
2053 		mesg->complete(mesg->context);
2054 }
2055 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2056 
2057 static int spi_start_queue(struct spi_controller *ctlr)
2058 {
2059 	unsigned long flags;
2060 
2061 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2062 
2063 	if (ctlr->running || ctlr->busy) {
2064 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2065 		return -EBUSY;
2066 	}
2067 
2068 	ctlr->running = true;
2069 	ctlr->cur_msg = NULL;
2070 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2071 
2072 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2073 
2074 	return 0;
2075 }
2076 
2077 static int spi_stop_queue(struct spi_controller *ctlr)
2078 {
2079 	unsigned long flags;
2080 	unsigned limit = 500;
2081 	int ret = 0;
2082 
2083 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2084 
2085 	/*
2086 	 * This is a bit lame, but is optimized for the common execution path.
2087 	 * A wait_queue on the ctlr->busy could be used, but then the common
2088 	 * execution path (pump_messages) would be required to call wake_up or
2089 	 * friends on every SPI message. Do this instead.
2090 	 */
2091 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2092 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2093 		usleep_range(10000, 11000);
2094 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2095 	}
2096 
2097 	if (!list_empty(&ctlr->queue) || ctlr->busy)
2098 		ret = -EBUSY;
2099 	else
2100 		ctlr->running = false;
2101 
2102 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2103 
2104 	if (ret) {
2105 		dev_warn(&ctlr->dev, "could not stop message queue\n");
2106 		return ret;
2107 	}
2108 	return ret;
2109 }
2110 
2111 static int spi_destroy_queue(struct spi_controller *ctlr)
2112 {
2113 	int ret;
2114 
2115 	ret = spi_stop_queue(ctlr);
2116 
2117 	/*
2118 	 * kthread_flush_worker will block until all work is done.
2119 	 * If the reason that stop_queue timed out is that the work will never
2120 	 * finish, then it does no good to call flush/stop thread, so
2121 	 * return anyway.
2122 	 */
2123 	if (ret) {
2124 		dev_err(&ctlr->dev, "problem destroying queue\n");
2125 		return ret;
2126 	}
2127 
2128 	kthread_destroy_worker(ctlr->kworker);
2129 
2130 	return 0;
2131 }
2132 
2133 static int __spi_queued_transfer(struct spi_device *spi,
2134 				 struct spi_message *msg,
2135 				 bool need_pump)
2136 {
2137 	struct spi_controller *ctlr = spi->controller;
2138 	unsigned long flags;
2139 
2140 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2141 
2142 	if (!ctlr->running) {
2143 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2144 		return -ESHUTDOWN;
2145 	}
2146 	msg->actual_length = 0;
2147 	msg->status = -EINPROGRESS;
2148 
2149 	list_add_tail(&msg->queue, &ctlr->queue);
2150 	ctlr->queue_empty = false;
2151 	if (!ctlr->busy && need_pump)
2152 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2153 
2154 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2155 	return 0;
2156 }
2157 
2158 /**
2159  * spi_queued_transfer - transfer function for queued transfers
2160  * @spi: SPI device which is requesting transfer
2161  * @msg: SPI message which is to handled is queued to driver queue
2162  *
2163  * Return: zero on success, else a negative error code.
2164  */
2165 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2166 {
2167 	return __spi_queued_transfer(spi, msg, true);
2168 }
2169 
2170 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2171 {
2172 	int ret;
2173 
2174 	ctlr->transfer = spi_queued_transfer;
2175 	if (!ctlr->transfer_one_message)
2176 		ctlr->transfer_one_message = spi_transfer_one_message;
2177 
2178 	/* Initialize and start queue */
2179 	ret = spi_init_queue(ctlr);
2180 	if (ret) {
2181 		dev_err(&ctlr->dev, "problem initializing queue\n");
2182 		goto err_init_queue;
2183 	}
2184 	ctlr->queued = true;
2185 	ret = spi_start_queue(ctlr);
2186 	if (ret) {
2187 		dev_err(&ctlr->dev, "problem starting queue\n");
2188 		goto err_start_queue;
2189 	}
2190 
2191 	return 0;
2192 
2193 err_start_queue:
2194 	spi_destroy_queue(ctlr);
2195 err_init_queue:
2196 	return ret;
2197 }
2198 
2199 /**
2200  * spi_flush_queue - Send all pending messages in the queue from the callers'
2201  *		     context
2202  * @ctlr: controller to process queue for
2203  *
2204  * This should be used when one wants to ensure all pending messages have been
2205  * sent before doing something. Is used by the spi-mem code to make sure SPI
2206  * memory operations do not preempt regular SPI transfers that have been queued
2207  * before the spi-mem operation.
2208  */
2209 void spi_flush_queue(struct spi_controller *ctlr)
2210 {
2211 	if (ctlr->transfer == spi_queued_transfer)
2212 		__spi_pump_messages(ctlr, false);
2213 }
2214 
2215 /*-------------------------------------------------------------------------*/
2216 
2217 #if defined(CONFIG_OF)
2218 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2219 				     struct spi_delay *delay, const char *prop)
2220 {
2221 	u32 value;
2222 
2223 	if (!of_property_read_u32(nc, prop, &value)) {
2224 		if (value > U16_MAX) {
2225 			delay->value = DIV_ROUND_UP(value, 1000);
2226 			delay->unit = SPI_DELAY_UNIT_USECS;
2227 		} else {
2228 			delay->value = value;
2229 			delay->unit = SPI_DELAY_UNIT_NSECS;
2230 		}
2231 	}
2232 }
2233 
2234 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2235 			   struct device_node *nc)
2236 {
2237 	u32 value;
2238 	int rc;
2239 
2240 	/* Mode (clock phase/polarity/etc.) */
2241 	if (of_property_read_bool(nc, "spi-cpha"))
2242 		spi->mode |= SPI_CPHA;
2243 	if (of_property_read_bool(nc, "spi-cpol"))
2244 		spi->mode |= SPI_CPOL;
2245 	if (of_property_read_bool(nc, "spi-3wire"))
2246 		spi->mode |= SPI_3WIRE;
2247 	if (of_property_read_bool(nc, "spi-lsb-first"))
2248 		spi->mode |= SPI_LSB_FIRST;
2249 	if (of_property_read_bool(nc, "spi-cs-high"))
2250 		spi->mode |= SPI_CS_HIGH;
2251 
2252 	/* Device DUAL/QUAD mode */
2253 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2254 		switch (value) {
2255 		case 0:
2256 			spi->mode |= SPI_NO_TX;
2257 			break;
2258 		case 1:
2259 			break;
2260 		case 2:
2261 			spi->mode |= SPI_TX_DUAL;
2262 			break;
2263 		case 4:
2264 			spi->mode |= SPI_TX_QUAD;
2265 			break;
2266 		case 8:
2267 			spi->mode |= SPI_TX_OCTAL;
2268 			break;
2269 		default:
2270 			dev_warn(&ctlr->dev,
2271 				"spi-tx-bus-width %d not supported\n",
2272 				value);
2273 			break;
2274 		}
2275 	}
2276 
2277 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2278 		switch (value) {
2279 		case 0:
2280 			spi->mode |= SPI_NO_RX;
2281 			break;
2282 		case 1:
2283 			break;
2284 		case 2:
2285 			spi->mode |= SPI_RX_DUAL;
2286 			break;
2287 		case 4:
2288 			spi->mode |= SPI_RX_QUAD;
2289 			break;
2290 		case 8:
2291 			spi->mode |= SPI_RX_OCTAL;
2292 			break;
2293 		default:
2294 			dev_warn(&ctlr->dev,
2295 				"spi-rx-bus-width %d not supported\n",
2296 				value);
2297 			break;
2298 		}
2299 	}
2300 
2301 	if (spi_controller_is_slave(ctlr)) {
2302 		if (!of_node_name_eq(nc, "slave")) {
2303 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2304 				nc);
2305 			return -EINVAL;
2306 		}
2307 		return 0;
2308 	}
2309 
2310 	/* Device address */
2311 	rc = of_property_read_u32(nc, "reg", &value);
2312 	if (rc) {
2313 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2314 			nc, rc);
2315 		return rc;
2316 	}
2317 	spi_set_chipselect(spi, 0, value);
2318 
2319 	/* Device speed */
2320 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2321 		spi->max_speed_hz = value;
2322 
2323 	/* Device CS delays */
2324 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2325 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2326 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2327 
2328 	return 0;
2329 }
2330 
2331 static struct spi_device *
2332 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2333 {
2334 	struct spi_device *spi;
2335 	int rc;
2336 
2337 	/* Alloc an spi_device */
2338 	spi = spi_alloc_device(ctlr);
2339 	if (!spi) {
2340 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2341 		rc = -ENOMEM;
2342 		goto err_out;
2343 	}
2344 
2345 	/* Select device driver */
2346 	rc = of_alias_from_compatible(nc, spi->modalias,
2347 				      sizeof(spi->modalias));
2348 	if (rc < 0) {
2349 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2350 		goto err_out;
2351 	}
2352 
2353 	rc = of_spi_parse_dt(ctlr, spi, nc);
2354 	if (rc)
2355 		goto err_out;
2356 
2357 	/* Store a pointer to the node in the device structure */
2358 	of_node_get(nc);
2359 
2360 	device_set_node(&spi->dev, of_fwnode_handle(nc));
2361 
2362 	/* Register the new device */
2363 	rc = spi_add_device(spi);
2364 	if (rc) {
2365 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2366 		goto err_of_node_put;
2367 	}
2368 
2369 	return spi;
2370 
2371 err_of_node_put:
2372 	of_node_put(nc);
2373 err_out:
2374 	spi_dev_put(spi);
2375 	return ERR_PTR(rc);
2376 }
2377 
2378 /**
2379  * of_register_spi_devices() - Register child devices onto the SPI bus
2380  * @ctlr:	Pointer to spi_controller device
2381  *
2382  * Registers an spi_device for each child node of controller node which
2383  * represents a valid SPI slave.
2384  */
2385 static void of_register_spi_devices(struct spi_controller *ctlr)
2386 {
2387 	struct spi_device *spi;
2388 	struct device_node *nc;
2389 
2390 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2391 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2392 			continue;
2393 		spi = of_register_spi_device(ctlr, nc);
2394 		if (IS_ERR(spi)) {
2395 			dev_warn(&ctlr->dev,
2396 				 "Failed to create SPI device for %pOF\n", nc);
2397 			of_node_clear_flag(nc, OF_POPULATED);
2398 		}
2399 	}
2400 }
2401 #else
2402 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2403 #endif
2404 
2405 /**
2406  * spi_new_ancillary_device() - Register ancillary SPI device
2407  * @spi:         Pointer to the main SPI device registering the ancillary device
2408  * @chip_select: Chip Select of the ancillary device
2409  *
2410  * Register an ancillary SPI device; for example some chips have a chip-select
2411  * for normal device usage and another one for setup/firmware upload.
2412  *
2413  * This may only be called from main SPI device's probe routine.
2414  *
2415  * Return: 0 on success; negative errno on failure
2416  */
2417 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2418 					     u8 chip_select)
2419 {
2420 	struct spi_controller *ctlr = spi->controller;
2421 	struct spi_device *ancillary;
2422 	int rc = 0;
2423 
2424 	/* Alloc an spi_device */
2425 	ancillary = spi_alloc_device(ctlr);
2426 	if (!ancillary) {
2427 		rc = -ENOMEM;
2428 		goto err_out;
2429 	}
2430 
2431 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2432 
2433 	/* Use provided chip-select for ancillary device */
2434 	spi_set_chipselect(ancillary, 0, chip_select);
2435 
2436 	/* Take over SPI mode/speed from SPI main device */
2437 	ancillary->max_speed_hz = spi->max_speed_hz;
2438 	ancillary->mode = spi->mode;
2439 
2440 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2441 
2442 	/* Register the new device */
2443 	rc = __spi_add_device(ancillary);
2444 	if (rc) {
2445 		dev_err(&spi->dev, "failed to register ancillary device\n");
2446 		goto err_out;
2447 	}
2448 
2449 	return ancillary;
2450 
2451 err_out:
2452 	spi_dev_put(ancillary);
2453 	return ERR_PTR(rc);
2454 }
2455 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2456 
2457 #ifdef CONFIG_ACPI
2458 struct acpi_spi_lookup {
2459 	struct spi_controller 	*ctlr;
2460 	u32			max_speed_hz;
2461 	u32			mode;
2462 	int			irq;
2463 	u8			bits_per_word;
2464 	u8			chip_select;
2465 	int			n;
2466 	int			index;
2467 };
2468 
2469 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2470 {
2471 	struct acpi_resource_spi_serialbus *sb;
2472 	int *count = data;
2473 
2474 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2475 		return 1;
2476 
2477 	sb = &ares->data.spi_serial_bus;
2478 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2479 		return 1;
2480 
2481 	*count = *count + 1;
2482 
2483 	return 1;
2484 }
2485 
2486 /**
2487  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2488  * @adev:	ACPI device
2489  *
2490  * Return: the number of SpiSerialBus resources in the ACPI-device's
2491  * resource-list; or a negative error code.
2492  */
2493 int acpi_spi_count_resources(struct acpi_device *adev)
2494 {
2495 	LIST_HEAD(r);
2496 	int count = 0;
2497 	int ret;
2498 
2499 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2500 	if (ret < 0)
2501 		return ret;
2502 
2503 	acpi_dev_free_resource_list(&r);
2504 
2505 	return count;
2506 }
2507 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2508 
2509 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2510 					    struct acpi_spi_lookup *lookup)
2511 {
2512 	const union acpi_object *obj;
2513 
2514 	if (!x86_apple_machine)
2515 		return;
2516 
2517 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2518 	    && obj->buffer.length >= 4)
2519 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2520 
2521 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2522 	    && obj->buffer.length == 8)
2523 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2524 
2525 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2526 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2527 		lookup->mode |= SPI_LSB_FIRST;
2528 
2529 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2530 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2531 		lookup->mode |= SPI_CPOL;
2532 
2533 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2534 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2535 		lookup->mode |= SPI_CPHA;
2536 }
2537 
2538 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2539 
2540 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2541 {
2542 	struct acpi_spi_lookup *lookup = data;
2543 	struct spi_controller *ctlr = lookup->ctlr;
2544 
2545 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2546 		struct acpi_resource_spi_serialbus *sb;
2547 		acpi_handle parent_handle;
2548 		acpi_status status;
2549 
2550 		sb = &ares->data.spi_serial_bus;
2551 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2552 
2553 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2554 				return 1;
2555 
2556 			status = acpi_get_handle(NULL,
2557 						 sb->resource_source.string_ptr,
2558 						 &parent_handle);
2559 
2560 			if (ACPI_FAILURE(status))
2561 				return -ENODEV;
2562 
2563 			if (ctlr) {
2564 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2565 					return -ENODEV;
2566 			} else {
2567 				struct acpi_device *adev;
2568 
2569 				adev = acpi_fetch_acpi_dev(parent_handle);
2570 				if (!adev)
2571 					return -ENODEV;
2572 
2573 				ctlr = acpi_spi_find_controller_by_adev(adev);
2574 				if (!ctlr)
2575 					return -EPROBE_DEFER;
2576 
2577 				lookup->ctlr = ctlr;
2578 			}
2579 
2580 			/*
2581 			 * ACPI DeviceSelection numbering is handled by the
2582 			 * host controller driver in Windows and can vary
2583 			 * from driver to driver. In Linux we always expect
2584 			 * 0 .. max - 1 so we need to ask the driver to
2585 			 * translate between the two schemes.
2586 			 */
2587 			if (ctlr->fw_translate_cs) {
2588 				int cs = ctlr->fw_translate_cs(ctlr,
2589 						sb->device_selection);
2590 				if (cs < 0)
2591 					return cs;
2592 				lookup->chip_select = cs;
2593 			} else {
2594 				lookup->chip_select = sb->device_selection;
2595 			}
2596 
2597 			lookup->max_speed_hz = sb->connection_speed;
2598 			lookup->bits_per_word = sb->data_bit_length;
2599 
2600 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2601 				lookup->mode |= SPI_CPHA;
2602 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2603 				lookup->mode |= SPI_CPOL;
2604 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2605 				lookup->mode |= SPI_CS_HIGH;
2606 		}
2607 	} else if (lookup->irq < 0) {
2608 		struct resource r;
2609 
2610 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2611 			lookup->irq = r.start;
2612 	}
2613 
2614 	/* Always tell the ACPI core to skip this resource */
2615 	return 1;
2616 }
2617 
2618 /**
2619  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2620  * @ctlr: controller to which the spi device belongs
2621  * @adev: ACPI Device for the spi device
2622  * @index: Index of the spi resource inside the ACPI Node
2623  *
2624  * This should be used to allocate a new SPI device from and ACPI Device node.
2625  * The caller is responsible for calling spi_add_device to register the SPI device.
2626  *
2627  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2628  * using the resource.
2629  * If index is set to -1, index is not used.
2630  * Note: If index is -1, ctlr must be set.
2631  *
2632  * Return: a pointer to the new device, or ERR_PTR on error.
2633  */
2634 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2635 					 struct acpi_device *adev,
2636 					 int index)
2637 {
2638 	acpi_handle parent_handle = NULL;
2639 	struct list_head resource_list;
2640 	struct acpi_spi_lookup lookup = {};
2641 	struct spi_device *spi;
2642 	int ret;
2643 
2644 	if (!ctlr && index == -1)
2645 		return ERR_PTR(-EINVAL);
2646 
2647 	lookup.ctlr		= ctlr;
2648 	lookup.irq		= -1;
2649 	lookup.index		= index;
2650 	lookup.n		= 0;
2651 
2652 	INIT_LIST_HEAD(&resource_list);
2653 	ret = acpi_dev_get_resources(adev, &resource_list,
2654 				     acpi_spi_add_resource, &lookup);
2655 	acpi_dev_free_resource_list(&resource_list);
2656 
2657 	if (ret < 0)
2658 		/* Found SPI in _CRS but it points to another controller */
2659 		return ERR_PTR(ret);
2660 
2661 	if (!lookup.max_speed_hz &&
2662 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2663 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2664 		/* Apple does not use _CRS but nested devices for SPI slaves */
2665 		acpi_spi_parse_apple_properties(adev, &lookup);
2666 	}
2667 
2668 	if (!lookup.max_speed_hz)
2669 		return ERR_PTR(-ENODEV);
2670 
2671 	spi = spi_alloc_device(lookup.ctlr);
2672 	if (!spi) {
2673 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2674 			dev_name(&adev->dev));
2675 		return ERR_PTR(-ENOMEM);
2676 	}
2677 
2678 	ACPI_COMPANION_SET(&spi->dev, adev);
2679 	spi->max_speed_hz	= lookup.max_speed_hz;
2680 	spi->mode		|= lookup.mode;
2681 	spi->irq		= lookup.irq;
2682 	spi->bits_per_word	= lookup.bits_per_word;
2683 	spi_set_chipselect(spi, 0, lookup.chip_select);
2684 
2685 	return spi;
2686 }
2687 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2688 
2689 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2690 					    struct acpi_device *adev)
2691 {
2692 	struct spi_device *spi;
2693 
2694 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2695 	    acpi_device_enumerated(adev))
2696 		return AE_OK;
2697 
2698 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2699 	if (IS_ERR(spi)) {
2700 		if (PTR_ERR(spi) == -ENOMEM)
2701 			return AE_NO_MEMORY;
2702 		else
2703 			return AE_OK;
2704 	}
2705 
2706 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2707 			  sizeof(spi->modalias));
2708 
2709 	if (spi->irq < 0)
2710 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2711 
2712 	acpi_device_set_enumerated(adev);
2713 
2714 	adev->power.flags.ignore_parent = true;
2715 	if (spi_add_device(spi)) {
2716 		adev->power.flags.ignore_parent = false;
2717 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2718 			dev_name(&adev->dev));
2719 		spi_dev_put(spi);
2720 	}
2721 
2722 	return AE_OK;
2723 }
2724 
2725 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2726 				       void *data, void **return_value)
2727 {
2728 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2729 	struct spi_controller *ctlr = data;
2730 
2731 	if (!adev)
2732 		return AE_OK;
2733 
2734 	return acpi_register_spi_device(ctlr, adev);
2735 }
2736 
2737 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2738 
2739 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2740 {
2741 	acpi_status status;
2742 	acpi_handle handle;
2743 
2744 	handle = ACPI_HANDLE(ctlr->dev.parent);
2745 	if (!handle)
2746 		return;
2747 
2748 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2749 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2750 				     acpi_spi_add_device, NULL, ctlr, NULL);
2751 	if (ACPI_FAILURE(status))
2752 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2753 }
2754 #else
2755 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2756 #endif /* CONFIG_ACPI */
2757 
2758 static void spi_controller_release(struct device *dev)
2759 {
2760 	struct spi_controller *ctlr;
2761 
2762 	ctlr = container_of(dev, struct spi_controller, dev);
2763 	kfree(ctlr);
2764 }
2765 
2766 static struct class spi_master_class = {
2767 	.name		= "spi_master",
2768 	.dev_release	= spi_controller_release,
2769 	.dev_groups	= spi_master_groups,
2770 };
2771 
2772 #ifdef CONFIG_SPI_SLAVE
2773 /**
2774  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2775  *		     controller
2776  * @spi: device used for the current transfer
2777  */
2778 int spi_slave_abort(struct spi_device *spi)
2779 {
2780 	struct spi_controller *ctlr = spi->controller;
2781 
2782 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2783 		return ctlr->slave_abort(ctlr);
2784 
2785 	return -ENOTSUPP;
2786 }
2787 EXPORT_SYMBOL_GPL(spi_slave_abort);
2788 
2789 int spi_target_abort(struct spi_device *spi)
2790 {
2791 	struct spi_controller *ctlr = spi->controller;
2792 
2793 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2794 		return ctlr->target_abort(ctlr);
2795 
2796 	return -ENOTSUPP;
2797 }
2798 EXPORT_SYMBOL_GPL(spi_target_abort);
2799 
2800 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2801 			  char *buf)
2802 {
2803 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2804 						   dev);
2805 	struct device *child;
2806 
2807 	child = device_find_any_child(&ctlr->dev);
2808 	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2809 }
2810 
2811 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2812 			   const char *buf, size_t count)
2813 {
2814 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2815 						   dev);
2816 	struct spi_device *spi;
2817 	struct device *child;
2818 	char name[32];
2819 	int rc;
2820 
2821 	rc = sscanf(buf, "%31s", name);
2822 	if (rc != 1 || !name[0])
2823 		return -EINVAL;
2824 
2825 	child = device_find_any_child(&ctlr->dev);
2826 	if (child) {
2827 		/* Remove registered slave */
2828 		device_unregister(child);
2829 		put_device(child);
2830 	}
2831 
2832 	if (strcmp(name, "(null)")) {
2833 		/* Register new slave */
2834 		spi = spi_alloc_device(ctlr);
2835 		if (!spi)
2836 			return -ENOMEM;
2837 
2838 		strscpy(spi->modalias, name, sizeof(spi->modalias));
2839 
2840 		rc = spi_add_device(spi);
2841 		if (rc) {
2842 			spi_dev_put(spi);
2843 			return rc;
2844 		}
2845 	}
2846 
2847 	return count;
2848 }
2849 
2850 static DEVICE_ATTR_RW(slave);
2851 
2852 static struct attribute *spi_slave_attrs[] = {
2853 	&dev_attr_slave.attr,
2854 	NULL,
2855 };
2856 
2857 static const struct attribute_group spi_slave_group = {
2858 	.attrs = spi_slave_attrs,
2859 };
2860 
2861 static const struct attribute_group *spi_slave_groups[] = {
2862 	&spi_controller_statistics_group,
2863 	&spi_slave_group,
2864 	NULL,
2865 };
2866 
2867 static struct class spi_slave_class = {
2868 	.name		= "spi_slave",
2869 	.dev_release	= spi_controller_release,
2870 	.dev_groups	= spi_slave_groups,
2871 };
2872 #else
2873 extern struct class spi_slave_class;	/* dummy */
2874 #endif
2875 
2876 /**
2877  * __spi_alloc_controller - allocate an SPI master or slave controller
2878  * @dev: the controller, possibly using the platform_bus
2879  * @size: how much zeroed driver-private data to allocate; the pointer to this
2880  *	memory is in the driver_data field of the returned device, accessible
2881  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2882  *	drivers granting DMA access to portions of their private data need to
2883  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2884  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2885  *	slave (true) controller
2886  * Context: can sleep
2887  *
2888  * This call is used only by SPI controller drivers, which are the
2889  * only ones directly touching chip registers.  It's how they allocate
2890  * an spi_controller structure, prior to calling spi_register_controller().
2891  *
2892  * This must be called from context that can sleep.
2893  *
2894  * The caller is responsible for assigning the bus number and initializing the
2895  * controller's methods before calling spi_register_controller(); and (after
2896  * errors adding the device) calling spi_controller_put() to prevent a memory
2897  * leak.
2898  *
2899  * Return: the SPI controller structure on success, else NULL.
2900  */
2901 struct spi_controller *__spi_alloc_controller(struct device *dev,
2902 					      unsigned int size, bool slave)
2903 {
2904 	struct spi_controller	*ctlr;
2905 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2906 
2907 	if (!dev)
2908 		return NULL;
2909 
2910 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2911 	if (!ctlr)
2912 		return NULL;
2913 
2914 	device_initialize(&ctlr->dev);
2915 	INIT_LIST_HEAD(&ctlr->queue);
2916 	spin_lock_init(&ctlr->queue_lock);
2917 	spin_lock_init(&ctlr->bus_lock_spinlock);
2918 	mutex_init(&ctlr->bus_lock_mutex);
2919 	mutex_init(&ctlr->io_mutex);
2920 	mutex_init(&ctlr->add_lock);
2921 	ctlr->bus_num = -1;
2922 	ctlr->num_chipselect = 1;
2923 	ctlr->slave = slave;
2924 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2925 		ctlr->dev.class = &spi_slave_class;
2926 	else
2927 		ctlr->dev.class = &spi_master_class;
2928 	ctlr->dev.parent = dev;
2929 	pm_suspend_ignore_children(&ctlr->dev, true);
2930 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2931 
2932 	return ctlr;
2933 }
2934 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2935 
2936 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2937 {
2938 	spi_controller_put(*(struct spi_controller **)ctlr);
2939 }
2940 
2941 /**
2942  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2943  * @dev: physical device of SPI controller
2944  * @size: how much zeroed driver-private data to allocate
2945  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2946  * Context: can sleep
2947  *
2948  * Allocate an SPI controller and automatically release a reference on it
2949  * when @dev is unbound from its driver.  Drivers are thus relieved from
2950  * having to call spi_controller_put().
2951  *
2952  * The arguments to this function are identical to __spi_alloc_controller().
2953  *
2954  * Return: the SPI controller structure on success, else NULL.
2955  */
2956 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2957 						   unsigned int size,
2958 						   bool slave)
2959 {
2960 	struct spi_controller **ptr, *ctlr;
2961 
2962 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2963 			   GFP_KERNEL);
2964 	if (!ptr)
2965 		return NULL;
2966 
2967 	ctlr = __spi_alloc_controller(dev, size, slave);
2968 	if (ctlr) {
2969 		ctlr->devm_allocated = true;
2970 		*ptr = ctlr;
2971 		devres_add(dev, ptr);
2972 	} else {
2973 		devres_free(ptr);
2974 	}
2975 
2976 	return ctlr;
2977 }
2978 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2979 
2980 /**
2981  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2982  * @ctlr: The SPI master to grab GPIO descriptors for
2983  */
2984 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2985 {
2986 	int nb, i;
2987 	struct gpio_desc **cs;
2988 	struct device *dev = &ctlr->dev;
2989 	unsigned long native_cs_mask = 0;
2990 	unsigned int num_cs_gpios = 0;
2991 
2992 	nb = gpiod_count(dev, "cs");
2993 	if (nb < 0) {
2994 		/* No GPIOs at all is fine, else return the error */
2995 		if (nb == -ENOENT)
2996 			return 0;
2997 		return nb;
2998 	}
2999 
3000 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3001 
3002 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3003 			  GFP_KERNEL);
3004 	if (!cs)
3005 		return -ENOMEM;
3006 	ctlr->cs_gpiods = cs;
3007 
3008 	for (i = 0; i < nb; i++) {
3009 		/*
3010 		 * Most chipselects are active low, the inverted
3011 		 * semantics are handled by special quirks in gpiolib,
3012 		 * so initializing them GPIOD_OUT_LOW here means
3013 		 * "unasserted", in most cases this will drive the physical
3014 		 * line high.
3015 		 */
3016 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3017 						      GPIOD_OUT_LOW);
3018 		if (IS_ERR(cs[i]))
3019 			return PTR_ERR(cs[i]);
3020 
3021 		if (cs[i]) {
3022 			/*
3023 			 * If we find a CS GPIO, name it after the device and
3024 			 * chip select line.
3025 			 */
3026 			char *gpioname;
3027 
3028 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3029 						  dev_name(dev), i);
3030 			if (!gpioname)
3031 				return -ENOMEM;
3032 			gpiod_set_consumer_name(cs[i], gpioname);
3033 			num_cs_gpios++;
3034 			continue;
3035 		}
3036 
3037 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3038 			dev_err(dev, "Invalid native chip select %d\n", i);
3039 			return -EINVAL;
3040 		}
3041 		native_cs_mask |= BIT(i);
3042 	}
3043 
3044 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3045 
3046 	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3047 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3048 		dev_err(dev, "No unused native chip select available\n");
3049 		return -EINVAL;
3050 	}
3051 
3052 	return 0;
3053 }
3054 
3055 static int spi_controller_check_ops(struct spi_controller *ctlr)
3056 {
3057 	/*
3058 	 * The controller may implement only the high-level SPI-memory like
3059 	 * operations if it does not support regular SPI transfers, and this is
3060 	 * valid use case.
3061 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3062 	 * one of the ->transfer_xxx() method be implemented.
3063 	 */
3064 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3065 		if (!ctlr->transfer && !ctlr->transfer_one &&
3066 		   !ctlr->transfer_one_message) {
3067 			return -EINVAL;
3068 		}
3069 	}
3070 
3071 	return 0;
3072 }
3073 
3074 /* Allocate dynamic bus number using Linux idr */
3075 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3076 {
3077 	int id;
3078 
3079 	mutex_lock(&board_lock);
3080 	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3081 	mutex_unlock(&board_lock);
3082 	if (WARN(id < 0, "couldn't get idr"))
3083 		return id == -ENOSPC ? -EBUSY : id;
3084 	ctlr->bus_num = id;
3085 	return 0;
3086 }
3087 
3088 /**
3089  * spi_register_controller - register SPI master or slave controller
3090  * @ctlr: initialized master, originally from spi_alloc_master() or
3091  *	spi_alloc_slave()
3092  * Context: can sleep
3093  *
3094  * SPI controllers connect to their drivers using some non-SPI bus,
3095  * such as the platform bus.  The final stage of probe() in that code
3096  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3097  *
3098  * SPI controllers use board specific (often SOC specific) bus numbers,
3099  * and board-specific addressing for SPI devices combines those numbers
3100  * with chip select numbers.  Since SPI does not directly support dynamic
3101  * device identification, boards need configuration tables telling which
3102  * chip is at which address.
3103  *
3104  * This must be called from context that can sleep.  It returns zero on
3105  * success, else a negative error code (dropping the controller's refcount).
3106  * After a successful return, the caller is responsible for calling
3107  * spi_unregister_controller().
3108  *
3109  * Return: zero on success, else a negative error code.
3110  */
3111 int spi_register_controller(struct spi_controller *ctlr)
3112 {
3113 	struct device		*dev = ctlr->dev.parent;
3114 	struct boardinfo	*bi;
3115 	int			first_dynamic;
3116 	int			status;
3117 
3118 	if (!dev)
3119 		return -ENODEV;
3120 
3121 	/*
3122 	 * Make sure all necessary hooks are implemented before registering
3123 	 * the SPI controller.
3124 	 */
3125 	status = spi_controller_check_ops(ctlr);
3126 	if (status)
3127 		return status;
3128 
3129 	if (ctlr->bus_num < 0)
3130 		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3131 	if (ctlr->bus_num >= 0) {
3132 		/* Devices with a fixed bus num must check-in with the num */
3133 		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3134 		if (status)
3135 			return status;
3136 	}
3137 	if (ctlr->bus_num < 0) {
3138 		first_dynamic = of_alias_get_highest_id("spi");
3139 		if (first_dynamic < 0)
3140 			first_dynamic = 0;
3141 		else
3142 			first_dynamic++;
3143 
3144 		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3145 		if (status)
3146 			return status;
3147 	}
3148 	ctlr->bus_lock_flag = 0;
3149 	init_completion(&ctlr->xfer_completion);
3150 	init_completion(&ctlr->cur_msg_completion);
3151 	if (!ctlr->max_dma_len)
3152 		ctlr->max_dma_len = INT_MAX;
3153 
3154 	/*
3155 	 * Register the device, then userspace will see it.
3156 	 * Registration fails if the bus ID is in use.
3157 	 */
3158 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3159 
3160 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3161 		status = spi_get_gpio_descs(ctlr);
3162 		if (status)
3163 			goto free_bus_id;
3164 		/*
3165 		 * A controller using GPIO descriptors always
3166 		 * supports SPI_CS_HIGH if need be.
3167 		 */
3168 		ctlr->mode_bits |= SPI_CS_HIGH;
3169 	}
3170 
3171 	/*
3172 	 * Even if it's just one always-selected device, there must
3173 	 * be at least one chipselect.
3174 	 */
3175 	if (!ctlr->num_chipselect) {
3176 		status = -EINVAL;
3177 		goto free_bus_id;
3178 	}
3179 
3180 	/* Setting last_cs to -1 means no chip selected */
3181 	ctlr->last_cs = -1;
3182 
3183 	status = device_add(&ctlr->dev);
3184 	if (status < 0)
3185 		goto free_bus_id;
3186 	dev_dbg(dev, "registered %s %s\n",
3187 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3188 			dev_name(&ctlr->dev));
3189 
3190 	/*
3191 	 * If we're using a queued driver, start the queue. Note that we don't
3192 	 * need the queueing logic if the driver is only supporting high-level
3193 	 * memory operations.
3194 	 */
3195 	if (ctlr->transfer) {
3196 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3197 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3198 		status = spi_controller_initialize_queue(ctlr);
3199 		if (status) {
3200 			device_del(&ctlr->dev);
3201 			goto free_bus_id;
3202 		}
3203 	}
3204 	/* Add statistics */
3205 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3206 	if (!ctlr->pcpu_statistics) {
3207 		dev_err(dev, "Error allocating per-cpu statistics\n");
3208 		status = -ENOMEM;
3209 		goto destroy_queue;
3210 	}
3211 
3212 	mutex_lock(&board_lock);
3213 	list_add_tail(&ctlr->list, &spi_controller_list);
3214 	list_for_each_entry(bi, &board_list, list)
3215 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3216 	mutex_unlock(&board_lock);
3217 
3218 	/* Register devices from the device tree and ACPI */
3219 	of_register_spi_devices(ctlr);
3220 	acpi_register_spi_devices(ctlr);
3221 	return status;
3222 
3223 destroy_queue:
3224 	spi_destroy_queue(ctlr);
3225 free_bus_id:
3226 	mutex_lock(&board_lock);
3227 	idr_remove(&spi_master_idr, ctlr->bus_num);
3228 	mutex_unlock(&board_lock);
3229 	return status;
3230 }
3231 EXPORT_SYMBOL_GPL(spi_register_controller);
3232 
3233 static void devm_spi_unregister(struct device *dev, void *res)
3234 {
3235 	spi_unregister_controller(*(struct spi_controller **)res);
3236 }
3237 
3238 /**
3239  * devm_spi_register_controller - register managed SPI master or slave
3240  *	controller
3241  * @dev:    device managing SPI controller
3242  * @ctlr: initialized controller, originally from spi_alloc_master() or
3243  *	spi_alloc_slave()
3244  * Context: can sleep
3245  *
3246  * Register a SPI device as with spi_register_controller() which will
3247  * automatically be unregistered and freed.
3248  *
3249  * Return: zero on success, else a negative error code.
3250  */
3251 int devm_spi_register_controller(struct device *dev,
3252 				 struct spi_controller *ctlr)
3253 {
3254 	struct spi_controller **ptr;
3255 	int ret;
3256 
3257 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3258 	if (!ptr)
3259 		return -ENOMEM;
3260 
3261 	ret = spi_register_controller(ctlr);
3262 	if (!ret) {
3263 		*ptr = ctlr;
3264 		devres_add(dev, ptr);
3265 	} else {
3266 		devres_free(ptr);
3267 	}
3268 
3269 	return ret;
3270 }
3271 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3272 
3273 static int __unregister(struct device *dev, void *null)
3274 {
3275 	spi_unregister_device(to_spi_device(dev));
3276 	return 0;
3277 }
3278 
3279 /**
3280  * spi_unregister_controller - unregister SPI master or slave controller
3281  * @ctlr: the controller being unregistered
3282  * Context: can sleep
3283  *
3284  * This call is used only by SPI controller drivers, which are the
3285  * only ones directly touching chip registers.
3286  *
3287  * This must be called from context that can sleep.
3288  *
3289  * Note that this function also drops a reference to the controller.
3290  */
3291 void spi_unregister_controller(struct spi_controller *ctlr)
3292 {
3293 	struct spi_controller *found;
3294 	int id = ctlr->bus_num;
3295 
3296 	/* Prevent addition of new devices, unregister existing ones */
3297 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3298 		mutex_lock(&ctlr->add_lock);
3299 
3300 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3301 
3302 	/* First make sure that this controller was ever added */
3303 	mutex_lock(&board_lock);
3304 	found = idr_find(&spi_master_idr, id);
3305 	mutex_unlock(&board_lock);
3306 	if (ctlr->queued) {
3307 		if (spi_destroy_queue(ctlr))
3308 			dev_err(&ctlr->dev, "queue remove failed\n");
3309 	}
3310 	mutex_lock(&board_lock);
3311 	list_del(&ctlr->list);
3312 	mutex_unlock(&board_lock);
3313 
3314 	device_del(&ctlr->dev);
3315 
3316 	/* Free bus id */
3317 	mutex_lock(&board_lock);
3318 	if (found == ctlr)
3319 		idr_remove(&spi_master_idr, id);
3320 	mutex_unlock(&board_lock);
3321 
3322 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3323 		mutex_unlock(&ctlr->add_lock);
3324 
3325 	/*
3326 	 * Release the last reference on the controller if its driver
3327 	 * has not yet been converted to devm_spi_alloc_master/slave().
3328 	 */
3329 	if (!ctlr->devm_allocated)
3330 		put_device(&ctlr->dev);
3331 }
3332 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3333 
3334 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3335 {
3336 	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3337 }
3338 
3339 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3340 {
3341 	mutex_lock(&ctlr->bus_lock_mutex);
3342 	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3343 	mutex_unlock(&ctlr->bus_lock_mutex);
3344 }
3345 
3346 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3347 {
3348 	mutex_lock(&ctlr->bus_lock_mutex);
3349 	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3350 	mutex_unlock(&ctlr->bus_lock_mutex);
3351 }
3352 
3353 int spi_controller_suspend(struct spi_controller *ctlr)
3354 {
3355 	int ret = 0;
3356 
3357 	/* Basically no-ops for non-queued controllers */
3358 	if (ctlr->queued) {
3359 		ret = spi_stop_queue(ctlr);
3360 		if (ret)
3361 			dev_err(&ctlr->dev, "queue stop failed\n");
3362 	}
3363 
3364 	__spi_mark_suspended(ctlr);
3365 	return ret;
3366 }
3367 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3368 
3369 int spi_controller_resume(struct spi_controller *ctlr)
3370 {
3371 	int ret = 0;
3372 
3373 	__spi_mark_resumed(ctlr);
3374 
3375 	if (ctlr->queued) {
3376 		ret = spi_start_queue(ctlr);
3377 		if (ret)
3378 			dev_err(&ctlr->dev, "queue restart failed\n");
3379 	}
3380 	return ret;
3381 }
3382 EXPORT_SYMBOL_GPL(spi_controller_resume);
3383 
3384 /*-------------------------------------------------------------------------*/
3385 
3386 /* Core methods for spi_message alterations */
3387 
3388 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3389 					    struct spi_message *msg,
3390 					    void *res)
3391 {
3392 	struct spi_replaced_transfers *rxfer = res;
3393 	size_t i;
3394 
3395 	/* Call extra callback if requested */
3396 	if (rxfer->release)
3397 		rxfer->release(ctlr, msg, res);
3398 
3399 	/* Insert replaced transfers back into the message */
3400 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3401 
3402 	/* Remove the formerly inserted entries */
3403 	for (i = 0; i < rxfer->inserted; i++)
3404 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3405 }
3406 
3407 /**
3408  * spi_replace_transfers - replace transfers with several transfers
3409  *                         and register change with spi_message.resources
3410  * @msg:           the spi_message we work upon
3411  * @xfer_first:    the first spi_transfer we want to replace
3412  * @remove:        number of transfers to remove
3413  * @insert:        the number of transfers we want to insert instead
3414  * @release:       extra release code necessary in some circumstances
3415  * @extradatasize: extra data to allocate (with alignment guarantees
3416  *                 of struct @spi_transfer)
3417  * @gfp:           gfp flags
3418  *
3419  * Returns: pointer to @spi_replaced_transfers,
3420  *          PTR_ERR(...) in case of errors.
3421  */
3422 static struct spi_replaced_transfers *spi_replace_transfers(
3423 	struct spi_message *msg,
3424 	struct spi_transfer *xfer_first,
3425 	size_t remove,
3426 	size_t insert,
3427 	spi_replaced_release_t release,
3428 	size_t extradatasize,
3429 	gfp_t gfp)
3430 {
3431 	struct spi_replaced_transfers *rxfer;
3432 	struct spi_transfer *xfer;
3433 	size_t i;
3434 
3435 	/* Allocate the structure using spi_res */
3436 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3437 			      struct_size(rxfer, inserted_transfers, insert)
3438 			      + extradatasize,
3439 			      gfp);
3440 	if (!rxfer)
3441 		return ERR_PTR(-ENOMEM);
3442 
3443 	/* The release code to invoke before running the generic release */
3444 	rxfer->release = release;
3445 
3446 	/* Assign extradata */
3447 	if (extradatasize)
3448 		rxfer->extradata =
3449 			&rxfer->inserted_transfers[insert];
3450 
3451 	/* Init the replaced_transfers list */
3452 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3453 
3454 	/*
3455 	 * Assign the list_entry after which we should reinsert
3456 	 * the @replaced_transfers - it may be spi_message.messages!
3457 	 */
3458 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3459 
3460 	/* Remove the requested number of transfers */
3461 	for (i = 0; i < remove; i++) {
3462 		/*
3463 		 * If the entry after replaced_after it is msg->transfers
3464 		 * then we have been requested to remove more transfers
3465 		 * than are in the list.
3466 		 */
3467 		if (rxfer->replaced_after->next == &msg->transfers) {
3468 			dev_err(&msg->spi->dev,
3469 				"requested to remove more spi_transfers than are available\n");
3470 			/* Insert replaced transfers back into the message */
3471 			list_splice(&rxfer->replaced_transfers,
3472 				    rxfer->replaced_after);
3473 
3474 			/* Free the spi_replace_transfer structure... */
3475 			spi_res_free(rxfer);
3476 
3477 			/* ...and return with an error */
3478 			return ERR_PTR(-EINVAL);
3479 		}
3480 
3481 		/*
3482 		 * Remove the entry after replaced_after from list of
3483 		 * transfers and add it to list of replaced_transfers.
3484 		 */
3485 		list_move_tail(rxfer->replaced_after->next,
3486 			       &rxfer->replaced_transfers);
3487 	}
3488 
3489 	/*
3490 	 * Create copy of the given xfer with identical settings
3491 	 * based on the first transfer to get removed.
3492 	 */
3493 	for (i = 0; i < insert; i++) {
3494 		/* We need to run in reverse order */
3495 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3496 
3497 		/* Copy all spi_transfer data */
3498 		memcpy(xfer, xfer_first, sizeof(*xfer));
3499 
3500 		/* Add to list */
3501 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3502 
3503 		/* Clear cs_change and delay for all but the last */
3504 		if (i) {
3505 			xfer->cs_change = false;
3506 			xfer->delay.value = 0;
3507 		}
3508 	}
3509 
3510 	/* Set up inserted... */
3511 	rxfer->inserted = insert;
3512 
3513 	/* ...and register it with spi_res/spi_message */
3514 	spi_res_add(msg, rxfer);
3515 
3516 	return rxfer;
3517 }
3518 
3519 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3520 					struct spi_message *msg,
3521 					struct spi_transfer **xferp,
3522 					size_t maxsize,
3523 					gfp_t gfp)
3524 {
3525 	struct spi_transfer *xfer = *xferp, *xfers;
3526 	struct spi_replaced_transfers *srt;
3527 	size_t offset;
3528 	size_t count, i;
3529 
3530 	/* Calculate how many we have to replace */
3531 	count = DIV_ROUND_UP(xfer->len, maxsize);
3532 
3533 	/* Create replacement */
3534 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3535 	if (IS_ERR(srt))
3536 		return PTR_ERR(srt);
3537 	xfers = srt->inserted_transfers;
3538 
3539 	/*
3540 	 * Now handle each of those newly inserted spi_transfers.
3541 	 * Note that the replacements spi_transfers all are preset
3542 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3543 	 * are all identical (as well as most others)
3544 	 * so we just have to fix up len and the pointers.
3545 	 *
3546 	 * This also includes support for the depreciated
3547 	 * spi_message.is_dma_mapped interface.
3548 	 */
3549 
3550 	/*
3551 	 * The first transfer just needs the length modified, so we
3552 	 * run it outside the loop.
3553 	 */
3554 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3555 
3556 	/* All the others need rx_buf/tx_buf also set */
3557 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3558 		/* Update rx_buf, tx_buf and DMA */
3559 		if (xfers[i].rx_buf)
3560 			xfers[i].rx_buf += offset;
3561 		if (xfers[i].rx_dma)
3562 			xfers[i].rx_dma += offset;
3563 		if (xfers[i].tx_buf)
3564 			xfers[i].tx_buf += offset;
3565 		if (xfers[i].tx_dma)
3566 			xfers[i].tx_dma += offset;
3567 
3568 		/* Update length */
3569 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3570 	}
3571 
3572 	/*
3573 	 * We set up xferp to the last entry we have inserted,
3574 	 * so that we skip those already split transfers.
3575 	 */
3576 	*xferp = &xfers[count - 1];
3577 
3578 	/* Increment statistics counters */
3579 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3580 				       transfers_split_maxsize);
3581 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3582 				       transfers_split_maxsize);
3583 
3584 	return 0;
3585 }
3586 
3587 /**
3588  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3589  *                               when an individual transfer exceeds a
3590  *                               certain size
3591  * @ctlr:    the @spi_controller for this transfer
3592  * @msg:   the @spi_message to transform
3593  * @maxsize:  the maximum when to apply this
3594  * @gfp: GFP allocation flags
3595  *
3596  * Return: status of transformation
3597  */
3598 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3599 				struct spi_message *msg,
3600 				size_t maxsize,
3601 				gfp_t gfp)
3602 {
3603 	struct spi_transfer *xfer;
3604 	int ret;
3605 
3606 	/*
3607 	 * Iterate over the transfer_list,
3608 	 * but note that xfer is advanced to the last transfer inserted
3609 	 * to avoid checking sizes again unnecessarily (also xfer does
3610 	 * potentially belong to a different list by the time the
3611 	 * replacement has happened).
3612 	 */
3613 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3614 		if (xfer->len > maxsize) {
3615 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3616 							   maxsize, gfp);
3617 			if (ret)
3618 				return ret;
3619 		}
3620 	}
3621 
3622 	return 0;
3623 }
3624 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3625 
3626 
3627 /**
3628  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3629  *                                when an individual transfer exceeds a
3630  *                                certain number of SPI words
3631  * @ctlr:     the @spi_controller for this transfer
3632  * @msg:      the @spi_message to transform
3633  * @maxwords: the number of words to limit each transfer to
3634  * @gfp:      GFP allocation flags
3635  *
3636  * Return: status of transformation
3637  */
3638 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3639 				 struct spi_message *msg,
3640 				 size_t maxwords,
3641 				 gfp_t gfp)
3642 {
3643 	struct spi_transfer *xfer;
3644 
3645 	/*
3646 	 * Iterate over the transfer_list,
3647 	 * but note that xfer is advanced to the last transfer inserted
3648 	 * to avoid checking sizes again unnecessarily (also xfer does
3649 	 * potentially belong to a different list by the time the
3650 	 * replacement has happened).
3651 	 */
3652 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3653 		size_t maxsize;
3654 		int ret;
3655 
3656 		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3657 		if (xfer->len > maxsize) {
3658 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3659 							   maxsize, gfp);
3660 			if (ret)
3661 				return ret;
3662 		}
3663 	}
3664 
3665 	return 0;
3666 }
3667 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3668 
3669 /*-------------------------------------------------------------------------*/
3670 
3671 /*
3672  * Core methods for SPI controller protocol drivers. Some of the
3673  * other core methods are currently defined as inline functions.
3674  */
3675 
3676 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3677 					u8 bits_per_word)
3678 {
3679 	if (ctlr->bits_per_word_mask) {
3680 		/* Only 32 bits fit in the mask */
3681 		if (bits_per_word > 32)
3682 			return -EINVAL;
3683 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3684 			return -EINVAL;
3685 	}
3686 
3687 	return 0;
3688 }
3689 
3690 /**
3691  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3692  * @spi: the device that requires specific CS timing configuration
3693  *
3694  * Return: zero on success, else a negative error code.
3695  */
3696 static int spi_set_cs_timing(struct spi_device *spi)
3697 {
3698 	struct device *parent = spi->controller->dev.parent;
3699 	int status = 0;
3700 
3701 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3702 		if (spi->controller->auto_runtime_pm) {
3703 			status = pm_runtime_get_sync(parent);
3704 			if (status < 0) {
3705 				pm_runtime_put_noidle(parent);
3706 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3707 					status);
3708 				return status;
3709 			}
3710 
3711 			status = spi->controller->set_cs_timing(spi);
3712 			pm_runtime_mark_last_busy(parent);
3713 			pm_runtime_put_autosuspend(parent);
3714 		} else {
3715 			status = spi->controller->set_cs_timing(spi);
3716 		}
3717 	}
3718 	return status;
3719 }
3720 
3721 /**
3722  * spi_setup - setup SPI mode and clock rate
3723  * @spi: the device whose settings are being modified
3724  * Context: can sleep, and no requests are queued to the device
3725  *
3726  * SPI protocol drivers may need to update the transfer mode if the
3727  * device doesn't work with its default.  They may likewise need
3728  * to update clock rates or word sizes from initial values.  This function
3729  * changes those settings, and must be called from a context that can sleep.
3730  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3731  * effect the next time the device is selected and data is transferred to
3732  * or from it.  When this function returns, the SPI device is deselected.
3733  *
3734  * Note that this call will fail if the protocol driver specifies an option
3735  * that the underlying controller or its driver does not support.  For
3736  * example, not all hardware supports wire transfers using nine bit words,
3737  * LSB-first wire encoding, or active-high chipselects.
3738  *
3739  * Return: zero on success, else a negative error code.
3740  */
3741 int spi_setup(struct spi_device *spi)
3742 {
3743 	unsigned	bad_bits, ugly_bits;
3744 	int		status = 0;
3745 
3746 	/*
3747 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3748 	 * are set at the same time.
3749 	 */
3750 	if ((hweight_long(spi->mode &
3751 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3752 	    (hweight_long(spi->mode &
3753 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3754 		dev_err(&spi->dev,
3755 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3756 		return -EINVAL;
3757 	}
3758 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3759 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3760 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3761 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3762 		return -EINVAL;
3763 	/*
3764 	 * Help drivers fail *cleanly* when they need options
3765 	 * that aren't supported with their current controller.
3766 	 * SPI_CS_WORD has a fallback software implementation,
3767 	 * so it is ignored here.
3768 	 */
3769 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3770 				 SPI_NO_TX | SPI_NO_RX);
3771 	ugly_bits = bad_bits &
3772 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3773 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3774 	if (ugly_bits) {
3775 		dev_warn(&spi->dev,
3776 			 "setup: ignoring unsupported mode bits %x\n",
3777 			 ugly_bits);
3778 		spi->mode &= ~ugly_bits;
3779 		bad_bits &= ~ugly_bits;
3780 	}
3781 	if (bad_bits) {
3782 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3783 			bad_bits);
3784 		return -EINVAL;
3785 	}
3786 
3787 	if (!spi->bits_per_word) {
3788 		spi->bits_per_word = 8;
3789 	} else {
3790 		/*
3791 		 * Some controllers may not support the default 8 bits-per-word
3792 		 * so only perform the check when this is explicitly provided.
3793 		 */
3794 		status = __spi_validate_bits_per_word(spi->controller,
3795 						      spi->bits_per_word);
3796 		if (status)
3797 			return status;
3798 	}
3799 
3800 	if (spi->controller->max_speed_hz &&
3801 	    (!spi->max_speed_hz ||
3802 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3803 		spi->max_speed_hz = spi->controller->max_speed_hz;
3804 
3805 	mutex_lock(&spi->controller->io_mutex);
3806 
3807 	if (spi->controller->setup) {
3808 		status = spi->controller->setup(spi);
3809 		if (status) {
3810 			mutex_unlock(&spi->controller->io_mutex);
3811 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3812 				status);
3813 			return status;
3814 		}
3815 	}
3816 
3817 	status = spi_set_cs_timing(spi);
3818 	if (status) {
3819 		mutex_unlock(&spi->controller->io_mutex);
3820 		return status;
3821 	}
3822 
3823 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3824 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3825 		if (status < 0) {
3826 			mutex_unlock(&spi->controller->io_mutex);
3827 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3828 				status);
3829 			return status;
3830 		}
3831 
3832 		/*
3833 		 * We do not want to return positive value from pm_runtime_get,
3834 		 * there are many instances of devices calling spi_setup() and
3835 		 * checking for a non-zero return value instead of a negative
3836 		 * return value.
3837 		 */
3838 		status = 0;
3839 
3840 		spi_set_cs(spi, false, true);
3841 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3842 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3843 	} else {
3844 		spi_set_cs(spi, false, true);
3845 	}
3846 
3847 	mutex_unlock(&spi->controller->io_mutex);
3848 
3849 	if (spi->rt && !spi->controller->rt) {
3850 		spi->controller->rt = true;
3851 		spi_set_thread_rt(spi->controller);
3852 	}
3853 
3854 	trace_spi_setup(spi, status);
3855 
3856 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3857 			spi->mode & SPI_MODE_X_MASK,
3858 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3859 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3860 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3861 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3862 			spi->bits_per_word, spi->max_speed_hz,
3863 			status);
3864 
3865 	return status;
3866 }
3867 EXPORT_SYMBOL_GPL(spi_setup);
3868 
3869 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3870 				       struct spi_device *spi)
3871 {
3872 	int delay1, delay2;
3873 
3874 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3875 	if (delay1 < 0)
3876 		return delay1;
3877 
3878 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3879 	if (delay2 < 0)
3880 		return delay2;
3881 
3882 	if (delay1 < delay2)
3883 		memcpy(&xfer->word_delay, &spi->word_delay,
3884 		       sizeof(xfer->word_delay));
3885 
3886 	return 0;
3887 }
3888 
3889 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3890 {
3891 	struct spi_controller *ctlr = spi->controller;
3892 	struct spi_transfer *xfer;
3893 	int w_size;
3894 
3895 	if (list_empty(&message->transfers))
3896 		return -EINVAL;
3897 
3898 	/*
3899 	 * If an SPI controller does not support toggling the CS line on each
3900 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3901 	 * for the CS line, we can emulate the CS-per-word hardware function by
3902 	 * splitting transfers into one-word transfers and ensuring that
3903 	 * cs_change is set for each transfer.
3904 	 */
3905 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3906 					  spi_get_csgpiod(spi, 0))) {
3907 		size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
3908 		int ret;
3909 
3910 		/* spi_split_transfers_maxsize() requires message->spi */
3911 		message->spi = spi;
3912 
3913 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3914 						  GFP_KERNEL);
3915 		if (ret)
3916 			return ret;
3917 
3918 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3919 			/* Don't change cs_change on the last entry in the list */
3920 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3921 				break;
3922 			xfer->cs_change = 1;
3923 		}
3924 	}
3925 
3926 	/*
3927 	 * Half-duplex links include original MicroWire, and ones with
3928 	 * only one data pin like SPI_3WIRE (switches direction) or where
3929 	 * either MOSI or MISO is missing.  They can also be caused by
3930 	 * software limitations.
3931 	 */
3932 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3933 	    (spi->mode & SPI_3WIRE)) {
3934 		unsigned flags = ctlr->flags;
3935 
3936 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3937 			if (xfer->rx_buf && xfer->tx_buf)
3938 				return -EINVAL;
3939 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3940 				return -EINVAL;
3941 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3942 				return -EINVAL;
3943 		}
3944 	}
3945 
3946 	/*
3947 	 * Set transfer bits_per_word and max speed as spi device default if
3948 	 * it is not set for this transfer.
3949 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3950 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3951 	 * Ensure transfer word_delay is at least as long as that required by
3952 	 * device itself.
3953 	 */
3954 	message->frame_length = 0;
3955 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3956 		xfer->effective_speed_hz = 0;
3957 		message->frame_length += xfer->len;
3958 		if (!xfer->bits_per_word)
3959 			xfer->bits_per_word = spi->bits_per_word;
3960 
3961 		if (!xfer->speed_hz)
3962 			xfer->speed_hz = spi->max_speed_hz;
3963 
3964 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3965 			xfer->speed_hz = ctlr->max_speed_hz;
3966 
3967 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3968 			return -EINVAL;
3969 
3970 		/*
3971 		 * SPI transfer length should be multiple of SPI word size
3972 		 * where SPI word size should be power-of-two multiple.
3973 		 */
3974 		if (xfer->bits_per_word <= 8)
3975 			w_size = 1;
3976 		else if (xfer->bits_per_word <= 16)
3977 			w_size = 2;
3978 		else
3979 			w_size = 4;
3980 
3981 		/* No partial transfers accepted */
3982 		if (xfer->len % w_size)
3983 			return -EINVAL;
3984 
3985 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3986 		    xfer->speed_hz < ctlr->min_speed_hz)
3987 			return -EINVAL;
3988 
3989 		if (xfer->tx_buf && !xfer->tx_nbits)
3990 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3991 		if (xfer->rx_buf && !xfer->rx_nbits)
3992 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3993 		/*
3994 		 * Check transfer tx/rx_nbits:
3995 		 * 1. check the value matches one of single, dual and quad
3996 		 * 2. check tx/rx_nbits match the mode in spi_device
3997 		 */
3998 		if (xfer->tx_buf) {
3999 			if (spi->mode & SPI_NO_TX)
4000 				return -EINVAL;
4001 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4002 				xfer->tx_nbits != SPI_NBITS_DUAL &&
4003 				xfer->tx_nbits != SPI_NBITS_QUAD)
4004 				return -EINVAL;
4005 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4006 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4007 				return -EINVAL;
4008 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4009 				!(spi->mode & SPI_TX_QUAD))
4010 				return -EINVAL;
4011 		}
4012 		/* Check transfer rx_nbits */
4013 		if (xfer->rx_buf) {
4014 			if (spi->mode & SPI_NO_RX)
4015 				return -EINVAL;
4016 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4017 				xfer->rx_nbits != SPI_NBITS_DUAL &&
4018 				xfer->rx_nbits != SPI_NBITS_QUAD)
4019 				return -EINVAL;
4020 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4021 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4022 				return -EINVAL;
4023 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4024 				!(spi->mode & SPI_RX_QUAD))
4025 				return -EINVAL;
4026 		}
4027 
4028 		if (_spi_xfer_word_delay_update(xfer, spi))
4029 			return -EINVAL;
4030 	}
4031 
4032 	message->status = -EINPROGRESS;
4033 
4034 	return 0;
4035 }
4036 
4037 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4038 {
4039 	struct spi_controller *ctlr = spi->controller;
4040 	struct spi_transfer *xfer;
4041 
4042 	/*
4043 	 * Some controllers do not support doing regular SPI transfers. Return
4044 	 * ENOTSUPP when this is the case.
4045 	 */
4046 	if (!ctlr->transfer)
4047 		return -ENOTSUPP;
4048 
4049 	message->spi = spi;
4050 
4051 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4052 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4053 
4054 	trace_spi_message_submit(message);
4055 
4056 	if (!ctlr->ptp_sts_supported) {
4057 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4058 			xfer->ptp_sts_word_pre = 0;
4059 			ptp_read_system_prets(xfer->ptp_sts);
4060 		}
4061 	}
4062 
4063 	return ctlr->transfer(spi, message);
4064 }
4065 
4066 /**
4067  * spi_async - asynchronous SPI transfer
4068  * @spi: device with which data will be exchanged
4069  * @message: describes the data transfers, including completion callback
4070  * Context: any (IRQs may be blocked, etc)
4071  *
4072  * This call may be used in_irq and other contexts which can't sleep,
4073  * as well as from task contexts which can sleep.
4074  *
4075  * The completion callback is invoked in a context which can't sleep.
4076  * Before that invocation, the value of message->status is undefined.
4077  * When the callback is issued, message->status holds either zero (to
4078  * indicate complete success) or a negative error code.  After that
4079  * callback returns, the driver which issued the transfer request may
4080  * deallocate the associated memory; it's no longer in use by any SPI
4081  * core or controller driver code.
4082  *
4083  * Note that although all messages to a spi_device are handled in
4084  * FIFO order, messages may go to different devices in other orders.
4085  * Some device might be higher priority, or have various "hard" access
4086  * time requirements, for example.
4087  *
4088  * On detection of any fault during the transfer, processing of
4089  * the entire message is aborted, and the device is deselected.
4090  * Until returning from the associated message completion callback,
4091  * no other spi_message queued to that device will be processed.
4092  * (This rule applies equally to all the synchronous transfer calls,
4093  * which are wrappers around this core asynchronous primitive.)
4094  *
4095  * Return: zero on success, else a negative error code.
4096  */
4097 int spi_async(struct spi_device *spi, struct spi_message *message)
4098 {
4099 	struct spi_controller *ctlr = spi->controller;
4100 	int ret;
4101 	unsigned long flags;
4102 
4103 	ret = __spi_validate(spi, message);
4104 	if (ret != 0)
4105 		return ret;
4106 
4107 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4108 
4109 	if (ctlr->bus_lock_flag)
4110 		ret = -EBUSY;
4111 	else
4112 		ret = __spi_async(spi, message);
4113 
4114 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4115 
4116 	return ret;
4117 }
4118 EXPORT_SYMBOL_GPL(spi_async);
4119 
4120 /**
4121  * spi_async_locked - version of spi_async with exclusive bus usage
4122  * @spi: device with which data will be exchanged
4123  * @message: describes the data transfers, including completion callback
4124  * Context: any (IRQs may be blocked, etc)
4125  *
4126  * This call may be used in_irq and other contexts which can't sleep,
4127  * as well as from task contexts which can sleep.
4128  *
4129  * The completion callback is invoked in a context which can't sleep.
4130  * Before that invocation, the value of message->status is undefined.
4131  * When the callback is issued, message->status holds either zero (to
4132  * indicate complete success) or a negative error code.  After that
4133  * callback returns, the driver which issued the transfer request may
4134  * deallocate the associated memory; it's no longer in use by any SPI
4135  * core or controller driver code.
4136  *
4137  * Note that although all messages to a spi_device are handled in
4138  * FIFO order, messages may go to different devices in other orders.
4139  * Some device might be higher priority, or have various "hard" access
4140  * time requirements, for example.
4141  *
4142  * On detection of any fault during the transfer, processing of
4143  * the entire message is aborted, and the device is deselected.
4144  * Until returning from the associated message completion callback,
4145  * no other spi_message queued to that device will be processed.
4146  * (This rule applies equally to all the synchronous transfer calls,
4147  * which are wrappers around this core asynchronous primitive.)
4148  *
4149  * Return: zero on success, else a negative error code.
4150  */
4151 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4152 {
4153 	struct spi_controller *ctlr = spi->controller;
4154 	int ret;
4155 	unsigned long flags;
4156 
4157 	ret = __spi_validate(spi, message);
4158 	if (ret != 0)
4159 		return ret;
4160 
4161 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4162 
4163 	ret = __spi_async(spi, message);
4164 
4165 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4166 
4167 	return ret;
4168 
4169 }
4170 
4171 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4172 {
4173 	bool was_busy;
4174 	int ret;
4175 
4176 	mutex_lock(&ctlr->io_mutex);
4177 
4178 	was_busy = ctlr->busy;
4179 
4180 	ctlr->cur_msg = msg;
4181 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4182 	if (ret)
4183 		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4184 	ctlr->cur_msg = NULL;
4185 	ctlr->fallback = false;
4186 
4187 	if (!was_busy) {
4188 		kfree(ctlr->dummy_rx);
4189 		ctlr->dummy_rx = NULL;
4190 		kfree(ctlr->dummy_tx);
4191 		ctlr->dummy_tx = NULL;
4192 		if (ctlr->unprepare_transfer_hardware &&
4193 		    ctlr->unprepare_transfer_hardware(ctlr))
4194 			dev_err(&ctlr->dev,
4195 				"failed to unprepare transfer hardware\n");
4196 		spi_idle_runtime_pm(ctlr);
4197 	}
4198 
4199 	mutex_unlock(&ctlr->io_mutex);
4200 }
4201 
4202 /*-------------------------------------------------------------------------*/
4203 
4204 /*
4205  * Utility methods for SPI protocol drivers, layered on
4206  * top of the core.  Some other utility methods are defined as
4207  * inline functions.
4208  */
4209 
4210 static void spi_complete(void *arg)
4211 {
4212 	complete(arg);
4213 }
4214 
4215 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4216 {
4217 	DECLARE_COMPLETION_ONSTACK(done);
4218 	int status;
4219 	struct spi_controller *ctlr = spi->controller;
4220 
4221 	if (__spi_check_suspended(ctlr)) {
4222 		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4223 		return -ESHUTDOWN;
4224 	}
4225 
4226 	status = __spi_validate(spi, message);
4227 	if (status != 0)
4228 		return status;
4229 
4230 	message->spi = spi;
4231 
4232 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4233 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4234 
4235 	/*
4236 	 * Checking queue_empty here only guarantees async/sync message
4237 	 * ordering when coming from the same context. It does not need to
4238 	 * guard against reentrancy from a different context. The io_mutex
4239 	 * will catch those cases.
4240 	 */
4241 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4242 		message->actual_length = 0;
4243 		message->status = -EINPROGRESS;
4244 
4245 		trace_spi_message_submit(message);
4246 
4247 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4248 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4249 
4250 		__spi_transfer_message_noqueue(ctlr, message);
4251 
4252 		return message->status;
4253 	}
4254 
4255 	/*
4256 	 * There are messages in the async queue that could have originated
4257 	 * from the same context, so we need to preserve ordering.
4258 	 * Therefor we send the message to the async queue and wait until they
4259 	 * are completed.
4260 	 */
4261 	message->complete = spi_complete;
4262 	message->context = &done;
4263 	status = spi_async_locked(spi, message);
4264 	if (status == 0) {
4265 		wait_for_completion(&done);
4266 		status = message->status;
4267 	}
4268 	message->complete = NULL;
4269 	message->context = NULL;
4270 
4271 	return status;
4272 }
4273 
4274 /**
4275  * spi_sync - blocking/synchronous SPI data transfers
4276  * @spi: device with which data will be exchanged
4277  * @message: describes the data transfers
4278  * Context: can sleep
4279  *
4280  * This call may only be used from a context that may sleep.  The sleep
4281  * is non-interruptible, and has no timeout.  Low-overhead controller
4282  * drivers may DMA directly into and out of the message buffers.
4283  *
4284  * Note that the SPI device's chip select is active during the message,
4285  * and then is normally disabled between messages.  Drivers for some
4286  * frequently-used devices may want to minimize costs of selecting a chip,
4287  * by leaving it selected in anticipation that the next message will go
4288  * to the same chip.  (That may increase power usage.)
4289  *
4290  * Also, the caller is guaranteeing that the memory associated with the
4291  * message will not be freed before this call returns.
4292  *
4293  * Return: zero on success, else a negative error code.
4294  */
4295 int spi_sync(struct spi_device *spi, struct spi_message *message)
4296 {
4297 	int ret;
4298 
4299 	mutex_lock(&spi->controller->bus_lock_mutex);
4300 	ret = __spi_sync(spi, message);
4301 	mutex_unlock(&spi->controller->bus_lock_mutex);
4302 
4303 	return ret;
4304 }
4305 EXPORT_SYMBOL_GPL(spi_sync);
4306 
4307 /**
4308  * spi_sync_locked - version of spi_sync with exclusive bus usage
4309  * @spi: device with which data will be exchanged
4310  * @message: describes the data transfers
4311  * Context: can sleep
4312  *
4313  * This call may only be used from a context that may sleep.  The sleep
4314  * is non-interruptible, and has no timeout.  Low-overhead controller
4315  * drivers may DMA directly into and out of the message buffers.
4316  *
4317  * This call should be used by drivers that require exclusive access to the
4318  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4319  * be released by a spi_bus_unlock call when the exclusive access is over.
4320  *
4321  * Return: zero on success, else a negative error code.
4322  */
4323 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4324 {
4325 	return __spi_sync(spi, message);
4326 }
4327 EXPORT_SYMBOL_GPL(spi_sync_locked);
4328 
4329 /**
4330  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4331  * @ctlr: SPI bus master that should be locked for exclusive bus access
4332  * Context: can sleep
4333  *
4334  * This call may only be used from a context that may sleep.  The sleep
4335  * is non-interruptible, and has no timeout.
4336  *
4337  * This call should be used by drivers that require exclusive access to the
4338  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4339  * exclusive access is over. Data transfer must be done by spi_sync_locked
4340  * and spi_async_locked calls when the SPI bus lock is held.
4341  *
4342  * Return: always zero.
4343  */
4344 int spi_bus_lock(struct spi_controller *ctlr)
4345 {
4346 	unsigned long flags;
4347 
4348 	mutex_lock(&ctlr->bus_lock_mutex);
4349 
4350 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4351 	ctlr->bus_lock_flag = 1;
4352 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4353 
4354 	/* Mutex remains locked until spi_bus_unlock() is called */
4355 
4356 	return 0;
4357 }
4358 EXPORT_SYMBOL_GPL(spi_bus_lock);
4359 
4360 /**
4361  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4362  * @ctlr: SPI bus master that was locked for exclusive bus access
4363  * Context: can sleep
4364  *
4365  * This call may only be used from a context that may sleep.  The sleep
4366  * is non-interruptible, and has no timeout.
4367  *
4368  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4369  * call.
4370  *
4371  * Return: always zero.
4372  */
4373 int spi_bus_unlock(struct spi_controller *ctlr)
4374 {
4375 	ctlr->bus_lock_flag = 0;
4376 
4377 	mutex_unlock(&ctlr->bus_lock_mutex);
4378 
4379 	return 0;
4380 }
4381 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4382 
4383 /* Portable code must never pass more than 32 bytes */
4384 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4385 
4386 static u8	*buf;
4387 
4388 /**
4389  * spi_write_then_read - SPI synchronous write followed by read
4390  * @spi: device with which data will be exchanged
4391  * @txbuf: data to be written (need not be DMA-safe)
4392  * @n_tx: size of txbuf, in bytes
4393  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4394  * @n_rx: size of rxbuf, in bytes
4395  * Context: can sleep
4396  *
4397  * This performs a half duplex MicroWire style transaction with the
4398  * device, sending txbuf and then reading rxbuf.  The return value
4399  * is zero for success, else a negative errno status code.
4400  * This call may only be used from a context that may sleep.
4401  *
4402  * Parameters to this routine are always copied using a small buffer.
4403  * Performance-sensitive or bulk transfer code should instead use
4404  * spi_{async,sync}() calls with DMA-safe buffers.
4405  *
4406  * Return: zero on success, else a negative error code.
4407  */
4408 int spi_write_then_read(struct spi_device *spi,
4409 		const void *txbuf, unsigned n_tx,
4410 		void *rxbuf, unsigned n_rx)
4411 {
4412 	static DEFINE_MUTEX(lock);
4413 
4414 	int			status;
4415 	struct spi_message	message;
4416 	struct spi_transfer	x[2];
4417 	u8			*local_buf;
4418 
4419 	/*
4420 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4421 	 * copying here, (as a pure convenience thing), but we can
4422 	 * keep heap costs out of the hot path unless someone else is
4423 	 * using the pre-allocated buffer or the transfer is too large.
4424 	 */
4425 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4426 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4427 				    GFP_KERNEL | GFP_DMA);
4428 		if (!local_buf)
4429 			return -ENOMEM;
4430 	} else {
4431 		local_buf = buf;
4432 	}
4433 
4434 	spi_message_init(&message);
4435 	memset(x, 0, sizeof(x));
4436 	if (n_tx) {
4437 		x[0].len = n_tx;
4438 		spi_message_add_tail(&x[0], &message);
4439 	}
4440 	if (n_rx) {
4441 		x[1].len = n_rx;
4442 		spi_message_add_tail(&x[1], &message);
4443 	}
4444 
4445 	memcpy(local_buf, txbuf, n_tx);
4446 	x[0].tx_buf = local_buf;
4447 	x[1].rx_buf = local_buf + n_tx;
4448 
4449 	/* Do the I/O */
4450 	status = spi_sync(spi, &message);
4451 	if (status == 0)
4452 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4453 
4454 	if (x[0].tx_buf == buf)
4455 		mutex_unlock(&lock);
4456 	else
4457 		kfree(local_buf);
4458 
4459 	return status;
4460 }
4461 EXPORT_SYMBOL_GPL(spi_write_then_read);
4462 
4463 /*-------------------------------------------------------------------------*/
4464 
4465 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4466 /* Must call put_device() when done with returned spi_device device */
4467 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4468 {
4469 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4470 
4471 	return dev ? to_spi_device(dev) : NULL;
4472 }
4473 
4474 /* The spi controllers are not using spi_bus, so we find it with another way */
4475 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4476 {
4477 	struct device *dev;
4478 
4479 	dev = class_find_device_by_of_node(&spi_master_class, node);
4480 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4481 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4482 	if (!dev)
4483 		return NULL;
4484 
4485 	/* Reference got in class_find_device */
4486 	return container_of(dev, struct spi_controller, dev);
4487 }
4488 
4489 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4490 			 void *arg)
4491 {
4492 	struct of_reconfig_data *rd = arg;
4493 	struct spi_controller *ctlr;
4494 	struct spi_device *spi;
4495 
4496 	switch (of_reconfig_get_state_change(action, arg)) {
4497 	case OF_RECONFIG_CHANGE_ADD:
4498 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4499 		if (ctlr == NULL)
4500 			return NOTIFY_OK;	/* Not for us */
4501 
4502 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4503 			put_device(&ctlr->dev);
4504 			return NOTIFY_OK;
4505 		}
4506 
4507 		/*
4508 		 * Clear the flag before adding the device so that fw_devlink
4509 		 * doesn't skip adding consumers to this device.
4510 		 */
4511 		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4512 		spi = of_register_spi_device(ctlr, rd->dn);
4513 		put_device(&ctlr->dev);
4514 
4515 		if (IS_ERR(spi)) {
4516 			pr_err("%s: failed to create for '%pOF'\n",
4517 					__func__, rd->dn);
4518 			of_node_clear_flag(rd->dn, OF_POPULATED);
4519 			return notifier_from_errno(PTR_ERR(spi));
4520 		}
4521 		break;
4522 
4523 	case OF_RECONFIG_CHANGE_REMOVE:
4524 		/* Already depopulated? */
4525 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4526 			return NOTIFY_OK;
4527 
4528 		/* Find our device by node */
4529 		spi = of_find_spi_device_by_node(rd->dn);
4530 		if (spi == NULL)
4531 			return NOTIFY_OK;	/* No? not meant for us */
4532 
4533 		/* Unregister takes one ref away */
4534 		spi_unregister_device(spi);
4535 
4536 		/* And put the reference of the find */
4537 		put_device(&spi->dev);
4538 		break;
4539 	}
4540 
4541 	return NOTIFY_OK;
4542 }
4543 
4544 static struct notifier_block spi_of_notifier = {
4545 	.notifier_call = of_spi_notify,
4546 };
4547 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4548 extern struct notifier_block spi_of_notifier;
4549 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4550 
4551 #if IS_ENABLED(CONFIG_ACPI)
4552 static int spi_acpi_controller_match(struct device *dev, const void *data)
4553 {
4554 	return ACPI_COMPANION(dev->parent) == data;
4555 }
4556 
4557 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4558 {
4559 	struct device *dev;
4560 
4561 	dev = class_find_device(&spi_master_class, NULL, adev,
4562 				spi_acpi_controller_match);
4563 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4564 		dev = class_find_device(&spi_slave_class, NULL, adev,
4565 					spi_acpi_controller_match);
4566 	if (!dev)
4567 		return NULL;
4568 
4569 	return container_of(dev, struct spi_controller, dev);
4570 }
4571 
4572 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4573 {
4574 	struct device *dev;
4575 
4576 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4577 	return to_spi_device(dev);
4578 }
4579 
4580 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4581 			   void *arg)
4582 {
4583 	struct acpi_device *adev = arg;
4584 	struct spi_controller *ctlr;
4585 	struct spi_device *spi;
4586 
4587 	switch (value) {
4588 	case ACPI_RECONFIG_DEVICE_ADD:
4589 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4590 		if (!ctlr)
4591 			break;
4592 
4593 		acpi_register_spi_device(ctlr, adev);
4594 		put_device(&ctlr->dev);
4595 		break;
4596 	case ACPI_RECONFIG_DEVICE_REMOVE:
4597 		if (!acpi_device_enumerated(adev))
4598 			break;
4599 
4600 		spi = acpi_spi_find_device_by_adev(adev);
4601 		if (!spi)
4602 			break;
4603 
4604 		spi_unregister_device(spi);
4605 		put_device(&spi->dev);
4606 		break;
4607 	}
4608 
4609 	return NOTIFY_OK;
4610 }
4611 
4612 static struct notifier_block spi_acpi_notifier = {
4613 	.notifier_call = acpi_spi_notify,
4614 };
4615 #else
4616 extern struct notifier_block spi_acpi_notifier;
4617 #endif
4618 
4619 static int __init spi_init(void)
4620 {
4621 	int	status;
4622 
4623 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4624 	if (!buf) {
4625 		status = -ENOMEM;
4626 		goto err0;
4627 	}
4628 
4629 	status = bus_register(&spi_bus_type);
4630 	if (status < 0)
4631 		goto err1;
4632 
4633 	status = class_register(&spi_master_class);
4634 	if (status < 0)
4635 		goto err2;
4636 
4637 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4638 		status = class_register(&spi_slave_class);
4639 		if (status < 0)
4640 			goto err3;
4641 	}
4642 
4643 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4644 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4645 	if (IS_ENABLED(CONFIG_ACPI))
4646 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4647 
4648 	return 0;
4649 
4650 err3:
4651 	class_unregister(&spi_master_class);
4652 err2:
4653 	bus_unregister(&spi_bus_type);
4654 err1:
4655 	kfree(buf);
4656 	buf = NULL;
4657 err0:
4658 	return status;
4659 }
4660 
4661 /*
4662  * A board_info is normally registered in arch_initcall(),
4663  * but even essential drivers wait till later.
4664  *
4665  * REVISIT only boardinfo really needs static linking. The rest (device and
4666  * driver registration) _could_ be dynamically linked (modular) ... Costs
4667  * include needing to have boardinfo data structures be much more public.
4668  */
4669 postcore_initcall(spi_init);
4670