xref: /openbmc/linux/drivers/spi/spi.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Emptry string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del opertion for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 	struct spi_device	*spi;
498 
499 	if (!spi_controller_get(ctlr))
500 		return NULL;
501 
502 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 	if (!spi) {
504 		spi_controller_put(ctlr);
505 		return NULL;
506 	}
507 
508 	spi->master = spi->controller = ctlr;
509 	spi->dev.parent = &ctlr->dev;
510 	spi->dev.bus = &spi_bus_type;
511 	spi->dev.release = spidev_release;
512 	spi->cs_gpio = -ENOENT;
513 
514 	spin_lock_init(&spi->statistics.lock);
515 
516 	device_initialize(&spi->dev);
517 	return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520 
521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524 
525 	if (adev) {
526 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 		return;
528 	}
529 
530 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 		     spi->chip_select);
532 }
533 
534 static int spi_dev_check(struct device *dev, void *data)
535 {
536 	struct spi_device *spi = to_spi_device(dev);
537 	struct spi_device *new_spi = data;
538 
539 	if (spi->controller == new_spi->controller &&
540 	    spi->chip_select == new_spi->chip_select)
541 		return -EBUSY;
542 	return 0;
543 }
544 
545 /**
546  * spi_add_device - Add spi_device allocated with spi_alloc_device
547  * @spi: spi_device to register
548  *
549  * Companion function to spi_alloc_device.  Devices allocated with
550  * spi_alloc_device can be added onto the spi bus with this function.
551  *
552  * Return: 0 on success; negative errno on failure
553  */
554 int spi_add_device(struct spi_device *spi)
555 {
556 	static DEFINE_MUTEX(spi_add_lock);
557 	struct spi_controller *ctlr = spi->controller;
558 	struct device *dev = ctlr->dev.parent;
559 	int status;
560 
561 	/* Chipselects are numbered 0..max; validate. */
562 	if (spi->chip_select >= ctlr->num_chipselect) {
563 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 			ctlr->num_chipselect);
565 		return -EINVAL;
566 	}
567 
568 	/* Set the bus ID string */
569 	spi_dev_set_name(spi);
570 
571 	/* We need to make sure there's no other device with this
572 	 * chipselect **BEFORE** we call setup(), else we'll trash
573 	 * its configuration.  Lock against concurrent add() calls.
574 	 */
575 	mutex_lock(&spi_add_lock);
576 
577 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 	if (status) {
579 		dev_err(dev, "chipselect %d already in use\n",
580 				spi->chip_select);
581 		goto done;
582 	}
583 
584 	/* Descriptors take precedence */
585 	if (ctlr->cs_gpiods)
586 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 	else if (ctlr->cs_gpios)
588 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589 
590 	/* Drivers may modify this initial i/o setup, but will
591 	 * normally rely on the device being setup.  Devices
592 	 * using SPI_CS_HIGH can't coexist well otherwise...
593 	 */
594 	status = spi_setup(spi);
595 	if (status < 0) {
596 		dev_err(dev, "can't setup %s, status %d\n",
597 				dev_name(&spi->dev), status);
598 		goto done;
599 	}
600 
601 	/* Device may be bound to an active driver when this returns */
602 	status = device_add(&spi->dev);
603 	if (status < 0)
604 		dev_err(dev, "can't add %s, status %d\n",
605 				dev_name(&spi->dev), status);
606 	else
607 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608 
609 done:
610 	mutex_unlock(&spi_add_lock);
611 	return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614 
615 /**
616  * spi_new_device - instantiate one new SPI device
617  * @ctlr: Controller to which device is connected
618  * @chip: Describes the SPI device
619  * Context: can sleep
620  *
621  * On typical mainboards, this is purely internal; and it's not needed
622  * after board init creates the hard-wired devices.  Some development
623  * platforms may not be able to use spi_register_board_info though, and
624  * this is exported so that for example a USB or parport based adapter
625  * driver could add devices (which it would learn about out-of-band).
626  *
627  * Return: the new device, or NULL.
628  */
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 				  struct spi_board_info *chip)
631 {
632 	struct spi_device	*proxy;
633 	int			status;
634 
635 	/* NOTE:  caller did any chip->bus_num checks necessary.
636 	 *
637 	 * Also, unless we change the return value convention to use
638 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 	 * suggests syslogged diagnostics are best here (ugh).
640 	 */
641 
642 	proxy = spi_alloc_device(ctlr);
643 	if (!proxy)
644 		return NULL;
645 
646 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647 
648 	proxy->chip_select = chip->chip_select;
649 	proxy->max_speed_hz = chip->max_speed_hz;
650 	proxy->mode = chip->mode;
651 	proxy->irq = chip->irq;
652 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 	proxy->dev.platform_data = (void *) chip->platform_data;
654 	proxy->controller_data = chip->controller_data;
655 	proxy->controller_state = NULL;
656 
657 	if (chip->properties) {
658 		status = device_add_properties(&proxy->dev, chip->properties);
659 		if (status) {
660 			dev_err(&ctlr->dev,
661 				"failed to add properties to '%s': %d\n",
662 				chip->modalias, status);
663 			goto err_dev_put;
664 		}
665 	}
666 
667 	status = spi_add_device(proxy);
668 	if (status < 0)
669 		goto err_remove_props;
670 
671 	return proxy;
672 
673 err_remove_props:
674 	if (chip->properties)
675 		device_remove_properties(&proxy->dev);
676 err_dev_put:
677 	spi_dev_put(proxy);
678 	return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681 
682 /**
683  * spi_unregister_device - unregister a single SPI device
684  * @spi: spi_device to unregister
685  *
686  * Start making the passed SPI device vanish. Normally this would be handled
687  * by spi_unregister_controller().
688  */
689 void spi_unregister_device(struct spi_device *spi)
690 {
691 	if (!spi)
692 		return;
693 
694 	if (spi->dev.of_node) {
695 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 		of_node_put(spi->dev.of_node);
697 	}
698 	if (ACPI_COMPANION(&spi->dev))
699 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 	device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703 
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 					      struct spi_board_info *bi)
706 {
707 	struct spi_device *dev;
708 
709 	if (ctlr->bus_num != bi->bus_num)
710 		return;
711 
712 	dev = spi_new_device(ctlr, bi);
713 	if (!dev)
714 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 			bi->modalias);
716 }
717 
718 /**
719  * spi_register_board_info - register SPI devices for a given board
720  * @info: array of chip descriptors
721  * @n: how many descriptors are provided
722  * Context: can sleep
723  *
724  * Board-specific early init code calls this (probably during arch_initcall)
725  * with segments of the SPI device table.  Any device nodes are created later,
726  * after the relevant parent SPI controller (bus_num) is defined.  We keep
727  * this table of devices forever, so that reloading a controller driver will
728  * not make Linux forget about these hard-wired devices.
729  *
730  * Other code can also call this, e.g. a particular add-on board might provide
731  * SPI devices through its expansion connector, so code initializing that board
732  * would naturally declare its SPI devices.
733  *
734  * The board info passed can safely be __initdata ... but be careful of
735  * any embedded pointers (platform_data, etc), they're copied as-is.
736  * Device properties are deep-copied though.
737  *
738  * Return: zero on success, else a negative error code.
739  */
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742 	struct boardinfo *bi;
743 	int i;
744 
745 	if (!n)
746 		return 0;
747 
748 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 	if (!bi)
750 		return -ENOMEM;
751 
752 	for (i = 0; i < n; i++, bi++, info++) {
753 		struct spi_controller *ctlr;
754 
755 		memcpy(&bi->board_info, info, sizeof(*info));
756 		if (info->properties) {
757 			bi->board_info.properties =
758 					property_entries_dup(info->properties);
759 			if (IS_ERR(bi->board_info.properties))
760 				return PTR_ERR(bi->board_info.properties);
761 		}
762 
763 		mutex_lock(&board_lock);
764 		list_add_tail(&bi->list, &board_list);
765 		list_for_each_entry(ctlr, &spi_controller_list, list)
766 			spi_match_controller_to_boardinfo(ctlr,
767 							  &bi->board_info);
768 		mutex_unlock(&board_lock);
769 	}
770 
771 	return 0;
772 }
773 
774 /*-------------------------------------------------------------------------*/
775 
776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778 	if (spi->mode & SPI_CS_HIGH)
779 		enable = !enable;
780 
781 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 		/*
783 		 * Honour the SPI_NO_CS flag and invert the enable line, as
784 		 * active low is default for SPI. Execution paths that handle
785 		 * polarity inversion in gpiolib (such as device tree) will
786 		 * enforce active high using the SPI_CS_HIGH resulting in a
787 		 * double inversion through the code above.
788 		 */
789 		if (!(spi->mode & SPI_NO_CS)) {
790 			if (spi->cs_gpiod)
791 				gpiod_set_value_cansleep(spi->cs_gpiod,
792 							 !enable);
793 			else
794 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
795 		}
796 		/* Some SPI masters need both GPIO CS & slave_select */
797 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 		    spi->controller->set_cs)
799 			spi->controller->set_cs(spi, !enable);
800 	} else if (spi->controller->set_cs) {
801 		spi->controller->set_cs(spi, !enable);
802 	}
803 }
804 
805 #ifdef CONFIG_HAS_DMA
806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 		struct sg_table *sgt, void *buf, size_t len,
808 		enum dma_data_direction dir)
809 {
810 	const bool vmalloced_buf = is_vmalloc_addr(buf);
811 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
812 #ifdef CONFIG_HIGHMEM
813 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 				(unsigned long)buf < (PKMAP_BASE +
815 					(LAST_PKMAP * PAGE_SIZE)));
816 #else
817 	const bool kmap_buf = false;
818 #endif
819 	int desc_len;
820 	int sgs;
821 	struct page *vm_page;
822 	struct scatterlist *sg;
823 	void *sg_buf;
824 	size_t min;
825 	int i, ret;
826 
827 	if (vmalloced_buf || kmap_buf) {
828 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
829 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
830 	} else if (virt_addr_valid(buf)) {
831 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
832 		sgs = DIV_ROUND_UP(len, desc_len);
833 	} else {
834 		return -EINVAL;
835 	}
836 
837 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 	if (ret != 0)
839 		return ret;
840 
841 	sg = &sgt->sgl[0];
842 	for (i = 0; i < sgs; i++) {
843 
844 		if (vmalloced_buf || kmap_buf) {
845 			/*
846 			 * Next scatterlist entry size is the minimum between
847 			 * the desc_len and the remaining buffer length that
848 			 * fits in a page.
849 			 */
850 			min = min_t(size_t, desc_len,
851 				    min_t(size_t, len,
852 					  PAGE_SIZE - offset_in_page(buf)));
853 			if (vmalloced_buf)
854 				vm_page = vmalloc_to_page(buf);
855 			else
856 				vm_page = kmap_to_page(buf);
857 			if (!vm_page) {
858 				sg_free_table(sgt);
859 				return -ENOMEM;
860 			}
861 			sg_set_page(sg, vm_page,
862 				    min, offset_in_page(buf));
863 		} else {
864 			min = min_t(size_t, len, desc_len);
865 			sg_buf = buf;
866 			sg_set_buf(sg, sg_buf, min);
867 		}
868 
869 		buf += min;
870 		len -= min;
871 		sg = sg_next(sg);
872 	}
873 
874 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
875 	if (!ret)
876 		ret = -ENOMEM;
877 	if (ret < 0) {
878 		sg_free_table(sgt);
879 		return ret;
880 	}
881 
882 	sgt->nents = ret;
883 
884 	return 0;
885 }
886 
887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 		   struct sg_table *sgt, enum dma_data_direction dir)
889 {
890 	if (sgt->orig_nents) {
891 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 		sg_free_table(sgt);
893 	}
894 }
895 
896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
897 {
898 	struct device *tx_dev, *rx_dev;
899 	struct spi_transfer *xfer;
900 	int ret;
901 
902 	if (!ctlr->can_dma)
903 		return 0;
904 
905 	if (ctlr->dma_tx)
906 		tx_dev = ctlr->dma_tx->device->dev;
907 	else
908 		tx_dev = ctlr->dev.parent;
909 
910 	if (ctlr->dma_rx)
911 		rx_dev = ctlr->dma_rx->device->dev;
912 	else
913 		rx_dev = ctlr->dev.parent;
914 
915 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
916 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
917 			continue;
918 
919 		if (xfer->tx_buf != NULL) {
920 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
921 					  (void *)xfer->tx_buf, xfer->len,
922 					  DMA_TO_DEVICE);
923 			if (ret != 0)
924 				return ret;
925 		}
926 
927 		if (xfer->rx_buf != NULL) {
928 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
929 					  xfer->rx_buf, xfer->len,
930 					  DMA_FROM_DEVICE);
931 			if (ret != 0) {
932 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
933 					      DMA_TO_DEVICE);
934 				return ret;
935 			}
936 		}
937 	}
938 
939 	ctlr->cur_msg_mapped = true;
940 
941 	return 0;
942 }
943 
944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
945 {
946 	struct spi_transfer *xfer;
947 	struct device *tx_dev, *rx_dev;
948 
949 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
950 		return 0;
951 
952 	if (ctlr->dma_tx)
953 		tx_dev = ctlr->dma_tx->device->dev;
954 	else
955 		tx_dev = ctlr->dev.parent;
956 
957 	if (ctlr->dma_rx)
958 		rx_dev = ctlr->dma_rx->device->dev;
959 	else
960 		rx_dev = ctlr->dev.parent;
961 
962 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
963 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
964 			continue;
965 
966 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
968 	}
969 
970 	return 0;
971 }
972 #else /* !CONFIG_HAS_DMA */
973 static inline int __spi_map_msg(struct spi_controller *ctlr,
974 				struct spi_message *msg)
975 {
976 	return 0;
977 }
978 
979 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
980 				  struct spi_message *msg)
981 {
982 	return 0;
983 }
984 #endif /* !CONFIG_HAS_DMA */
985 
986 static inline int spi_unmap_msg(struct spi_controller *ctlr,
987 				struct spi_message *msg)
988 {
989 	struct spi_transfer *xfer;
990 
991 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 		/*
993 		 * Restore the original value of tx_buf or rx_buf if they are
994 		 * NULL.
995 		 */
996 		if (xfer->tx_buf == ctlr->dummy_tx)
997 			xfer->tx_buf = NULL;
998 		if (xfer->rx_buf == ctlr->dummy_rx)
999 			xfer->rx_buf = NULL;
1000 	}
1001 
1002 	return __spi_unmap_msg(ctlr, msg);
1003 }
1004 
1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006 {
1007 	struct spi_transfer *xfer;
1008 	void *tmp;
1009 	unsigned int max_tx, max_rx;
1010 
1011 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1012 		max_tx = 0;
1013 		max_rx = 0;
1014 
1015 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017 			    !xfer->tx_buf)
1018 				max_tx = max(xfer->len, max_tx);
1019 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020 			    !xfer->rx_buf)
1021 				max_rx = max(xfer->len, max_rx);
1022 		}
1023 
1024 		if (max_tx) {
1025 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1026 				       GFP_KERNEL | GFP_DMA);
1027 			if (!tmp)
1028 				return -ENOMEM;
1029 			ctlr->dummy_tx = tmp;
1030 			memset(tmp, 0, max_tx);
1031 		}
1032 
1033 		if (max_rx) {
1034 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1035 				       GFP_KERNEL | GFP_DMA);
1036 			if (!tmp)
1037 				return -ENOMEM;
1038 			ctlr->dummy_rx = tmp;
1039 		}
1040 
1041 		if (max_tx || max_rx) {
1042 			list_for_each_entry(xfer, &msg->transfers,
1043 					    transfer_list) {
1044 				if (!xfer->len)
1045 					continue;
1046 				if (!xfer->tx_buf)
1047 					xfer->tx_buf = ctlr->dummy_tx;
1048 				if (!xfer->rx_buf)
1049 					xfer->rx_buf = ctlr->dummy_rx;
1050 			}
1051 		}
1052 	}
1053 
1054 	return __spi_map_msg(ctlr, msg);
1055 }
1056 
1057 static int spi_transfer_wait(struct spi_controller *ctlr,
1058 			     struct spi_message *msg,
1059 			     struct spi_transfer *xfer)
1060 {
1061 	struct spi_statistics *statm = &ctlr->statistics;
1062 	struct spi_statistics *stats = &msg->spi->statistics;
1063 	unsigned long long ms = 1;
1064 
1065 	if (spi_controller_is_slave(ctlr)) {
1066 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 			return -EINTR;
1069 		}
1070 	} else {
1071 		ms = 8LL * 1000LL * xfer->len;
1072 		do_div(ms, xfer->speed_hz);
1073 		ms += ms + 200; /* some tolerance */
1074 
1075 		if (ms > UINT_MAX)
1076 			ms = UINT_MAX;
1077 
1078 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 						 msecs_to_jiffies(ms));
1080 
1081 		if (ms == 0) {
1082 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 			dev_err(&msg->spi->dev,
1085 				"SPI transfer timed out\n");
1086 			return -ETIMEDOUT;
1087 		}
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 /*
1094  * spi_transfer_one_message - Default implementation of transfer_one_message()
1095  *
1096  * This is a standard implementation of transfer_one_message() for
1097  * drivers which implement a transfer_one() operation.  It provides
1098  * standard handling of delays and chip select management.
1099  */
1100 static int spi_transfer_one_message(struct spi_controller *ctlr,
1101 				    struct spi_message *msg)
1102 {
1103 	struct spi_transfer *xfer;
1104 	bool keep_cs = false;
1105 	int ret = 0;
1106 	struct spi_statistics *statm = &ctlr->statistics;
1107 	struct spi_statistics *stats = &msg->spi->statistics;
1108 
1109 	spi_set_cs(msg->spi, true);
1110 
1111 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1112 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1113 
1114 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1115 		trace_spi_transfer_start(msg, xfer);
1116 
1117 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1118 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1119 
1120 		if (xfer->tx_buf || xfer->rx_buf) {
1121 			reinit_completion(&ctlr->xfer_completion);
1122 
1123 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1124 			if (ret < 0) {
1125 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1126 							       errors);
1127 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1128 							       errors);
1129 				dev_err(&msg->spi->dev,
1130 					"SPI transfer failed: %d\n", ret);
1131 				goto out;
1132 			}
1133 
1134 			if (ret > 0) {
1135 				ret = spi_transfer_wait(ctlr, msg, xfer);
1136 				if (ret < 0)
1137 					msg->status = ret;
1138 			}
1139 		} else {
1140 			if (xfer->len)
1141 				dev_err(&msg->spi->dev,
1142 					"Bufferless transfer has length %u\n",
1143 					xfer->len);
1144 		}
1145 
1146 		trace_spi_transfer_stop(msg, xfer);
1147 
1148 		if (msg->status != -EINPROGRESS)
1149 			goto out;
1150 
1151 		if (xfer->delay_usecs) {
1152 			u16 us = xfer->delay_usecs;
1153 
1154 			if (us <= 10)
1155 				udelay(us);
1156 			else
1157 				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1158 		}
1159 
1160 		if (xfer->cs_change) {
1161 			if (list_is_last(&xfer->transfer_list,
1162 					 &msg->transfers)) {
1163 				keep_cs = true;
1164 			} else {
1165 				spi_set_cs(msg->spi, false);
1166 				udelay(10);
1167 				spi_set_cs(msg->spi, true);
1168 			}
1169 		}
1170 
1171 		msg->actual_length += xfer->len;
1172 	}
1173 
1174 out:
1175 	if (ret != 0 || !keep_cs)
1176 		spi_set_cs(msg->spi, false);
1177 
1178 	if (msg->status == -EINPROGRESS)
1179 		msg->status = ret;
1180 
1181 	if (msg->status && ctlr->handle_err)
1182 		ctlr->handle_err(ctlr, msg);
1183 
1184 	spi_finalize_current_message(ctlr);
1185 
1186 	spi_res_release(ctlr, msg);
1187 
1188 	return ret;
1189 }
1190 
1191 /**
1192  * spi_finalize_current_transfer - report completion of a transfer
1193  * @ctlr: the controller reporting completion
1194  *
1195  * Called by SPI drivers using the core transfer_one_message()
1196  * implementation to notify it that the current interrupt driven
1197  * transfer has finished and the next one may be scheduled.
1198  */
1199 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1200 {
1201 	complete(&ctlr->xfer_completion);
1202 }
1203 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1204 
1205 /**
1206  * __spi_pump_messages - function which processes spi message queue
1207  * @ctlr: controller to process queue for
1208  * @in_kthread: true if we are in the context of the message pump thread
1209  *
1210  * This function checks if there is any spi message in the queue that
1211  * needs processing and if so call out to the driver to initialize hardware
1212  * and transfer each message.
1213  *
1214  * Note that it is called both from the kthread itself and also from
1215  * inside spi_sync(); the queue extraction handling at the top of the
1216  * function should deal with this safely.
1217  */
1218 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1219 {
1220 	unsigned long flags;
1221 	bool was_busy = false;
1222 	int ret;
1223 
1224 	/* Lock queue */
1225 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1226 
1227 	/* Make sure we are not already running a message */
1228 	if (ctlr->cur_msg) {
1229 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1230 		return;
1231 	}
1232 
1233 	/* If another context is idling the device then defer */
1234 	if (ctlr->idling) {
1235 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1236 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1237 		return;
1238 	}
1239 
1240 	/* Check if the queue is idle */
1241 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1242 		if (!ctlr->busy) {
1243 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1244 			return;
1245 		}
1246 
1247 		/* Only do teardown in the thread */
1248 		if (!in_kthread) {
1249 			kthread_queue_work(&ctlr->kworker,
1250 					   &ctlr->pump_messages);
1251 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1252 			return;
1253 		}
1254 
1255 		ctlr->busy = false;
1256 		ctlr->idling = true;
1257 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1258 
1259 		kfree(ctlr->dummy_rx);
1260 		ctlr->dummy_rx = NULL;
1261 		kfree(ctlr->dummy_tx);
1262 		ctlr->dummy_tx = NULL;
1263 		if (ctlr->unprepare_transfer_hardware &&
1264 		    ctlr->unprepare_transfer_hardware(ctlr))
1265 			dev_err(&ctlr->dev,
1266 				"failed to unprepare transfer hardware\n");
1267 		if (ctlr->auto_runtime_pm) {
1268 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1269 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1270 		}
1271 		trace_spi_controller_idle(ctlr);
1272 
1273 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1274 		ctlr->idling = false;
1275 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1276 		return;
1277 	}
1278 
1279 	/* Extract head of queue */
1280 	ctlr->cur_msg =
1281 		list_first_entry(&ctlr->queue, struct spi_message, queue);
1282 
1283 	list_del_init(&ctlr->cur_msg->queue);
1284 	if (ctlr->busy)
1285 		was_busy = true;
1286 	else
1287 		ctlr->busy = true;
1288 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1289 
1290 	mutex_lock(&ctlr->io_mutex);
1291 
1292 	if (!was_busy && ctlr->auto_runtime_pm) {
1293 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1294 		if (ret < 0) {
1295 			pm_runtime_put_noidle(ctlr->dev.parent);
1296 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1297 				ret);
1298 			mutex_unlock(&ctlr->io_mutex);
1299 			return;
1300 		}
1301 	}
1302 
1303 	if (!was_busy)
1304 		trace_spi_controller_busy(ctlr);
1305 
1306 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1307 		ret = ctlr->prepare_transfer_hardware(ctlr);
1308 		if (ret) {
1309 			dev_err(&ctlr->dev,
1310 				"failed to prepare transfer hardware\n");
1311 
1312 			if (ctlr->auto_runtime_pm)
1313 				pm_runtime_put(ctlr->dev.parent);
1314 			mutex_unlock(&ctlr->io_mutex);
1315 			return;
1316 		}
1317 	}
1318 
1319 	trace_spi_message_start(ctlr->cur_msg);
1320 
1321 	if (ctlr->prepare_message) {
1322 		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1323 		if (ret) {
1324 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1325 				ret);
1326 			ctlr->cur_msg->status = ret;
1327 			spi_finalize_current_message(ctlr);
1328 			goto out;
1329 		}
1330 		ctlr->cur_msg_prepared = true;
1331 	}
1332 
1333 	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1334 	if (ret) {
1335 		ctlr->cur_msg->status = ret;
1336 		spi_finalize_current_message(ctlr);
1337 		goto out;
1338 	}
1339 
1340 	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1341 	if (ret) {
1342 		dev_err(&ctlr->dev,
1343 			"failed to transfer one message from queue\n");
1344 		goto out;
1345 	}
1346 
1347 out:
1348 	mutex_unlock(&ctlr->io_mutex);
1349 
1350 	/* Prod the scheduler in case transfer_one() was busy waiting */
1351 	if (!ret)
1352 		cond_resched();
1353 }
1354 
1355 /**
1356  * spi_pump_messages - kthread work function which processes spi message queue
1357  * @work: pointer to kthread work struct contained in the controller struct
1358  */
1359 static void spi_pump_messages(struct kthread_work *work)
1360 {
1361 	struct spi_controller *ctlr =
1362 		container_of(work, struct spi_controller, pump_messages);
1363 
1364 	__spi_pump_messages(ctlr, true);
1365 }
1366 
1367 static int spi_init_queue(struct spi_controller *ctlr)
1368 {
1369 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1370 
1371 	ctlr->running = false;
1372 	ctlr->busy = false;
1373 
1374 	kthread_init_worker(&ctlr->kworker);
1375 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1376 					 "%s", dev_name(&ctlr->dev));
1377 	if (IS_ERR(ctlr->kworker_task)) {
1378 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1379 		return PTR_ERR(ctlr->kworker_task);
1380 	}
1381 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1382 
1383 	/*
1384 	 * Controller config will indicate if this controller should run the
1385 	 * message pump with high (realtime) priority to reduce the transfer
1386 	 * latency on the bus by minimising the delay between a transfer
1387 	 * request and the scheduling of the message pump thread. Without this
1388 	 * setting the message pump thread will remain at default priority.
1389 	 */
1390 	if (ctlr->rt) {
1391 		dev_info(&ctlr->dev,
1392 			"will run message pump with realtime priority\n");
1393 		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 /**
1400  * spi_get_next_queued_message() - called by driver to check for queued
1401  * messages
1402  * @ctlr: the controller to check for queued messages
1403  *
1404  * If there are more messages in the queue, the next message is returned from
1405  * this call.
1406  *
1407  * Return: the next message in the queue, else NULL if the queue is empty.
1408  */
1409 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1410 {
1411 	struct spi_message *next;
1412 	unsigned long flags;
1413 
1414 	/* get a pointer to the next message, if any */
1415 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1416 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1417 					queue);
1418 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1419 
1420 	return next;
1421 }
1422 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1423 
1424 /**
1425  * spi_finalize_current_message() - the current message is complete
1426  * @ctlr: the controller to return the message to
1427  *
1428  * Called by the driver to notify the core that the message in the front of the
1429  * queue is complete and can be removed from the queue.
1430  */
1431 void spi_finalize_current_message(struct spi_controller *ctlr)
1432 {
1433 	struct spi_message *mesg;
1434 	unsigned long flags;
1435 	int ret;
1436 
1437 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1438 	mesg = ctlr->cur_msg;
1439 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1440 
1441 	spi_unmap_msg(ctlr, mesg);
1442 
1443 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1444 		ret = ctlr->unprepare_message(ctlr, mesg);
1445 		if (ret) {
1446 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1447 				ret);
1448 		}
1449 	}
1450 
1451 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1452 	ctlr->cur_msg = NULL;
1453 	ctlr->cur_msg_prepared = false;
1454 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1455 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1456 
1457 	trace_spi_message_done(mesg);
1458 
1459 	mesg->state = NULL;
1460 	if (mesg->complete)
1461 		mesg->complete(mesg->context);
1462 }
1463 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1464 
1465 static int spi_start_queue(struct spi_controller *ctlr)
1466 {
1467 	unsigned long flags;
1468 
1469 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1470 
1471 	if (ctlr->running || ctlr->busy) {
1472 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1473 		return -EBUSY;
1474 	}
1475 
1476 	ctlr->running = true;
1477 	ctlr->cur_msg = NULL;
1478 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1479 
1480 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1481 
1482 	return 0;
1483 }
1484 
1485 static int spi_stop_queue(struct spi_controller *ctlr)
1486 {
1487 	unsigned long flags;
1488 	unsigned limit = 500;
1489 	int ret = 0;
1490 
1491 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1492 
1493 	/*
1494 	 * This is a bit lame, but is optimized for the common execution path.
1495 	 * A wait_queue on the ctlr->busy could be used, but then the common
1496 	 * execution path (pump_messages) would be required to call wake_up or
1497 	 * friends on every SPI message. Do this instead.
1498 	 */
1499 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1500 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1501 		usleep_range(10000, 11000);
1502 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1503 	}
1504 
1505 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1506 		ret = -EBUSY;
1507 	else
1508 		ctlr->running = false;
1509 
1510 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1511 
1512 	if (ret) {
1513 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1514 		return ret;
1515 	}
1516 	return ret;
1517 }
1518 
1519 static int spi_destroy_queue(struct spi_controller *ctlr)
1520 {
1521 	int ret;
1522 
1523 	ret = spi_stop_queue(ctlr);
1524 
1525 	/*
1526 	 * kthread_flush_worker will block until all work is done.
1527 	 * If the reason that stop_queue timed out is that the work will never
1528 	 * finish, then it does no good to call flush/stop thread, so
1529 	 * return anyway.
1530 	 */
1531 	if (ret) {
1532 		dev_err(&ctlr->dev, "problem destroying queue\n");
1533 		return ret;
1534 	}
1535 
1536 	kthread_flush_worker(&ctlr->kworker);
1537 	kthread_stop(ctlr->kworker_task);
1538 
1539 	return 0;
1540 }
1541 
1542 static int __spi_queued_transfer(struct spi_device *spi,
1543 				 struct spi_message *msg,
1544 				 bool need_pump)
1545 {
1546 	struct spi_controller *ctlr = spi->controller;
1547 	unsigned long flags;
1548 
1549 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1550 
1551 	if (!ctlr->running) {
1552 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1553 		return -ESHUTDOWN;
1554 	}
1555 	msg->actual_length = 0;
1556 	msg->status = -EINPROGRESS;
1557 
1558 	list_add_tail(&msg->queue, &ctlr->queue);
1559 	if (!ctlr->busy && need_pump)
1560 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1561 
1562 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1563 	return 0;
1564 }
1565 
1566 /**
1567  * spi_queued_transfer - transfer function for queued transfers
1568  * @spi: spi device which is requesting transfer
1569  * @msg: spi message which is to handled is queued to driver queue
1570  *
1571  * Return: zero on success, else a negative error code.
1572  */
1573 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1574 {
1575 	return __spi_queued_transfer(spi, msg, true);
1576 }
1577 
1578 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1579 {
1580 	int ret;
1581 
1582 	ctlr->transfer = spi_queued_transfer;
1583 	if (!ctlr->transfer_one_message)
1584 		ctlr->transfer_one_message = spi_transfer_one_message;
1585 
1586 	/* Initialize and start queue */
1587 	ret = spi_init_queue(ctlr);
1588 	if (ret) {
1589 		dev_err(&ctlr->dev, "problem initializing queue\n");
1590 		goto err_init_queue;
1591 	}
1592 	ctlr->queued = true;
1593 	ret = spi_start_queue(ctlr);
1594 	if (ret) {
1595 		dev_err(&ctlr->dev, "problem starting queue\n");
1596 		goto err_start_queue;
1597 	}
1598 
1599 	return 0;
1600 
1601 err_start_queue:
1602 	spi_destroy_queue(ctlr);
1603 err_init_queue:
1604 	return ret;
1605 }
1606 
1607 /**
1608  * spi_flush_queue - Send all pending messages in the queue from the callers'
1609  *		     context
1610  * @ctlr: controller to process queue for
1611  *
1612  * This should be used when one wants to ensure all pending messages have been
1613  * sent before doing something. Is used by the spi-mem code to make sure SPI
1614  * memory operations do not preempt regular SPI transfers that have been queued
1615  * before the spi-mem operation.
1616  */
1617 void spi_flush_queue(struct spi_controller *ctlr)
1618 {
1619 	if (ctlr->transfer == spi_queued_transfer)
1620 		__spi_pump_messages(ctlr, false);
1621 }
1622 
1623 /*-------------------------------------------------------------------------*/
1624 
1625 #if defined(CONFIG_OF)
1626 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1627 			   struct device_node *nc)
1628 {
1629 	u32 value;
1630 	int rc;
1631 
1632 	/* Mode (clock phase/polarity/etc.) */
1633 	if (of_property_read_bool(nc, "spi-cpha"))
1634 		spi->mode |= SPI_CPHA;
1635 	if (of_property_read_bool(nc, "spi-cpol"))
1636 		spi->mode |= SPI_CPOL;
1637 	if (of_property_read_bool(nc, "spi-3wire"))
1638 		spi->mode |= SPI_3WIRE;
1639 	if (of_property_read_bool(nc, "spi-lsb-first"))
1640 		spi->mode |= SPI_LSB_FIRST;
1641 
1642 	/*
1643 	 * For descriptors associated with the device, polarity inversion is
1644 	 * handled in the gpiolib, so all chip selects are "active high" in
1645 	 * the logical sense, the gpiolib will invert the line if need be.
1646 	 */
1647 	if (ctlr->use_gpio_descriptors)
1648 		spi->mode |= SPI_CS_HIGH;
1649 	else if (of_property_read_bool(nc, "spi-cs-high"))
1650 		spi->mode |= SPI_CS_HIGH;
1651 
1652 	/* Device DUAL/QUAD mode */
1653 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1654 		switch (value) {
1655 		case 1:
1656 			break;
1657 		case 2:
1658 			spi->mode |= SPI_TX_DUAL;
1659 			break;
1660 		case 4:
1661 			spi->mode |= SPI_TX_QUAD;
1662 			break;
1663 		case 8:
1664 			spi->mode |= SPI_TX_OCTAL;
1665 			break;
1666 		default:
1667 			dev_warn(&ctlr->dev,
1668 				"spi-tx-bus-width %d not supported\n",
1669 				value);
1670 			break;
1671 		}
1672 	}
1673 
1674 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1675 		switch (value) {
1676 		case 1:
1677 			break;
1678 		case 2:
1679 			spi->mode |= SPI_RX_DUAL;
1680 			break;
1681 		case 4:
1682 			spi->mode |= SPI_RX_QUAD;
1683 			break;
1684 		case 8:
1685 			spi->mode |= SPI_RX_OCTAL;
1686 			break;
1687 		default:
1688 			dev_warn(&ctlr->dev,
1689 				"spi-rx-bus-width %d not supported\n",
1690 				value);
1691 			break;
1692 		}
1693 	}
1694 
1695 	if (spi_controller_is_slave(ctlr)) {
1696 		if (!of_node_name_eq(nc, "slave")) {
1697 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1698 				nc);
1699 			return -EINVAL;
1700 		}
1701 		return 0;
1702 	}
1703 
1704 	/* Device address */
1705 	rc = of_property_read_u32(nc, "reg", &value);
1706 	if (rc) {
1707 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1708 			nc, rc);
1709 		return rc;
1710 	}
1711 	spi->chip_select = value;
1712 
1713 	/* Device speed */
1714 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1715 	if (rc) {
1716 		dev_err(&ctlr->dev,
1717 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1718 		return rc;
1719 	}
1720 	spi->max_speed_hz = value;
1721 
1722 	return 0;
1723 }
1724 
1725 static struct spi_device *
1726 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1727 {
1728 	struct spi_device *spi;
1729 	int rc;
1730 
1731 	/* Alloc an spi_device */
1732 	spi = spi_alloc_device(ctlr);
1733 	if (!spi) {
1734 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1735 		rc = -ENOMEM;
1736 		goto err_out;
1737 	}
1738 
1739 	/* Select device driver */
1740 	rc = of_modalias_node(nc, spi->modalias,
1741 				sizeof(spi->modalias));
1742 	if (rc < 0) {
1743 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1744 		goto err_out;
1745 	}
1746 
1747 	rc = of_spi_parse_dt(ctlr, spi, nc);
1748 	if (rc)
1749 		goto err_out;
1750 
1751 	/* Store a pointer to the node in the device structure */
1752 	of_node_get(nc);
1753 	spi->dev.of_node = nc;
1754 
1755 	/* Register the new device */
1756 	rc = spi_add_device(spi);
1757 	if (rc) {
1758 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1759 		goto err_of_node_put;
1760 	}
1761 
1762 	return spi;
1763 
1764 err_of_node_put:
1765 	of_node_put(nc);
1766 err_out:
1767 	spi_dev_put(spi);
1768 	return ERR_PTR(rc);
1769 }
1770 
1771 /**
1772  * of_register_spi_devices() - Register child devices onto the SPI bus
1773  * @ctlr:	Pointer to spi_controller device
1774  *
1775  * Registers an spi_device for each child node of controller node which
1776  * represents a valid SPI slave.
1777  */
1778 static void of_register_spi_devices(struct spi_controller *ctlr)
1779 {
1780 	struct spi_device *spi;
1781 	struct device_node *nc;
1782 
1783 	if (!ctlr->dev.of_node)
1784 		return;
1785 
1786 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1787 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1788 			continue;
1789 		spi = of_register_spi_device(ctlr, nc);
1790 		if (IS_ERR(spi)) {
1791 			dev_warn(&ctlr->dev,
1792 				 "Failed to create SPI device for %pOF\n", nc);
1793 			of_node_clear_flag(nc, OF_POPULATED);
1794 		}
1795 	}
1796 }
1797 #else
1798 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1799 #endif
1800 
1801 #ifdef CONFIG_ACPI
1802 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1803 {
1804 	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1805 	const union acpi_object *obj;
1806 
1807 	if (!x86_apple_machine)
1808 		return;
1809 
1810 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1811 	    && obj->buffer.length >= 4)
1812 		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1813 
1814 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1815 	    && obj->buffer.length == 8)
1816 		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1817 
1818 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1819 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1820 		spi->mode |= SPI_LSB_FIRST;
1821 
1822 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1823 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1824 		spi->mode |= SPI_CPOL;
1825 
1826 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1827 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1828 		spi->mode |= SPI_CPHA;
1829 }
1830 
1831 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1832 {
1833 	struct spi_device *spi = data;
1834 	struct spi_controller *ctlr = spi->controller;
1835 
1836 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1837 		struct acpi_resource_spi_serialbus *sb;
1838 
1839 		sb = &ares->data.spi_serial_bus;
1840 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1841 			/*
1842 			 * ACPI DeviceSelection numbering is handled by the
1843 			 * host controller driver in Windows and can vary
1844 			 * from driver to driver. In Linux we always expect
1845 			 * 0 .. max - 1 so we need to ask the driver to
1846 			 * translate between the two schemes.
1847 			 */
1848 			if (ctlr->fw_translate_cs) {
1849 				int cs = ctlr->fw_translate_cs(ctlr,
1850 						sb->device_selection);
1851 				if (cs < 0)
1852 					return cs;
1853 				spi->chip_select = cs;
1854 			} else {
1855 				spi->chip_select = sb->device_selection;
1856 			}
1857 
1858 			spi->max_speed_hz = sb->connection_speed;
1859 
1860 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1861 				spi->mode |= SPI_CPHA;
1862 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1863 				spi->mode |= SPI_CPOL;
1864 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1865 				spi->mode |= SPI_CS_HIGH;
1866 		}
1867 	} else if (spi->irq < 0) {
1868 		struct resource r;
1869 
1870 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1871 			spi->irq = r.start;
1872 	}
1873 
1874 	/* Always tell the ACPI core to skip this resource */
1875 	return 1;
1876 }
1877 
1878 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1879 					    struct acpi_device *adev)
1880 {
1881 	struct list_head resource_list;
1882 	struct spi_device *spi;
1883 	int ret;
1884 
1885 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1886 	    acpi_device_enumerated(adev))
1887 		return AE_OK;
1888 
1889 	spi = spi_alloc_device(ctlr);
1890 	if (!spi) {
1891 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1892 			dev_name(&adev->dev));
1893 		return AE_NO_MEMORY;
1894 	}
1895 
1896 	ACPI_COMPANION_SET(&spi->dev, adev);
1897 	spi->irq = -1;
1898 
1899 	INIT_LIST_HEAD(&resource_list);
1900 	ret = acpi_dev_get_resources(adev, &resource_list,
1901 				     acpi_spi_add_resource, spi);
1902 	acpi_dev_free_resource_list(&resource_list);
1903 
1904 	acpi_spi_parse_apple_properties(spi);
1905 
1906 	if (ret < 0 || !spi->max_speed_hz) {
1907 		spi_dev_put(spi);
1908 		return AE_OK;
1909 	}
1910 
1911 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1912 			  sizeof(spi->modalias));
1913 
1914 	if (spi->irq < 0)
1915 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1916 
1917 	acpi_device_set_enumerated(adev);
1918 
1919 	adev->power.flags.ignore_parent = true;
1920 	if (spi_add_device(spi)) {
1921 		adev->power.flags.ignore_parent = false;
1922 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1923 			dev_name(&adev->dev));
1924 		spi_dev_put(spi);
1925 	}
1926 
1927 	return AE_OK;
1928 }
1929 
1930 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1931 				       void *data, void **return_value)
1932 {
1933 	struct spi_controller *ctlr = data;
1934 	struct acpi_device *adev;
1935 
1936 	if (acpi_bus_get_device(handle, &adev))
1937 		return AE_OK;
1938 
1939 	return acpi_register_spi_device(ctlr, adev);
1940 }
1941 
1942 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1943 {
1944 	acpi_status status;
1945 	acpi_handle handle;
1946 
1947 	handle = ACPI_HANDLE(ctlr->dev.parent);
1948 	if (!handle)
1949 		return;
1950 
1951 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1952 				     acpi_spi_add_device, NULL, ctlr, NULL);
1953 	if (ACPI_FAILURE(status))
1954 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1955 }
1956 #else
1957 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1958 #endif /* CONFIG_ACPI */
1959 
1960 static void spi_controller_release(struct device *dev)
1961 {
1962 	struct spi_controller *ctlr;
1963 
1964 	ctlr = container_of(dev, struct spi_controller, dev);
1965 	kfree(ctlr);
1966 }
1967 
1968 static struct class spi_master_class = {
1969 	.name		= "spi_master",
1970 	.owner		= THIS_MODULE,
1971 	.dev_release	= spi_controller_release,
1972 	.dev_groups	= spi_master_groups,
1973 };
1974 
1975 #ifdef CONFIG_SPI_SLAVE
1976 /**
1977  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1978  *		     controller
1979  * @spi: device used for the current transfer
1980  */
1981 int spi_slave_abort(struct spi_device *spi)
1982 {
1983 	struct spi_controller *ctlr = spi->controller;
1984 
1985 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1986 		return ctlr->slave_abort(ctlr);
1987 
1988 	return -ENOTSUPP;
1989 }
1990 EXPORT_SYMBOL_GPL(spi_slave_abort);
1991 
1992 static int match_true(struct device *dev, void *data)
1993 {
1994 	return 1;
1995 }
1996 
1997 static ssize_t spi_slave_show(struct device *dev,
1998 			      struct device_attribute *attr, char *buf)
1999 {
2000 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2001 						   dev);
2002 	struct device *child;
2003 
2004 	child = device_find_child(&ctlr->dev, NULL, match_true);
2005 	return sprintf(buf, "%s\n",
2006 		       child ? to_spi_device(child)->modalias : NULL);
2007 }
2008 
2009 static ssize_t spi_slave_store(struct device *dev,
2010 			       struct device_attribute *attr, const char *buf,
2011 			       size_t count)
2012 {
2013 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2014 						   dev);
2015 	struct spi_device *spi;
2016 	struct device *child;
2017 	char name[32];
2018 	int rc;
2019 
2020 	rc = sscanf(buf, "%31s", name);
2021 	if (rc != 1 || !name[0])
2022 		return -EINVAL;
2023 
2024 	child = device_find_child(&ctlr->dev, NULL, match_true);
2025 	if (child) {
2026 		/* Remove registered slave */
2027 		device_unregister(child);
2028 		put_device(child);
2029 	}
2030 
2031 	if (strcmp(name, "(null)")) {
2032 		/* Register new slave */
2033 		spi = spi_alloc_device(ctlr);
2034 		if (!spi)
2035 			return -ENOMEM;
2036 
2037 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2038 
2039 		rc = spi_add_device(spi);
2040 		if (rc) {
2041 			spi_dev_put(spi);
2042 			return rc;
2043 		}
2044 	}
2045 
2046 	return count;
2047 }
2048 
2049 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2050 
2051 static struct attribute *spi_slave_attrs[] = {
2052 	&dev_attr_slave.attr,
2053 	NULL,
2054 };
2055 
2056 static const struct attribute_group spi_slave_group = {
2057 	.attrs = spi_slave_attrs,
2058 };
2059 
2060 static const struct attribute_group *spi_slave_groups[] = {
2061 	&spi_controller_statistics_group,
2062 	&spi_slave_group,
2063 	NULL,
2064 };
2065 
2066 static struct class spi_slave_class = {
2067 	.name		= "spi_slave",
2068 	.owner		= THIS_MODULE,
2069 	.dev_release	= spi_controller_release,
2070 	.dev_groups	= spi_slave_groups,
2071 };
2072 #else
2073 extern struct class spi_slave_class;	/* dummy */
2074 #endif
2075 
2076 /**
2077  * __spi_alloc_controller - allocate an SPI master or slave controller
2078  * @dev: the controller, possibly using the platform_bus
2079  * @size: how much zeroed driver-private data to allocate; the pointer to this
2080  *	memory is in the driver_data field of the returned device,
2081  *	accessible with spi_controller_get_devdata().
2082  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2083  *	slave (true) controller
2084  * Context: can sleep
2085  *
2086  * This call is used only by SPI controller drivers, which are the
2087  * only ones directly touching chip registers.  It's how they allocate
2088  * an spi_controller structure, prior to calling spi_register_controller().
2089  *
2090  * This must be called from context that can sleep.
2091  *
2092  * The caller is responsible for assigning the bus number and initializing the
2093  * controller's methods before calling spi_register_controller(); and (after
2094  * errors adding the device) calling spi_controller_put() to prevent a memory
2095  * leak.
2096  *
2097  * Return: the SPI controller structure on success, else NULL.
2098  */
2099 struct spi_controller *__spi_alloc_controller(struct device *dev,
2100 					      unsigned int size, bool slave)
2101 {
2102 	struct spi_controller	*ctlr;
2103 
2104 	if (!dev)
2105 		return NULL;
2106 
2107 	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2108 	if (!ctlr)
2109 		return NULL;
2110 
2111 	device_initialize(&ctlr->dev);
2112 	ctlr->bus_num = -1;
2113 	ctlr->num_chipselect = 1;
2114 	ctlr->slave = slave;
2115 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2116 		ctlr->dev.class = &spi_slave_class;
2117 	else
2118 		ctlr->dev.class = &spi_master_class;
2119 	ctlr->dev.parent = dev;
2120 	pm_suspend_ignore_children(&ctlr->dev, true);
2121 	spi_controller_set_devdata(ctlr, &ctlr[1]);
2122 
2123 	return ctlr;
2124 }
2125 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2126 
2127 #ifdef CONFIG_OF
2128 static int of_spi_register_master(struct spi_controller *ctlr)
2129 {
2130 	int nb, i, *cs;
2131 	struct device_node *np = ctlr->dev.of_node;
2132 
2133 	if (!np)
2134 		return 0;
2135 
2136 	nb = of_gpio_named_count(np, "cs-gpios");
2137 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2138 
2139 	/* Return error only for an incorrectly formed cs-gpios property */
2140 	if (nb == 0 || nb == -ENOENT)
2141 		return 0;
2142 	else if (nb < 0)
2143 		return nb;
2144 
2145 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2146 			  GFP_KERNEL);
2147 	ctlr->cs_gpios = cs;
2148 
2149 	if (!ctlr->cs_gpios)
2150 		return -ENOMEM;
2151 
2152 	for (i = 0; i < ctlr->num_chipselect; i++)
2153 		cs[i] = -ENOENT;
2154 
2155 	for (i = 0; i < nb; i++)
2156 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2157 
2158 	return 0;
2159 }
2160 #else
2161 static int of_spi_register_master(struct spi_controller *ctlr)
2162 {
2163 	return 0;
2164 }
2165 #endif
2166 
2167 /**
2168  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2169  * @ctlr: The SPI master to grab GPIO descriptors for
2170  */
2171 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2172 {
2173 	int nb, i;
2174 	struct gpio_desc **cs;
2175 	struct device *dev = &ctlr->dev;
2176 
2177 	nb = gpiod_count(dev, "cs");
2178 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2179 
2180 	/* No GPIOs at all is fine, else return the error */
2181 	if (nb == 0 || nb == -ENOENT)
2182 		return 0;
2183 	else if (nb < 0)
2184 		return nb;
2185 
2186 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2187 			  GFP_KERNEL);
2188 	if (!cs)
2189 		return -ENOMEM;
2190 	ctlr->cs_gpiods = cs;
2191 
2192 	for (i = 0; i < nb; i++) {
2193 		/*
2194 		 * Most chipselects are active low, the inverted
2195 		 * semantics are handled by special quirks in gpiolib,
2196 		 * so initializing them GPIOD_OUT_LOW here means
2197 		 * "unasserted", in most cases this will drive the physical
2198 		 * line high.
2199 		 */
2200 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2201 						      GPIOD_OUT_LOW);
2202 		if (IS_ERR(cs[i]))
2203 			return PTR_ERR(cs[i]);
2204 
2205 		if (cs[i]) {
2206 			/*
2207 			 * If we find a CS GPIO, name it after the device and
2208 			 * chip select line.
2209 			 */
2210 			char *gpioname;
2211 
2212 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2213 						  dev_name(dev), i);
2214 			if (!gpioname)
2215 				return -ENOMEM;
2216 			gpiod_set_consumer_name(cs[i], gpioname);
2217 		}
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 static int spi_controller_check_ops(struct spi_controller *ctlr)
2224 {
2225 	/*
2226 	 * The controller may implement only the high-level SPI-memory like
2227 	 * operations if it does not support regular SPI transfers, and this is
2228 	 * valid use case.
2229 	 * If ->mem_ops is NULL, we request that at least one of the
2230 	 * ->transfer_xxx() method be implemented.
2231 	 */
2232 	if (ctlr->mem_ops) {
2233 		if (!ctlr->mem_ops->exec_op)
2234 			return -EINVAL;
2235 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2236 		   !ctlr->transfer_one_message) {
2237 		return -EINVAL;
2238 	}
2239 
2240 	return 0;
2241 }
2242 
2243 /**
2244  * spi_register_controller - register SPI master or slave controller
2245  * @ctlr: initialized master, originally from spi_alloc_master() or
2246  *	spi_alloc_slave()
2247  * Context: can sleep
2248  *
2249  * SPI controllers connect to their drivers using some non-SPI bus,
2250  * such as the platform bus.  The final stage of probe() in that code
2251  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2252  *
2253  * SPI controllers use board specific (often SOC specific) bus numbers,
2254  * and board-specific addressing for SPI devices combines those numbers
2255  * with chip select numbers.  Since SPI does not directly support dynamic
2256  * device identification, boards need configuration tables telling which
2257  * chip is at which address.
2258  *
2259  * This must be called from context that can sleep.  It returns zero on
2260  * success, else a negative error code (dropping the controller's refcount).
2261  * After a successful return, the caller is responsible for calling
2262  * spi_unregister_controller().
2263  *
2264  * Return: zero on success, else a negative error code.
2265  */
2266 int spi_register_controller(struct spi_controller *ctlr)
2267 {
2268 	struct device		*dev = ctlr->dev.parent;
2269 	struct boardinfo	*bi;
2270 	int			status;
2271 	int			id, first_dynamic;
2272 
2273 	if (!dev)
2274 		return -ENODEV;
2275 
2276 	/*
2277 	 * Make sure all necessary hooks are implemented before registering
2278 	 * the SPI controller.
2279 	 */
2280 	status = spi_controller_check_ops(ctlr);
2281 	if (status)
2282 		return status;
2283 
2284 	/* even if it's just one always-selected device, there must
2285 	 * be at least one chipselect
2286 	 */
2287 	if (ctlr->num_chipselect == 0)
2288 		return -EINVAL;
2289 	if (ctlr->bus_num >= 0) {
2290 		/* devices with a fixed bus num must check-in with the num */
2291 		mutex_lock(&board_lock);
2292 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2293 			ctlr->bus_num + 1, GFP_KERNEL);
2294 		mutex_unlock(&board_lock);
2295 		if (WARN(id < 0, "couldn't get idr"))
2296 			return id == -ENOSPC ? -EBUSY : id;
2297 		ctlr->bus_num = id;
2298 	} else if (ctlr->dev.of_node) {
2299 		/* allocate dynamic bus number using Linux idr */
2300 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2301 		if (id >= 0) {
2302 			ctlr->bus_num = id;
2303 			mutex_lock(&board_lock);
2304 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2305 				       ctlr->bus_num + 1, GFP_KERNEL);
2306 			mutex_unlock(&board_lock);
2307 			if (WARN(id < 0, "couldn't get idr"))
2308 				return id == -ENOSPC ? -EBUSY : id;
2309 		}
2310 	}
2311 	if (ctlr->bus_num < 0) {
2312 		first_dynamic = of_alias_get_highest_id("spi");
2313 		if (first_dynamic < 0)
2314 			first_dynamic = 0;
2315 		else
2316 			first_dynamic++;
2317 
2318 		mutex_lock(&board_lock);
2319 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2320 			       0, GFP_KERNEL);
2321 		mutex_unlock(&board_lock);
2322 		if (WARN(id < 0, "couldn't get idr"))
2323 			return id;
2324 		ctlr->bus_num = id;
2325 	}
2326 	INIT_LIST_HEAD(&ctlr->queue);
2327 	spin_lock_init(&ctlr->queue_lock);
2328 	spin_lock_init(&ctlr->bus_lock_spinlock);
2329 	mutex_init(&ctlr->bus_lock_mutex);
2330 	mutex_init(&ctlr->io_mutex);
2331 	ctlr->bus_lock_flag = 0;
2332 	init_completion(&ctlr->xfer_completion);
2333 	if (!ctlr->max_dma_len)
2334 		ctlr->max_dma_len = INT_MAX;
2335 
2336 	/* register the device, then userspace will see it.
2337 	 * registration fails if the bus ID is in use.
2338 	 */
2339 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2340 
2341 	if (!spi_controller_is_slave(ctlr)) {
2342 		if (ctlr->use_gpio_descriptors) {
2343 			status = spi_get_gpio_descs(ctlr);
2344 			if (status)
2345 				return status;
2346 			/*
2347 			 * A controller using GPIO descriptors always
2348 			 * supports SPI_CS_HIGH if need be.
2349 			 */
2350 			ctlr->mode_bits |= SPI_CS_HIGH;
2351 		} else {
2352 			/* Legacy code path for GPIOs from DT */
2353 			status = of_spi_register_master(ctlr);
2354 			if (status)
2355 				return status;
2356 		}
2357 	}
2358 
2359 	status = device_add(&ctlr->dev);
2360 	if (status < 0) {
2361 		/* free bus id */
2362 		mutex_lock(&board_lock);
2363 		idr_remove(&spi_master_idr, ctlr->bus_num);
2364 		mutex_unlock(&board_lock);
2365 		goto done;
2366 	}
2367 	dev_dbg(dev, "registered %s %s\n",
2368 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2369 			dev_name(&ctlr->dev));
2370 
2371 	/*
2372 	 * If we're using a queued driver, start the queue. Note that we don't
2373 	 * need the queueing logic if the driver is only supporting high-level
2374 	 * memory operations.
2375 	 */
2376 	if (ctlr->transfer) {
2377 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2378 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2379 		status = spi_controller_initialize_queue(ctlr);
2380 		if (status) {
2381 			device_del(&ctlr->dev);
2382 			/* free bus id */
2383 			mutex_lock(&board_lock);
2384 			idr_remove(&spi_master_idr, ctlr->bus_num);
2385 			mutex_unlock(&board_lock);
2386 			goto done;
2387 		}
2388 	}
2389 	/* add statistics */
2390 	spin_lock_init(&ctlr->statistics.lock);
2391 
2392 	mutex_lock(&board_lock);
2393 	list_add_tail(&ctlr->list, &spi_controller_list);
2394 	list_for_each_entry(bi, &board_list, list)
2395 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2396 	mutex_unlock(&board_lock);
2397 
2398 	/* Register devices from the device tree and ACPI */
2399 	of_register_spi_devices(ctlr);
2400 	acpi_register_spi_devices(ctlr);
2401 done:
2402 	return status;
2403 }
2404 EXPORT_SYMBOL_GPL(spi_register_controller);
2405 
2406 static void devm_spi_unregister(struct device *dev, void *res)
2407 {
2408 	spi_unregister_controller(*(struct spi_controller **)res);
2409 }
2410 
2411 /**
2412  * devm_spi_register_controller - register managed SPI master or slave
2413  *	controller
2414  * @dev:    device managing SPI controller
2415  * @ctlr: initialized controller, originally from spi_alloc_master() or
2416  *	spi_alloc_slave()
2417  * Context: can sleep
2418  *
2419  * Register a SPI device as with spi_register_controller() which will
2420  * automatically be unregistered and freed.
2421  *
2422  * Return: zero on success, else a negative error code.
2423  */
2424 int devm_spi_register_controller(struct device *dev,
2425 				 struct spi_controller *ctlr)
2426 {
2427 	struct spi_controller **ptr;
2428 	int ret;
2429 
2430 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2431 	if (!ptr)
2432 		return -ENOMEM;
2433 
2434 	ret = spi_register_controller(ctlr);
2435 	if (!ret) {
2436 		*ptr = ctlr;
2437 		devres_add(dev, ptr);
2438 	} else {
2439 		devres_free(ptr);
2440 	}
2441 
2442 	return ret;
2443 }
2444 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2445 
2446 static int __unregister(struct device *dev, void *null)
2447 {
2448 	spi_unregister_device(to_spi_device(dev));
2449 	return 0;
2450 }
2451 
2452 /**
2453  * spi_unregister_controller - unregister SPI master or slave controller
2454  * @ctlr: the controller being unregistered
2455  * Context: can sleep
2456  *
2457  * This call is used only by SPI controller drivers, which are the
2458  * only ones directly touching chip registers.
2459  *
2460  * This must be called from context that can sleep.
2461  *
2462  * Note that this function also drops a reference to the controller.
2463  */
2464 void spi_unregister_controller(struct spi_controller *ctlr)
2465 {
2466 	struct spi_controller *found;
2467 	int id = ctlr->bus_num;
2468 	int dummy;
2469 
2470 	/* First make sure that this controller was ever added */
2471 	mutex_lock(&board_lock);
2472 	found = idr_find(&spi_master_idr, id);
2473 	mutex_unlock(&board_lock);
2474 	if (ctlr->queued) {
2475 		if (spi_destroy_queue(ctlr))
2476 			dev_err(&ctlr->dev, "queue remove failed\n");
2477 	}
2478 	mutex_lock(&board_lock);
2479 	list_del(&ctlr->list);
2480 	mutex_unlock(&board_lock);
2481 
2482 	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2483 	device_unregister(&ctlr->dev);
2484 	/* free bus id */
2485 	mutex_lock(&board_lock);
2486 	if (found == ctlr)
2487 		idr_remove(&spi_master_idr, id);
2488 	mutex_unlock(&board_lock);
2489 }
2490 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2491 
2492 int spi_controller_suspend(struct spi_controller *ctlr)
2493 {
2494 	int ret;
2495 
2496 	/* Basically no-ops for non-queued controllers */
2497 	if (!ctlr->queued)
2498 		return 0;
2499 
2500 	ret = spi_stop_queue(ctlr);
2501 	if (ret)
2502 		dev_err(&ctlr->dev, "queue stop failed\n");
2503 
2504 	return ret;
2505 }
2506 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2507 
2508 int spi_controller_resume(struct spi_controller *ctlr)
2509 {
2510 	int ret;
2511 
2512 	if (!ctlr->queued)
2513 		return 0;
2514 
2515 	ret = spi_start_queue(ctlr);
2516 	if (ret)
2517 		dev_err(&ctlr->dev, "queue restart failed\n");
2518 
2519 	return ret;
2520 }
2521 EXPORT_SYMBOL_GPL(spi_controller_resume);
2522 
2523 static int __spi_controller_match(struct device *dev, const void *data)
2524 {
2525 	struct spi_controller *ctlr;
2526 	const u16 *bus_num = data;
2527 
2528 	ctlr = container_of(dev, struct spi_controller, dev);
2529 	return ctlr->bus_num == *bus_num;
2530 }
2531 
2532 /**
2533  * spi_busnum_to_master - look up master associated with bus_num
2534  * @bus_num: the master's bus number
2535  * Context: can sleep
2536  *
2537  * This call may be used with devices that are registered after
2538  * arch init time.  It returns a refcounted pointer to the relevant
2539  * spi_controller (which the caller must release), or NULL if there is
2540  * no such master registered.
2541  *
2542  * Return: the SPI master structure on success, else NULL.
2543  */
2544 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2545 {
2546 	struct device		*dev;
2547 	struct spi_controller	*ctlr = NULL;
2548 
2549 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2550 				__spi_controller_match);
2551 	if (dev)
2552 		ctlr = container_of(dev, struct spi_controller, dev);
2553 	/* reference got in class_find_device */
2554 	return ctlr;
2555 }
2556 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2557 
2558 /*-------------------------------------------------------------------------*/
2559 
2560 /* Core methods for SPI resource management */
2561 
2562 /**
2563  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2564  *                 during the processing of a spi_message while using
2565  *                 spi_transfer_one
2566  * @spi:     the spi device for which we allocate memory
2567  * @release: the release code to execute for this resource
2568  * @size:    size to alloc and return
2569  * @gfp:     GFP allocation flags
2570  *
2571  * Return: the pointer to the allocated data
2572  *
2573  * This may get enhanced in the future to allocate from a memory pool
2574  * of the @spi_device or @spi_controller to avoid repeated allocations.
2575  */
2576 void *spi_res_alloc(struct spi_device *spi,
2577 		    spi_res_release_t release,
2578 		    size_t size, gfp_t gfp)
2579 {
2580 	struct spi_res *sres;
2581 
2582 	sres = kzalloc(sizeof(*sres) + size, gfp);
2583 	if (!sres)
2584 		return NULL;
2585 
2586 	INIT_LIST_HEAD(&sres->entry);
2587 	sres->release = release;
2588 
2589 	return sres->data;
2590 }
2591 EXPORT_SYMBOL_GPL(spi_res_alloc);
2592 
2593 /**
2594  * spi_res_free - free an spi resource
2595  * @res: pointer to the custom data of a resource
2596  *
2597  */
2598 void spi_res_free(void *res)
2599 {
2600 	struct spi_res *sres = container_of(res, struct spi_res, data);
2601 
2602 	if (!res)
2603 		return;
2604 
2605 	WARN_ON(!list_empty(&sres->entry));
2606 	kfree(sres);
2607 }
2608 EXPORT_SYMBOL_GPL(spi_res_free);
2609 
2610 /**
2611  * spi_res_add - add a spi_res to the spi_message
2612  * @message: the spi message
2613  * @res:     the spi_resource
2614  */
2615 void spi_res_add(struct spi_message *message, void *res)
2616 {
2617 	struct spi_res *sres = container_of(res, struct spi_res, data);
2618 
2619 	WARN_ON(!list_empty(&sres->entry));
2620 	list_add_tail(&sres->entry, &message->resources);
2621 }
2622 EXPORT_SYMBOL_GPL(spi_res_add);
2623 
2624 /**
2625  * spi_res_release - release all spi resources for this message
2626  * @ctlr:  the @spi_controller
2627  * @message: the @spi_message
2628  */
2629 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2630 {
2631 	struct spi_res *res;
2632 
2633 	while (!list_empty(&message->resources)) {
2634 		res = list_last_entry(&message->resources,
2635 				      struct spi_res, entry);
2636 
2637 		if (res->release)
2638 			res->release(ctlr, message, res->data);
2639 
2640 		list_del(&res->entry);
2641 
2642 		kfree(res);
2643 	}
2644 }
2645 EXPORT_SYMBOL_GPL(spi_res_release);
2646 
2647 /*-------------------------------------------------------------------------*/
2648 
2649 /* Core methods for spi_message alterations */
2650 
2651 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2652 					    struct spi_message *msg,
2653 					    void *res)
2654 {
2655 	struct spi_replaced_transfers *rxfer = res;
2656 	size_t i;
2657 
2658 	/* call extra callback if requested */
2659 	if (rxfer->release)
2660 		rxfer->release(ctlr, msg, res);
2661 
2662 	/* insert replaced transfers back into the message */
2663 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2664 
2665 	/* remove the formerly inserted entries */
2666 	for (i = 0; i < rxfer->inserted; i++)
2667 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2668 }
2669 
2670 /**
2671  * spi_replace_transfers - replace transfers with several transfers
2672  *                         and register change with spi_message.resources
2673  * @msg:           the spi_message we work upon
2674  * @xfer_first:    the first spi_transfer we want to replace
2675  * @remove:        number of transfers to remove
2676  * @insert:        the number of transfers we want to insert instead
2677  * @release:       extra release code necessary in some circumstances
2678  * @extradatasize: extra data to allocate (with alignment guarantees
2679  *                 of struct @spi_transfer)
2680  * @gfp:           gfp flags
2681  *
2682  * Returns: pointer to @spi_replaced_transfers,
2683  *          PTR_ERR(...) in case of errors.
2684  */
2685 struct spi_replaced_transfers *spi_replace_transfers(
2686 	struct spi_message *msg,
2687 	struct spi_transfer *xfer_first,
2688 	size_t remove,
2689 	size_t insert,
2690 	spi_replaced_release_t release,
2691 	size_t extradatasize,
2692 	gfp_t gfp)
2693 {
2694 	struct spi_replaced_transfers *rxfer;
2695 	struct spi_transfer *xfer;
2696 	size_t i;
2697 
2698 	/* allocate the structure using spi_res */
2699 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2700 			      insert * sizeof(struct spi_transfer)
2701 			      + sizeof(struct spi_replaced_transfers)
2702 			      + extradatasize,
2703 			      gfp);
2704 	if (!rxfer)
2705 		return ERR_PTR(-ENOMEM);
2706 
2707 	/* the release code to invoke before running the generic release */
2708 	rxfer->release = release;
2709 
2710 	/* assign extradata */
2711 	if (extradatasize)
2712 		rxfer->extradata =
2713 			&rxfer->inserted_transfers[insert];
2714 
2715 	/* init the replaced_transfers list */
2716 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2717 
2718 	/* assign the list_entry after which we should reinsert
2719 	 * the @replaced_transfers - it may be spi_message.messages!
2720 	 */
2721 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2722 
2723 	/* remove the requested number of transfers */
2724 	for (i = 0; i < remove; i++) {
2725 		/* if the entry after replaced_after it is msg->transfers
2726 		 * then we have been requested to remove more transfers
2727 		 * than are in the list
2728 		 */
2729 		if (rxfer->replaced_after->next == &msg->transfers) {
2730 			dev_err(&msg->spi->dev,
2731 				"requested to remove more spi_transfers than are available\n");
2732 			/* insert replaced transfers back into the message */
2733 			list_splice(&rxfer->replaced_transfers,
2734 				    rxfer->replaced_after);
2735 
2736 			/* free the spi_replace_transfer structure */
2737 			spi_res_free(rxfer);
2738 
2739 			/* and return with an error */
2740 			return ERR_PTR(-EINVAL);
2741 		}
2742 
2743 		/* remove the entry after replaced_after from list of
2744 		 * transfers and add it to list of replaced_transfers
2745 		 */
2746 		list_move_tail(rxfer->replaced_after->next,
2747 			       &rxfer->replaced_transfers);
2748 	}
2749 
2750 	/* create copy of the given xfer with identical settings
2751 	 * based on the first transfer to get removed
2752 	 */
2753 	for (i = 0; i < insert; i++) {
2754 		/* we need to run in reverse order */
2755 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2756 
2757 		/* copy all spi_transfer data */
2758 		memcpy(xfer, xfer_first, sizeof(*xfer));
2759 
2760 		/* add to list */
2761 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2762 
2763 		/* clear cs_change and delay_usecs for all but the last */
2764 		if (i) {
2765 			xfer->cs_change = false;
2766 			xfer->delay_usecs = 0;
2767 		}
2768 	}
2769 
2770 	/* set up inserted */
2771 	rxfer->inserted = insert;
2772 
2773 	/* and register it with spi_res/spi_message */
2774 	spi_res_add(msg, rxfer);
2775 
2776 	return rxfer;
2777 }
2778 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2779 
2780 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2781 					struct spi_message *msg,
2782 					struct spi_transfer **xferp,
2783 					size_t maxsize,
2784 					gfp_t gfp)
2785 {
2786 	struct spi_transfer *xfer = *xferp, *xfers;
2787 	struct spi_replaced_transfers *srt;
2788 	size_t offset;
2789 	size_t count, i;
2790 
2791 	/* calculate how many we have to replace */
2792 	count = DIV_ROUND_UP(xfer->len, maxsize);
2793 
2794 	/* create replacement */
2795 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2796 	if (IS_ERR(srt))
2797 		return PTR_ERR(srt);
2798 	xfers = srt->inserted_transfers;
2799 
2800 	/* now handle each of those newly inserted spi_transfers
2801 	 * note that the replacements spi_transfers all are preset
2802 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2803 	 * are all identical (as well as most others)
2804 	 * so we just have to fix up len and the pointers.
2805 	 *
2806 	 * this also includes support for the depreciated
2807 	 * spi_message.is_dma_mapped interface
2808 	 */
2809 
2810 	/* the first transfer just needs the length modified, so we
2811 	 * run it outside the loop
2812 	 */
2813 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2814 
2815 	/* all the others need rx_buf/tx_buf also set */
2816 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2817 		/* update rx_buf, tx_buf and dma */
2818 		if (xfers[i].rx_buf)
2819 			xfers[i].rx_buf += offset;
2820 		if (xfers[i].rx_dma)
2821 			xfers[i].rx_dma += offset;
2822 		if (xfers[i].tx_buf)
2823 			xfers[i].tx_buf += offset;
2824 		if (xfers[i].tx_dma)
2825 			xfers[i].tx_dma += offset;
2826 
2827 		/* update length */
2828 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2829 	}
2830 
2831 	/* we set up xferp to the last entry we have inserted,
2832 	 * so that we skip those already split transfers
2833 	 */
2834 	*xferp = &xfers[count - 1];
2835 
2836 	/* increment statistics counters */
2837 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2838 				       transfers_split_maxsize);
2839 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2840 				       transfers_split_maxsize);
2841 
2842 	return 0;
2843 }
2844 
2845 /**
2846  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2847  *                              when an individual transfer exceeds a
2848  *                              certain size
2849  * @ctlr:    the @spi_controller for this transfer
2850  * @msg:   the @spi_message to transform
2851  * @maxsize:  the maximum when to apply this
2852  * @gfp: GFP allocation flags
2853  *
2854  * Return: status of transformation
2855  */
2856 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2857 				struct spi_message *msg,
2858 				size_t maxsize,
2859 				gfp_t gfp)
2860 {
2861 	struct spi_transfer *xfer;
2862 	int ret;
2863 
2864 	/* iterate over the transfer_list,
2865 	 * but note that xfer is advanced to the last transfer inserted
2866 	 * to avoid checking sizes again unnecessarily (also xfer does
2867 	 * potentiall belong to a different list by the time the
2868 	 * replacement has happened
2869 	 */
2870 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2871 		if (xfer->len > maxsize) {
2872 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2873 							   maxsize, gfp);
2874 			if (ret)
2875 				return ret;
2876 		}
2877 	}
2878 
2879 	return 0;
2880 }
2881 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2882 
2883 /*-------------------------------------------------------------------------*/
2884 
2885 /* Core methods for SPI controller protocol drivers.  Some of the
2886  * other core methods are currently defined as inline functions.
2887  */
2888 
2889 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2890 					u8 bits_per_word)
2891 {
2892 	if (ctlr->bits_per_word_mask) {
2893 		/* Only 32 bits fit in the mask */
2894 		if (bits_per_word > 32)
2895 			return -EINVAL;
2896 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2897 			return -EINVAL;
2898 	}
2899 
2900 	return 0;
2901 }
2902 
2903 /**
2904  * spi_setup - setup SPI mode and clock rate
2905  * @spi: the device whose settings are being modified
2906  * Context: can sleep, and no requests are queued to the device
2907  *
2908  * SPI protocol drivers may need to update the transfer mode if the
2909  * device doesn't work with its default.  They may likewise need
2910  * to update clock rates or word sizes from initial values.  This function
2911  * changes those settings, and must be called from a context that can sleep.
2912  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2913  * effect the next time the device is selected and data is transferred to
2914  * or from it.  When this function returns, the spi device is deselected.
2915  *
2916  * Note that this call will fail if the protocol driver specifies an option
2917  * that the underlying controller or its driver does not support.  For
2918  * example, not all hardware supports wire transfers using nine bit words,
2919  * LSB-first wire encoding, or active-high chipselects.
2920  *
2921  * Return: zero on success, else a negative error code.
2922  */
2923 int spi_setup(struct spi_device *spi)
2924 {
2925 	unsigned	bad_bits, ugly_bits;
2926 	int		status;
2927 
2928 	/* check mode to prevent that DUAL and QUAD set at the same time
2929 	 */
2930 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2931 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2932 		dev_err(&spi->dev,
2933 		"setup: can not select dual and quad at the same time\n");
2934 		return -EINVAL;
2935 	}
2936 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2937 	 */
2938 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2939 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2940 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
2941 		return -EINVAL;
2942 	/* help drivers fail *cleanly* when they need options
2943 	 * that aren't supported with their current controller
2944 	 * SPI_CS_WORD has a fallback software implementation,
2945 	 * so it is ignored here.
2946 	 */
2947 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
2948 	/* nothing prevents from working with active-high CS in case if it
2949 	 * is driven by GPIO.
2950 	 */
2951 	if (gpio_is_valid(spi->cs_gpio))
2952 		bad_bits &= ~SPI_CS_HIGH;
2953 	ugly_bits = bad_bits &
2954 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2955 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
2956 	if (ugly_bits) {
2957 		dev_warn(&spi->dev,
2958 			 "setup: ignoring unsupported mode bits %x\n",
2959 			 ugly_bits);
2960 		spi->mode &= ~ugly_bits;
2961 		bad_bits &= ~ugly_bits;
2962 	}
2963 	if (bad_bits) {
2964 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2965 			bad_bits);
2966 		return -EINVAL;
2967 	}
2968 
2969 	if (!spi->bits_per_word)
2970 		spi->bits_per_word = 8;
2971 
2972 	status = __spi_validate_bits_per_word(spi->controller,
2973 					      spi->bits_per_word);
2974 	if (status)
2975 		return status;
2976 
2977 	if (!spi->max_speed_hz)
2978 		spi->max_speed_hz = spi->controller->max_speed_hz;
2979 
2980 	if (spi->controller->setup)
2981 		status = spi->controller->setup(spi);
2982 
2983 	spi_set_cs(spi, false);
2984 
2985 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2986 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2987 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2988 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2989 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2990 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2991 			spi->bits_per_word, spi->max_speed_hz,
2992 			status);
2993 
2994 	return status;
2995 }
2996 EXPORT_SYMBOL_GPL(spi_setup);
2997 
2998 /**
2999  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3000  * @spi: the device that requires specific CS timing configuration
3001  * @setup: CS setup time in terms of clock count
3002  * @hold: CS hold time in terms of clock count
3003  * @inactive_dly: CS inactive delay between transfers in terms of clock count
3004  */
3005 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3006 		       u8 inactive_dly)
3007 {
3008 	if (spi->controller->set_cs_timing)
3009 		spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3010 }
3011 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3012 
3013 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3014 {
3015 	struct spi_controller *ctlr = spi->controller;
3016 	struct spi_transfer *xfer;
3017 	int w_size;
3018 
3019 	if (list_empty(&message->transfers))
3020 		return -EINVAL;
3021 
3022 	/* If an SPI controller does not support toggling the CS line on each
3023 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3024 	 * for the CS line, we can emulate the CS-per-word hardware function by
3025 	 * splitting transfers into one-word transfers and ensuring that
3026 	 * cs_change is set for each transfer.
3027 	 */
3028 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3029 					  spi->cs_gpiod ||
3030 					  gpio_is_valid(spi->cs_gpio))) {
3031 		size_t maxsize;
3032 		int ret;
3033 
3034 		maxsize = (spi->bits_per_word + 7) / 8;
3035 
3036 		/* spi_split_transfers_maxsize() requires message->spi */
3037 		message->spi = spi;
3038 
3039 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3040 						  GFP_KERNEL);
3041 		if (ret)
3042 			return ret;
3043 
3044 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3045 			/* don't change cs_change on the last entry in the list */
3046 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3047 				break;
3048 			xfer->cs_change = 1;
3049 		}
3050 	}
3051 
3052 	/* Half-duplex links include original MicroWire, and ones with
3053 	 * only one data pin like SPI_3WIRE (switches direction) or where
3054 	 * either MOSI or MISO is missing.  They can also be caused by
3055 	 * software limitations.
3056 	 */
3057 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3058 	    (spi->mode & SPI_3WIRE)) {
3059 		unsigned flags = ctlr->flags;
3060 
3061 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3062 			if (xfer->rx_buf && xfer->tx_buf)
3063 				return -EINVAL;
3064 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3065 				return -EINVAL;
3066 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3067 				return -EINVAL;
3068 		}
3069 	}
3070 
3071 	/**
3072 	 * Set transfer bits_per_word and max speed as spi device default if
3073 	 * it is not set for this transfer.
3074 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3075 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3076 	 * Ensure transfer word_delay is at least as long as that required by
3077 	 * device itself.
3078 	 */
3079 	message->frame_length = 0;
3080 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3081 		message->frame_length += xfer->len;
3082 		if (!xfer->bits_per_word)
3083 			xfer->bits_per_word = spi->bits_per_word;
3084 
3085 		if (!xfer->speed_hz)
3086 			xfer->speed_hz = spi->max_speed_hz;
3087 
3088 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3089 			xfer->speed_hz = ctlr->max_speed_hz;
3090 
3091 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3092 			return -EINVAL;
3093 
3094 		/*
3095 		 * SPI transfer length should be multiple of SPI word size
3096 		 * where SPI word size should be power-of-two multiple
3097 		 */
3098 		if (xfer->bits_per_word <= 8)
3099 			w_size = 1;
3100 		else if (xfer->bits_per_word <= 16)
3101 			w_size = 2;
3102 		else
3103 			w_size = 4;
3104 
3105 		/* No partial transfers accepted */
3106 		if (xfer->len % w_size)
3107 			return -EINVAL;
3108 
3109 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3110 		    xfer->speed_hz < ctlr->min_speed_hz)
3111 			return -EINVAL;
3112 
3113 		if (xfer->tx_buf && !xfer->tx_nbits)
3114 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3115 		if (xfer->rx_buf && !xfer->rx_nbits)
3116 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3117 		/* check transfer tx/rx_nbits:
3118 		 * 1. check the value matches one of single, dual and quad
3119 		 * 2. check tx/rx_nbits match the mode in spi_device
3120 		 */
3121 		if (xfer->tx_buf) {
3122 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3123 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3124 				xfer->tx_nbits != SPI_NBITS_QUAD)
3125 				return -EINVAL;
3126 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3127 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3128 				return -EINVAL;
3129 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3130 				!(spi->mode & SPI_TX_QUAD))
3131 				return -EINVAL;
3132 		}
3133 		/* check transfer rx_nbits */
3134 		if (xfer->rx_buf) {
3135 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3136 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3137 				xfer->rx_nbits != SPI_NBITS_QUAD)
3138 				return -EINVAL;
3139 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3140 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3141 				return -EINVAL;
3142 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3143 				!(spi->mode & SPI_RX_QUAD))
3144 				return -EINVAL;
3145 		}
3146 
3147 		if (xfer->word_delay_usecs < spi->word_delay_usecs)
3148 			xfer->word_delay_usecs = spi->word_delay_usecs;
3149 	}
3150 
3151 	message->status = -EINPROGRESS;
3152 
3153 	return 0;
3154 }
3155 
3156 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3157 {
3158 	struct spi_controller *ctlr = spi->controller;
3159 
3160 	/*
3161 	 * Some controllers do not support doing regular SPI transfers. Return
3162 	 * ENOTSUPP when this is the case.
3163 	 */
3164 	if (!ctlr->transfer)
3165 		return -ENOTSUPP;
3166 
3167 	message->spi = spi;
3168 
3169 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3170 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3171 
3172 	trace_spi_message_submit(message);
3173 
3174 	return ctlr->transfer(spi, message);
3175 }
3176 
3177 /**
3178  * spi_async - asynchronous SPI transfer
3179  * @spi: device with which data will be exchanged
3180  * @message: describes the data transfers, including completion callback
3181  * Context: any (irqs may be blocked, etc)
3182  *
3183  * This call may be used in_irq and other contexts which can't sleep,
3184  * as well as from task contexts which can sleep.
3185  *
3186  * The completion callback is invoked in a context which can't sleep.
3187  * Before that invocation, the value of message->status is undefined.
3188  * When the callback is issued, message->status holds either zero (to
3189  * indicate complete success) or a negative error code.  After that
3190  * callback returns, the driver which issued the transfer request may
3191  * deallocate the associated memory; it's no longer in use by any SPI
3192  * core or controller driver code.
3193  *
3194  * Note that although all messages to a spi_device are handled in
3195  * FIFO order, messages may go to different devices in other orders.
3196  * Some device might be higher priority, or have various "hard" access
3197  * time requirements, for example.
3198  *
3199  * On detection of any fault during the transfer, processing of
3200  * the entire message is aborted, and the device is deselected.
3201  * Until returning from the associated message completion callback,
3202  * no other spi_message queued to that device will be processed.
3203  * (This rule applies equally to all the synchronous transfer calls,
3204  * which are wrappers around this core asynchronous primitive.)
3205  *
3206  * Return: zero on success, else a negative error code.
3207  */
3208 int spi_async(struct spi_device *spi, struct spi_message *message)
3209 {
3210 	struct spi_controller *ctlr = spi->controller;
3211 	int ret;
3212 	unsigned long flags;
3213 
3214 	ret = __spi_validate(spi, message);
3215 	if (ret != 0)
3216 		return ret;
3217 
3218 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3219 
3220 	if (ctlr->bus_lock_flag)
3221 		ret = -EBUSY;
3222 	else
3223 		ret = __spi_async(spi, message);
3224 
3225 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3226 
3227 	return ret;
3228 }
3229 EXPORT_SYMBOL_GPL(spi_async);
3230 
3231 /**
3232  * spi_async_locked - version of spi_async with exclusive bus usage
3233  * @spi: device with which data will be exchanged
3234  * @message: describes the data transfers, including completion callback
3235  * Context: any (irqs may be blocked, etc)
3236  *
3237  * This call may be used in_irq and other contexts which can't sleep,
3238  * as well as from task contexts which can sleep.
3239  *
3240  * The completion callback is invoked in a context which can't sleep.
3241  * Before that invocation, the value of message->status is undefined.
3242  * When the callback is issued, message->status holds either zero (to
3243  * indicate complete success) or a negative error code.  After that
3244  * callback returns, the driver which issued the transfer request may
3245  * deallocate the associated memory; it's no longer in use by any SPI
3246  * core or controller driver code.
3247  *
3248  * Note that although all messages to a spi_device are handled in
3249  * FIFO order, messages may go to different devices in other orders.
3250  * Some device might be higher priority, or have various "hard" access
3251  * time requirements, for example.
3252  *
3253  * On detection of any fault during the transfer, processing of
3254  * the entire message is aborted, and the device is deselected.
3255  * Until returning from the associated message completion callback,
3256  * no other spi_message queued to that device will be processed.
3257  * (This rule applies equally to all the synchronous transfer calls,
3258  * which are wrappers around this core asynchronous primitive.)
3259  *
3260  * Return: zero on success, else a negative error code.
3261  */
3262 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3263 {
3264 	struct spi_controller *ctlr = spi->controller;
3265 	int ret;
3266 	unsigned long flags;
3267 
3268 	ret = __spi_validate(spi, message);
3269 	if (ret != 0)
3270 		return ret;
3271 
3272 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3273 
3274 	ret = __spi_async(spi, message);
3275 
3276 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3277 
3278 	return ret;
3279 
3280 }
3281 EXPORT_SYMBOL_GPL(spi_async_locked);
3282 
3283 /*-------------------------------------------------------------------------*/
3284 
3285 /* Utility methods for SPI protocol drivers, layered on
3286  * top of the core.  Some other utility methods are defined as
3287  * inline functions.
3288  */
3289 
3290 static void spi_complete(void *arg)
3291 {
3292 	complete(arg);
3293 }
3294 
3295 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3296 {
3297 	DECLARE_COMPLETION_ONSTACK(done);
3298 	int status;
3299 	struct spi_controller *ctlr = spi->controller;
3300 	unsigned long flags;
3301 
3302 	status = __spi_validate(spi, message);
3303 	if (status != 0)
3304 		return status;
3305 
3306 	message->complete = spi_complete;
3307 	message->context = &done;
3308 	message->spi = spi;
3309 
3310 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3311 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3312 
3313 	/* If we're not using the legacy transfer method then we will
3314 	 * try to transfer in the calling context so special case.
3315 	 * This code would be less tricky if we could remove the
3316 	 * support for driver implemented message queues.
3317 	 */
3318 	if (ctlr->transfer == spi_queued_transfer) {
3319 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3320 
3321 		trace_spi_message_submit(message);
3322 
3323 		status = __spi_queued_transfer(spi, message, false);
3324 
3325 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3326 	} else {
3327 		status = spi_async_locked(spi, message);
3328 	}
3329 
3330 	if (status == 0) {
3331 		/* Push out the messages in the calling context if we
3332 		 * can.
3333 		 */
3334 		if (ctlr->transfer == spi_queued_transfer) {
3335 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3336 						       spi_sync_immediate);
3337 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3338 						       spi_sync_immediate);
3339 			__spi_pump_messages(ctlr, false);
3340 		}
3341 
3342 		wait_for_completion(&done);
3343 		status = message->status;
3344 	}
3345 	message->context = NULL;
3346 	return status;
3347 }
3348 
3349 /**
3350  * spi_sync - blocking/synchronous SPI data transfers
3351  * @spi: device with which data will be exchanged
3352  * @message: describes the data transfers
3353  * Context: can sleep
3354  *
3355  * This call may only be used from a context that may sleep.  The sleep
3356  * is non-interruptible, and has no timeout.  Low-overhead controller
3357  * drivers may DMA directly into and out of the message buffers.
3358  *
3359  * Note that the SPI device's chip select is active during the message,
3360  * and then is normally disabled between messages.  Drivers for some
3361  * frequently-used devices may want to minimize costs of selecting a chip,
3362  * by leaving it selected in anticipation that the next message will go
3363  * to the same chip.  (That may increase power usage.)
3364  *
3365  * Also, the caller is guaranteeing that the memory associated with the
3366  * message will not be freed before this call returns.
3367  *
3368  * Return: zero on success, else a negative error code.
3369  */
3370 int spi_sync(struct spi_device *spi, struct spi_message *message)
3371 {
3372 	int ret;
3373 
3374 	mutex_lock(&spi->controller->bus_lock_mutex);
3375 	ret = __spi_sync(spi, message);
3376 	mutex_unlock(&spi->controller->bus_lock_mutex);
3377 
3378 	return ret;
3379 }
3380 EXPORT_SYMBOL_GPL(spi_sync);
3381 
3382 /**
3383  * spi_sync_locked - version of spi_sync with exclusive bus usage
3384  * @spi: device with which data will be exchanged
3385  * @message: describes the data transfers
3386  * Context: can sleep
3387  *
3388  * This call may only be used from a context that may sleep.  The sleep
3389  * is non-interruptible, and has no timeout.  Low-overhead controller
3390  * drivers may DMA directly into and out of the message buffers.
3391  *
3392  * This call should be used by drivers that require exclusive access to the
3393  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3394  * be released by a spi_bus_unlock call when the exclusive access is over.
3395  *
3396  * Return: zero on success, else a negative error code.
3397  */
3398 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3399 {
3400 	return __spi_sync(spi, message);
3401 }
3402 EXPORT_SYMBOL_GPL(spi_sync_locked);
3403 
3404 /**
3405  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3406  * @ctlr: SPI bus master that should be locked for exclusive bus access
3407  * Context: can sleep
3408  *
3409  * This call may only be used from a context that may sleep.  The sleep
3410  * is non-interruptible, and has no timeout.
3411  *
3412  * This call should be used by drivers that require exclusive access to the
3413  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3414  * exclusive access is over. Data transfer must be done by spi_sync_locked
3415  * and spi_async_locked calls when the SPI bus lock is held.
3416  *
3417  * Return: always zero.
3418  */
3419 int spi_bus_lock(struct spi_controller *ctlr)
3420 {
3421 	unsigned long flags;
3422 
3423 	mutex_lock(&ctlr->bus_lock_mutex);
3424 
3425 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3426 	ctlr->bus_lock_flag = 1;
3427 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3428 
3429 	/* mutex remains locked until spi_bus_unlock is called */
3430 
3431 	return 0;
3432 }
3433 EXPORT_SYMBOL_GPL(spi_bus_lock);
3434 
3435 /**
3436  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3437  * @ctlr: SPI bus master that was locked for exclusive bus access
3438  * Context: can sleep
3439  *
3440  * This call may only be used from a context that may sleep.  The sleep
3441  * is non-interruptible, and has no timeout.
3442  *
3443  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3444  * call.
3445  *
3446  * Return: always zero.
3447  */
3448 int spi_bus_unlock(struct spi_controller *ctlr)
3449 {
3450 	ctlr->bus_lock_flag = 0;
3451 
3452 	mutex_unlock(&ctlr->bus_lock_mutex);
3453 
3454 	return 0;
3455 }
3456 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3457 
3458 /* portable code must never pass more than 32 bytes */
3459 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3460 
3461 static u8	*buf;
3462 
3463 /**
3464  * spi_write_then_read - SPI synchronous write followed by read
3465  * @spi: device with which data will be exchanged
3466  * @txbuf: data to be written (need not be dma-safe)
3467  * @n_tx: size of txbuf, in bytes
3468  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3469  * @n_rx: size of rxbuf, in bytes
3470  * Context: can sleep
3471  *
3472  * This performs a half duplex MicroWire style transaction with the
3473  * device, sending txbuf and then reading rxbuf.  The return value
3474  * is zero for success, else a negative errno status code.
3475  * This call may only be used from a context that may sleep.
3476  *
3477  * Parameters to this routine are always copied using a small buffer;
3478  * portable code should never use this for more than 32 bytes.
3479  * Performance-sensitive or bulk transfer code should instead use
3480  * spi_{async,sync}() calls with dma-safe buffers.
3481  *
3482  * Return: zero on success, else a negative error code.
3483  */
3484 int spi_write_then_read(struct spi_device *spi,
3485 		const void *txbuf, unsigned n_tx,
3486 		void *rxbuf, unsigned n_rx)
3487 {
3488 	static DEFINE_MUTEX(lock);
3489 
3490 	int			status;
3491 	struct spi_message	message;
3492 	struct spi_transfer	x[2];
3493 	u8			*local_buf;
3494 
3495 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3496 	 * copying here, (as a pure convenience thing), but we can
3497 	 * keep heap costs out of the hot path unless someone else is
3498 	 * using the pre-allocated buffer or the transfer is too large.
3499 	 */
3500 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3501 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3502 				    GFP_KERNEL | GFP_DMA);
3503 		if (!local_buf)
3504 			return -ENOMEM;
3505 	} else {
3506 		local_buf = buf;
3507 	}
3508 
3509 	spi_message_init(&message);
3510 	memset(x, 0, sizeof(x));
3511 	if (n_tx) {
3512 		x[0].len = n_tx;
3513 		spi_message_add_tail(&x[0], &message);
3514 	}
3515 	if (n_rx) {
3516 		x[1].len = n_rx;
3517 		spi_message_add_tail(&x[1], &message);
3518 	}
3519 
3520 	memcpy(local_buf, txbuf, n_tx);
3521 	x[0].tx_buf = local_buf;
3522 	x[1].rx_buf = local_buf + n_tx;
3523 
3524 	/* do the i/o */
3525 	status = spi_sync(spi, &message);
3526 	if (status == 0)
3527 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3528 
3529 	if (x[0].tx_buf == buf)
3530 		mutex_unlock(&lock);
3531 	else
3532 		kfree(local_buf);
3533 
3534 	return status;
3535 }
3536 EXPORT_SYMBOL_GPL(spi_write_then_read);
3537 
3538 /*-------------------------------------------------------------------------*/
3539 
3540 #if IS_ENABLED(CONFIG_OF)
3541 static int __spi_of_device_match(struct device *dev, void *data)
3542 {
3543 	return dev->of_node == data;
3544 }
3545 
3546 /* must call put_device() when done with returned spi_device device */
3547 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3548 {
3549 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3550 						__spi_of_device_match);
3551 	return dev ? to_spi_device(dev) : NULL;
3552 }
3553 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3554 #endif /* IS_ENABLED(CONFIG_OF) */
3555 
3556 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3557 static int __spi_of_controller_match(struct device *dev, const void *data)
3558 {
3559 	return dev->of_node == data;
3560 }
3561 
3562 /* the spi controllers are not using spi_bus, so we find it with another way */
3563 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3564 {
3565 	struct device *dev;
3566 
3567 	dev = class_find_device(&spi_master_class, NULL, node,
3568 				__spi_of_controller_match);
3569 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3570 		dev = class_find_device(&spi_slave_class, NULL, node,
3571 					__spi_of_controller_match);
3572 	if (!dev)
3573 		return NULL;
3574 
3575 	/* reference got in class_find_device */
3576 	return container_of(dev, struct spi_controller, dev);
3577 }
3578 
3579 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3580 			 void *arg)
3581 {
3582 	struct of_reconfig_data *rd = arg;
3583 	struct spi_controller *ctlr;
3584 	struct spi_device *spi;
3585 
3586 	switch (of_reconfig_get_state_change(action, arg)) {
3587 	case OF_RECONFIG_CHANGE_ADD:
3588 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3589 		if (ctlr == NULL)
3590 			return NOTIFY_OK;	/* not for us */
3591 
3592 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3593 			put_device(&ctlr->dev);
3594 			return NOTIFY_OK;
3595 		}
3596 
3597 		spi = of_register_spi_device(ctlr, rd->dn);
3598 		put_device(&ctlr->dev);
3599 
3600 		if (IS_ERR(spi)) {
3601 			pr_err("%s: failed to create for '%pOF'\n",
3602 					__func__, rd->dn);
3603 			of_node_clear_flag(rd->dn, OF_POPULATED);
3604 			return notifier_from_errno(PTR_ERR(spi));
3605 		}
3606 		break;
3607 
3608 	case OF_RECONFIG_CHANGE_REMOVE:
3609 		/* already depopulated? */
3610 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3611 			return NOTIFY_OK;
3612 
3613 		/* find our device by node */
3614 		spi = of_find_spi_device_by_node(rd->dn);
3615 		if (spi == NULL)
3616 			return NOTIFY_OK;	/* no? not meant for us */
3617 
3618 		/* unregister takes one ref away */
3619 		spi_unregister_device(spi);
3620 
3621 		/* and put the reference of the find */
3622 		put_device(&spi->dev);
3623 		break;
3624 	}
3625 
3626 	return NOTIFY_OK;
3627 }
3628 
3629 static struct notifier_block spi_of_notifier = {
3630 	.notifier_call = of_spi_notify,
3631 };
3632 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3633 extern struct notifier_block spi_of_notifier;
3634 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3635 
3636 #if IS_ENABLED(CONFIG_ACPI)
3637 static int spi_acpi_controller_match(struct device *dev, const void *data)
3638 {
3639 	return ACPI_COMPANION(dev->parent) == data;
3640 }
3641 
3642 static int spi_acpi_device_match(struct device *dev, void *data)
3643 {
3644 	return ACPI_COMPANION(dev) == data;
3645 }
3646 
3647 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3648 {
3649 	struct device *dev;
3650 
3651 	dev = class_find_device(&spi_master_class, NULL, adev,
3652 				spi_acpi_controller_match);
3653 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3654 		dev = class_find_device(&spi_slave_class, NULL, adev,
3655 					spi_acpi_controller_match);
3656 	if (!dev)
3657 		return NULL;
3658 
3659 	return container_of(dev, struct spi_controller, dev);
3660 }
3661 
3662 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3663 {
3664 	struct device *dev;
3665 
3666 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3667 
3668 	return dev ? to_spi_device(dev) : NULL;
3669 }
3670 
3671 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3672 			   void *arg)
3673 {
3674 	struct acpi_device *adev = arg;
3675 	struct spi_controller *ctlr;
3676 	struct spi_device *spi;
3677 
3678 	switch (value) {
3679 	case ACPI_RECONFIG_DEVICE_ADD:
3680 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3681 		if (!ctlr)
3682 			break;
3683 
3684 		acpi_register_spi_device(ctlr, adev);
3685 		put_device(&ctlr->dev);
3686 		break;
3687 	case ACPI_RECONFIG_DEVICE_REMOVE:
3688 		if (!acpi_device_enumerated(adev))
3689 			break;
3690 
3691 		spi = acpi_spi_find_device_by_adev(adev);
3692 		if (!spi)
3693 			break;
3694 
3695 		spi_unregister_device(spi);
3696 		put_device(&spi->dev);
3697 		break;
3698 	}
3699 
3700 	return NOTIFY_OK;
3701 }
3702 
3703 static struct notifier_block spi_acpi_notifier = {
3704 	.notifier_call = acpi_spi_notify,
3705 };
3706 #else
3707 extern struct notifier_block spi_acpi_notifier;
3708 #endif
3709 
3710 static int __init spi_init(void)
3711 {
3712 	int	status;
3713 
3714 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3715 	if (!buf) {
3716 		status = -ENOMEM;
3717 		goto err0;
3718 	}
3719 
3720 	status = bus_register(&spi_bus_type);
3721 	if (status < 0)
3722 		goto err1;
3723 
3724 	status = class_register(&spi_master_class);
3725 	if (status < 0)
3726 		goto err2;
3727 
3728 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3729 		status = class_register(&spi_slave_class);
3730 		if (status < 0)
3731 			goto err3;
3732 	}
3733 
3734 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3735 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3736 	if (IS_ENABLED(CONFIG_ACPI))
3737 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3738 
3739 	return 0;
3740 
3741 err3:
3742 	class_unregister(&spi_master_class);
3743 err2:
3744 	bus_unregister(&spi_bus_type);
3745 err1:
3746 	kfree(buf);
3747 	buf = NULL;
3748 err0:
3749 	return status;
3750 }
3751 
3752 /* board_info is normally registered in arch_initcall(),
3753  * but even essential drivers wait till later
3754  *
3755  * REVISIT only boardinfo really needs static linking. the rest (device and
3756  * driver registration) _could_ be dynamically linked (modular) ... costs
3757  * include needing to have boardinfo data structures be much more public.
3758  */
3759 postcore_initcall(spi_init);
3760 
3761