1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/pm_domain.h> 24 #include <linux/property.h> 25 #include <linux/export.h> 26 #include <linux/sched/rt.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/ioport.h> 31 #include <linux/acpi.h> 32 #include <linux/highmem.h> 33 #include <linux/idr.h> 34 #include <linux/platform_data/x86/apple.h> 35 #include <linux/ptp_clock_kernel.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 spi_controller_put(spi->controller); 51 kfree(spi->driver_override); 52 kfree(spi); 53 } 54 55 static ssize_t 56 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 57 { 58 const struct spi_device *spi = to_spi_device(dev); 59 int len; 60 61 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 62 if (len != -ENODEV) 63 return len; 64 65 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 66 } 67 static DEVICE_ATTR_RO(modalias); 68 69 static ssize_t driver_override_store(struct device *dev, 70 struct device_attribute *a, 71 const char *buf, size_t count) 72 { 73 struct spi_device *spi = to_spi_device(dev); 74 int ret; 75 76 ret = driver_set_override(dev, &spi->driver_override, buf, count); 77 if (ret) 78 return ret; 79 80 return count; 81 } 82 83 static ssize_t driver_override_show(struct device *dev, 84 struct device_attribute *a, char *buf) 85 { 86 const struct spi_device *spi = to_spi_device(dev); 87 ssize_t len; 88 89 device_lock(dev); 90 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 91 device_unlock(dev); 92 return len; 93 } 94 static DEVICE_ATTR_RW(driver_override); 95 96 #define SPI_STATISTICS_ATTRS(field, file) \ 97 static ssize_t spi_controller_##field##_show(struct device *dev, \ 98 struct device_attribute *attr, \ 99 char *buf) \ 100 { \ 101 struct spi_controller *ctlr = container_of(dev, \ 102 struct spi_controller, dev); \ 103 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 104 } \ 105 static struct device_attribute dev_attr_spi_controller_##field = { \ 106 .attr = { .name = file, .mode = 0444 }, \ 107 .show = spi_controller_##field##_show, \ 108 }; \ 109 static ssize_t spi_device_##field##_show(struct device *dev, \ 110 struct device_attribute *attr, \ 111 char *buf) \ 112 { \ 113 struct spi_device *spi = to_spi_device(dev); \ 114 return spi_statistics_##field##_show(&spi->statistics, buf); \ 115 } \ 116 static struct device_attribute dev_attr_spi_device_##field = { \ 117 .attr = { .name = file, .mode = 0444 }, \ 118 .show = spi_device_##field##_show, \ 119 } 120 121 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 122 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 123 char *buf) \ 124 { \ 125 unsigned long flags; \ 126 ssize_t len; \ 127 spin_lock_irqsave(&stat->lock, flags); \ 128 len = sysfs_emit(buf, format_string "\n", stat->field); \ 129 spin_unlock_irqrestore(&stat->lock, flags); \ 130 return len; \ 131 } \ 132 SPI_STATISTICS_ATTRS(name, file) 133 134 #define SPI_STATISTICS_SHOW(field, format_string) \ 135 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 136 field, format_string) 137 138 SPI_STATISTICS_SHOW(messages, "%lu"); 139 SPI_STATISTICS_SHOW(transfers, "%lu"); 140 SPI_STATISTICS_SHOW(errors, "%lu"); 141 SPI_STATISTICS_SHOW(timedout, "%lu"); 142 143 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 144 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 145 SPI_STATISTICS_SHOW(spi_async, "%lu"); 146 147 SPI_STATISTICS_SHOW(bytes, "%llu"); 148 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 149 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 150 151 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 152 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 153 "transfer_bytes_histo_" number, \ 154 transfer_bytes_histo[index], "%lu") 155 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 156 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 157 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 158 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 159 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 160 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 161 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 162 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 163 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 164 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 165 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 166 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 167 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 168 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 169 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 170 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 171 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 172 173 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 174 175 static struct attribute *spi_dev_attrs[] = { 176 &dev_attr_modalias.attr, 177 &dev_attr_driver_override.attr, 178 NULL, 179 }; 180 181 static const struct attribute_group spi_dev_group = { 182 .attrs = spi_dev_attrs, 183 }; 184 185 static struct attribute *spi_device_statistics_attrs[] = { 186 &dev_attr_spi_device_messages.attr, 187 &dev_attr_spi_device_transfers.attr, 188 &dev_attr_spi_device_errors.attr, 189 &dev_attr_spi_device_timedout.attr, 190 &dev_attr_spi_device_spi_sync.attr, 191 &dev_attr_spi_device_spi_sync_immediate.attr, 192 &dev_attr_spi_device_spi_async.attr, 193 &dev_attr_spi_device_bytes.attr, 194 &dev_attr_spi_device_bytes_rx.attr, 195 &dev_attr_spi_device_bytes_tx.attr, 196 &dev_attr_spi_device_transfer_bytes_histo0.attr, 197 &dev_attr_spi_device_transfer_bytes_histo1.attr, 198 &dev_attr_spi_device_transfer_bytes_histo2.attr, 199 &dev_attr_spi_device_transfer_bytes_histo3.attr, 200 &dev_attr_spi_device_transfer_bytes_histo4.attr, 201 &dev_attr_spi_device_transfer_bytes_histo5.attr, 202 &dev_attr_spi_device_transfer_bytes_histo6.attr, 203 &dev_attr_spi_device_transfer_bytes_histo7.attr, 204 &dev_attr_spi_device_transfer_bytes_histo8.attr, 205 &dev_attr_spi_device_transfer_bytes_histo9.attr, 206 &dev_attr_spi_device_transfer_bytes_histo10.attr, 207 &dev_attr_spi_device_transfer_bytes_histo11.attr, 208 &dev_attr_spi_device_transfer_bytes_histo12.attr, 209 &dev_attr_spi_device_transfer_bytes_histo13.attr, 210 &dev_attr_spi_device_transfer_bytes_histo14.attr, 211 &dev_attr_spi_device_transfer_bytes_histo15.attr, 212 &dev_attr_spi_device_transfer_bytes_histo16.attr, 213 &dev_attr_spi_device_transfers_split_maxsize.attr, 214 NULL, 215 }; 216 217 static const struct attribute_group spi_device_statistics_group = { 218 .name = "statistics", 219 .attrs = spi_device_statistics_attrs, 220 }; 221 222 static const struct attribute_group *spi_dev_groups[] = { 223 &spi_dev_group, 224 &spi_device_statistics_group, 225 NULL, 226 }; 227 228 static struct attribute *spi_controller_statistics_attrs[] = { 229 &dev_attr_spi_controller_messages.attr, 230 &dev_attr_spi_controller_transfers.attr, 231 &dev_attr_spi_controller_errors.attr, 232 &dev_attr_spi_controller_timedout.attr, 233 &dev_attr_spi_controller_spi_sync.attr, 234 &dev_attr_spi_controller_spi_sync_immediate.attr, 235 &dev_attr_spi_controller_spi_async.attr, 236 &dev_attr_spi_controller_bytes.attr, 237 &dev_attr_spi_controller_bytes_rx.attr, 238 &dev_attr_spi_controller_bytes_tx.attr, 239 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 240 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 241 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 242 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 243 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 244 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 245 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 246 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 247 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 248 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 249 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 250 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 251 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 252 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 253 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 254 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 255 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 256 &dev_attr_spi_controller_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_controller_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_controller_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_master_groups[] = { 266 &spi_controller_statistics_group, 267 NULL, 268 }; 269 270 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 271 struct spi_transfer *xfer, 272 struct spi_controller *ctlr) 273 { 274 unsigned long flags; 275 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 276 277 if (l2len < 0) 278 l2len = 0; 279 280 spin_lock_irqsave(&stats->lock, flags); 281 282 stats->transfers++; 283 stats->transfer_bytes_histo[l2len]++; 284 285 stats->bytes += xfer->len; 286 if ((xfer->tx_buf) && 287 (xfer->tx_buf != ctlr->dummy_tx)) 288 stats->bytes_tx += xfer->len; 289 if ((xfer->rx_buf) && 290 (xfer->rx_buf != ctlr->dummy_rx)) 291 stats->bytes_rx += xfer->len; 292 293 spin_unlock_irqrestore(&stats->lock, flags); 294 } 295 296 /* 297 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 298 * and the sysfs version makes coldplug work too. 299 */ 300 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 301 { 302 while (id->name[0]) { 303 if (!strcmp(name, id->name)) 304 return id; 305 id++; 306 } 307 return NULL; 308 } 309 310 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 311 { 312 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 313 314 return spi_match_id(sdrv->id_table, sdev->modalias); 315 } 316 EXPORT_SYMBOL_GPL(spi_get_device_id); 317 318 static int spi_match_device(struct device *dev, struct device_driver *drv) 319 { 320 const struct spi_device *spi = to_spi_device(dev); 321 const struct spi_driver *sdrv = to_spi_driver(drv); 322 323 /* Check override first, and if set, only use the named driver */ 324 if (spi->driver_override) 325 return strcmp(spi->driver_override, drv->name) == 0; 326 327 /* Attempt an OF style match */ 328 if (of_driver_match_device(dev, drv)) 329 return 1; 330 331 /* Then try ACPI */ 332 if (acpi_driver_match_device(dev, drv)) 333 return 1; 334 335 if (sdrv->id_table) 336 return !!spi_match_id(sdrv->id_table, spi->modalias); 337 338 return strcmp(spi->modalias, drv->name) == 0; 339 } 340 341 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 342 { 343 const struct spi_device *spi = to_spi_device(dev); 344 int rc; 345 346 rc = acpi_device_uevent_modalias(dev, env); 347 if (rc != -ENODEV) 348 return rc; 349 350 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 351 } 352 353 static int spi_probe(struct device *dev) 354 { 355 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 356 struct spi_device *spi = to_spi_device(dev); 357 int ret; 358 359 ret = of_clk_set_defaults(dev->of_node, false); 360 if (ret) 361 return ret; 362 363 if (dev->of_node) { 364 spi->irq = of_irq_get(dev->of_node, 0); 365 if (spi->irq == -EPROBE_DEFER) 366 return -EPROBE_DEFER; 367 if (spi->irq < 0) 368 spi->irq = 0; 369 } 370 371 ret = dev_pm_domain_attach(dev, true); 372 if (ret) 373 return ret; 374 375 if (sdrv->probe) { 376 ret = sdrv->probe(spi); 377 if (ret) 378 dev_pm_domain_detach(dev, true); 379 } 380 381 return ret; 382 } 383 384 static void spi_remove(struct device *dev) 385 { 386 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 387 388 if (sdrv->remove) 389 sdrv->remove(to_spi_device(dev)); 390 391 dev_pm_domain_detach(dev, true); 392 } 393 394 static void spi_shutdown(struct device *dev) 395 { 396 if (dev->driver) { 397 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 398 399 if (sdrv->shutdown) 400 sdrv->shutdown(to_spi_device(dev)); 401 } 402 } 403 404 struct bus_type spi_bus_type = { 405 .name = "spi", 406 .dev_groups = spi_dev_groups, 407 .match = spi_match_device, 408 .uevent = spi_uevent, 409 .probe = spi_probe, 410 .remove = spi_remove, 411 .shutdown = spi_shutdown, 412 }; 413 EXPORT_SYMBOL_GPL(spi_bus_type); 414 415 /** 416 * __spi_register_driver - register a SPI driver 417 * @owner: owner module of the driver to register 418 * @sdrv: the driver to register 419 * Context: can sleep 420 * 421 * Return: zero on success, else a negative error code. 422 */ 423 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 424 { 425 sdrv->driver.owner = owner; 426 sdrv->driver.bus = &spi_bus_type; 427 428 /* 429 * For Really Good Reasons we use spi: modaliases not of: 430 * modaliases for DT so module autoloading won't work if we 431 * don't have a spi_device_id as well as a compatible string. 432 */ 433 if (sdrv->driver.of_match_table) { 434 const struct of_device_id *of_id; 435 436 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 437 of_id++) { 438 const char *of_name; 439 440 /* Strip off any vendor prefix */ 441 of_name = strnchr(of_id->compatible, 442 sizeof(of_id->compatible), ','); 443 if (of_name) 444 of_name++; 445 else 446 of_name = of_id->compatible; 447 448 if (sdrv->id_table) { 449 const struct spi_device_id *spi_id; 450 451 spi_id = spi_match_id(sdrv->id_table, of_name); 452 if (spi_id) 453 continue; 454 } else { 455 if (strcmp(sdrv->driver.name, of_name) == 0) 456 continue; 457 } 458 459 pr_warn("SPI driver %s has no spi_device_id for %s\n", 460 sdrv->driver.name, of_id->compatible); 461 } 462 } 463 464 return driver_register(&sdrv->driver); 465 } 466 EXPORT_SYMBOL_GPL(__spi_register_driver); 467 468 /*-------------------------------------------------------------------------*/ 469 470 /* 471 * SPI devices should normally not be created by SPI device drivers; that 472 * would make them board-specific. Similarly with SPI controller drivers. 473 * Device registration normally goes into like arch/.../mach.../board-YYY.c 474 * with other readonly (flashable) information about mainboard devices. 475 */ 476 477 struct boardinfo { 478 struct list_head list; 479 struct spi_board_info board_info; 480 }; 481 482 static LIST_HEAD(board_list); 483 static LIST_HEAD(spi_controller_list); 484 485 /* 486 * Used to protect add/del operation for board_info list and 487 * spi_controller list, and their matching process also used 488 * to protect object of type struct idr. 489 */ 490 static DEFINE_MUTEX(board_lock); 491 492 /** 493 * spi_alloc_device - Allocate a new SPI device 494 * @ctlr: Controller to which device is connected 495 * Context: can sleep 496 * 497 * Allows a driver to allocate and initialize a spi_device without 498 * registering it immediately. This allows a driver to directly 499 * fill the spi_device with device parameters before calling 500 * spi_add_device() on it. 501 * 502 * Caller is responsible to call spi_add_device() on the returned 503 * spi_device structure to add it to the SPI controller. If the caller 504 * needs to discard the spi_device without adding it, then it should 505 * call spi_dev_put() on it. 506 * 507 * Return: a pointer to the new device, or NULL. 508 */ 509 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 510 { 511 struct spi_device *spi; 512 513 if (!spi_controller_get(ctlr)) 514 return NULL; 515 516 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 517 if (!spi) { 518 spi_controller_put(ctlr); 519 return NULL; 520 } 521 522 spi->master = spi->controller = ctlr; 523 spi->dev.parent = &ctlr->dev; 524 spi->dev.bus = &spi_bus_type; 525 spi->dev.release = spidev_release; 526 spi->mode = ctlr->buswidth_override_bits; 527 528 spin_lock_init(&spi->statistics.lock); 529 530 device_initialize(&spi->dev); 531 return spi; 532 } 533 EXPORT_SYMBOL_GPL(spi_alloc_device); 534 535 static void spi_dev_set_name(struct spi_device *spi) 536 { 537 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 538 539 if (adev) { 540 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 541 return; 542 } 543 544 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 545 spi->chip_select); 546 } 547 548 static int spi_dev_check(struct device *dev, void *data) 549 { 550 struct spi_device *spi = to_spi_device(dev); 551 struct spi_device *new_spi = data; 552 553 if (spi->controller == new_spi->controller && 554 spi->chip_select == new_spi->chip_select) 555 return -EBUSY; 556 return 0; 557 } 558 559 static void spi_cleanup(struct spi_device *spi) 560 { 561 if (spi->controller->cleanup) 562 spi->controller->cleanup(spi); 563 } 564 565 static int __spi_add_device(struct spi_device *spi) 566 { 567 struct spi_controller *ctlr = spi->controller; 568 struct device *dev = ctlr->dev.parent; 569 int status; 570 571 /* 572 * We need to make sure there's no other device with this 573 * chipselect **BEFORE** we call setup(), else we'll trash 574 * its configuration. 575 */ 576 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 577 if (status) { 578 dev_err(dev, "chipselect %d already in use\n", 579 spi->chip_select); 580 return status; 581 } 582 583 /* Controller may unregister concurrently */ 584 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 585 !device_is_registered(&ctlr->dev)) { 586 return -ENODEV; 587 } 588 589 if (ctlr->cs_gpiods) 590 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 591 592 /* 593 * Drivers may modify this initial i/o setup, but will 594 * normally rely on the device being setup. Devices 595 * using SPI_CS_HIGH can't coexist well otherwise... 596 */ 597 status = spi_setup(spi); 598 if (status < 0) { 599 dev_err(dev, "can't setup %s, status %d\n", 600 dev_name(&spi->dev), status); 601 return status; 602 } 603 604 /* Device may be bound to an active driver when this returns */ 605 status = device_add(&spi->dev); 606 if (status < 0) { 607 dev_err(dev, "can't add %s, status %d\n", 608 dev_name(&spi->dev), status); 609 spi_cleanup(spi); 610 } else { 611 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 612 } 613 614 return status; 615 } 616 617 /** 618 * spi_add_device - Add spi_device allocated with spi_alloc_device 619 * @spi: spi_device to register 620 * 621 * Companion function to spi_alloc_device. Devices allocated with 622 * spi_alloc_device can be added onto the spi bus with this function. 623 * 624 * Return: 0 on success; negative errno on failure 625 */ 626 int spi_add_device(struct spi_device *spi) 627 { 628 struct spi_controller *ctlr = spi->controller; 629 struct device *dev = ctlr->dev.parent; 630 int status; 631 632 /* Chipselects are numbered 0..max; validate. */ 633 if (spi->chip_select >= ctlr->num_chipselect) { 634 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 635 ctlr->num_chipselect); 636 return -EINVAL; 637 } 638 639 /* Set the bus ID string */ 640 spi_dev_set_name(spi); 641 642 mutex_lock(&ctlr->add_lock); 643 status = __spi_add_device(spi); 644 mutex_unlock(&ctlr->add_lock); 645 return status; 646 } 647 EXPORT_SYMBOL_GPL(spi_add_device); 648 649 static int spi_add_device_locked(struct spi_device *spi) 650 { 651 struct spi_controller *ctlr = spi->controller; 652 struct device *dev = ctlr->dev.parent; 653 654 /* Chipselects are numbered 0..max; validate. */ 655 if (spi->chip_select >= ctlr->num_chipselect) { 656 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 657 ctlr->num_chipselect); 658 return -EINVAL; 659 } 660 661 /* Set the bus ID string */ 662 spi_dev_set_name(spi); 663 664 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 665 return __spi_add_device(spi); 666 } 667 668 /** 669 * spi_new_device - instantiate one new SPI device 670 * @ctlr: Controller to which device is connected 671 * @chip: Describes the SPI device 672 * Context: can sleep 673 * 674 * On typical mainboards, this is purely internal; and it's not needed 675 * after board init creates the hard-wired devices. Some development 676 * platforms may not be able to use spi_register_board_info though, and 677 * this is exported so that for example a USB or parport based adapter 678 * driver could add devices (which it would learn about out-of-band). 679 * 680 * Return: the new device, or NULL. 681 */ 682 struct spi_device *spi_new_device(struct spi_controller *ctlr, 683 struct spi_board_info *chip) 684 { 685 struct spi_device *proxy; 686 int status; 687 688 /* 689 * NOTE: caller did any chip->bus_num checks necessary. 690 * 691 * Also, unless we change the return value convention to use 692 * error-or-pointer (not NULL-or-pointer), troubleshootability 693 * suggests syslogged diagnostics are best here (ugh). 694 */ 695 696 proxy = spi_alloc_device(ctlr); 697 if (!proxy) 698 return NULL; 699 700 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 701 702 proxy->chip_select = chip->chip_select; 703 proxy->max_speed_hz = chip->max_speed_hz; 704 proxy->mode = chip->mode; 705 proxy->irq = chip->irq; 706 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 707 proxy->dev.platform_data = (void *) chip->platform_data; 708 proxy->controller_data = chip->controller_data; 709 proxy->controller_state = NULL; 710 711 if (chip->swnode) { 712 status = device_add_software_node(&proxy->dev, chip->swnode); 713 if (status) { 714 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 715 chip->modalias, status); 716 goto err_dev_put; 717 } 718 } 719 720 status = spi_add_device(proxy); 721 if (status < 0) 722 goto err_dev_put; 723 724 return proxy; 725 726 err_dev_put: 727 device_remove_software_node(&proxy->dev); 728 spi_dev_put(proxy); 729 return NULL; 730 } 731 EXPORT_SYMBOL_GPL(spi_new_device); 732 733 /** 734 * spi_unregister_device - unregister a single SPI device 735 * @spi: spi_device to unregister 736 * 737 * Start making the passed SPI device vanish. Normally this would be handled 738 * by spi_unregister_controller(). 739 */ 740 void spi_unregister_device(struct spi_device *spi) 741 { 742 if (!spi) 743 return; 744 745 if (spi->dev.of_node) { 746 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 747 of_node_put(spi->dev.of_node); 748 } 749 if (ACPI_COMPANION(&spi->dev)) 750 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 751 device_remove_software_node(&spi->dev); 752 device_del(&spi->dev); 753 spi_cleanup(spi); 754 put_device(&spi->dev); 755 } 756 EXPORT_SYMBOL_GPL(spi_unregister_device); 757 758 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 759 struct spi_board_info *bi) 760 { 761 struct spi_device *dev; 762 763 if (ctlr->bus_num != bi->bus_num) 764 return; 765 766 dev = spi_new_device(ctlr, bi); 767 if (!dev) 768 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 769 bi->modalias); 770 } 771 772 /** 773 * spi_register_board_info - register SPI devices for a given board 774 * @info: array of chip descriptors 775 * @n: how many descriptors are provided 776 * Context: can sleep 777 * 778 * Board-specific early init code calls this (probably during arch_initcall) 779 * with segments of the SPI device table. Any device nodes are created later, 780 * after the relevant parent SPI controller (bus_num) is defined. We keep 781 * this table of devices forever, so that reloading a controller driver will 782 * not make Linux forget about these hard-wired devices. 783 * 784 * Other code can also call this, e.g. a particular add-on board might provide 785 * SPI devices through its expansion connector, so code initializing that board 786 * would naturally declare its SPI devices. 787 * 788 * The board info passed can safely be __initdata ... but be careful of 789 * any embedded pointers (platform_data, etc), they're copied as-is. 790 * 791 * Return: zero on success, else a negative error code. 792 */ 793 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 794 { 795 struct boardinfo *bi; 796 int i; 797 798 if (!n) 799 return 0; 800 801 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 802 if (!bi) 803 return -ENOMEM; 804 805 for (i = 0; i < n; i++, bi++, info++) { 806 struct spi_controller *ctlr; 807 808 memcpy(&bi->board_info, info, sizeof(*info)); 809 810 mutex_lock(&board_lock); 811 list_add_tail(&bi->list, &board_list); 812 list_for_each_entry(ctlr, &spi_controller_list, list) 813 spi_match_controller_to_boardinfo(ctlr, 814 &bi->board_info); 815 mutex_unlock(&board_lock); 816 } 817 818 return 0; 819 } 820 821 /*-------------------------------------------------------------------------*/ 822 823 /* Core methods for SPI resource management */ 824 825 /** 826 * spi_res_alloc - allocate a spi resource that is life-cycle managed 827 * during the processing of a spi_message while using 828 * spi_transfer_one 829 * @spi: the spi device for which we allocate memory 830 * @release: the release code to execute for this resource 831 * @size: size to alloc and return 832 * @gfp: GFP allocation flags 833 * 834 * Return: the pointer to the allocated data 835 * 836 * This may get enhanced in the future to allocate from a memory pool 837 * of the @spi_device or @spi_controller to avoid repeated allocations. 838 */ 839 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 840 size_t size, gfp_t gfp) 841 { 842 struct spi_res *sres; 843 844 sres = kzalloc(sizeof(*sres) + size, gfp); 845 if (!sres) 846 return NULL; 847 848 INIT_LIST_HEAD(&sres->entry); 849 sres->release = release; 850 851 return sres->data; 852 } 853 854 /** 855 * spi_res_free - free an spi resource 856 * @res: pointer to the custom data of a resource 857 */ 858 static void spi_res_free(void *res) 859 { 860 struct spi_res *sres = container_of(res, struct spi_res, data); 861 862 if (!res) 863 return; 864 865 WARN_ON(!list_empty(&sres->entry)); 866 kfree(sres); 867 } 868 869 /** 870 * spi_res_add - add a spi_res to the spi_message 871 * @message: the spi message 872 * @res: the spi_resource 873 */ 874 static void spi_res_add(struct spi_message *message, void *res) 875 { 876 struct spi_res *sres = container_of(res, struct spi_res, data); 877 878 WARN_ON(!list_empty(&sres->entry)); 879 list_add_tail(&sres->entry, &message->resources); 880 } 881 882 /** 883 * spi_res_release - release all spi resources for this message 884 * @ctlr: the @spi_controller 885 * @message: the @spi_message 886 */ 887 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 888 { 889 struct spi_res *res, *tmp; 890 891 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 892 if (res->release) 893 res->release(ctlr, message, res->data); 894 895 list_del(&res->entry); 896 897 kfree(res); 898 } 899 } 900 901 /*-------------------------------------------------------------------------*/ 902 903 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 904 { 905 bool activate = enable; 906 907 /* 908 * Avoid calling into the driver (or doing delays) if the chip select 909 * isn't actually changing from the last time this was called. 910 */ 911 if (!force && ((enable && spi->controller->last_cs == spi->chip_select) || 912 (!enable && spi->controller->last_cs != spi->chip_select)) && 913 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 914 return; 915 916 trace_spi_set_cs(spi, activate); 917 918 spi->controller->last_cs = enable ? spi->chip_select : -1; 919 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 920 921 if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) { 922 spi_delay_exec(&spi->cs_hold, NULL); 923 } 924 925 if (spi->mode & SPI_CS_HIGH) 926 enable = !enable; 927 928 if (spi->cs_gpiod) { 929 if (!(spi->mode & SPI_NO_CS)) { 930 /* 931 * Historically ACPI has no means of the GPIO polarity and 932 * thus the SPISerialBus() resource defines it on the per-chip 933 * basis. In order to avoid a chain of negations, the GPIO 934 * polarity is considered being Active High. Even for the cases 935 * when _DSD() is involved (in the updated versions of ACPI) 936 * the GPIO CS polarity must be defined Active High to avoid 937 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 938 * into account. 939 */ 940 if (has_acpi_companion(&spi->dev)) 941 gpiod_set_value_cansleep(spi->cs_gpiod, !enable); 942 else 943 /* Polarity handled by GPIO library */ 944 gpiod_set_value_cansleep(spi->cs_gpiod, activate); 945 } 946 /* Some SPI masters need both GPIO CS & slave_select */ 947 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 948 spi->controller->set_cs) 949 spi->controller->set_cs(spi, !enable); 950 } else if (spi->controller->set_cs) { 951 spi->controller->set_cs(spi, !enable); 952 } 953 954 if (spi->cs_gpiod || !spi->controller->set_cs_timing) { 955 if (activate) 956 spi_delay_exec(&spi->cs_setup, NULL); 957 else 958 spi_delay_exec(&spi->cs_inactive, NULL); 959 } 960 } 961 962 #ifdef CONFIG_HAS_DMA 963 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 964 struct sg_table *sgt, void *buf, size_t len, 965 enum dma_data_direction dir) 966 { 967 const bool vmalloced_buf = is_vmalloc_addr(buf); 968 unsigned int max_seg_size = dma_get_max_seg_size(dev); 969 #ifdef CONFIG_HIGHMEM 970 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 971 (unsigned long)buf < (PKMAP_BASE + 972 (LAST_PKMAP * PAGE_SIZE))); 973 #else 974 const bool kmap_buf = false; 975 #endif 976 int desc_len; 977 int sgs; 978 struct page *vm_page; 979 struct scatterlist *sg; 980 void *sg_buf; 981 size_t min; 982 int i, ret; 983 984 if (vmalloced_buf || kmap_buf) { 985 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 986 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 987 } else if (virt_addr_valid(buf)) { 988 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 989 sgs = DIV_ROUND_UP(len, desc_len); 990 } else { 991 return -EINVAL; 992 } 993 994 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 995 if (ret != 0) 996 return ret; 997 998 sg = &sgt->sgl[0]; 999 for (i = 0; i < sgs; i++) { 1000 1001 if (vmalloced_buf || kmap_buf) { 1002 /* 1003 * Next scatterlist entry size is the minimum between 1004 * the desc_len and the remaining buffer length that 1005 * fits in a page. 1006 */ 1007 min = min_t(size_t, desc_len, 1008 min_t(size_t, len, 1009 PAGE_SIZE - offset_in_page(buf))); 1010 if (vmalloced_buf) 1011 vm_page = vmalloc_to_page(buf); 1012 else 1013 vm_page = kmap_to_page(buf); 1014 if (!vm_page) { 1015 sg_free_table(sgt); 1016 return -ENOMEM; 1017 } 1018 sg_set_page(sg, vm_page, 1019 min, offset_in_page(buf)); 1020 } else { 1021 min = min_t(size_t, len, desc_len); 1022 sg_buf = buf; 1023 sg_set_buf(sg, sg_buf, min); 1024 } 1025 1026 buf += min; 1027 len -= min; 1028 sg = sg_next(sg); 1029 } 1030 1031 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 1032 if (!ret) 1033 ret = -ENOMEM; 1034 if (ret < 0) { 1035 sg_free_table(sgt); 1036 return ret; 1037 } 1038 1039 sgt->nents = ret; 1040 1041 return 0; 1042 } 1043 1044 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1045 struct sg_table *sgt, enum dma_data_direction dir) 1046 { 1047 if (sgt->orig_nents) { 1048 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 1049 sg_free_table(sgt); 1050 } 1051 } 1052 1053 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1054 { 1055 struct device *tx_dev, *rx_dev; 1056 struct spi_transfer *xfer; 1057 int ret; 1058 1059 if (!ctlr->can_dma) 1060 return 0; 1061 1062 if (ctlr->dma_tx) 1063 tx_dev = ctlr->dma_tx->device->dev; 1064 else if (ctlr->dma_map_dev) 1065 tx_dev = ctlr->dma_map_dev; 1066 else 1067 tx_dev = ctlr->dev.parent; 1068 1069 if (ctlr->dma_rx) 1070 rx_dev = ctlr->dma_rx->device->dev; 1071 else if (ctlr->dma_map_dev) 1072 rx_dev = ctlr->dma_map_dev; 1073 else 1074 rx_dev = ctlr->dev.parent; 1075 1076 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1077 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1078 continue; 1079 1080 if (xfer->tx_buf != NULL) { 1081 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 1082 (void *)xfer->tx_buf, xfer->len, 1083 DMA_TO_DEVICE); 1084 if (ret != 0) 1085 return ret; 1086 } 1087 1088 if (xfer->rx_buf != NULL) { 1089 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 1090 xfer->rx_buf, xfer->len, 1091 DMA_FROM_DEVICE); 1092 if (ret != 0) { 1093 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 1094 DMA_TO_DEVICE); 1095 return ret; 1096 } 1097 } 1098 } 1099 1100 ctlr->cur_msg_mapped = true; 1101 1102 return 0; 1103 } 1104 1105 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1106 { 1107 struct spi_transfer *xfer; 1108 struct device *tx_dev, *rx_dev; 1109 1110 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1111 return 0; 1112 1113 if (ctlr->dma_tx) 1114 tx_dev = ctlr->dma_tx->device->dev; 1115 else if (ctlr->dma_map_dev) 1116 tx_dev = ctlr->dma_map_dev; 1117 else 1118 tx_dev = ctlr->dev.parent; 1119 1120 if (ctlr->dma_rx) 1121 rx_dev = ctlr->dma_rx->device->dev; 1122 else if (ctlr->dma_map_dev) 1123 rx_dev = ctlr->dma_map_dev; 1124 else 1125 rx_dev = ctlr->dev.parent; 1126 1127 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1128 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1129 continue; 1130 1131 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1132 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1133 } 1134 1135 ctlr->cur_msg_mapped = false; 1136 1137 return 0; 1138 } 1139 #else /* !CONFIG_HAS_DMA */ 1140 static inline int __spi_map_msg(struct spi_controller *ctlr, 1141 struct spi_message *msg) 1142 { 1143 return 0; 1144 } 1145 1146 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1147 struct spi_message *msg) 1148 { 1149 return 0; 1150 } 1151 #endif /* !CONFIG_HAS_DMA */ 1152 1153 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1154 struct spi_message *msg) 1155 { 1156 struct spi_transfer *xfer; 1157 1158 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1159 /* 1160 * Restore the original value of tx_buf or rx_buf if they are 1161 * NULL. 1162 */ 1163 if (xfer->tx_buf == ctlr->dummy_tx) 1164 xfer->tx_buf = NULL; 1165 if (xfer->rx_buf == ctlr->dummy_rx) 1166 xfer->rx_buf = NULL; 1167 } 1168 1169 return __spi_unmap_msg(ctlr, msg); 1170 } 1171 1172 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1173 { 1174 struct spi_transfer *xfer; 1175 void *tmp; 1176 unsigned int max_tx, max_rx; 1177 1178 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1179 && !(msg->spi->mode & SPI_3WIRE)) { 1180 max_tx = 0; 1181 max_rx = 0; 1182 1183 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1184 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1185 !xfer->tx_buf) 1186 max_tx = max(xfer->len, max_tx); 1187 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1188 !xfer->rx_buf) 1189 max_rx = max(xfer->len, max_rx); 1190 } 1191 1192 if (max_tx) { 1193 tmp = krealloc(ctlr->dummy_tx, max_tx, 1194 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1195 if (!tmp) 1196 return -ENOMEM; 1197 ctlr->dummy_tx = tmp; 1198 } 1199 1200 if (max_rx) { 1201 tmp = krealloc(ctlr->dummy_rx, max_rx, 1202 GFP_KERNEL | GFP_DMA); 1203 if (!tmp) 1204 return -ENOMEM; 1205 ctlr->dummy_rx = tmp; 1206 } 1207 1208 if (max_tx || max_rx) { 1209 list_for_each_entry(xfer, &msg->transfers, 1210 transfer_list) { 1211 if (!xfer->len) 1212 continue; 1213 if (!xfer->tx_buf) 1214 xfer->tx_buf = ctlr->dummy_tx; 1215 if (!xfer->rx_buf) 1216 xfer->rx_buf = ctlr->dummy_rx; 1217 } 1218 } 1219 } 1220 1221 return __spi_map_msg(ctlr, msg); 1222 } 1223 1224 static int spi_transfer_wait(struct spi_controller *ctlr, 1225 struct spi_message *msg, 1226 struct spi_transfer *xfer) 1227 { 1228 struct spi_statistics *statm = &ctlr->statistics; 1229 struct spi_statistics *stats = &msg->spi->statistics; 1230 u32 speed_hz = xfer->speed_hz; 1231 unsigned long long ms; 1232 1233 if (spi_controller_is_slave(ctlr)) { 1234 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1235 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1236 return -EINTR; 1237 } 1238 } else { 1239 if (!speed_hz) 1240 speed_hz = 100000; 1241 1242 /* 1243 * For each byte we wait for 8 cycles of the SPI clock. 1244 * Since speed is defined in Hz and we want milliseconds, 1245 * use respective multiplier, but before the division, 1246 * otherwise we may get 0 for short transfers. 1247 */ 1248 ms = 8LL * MSEC_PER_SEC * xfer->len; 1249 do_div(ms, speed_hz); 1250 1251 /* 1252 * Increase it twice and add 200 ms tolerance, use 1253 * predefined maximum in case of overflow. 1254 */ 1255 ms += ms + 200; 1256 if (ms > UINT_MAX) 1257 ms = UINT_MAX; 1258 1259 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1260 msecs_to_jiffies(ms)); 1261 1262 if (ms == 0) { 1263 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1264 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1265 dev_err(&msg->spi->dev, 1266 "SPI transfer timed out\n"); 1267 return -ETIMEDOUT; 1268 } 1269 } 1270 1271 return 0; 1272 } 1273 1274 static void _spi_transfer_delay_ns(u32 ns) 1275 { 1276 if (!ns) 1277 return; 1278 if (ns <= NSEC_PER_USEC) { 1279 ndelay(ns); 1280 } else { 1281 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1282 1283 if (us <= 10) 1284 udelay(us); 1285 else 1286 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1287 } 1288 } 1289 1290 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1291 { 1292 u32 delay = _delay->value; 1293 u32 unit = _delay->unit; 1294 u32 hz; 1295 1296 if (!delay) 1297 return 0; 1298 1299 switch (unit) { 1300 case SPI_DELAY_UNIT_USECS: 1301 delay *= NSEC_PER_USEC; 1302 break; 1303 case SPI_DELAY_UNIT_NSECS: 1304 /* Nothing to do here */ 1305 break; 1306 case SPI_DELAY_UNIT_SCK: 1307 /* clock cycles need to be obtained from spi_transfer */ 1308 if (!xfer) 1309 return -EINVAL; 1310 /* 1311 * If there is unknown effective speed, approximate it 1312 * by underestimating with half of the requested hz. 1313 */ 1314 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1315 if (!hz) 1316 return -EINVAL; 1317 1318 /* Convert delay to nanoseconds */ 1319 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1320 break; 1321 default: 1322 return -EINVAL; 1323 } 1324 1325 return delay; 1326 } 1327 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1328 1329 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1330 { 1331 int delay; 1332 1333 might_sleep(); 1334 1335 if (!_delay) 1336 return -EINVAL; 1337 1338 delay = spi_delay_to_ns(_delay, xfer); 1339 if (delay < 0) 1340 return delay; 1341 1342 _spi_transfer_delay_ns(delay); 1343 1344 return 0; 1345 } 1346 EXPORT_SYMBOL_GPL(spi_delay_exec); 1347 1348 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1349 struct spi_transfer *xfer) 1350 { 1351 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1352 u32 delay = xfer->cs_change_delay.value; 1353 u32 unit = xfer->cs_change_delay.unit; 1354 int ret; 1355 1356 /* return early on "fast" mode - for everything but USECS */ 1357 if (!delay) { 1358 if (unit == SPI_DELAY_UNIT_USECS) 1359 _spi_transfer_delay_ns(default_delay_ns); 1360 return; 1361 } 1362 1363 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1364 if (ret) { 1365 dev_err_once(&msg->spi->dev, 1366 "Use of unsupported delay unit %i, using default of %luus\n", 1367 unit, default_delay_ns / NSEC_PER_USEC); 1368 _spi_transfer_delay_ns(default_delay_ns); 1369 } 1370 } 1371 1372 /* 1373 * spi_transfer_one_message - Default implementation of transfer_one_message() 1374 * 1375 * This is a standard implementation of transfer_one_message() for 1376 * drivers which implement a transfer_one() operation. It provides 1377 * standard handling of delays and chip select management. 1378 */ 1379 static int spi_transfer_one_message(struct spi_controller *ctlr, 1380 struct spi_message *msg) 1381 { 1382 struct spi_transfer *xfer; 1383 bool keep_cs = false; 1384 int ret = 0; 1385 struct spi_statistics *statm = &ctlr->statistics; 1386 struct spi_statistics *stats = &msg->spi->statistics; 1387 1388 spi_set_cs(msg->spi, true, false); 1389 1390 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1391 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1392 1393 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1394 trace_spi_transfer_start(msg, xfer); 1395 1396 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1397 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1398 1399 if (!ctlr->ptp_sts_supported) { 1400 xfer->ptp_sts_word_pre = 0; 1401 ptp_read_system_prets(xfer->ptp_sts); 1402 } 1403 1404 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1405 reinit_completion(&ctlr->xfer_completion); 1406 1407 fallback_pio: 1408 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1409 if (ret < 0) { 1410 if (ctlr->cur_msg_mapped && 1411 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1412 __spi_unmap_msg(ctlr, msg); 1413 ctlr->fallback = true; 1414 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1415 goto fallback_pio; 1416 } 1417 1418 SPI_STATISTICS_INCREMENT_FIELD(statm, 1419 errors); 1420 SPI_STATISTICS_INCREMENT_FIELD(stats, 1421 errors); 1422 dev_err(&msg->spi->dev, 1423 "SPI transfer failed: %d\n", ret); 1424 goto out; 1425 } 1426 1427 if (ret > 0) { 1428 ret = spi_transfer_wait(ctlr, msg, xfer); 1429 if (ret < 0) 1430 msg->status = ret; 1431 } 1432 } else { 1433 if (xfer->len) 1434 dev_err(&msg->spi->dev, 1435 "Bufferless transfer has length %u\n", 1436 xfer->len); 1437 } 1438 1439 if (!ctlr->ptp_sts_supported) { 1440 ptp_read_system_postts(xfer->ptp_sts); 1441 xfer->ptp_sts_word_post = xfer->len; 1442 } 1443 1444 trace_spi_transfer_stop(msg, xfer); 1445 1446 if (msg->status != -EINPROGRESS) 1447 goto out; 1448 1449 spi_transfer_delay_exec(xfer); 1450 1451 if (xfer->cs_change) { 1452 if (list_is_last(&xfer->transfer_list, 1453 &msg->transfers)) { 1454 keep_cs = true; 1455 } else { 1456 spi_set_cs(msg->spi, false, false); 1457 _spi_transfer_cs_change_delay(msg, xfer); 1458 spi_set_cs(msg->spi, true, false); 1459 } 1460 } 1461 1462 msg->actual_length += xfer->len; 1463 } 1464 1465 out: 1466 if (ret != 0 || !keep_cs) 1467 spi_set_cs(msg->spi, false, false); 1468 1469 if (msg->status == -EINPROGRESS) 1470 msg->status = ret; 1471 1472 if (msg->status && ctlr->handle_err) 1473 ctlr->handle_err(ctlr, msg); 1474 1475 spi_finalize_current_message(ctlr); 1476 1477 return ret; 1478 } 1479 1480 /** 1481 * spi_finalize_current_transfer - report completion of a transfer 1482 * @ctlr: the controller reporting completion 1483 * 1484 * Called by SPI drivers using the core transfer_one_message() 1485 * implementation to notify it that the current interrupt driven 1486 * transfer has finished and the next one may be scheduled. 1487 */ 1488 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1489 { 1490 complete(&ctlr->xfer_completion); 1491 } 1492 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1493 1494 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1495 { 1496 if (ctlr->auto_runtime_pm) { 1497 pm_runtime_mark_last_busy(ctlr->dev.parent); 1498 pm_runtime_put_autosuspend(ctlr->dev.parent); 1499 } 1500 } 1501 1502 /** 1503 * __spi_pump_messages - function which processes spi message queue 1504 * @ctlr: controller to process queue for 1505 * @in_kthread: true if we are in the context of the message pump thread 1506 * 1507 * This function checks if there is any spi message in the queue that 1508 * needs processing and if so call out to the driver to initialize hardware 1509 * and transfer each message. 1510 * 1511 * Note that it is called both from the kthread itself and also from 1512 * inside spi_sync(); the queue extraction handling at the top of the 1513 * function should deal with this safely. 1514 */ 1515 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1516 { 1517 struct spi_transfer *xfer; 1518 struct spi_message *msg; 1519 bool was_busy = false; 1520 unsigned long flags; 1521 int ret; 1522 1523 /* Lock queue */ 1524 spin_lock_irqsave(&ctlr->queue_lock, flags); 1525 1526 /* Make sure we are not already running a message */ 1527 if (ctlr->cur_msg) { 1528 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1529 return; 1530 } 1531 1532 /* If another context is idling the device then defer */ 1533 if (ctlr->idling) { 1534 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1535 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1536 return; 1537 } 1538 1539 /* Check if the queue is idle */ 1540 if (list_empty(&ctlr->queue) || !ctlr->running) { 1541 if (!ctlr->busy) { 1542 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1543 return; 1544 } 1545 1546 /* Defer any non-atomic teardown to the thread */ 1547 if (!in_kthread) { 1548 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1549 !ctlr->unprepare_transfer_hardware) { 1550 spi_idle_runtime_pm(ctlr); 1551 ctlr->busy = false; 1552 trace_spi_controller_idle(ctlr); 1553 } else { 1554 kthread_queue_work(ctlr->kworker, 1555 &ctlr->pump_messages); 1556 } 1557 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1558 return; 1559 } 1560 1561 ctlr->busy = false; 1562 ctlr->idling = true; 1563 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1564 1565 kfree(ctlr->dummy_rx); 1566 ctlr->dummy_rx = NULL; 1567 kfree(ctlr->dummy_tx); 1568 ctlr->dummy_tx = NULL; 1569 if (ctlr->unprepare_transfer_hardware && 1570 ctlr->unprepare_transfer_hardware(ctlr)) 1571 dev_err(&ctlr->dev, 1572 "failed to unprepare transfer hardware\n"); 1573 spi_idle_runtime_pm(ctlr); 1574 trace_spi_controller_idle(ctlr); 1575 1576 spin_lock_irqsave(&ctlr->queue_lock, flags); 1577 ctlr->idling = false; 1578 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1579 return; 1580 } 1581 1582 /* Extract head of queue */ 1583 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1584 ctlr->cur_msg = msg; 1585 1586 list_del_init(&msg->queue); 1587 if (ctlr->busy) 1588 was_busy = true; 1589 else 1590 ctlr->busy = true; 1591 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1592 1593 mutex_lock(&ctlr->io_mutex); 1594 1595 if (!was_busy && ctlr->auto_runtime_pm) { 1596 ret = pm_runtime_resume_and_get(ctlr->dev.parent); 1597 if (ret < 0) { 1598 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1599 ret); 1600 mutex_unlock(&ctlr->io_mutex); 1601 return; 1602 } 1603 } 1604 1605 if (!was_busy) 1606 trace_spi_controller_busy(ctlr); 1607 1608 if (!was_busy && ctlr->prepare_transfer_hardware) { 1609 ret = ctlr->prepare_transfer_hardware(ctlr); 1610 if (ret) { 1611 dev_err(&ctlr->dev, 1612 "failed to prepare transfer hardware: %d\n", 1613 ret); 1614 1615 if (ctlr->auto_runtime_pm) 1616 pm_runtime_put(ctlr->dev.parent); 1617 1618 msg->status = ret; 1619 spi_finalize_current_message(ctlr); 1620 1621 mutex_unlock(&ctlr->io_mutex); 1622 return; 1623 } 1624 } 1625 1626 trace_spi_message_start(msg); 1627 1628 if (ctlr->prepare_message) { 1629 ret = ctlr->prepare_message(ctlr, msg); 1630 if (ret) { 1631 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1632 ret); 1633 msg->status = ret; 1634 spi_finalize_current_message(ctlr); 1635 goto out; 1636 } 1637 ctlr->cur_msg_prepared = true; 1638 } 1639 1640 ret = spi_map_msg(ctlr, msg); 1641 if (ret) { 1642 msg->status = ret; 1643 spi_finalize_current_message(ctlr); 1644 goto out; 1645 } 1646 1647 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1648 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1649 xfer->ptp_sts_word_pre = 0; 1650 ptp_read_system_prets(xfer->ptp_sts); 1651 } 1652 } 1653 1654 ret = ctlr->transfer_one_message(ctlr, msg); 1655 if (ret) { 1656 dev_err(&ctlr->dev, 1657 "failed to transfer one message from queue: %d\n", 1658 ret); 1659 goto out; 1660 } 1661 1662 out: 1663 mutex_unlock(&ctlr->io_mutex); 1664 1665 /* Prod the scheduler in case transfer_one() was busy waiting */ 1666 if (!ret) 1667 cond_resched(); 1668 } 1669 1670 /** 1671 * spi_pump_messages - kthread work function which processes spi message queue 1672 * @work: pointer to kthread work struct contained in the controller struct 1673 */ 1674 static void spi_pump_messages(struct kthread_work *work) 1675 { 1676 struct spi_controller *ctlr = 1677 container_of(work, struct spi_controller, pump_messages); 1678 1679 __spi_pump_messages(ctlr, true); 1680 } 1681 1682 /** 1683 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1684 * @ctlr: Pointer to the spi_controller structure of the driver 1685 * @xfer: Pointer to the transfer being timestamped 1686 * @progress: How many words (not bytes) have been transferred so far 1687 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1688 * transfer, for less jitter in time measurement. Only compatible 1689 * with PIO drivers. If true, must follow up with 1690 * spi_take_timestamp_post or otherwise system will crash. 1691 * WARNING: for fully predictable results, the CPU frequency must 1692 * also be under control (governor). 1693 * 1694 * This is a helper for drivers to collect the beginning of the TX timestamp 1695 * for the requested byte from the SPI transfer. The frequency with which this 1696 * function must be called (once per word, once for the whole transfer, once 1697 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1698 * greater than or equal to the requested byte at the time of the call. The 1699 * timestamp is only taken once, at the first such call. It is assumed that 1700 * the driver advances its @tx buffer pointer monotonically. 1701 */ 1702 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1703 struct spi_transfer *xfer, 1704 size_t progress, bool irqs_off) 1705 { 1706 if (!xfer->ptp_sts) 1707 return; 1708 1709 if (xfer->timestamped) 1710 return; 1711 1712 if (progress > xfer->ptp_sts_word_pre) 1713 return; 1714 1715 /* Capture the resolution of the timestamp */ 1716 xfer->ptp_sts_word_pre = progress; 1717 1718 if (irqs_off) { 1719 local_irq_save(ctlr->irq_flags); 1720 preempt_disable(); 1721 } 1722 1723 ptp_read_system_prets(xfer->ptp_sts); 1724 } 1725 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1726 1727 /** 1728 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1729 * @ctlr: Pointer to the spi_controller structure of the driver 1730 * @xfer: Pointer to the transfer being timestamped 1731 * @progress: How many words (not bytes) have been transferred so far 1732 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1733 * 1734 * This is a helper for drivers to collect the end of the TX timestamp for 1735 * the requested byte from the SPI transfer. Can be called with an arbitrary 1736 * frequency: only the first call where @tx exceeds or is equal to the 1737 * requested word will be timestamped. 1738 */ 1739 void spi_take_timestamp_post(struct spi_controller *ctlr, 1740 struct spi_transfer *xfer, 1741 size_t progress, bool irqs_off) 1742 { 1743 if (!xfer->ptp_sts) 1744 return; 1745 1746 if (xfer->timestamped) 1747 return; 1748 1749 if (progress < xfer->ptp_sts_word_post) 1750 return; 1751 1752 ptp_read_system_postts(xfer->ptp_sts); 1753 1754 if (irqs_off) { 1755 local_irq_restore(ctlr->irq_flags); 1756 preempt_enable(); 1757 } 1758 1759 /* Capture the resolution of the timestamp */ 1760 xfer->ptp_sts_word_post = progress; 1761 1762 xfer->timestamped = true; 1763 } 1764 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1765 1766 /** 1767 * spi_set_thread_rt - set the controller to pump at realtime priority 1768 * @ctlr: controller to boost priority of 1769 * 1770 * This can be called because the controller requested realtime priority 1771 * (by setting the ->rt value before calling spi_register_controller()) or 1772 * because a device on the bus said that its transfers needed realtime 1773 * priority. 1774 * 1775 * NOTE: at the moment if any device on a bus says it needs realtime then 1776 * the thread will be at realtime priority for all transfers on that 1777 * controller. If this eventually becomes a problem we may see if we can 1778 * find a way to boost the priority only temporarily during relevant 1779 * transfers. 1780 */ 1781 static void spi_set_thread_rt(struct spi_controller *ctlr) 1782 { 1783 dev_info(&ctlr->dev, 1784 "will run message pump with realtime priority\n"); 1785 sched_set_fifo(ctlr->kworker->task); 1786 } 1787 1788 static int spi_init_queue(struct spi_controller *ctlr) 1789 { 1790 ctlr->running = false; 1791 ctlr->busy = false; 1792 1793 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1794 if (IS_ERR(ctlr->kworker)) { 1795 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1796 return PTR_ERR(ctlr->kworker); 1797 } 1798 1799 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1800 1801 /* 1802 * Controller config will indicate if this controller should run the 1803 * message pump with high (realtime) priority to reduce the transfer 1804 * latency on the bus by minimising the delay between a transfer 1805 * request and the scheduling of the message pump thread. Without this 1806 * setting the message pump thread will remain at default priority. 1807 */ 1808 if (ctlr->rt) 1809 spi_set_thread_rt(ctlr); 1810 1811 return 0; 1812 } 1813 1814 /** 1815 * spi_get_next_queued_message() - called by driver to check for queued 1816 * messages 1817 * @ctlr: the controller to check for queued messages 1818 * 1819 * If there are more messages in the queue, the next message is returned from 1820 * this call. 1821 * 1822 * Return: the next message in the queue, else NULL if the queue is empty. 1823 */ 1824 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1825 { 1826 struct spi_message *next; 1827 unsigned long flags; 1828 1829 /* get a pointer to the next message, if any */ 1830 spin_lock_irqsave(&ctlr->queue_lock, flags); 1831 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1832 queue); 1833 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1834 1835 return next; 1836 } 1837 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1838 1839 /** 1840 * spi_finalize_current_message() - the current message is complete 1841 * @ctlr: the controller to return the message to 1842 * 1843 * Called by the driver to notify the core that the message in the front of the 1844 * queue is complete and can be removed from the queue. 1845 */ 1846 void spi_finalize_current_message(struct spi_controller *ctlr) 1847 { 1848 struct spi_transfer *xfer; 1849 struct spi_message *mesg; 1850 unsigned long flags; 1851 int ret; 1852 1853 spin_lock_irqsave(&ctlr->queue_lock, flags); 1854 mesg = ctlr->cur_msg; 1855 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1856 1857 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1858 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1859 ptp_read_system_postts(xfer->ptp_sts); 1860 xfer->ptp_sts_word_post = xfer->len; 1861 } 1862 } 1863 1864 if (unlikely(ctlr->ptp_sts_supported)) 1865 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1866 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1867 1868 spi_unmap_msg(ctlr, mesg); 1869 1870 /* 1871 * In the prepare_messages callback the SPI bus has the opportunity 1872 * to split a transfer to smaller chunks. 1873 * 1874 * Release the split transfers here since spi_map_msg() is done on 1875 * the split transfers. 1876 */ 1877 spi_res_release(ctlr, mesg); 1878 1879 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1880 ret = ctlr->unprepare_message(ctlr, mesg); 1881 if (ret) { 1882 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1883 ret); 1884 } 1885 } 1886 1887 spin_lock_irqsave(&ctlr->queue_lock, flags); 1888 ctlr->cur_msg = NULL; 1889 ctlr->cur_msg_prepared = false; 1890 ctlr->fallback = false; 1891 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1892 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1893 1894 trace_spi_message_done(mesg); 1895 1896 mesg->state = NULL; 1897 if (mesg->complete) 1898 mesg->complete(mesg->context); 1899 } 1900 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1901 1902 static int spi_start_queue(struct spi_controller *ctlr) 1903 { 1904 unsigned long flags; 1905 1906 spin_lock_irqsave(&ctlr->queue_lock, flags); 1907 1908 if (ctlr->running || ctlr->busy) { 1909 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1910 return -EBUSY; 1911 } 1912 1913 ctlr->running = true; 1914 ctlr->cur_msg = NULL; 1915 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1916 1917 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1918 1919 return 0; 1920 } 1921 1922 static int spi_stop_queue(struct spi_controller *ctlr) 1923 { 1924 unsigned long flags; 1925 unsigned limit = 500; 1926 int ret = 0; 1927 1928 spin_lock_irqsave(&ctlr->queue_lock, flags); 1929 1930 /* 1931 * This is a bit lame, but is optimized for the common execution path. 1932 * A wait_queue on the ctlr->busy could be used, but then the common 1933 * execution path (pump_messages) would be required to call wake_up or 1934 * friends on every SPI message. Do this instead. 1935 */ 1936 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1937 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1938 usleep_range(10000, 11000); 1939 spin_lock_irqsave(&ctlr->queue_lock, flags); 1940 } 1941 1942 if (!list_empty(&ctlr->queue) || ctlr->busy) 1943 ret = -EBUSY; 1944 else 1945 ctlr->running = false; 1946 1947 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1948 1949 if (ret) { 1950 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1951 return ret; 1952 } 1953 return ret; 1954 } 1955 1956 static int spi_destroy_queue(struct spi_controller *ctlr) 1957 { 1958 int ret; 1959 1960 ret = spi_stop_queue(ctlr); 1961 1962 /* 1963 * kthread_flush_worker will block until all work is done. 1964 * If the reason that stop_queue timed out is that the work will never 1965 * finish, then it does no good to call flush/stop thread, so 1966 * return anyway. 1967 */ 1968 if (ret) { 1969 dev_err(&ctlr->dev, "problem destroying queue\n"); 1970 return ret; 1971 } 1972 1973 kthread_destroy_worker(ctlr->kworker); 1974 1975 return 0; 1976 } 1977 1978 static int __spi_queued_transfer(struct spi_device *spi, 1979 struct spi_message *msg, 1980 bool need_pump) 1981 { 1982 struct spi_controller *ctlr = spi->controller; 1983 unsigned long flags; 1984 1985 spin_lock_irqsave(&ctlr->queue_lock, flags); 1986 1987 if (!ctlr->running) { 1988 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1989 return -ESHUTDOWN; 1990 } 1991 msg->actual_length = 0; 1992 msg->status = -EINPROGRESS; 1993 1994 list_add_tail(&msg->queue, &ctlr->queue); 1995 if (!ctlr->busy && need_pump) 1996 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1997 1998 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1999 return 0; 2000 } 2001 2002 /** 2003 * spi_queued_transfer - transfer function for queued transfers 2004 * @spi: spi device which is requesting transfer 2005 * @msg: spi message which is to handled is queued to driver queue 2006 * 2007 * Return: zero on success, else a negative error code. 2008 */ 2009 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2010 { 2011 return __spi_queued_transfer(spi, msg, true); 2012 } 2013 2014 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2015 { 2016 int ret; 2017 2018 ctlr->transfer = spi_queued_transfer; 2019 if (!ctlr->transfer_one_message) 2020 ctlr->transfer_one_message = spi_transfer_one_message; 2021 2022 /* Initialize and start queue */ 2023 ret = spi_init_queue(ctlr); 2024 if (ret) { 2025 dev_err(&ctlr->dev, "problem initializing queue\n"); 2026 goto err_init_queue; 2027 } 2028 ctlr->queued = true; 2029 ret = spi_start_queue(ctlr); 2030 if (ret) { 2031 dev_err(&ctlr->dev, "problem starting queue\n"); 2032 goto err_start_queue; 2033 } 2034 2035 return 0; 2036 2037 err_start_queue: 2038 spi_destroy_queue(ctlr); 2039 err_init_queue: 2040 return ret; 2041 } 2042 2043 /** 2044 * spi_flush_queue - Send all pending messages in the queue from the callers' 2045 * context 2046 * @ctlr: controller to process queue for 2047 * 2048 * This should be used when one wants to ensure all pending messages have been 2049 * sent before doing something. Is used by the spi-mem code to make sure SPI 2050 * memory operations do not preempt regular SPI transfers that have been queued 2051 * before the spi-mem operation. 2052 */ 2053 void spi_flush_queue(struct spi_controller *ctlr) 2054 { 2055 if (ctlr->transfer == spi_queued_transfer) 2056 __spi_pump_messages(ctlr, false); 2057 } 2058 2059 /*-------------------------------------------------------------------------*/ 2060 2061 #if defined(CONFIG_OF) 2062 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2063 struct device_node *nc) 2064 { 2065 u32 value; 2066 int rc; 2067 2068 /* Mode (clock phase/polarity/etc.) */ 2069 if (of_property_read_bool(nc, "spi-cpha")) 2070 spi->mode |= SPI_CPHA; 2071 if (of_property_read_bool(nc, "spi-cpol")) 2072 spi->mode |= SPI_CPOL; 2073 if (of_property_read_bool(nc, "spi-3wire")) 2074 spi->mode |= SPI_3WIRE; 2075 if (of_property_read_bool(nc, "spi-lsb-first")) 2076 spi->mode |= SPI_LSB_FIRST; 2077 if (of_property_read_bool(nc, "spi-cs-high")) 2078 spi->mode |= SPI_CS_HIGH; 2079 2080 /* Device DUAL/QUAD mode */ 2081 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2082 switch (value) { 2083 case 0: 2084 spi->mode |= SPI_NO_TX; 2085 break; 2086 case 1: 2087 break; 2088 case 2: 2089 spi->mode |= SPI_TX_DUAL; 2090 break; 2091 case 4: 2092 spi->mode |= SPI_TX_QUAD; 2093 break; 2094 case 8: 2095 spi->mode |= SPI_TX_OCTAL; 2096 break; 2097 default: 2098 dev_warn(&ctlr->dev, 2099 "spi-tx-bus-width %d not supported\n", 2100 value); 2101 break; 2102 } 2103 } 2104 2105 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2106 switch (value) { 2107 case 0: 2108 spi->mode |= SPI_NO_RX; 2109 break; 2110 case 1: 2111 break; 2112 case 2: 2113 spi->mode |= SPI_RX_DUAL; 2114 break; 2115 case 4: 2116 spi->mode |= SPI_RX_QUAD; 2117 break; 2118 case 8: 2119 spi->mode |= SPI_RX_OCTAL; 2120 break; 2121 default: 2122 dev_warn(&ctlr->dev, 2123 "spi-rx-bus-width %d not supported\n", 2124 value); 2125 break; 2126 } 2127 } 2128 2129 if (spi_controller_is_slave(ctlr)) { 2130 if (!of_node_name_eq(nc, "slave")) { 2131 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2132 nc); 2133 return -EINVAL; 2134 } 2135 return 0; 2136 } 2137 2138 /* Device address */ 2139 rc = of_property_read_u32(nc, "reg", &value); 2140 if (rc) { 2141 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2142 nc, rc); 2143 return rc; 2144 } 2145 spi->chip_select = value; 2146 2147 /* Device speed */ 2148 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2149 spi->max_speed_hz = value; 2150 2151 return 0; 2152 } 2153 2154 static struct spi_device * 2155 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2156 { 2157 struct spi_device *spi; 2158 int rc; 2159 2160 /* Alloc an spi_device */ 2161 spi = spi_alloc_device(ctlr); 2162 if (!spi) { 2163 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2164 rc = -ENOMEM; 2165 goto err_out; 2166 } 2167 2168 /* Select device driver */ 2169 rc = of_modalias_node(nc, spi->modalias, 2170 sizeof(spi->modalias)); 2171 if (rc < 0) { 2172 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2173 goto err_out; 2174 } 2175 2176 rc = of_spi_parse_dt(ctlr, spi, nc); 2177 if (rc) 2178 goto err_out; 2179 2180 /* Store a pointer to the node in the device structure */ 2181 of_node_get(nc); 2182 spi->dev.of_node = nc; 2183 spi->dev.fwnode = of_fwnode_handle(nc); 2184 2185 /* Register the new device */ 2186 rc = spi_add_device(spi); 2187 if (rc) { 2188 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2189 goto err_of_node_put; 2190 } 2191 2192 return spi; 2193 2194 err_of_node_put: 2195 of_node_put(nc); 2196 err_out: 2197 spi_dev_put(spi); 2198 return ERR_PTR(rc); 2199 } 2200 2201 /** 2202 * of_register_spi_devices() - Register child devices onto the SPI bus 2203 * @ctlr: Pointer to spi_controller device 2204 * 2205 * Registers an spi_device for each child node of controller node which 2206 * represents a valid SPI slave. 2207 */ 2208 static void of_register_spi_devices(struct spi_controller *ctlr) 2209 { 2210 struct spi_device *spi; 2211 struct device_node *nc; 2212 2213 if (!ctlr->dev.of_node) 2214 return; 2215 2216 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2217 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2218 continue; 2219 spi = of_register_spi_device(ctlr, nc); 2220 if (IS_ERR(spi)) { 2221 dev_warn(&ctlr->dev, 2222 "Failed to create SPI device for %pOF\n", nc); 2223 of_node_clear_flag(nc, OF_POPULATED); 2224 } 2225 } 2226 } 2227 #else 2228 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2229 #endif 2230 2231 /** 2232 * spi_new_ancillary_device() - Register ancillary SPI device 2233 * @spi: Pointer to the main SPI device registering the ancillary device 2234 * @chip_select: Chip Select of the ancillary device 2235 * 2236 * Register an ancillary SPI device; for example some chips have a chip-select 2237 * for normal device usage and another one for setup/firmware upload. 2238 * 2239 * This may only be called from main SPI device's probe routine. 2240 * 2241 * Return: 0 on success; negative errno on failure 2242 */ 2243 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2244 u8 chip_select) 2245 { 2246 struct spi_device *ancillary; 2247 int rc = 0; 2248 2249 /* Alloc an spi_device */ 2250 ancillary = spi_alloc_device(spi->controller); 2251 if (!ancillary) { 2252 rc = -ENOMEM; 2253 goto err_out; 2254 } 2255 2256 strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2257 2258 /* Use provided chip-select for ancillary device */ 2259 ancillary->chip_select = chip_select; 2260 2261 /* Take over SPI mode/speed from SPI main device */ 2262 ancillary->max_speed_hz = spi->max_speed_hz; 2263 ancillary->mode = spi->mode; 2264 2265 /* Register the new device */ 2266 rc = spi_add_device_locked(ancillary); 2267 if (rc) { 2268 dev_err(&spi->dev, "failed to register ancillary device\n"); 2269 goto err_out; 2270 } 2271 2272 return ancillary; 2273 2274 err_out: 2275 spi_dev_put(ancillary); 2276 return ERR_PTR(rc); 2277 } 2278 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2279 2280 #ifdef CONFIG_ACPI 2281 struct acpi_spi_lookup { 2282 struct spi_controller *ctlr; 2283 u32 max_speed_hz; 2284 u32 mode; 2285 int irq; 2286 u8 bits_per_word; 2287 u8 chip_select; 2288 int n; 2289 int index; 2290 }; 2291 2292 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2293 { 2294 struct acpi_resource_spi_serialbus *sb; 2295 int *count = data; 2296 2297 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2298 return 1; 2299 2300 sb = &ares->data.spi_serial_bus; 2301 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2302 return 1; 2303 2304 *count = *count + 1; 2305 2306 return 1; 2307 } 2308 2309 /** 2310 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2311 * @adev: ACPI device 2312 * 2313 * Returns the number of SpiSerialBus resources in the ACPI-device's 2314 * resource-list; or a negative error code. 2315 */ 2316 int acpi_spi_count_resources(struct acpi_device *adev) 2317 { 2318 LIST_HEAD(r); 2319 int count = 0; 2320 int ret; 2321 2322 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2323 if (ret < 0) 2324 return ret; 2325 2326 acpi_dev_free_resource_list(&r); 2327 2328 return count; 2329 } 2330 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2331 2332 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2333 struct acpi_spi_lookup *lookup) 2334 { 2335 const union acpi_object *obj; 2336 2337 if (!x86_apple_machine) 2338 return; 2339 2340 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2341 && obj->buffer.length >= 4) 2342 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2343 2344 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2345 && obj->buffer.length == 8) 2346 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2347 2348 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2349 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2350 lookup->mode |= SPI_LSB_FIRST; 2351 2352 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2353 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2354 lookup->mode |= SPI_CPOL; 2355 2356 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2357 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2358 lookup->mode |= SPI_CPHA; 2359 } 2360 2361 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 2362 2363 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2364 { 2365 struct acpi_spi_lookup *lookup = data; 2366 struct spi_controller *ctlr = lookup->ctlr; 2367 2368 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2369 struct acpi_resource_spi_serialbus *sb; 2370 acpi_handle parent_handle; 2371 acpi_status status; 2372 2373 sb = &ares->data.spi_serial_bus; 2374 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2375 2376 if (lookup->index != -1 && lookup->n++ != lookup->index) 2377 return 1; 2378 2379 if (lookup->index == -1 && !ctlr) 2380 return -ENODEV; 2381 2382 status = acpi_get_handle(NULL, 2383 sb->resource_source.string_ptr, 2384 &parent_handle); 2385 2386 if (ACPI_FAILURE(status)) 2387 return -ENODEV; 2388 2389 if (ctlr) { 2390 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2391 return -ENODEV; 2392 } else { 2393 struct acpi_device *adev; 2394 2395 adev = acpi_fetch_acpi_dev(parent_handle); 2396 if (!adev) 2397 return -ENODEV; 2398 2399 ctlr = acpi_spi_find_controller_by_adev(adev); 2400 if (!ctlr) 2401 return -ENODEV; 2402 2403 lookup->ctlr = ctlr; 2404 } 2405 2406 /* 2407 * ACPI DeviceSelection numbering is handled by the 2408 * host controller driver in Windows and can vary 2409 * from driver to driver. In Linux we always expect 2410 * 0 .. max - 1 so we need to ask the driver to 2411 * translate between the two schemes. 2412 */ 2413 if (ctlr->fw_translate_cs) { 2414 int cs = ctlr->fw_translate_cs(ctlr, 2415 sb->device_selection); 2416 if (cs < 0) 2417 return cs; 2418 lookup->chip_select = cs; 2419 } else { 2420 lookup->chip_select = sb->device_selection; 2421 } 2422 2423 lookup->max_speed_hz = sb->connection_speed; 2424 lookup->bits_per_word = sb->data_bit_length; 2425 2426 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2427 lookup->mode |= SPI_CPHA; 2428 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2429 lookup->mode |= SPI_CPOL; 2430 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2431 lookup->mode |= SPI_CS_HIGH; 2432 } 2433 } else if (lookup->irq < 0) { 2434 struct resource r; 2435 2436 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2437 lookup->irq = r.start; 2438 } 2439 2440 /* Always tell the ACPI core to skip this resource */ 2441 return 1; 2442 } 2443 2444 /** 2445 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2446 * @ctlr: controller to which the spi device belongs 2447 * @adev: ACPI Device for the spi device 2448 * @index: Index of the spi resource inside the ACPI Node 2449 * 2450 * This should be used to allocate a new spi device from and ACPI Node. 2451 * The caller is responsible for calling spi_add_device to register the spi device. 2452 * 2453 * If ctlr is set to NULL, the Controller for the spi device will be looked up 2454 * using the resource. 2455 * If index is set to -1, index is not used. 2456 * Note: If index is -1, ctlr must be set. 2457 * 2458 * Return: a pointer to the new device, or ERR_PTR on error. 2459 */ 2460 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2461 struct acpi_device *adev, 2462 int index) 2463 { 2464 acpi_handle parent_handle = NULL; 2465 struct list_head resource_list; 2466 struct acpi_spi_lookup lookup = {}; 2467 struct spi_device *spi; 2468 int ret; 2469 2470 if (!ctlr && index == -1) 2471 return ERR_PTR(-EINVAL); 2472 2473 lookup.ctlr = ctlr; 2474 lookup.irq = -1; 2475 lookup.index = index; 2476 lookup.n = 0; 2477 2478 INIT_LIST_HEAD(&resource_list); 2479 ret = acpi_dev_get_resources(adev, &resource_list, 2480 acpi_spi_add_resource, &lookup); 2481 acpi_dev_free_resource_list(&resource_list); 2482 2483 if (ret < 0) 2484 /* found SPI in _CRS but it points to another controller */ 2485 return ERR_PTR(-ENODEV); 2486 2487 if (!lookup.max_speed_hz && 2488 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2489 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2490 /* Apple does not use _CRS but nested devices for SPI slaves */ 2491 acpi_spi_parse_apple_properties(adev, &lookup); 2492 } 2493 2494 if (!lookup.max_speed_hz) 2495 return ERR_PTR(-ENODEV); 2496 2497 spi = spi_alloc_device(lookup.ctlr); 2498 if (!spi) { 2499 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2500 dev_name(&adev->dev)); 2501 return ERR_PTR(-ENOMEM); 2502 } 2503 2504 ACPI_COMPANION_SET(&spi->dev, adev); 2505 spi->max_speed_hz = lookup.max_speed_hz; 2506 spi->mode |= lookup.mode; 2507 spi->irq = lookup.irq; 2508 spi->bits_per_word = lookup.bits_per_word; 2509 spi->chip_select = lookup.chip_select; 2510 2511 return spi; 2512 } 2513 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2514 2515 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2516 struct acpi_device *adev) 2517 { 2518 struct spi_device *spi; 2519 2520 if (acpi_bus_get_status(adev) || !adev->status.present || 2521 acpi_device_enumerated(adev)) 2522 return AE_OK; 2523 2524 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2525 if (IS_ERR(spi)) { 2526 if (PTR_ERR(spi) == -ENOMEM) 2527 return AE_NO_MEMORY; 2528 else 2529 return AE_OK; 2530 } 2531 2532 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2533 sizeof(spi->modalias)); 2534 2535 if (spi->irq < 0) 2536 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2537 2538 acpi_device_set_enumerated(adev); 2539 2540 adev->power.flags.ignore_parent = true; 2541 if (spi_add_device(spi)) { 2542 adev->power.flags.ignore_parent = false; 2543 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2544 dev_name(&adev->dev)); 2545 spi_dev_put(spi); 2546 } 2547 2548 return AE_OK; 2549 } 2550 2551 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2552 void *data, void **return_value) 2553 { 2554 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2555 struct spi_controller *ctlr = data; 2556 2557 if (!adev) 2558 return AE_OK; 2559 2560 return acpi_register_spi_device(ctlr, adev); 2561 } 2562 2563 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2564 2565 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2566 { 2567 acpi_status status; 2568 acpi_handle handle; 2569 2570 handle = ACPI_HANDLE(ctlr->dev.parent); 2571 if (!handle) 2572 return; 2573 2574 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2575 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2576 acpi_spi_add_device, NULL, ctlr, NULL); 2577 if (ACPI_FAILURE(status)) 2578 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2579 } 2580 #else 2581 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2582 #endif /* CONFIG_ACPI */ 2583 2584 static void spi_controller_release(struct device *dev) 2585 { 2586 struct spi_controller *ctlr; 2587 2588 ctlr = container_of(dev, struct spi_controller, dev); 2589 kfree(ctlr); 2590 } 2591 2592 static struct class spi_master_class = { 2593 .name = "spi_master", 2594 .owner = THIS_MODULE, 2595 .dev_release = spi_controller_release, 2596 .dev_groups = spi_master_groups, 2597 }; 2598 2599 #ifdef CONFIG_SPI_SLAVE 2600 /** 2601 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2602 * controller 2603 * @spi: device used for the current transfer 2604 */ 2605 int spi_slave_abort(struct spi_device *spi) 2606 { 2607 struct spi_controller *ctlr = spi->controller; 2608 2609 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2610 return ctlr->slave_abort(ctlr); 2611 2612 return -ENOTSUPP; 2613 } 2614 EXPORT_SYMBOL_GPL(spi_slave_abort); 2615 2616 static int match_true(struct device *dev, void *data) 2617 { 2618 return 1; 2619 } 2620 2621 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2622 char *buf) 2623 { 2624 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2625 dev); 2626 struct device *child; 2627 2628 child = device_find_child(&ctlr->dev, NULL, match_true); 2629 return sprintf(buf, "%s\n", 2630 child ? to_spi_device(child)->modalias : NULL); 2631 } 2632 2633 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2634 const char *buf, size_t count) 2635 { 2636 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2637 dev); 2638 struct spi_device *spi; 2639 struct device *child; 2640 char name[32]; 2641 int rc; 2642 2643 rc = sscanf(buf, "%31s", name); 2644 if (rc != 1 || !name[0]) 2645 return -EINVAL; 2646 2647 child = device_find_child(&ctlr->dev, NULL, match_true); 2648 if (child) { 2649 /* Remove registered slave */ 2650 device_unregister(child); 2651 put_device(child); 2652 } 2653 2654 if (strcmp(name, "(null)")) { 2655 /* Register new slave */ 2656 spi = spi_alloc_device(ctlr); 2657 if (!spi) 2658 return -ENOMEM; 2659 2660 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2661 2662 rc = spi_add_device(spi); 2663 if (rc) { 2664 spi_dev_put(spi); 2665 return rc; 2666 } 2667 } 2668 2669 return count; 2670 } 2671 2672 static DEVICE_ATTR_RW(slave); 2673 2674 static struct attribute *spi_slave_attrs[] = { 2675 &dev_attr_slave.attr, 2676 NULL, 2677 }; 2678 2679 static const struct attribute_group spi_slave_group = { 2680 .attrs = spi_slave_attrs, 2681 }; 2682 2683 static const struct attribute_group *spi_slave_groups[] = { 2684 &spi_controller_statistics_group, 2685 &spi_slave_group, 2686 NULL, 2687 }; 2688 2689 static struct class spi_slave_class = { 2690 .name = "spi_slave", 2691 .owner = THIS_MODULE, 2692 .dev_release = spi_controller_release, 2693 .dev_groups = spi_slave_groups, 2694 }; 2695 #else 2696 extern struct class spi_slave_class; /* dummy */ 2697 #endif 2698 2699 /** 2700 * __spi_alloc_controller - allocate an SPI master or slave controller 2701 * @dev: the controller, possibly using the platform_bus 2702 * @size: how much zeroed driver-private data to allocate; the pointer to this 2703 * memory is in the driver_data field of the returned device, accessible 2704 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2705 * drivers granting DMA access to portions of their private data need to 2706 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2707 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2708 * slave (true) controller 2709 * Context: can sleep 2710 * 2711 * This call is used only by SPI controller drivers, which are the 2712 * only ones directly touching chip registers. It's how they allocate 2713 * an spi_controller structure, prior to calling spi_register_controller(). 2714 * 2715 * This must be called from context that can sleep. 2716 * 2717 * The caller is responsible for assigning the bus number and initializing the 2718 * controller's methods before calling spi_register_controller(); and (after 2719 * errors adding the device) calling spi_controller_put() to prevent a memory 2720 * leak. 2721 * 2722 * Return: the SPI controller structure on success, else NULL. 2723 */ 2724 struct spi_controller *__spi_alloc_controller(struct device *dev, 2725 unsigned int size, bool slave) 2726 { 2727 struct spi_controller *ctlr; 2728 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2729 2730 if (!dev) 2731 return NULL; 2732 2733 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2734 if (!ctlr) 2735 return NULL; 2736 2737 device_initialize(&ctlr->dev); 2738 INIT_LIST_HEAD(&ctlr->queue); 2739 spin_lock_init(&ctlr->queue_lock); 2740 spin_lock_init(&ctlr->bus_lock_spinlock); 2741 mutex_init(&ctlr->bus_lock_mutex); 2742 mutex_init(&ctlr->io_mutex); 2743 mutex_init(&ctlr->add_lock); 2744 ctlr->bus_num = -1; 2745 ctlr->num_chipselect = 1; 2746 ctlr->slave = slave; 2747 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2748 ctlr->dev.class = &spi_slave_class; 2749 else 2750 ctlr->dev.class = &spi_master_class; 2751 ctlr->dev.parent = dev; 2752 pm_suspend_ignore_children(&ctlr->dev, true); 2753 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2754 2755 return ctlr; 2756 } 2757 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2758 2759 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2760 { 2761 spi_controller_put(*(struct spi_controller **)ctlr); 2762 } 2763 2764 /** 2765 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2766 * @dev: physical device of SPI controller 2767 * @size: how much zeroed driver-private data to allocate 2768 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2769 * Context: can sleep 2770 * 2771 * Allocate an SPI controller and automatically release a reference on it 2772 * when @dev is unbound from its driver. Drivers are thus relieved from 2773 * having to call spi_controller_put(). 2774 * 2775 * The arguments to this function are identical to __spi_alloc_controller(). 2776 * 2777 * Return: the SPI controller structure on success, else NULL. 2778 */ 2779 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2780 unsigned int size, 2781 bool slave) 2782 { 2783 struct spi_controller **ptr, *ctlr; 2784 2785 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2786 GFP_KERNEL); 2787 if (!ptr) 2788 return NULL; 2789 2790 ctlr = __spi_alloc_controller(dev, size, slave); 2791 if (ctlr) { 2792 ctlr->devm_allocated = true; 2793 *ptr = ctlr; 2794 devres_add(dev, ptr); 2795 } else { 2796 devres_free(ptr); 2797 } 2798 2799 return ctlr; 2800 } 2801 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2802 2803 /** 2804 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2805 * @ctlr: The SPI master to grab GPIO descriptors for 2806 */ 2807 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2808 { 2809 int nb, i; 2810 struct gpio_desc **cs; 2811 struct device *dev = &ctlr->dev; 2812 unsigned long native_cs_mask = 0; 2813 unsigned int num_cs_gpios = 0; 2814 2815 nb = gpiod_count(dev, "cs"); 2816 if (nb < 0) { 2817 /* No GPIOs at all is fine, else return the error */ 2818 if (nb == -ENOENT) 2819 return 0; 2820 return nb; 2821 } 2822 2823 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2824 2825 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2826 GFP_KERNEL); 2827 if (!cs) 2828 return -ENOMEM; 2829 ctlr->cs_gpiods = cs; 2830 2831 for (i = 0; i < nb; i++) { 2832 /* 2833 * Most chipselects are active low, the inverted 2834 * semantics are handled by special quirks in gpiolib, 2835 * so initializing them GPIOD_OUT_LOW here means 2836 * "unasserted", in most cases this will drive the physical 2837 * line high. 2838 */ 2839 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2840 GPIOD_OUT_LOW); 2841 if (IS_ERR(cs[i])) 2842 return PTR_ERR(cs[i]); 2843 2844 if (cs[i]) { 2845 /* 2846 * If we find a CS GPIO, name it after the device and 2847 * chip select line. 2848 */ 2849 char *gpioname; 2850 2851 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2852 dev_name(dev), i); 2853 if (!gpioname) 2854 return -ENOMEM; 2855 gpiod_set_consumer_name(cs[i], gpioname); 2856 num_cs_gpios++; 2857 continue; 2858 } 2859 2860 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2861 dev_err(dev, "Invalid native chip select %d\n", i); 2862 return -EINVAL; 2863 } 2864 native_cs_mask |= BIT(i); 2865 } 2866 2867 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 2868 2869 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios && 2870 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 2871 dev_err(dev, "No unused native chip select available\n"); 2872 return -EINVAL; 2873 } 2874 2875 return 0; 2876 } 2877 2878 static int spi_controller_check_ops(struct spi_controller *ctlr) 2879 { 2880 /* 2881 * The controller may implement only the high-level SPI-memory like 2882 * operations if it does not support regular SPI transfers, and this is 2883 * valid use case. 2884 * If ->mem_ops is NULL, we request that at least one of the 2885 * ->transfer_xxx() method be implemented. 2886 */ 2887 if (ctlr->mem_ops) { 2888 if (!ctlr->mem_ops->exec_op) 2889 return -EINVAL; 2890 } else if (!ctlr->transfer && !ctlr->transfer_one && 2891 !ctlr->transfer_one_message) { 2892 return -EINVAL; 2893 } 2894 2895 return 0; 2896 } 2897 2898 /** 2899 * spi_register_controller - register SPI master or slave controller 2900 * @ctlr: initialized master, originally from spi_alloc_master() or 2901 * spi_alloc_slave() 2902 * Context: can sleep 2903 * 2904 * SPI controllers connect to their drivers using some non-SPI bus, 2905 * such as the platform bus. The final stage of probe() in that code 2906 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2907 * 2908 * SPI controllers use board specific (often SOC specific) bus numbers, 2909 * and board-specific addressing for SPI devices combines those numbers 2910 * with chip select numbers. Since SPI does not directly support dynamic 2911 * device identification, boards need configuration tables telling which 2912 * chip is at which address. 2913 * 2914 * This must be called from context that can sleep. It returns zero on 2915 * success, else a negative error code (dropping the controller's refcount). 2916 * After a successful return, the caller is responsible for calling 2917 * spi_unregister_controller(). 2918 * 2919 * Return: zero on success, else a negative error code. 2920 */ 2921 int spi_register_controller(struct spi_controller *ctlr) 2922 { 2923 struct device *dev = ctlr->dev.parent; 2924 struct boardinfo *bi; 2925 int status; 2926 int id, first_dynamic; 2927 2928 if (!dev) 2929 return -ENODEV; 2930 2931 /* 2932 * Make sure all necessary hooks are implemented before registering 2933 * the SPI controller. 2934 */ 2935 status = spi_controller_check_ops(ctlr); 2936 if (status) 2937 return status; 2938 2939 if (ctlr->bus_num >= 0) { 2940 /* devices with a fixed bus num must check-in with the num */ 2941 mutex_lock(&board_lock); 2942 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2943 ctlr->bus_num + 1, GFP_KERNEL); 2944 mutex_unlock(&board_lock); 2945 if (WARN(id < 0, "couldn't get idr")) 2946 return id == -ENOSPC ? -EBUSY : id; 2947 ctlr->bus_num = id; 2948 } else if (ctlr->dev.of_node) { 2949 /* allocate dynamic bus number using Linux idr */ 2950 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2951 if (id >= 0) { 2952 ctlr->bus_num = id; 2953 mutex_lock(&board_lock); 2954 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2955 ctlr->bus_num + 1, GFP_KERNEL); 2956 mutex_unlock(&board_lock); 2957 if (WARN(id < 0, "couldn't get idr")) 2958 return id == -ENOSPC ? -EBUSY : id; 2959 } 2960 } 2961 if (ctlr->bus_num < 0) { 2962 first_dynamic = of_alias_get_highest_id("spi"); 2963 if (first_dynamic < 0) 2964 first_dynamic = 0; 2965 else 2966 first_dynamic++; 2967 2968 mutex_lock(&board_lock); 2969 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2970 0, GFP_KERNEL); 2971 mutex_unlock(&board_lock); 2972 if (WARN(id < 0, "couldn't get idr")) 2973 return id; 2974 ctlr->bus_num = id; 2975 } 2976 ctlr->bus_lock_flag = 0; 2977 init_completion(&ctlr->xfer_completion); 2978 if (!ctlr->max_dma_len) 2979 ctlr->max_dma_len = INT_MAX; 2980 2981 /* 2982 * Register the device, then userspace will see it. 2983 * Registration fails if the bus ID is in use. 2984 */ 2985 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2986 2987 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 2988 status = spi_get_gpio_descs(ctlr); 2989 if (status) 2990 goto free_bus_id; 2991 /* 2992 * A controller using GPIO descriptors always 2993 * supports SPI_CS_HIGH if need be. 2994 */ 2995 ctlr->mode_bits |= SPI_CS_HIGH; 2996 } 2997 2998 /* 2999 * Even if it's just one always-selected device, there must 3000 * be at least one chipselect. 3001 */ 3002 if (!ctlr->num_chipselect) { 3003 status = -EINVAL; 3004 goto free_bus_id; 3005 } 3006 3007 /* setting last_cs to -1 means no chip selected */ 3008 ctlr->last_cs = -1; 3009 3010 status = device_add(&ctlr->dev); 3011 if (status < 0) 3012 goto free_bus_id; 3013 dev_dbg(dev, "registered %s %s\n", 3014 spi_controller_is_slave(ctlr) ? "slave" : "master", 3015 dev_name(&ctlr->dev)); 3016 3017 /* 3018 * If we're using a queued driver, start the queue. Note that we don't 3019 * need the queueing logic if the driver is only supporting high-level 3020 * memory operations. 3021 */ 3022 if (ctlr->transfer) { 3023 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3024 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3025 status = spi_controller_initialize_queue(ctlr); 3026 if (status) { 3027 device_del(&ctlr->dev); 3028 goto free_bus_id; 3029 } 3030 } 3031 /* add statistics */ 3032 spin_lock_init(&ctlr->statistics.lock); 3033 3034 mutex_lock(&board_lock); 3035 list_add_tail(&ctlr->list, &spi_controller_list); 3036 list_for_each_entry(bi, &board_list, list) 3037 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3038 mutex_unlock(&board_lock); 3039 3040 /* Register devices from the device tree and ACPI */ 3041 of_register_spi_devices(ctlr); 3042 acpi_register_spi_devices(ctlr); 3043 return status; 3044 3045 free_bus_id: 3046 mutex_lock(&board_lock); 3047 idr_remove(&spi_master_idr, ctlr->bus_num); 3048 mutex_unlock(&board_lock); 3049 return status; 3050 } 3051 EXPORT_SYMBOL_GPL(spi_register_controller); 3052 3053 static void devm_spi_unregister(void *ctlr) 3054 { 3055 spi_unregister_controller(ctlr); 3056 } 3057 3058 /** 3059 * devm_spi_register_controller - register managed SPI master or slave 3060 * controller 3061 * @dev: device managing SPI controller 3062 * @ctlr: initialized controller, originally from spi_alloc_master() or 3063 * spi_alloc_slave() 3064 * Context: can sleep 3065 * 3066 * Register a SPI device as with spi_register_controller() which will 3067 * automatically be unregistered and freed. 3068 * 3069 * Return: zero on success, else a negative error code. 3070 */ 3071 int devm_spi_register_controller(struct device *dev, 3072 struct spi_controller *ctlr) 3073 { 3074 int ret; 3075 3076 ret = spi_register_controller(ctlr); 3077 if (ret) 3078 return ret; 3079 3080 return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr); 3081 } 3082 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3083 3084 static int __unregister(struct device *dev, void *null) 3085 { 3086 spi_unregister_device(to_spi_device(dev)); 3087 return 0; 3088 } 3089 3090 /** 3091 * spi_unregister_controller - unregister SPI master or slave controller 3092 * @ctlr: the controller being unregistered 3093 * Context: can sleep 3094 * 3095 * This call is used only by SPI controller drivers, which are the 3096 * only ones directly touching chip registers. 3097 * 3098 * This must be called from context that can sleep. 3099 * 3100 * Note that this function also drops a reference to the controller. 3101 */ 3102 void spi_unregister_controller(struct spi_controller *ctlr) 3103 { 3104 struct spi_controller *found; 3105 int id = ctlr->bus_num; 3106 3107 /* Prevent addition of new devices, unregister existing ones */ 3108 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3109 mutex_lock(&ctlr->add_lock); 3110 3111 device_for_each_child(&ctlr->dev, NULL, __unregister); 3112 3113 /* First make sure that this controller was ever added */ 3114 mutex_lock(&board_lock); 3115 found = idr_find(&spi_master_idr, id); 3116 mutex_unlock(&board_lock); 3117 if (ctlr->queued) { 3118 if (spi_destroy_queue(ctlr)) 3119 dev_err(&ctlr->dev, "queue remove failed\n"); 3120 } 3121 mutex_lock(&board_lock); 3122 list_del(&ctlr->list); 3123 mutex_unlock(&board_lock); 3124 3125 device_del(&ctlr->dev); 3126 3127 /* free bus id */ 3128 mutex_lock(&board_lock); 3129 if (found == ctlr) 3130 idr_remove(&spi_master_idr, id); 3131 mutex_unlock(&board_lock); 3132 3133 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3134 mutex_unlock(&ctlr->add_lock); 3135 3136 /* Release the last reference on the controller if its driver 3137 * has not yet been converted to devm_spi_alloc_master/slave(). 3138 */ 3139 if (!ctlr->devm_allocated) 3140 put_device(&ctlr->dev); 3141 } 3142 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3143 3144 int spi_controller_suspend(struct spi_controller *ctlr) 3145 { 3146 int ret; 3147 3148 /* Basically no-ops for non-queued controllers */ 3149 if (!ctlr->queued) 3150 return 0; 3151 3152 ret = spi_stop_queue(ctlr); 3153 if (ret) 3154 dev_err(&ctlr->dev, "queue stop failed\n"); 3155 3156 return ret; 3157 } 3158 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3159 3160 int spi_controller_resume(struct spi_controller *ctlr) 3161 { 3162 int ret; 3163 3164 if (!ctlr->queued) 3165 return 0; 3166 3167 ret = spi_start_queue(ctlr); 3168 if (ret) 3169 dev_err(&ctlr->dev, "queue restart failed\n"); 3170 3171 return ret; 3172 } 3173 EXPORT_SYMBOL_GPL(spi_controller_resume); 3174 3175 /*-------------------------------------------------------------------------*/ 3176 3177 /* Core methods for spi_message alterations */ 3178 3179 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3180 struct spi_message *msg, 3181 void *res) 3182 { 3183 struct spi_replaced_transfers *rxfer = res; 3184 size_t i; 3185 3186 /* call extra callback if requested */ 3187 if (rxfer->release) 3188 rxfer->release(ctlr, msg, res); 3189 3190 /* insert replaced transfers back into the message */ 3191 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3192 3193 /* remove the formerly inserted entries */ 3194 for (i = 0; i < rxfer->inserted; i++) 3195 list_del(&rxfer->inserted_transfers[i].transfer_list); 3196 } 3197 3198 /** 3199 * spi_replace_transfers - replace transfers with several transfers 3200 * and register change with spi_message.resources 3201 * @msg: the spi_message we work upon 3202 * @xfer_first: the first spi_transfer we want to replace 3203 * @remove: number of transfers to remove 3204 * @insert: the number of transfers we want to insert instead 3205 * @release: extra release code necessary in some circumstances 3206 * @extradatasize: extra data to allocate (with alignment guarantees 3207 * of struct @spi_transfer) 3208 * @gfp: gfp flags 3209 * 3210 * Returns: pointer to @spi_replaced_transfers, 3211 * PTR_ERR(...) in case of errors. 3212 */ 3213 static struct spi_replaced_transfers *spi_replace_transfers( 3214 struct spi_message *msg, 3215 struct spi_transfer *xfer_first, 3216 size_t remove, 3217 size_t insert, 3218 spi_replaced_release_t release, 3219 size_t extradatasize, 3220 gfp_t gfp) 3221 { 3222 struct spi_replaced_transfers *rxfer; 3223 struct spi_transfer *xfer; 3224 size_t i; 3225 3226 /* allocate the structure using spi_res */ 3227 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3228 struct_size(rxfer, inserted_transfers, insert) 3229 + extradatasize, 3230 gfp); 3231 if (!rxfer) 3232 return ERR_PTR(-ENOMEM); 3233 3234 /* the release code to invoke before running the generic release */ 3235 rxfer->release = release; 3236 3237 /* assign extradata */ 3238 if (extradatasize) 3239 rxfer->extradata = 3240 &rxfer->inserted_transfers[insert]; 3241 3242 /* init the replaced_transfers list */ 3243 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3244 3245 /* 3246 * Assign the list_entry after which we should reinsert 3247 * the @replaced_transfers - it may be spi_message.messages! 3248 */ 3249 rxfer->replaced_after = xfer_first->transfer_list.prev; 3250 3251 /* remove the requested number of transfers */ 3252 for (i = 0; i < remove; i++) { 3253 /* 3254 * If the entry after replaced_after it is msg->transfers 3255 * then we have been requested to remove more transfers 3256 * than are in the list. 3257 */ 3258 if (rxfer->replaced_after->next == &msg->transfers) { 3259 dev_err(&msg->spi->dev, 3260 "requested to remove more spi_transfers than are available\n"); 3261 /* insert replaced transfers back into the message */ 3262 list_splice(&rxfer->replaced_transfers, 3263 rxfer->replaced_after); 3264 3265 /* free the spi_replace_transfer structure */ 3266 spi_res_free(rxfer); 3267 3268 /* and return with an error */ 3269 return ERR_PTR(-EINVAL); 3270 } 3271 3272 /* 3273 * Remove the entry after replaced_after from list of 3274 * transfers and add it to list of replaced_transfers. 3275 */ 3276 list_move_tail(rxfer->replaced_after->next, 3277 &rxfer->replaced_transfers); 3278 } 3279 3280 /* 3281 * Create copy of the given xfer with identical settings 3282 * based on the first transfer to get removed. 3283 */ 3284 for (i = 0; i < insert; i++) { 3285 /* we need to run in reverse order */ 3286 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3287 3288 /* copy all spi_transfer data */ 3289 memcpy(xfer, xfer_first, sizeof(*xfer)); 3290 3291 /* add to list */ 3292 list_add(&xfer->transfer_list, rxfer->replaced_after); 3293 3294 /* clear cs_change and delay for all but the last */ 3295 if (i) { 3296 xfer->cs_change = false; 3297 xfer->delay.value = 0; 3298 } 3299 } 3300 3301 /* set up inserted */ 3302 rxfer->inserted = insert; 3303 3304 /* and register it with spi_res/spi_message */ 3305 spi_res_add(msg, rxfer); 3306 3307 return rxfer; 3308 } 3309 3310 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3311 struct spi_message *msg, 3312 struct spi_transfer **xferp, 3313 size_t maxsize, 3314 gfp_t gfp) 3315 { 3316 struct spi_transfer *xfer = *xferp, *xfers; 3317 struct spi_replaced_transfers *srt; 3318 size_t offset; 3319 size_t count, i; 3320 3321 /* calculate how many we have to replace */ 3322 count = DIV_ROUND_UP(xfer->len, maxsize); 3323 3324 /* create replacement */ 3325 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3326 if (IS_ERR(srt)) 3327 return PTR_ERR(srt); 3328 xfers = srt->inserted_transfers; 3329 3330 /* 3331 * Now handle each of those newly inserted spi_transfers. 3332 * Note that the replacements spi_transfers all are preset 3333 * to the same values as *xferp, so tx_buf, rx_buf and len 3334 * are all identical (as well as most others) 3335 * so we just have to fix up len and the pointers. 3336 * 3337 * This also includes support for the depreciated 3338 * spi_message.is_dma_mapped interface. 3339 */ 3340 3341 /* 3342 * The first transfer just needs the length modified, so we 3343 * run it outside the loop. 3344 */ 3345 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3346 3347 /* all the others need rx_buf/tx_buf also set */ 3348 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3349 /* update rx_buf, tx_buf and dma */ 3350 if (xfers[i].rx_buf) 3351 xfers[i].rx_buf += offset; 3352 if (xfers[i].rx_dma) 3353 xfers[i].rx_dma += offset; 3354 if (xfers[i].tx_buf) 3355 xfers[i].tx_buf += offset; 3356 if (xfers[i].tx_dma) 3357 xfers[i].tx_dma += offset; 3358 3359 /* update length */ 3360 xfers[i].len = min(maxsize, xfers[i].len - offset); 3361 } 3362 3363 /* 3364 * We set up xferp to the last entry we have inserted, 3365 * so that we skip those already split transfers. 3366 */ 3367 *xferp = &xfers[count - 1]; 3368 3369 /* increment statistics counters */ 3370 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3371 transfers_split_maxsize); 3372 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3373 transfers_split_maxsize); 3374 3375 return 0; 3376 } 3377 3378 /** 3379 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3380 * when an individual transfer exceeds a 3381 * certain size 3382 * @ctlr: the @spi_controller for this transfer 3383 * @msg: the @spi_message to transform 3384 * @maxsize: the maximum when to apply this 3385 * @gfp: GFP allocation flags 3386 * 3387 * Return: status of transformation 3388 */ 3389 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3390 struct spi_message *msg, 3391 size_t maxsize, 3392 gfp_t gfp) 3393 { 3394 struct spi_transfer *xfer; 3395 int ret; 3396 3397 /* 3398 * Iterate over the transfer_list, 3399 * but note that xfer is advanced to the last transfer inserted 3400 * to avoid checking sizes again unnecessarily (also xfer does 3401 * potentially belong to a different list by the time the 3402 * replacement has happened). 3403 */ 3404 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3405 if (xfer->len > maxsize) { 3406 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3407 maxsize, gfp); 3408 if (ret) 3409 return ret; 3410 } 3411 } 3412 3413 return 0; 3414 } 3415 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3416 3417 /*-------------------------------------------------------------------------*/ 3418 3419 /* Core methods for SPI controller protocol drivers. Some of the 3420 * other core methods are currently defined as inline functions. 3421 */ 3422 3423 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3424 u8 bits_per_word) 3425 { 3426 if (ctlr->bits_per_word_mask) { 3427 /* Only 32 bits fit in the mask */ 3428 if (bits_per_word > 32) 3429 return -EINVAL; 3430 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3431 return -EINVAL; 3432 } 3433 3434 return 0; 3435 } 3436 3437 /** 3438 * spi_setup - setup SPI mode and clock rate 3439 * @spi: the device whose settings are being modified 3440 * Context: can sleep, and no requests are queued to the device 3441 * 3442 * SPI protocol drivers may need to update the transfer mode if the 3443 * device doesn't work with its default. They may likewise need 3444 * to update clock rates or word sizes from initial values. This function 3445 * changes those settings, and must be called from a context that can sleep. 3446 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3447 * effect the next time the device is selected and data is transferred to 3448 * or from it. When this function returns, the spi device is deselected. 3449 * 3450 * Note that this call will fail if the protocol driver specifies an option 3451 * that the underlying controller or its driver does not support. For 3452 * example, not all hardware supports wire transfers using nine bit words, 3453 * LSB-first wire encoding, or active-high chipselects. 3454 * 3455 * Return: zero on success, else a negative error code. 3456 */ 3457 int spi_setup(struct spi_device *spi) 3458 { 3459 unsigned bad_bits, ugly_bits; 3460 int status = 0; 3461 3462 /* 3463 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3464 * are set at the same time. 3465 */ 3466 if ((hweight_long(spi->mode & 3467 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3468 (hweight_long(spi->mode & 3469 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3470 dev_err(&spi->dev, 3471 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3472 return -EINVAL; 3473 } 3474 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3475 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3476 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3477 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3478 return -EINVAL; 3479 /* 3480 * Help drivers fail *cleanly* when they need options 3481 * that aren't supported with their current controller. 3482 * SPI_CS_WORD has a fallback software implementation, 3483 * so it is ignored here. 3484 */ 3485 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3486 SPI_NO_TX | SPI_NO_RX); 3487 ugly_bits = bad_bits & 3488 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3489 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3490 if (ugly_bits) { 3491 dev_warn(&spi->dev, 3492 "setup: ignoring unsupported mode bits %x\n", 3493 ugly_bits); 3494 spi->mode &= ~ugly_bits; 3495 bad_bits &= ~ugly_bits; 3496 } 3497 if (bad_bits) { 3498 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3499 bad_bits); 3500 return -EINVAL; 3501 } 3502 3503 if (!spi->bits_per_word) { 3504 spi->bits_per_word = 8; 3505 } else { 3506 /* 3507 * Some controllers may not support the default 8 bits-per-word 3508 * so only perform the check when this is explicitly provided. 3509 */ 3510 status = __spi_validate_bits_per_word(spi->controller, 3511 spi->bits_per_word); 3512 if (status) 3513 return status; 3514 } 3515 3516 if (spi->controller->max_speed_hz && 3517 (!spi->max_speed_hz || 3518 spi->max_speed_hz > spi->controller->max_speed_hz)) 3519 spi->max_speed_hz = spi->controller->max_speed_hz; 3520 3521 mutex_lock(&spi->controller->io_mutex); 3522 3523 if (spi->controller->setup) { 3524 status = spi->controller->setup(spi); 3525 if (status) { 3526 mutex_unlock(&spi->controller->io_mutex); 3527 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3528 status); 3529 return status; 3530 } 3531 } 3532 3533 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3534 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3535 if (status < 0) { 3536 mutex_unlock(&spi->controller->io_mutex); 3537 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3538 status); 3539 return status; 3540 } 3541 3542 /* 3543 * We do not want to return positive value from pm_runtime_get, 3544 * there are many instances of devices calling spi_setup() and 3545 * checking for a non-zero return value instead of a negative 3546 * return value. 3547 */ 3548 status = 0; 3549 3550 spi_set_cs(spi, false, true); 3551 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3552 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3553 } else { 3554 spi_set_cs(spi, false, true); 3555 } 3556 3557 mutex_unlock(&spi->controller->io_mutex); 3558 3559 if (spi->rt && !spi->controller->rt) { 3560 spi->controller->rt = true; 3561 spi_set_thread_rt(spi->controller); 3562 } 3563 3564 trace_spi_setup(spi, status); 3565 3566 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3567 spi->mode & SPI_MODE_X_MASK, 3568 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3569 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3570 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3571 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3572 spi->bits_per_word, spi->max_speed_hz, 3573 status); 3574 3575 return status; 3576 } 3577 EXPORT_SYMBOL_GPL(spi_setup); 3578 3579 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3580 struct spi_device *spi) 3581 { 3582 int delay1, delay2; 3583 3584 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3585 if (delay1 < 0) 3586 return delay1; 3587 3588 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3589 if (delay2 < 0) 3590 return delay2; 3591 3592 if (delay1 < delay2) 3593 memcpy(&xfer->word_delay, &spi->word_delay, 3594 sizeof(xfer->word_delay)); 3595 3596 return 0; 3597 } 3598 3599 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3600 { 3601 struct spi_controller *ctlr = spi->controller; 3602 struct spi_transfer *xfer; 3603 int w_size; 3604 3605 if (list_empty(&message->transfers)) 3606 return -EINVAL; 3607 3608 /* 3609 * If an SPI controller does not support toggling the CS line on each 3610 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3611 * for the CS line, we can emulate the CS-per-word hardware function by 3612 * splitting transfers into one-word transfers and ensuring that 3613 * cs_change is set for each transfer. 3614 */ 3615 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3616 spi->cs_gpiod)) { 3617 size_t maxsize; 3618 int ret; 3619 3620 maxsize = (spi->bits_per_word + 7) / 8; 3621 3622 /* spi_split_transfers_maxsize() requires message->spi */ 3623 message->spi = spi; 3624 3625 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3626 GFP_KERNEL); 3627 if (ret) 3628 return ret; 3629 3630 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3631 /* don't change cs_change on the last entry in the list */ 3632 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3633 break; 3634 xfer->cs_change = 1; 3635 } 3636 } 3637 3638 /* 3639 * Half-duplex links include original MicroWire, and ones with 3640 * only one data pin like SPI_3WIRE (switches direction) or where 3641 * either MOSI or MISO is missing. They can also be caused by 3642 * software limitations. 3643 */ 3644 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3645 (spi->mode & SPI_3WIRE)) { 3646 unsigned flags = ctlr->flags; 3647 3648 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3649 if (xfer->rx_buf && xfer->tx_buf) 3650 return -EINVAL; 3651 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3652 return -EINVAL; 3653 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3654 return -EINVAL; 3655 } 3656 } 3657 3658 /* 3659 * Set transfer bits_per_word and max speed as spi device default if 3660 * it is not set for this transfer. 3661 * Set transfer tx_nbits and rx_nbits as single transfer default 3662 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3663 * Ensure transfer word_delay is at least as long as that required by 3664 * device itself. 3665 */ 3666 message->frame_length = 0; 3667 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3668 xfer->effective_speed_hz = 0; 3669 message->frame_length += xfer->len; 3670 if (!xfer->bits_per_word) 3671 xfer->bits_per_word = spi->bits_per_word; 3672 3673 if (!xfer->speed_hz) 3674 xfer->speed_hz = spi->max_speed_hz; 3675 3676 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3677 xfer->speed_hz = ctlr->max_speed_hz; 3678 3679 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3680 return -EINVAL; 3681 3682 /* 3683 * SPI transfer length should be multiple of SPI word size 3684 * where SPI word size should be power-of-two multiple. 3685 */ 3686 if (xfer->bits_per_word <= 8) 3687 w_size = 1; 3688 else if (xfer->bits_per_word <= 16) 3689 w_size = 2; 3690 else 3691 w_size = 4; 3692 3693 /* No partial transfers accepted */ 3694 if (xfer->len % w_size) 3695 return -EINVAL; 3696 3697 if (xfer->speed_hz && ctlr->min_speed_hz && 3698 xfer->speed_hz < ctlr->min_speed_hz) 3699 return -EINVAL; 3700 3701 if (xfer->tx_buf && !xfer->tx_nbits) 3702 xfer->tx_nbits = SPI_NBITS_SINGLE; 3703 if (xfer->rx_buf && !xfer->rx_nbits) 3704 xfer->rx_nbits = SPI_NBITS_SINGLE; 3705 /* 3706 * Check transfer tx/rx_nbits: 3707 * 1. check the value matches one of single, dual and quad 3708 * 2. check tx/rx_nbits match the mode in spi_device 3709 */ 3710 if (xfer->tx_buf) { 3711 if (spi->mode & SPI_NO_TX) 3712 return -EINVAL; 3713 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3714 xfer->tx_nbits != SPI_NBITS_DUAL && 3715 xfer->tx_nbits != SPI_NBITS_QUAD) 3716 return -EINVAL; 3717 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3718 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3719 return -EINVAL; 3720 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3721 !(spi->mode & SPI_TX_QUAD)) 3722 return -EINVAL; 3723 } 3724 /* check transfer rx_nbits */ 3725 if (xfer->rx_buf) { 3726 if (spi->mode & SPI_NO_RX) 3727 return -EINVAL; 3728 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3729 xfer->rx_nbits != SPI_NBITS_DUAL && 3730 xfer->rx_nbits != SPI_NBITS_QUAD) 3731 return -EINVAL; 3732 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3733 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3734 return -EINVAL; 3735 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3736 !(spi->mode & SPI_RX_QUAD)) 3737 return -EINVAL; 3738 } 3739 3740 if (_spi_xfer_word_delay_update(xfer, spi)) 3741 return -EINVAL; 3742 } 3743 3744 message->status = -EINPROGRESS; 3745 3746 return 0; 3747 } 3748 3749 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3750 { 3751 struct spi_controller *ctlr = spi->controller; 3752 struct spi_transfer *xfer; 3753 3754 /* 3755 * Some controllers do not support doing regular SPI transfers. Return 3756 * ENOTSUPP when this is the case. 3757 */ 3758 if (!ctlr->transfer) 3759 return -ENOTSUPP; 3760 3761 message->spi = spi; 3762 3763 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3764 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3765 3766 trace_spi_message_submit(message); 3767 3768 if (!ctlr->ptp_sts_supported) { 3769 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3770 xfer->ptp_sts_word_pre = 0; 3771 ptp_read_system_prets(xfer->ptp_sts); 3772 } 3773 } 3774 3775 return ctlr->transfer(spi, message); 3776 } 3777 3778 /** 3779 * spi_async - asynchronous SPI transfer 3780 * @spi: device with which data will be exchanged 3781 * @message: describes the data transfers, including completion callback 3782 * Context: any (irqs may be blocked, etc) 3783 * 3784 * This call may be used in_irq and other contexts which can't sleep, 3785 * as well as from task contexts which can sleep. 3786 * 3787 * The completion callback is invoked in a context which can't sleep. 3788 * Before that invocation, the value of message->status is undefined. 3789 * When the callback is issued, message->status holds either zero (to 3790 * indicate complete success) or a negative error code. After that 3791 * callback returns, the driver which issued the transfer request may 3792 * deallocate the associated memory; it's no longer in use by any SPI 3793 * core or controller driver code. 3794 * 3795 * Note that although all messages to a spi_device are handled in 3796 * FIFO order, messages may go to different devices in other orders. 3797 * Some device might be higher priority, or have various "hard" access 3798 * time requirements, for example. 3799 * 3800 * On detection of any fault during the transfer, processing of 3801 * the entire message is aborted, and the device is deselected. 3802 * Until returning from the associated message completion callback, 3803 * no other spi_message queued to that device will be processed. 3804 * (This rule applies equally to all the synchronous transfer calls, 3805 * which are wrappers around this core asynchronous primitive.) 3806 * 3807 * Return: zero on success, else a negative error code. 3808 */ 3809 int spi_async(struct spi_device *spi, struct spi_message *message) 3810 { 3811 struct spi_controller *ctlr = spi->controller; 3812 int ret; 3813 unsigned long flags; 3814 3815 ret = __spi_validate(spi, message); 3816 if (ret != 0) 3817 return ret; 3818 3819 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3820 3821 if (ctlr->bus_lock_flag) 3822 ret = -EBUSY; 3823 else 3824 ret = __spi_async(spi, message); 3825 3826 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3827 3828 return ret; 3829 } 3830 EXPORT_SYMBOL_GPL(spi_async); 3831 3832 /** 3833 * spi_async_locked - version of spi_async with exclusive bus usage 3834 * @spi: device with which data will be exchanged 3835 * @message: describes the data transfers, including completion callback 3836 * Context: any (irqs may be blocked, etc) 3837 * 3838 * This call may be used in_irq and other contexts which can't sleep, 3839 * as well as from task contexts which can sleep. 3840 * 3841 * The completion callback is invoked in a context which can't sleep. 3842 * Before that invocation, the value of message->status is undefined. 3843 * When the callback is issued, message->status holds either zero (to 3844 * indicate complete success) or a negative error code. After that 3845 * callback returns, the driver which issued the transfer request may 3846 * deallocate the associated memory; it's no longer in use by any SPI 3847 * core or controller driver code. 3848 * 3849 * Note that although all messages to a spi_device are handled in 3850 * FIFO order, messages may go to different devices in other orders. 3851 * Some device might be higher priority, or have various "hard" access 3852 * time requirements, for example. 3853 * 3854 * On detection of any fault during the transfer, processing of 3855 * the entire message is aborted, and the device is deselected. 3856 * Until returning from the associated message completion callback, 3857 * no other spi_message queued to that device will be processed. 3858 * (This rule applies equally to all the synchronous transfer calls, 3859 * which are wrappers around this core asynchronous primitive.) 3860 * 3861 * Return: zero on success, else a negative error code. 3862 */ 3863 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3864 { 3865 struct spi_controller *ctlr = spi->controller; 3866 int ret; 3867 unsigned long flags; 3868 3869 ret = __spi_validate(spi, message); 3870 if (ret != 0) 3871 return ret; 3872 3873 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3874 3875 ret = __spi_async(spi, message); 3876 3877 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3878 3879 return ret; 3880 3881 } 3882 3883 /*-------------------------------------------------------------------------*/ 3884 3885 /* 3886 * Utility methods for SPI protocol drivers, layered on 3887 * top of the core. Some other utility methods are defined as 3888 * inline functions. 3889 */ 3890 3891 static void spi_complete(void *arg) 3892 { 3893 complete(arg); 3894 } 3895 3896 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3897 { 3898 DECLARE_COMPLETION_ONSTACK(done); 3899 int status; 3900 struct spi_controller *ctlr = spi->controller; 3901 unsigned long flags; 3902 3903 status = __spi_validate(spi, message); 3904 if (status != 0) 3905 return status; 3906 3907 message->complete = spi_complete; 3908 message->context = &done; 3909 message->spi = spi; 3910 3911 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3912 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3913 3914 /* 3915 * If we're not using the legacy transfer method then we will 3916 * try to transfer in the calling context so special case. 3917 * This code would be less tricky if we could remove the 3918 * support for driver implemented message queues. 3919 */ 3920 if (ctlr->transfer == spi_queued_transfer) { 3921 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3922 3923 trace_spi_message_submit(message); 3924 3925 status = __spi_queued_transfer(spi, message, false); 3926 3927 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3928 } else { 3929 status = spi_async_locked(spi, message); 3930 } 3931 3932 if (status == 0) { 3933 /* Push out the messages in the calling context if we can */ 3934 if (ctlr->transfer == spi_queued_transfer) { 3935 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3936 spi_sync_immediate); 3937 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3938 spi_sync_immediate); 3939 __spi_pump_messages(ctlr, false); 3940 } 3941 3942 wait_for_completion(&done); 3943 status = message->status; 3944 } 3945 message->context = NULL; 3946 return status; 3947 } 3948 3949 /** 3950 * spi_sync - blocking/synchronous SPI data transfers 3951 * @spi: device with which data will be exchanged 3952 * @message: describes the data transfers 3953 * Context: can sleep 3954 * 3955 * This call may only be used from a context that may sleep. The sleep 3956 * is non-interruptible, and has no timeout. Low-overhead controller 3957 * drivers may DMA directly into and out of the message buffers. 3958 * 3959 * Note that the SPI device's chip select is active during the message, 3960 * and then is normally disabled between messages. Drivers for some 3961 * frequently-used devices may want to minimize costs of selecting a chip, 3962 * by leaving it selected in anticipation that the next message will go 3963 * to the same chip. (That may increase power usage.) 3964 * 3965 * Also, the caller is guaranteeing that the memory associated with the 3966 * message will not be freed before this call returns. 3967 * 3968 * Return: zero on success, else a negative error code. 3969 */ 3970 int spi_sync(struct spi_device *spi, struct spi_message *message) 3971 { 3972 int ret; 3973 3974 mutex_lock(&spi->controller->bus_lock_mutex); 3975 ret = __spi_sync(spi, message); 3976 mutex_unlock(&spi->controller->bus_lock_mutex); 3977 3978 return ret; 3979 } 3980 EXPORT_SYMBOL_GPL(spi_sync); 3981 3982 /** 3983 * spi_sync_locked - version of spi_sync with exclusive bus usage 3984 * @spi: device with which data will be exchanged 3985 * @message: describes the data transfers 3986 * Context: can sleep 3987 * 3988 * This call may only be used from a context that may sleep. The sleep 3989 * is non-interruptible, and has no timeout. Low-overhead controller 3990 * drivers may DMA directly into and out of the message buffers. 3991 * 3992 * This call should be used by drivers that require exclusive access to the 3993 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3994 * be released by a spi_bus_unlock call when the exclusive access is over. 3995 * 3996 * Return: zero on success, else a negative error code. 3997 */ 3998 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3999 { 4000 return __spi_sync(spi, message); 4001 } 4002 EXPORT_SYMBOL_GPL(spi_sync_locked); 4003 4004 /** 4005 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4006 * @ctlr: SPI bus master that should be locked for exclusive bus access 4007 * Context: can sleep 4008 * 4009 * This call may only be used from a context that may sleep. The sleep 4010 * is non-interruptible, and has no timeout. 4011 * 4012 * This call should be used by drivers that require exclusive access to the 4013 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4014 * exclusive access is over. Data transfer must be done by spi_sync_locked 4015 * and spi_async_locked calls when the SPI bus lock is held. 4016 * 4017 * Return: always zero. 4018 */ 4019 int spi_bus_lock(struct spi_controller *ctlr) 4020 { 4021 unsigned long flags; 4022 4023 mutex_lock(&ctlr->bus_lock_mutex); 4024 4025 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4026 ctlr->bus_lock_flag = 1; 4027 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4028 4029 /* mutex remains locked until spi_bus_unlock is called */ 4030 4031 return 0; 4032 } 4033 EXPORT_SYMBOL_GPL(spi_bus_lock); 4034 4035 /** 4036 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4037 * @ctlr: SPI bus master that was locked for exclusive bus access 4038 * Context: can sleep 4039 * 4040 * This call may only be used from a context that may sleep. The sleep 4041 * is non-interruptible, and has no timeout. 4042 * 4043 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4044 * call. 4045 * 4046 * Return: always zero. 4047 */ 4048 int spi_bus_unlock(struct spi_controller *ctlr) 4049 { 4050 ctlr->bus_lock_flag = 0; 4051 4052 mutex_unlock(&ctlr->bus_lock_mutex); 4053 4054 return 0; 4055 } 4056 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4057 4058 /* portable code must never pass more than 32 bytes */ 4059 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4060 4061 static u8 *buf; 4062 4063 /** 4064 * spi_write_then_read - SPI synchronous write followed by read 4065 * @spi: device with which data will be exchanged 4066 * @txbuf: data to be written (need not be dma-safe) 4067 * @n_tx: size of txbuf, in bytes 4068 * @rxbuf: buffer into which data will be read (need not be dma-safe) 4069 * @n_rx: size of rxbuf, in bytes 4070 * Context: can sleep 4071 * 4072 * This performs a half duplex MicroWire style transaction with the 4073 * device, sending txbuf and then reading rxbuf. The return value 4074 * is zero for success, else a negative errno status code. 4075 * This call may only be used from a context that may sleep. 4076 * 4077 * Parameters to this routine are always copied using a small buffer. 4078 * Performance-sensitive or bulk transfer code should instead use 4079 * spi_{async,sync}() calls with dma-safe buffers. 4080 * 4081 * Return: zero on success, else a negative error code. 4082 */ 4083 int spi_write_then_read(struct spi_device *spi, 4084 const void *txbuf, unsigned n_tx, 4085 void *rxbuf, unsigned n_rx) 4086 { 4087 static DEFINE_MUTEX(lock); 4088 4089 int status; 4090 struct spi_message message; 4091 struct spi_transfer x[2]; 4092 u8 *local_buf; 4093 4094 /* 4095 * Use preallocated DMA-safe buffer if we can. We can't avoid 4096 * copying here, (as a pure convenience thing), but we can 4097 * keep heap costs out of the hot path unless someone else is 4098 * using the pre-allocated buffer or the transfer is too large. 4099 */ 4100 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4101 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4102 GFP_KERNEL | GFP_DMA); 4103 if (!local_buf) 4104 return -ENOMEM; 4105 } else { 4106 local_buf = buf; 4107 } 4108 4109 spi_message_init(&message); 4110 memset(x, 0, sizeof(x)); 4111 if (n_tx) { 4112 x[0].len = n_tx; 4113 spi_message_add_tail(&x[0], &message); 4114 } 4115 if (n_rx) { 4116 x[1].len = n_rx; 4117 spi_message_add_tail(&x[1], &message); 4118 } 4119 4120 memcpy(local_buf, txbuf, n_tx); 4121 x[0].tx_buf = local_buf; 4122 x[1].rx_buf = local_buf + n_tx; 4123 4124 /* do the i/o */ 4125 status = spi_sync(spi, &message); 4126 if (status == 0) 4127 memcpy(rxbuf, x[1].rx_buf, n_rx); 4128 4129 if (x[0].tx_buf == buf) 4130 mutex_unlock(&lock); 4131 else 4132 kfree(local_buf); 4133 4134 return status; 4135 } 4136 EXPORT_SYMBOL_GPL(spi_write_then_read); 4137 4138 /*-------------------------------------------------------------------------*/ 4139 4140 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4141 /* must call put_device() when done with returned spi_device device */ 4142 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4143 { 4144 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4145 4146 return dev ? to_spi_device(dev) : NULL; 4147 } 4148 4149 /* the spi controllers are not using spi_bus, so we find it with another way */ 4150 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4151 { 4152 struct device *dev; 4153 4154 dev = class_find_device_by_of_node(&spi_master_class, node); 4155 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4156 dev = class_find_device_by_of_node(&spi_slave_class, node); 4157 if (!dev) 4158 return NULL; 4159 4160 /* reference got in class_find_device */ 4161 return container_of(dev, struct spi_controller, dev); 4162 } 4163 4164 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4165 void *arg) 4166 { 4167 struct of_reconfig_data *rd = arg; 4168 struct spi_controller *ctlr; 4169 struct spi_device *spi; 4170 4171 switch (of_reconfig_get_state_change(action, arg)) { 4172 case OF_RECONFIG_CHANGE_ADD: 4173 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4174 if (ctlr == NULL) 4175 return NOTIFY_OK; /* not for us */ 4176 4177 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4178 put_device(&ctlr->dev); 4179 return NOTIFY_OK; 4180 } 4181 4182 spi = of_register_spi_device(ctlr, rd->dn); 4183 put_device(&ctlr->dev); 4184 4185 if (IS_ERR(spi)) { 4186 pr_err("%s: failed to create for '%pOF'\n", 4187 __func__, rd->dn); 4188 of_node_clear_flag(rd->dn, OF_POPULATED); 4189 return notifier_from_errno(PTR_ERR(spi)); 4190 } 4191 break; 4192 4193 case OF_RECONFIG_CHANGE_REMOVE: 4194 /* already depopulated? */ 4195 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4196 return NOTIFY_OK; 4197 4198 /* find our device by node */ 4199 spi = of_find_spi_device_by_node(rd->dn); 4200 if (spi == NULL) 4201 return NOTIFY_OK; /* no? not meant for us */ 4202 4203 /* unregister takes one ref away */ 4204 spi_unregister_device(spi); 4205 4206 /* and put the reference of the find */ 4207 put_device(&spi->dev); 4208 break; 4209 } 4210 4211 return NOTIFY_OK; 4212 } 4213 4214 static struct notifier_block spi_of_notifier = { 4215 .notifier_call = of_spi_notify, 4216 }; 4217 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4218 extern struct notifier_block spi_of_notifier; 4219 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4220 4221 #if IS_ENABLED(CONFIG_ACPI) 4222 static int spi_acpi_controller_match(struct device *dev, const void *data) 4223 { 4224 return ACPI_COMPANION(dev->parent) == data; 4225 } 4226 4227 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4228 { 4229 struct device *dev; 4230 4231 dev = class_find_device(&spi_master_class, NULL, adev, 4232 spi_acpi_controller_match); 4233 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4234 dev = class_find_device(&spi_slave_class, NULL, adev, 4235 spi_acpi_controller_match); 4236 if (!dev) 4237 return NULL; 4238 4239 return container_of(dev, struct spi_controller, dev); 4240 } 4241 4242 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4243 { 4244 struct device *dev; 4245 4246 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4247 return to_spi_device(dev); 4248 } 4249 4250 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4251 void *arg) 4252 { 4253 struct acpi_device *adev = arg; 4254 struct spi_controller *ctlr; 4255 struct spi_device *spi; 4256 4257 switch (value) { 4258 case ACPI_RECONFIG_DEVICE_ADD: 4259 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4260 if (!ctlr) 4261 break; 4262 4263 acpi_register_spi_device(ctlr, adev); 4264 put_device(&ctlr->dev); 4265 break; 4266 case ACPI_RECONFIG_DEVICE_REMOVE: 4267 if (!acpi_device_enumerated(adev)) 4268 break; 4269 4270 spi = acpi_spi_find_device_by_adev(adev); 4271 if (!spi) 4272 break; 4273 4274 spi_unregister_device(spi); 4275 put_device(&spi->dev); 4276 break; 4277 } 4278 4279 return NOTIFY_OK; 4280 } 4281 4282 static struct notifier_block spi_acpi_notifier = { 4283 .notifier_call = acpi_spi_notify, 4284 }; 4285 #else 4286 extern struct notifier_block spi_acpi_notifier; 4287 #endif 4288 4289 static int __init spi_init(void) 4290 { 4291 int status; 4292 4293 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4294 if (!buf) { 4295 status = -ENOMEM; 4296 goto err0; 4297 } 4298 4299 status = bus_register(&spi_bus_type); 4300 if (status < 0) 4301 goto err1; 4302 4303 status = class_register(&spi_master_class); 4304 if (status < 0) 4305 goto err2; 4306 4307 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4308 status = class_register(&spi_slave_class); 4309 if (status < 0) 4310 goto err3; 4311 } 4312 4313 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4314 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4315 if (IS_ENABLED(CONFIG_ACPI)) 4316 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4317 4318 return 0; 4319 4320 err3: 4321 class_unregister(&spi_master_class); 4322 err2: 4323 bus_unregister(&spi_bus_type); 4324 err1: 4325 kfree(buf); 4326 buf = NULL; 4327 err0: 4328 return status; 4329 } 4330 4331 /* 4332 * A board_info is normally registered in arch_initcall(), 4333 * but even essential drivers wait till later. 4334 * 4335 * REVISIT only boardinfo really needs static linking. The rest (device and 4336 * driver registration) _could_ be dynamically linked (modular) ... Costs 4337 * include needing to have boardinfo data structures be much more public. 4338 */ 4339 postcore_initcall(spi_init); 4340