xref: /openbmc/linux/drivers/spi/spi.c (revision 2a152512)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	spi_controller_put(spi->controller);
51 	kfree(spi->driver_override);
52 	kfree(spi);
53 }
54 
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 	const struct spi_device	*spi = to_spi_device(dev);
59 	int len;
60 
61 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 	if (len != -ENODEV)
63 		return len;
64 
65 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68 
69 static ssize_t driver_override_store(struct device *dev,
70 				     struct device_attribute *a,
71 				     const char *buf, size_t count)
72 {
73 	struct spi_device *spi = to_spi_device(dev);
74 	const char *end = memchr(buf, '\n', count);
75 	const size_t len = end ? end - buf : count;
76 	const char *driver_override, *old;
77 
78 	/* We need to keep extra room for a newline when displaying value */
79 	if (len >= (PAGE_SIZE - 1))
80 		return -EINVAL;
81 
82 	driver_override = kstrndup(buf, len, GFP_KERNEL);
83 	if (!driver_override)
84 		return -ENOMEM;
85 
86 	device_lock(dev);
87 	old = spi->driver_override;
88 	if (len) {
89 		spi->driver_override = driver_override;
90 	} else {
91 		/* Empty string, disable driver override */
92 		spi->driver_override = NULL;
93 		kfree(driver_override);
94 	}
95 	device_unlock(dev);
96 	kfree(old);
97 
98 	return count;
99 }
100 
101 static ssize_t driver_override_show(struct device *dev,
102 				    struct device_attribute *a, char *buf)
103 {
104 	const struct spi_device *spi = to_spi_device(dev);
105 	ssize_t len;
106 
107 	device_lock(dev);
108 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 	device_unlock(dev);
110 	return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113 
114 #define SPI_STATISTICS_ATTRS(field, file)				\
115 static ssize_t spi_controller_##field##_show(struct device *dev,	\
116 					     struct device_attribute *attr, \
117 					     char *buf)			\
118 {									\
119 	struct spi_controller *ctlr = container_of(dev,			\
120 					 struct spi_controller, dev);	\
121 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
122 }									\
123 static struct device_attribute dev_attr_spi_controller_##field = {	\
124 	.attr = { .name = file, .mode = 0444 },				\
125 	.show = spi_controller_##field##_show,				\
126 };									\
127 static ssize_t spi_device_##field##_show(struct device *dev,		\
128 					 struct device_attribute *attr,	\
129 					char *buf)			\
130 {									\
131 	struct spi_device *spi = to_spi_device(dev);			\
132 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
133 }									\
134 static struct device_attribute dev_attr_spi_device_##field = {		\
135 	.attr = { .name = file, .mode = 0444 },				\
136 	.show = spi_device_##field##_show,				\
137 }
138 
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 					    char *buf)			\
142 {									\
143 	unsigned long flags;						\
144 	ssize_t len;							\
145 	spin_lock_irqsave(&stat->lock, flags);				\
146 	len = sprintf(buf, format_string, stat->field);			\
147 	spin_unlock_irqrestore(&stat->lock, flags);			\
148 	return len;							\
149 }									\
150 SPI_STATISTICS_ATTRS(name, file)
151 
152 #define SPI_STATISTICS_SHOW(field, format_string)			\
153 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
154 				 field, format_string)
155 
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160 
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164 
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168 
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
170 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
171 				 "transfer_bytes_histo_" number,	\
172 				 transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190 
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192 
193 static struct attribute *spi_dev_attrs[] = {
194 	&dev_attr_modalias.attr,
195 	&dev_attr_driver_override.attr,
196 	NULL,
197 };
198 
199 static const struct attribute_group spi_dev_group = {
200 	.attrs  = spi_dev_attrs,
201 };
202 
203 static struct attribute *spi_device_statistics_attrs[] = {
204 	&dev_attr_spi_device_messages.attr,
205 	&dev_attr_spi_device_transfers.attr,
206 	&dev_attr_spi_device_errors.attr,
207 	&dev_attr_spi_device_timedout.attr,
208 	&dev_attr_spi_device_spi_sync.attr,
209 	&dev_attr_spi_device_spi_sync_immediate.attr,
210 	&dev_attr_spi_device_spi_async.attr,
211 	&dev_attr_spi_device_bytes.attr,
212 	&dev_attr_spi_device_bytes_rx.attr,
213 	&dev_attr_spi_device_bytes_tx.attr,
214 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
231 	&dev_attr_spi_device_transfers_split_maxsize.attr,
232 	NULL,
233 };
234 
235 static const struct attribute_group spi_device_statistics_group = {
236 	.name  = "statistics",
237 	.attrs  = spi_device_statistics_attrs,
238 };
239 
240 static const struct attribute_group *spi_dev_groups[] = {
241 	&spi_dev_group,
242 	&spi_device_statistics_group,
243 	NULL,
244 };
245 
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 	&dev_attr_spi_controller_messages.attr,
248 	&dev_attr_spi_controller_transfers.attr,
249 	&dev_attr_spi_controller_errors.attr,
250 	&dev_attr_spi_controller_timedout.attr,
251 	&dev_attr_spi_controller_spi_sync.attr,
252 	&dev_attr_spi_controller_spi_sync_immediate.attr,
253 	&dev_attr_spi_controller_spi_async.attr,
254 	&dev_attr_spi_controller_bytes.attr,
255 	&dev_attr_spi_controller_bytes_rx.attr,
256 	&dev_attr_spi_controller_bytes_tx.attr,
257 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
275 	NULL,
276 };
277 
278 static const struct attribute_group spi_controller_statistics_group = {
279 	.name  = "statistics",
280 	.attrs  = spi_controller_statistics_attrs,
281 };
282 
283 static const struct attribute_group *spi_master_groups[] = {
284 	&spi_controller_statistics_group,
285 	NULL,
286 };
287 
288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 				       struct spi_transfer *xfer,
290 				       struct spi_controller *ctlr)
291 {
292 	unsigned long flags;
293 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294 
295 	if (l2len < 0)
296 		l2len = 0;
297 
298 	spin_lock_irqsave(&stats->lock, flags);
299 
300 	stats->transfers++;
301 	stats->transfer_bytes_histo[l2len]++;
302 
303 	stats->bytes += xfer->len;
304 	if ((xfer->tx_buf) &&
305 	    (xfer->tx_buf != ctlr->dummy_tx))
306 		stats->bytes_tx += xfer->len;
307 	if ((xfer->rx_buf) &&
308 	    (xfer->rx_buf != ctlr->dummy_rx))
309 		stats->bytes_rx += xfer->len;
310 
311 	spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314 
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316  * and the sysfs version makes coldplug work too.
317  */
318 
319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320 						const struct spi_device *sdev)
321 {
322 	while (id->name[0]) {
323 		if (!strcmp(sdev->modalias, id->name))
324 			return id;
325 		id++;
326 	}
327 	return NULL;
328 }
329 
330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333 
334 	return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337 
338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340 	const struct spi_device	*spi = to_spi_device(dev);
341 	const struct spi_driver	*sdrv = to_spi_driver(drv);
342 
343 	/* Check override first, and if set, only use the named driver */
344 	if (spi->driver_override)
345 		return strcmp(spi->driver_override, drv->name) == 0;
346 
347 	/* Attempt an OF style match */
348 	if (of_driver_match_device(dev, drv))
349 		return 1;
350 
351 	/* Then try ACPI */
352 	if (acpi_driver_match_device(dev, drv))
353 		return 1;
354 
355 	if (sdrv->id_table)
356 		return !!spi_match_id(sdrv->id_table, spi);
357 
358 	return strcmp(spi->modalias, drv->name) == 0;
359 }
360 
361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363 	const struct spi_device		*spi = to_spi_device(dev);
364 	int rc;
365 
366 	rc = acpi_device_uevent_modalias(dev, env);
367 	if (rc != -ENODEV)
368 		return rc;
369 
370 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
371 }
372 
373 static int spi_probe(struct device *dev)
374 {
375 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
376 	struct spi_device		*spi = to_spi_device(dev);
377 	int ret;
378 
379 	ret = of_clk_set_defaults(dev->of_node, false);
380 	if (ret)
381 		return ret;
382 
383 	if (dev->of_node) {
384 		spi->irq = of_irq_get(dev->of_node, 0);
385 		if (spi->irq == -EPROBE_DEFER)
386 			return -EPROBE_DEFER;
387 		if (spi->irq < 0)
388 			spi->irq = 0;
389 	}
390 
391 	ret = dev_pm_domain_attach(dev, true);
392 	if (ret)
393 		return ret;
394 
395 	if (sdrv->probe) {
396 		ret = sdrv->probe(spi);
397 		if (ret)
398 			dev_pm_domain_detach(dev, true);
399 	}
400 
401 	return ret;
402 }
403 
404 static void spi_remove(struct device *dev)
405 {
406 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
407 
408 	if (sdrv->remove) {
409 		int ret;
410 
411 		ret = sdrv->remove(to_spi_device(dev));
412 		if (ret)
413 			dev_warn(dev,
414 				 "Failed to unbind driver (%pe), ignoring\n",
415 				 ERR_PTR(ret));
416 	}
417 
418 	dev_pm_domain_detach(dev, true);
419 }
420 
421 static void spi_shutdown(struct device *dev)
422 {
423 	if (dev->driver) {
424 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
425 
426 		if (sdrv->shutdown)
427 			sdrv->shutdown(to_spi_device(dev));
428 	}
429 }
430 
431 struct bus_type spi_bus_type = {
432 	.name		= "spi",
433 	.dev_groups	= spi_dev_groups,
434 	.match		= spi_match_device,
435 	.uevent		= spi_uevent,
436 	.probe		= spi_probe,
437 	.remove		= spi_remove,
438 	.shutdown	= spi_shutdown,
439 };
440 EXPORT_SYMBOL_GPL(spi_bus_type);
441 
442 /**
443  * __spi_register_driver - register a SPI driver
444  * @owner: owner module of the driver to register
445  * @sdrv: the driver to register
446  * Context: can sleep
447  *
448  * Return: zero on success, else a negative error code.
449  */
450 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
451 {
452 	sdrv->driver.owner = owner;
453 	sdrv->driver.bus = &spi_bus_type;
454 	return driver_register(&sdrv->driver);
455 }
456 EXPORT_SYMBOL_GPL(__spi_register_driver);
457 
458 /*-------------------------------------------------------------------------*/
459 
460 /* SPI devices should normally not be created by SPI device drivers; that
461  * would make them board-specific.  Similarly with SPI controller drivers.
462  * Device registration normally goes into like arch/.../mach.../board-YYY.c
463  * with other readonly (flashable) information about mainboard devices.
464  */
465 
466 struct boardinfo {
467 	struct list_head	list;
468 	struct spi_board_info	board_info;
469 };
470 
471 static LIST_HEAD(board_list);
472 static LIST_HEAD(spi_controller_list);
473 
474 /*
475  * Used to protect add/del operation for board_info list and
476  * spi_controller list, and their matching process
477  * also used to protect object of type struct idr
478  */
479 static DEFINE_MUTEX(board_lock);
480 
481 /*
482  * Prevents addition of devices with same chip select and
483  * addition of devices below an unregistering controller.
484  */
485 static DEFINE_MUTEX(spi_add_lock);
486 
487 /**
488  * spi_alloc_device - Allocate a new SPI device
489  * @ctlr: Controller to which device is connected
490  * Context: can sleep
491  *
492  * Allows a driver to allocate and initialize a spi_device without
493  * registering it immediately.  This allows a driver to directly
494  * fill the spi_device with device parameters before calling
495  * spi_add_device() on it.
496  *
497  * Caller is responsible to call spi_add_device() on the returned
498  * spi_device structure to add it to the SPI controller.  If the caller
499  * needs to discard the spi_device without adding it, then it should
500  * call spi_dev_put() on it.
501  *
502  * Return: a pointer to the new device, or NULL.
503  */
504 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
505 {
506 	struct spi_device	*spi;
507 
508 	if (!spi_controller_get(ctlr))
509 		return NULL;
510 
511 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
512 	if (!spi) {
513 		spi_controller_put(ctlr);
514 		return NULL;
515 	}
516 
517 	spi->master = spi->controller = ctlr;
518 	spi->dev.parent = &ctlr->dev;
519 	spi->dev.bus = &spi_bus_type;
520 	spi->dev.release = spidev_release;
521 	spi->cs_gpio = -ENOENT;
522 	spi->mode = ctlr->buswidth_override_bits;
523 
524 	spin_lock_init(&spi->statistics.lock);
525 
526 	device_initialize(&spi->dev);
527 	return spi;
528 }
529 EXPORT_SYMBOL_GPL(spi_alloc_device);
530 
531 static void spi_dev_set_name(struct spi_device *spi)
532 {
533 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
534 
535 	if (adev) {
536 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
537 		return;
538 	}
539 
540 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
541 		     spi->chip_select);
542 }
543 
544 static int spi_dev_check(struct device *dev, void *data)
545 {
546 	struct spi_device *spi = to_spi_device(dev);
547 	struct spi_device *new_spi = data;
548 
549 	if (spi->controller == new_spi->controller &&
550 	    spi->chip_select == new_spi->chip_select)
551 		return -EBUSY;
552 	return 0;
553 }
554 
555 static void spi_cleanup(struct spi_device *spi)
556 {
557 	if (spi->controller->cleanup)
558 		spi->controller->cleanup(spi);
559 }
560 
561 static int __spi_add_device(struct spi_device *spi)
562 {
563 	struct spi_controller *ctlr = spi->controller;
564 	struct device *dev = ctlr->dev.parent;
565 	int status;
566 
567 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
568 	if (status) {
569 		dev_err(dev, "chipselect %d already in use\n",
570 				spi->chip_select);
571 		return status;
572 	}
573 
574 	/* Controller may unregister concurrently */
575 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
576 	    !device_is_registered(&ctlr->dev)) {
577 		return -ENODEV;
578 	}
579 
580 	/* Descriptors take precedence */
581 	if (ctlr->cs_gpiods)
582 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
583 	else if (ctlr->cs_gpios)
584 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
585 
586 	/* Drivers may modify this initial i/o setup, but will
587 	 * normally rely on the device being setup.  Devices
588 	 * using SPI_CS_HIGH can't coexist well otherwise...
589 	 */
590 	status = spi_setup(spi);
591 	if (status < 0) {
592 		dev_err(dev, "can't setup %s, status %d\n",
593 				dev_name(&spi->dev), status);
594 		return status;
595 	}
596 
597 	/* Device may be bound to an active driver when this returns */
598 	status = device_add(&spi->dev);
599 	if (status < 0) {
600 		dev_err(dev, "can't add %s, status %d\n",
601 				dev_name(&spi->dev), status);
602 		spi_cleanup(spi);
603 	} else {
604 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
605 	}
606 
607 	return status;
608 }
609 
610 /**
611  * spi_add_device - Add spi_device allocated with spi_alloc_device
612  * @spi: spi_device to register
613  *
614  * Companion function to spi_alloc_device.  Devices allocated with
615  * spi_alloc_device can be added onto the spi bus with this function.
616  *
617  * Return: 0 on success; negative errno on failure
618  */
619 int spi_add_device(struct spi_device *spi)
620 {
621 	struct spi_controller *ctlr = spi->controller;
622 	struct device *dev = ctlr->dev.parent;
623 	int status;
624 
625 	/* Chipselects are numbered 0..max; validate. */
626 	if (spi->chip_select >= ctlr->num_chipselect) {
627 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
628 			ctlr->num_chipselect);
629 		return -EINVAL;
630 	}
631 
632 	/* Set the bus ID string */
633 	spi_dev_set_name(spi);
634 
635 	/* We need to make sure there's no other device with this
636 	 * chipselect **BEFORE** we call setup(), else we'll trash
637 	 * its configuration.  Lock against concurrent add() calls.
638 	 */
639 	mutex_lock(&spi_add_lock);
640 	status = __spi_add_device(spi);
641 	mutex_unlock(&spi_add_lock);
642 	return status;
643 }
644 EXPORT_SYMBOL_GPL(spi_add_device);
645 
646 static int spi_add_device_locked(struct spi_device *spi)
647 {
648 	struct spi_controller *ctlr = spi->controller;
649 	struct device *dev = ctlr->dev.parent;
650 
651 	/* Chipselects are numbered 0..max; validate. */
652 	if (spi->chip_select >= ctlr->num_chipselect) {
653 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
654 			ctlr->num_chipselect);
655 		return -EINVAL;
656 	}
657 
658 	/* Set the bus ID string */
659 	spi_dev_set_name(spi);
660 
661 	WARN_ON(!mutex_is_locked(&spi_add_lock));
662 	return __spi_add_device(spi);
663 }
664 
665 /**
666  * spi_new_device - instantiate one new SPI device
667  * @ctlr: Controller to which device is connected
668  * @chip: Describes the SPI device
669  * Context: can sleep
670  *
671  * On typical mainboards, this is purely internal; and it's not needed
672  * after board init creates the hard-wired devices.  Some development
673  * platforms may not be able to use spi_register_board_info though, and
674  * this is exported so that for example a USB or parport based adapter
675  * driver could add devices (which it would learn about out-of-band).
676  *
677  * Return: the new device, or NULL.
678  */
679 struct spi_device *spi_new_device(struct spi_controller *ctlr,
680 				  struct spi_board_info *chip)
681 {
682 	struct spi_device	*proxy;
683 	int			status;
684 
685 	/* NOTE:  caller did any chip->bus_num checks necessary.
686 	 *
687 	 * Also, unless we change the return value convention to use
688 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
689 	 * suggests syslogged diagnostics are best here (ugh).
690 	 */
691 
692 	proxy = spi_alloc_device(ctlr);
693 	if (!proxy)
694 		return NULL;
695 
696 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
697 
698 	proxy->chip_select = chip->chip_select;
699 	proxy->max_speed_hz = chip->max_speed_hz;
700 	proxy->mode = chip->mode;
701 	proxy->irq = chip->irq;
702 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
703 	proxy->dev.platform_data = (void *) chip->platform_data;
704 	proxy->controller_data = chip->controller_data;
705 	proxy->controller_state = NULL;
706 
707 	if (chip->swnode) {
708 		status = device_add_software_node(&proxy->dev, chip->swnode);
709 		if (status) {
710 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
711 				chip->modalias, status);
712 			goto err_dev_put;
713 		}
714 	}
715 
716 	status = spi_add_device(proxy);
717 	if (status < 0)
718 		goto err_dev_put;
719 
720 	return proxy;
721 
722 err_dev_put:
723 	device_remove_software_node(&proxy->dev);
724 	spi_dev_put(proxy);
725 	return NULL;
726 }
727 EXPORT_SYMBOL_GPL(spi_new_device);
728 
729 /**
730  * spi_unregister_device - unregister a single SPI device
731  * @spi: spi_device to unregister
732  *
733  * Start making the passed SPI device vanish. Normally this would be handled
734  * by spi_unregister_controller().
735  */
736 void spi_unregister_device(struct spi_device *spi)
737 {
738 	if (!spi)
739 		return;
740 
741 	if (spi->dev.of_node) {
742 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
743 		of_node_put(spi->dev.of_node);
744 	}
745 	if (ACPI_COMPANION(&spi->dev))
746 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
747 	device_remove_software_node(&spi->dev);
748 	device_del(&spi->dev);
749 	spi_cleanup(spi);
750 	put_device(&spi->dev);
751 }
752 EXPORT_SYMBOL_GPL(spi_unregister_device);
753 
754 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
755 					      struct spi_board_info *bi)
756 {
757 	struct spi_device *dev;
758 
759 	if (ctlr->bus_num != bi->bus_num)
760 		return;
761 
762 	dev = spi_new_device(ctlr, bi);
763 	if (!dev)
764 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
765 			bi->modalias);
766 }
767 
768 /**
769  * spi_register_board_info - register SPI devices for a given board
770  * @info: array of chip descriptors
771  * @n: how many descriptors are provided
772  * Context: can sleep
773  *
774  * Board-specific early init code calls this (probably during arch_initcall)
775  * with segments of the SPI device table.  Any device nodes are created later,
776  * after the relevant parent SPI controller (bus_num) is defined.  We keep
777  * this table of devices forever, so that reloading a controller driver will
778  * not make Linux forget about these hard-wired devices.
779  *
780  * Other code can also call this, e.g. a particular add-on board might provide
781  * SPI devices through its expansion connector, so code initializing that board
782  * would naturally declare its SPI devices.
783  *
784  * The board info passed can safely be __initdata ... but be careful of
785  * any embedded pointers (platform_data, etc), they're copied as-is.
786  *
787  * Return: zero on success, else a negative error code.
788  */
789 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
790 {
791 	struct boardinfo *bi;
792 	int i;
793 
794 	if (!n)
795 		return 0;
796 
797 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
798 	if (!bi)
799 		return -ENOMEM;
800 
801 	for (i = 0; i < n; i++, bi++, info++) {
802 		struct spi_controller *ctlr;
803 
804 		memcpy(&bi->board_info, info, sizeof(*info));
805 
806 		mutex_lock(&board_lock);
807 		list_add_tail(&bi->list, &board_list);
808 		list_for_each_entry(ctlr, &spi_controller_list, list)
809 			spi_match_controller_to_boardinfo(ctlr,
810 							  &bi->board_info);
811 		mutex_unlock(&board_lock);
812 	}
813 
814 	return 0;
815 }
816 
817 /*-------------------------------------------------------------------------*/
818 
819 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
820 {
821 	bool activate = enable;
822 
823 	/*
824 	 * Avoid calling into the driver (or doing delays) if the chip select
825 	 * isn't actually changing from the last time this was called.
826 	 */
827 	if (!force && (spi->controller->last_cs_enable == enable) &&
828 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
829 		return;
830 
831 	trace_spi_set_cs(spi, activate);
832 
833 	spi->controller->last_cs_enable = enable;
834 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
835 
836 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
837 	    !spi->controller->set_cs_timing) {
838 		if (activate)
839 			spi_delay_exec(&spi->cs_setup, NULL);
840 		else
841 			spi_delay_exec(&spi->cs_hold, NULL);
842 	}
843 
844 	if (spi->mode & SPI_CS_HIGH)
845 		enable = !enable;
846 
847 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
848 		if (!(spi->mode & SPI_NO_CS)) {
849 			if (spi->cs_gpiod) {
850 				/*
851 				 * Historically ACPI has no means of the GPIO polarity and
852 				 * thus the SPISerialBus() resource defines it on the per-chip
853 				 * basis. In order to avoid a chain of negations, the GPIO
854 				 * polarity is considered being Active High. Even for the cases
855 				 * when _DSD() is involved (in the updated versions of ACPI)
856 				 * the GPIO CS polarity must be defined Active High to avoid
857 				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
858 				 * into account.
859 				 */
860 				if (has_acpi_companion(&spi->dev))
861 					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
862 				else
863 					/* Polarity handled by GPIO library */
864 					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
865 			} else {
866 				/*
867 				 * invert the enable line, as active low is
868 				 * default for SPI.
869 				 */
870 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
871 			}
872 		}
873 		/* Some SPI masters need both GPIO CS & slave_select */
874 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
875 		    spi->controller->set_cs)
876 			spi->controller->set_cs(spi, !enable);
877 	} else if (spi->controller->set_cs) {
878 		spi->controller->set_cs(spi, !enable);
879 	}
880 
881 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
882 	    !spi->controller->set_cs_timing) {
883 		if (!activate)
884 			spi_delay_exec(&spi->cs_inactive, NULL);
885 	}
886 }
887 
888 #ifdef CONFIG_HAS_DMA
889 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
890 		struct sg_table *sgt, void *buf, size_t len,
891 		enum dma_data_direction dir)
892 {
893 	const bool vmalloced_buf = is_vmalloc_addr(buf);
894 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
895 #ifdef CONFIG_HIGHMEM
896 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
897 				(unsigned long)buf < (PKMAP_BASE +
898 					(LAST_PKMAP * PAGE_SIZE)));
899 #else
900 	const bool kmap_buf = false;
901 #endif
902 	int desc_len;
903 	int sgs;
904 	struct page *vm_page;
905 	struct scatterlist *sg;
906 	void *sg_buf;
907 	size_t min;
908 	int i, ret;
909 
910 	if (vmalloced_buf || kmap_buf) {
911 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
912 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
913 	} else if (virt_addr_valid(buf)) {
914 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
915 		sgs = DIV_ROUND_UP(len, desc_len);
916 	} else {
917 		return -EINVAL;
918 	}
919 
920 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
921 	if (ret != 0)
922 		return ret;
923 
924 	sg = &sgt->sgl[0];
925 	for (i = 0; i < sgs; i++) {
926 
927 		if (vmalloced_buf || kmap_buf) {
928 			/*
929 			 * Next scatterlist entry size is the minimum between
930 			 * the desc_len and the remaining buffer length that
931 			 * fits in a page.
932 			 */
933 			min = min_t(size_t, desc_len,
934 				    min_t(size_t, len,
935 					  PAGE_SIZE - offset_in_page(buf)));
936 			if (vmalloced_buf)
937 				vm_page = vmalloc_to_page(buf);
938 			else
939 				vm_page = kmap_to_page(buf);
940 			if (!vm_page) {
941 				sg_free_table(sgt);
942 				return -ENOMEM;
943 			}
944 			sg_set_page(sg, vm_page,
945 				    min, offset_in_page(buf));
946 		} else {
947 			min = min_t(size_t, len, desc_len);
948 			sg_buf = buf;
949 			sg_set_buf(sg, sg_buf, min);
950 		}
951 
952 		buf += min;
953 		len -= min;
954 		sg = sg_next(sg);
955 	}
956 
957 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
958 	if (!ret)
959 		ret = -ENOMEM;
960 	if (ret < 0) {
961 		sg_free_table(sgt);
962 		return ret;
963 	}
964 
965 	sgt->nents = ret;
966 
967 	return 0;
968 }
969 
970 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
971 		   struct sg_table *sgt, enum dma_data_direction dir)
972 {
973 	if (sgt->orig_nents) {
974 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
975 		sg_free_table(sgt);
976 	}
977 }
978 
979 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
980 {
981 	struct device *tx_dev, *rx_dev;
982 	struct spi_transfer *xfer;
983 	int ret;
984 
985 	if (!ctlr->can_dma)
986 		return 0;
987 
988 	if (ctlr->dma_tx)
989 		tx_dev = ctlr->dma_tx->device->dev;
990 	else if (ctlr->dma_map_dev)
991 		tx_dev = ctlr->dma_map_dev;
992 	else
993 		tx_dev = ctlr->dev.parent;
994 
995 	if (ctlr->dma_rx)
996 		rx_dev = ctlr->dma_rx->device->dev;
997 	else if (ctlr->dma_map_dev)
998 		rx_dev = ctlr->dma_map_dev;
999 	else
1000 		rx_dev = ctlr->dev.parent;
1001 
1002 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1003 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1004 			continue;
1005 
1006 		if (xfer->tx_buf != NULL) {
1007 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1008 					  (void *)xfer->tx_buf, xfer->len,
1009 					  DMA_TO_DEVICE);
1010 			if (ret != 0)
1011 				return ret;
1012 		}
1013 
1014 		if (xfer->rx_buf != NULL) {
1015 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1016 					  xfer->rx_buf, xfer->len,
1017 					  DMA_FROM_DEVICE);
1018 			if (ret != 0) {
1019 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1020 					      DMA_TO_DEVICE);
1021 				return ret;
1022 			}
1023 		}
1024 	}
1025 
1026 	ctlr->cur_msg_mapped = true;
1027 
1028 	return 0;
1029 }
1030 
1031 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1032 {
1033 	struct spi_transfer *xfer;
1034 	struct device *tx_dev, *rx_dev;
1035 
1036 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1037 		return 0;
1038 
1039 	if (ctlr->dma_tx)
1040 		tx_dev = ctlr->dma_tx->device->dev;
1041 	else
1042 		tx_dev = ctlr->dev.parent;
1043 
1044 	if (ctlr->dma_rx)
1045 		rx_dev = ctlr->dma_rx->device->dev;
1046 	else
1047 		rx_dev = ctlr->dev.parent;
1048 
1049 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1050 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1051 			continue;
1052 
1053 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1054 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1055 	}
1056 
1057 	ctlr->cur_msg_mapped = false;
1058 
1059 	return 0;
1060 }
1061 #else /* !CONFIG_HAS_DMA */
1062 static inline int __spi_map_msg(struct spi_controller *ctlr,
1063 				struct spi_message *msg)
1064 {
1065 	return 0;
1066 }
1067 
1068 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1069 				  struct spi_message *msg)
1070 {
1071 	return 0;
1072 }
1073 #endif /* !CONFIG_HAS_DMA */
1074 
1075 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1076 				struct spi_message *msg)
1077 {
1078 	struct spi_transfer *xfer;
1079 
1080 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1081 		/*
1082 		 * Restore the original value of tx_buf or rx_buf if they are
1083 		 * NULL.
1084 		 */
1085 		if (xfer->tx_buf == ctlr->dummy_tx)
1086 			xfer->tx_buf = NULL;
1087 		if (xfer->rx_buf == ctlr->dummy_rx)
1088 			xfer->rx_buf = NULL;
1089 	}
1090 
1091 	return __spi_unmap_msg(ctlr, msg);
1092 }
1093 
1094 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1095 {
1096 	struct spi_transfer *xfer;
1097 	void *tmp;
1098 	unsigned int max_tx, max_rx;
1099 
1100 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1101 		&& !(msg->spi->mode & SPI_3WIRE)) {
1102 		max_tx = 0;
1103 		max_rx = 0;
1104 
1105 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1106 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1107 			    !xfer->tx_buf)
1108 				max_tx = max(xfer->len, max_tx);
1109 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1110 			    !xfer->rx_buf)
1111 				max_rx = max(xfer->len, max_rx);
1112 		}
1113 
1114 		if (max_tx) {
1115 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1116 				       GFP_KERNEL | GFP_DMA);
1117 			if (!tmp)
1118 				return -ENOMEM;
1119 			ctlr->dummy_tx = tmp;
1120 			memset(tmp, 0, max_tx);
1121 		}
1122 
1123 		if (max_rx) {
1124 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1125 				       GFP_KERNEL | GFP_DMA);
1126 			if (!tmp)
1127 				return -ENOMEM;
1128 			ctlr->dummy_rx = tmp;
1129 		}
1130 
1131 		if (max_tx || max_rx) {
1132 			list_for_each_entry(xfer, &msg->transfers,
1133 					    transfer_list) {
1134 				if (!xfer->len)
1135 					continue;
1136 				if (!xfer->tx_buf)
1137 					xfer->tx_buf = ctlr->dummy_tx;
1138 				if (!xfer->rx_buf)
1139 					xfer->rx_buf = ctlr->dummy_rx;
1140 			}
1141 		}
1142 	}
1143 
1144 	return __spi_map_msg(ctlr, msg);
1145 }
1146 
1147 static int spi_transfer_wait(struct spi_controller *ctlr,
1148 			     struct spi_message *msg,
1149 			     struct spi_transfer *xfer)
1150 {
1151 	struct spi_statistics *statm = &ctlr->statistics;
1152 	struct spi_statistics *stats = &msg->spi->statistics;
1153 	u32 speed_hz = xfer->speed_hz;
1154 	unsigned long long ms;
1155 
1156 	if (spi_controller_is_slave(ctlr)) {
1157 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1158 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1159 			return -EINTR;
1160 		}
1161 	} else {
1162 		if (!speed_hz)
1163 			speed_hz = 100000;
1164 
1165 		/*
1166 		 * For each byte we wait for 8 cycles of the SPI clock.
1167 		 * Since speed is defined in Hz and we want milliseconds,
1168 		 * use respective multiplier, but before the division,
1169 		 * otherwise we may get 0 for short transfers.
1170 		 */
1171 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1172 		do_div(ms, speed_hz);
1173 
1174 		/*
1175 		 * Increase it twice and add 200 ms tolerance, use
1176 		 * predefined maximum in case of overflow.
1177 		 */
1178 		ms += ms + 200;
1179 		if (ms > UINT_MAX)
1180 			ms = UINT_MAX;
1181 
1182 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1183 						 msecs_to_jiffies(ms));
1184 
1185 		if (ms == 0) {
1186 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1187 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1188 			dev_err(&msg->spi->dev,
1189 				"SPI transfer timed out\n");
1190 			return -ETIMEDOUT;
1191 		}
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static void _spi_transfer_delay_ns(u32 ns)
1198 {
1199 	if (!ns)
1200 		return;
1201 	if (ns <= NSEC_PER_USEC) {
1202 		ndelay(ns);
1203 	} else {
1204 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1205 
1206 		if (us <= 10)
1207 			udelay(us);
1208 		else
1209 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1210 	}
1211 }
1212 
1213 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1214 {
1215 	u32 delay = _delay->value;
1216 	u32 unit = _delay->unit;
1217 	u32 hz;
1218 
1219 	if (!delay)
1220 		return 0;
1221 
1222 	switch (unit) {
1223 	case SPI_DELAY_UNIT_USECS:
1224 		delay *= NSEC_PER_USEC;
1225 		break;
1226 	case SPI_DELAY_UNIT_NSECS:
1227 		/* Nothing to do here */
1228 		break;
1229 	case SPI_DELAY_UNIT_SCK:
1230 		/* clock cycles need to be obtained from spi_transfer */
1231 		if (!xfer)
1232 			return -EINVAL;
1233 		/*
1234 		 * If there is unknown effective speed, approximate it
1235 		 * by underestimating with half of the requested hz.
1236 		 */
1237 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1238 		if (!hz)
1239 			return -EINVAL;
1240 
1241 		/* Convert delay to nanoseconds */
1242 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1243 		break;
1244 	default:
1245 		return -EINVAL;
1246 	}
1247 
1248 	return delay;
1249 }
1250 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1251 
1252 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1253 {
1254 	int delay;
1255 
1256 	might_sleep();
1257 
1258 	if (!_delay)
1259 		return -EINVAL;
1260 
1261 	delay = spi_delay_to_ns(_delay, xfer);
1262 	if (delay < 0)
1263 		return delay;
1264 
1265 	_spi_transfer_delay_ns(delay);
1266 
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(spi_delay_exec);
1270 
1271 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1272 					  struct spi_transfer *xfer)
1273 {
1274 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1275 	u32 delay = xfer->cs_change_delay.value;
1276 	u32 unit = xfer->cs_change_delay.unit;
1277 	int ret;
1278 
1279 	/* return early on "fast" mode - for everything but USECS */
1280 	if (!delay) {
1281 		if (unit == SPI_DELAY_UNIT_USECS)
1282 			_spi_transfer_delay_ns(default_delay_ns);
1283 		return;
1284 	}
1285 
1286 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1287 	if (ret) {
1288 		dev_err_once(&msg->spi->dev,
1289 			     "Use of unsupported delay unit %i, using default of %luus\n",
1290 			     unit, default_delay_ns / NSEC_PER_USEC);
1291 		_spi_transfer_delay_ns(default_delay_ns);
1292 	}
1293 }
1294 
1295 /*
1296  * spi_transfer_one_message - Default implementation of transfer_one_message()
1297  *
1298  * This is a standard implementation of transfer_one_message() for
1299  * drivers which implement a transfer_one() operation.  It provides
1300  * standard handling of delays and chip select management.
1301  */
1302 static int spi_transfer_one_message(struct spi_controller *ctlr,
1303 				    struct spi_message *msg)
1304 {
1305 	struct spi_transfer *xfer;
1306 	bool keep_cs = false;
1307 	int ret = 0;
1308 	struct spi_statistics *statm = &ctlr->statistics;
1309 	struct spi_statistics *stats = &msg->spi->statistics;
1310 
1311 	spi_set_cs(msg->spi, true, false);
1312 
1313 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1314 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1315 
1316 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1317 		trace_spi_transfer_start(msg, xfer);
1318 
1319 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1320 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1321 
1322 		if (!ctlr->ptp_sts_supported) {
1323 			xfer->ptp_sts_word_pre = 0;
1324 			ptp_read_system_prets(xfer->ptp_sts);
1325 		}
1326 
1327 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1328 			reinit_completion(&ctlr->xfer_completion);
1329 
1330 fallback_pio:
1331 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1332 			if (ret < 0) {
1333 				if (ctlr->cur_msg_mapped &&
1334 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1335 					__spi_unmap_msg(ctlr, msg);
1336 					ctlr->fallback = true;
1337 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1338 					goto fallback_pio;
1339 				}
1340 
1341 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1342 							       errors);
1343 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1344 							       errors);
1345 				dev_err(&msg->spi->dev,
1346 					"SPI transfer failed: %d\n", ret);
1347 				goto out;
1348 			}
1349 
1350 			if (ret > 0) {
1351 				ret = spi_transfer_wait(ctlr, msg, xfer);
1352 				if (ret < 0)
1353 					msg->status = ret;
1354 			}
1355 		} else {
1356 			if (xfer->len)
1357 				dev_err(&msg->spi->dev,
1358 					"Bufferless transfer has length %u\n",
1359 					xfer->len);
1360 		}
1361 
1362 		if (!ctlr->ptp_sts_supported) {
1363 			ptp_read_system_postts(xfer->ptp_sts);
1364 			xfer->ptp_sts_word_post = xfer->len;
1365 		}
1366 
1367 		trace_spi_transfer_stop(msg, xfer);
1368 
1369 		if (msg->status != -EINPROGRESS)
1370 			goto out;
1371 
1372 		spi_transfer_delay_exec(xfer);
1373 
1374 		if (xfer->cs_change) {
1375 			if (list_is_last(&xfer->transfer_list,
1376 					 &msg->transfers)) {
1377 				keep_cs = true;
1378 			} else {
1379 				spi_set_cs(msg->spi, false, false);
1380 				_spi_transfer_cs_change_delay(msg, xfer);
1381 				spi_set_cs(msg->spi, true, false);
1382 			}
1383 		}
1384 
1385 		msg->actual_length += xfer->len;
1386 	}
1387 
1388 out:
1389 	if (ret != 0 || !keep_cs)
1390 		spi_set_cs(msg->spi, false, false);
1391 
1392 	if (msg->status == -EINPROGRESS)
1393 		msg->status = ret;
1394 
1395 	if (msg->status && ctlr->handle_err)
1396 		ctlr->handle_err(ctlr, msg);
1397 
1398 	spi_finalize_current_message(ctlr);
1399 
1400 	return ret;
1401 }
1402 
1403 /**
1404  * spi_finalize_current_transfer - report completion of a transfer
1405  * @ctlr: the controller reporting completion
1406  *
1407  * Called by SPI drivers using the core transfer_one_message()
1408  * implementation to notify it that the current interrupt driven
1409  * transfer has finished and the next one may be scheduled.
1410  */
1411 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1412 {
1413 	complete(&ctlr->xfer_completion);
1414 }
1415 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1416 
1417 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1418 {
1419 	if (ctlr->auto_runtime_pm) {
1420 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1421 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1422 	}
1423 }
1424 
1425 /**
1426  * __spi_pump_messages - function which processes spi message queue
1427  * @ctlr: controller to process queue for
1428  * @in_kthread: true if we are in the context of the message pump thread
1429  *
1430  * This function checks if there is any spi message in the queue that
1431  * needs processing and if so call out to the driver to initialize hardware
1432  * and transfer each message.
1433  *
1434  * Note that it is called both from the kthread itself and also from
1435  * inside spi_sync(); the queue extraction handling at the top of the
1436  * function should deal with this safely.
1437  */
1438 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1439 {
1440 	struct spi_transfer *xfer;
1441 	struct spi_message *msg;
1442 	bool was_busy = false;
1443 	unsigned long flags;
1444 	int ret;
1445 
1446 	/* Lock queue */
1447 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1448 
1449 	/* Make sure we are not already running a message */
1450 	if (ctlr->cur_msg) {
1451 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1452 		return;
1453 	}
1454 
1455 	/* If another context is idling the device then defer */
1456 	if (ctlr->idling) {
1457 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1458 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1459 		return;
1460 	}
1461 
1462 	/* Check if the queue is idle */
1463 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1464 		if (!ctlr->busy) {
1465 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1466 			return;
1467 		}
1468 
1469 		/* Defer any non-atomic teardown to the thread */
1470 		if (!in_kthread) {
1471 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1472 			    !ctlr->unprepare_transfer_hardware) {
1473 				spi_idle_runtime_pm(ctlr);
1474 				ctlr->busy = false;
1475 				trace_spi_controller_idle(ctlr);
1476 			} else {
1477 				kthread_queue_work(ctlr->kworker,
1478 						   &ctlr->pump_messages);
1479 			}
1480 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1481 			return;
1482 		}
1483 
1484 		ctlr->busy = false;
1485 		ctlr->idling = true;
1486 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1487 
1488 		kfree(ctlr->dummy_rx);
1489 		ctlr->dummy_rx = NULL;
1490 		kfree(ctlr->dummy_tx);
1491 		ctlr->dummy_tx = NULL;
1492 		if (ctlr->unprepare_transfer_hardware &&
1493 		    ctlr->unprepare_transfer_hardware(ctlr))
1494 			dev_err(&ctlr->dev,
1495 				"failed to unprepare transfer hardware\n");
1496 		spi_idle_runtime_pm(ctlr);
1497 		trace_spi_controller_idle(ctlr);
1498 
1499 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1500 		ctlr->idling = false;
1501 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1502 		return;
1503 	}
1504 
1505 	/* Extract head of queue */
1506 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1507 	ctlr->cur_msg = msg;
1508 
1509 	list_del_init(&msg->queue);
1510 	if (ctlr->busy)
1511 		was_busy = true;
1512 	else
1513 		ctlr->busy = true;
1514 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1515 
1516 	mutex_lock(&ctlr->io_mutex);
1517 
1518 	if (!was_busy && ctlr->auto_runtime_pm) {
1519 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1520 		if (ret < 0) {
1521 			pm_runtime_put_noidle(ctlr->dev.parent);
1522 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1523 				ret);
1524 			mutex_unlock(&ctlr->io_mutex);
1525 			return;
1526 		}
1527 	}
1528 
1529 	if (!was_busy)
1530 		trace_spi_controller_busy(ctlr);
1531 
1532 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1533 		ret = ctlr->prepare_transfer_hardware(ctlr);
1534 		if (ret) {
1535 			dev_err(&ctlr->dev,
1536 				"failed to prepare transfer hardware: %d\n",
1537 				ret);
1538 
1539 			if (ctlr->auto_runtime_pm)
1540 				pm_runtime_put(ctlr->dev.parent);
1541 
1542 			msg->status = ret;
1543 			spi_finalize_current_message(ctlr);
1544 
1545 			mutex_unlock(&ctlr->io_mutex);
1546 			return;
1547 		}
1548 	}
1549 
1550 	trace_spi_message_start(msg);
1551 
1552 	if (ctlr->prepare_message) {
1553 		ret = ctlr->prepare_message(ctlr, msg);
1554 		if (ret) {
1555 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1556 				ret);
1557 			msg->status = ret;
1558 			spi_finalize_current_message(ctlr);
1559 			goto out;
1560 		}
1561 		ctlr->cur_msg_prepared = true;
1562 	}
1563 
1564 	ret = spi_map_msg(ctlr, msg);
1565 	if (ret) {
1566 		msg->status = ret;
1567 		spi_finalize_current_message(ctlr);
1568 		goto out;
1569 	}
1570 
1571 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1572 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1573 			xfer->ptp_sts_word_pre = 0;
1574 			ptp_read_system_prets(xfer->ptp_sts);
1575 		}
1576 	}
1577 
1578 	ret = ctlr->transfer_one_message(ctlr, msg);
1579 	if (ret) {
1580 		dev_err(&ctlr->dev,
1581 			"failed to transfer one message from queue\n");
1582 		goto out;
1583 	}
1584 
1585 out:
1586 	mutex_unlock(&ctlr->io_mutex);
1587 
1588 	/* Prod the scheduler in case transfer_one() was busy waiting */
1589 	if (!ret)
1590 		cond_resched();
1591 }
1592 
1593 /**
1594  * spi_pump_messages - kthread work function which processes spi message queue
1595  * @work: pointer to kthread work struct contained in the controller struct
1596  */
1597 static void spi_pump_messages(struct kthread_work *work)
1598 {
1599 	struct spi_controller *ctlr =
1600 		container_of(work, struct spi_controller, pump_messages);
1601 
1602 	__spi_pump_messages(ctlr, true);
1603 }
1604 
1605 /**
1606  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1607  *			    TX timestamp for the requested byte from the SPI
1608  *			    transfer. The frequency with which this function
1609  *			    must be called (once per word, once for the whole
1610  *			    transfer, once per batch of words etc) is arbitrary
1611  *			    as long as the @tx buffer offset is greater than or
1612  *			    equal to the requested byte at the time of the
1613  *			    call. The timestamp is only taken once, at the
1614  *			    first such call. It is assumed that the driver
1615  *			    advances its @tx buffer pointer monotonically.
1616  * @ctlr: Pointer to the spi_controller structure of the driver
1617  * @xfer: Pointer to the transfer being timestamped
1618  * @progress: How many words (not bytes) have been transferred so far
1619  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1620  *	      transfer, for less jitter in time measurement. Only compatible
1621  *	      with PIO drivers. If true, must follow up with
1622  *	      spi_take_timestamp_post or otherwise system will crash.
1623  *	      WARNING: for fully predictable results, the CPU frequency must
1624  *	      also be under control (governor).
1625  */
1626 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1627 			    struct spi_transfer *xfer,
1628 			    size_t progress, bool irqs_off)
1629 {
1630 	if (!xfer->ptp_sts)
1631 		return;
1632 
1633 	if (xfer->timestamped)
1634 		return;
1635 
1636 	if (progress > xfer->ptp_sts_word_pre)
1637 		return;
1638 
1639 	/* Capture the resolution of the timestamp */
1640 	xfer->ptp_sts_word_pre = progress;
1641 
1642 	if (irqs_off) {
1643 		local_irq_save(ctlr->irq_flags);
1644 		preempt_disable();
1645 	}
1646 
1647 	ptp_read_system_prets(xfer->ptp_sts);
1648 }
1649 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1650 
1651 /**
1652  * spi_take_timestamp_post - helper for drivers to collect the end of the
1653  *			     TX timestamp for the requested byte from the SPI
1654  *			     transfer. Can be called with an arbitrary
1655  *			     frequency: only the first call where @tx exceeds
1656  *			     or is equal to the requested word will be
1657  *			     timestamped.
1658  * @ctlr: Pointer to the spi_controller structure of the driver
1659  * @xfer: Pointer to the transfer being timestamped
1660  * @progress: How many words (not bytes) have been transferred so far
1661  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1662  */
1663 void spi_take_timestamp_post(struct spi_controller *ctlr,
1664 			     struct spi_transfer *xfer,
1665 			     size_t progress, bool irqs_off)
1666 {
1667 	if (!xfer->ptp_sts)
1668 		return;
1669 
1670 	if (xfer->timestamped)
1671 		return;
1672 
1673 	if (progress < xfer->ptp_sts_word_post)
1674 		return;
1675 
1676 	ptp_read_system_postts(xfer->ptp_sts);
1677 
1678 	if (irqs_off) {
1679 		local_irq_restore(ctlr->irq_flags);
1680 		preempt_enable();
1681 	}
1682 
1683 	/* Capture the resolution of the timestamp */
1684 	xfer->ptp_sts_word_post = progress;
1685 
1686 	xfer->timestamped = true;
1687 }
1688 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1689 
1690 /**
1691  * spi_set_thread_rt - set the controller to pump at realtime priority
1692  * @ctlr: controller to boost priority of
1693  *
1694  * This can be called because the controller requested realtime priority
1695  * (by setting the ->rt value before calling spi_register_controller()) or
1696  * because a device on the bus said that its transfers needed realtime
1697  * priority.
1698  *
1699  * NOTE: at the moment if any device on a bus says it needs realtime then
1700  * the thread will be at realtime priority for all transfers on that
1701  * controller.  If this eventually becomes a problem we may see if we can
1702  * find a way to boost the priority only temporarily during relevant
1703  * transfers.
1704  */
1705 static void spi_set_thread_rt(struct spi_controller *ctlr)
1706 {
1707 	dev_info(&ctlr->dev,
1708 		"will run message pump with realtime priority\n");
1709 	sched_set_fifo(ctlr->kworker->task);
1710 }
1711 
1712 static int spi_init_queue(struct spi_controller *ctlr)
1713 {
1714 	ctlr->running = false;
1715 	ctlr->busy = false;
1716 
1717 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1718 	if (IS_ERR(ctlr->kworker)) {
1719 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1720 		return PTR_ERR(ctlr->kworker);
1721 	}
1722 
1723 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1724 
1725 	/*
1726 	 * Controller config will indicate if this controller should run the
1727 	 * message pump with high (realtime) priority to reduce the transfer
1728 	 * latency on the bus by minimising the delay between a transfer
1729 	 * request and the scheduling of the message pump thread. Without this
1730 	 * setting the message pump thread will remain at default priority.
1731 	 */
1732 	if (ctlr->rt)
1733 		spi_set_thread_rt(ctlr);
1734 
1735 	return 0;
1736 }
1737 
1738 /**
1739  * spi_get_next_queued_message() - called by driver to check for queued
1740  * messages
1741  * @ctlr: the controller to check for queued messages
1742  *
1743  * If there are more messages in the queue, the next message is returned from
1744  * this call.
1745  *
1746  * Return: the next message in the queue, else NULL if the queue is empty.
1747  */
1748 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1749 {
1750 	struct spi_message *next;
1751 	unsigned long flags;
1752 
1753 	/* get a pointer to the next message, if any */
1754 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1755 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1756 					queue);
1757 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1758 
1759 	return next;
1760 }
1761 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1762 
1763 /**
1764  * spi_finalize_current_message() - the current message is complete
1765  * @ctlr: the controller to return the message to
1766  *
1767  * Called by the driver to notify the core that the message in the front of the
1768  * queue is complete and can be removed from the queue.
1769  */
1770 void spi_finalize_current_message(struct spi_controller *ctlr)
1771 {
1772 	struct spi_transfer *xfer;
1773 	struct spi_message *mesg;
1774 	unsigned long flags;
1775 	int ret;
1776 
1777 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1778 	mesg = ctlr->cur_msg;
1779 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1780 
1781 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1782 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1783 			ptp_read_system_postts(xfer->ptp_sts);
1784 			xfer->ptp_sts_word_post = xfer->len;
1785 		}
1786 	}
1787 
1788 	if (unlikely(ctlr->ptp_sts_supported))
1789 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1790 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1791 
1792 	spi_unmap_msg(ctlr, mesg);
1793 
1794 	/* In the prepare_messages callback the spi bus has the opportunity to
1795 	 * split a transfer to smaller chunks.
1796 	 * Release splited transfers here since spi_map_msg is done on the
1797 	 * splited transfers.
1798 	 */
1799 	spi_res_release(ctlr, mesg);
1800 
1801 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1802 		ret = ctlr->unprepare_message(ctlr, mesg);
1803 		if (ret) {
1804 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1805 				ret);
1806 		}
1807 	}
1808 
1809 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1810 	ctlr->cur_msg = NULL;
1811 	ctlr->cur_msg_prepared = false;
1812 	ctlr->fallback = false;
1813 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1814 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1815 
1816 	trace_spi_message_done(mesg);
1817 
1818 	mesg->state = NULL;
1819 	if (mesg->complete)
1820 		mesg->complete(mesg->context);
1821 }
1822 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1823 
1824 static int spi_start_queue(struct spi_controller *ctlr)
1825 {
1826 	unsigned long flags;
1827 
1828 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1829 
1830 	if (ctlr->running || ctlr->busy) {
1831 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1832 		return -EBUSY;
1833 	}
1834 
1835 	ctlr->running = true;
1836 	ctlr->cur_msg = NULL;
1837 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1838 
1839 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1840 
1841 	return 0;
1842 }
1843 
1844 static int spi_stop_queue(struct spi_controller *ctlr)
1845 {
1846 	unsigned long flags;
1847 	unsigned limit = 500;
1848 	int ret = 0;
1849 
1850 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1851 
1852 	/*
1853 	 * This is a bit lame, but is optimized for the common execution path.
1854 	 * A wait_queue on the ctlr->busy could be used, but then the common
1855 	 * execution path (pump_messages) would be required to call wake_up or
1856 	 * friends on every SPI message. Do this instead.
1857 	 */
1858 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1859 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1860 		usleep_range(10000, 11000);
1861 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1862 	}
1863 
1864 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1865 		ret = -EBUSY;
1866 	else
1867 		ctlr->running = false;
1868 
1869 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1870 
1871 	if (ret) {
1872 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1873 		return ret;
1874 	}
1875 	return ret;
1876 }
1877 
1878 static int spi_destroy_queue(struct spi_controller *ctlr)
1879 {
1880 	int ret;
1881 
1882 	ret = spi_stop_queue(ctlr);
1883 
1884 	/*
1885 	 * kthread_flush_worker will block until all work is done.
1886 	 * If the reason that stop_queue timed out is that the work will never
1887 	 * finish, then it does no good to call flush/stop thread, so
1888 	 * return anyway.
1889 	 */
1890 	if (ret) {
1891 		dev_err(&ctlr->dev, "problem destroying queue\n");
1892 		return ret;
1893 	}
1894 
1895 	kthread_destroy_worker(ctlr->kworker);
1896 
1897 	return 0;
1898 }
1899 
1900 static int __spi_queued_transfer(struct spi_device *spi,
1901 				 struct spi_message *msg,
1902 				 bool need_pump)
1903 {
1904 	struct spi_controller *ctlr = spi->controller;
1905 	unsigned long flags;
1906 
1907 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1908 
1909 	if (!ctlr->running) {
1910 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1911 		return -ESHUTDOWN;
1912 	}
1913 	msg->actual_length = 0;
1914 	msg->status = -EINPROGRESS;
1915 
1916 	list_add_tail(&msg->queue, &ctlr->queue);
1917 	if (!ctlr->busy && need_pump)
1918 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1919 
1920 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1921 	return 0;
1922 }
1923 
1924 /**
1925  * spi_queued_transfer - transfer function for queued transfers
1926  * @spi: spi device which is requesting transfer
1927  * @msg: spi message which is to handled is queued to driver queue
1928  *
1929  * Return: zero on success, else a negative error code.
1930  */
1931 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1932 {
1933 	return __spi_queued_transfer(spi, msg, true);
1934 }
1935 
1936 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1937 {
1938 	int ret;
1939 
1940 	ctlr->transfer = spi_queued_transfer;
1941 	if (!ctlr->transfer_one_message)
1942 		ctlr->transfer_one_message = spi_transfer_one_message;
1943 
1944 	/* Initialize and start queue */
1945 	ret = spi_init_queue(ctlr);
1946 	if (ret) {
1947 		dev_err(&ctlr->dev, "problem initializing queue\n");
1948 		goto err_init_queue;
1949 	}
1950 	ctlr->queued = true;
1951 	ret = spi_start_queue(ctlr);
1952 	if (ret) {
1953 		dev_err(&ctlr->dev, "problem starting queue\n");
1954 		goto err_start_queue;
1955 	}
1956 
1957 	return 0;
1958 
1959 err_start_queue:
1960 	spi_destroy_queue(ctlr);
1961 err_init_queue:
1962 	return ret;
1963 }
1964 
1965 /**
1966  * spi_flush_queue - Send all pending messages in the queue from the callers'
1967  *		     context
1968  * @ctlr: controller to process queue for
1969  *
1970  * This should be used when one wants to ensure all pending messages have been
1971  * sent before doing something. Is used by the spi-mem code to make sure SPI
1972  * memory operations do not preempt regular SPI transfers that have been queued
1973  * before the spi-mem operation.
1974  */
1975 void spi_flush_queue(struct spi_controller *ctlr)
1976 {
1977 	if (ctlr->transfer == spi_queued_transfer)
1978 		__spi_pump_messages(ctlr, false);
1979 }
1980 
1981 /*-------------------------------------------------------------------------*/
1982 
1983 #if defined(CONFIG_OF)
1984 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1985 			   struct device_node *nc)
1986 {
1987 	u32 value;
1988 	int rc;
1989 
1990 	/* Mode (clock phase/polarity/etc.) */
1991 	if (of_property_read_bool(nc, "spi-cpha"))
1992 		spi->mode |= SPI_CPHA;
1993 	if (of_property_read_bool(nc, "spi-cpol"))
1994 		spi->mode |= SPI_CPOL;
1995 	if (of_property_read_bool(nc, "spi-3wire"))
1996 		spi->mode |= SPI_3WIRE;
1997 	if (of_property_read_bool(nc, "spi-lsb-first"))
1998 		spi->mode |= SPI_LSB_FIRST;
1999 	if (of_property_read_bool(nc, "spi-cs-high"))
2000 		spi->mode |= SPI_CS_HIGH;
2001 
2002 	/* Device DUAL/QUAD mode */
2003 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2004 		switch (value) {
2005 		case 0:
2006 			spi->mode |= SPI_NO_TX;
2007 			break;
2008 		case 1:
2009 			break;
2010 		case 2:
2011 			spi->mode |= SPI_TX_DUAL;
2012 			break;
2013 		case 4:
2014 			spi->mode |= SPI_TX_QUAD;
2015 			break;
2016 		case 8:
2017 			spi->mode |= SPI_TX_OCTAL;
2018 			break;
2019 		default:
2020 			dev_warn(&ctlr->dev,
2021 				"spi-tx-bus-width %d not supported\n",
2022 				value);
2023 			break;
2024 		}
2025 	}
2026 
2027 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2028 		switch (value) {
2029 		case 0:
2030 			spi->mode |= SPI_NO_RX;
2031 			break;
2032 		case 1:
2033 			break;
2034 		case 2:
2035 			spi->mode |= SPI_RX_DUAL;
2036 			break;
2037 		case 4:
2038 			spi->mode |= SPI_RX_QUAD;
2039 			break;
2040 		case 8:
2041 			spi->mode |= SPI_RX_OCTAL;
2042 			break;
2043 		default:
2044 			dev_warn(&ctlr->dev,
2045 				"spi-rx-bus-width %d not supported\n",
2046 				value);
2047 			break;
2048 		}
2049 	}
2050 
2051 	if (spi_controller_is_slave(ctlr)) {
2052 		if (!of_node_name_eq(nc, "slave")) {
2053 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2054 				nc);
2055 			return -EINVAL;
2056 		}
2057 		return 0;
2058 	}
2059 
2060 	/* Device address */
2061 	rc = of_property_read_u32(nc, "reg", &value);
2062 	if (rc) {
2063 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2064 			nc, rc);
2065 		return rc;
2066 	}
2067 	spi->chip_select = value;
2068 
2069 	/* Device speed */
2070 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2071 		spi->max_speed_hz = value;
2072 
2073 	return 0;
2074 }
2075 
2076 static struct spi_device *
2077 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2078 {
2079 	struct spi_device *spi;
2080 	int rc;
2081 
2082 	/* Alloc an spi_device */
2083 	spi = spi_alloc_device(ctlr);
2084 	if (!spi) {
2085 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2086 		rc = -ENOMEM;
2087 		goto err_out;
2088 	}
2089 
2090 	/* Select device driver */
2091 	rc = of_modalias_node(nc, spi->modalias,
2092 				sizeof(spi->modalias));
2093 	if (rc < 0) {
2094 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2095 		goto err_out;
2096 	}
2097 
2098 	rc = of_spi_parse_dt(ctlr, spi, nc);
2099 	if (rc)
2100 		goto err_out;
2101 
2102 	/* Store a pointer to the node in the device structure */
2103 	of_node_get(nc);
2104 	spi->dev.of_node = nc;
2105 	spi->dev.fwnode = of_fwnode_handle(nc);
2106 
2107 	/* Register the new device */
2108 	rc = spi_add_device(spi);
2109 	if (rc) {
2110 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2111 		goto err_of_node_put;
2112 	}
2113 
2114 	return spi;
2115 
2116 err_of_node_put:
2117 	of_node_put(nc);
2118 err_out:
2119 	spi_dev_put(spi);
2120 	return ERR_PTR(rc);
2121 }
2122 
2123 /**
2124  * of_register_spi_devices() - Register child devices onto the SPI bus
2125  * @ctlr:	Pointer to spi_controller device
2126  *
2127  * Registers an spi_device for each child node of controller node which
2128  * represents a valid SPI slave.
2129  */
2130 static void of_register_spi_devices(struct spi_controller *ctlr)
2131 {
2132 	struct spi_device *spi;
2133 	struct device_node *nc;
2134 
2135 	if (!ctlr->dev.of_node)
2136 		return;
2137 
2138 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2139 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2140 			continue;
2141 		spi = of_register_spi_device(ctlr, nc);
2142 		if (IS_ERR(spi)) {
2143 			dev_warn(&ctlr->dev,
2144 				 "Failed to create SPI device for %pOF\n", nc);
2145 			of_node_clear_flag(nc, OF_POPULATED);
2146 		}
2147 	}
2148 }
2149 #else
2150 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2151 #endif
2152 
2153 /**
2154  * spi_new_ancillary_device() - Register ancillary SPI device
2155  * @spi:         Pointer to the main SPI device registering the ancillary device
2156  * @chip_select: Chip Select of the ancillary device
2157  *
2158  * Register an ancillary SPI device; for example some chips have a chip-select
2159  * for normal device usage and another one for setup/firmware upload.
2160  *
2161  * This may only be called from main SPI device's probe routine.
2162  *
2163  * Return: 0 on success; negative errno on failure
2164  */
2165 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2166 					     u8 chip_select)
2167 {
2168 	struct spi_device *ancillary;
2169 	int rc = 0;
2170 
2171 	/* Alloc an spi_device */
2172 	ancillary = spi_alloc_device(spi->controller);
2173 	if (!ancillary) {
2174 		rc = -ENOMEM;
2175 		goto err_out;
2176 	}
2177 
2178 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2179 
2180 	/* Use provided chip-select for ancillary device */
2181 	ancillary->chip_select = chip_select;
2182 
2183 	/* Take over SPI mode/speed from SPI main device */
2184 	ancillary->max_speed_hz = spi->max_speed_hz;
2185 	ancillary->mode = spi->mode;
2186 
2187 	/* Register the new device */
2188 	rc = spi_add_device_locked(ancillary);
2189 	if (rc) {
2190 		dev_err(&spi->dev, "failed to register ancillary device\n");
2191 		goto err_out;
2192 	}
2193 
2194 	return ancillary;
2195 
2196 err_out:
2197 	spi_dev_put(ancillary);
2198 	return ERR_PTR(rc);
2199 }
2200 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2201 
2202 #ifdef CONFIG_ACPI
2203 struct acpi_spi_lookup {
2204 	struct spi_controller 	*ctlr;
2205 	u32			max_speed_hz;
2206 	u32			mode;
2207 	int			irq;
2208 	u8			bits_per_word;
2209 	u8			chip_select;
2210 };
2211 
2212 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2213 					    struct acpi_spi_lookup *lookup)
2214 {
2215 	const union acpi_object *obj;
2216 
2217 	if (!x86_apple_machine)
2218 		return;
2219 
2220 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2221 	    && obj->buffer.length >= 4)
2222 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2223 
2224 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2225 	    && obj->buffer.length == 8)
2226 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2227 
2228 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2229 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2230 		lookup->mode |= SPI_LSB_FIRST;
2231 
2232 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2233 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2234 		lookup->mode |= SPI_CPOL;
2235 
2236 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2237 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2238 		lookup->mode |= SPI_CPHA;
2239 }
2240 
2241 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2242 {
2243 	struct acpi_spi_lookup *lookup = data;
2244 	struct spi_controller *ctlr = lookup->ctlr;
2245 
2246 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2247 		struct acpi_resource_spi_serialbus *sb;
2248 		acpi_handle parent_handle;
2249 		acpi_status status;
2250 
2251 		sb = &ares->data.spi_serial_bus;
2252 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2253 
2254 			status = acpi_get_handle(NULL,
2255 						 sb->resource_source.string_ptr,
2256 						 &parent_handle);
2257 
2258 			if (ACPI_FAILURE(status) ||
2259 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2260 				return -ENODEV;
2261 
2262 			/*
2263 			 * ACPI DeviceSelection numbering is handled by the
2264 			 * host controller driver in Windows and can vary
2265 			 * from driver to driver. In Linux we always expect
2266 			 * 0 .. max - 1 so we need to ask the driver to
2267 			 * translate between the two schemes.
2268 			 */
2269 			if (ctlr->fw_translate_cs) {
2270 				int cs = ctlr->fw_translate_cs(ctlr,
2271 						sb->device_selection);
2272 				if (cs < 0)
2273 					return cs;
2274 				lookup->chip_select = cs;
2275 			} else {
2276 				lookup->chip_select = sb->device_selection;
2277 			}
2278 
2279 			lookup->max_speed_hz = sb->connection_speed;
2280 			lookup->bits_per_word = sb->data_bit_length;
2281 
2282 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2283 				lookup->mode |= SPI_CPHA;
2284 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2285 				lookup->mode |= SPI_CPOL;
2286 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2287 				lookup->mode |= SPI_CS_HIGH;
2288 		}
2289 	} else if (lookup->irq < 0) {
2290 		struct resource r;
2291 
2292 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2293 			lookup->irq = r.start;
2294 	}
2295 
2296 	/* Always tell the ACPI core to skip this resource */
2297 	return 1;
2298 }
2299 
2300 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2301 					    struct acpi_device *adev)
2302 {
2303 	acpi_handle parent_handle = NULL;
2304 	struct list_head resource_list;
2305 	struct acpi_spi_lookup lookup = {};
2306 	struct spi_device *spi;
2307 	int ret;
2308 
2309 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2310 	    acpi_device_enumerated(adev))
2311 		return AE_OK;
2312 
2313 	lookup.ctlr		= ctlr;
2314 	lookup.irq		= -1;
2315 
2316 	INIT_LIST_HEAD(&resource_list);
2317 	ret = acpi_dev_get_resources(adev, &resource_list,
2318 				     acpi_spi_add_resource, &lookup);
2319 	acpi_dev_free_resource_list(&resource_list);
2320 
2321 	if (ret < 0)
2322 		/* found SPI in _CRS but it points to another controller */
2323 		return AE_OK;
2324 
2325 	if (!lookup.max_speed_hz &&
2326 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2327 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2328 		/* Apple does not use _CRS but nested devices for SPI slaves */
2329 		acpi_spi_parse_apple_properties(adev, &lookup);
2330 	}
2331 
2332 	if (!lookup.max_speed_hz)
2333 		return AE_OK;
2334 
2335 	spi = spi_alloc_device(ctlr);
2336 	if (!spi) {
2337 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2338 			dev_name(&adev->dev));
2339 		return AE_NO_MEMORY;
2340 	}
2341 
2342 
2343 	ACPI_COMPANION_SET(&spi->dev, adev);
2344 	spi->max_speed_hz	= lookup.max_speed_hz;
2345 	spi->mode		|= lookup.mode;
2346 	spi->irq		= lookup.irq;
2347 	spi->bits_per_word	= lookup.bits_per_word;
2348 	spi->chip_select	= lookup.chip_select;
2349 
2350 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2351 			  sizeof(spi->modalias));
2352 
2353 	if (spi->irq < 0)
2354 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2355 
2356 	acpi_device_set_enumerated(adev);
2357 
2358 	adev->power.flags.ignore_parent = true;
2359 	if (spi_add_device(spi)) {
2360 		adev->power.flags.ignore_parent = false;
2361 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2362 			dev_name(&adev->dev));
2363 		spi_dev_put(spi);
2364 	}
2365 
2366 	return AE_OK;
2367 }
2368 
2369 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2370 				       void *data, void **return_value)
2371 {
2372 	struct spi_controller *ctlr = data;
2373 	struct acpi_device *adev;
2374 
2375 	if (acpi_bus_get_device(handle, &adev))
2376 		return AE_OK;
2377 
2378 	return acpi_register_spi_device(ctlr, adev);
2379 }
2380 
2381 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2382 
2383 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2384 {
2385 	acpi_status status;
2386 	acpi_handle handle;
2387 
2388 	handle = ACPI_HANDLE(ctlr->dev.parent);
2389 	if (!handle)
2390 		return;
2391 
2392 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2393 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2394 				     acpi_spi_add_device, NULL, ctlr, NULL);
2395 	if (ACPI_FAILURE(status))
2396 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2397 }
2398 #else
2399 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2400 #endif /* CONFIG_ACPI */
2401 
2402 static void spi_controller_release(struct device *dev)
2403 {
2404 	struct spi_controller *ctlr;
2405 
2406 	ctlr = container_of(dev, struct spi_controller, dev);
2407 	kfree(ctlr);
2408 }
2409 
2410 static struct class spi_master_class = {
2411 	.name		= "spi_master",
2412 	.owner		= THIS_MODULE,
2413 	.dev_release	= spi_controller_release,
2414 	.dev_groups	= spi_master_groups,
2415 };
2416 
2417 #ifdef CONFIG_SPI_SLAVE
2418 /**
2419  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2420  *		     controller
2421  * @spi: device used for the current transfer
2422  */
2423 int spi_slave_abort(struct spi_device *spi)
2424 {
2425 	struct spi_controller *ctlr = spi->controller;
2426 
2427 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2428 		return ctlr->slave_abort(ctlr);
2429 
2430 	return -ENOTSUPP;
2431 }
2432 EXPORT_SYMBOL_GPL(spi_slave_abort);
2433 
2434 static int match_true(struct device *dev, void *data)
2435 {
2436 	return 1;
2437 }
2438 
2439 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2440 			  char *buf)
2441 {
2442 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2443 						   dev);
2444 	struct device *child;
2445 
2446 	child = device_find_child(&ctlr->dev, NULL, match_true);
2447 	return sprintf(buf, "%s\n",
2448 		       child ? to_spi_device(child)->modalias : NULL);
2449 }
2450 
2451 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2452 			   const char *buf, size_t count)
2453 {
2454 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2455 						   dev);
2456 	struct spi_device *spi;
2457 	struct device *child;
2458 	char name[32];
2459 	int rc;
2460 
2461 	rc = sscanf(buf, "%31s", name);
2462 	if (rc != 1 || !name[0])
2463 		return -EINVAL;
2464 
2465 	child = device_find_child(&ctlr->dev, NULL, match_true);
2466 	if (child) {
2467 		/* Remove registered slave */
2468 		device_unregister(child);
2469 		put_device(child);
2470 	}
2471 
2472 	if (strcmp(name, "(null)")) {
2473 		/* Register new slave */
2474 		spi = spi_alloc_device(ctlr);
2475 		if (!spi)
2476 			return -ENOMEM;
2477 
2478 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2479 
2480 		rc = spi_add_device(spi);
2481 		if (rc) {
2482 			spi_dev_put(spi);
2483 			return rc;
2484 		}
2485 	}
2486 
2487 	return count;
2488 }
2489 
2490 static DEVICE_ATTR_RW(slave);
2491 
2492 static struct attribute *spi_slave_attrs[] = {
2493 	&dev_attr_slave.attr,
2494 	NULL,
2495 };
2496 
2497 static const struct attribute_group spi_slave_group = {
2498 	.attrs = spi_slave_attrs,
2499 };
2500 
2501 static const struct attribute_group *spi_slave_groups[] = {
2502 	&spi_controller_statistics_group,
2503 	&spi_slave_group,
2504 	NULL,
2505 };
2506 
2507 static struct class spi_slave_class = {
2508 	.name		= "spi_slave",
2509 	.owner		= THIS_MODULE,
2510 	.dev_release	= spi_controller_release,
2511 	.dev_groups	= spi_slave_groups,
2512 };
2513 #else
2514 extern struct class spi_slave_class;	/* dummy */
2515 #endif
2516 
2517 /**
2518  * __spi_alloc_controller - allocate an SPI master or slave controller
2519  * @dev: the controller, possibly using the platform_bus
2520  * @size: how much zeroed driver-private data to allocate; the pointer to this
2521  *	memory is in the driver_data field of the returned device, accessible
2522  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2523  *	drivers granting DMA access to portions of their private data need to
2524  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2525  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2526  *	slave (true) controller
2527  * Context: can sleep
2528  *
2529  * This call is used only by SPI controller drivers, which are the
2530  * only ones directly touching chip registers.  It's how they allocate
2531  * an spi_controller structure, prior to calling spi_register_controller().
2532  *
2533  * This must be called from context that can sleep.
2534  *
2535  * The caller is responsible for assigning the bus number and initializing the
2536  * controller's methods before calling spi_register_controller(); and (after
2537  * errors adding the device) calling spi_controller_put() to prevent a memory
2538  * leak.
2539  *
2540  * Return: the SPI controller structure on success, else NULL.
2541  */
2542 struct spi_controller *__spi_alloc_controller(struct device *dev,
2543 					      unsigned int size, bool slave)
2544 {
2545 	struct spi_controller	*ctlr;
2546 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2547 
2548 	if (!dev)
2549 		return NULL;
2550 
2551 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2552 	if (!ctlr)
2553 		return NULL;
2554 
2555 	device_initialize(&ctlr->dev);
2556 	ctlr->bus_num = -1;
2557 	ctlr->num_chipselect = 1;
2558 	ctlr->slave = slave;
2559 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2560 		ctlr->dev.class = &spi_slave_class;
2561 	else
2562 		ctlr->dev.class = &spi_master_class;
2563 	ctlr->dev.parent = dev;
2564 	pm_suspend_ignore_children(&ctlr->dev, true);
2565 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2566 
2567 	return ctlr;
2568 }
2569 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2570 
2571 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2572 {
2573 	spi_controller_put(*(struct spi_controller **)ctlr);
2574 }
2575 
2576 /**
2577  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2578  * @dev: physical device of SPI controller
2579  * @size: how much zeroed driver-private data to allocate
2580  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2581  * Context: can sleep
2582  *
2583  * Allocate an SPI controller and automatically release a reference on it
2584  * when @dev is unbound from its driver.  Drivers are thus relieved from
2585  * having to call spi_controller_put().
2586  *
2587  * The arguments to this function are identical to __spi_alloc_controller().
2588  *
2589  * Return: the SPI controller structure on success, else NULL.
2590  */
2591 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2592 						   unsigned int size,
2593 						   bool slave)
2594 {
2595 	struct spi_controller **ptr, *ctlr;
2596 
2597 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2598 			   GFP_KERNEL);
2599 	if (!ptr)
2600 		return NULL;
2601 
2602 	ctlr = __spi_alloc_controller(dev, size, slave);
2603 	if (ctlr) {
2604 		ctlr->devm_allocated = true;
2605 		*ptr = ctlr;
2606 		devres_add(dev, ptr);
2607 	} else {
2608 		devres_free(ptr);
2609 	}
2610 
2611 	return ctlr;
2612 }
2613 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2614 
2615 #ifdef CONFIG_OF
2616 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2617 {
2618 	int nb, i, *cs;
2619 	struct device_node *np = ctlr->dev.of_node;
2620 
2621 	if (!np)
2622 		return 0;
2623 
2624 	nb = of_gpio_named_count(np, "cs-gpios");
2625 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2626 
2627 	/* Return error only for an incorrectly formed cs-gpios property */
2628 	if (nb == 0 || nb == -ENOENT)
2629 		return 0;
2630 	else if (nb < 0)
2631 		return nb;
2632 
2633 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2634 			  GFP_KERNEL);
2635 	ctlr->cs_gpios = cs;
2636 
2637 	if (!ctlr->cs_gpios)
2638 		return -ENOMEM;
2639 
2640 	for (i = 0; i < ctlr->num_chipselect; i++)
2641 		cs[i] = -ENOENT;
2642 
2643 	for (i = 0; i < nb; i++)
2644 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2645 
2646 	return 0;
2647 }
2648 #else
2649 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2650 {
2651 	return 0;
2652 }
2653 #endif
2654 
2655 /**
2656  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2657  * @ctlr: The SPI master to grab GPIO descriptors for
2658  */
2659 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2660 {
2661 	int nb, i;
2662 	struct gpio_desc **cs;
2663 	struct device *dev = &ctlr->dev;
2664 	unsigned long native_cs_mask = 0;
2665 	unsigned int num_cs_gpios = 0;
2666 
2667 	nb = gpiod_count(dev, "cs");
2668 	if (nb < 0) {
2669 		/* No GPIOs at all is fine, else return the error */
2670 		if (nb == -ENOENT)
2671 			return 0;
2672 		return nb;
2673 	}
2674 
2675 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2676 
2677 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2678 			  GFP_KERNEL);
2679 	if (!cs)
2680 		return -ENOMEM;
2681 	ctlr->cs_gpiods = cs;
2682 
2683 	for (i = 0; i < nb; i++) {
2684 		/*
2685 		 * Most chipselects are active low, the inverted
2686 		 * semantics are handled by special quirks in gpiolib,
2687 		 * so initializing them GPIOD_OUT_LOW here means
2688 		 * "unasserted", in most cases this will drive the physical
2689 		 * line high.
2690 		 */
2691 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2692 						      GPIOD_OUT_LOW);
2693 		if (IS_ERR(cs[i]))
2694 			return PTR_ERR(cs[i]);
2695 
2696 		if (cs[i]) {
2697 			/*
2698 			 * If we find a CS GPIO, name it after the device and
2699 			 * chip select line.
2700 			 */
2701 			char *gpioname;
2702 
2703 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2704 						  dev_name(dev), i);
2705 			if (!gpioname)
2706 				return -ENOMEM;
2707 			gpiod_set_consumer_name(cs[i], gpioname);
2708 			num_cs_gpios++;
2709 			continue;
2710 		}
2711 
2712 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2713 			dev_err(dev, "Invalid native chip select %d\n", i);
2714 			return -EINVAL;
2715 		}
2716 		native_cs_mask |= BIT(i);
2717 	}
2718 
2719 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2720 
2721 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2722 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2723 		dev_err(dev, "No unused native chip select available\n");
2724 		return -EINVAL;
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 static int spi_controller_check_ops(struct spi_controller *ctlr)
2731 {
2732 	/*
2733 	 * The controller may implement only the high-level SPI-memory like
2734 	 * operations if it does not support regular SPI transfers, and this is
2735 	 * valid use case.
2736 	 * If ->mem_ops is NULL, we request that at least one of the
2737 	 * ->transfer_xxx() method be implemented.
2738 	 */
2739 	if (ctlr->mem_ops) {
2740 		if (!ctlr->mem_ops->exec_op)
2741 			return -EINVAL;
2742 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2743 		   !ctlr->transfer_one_message) {
2744 		return -EINVAL;
2745 	}
2746 
2747 	return 0;
2748 }
2749 
2750 /**
2751  * spi_register_controller - register SPI master or slave controller
2752  * @ctlr: initialized master, originally from spi_alloc_master() or
2753  *	spi_alloc_slave()
2754  * Context: can sleep
2755  *
2756  * SPI controllers connect to their drivers using some non-SPI bus,
2757  * such as the platform bus.  The final stage of probe() in that code
2758  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2759  *
2760  * SPI controllers use board specific (often SOC specific) bus numbers,
2761  * and board-specific addressing for SPI devices combines those numbers
2762  * with chip select numbers.  Since SPI does not directly support dynamic
2763  * device identification, boards need configuration tables telling which
2764  * chip is at which address.
2765  *
2766  * This must be called from context that can sleep.  It returns zero on
2767  * success, else a negative error code (dropping the controller's refcount).
2768  * After a successful return, the caller is responsible for calling
2769  * spi_unregister_controller().
2770  *
2771  * Return: zero on success, else a negative error code.
2772  */
2773 int spi_register_controller(struct spi_controller *ctlr)
2774 {
2775 	struct device		*dev = ctlr->dev.parent;
2776 	struct boardinfo	*bi;
2777 	int			status;
2778 	int			id, first_dynamic;
2779 
2780 	if (!dev)
2781 		return -ENODEV;
2782 
2783 	/*
2784 	 * Make sure all necessary hooks are implemented before registering
2785 	 * the SPI controller.
2786 	 */
2787 	status = spi_controller_check_ops(ctlr);
2788 	if (status)
2789 		return status;
2790 
2791 	if (ctlr->bus_num >= 0) {
2792 		/* devices with a fixed bus num must check-in with the num */
2793 		mutex_lock(&board_lock);
2794 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2795 			ctlr->bus_num + 1, GFP_KERNEL);
2796 		mutex_unlock(&board_lock);
2797 		if (WARN(id < 0, "couldn't get idr"))
2798 			return id == -ENOSPC ? -EBUSY : id;
2799 		ctlr->bus_num = id;
2800 	} else if (ctlr->dev.of_node) {
2801 		/* allocate dynamic bus number using Linux idr */
2802 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2803 		if (id >= 0) {
2804 			ctlr->bus_num = id;
2805 			mutex_lock(&board_lock);
2806 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2807 				       ctlr->bus_num + 1, GFP_KERNEL);
2808 			mutex_unlock(&board_lock);
2809 			if (WARN(id < 0, "couldn't get idr"))
2810 				return id == -ENOSPC ? -EBUSY : id;
2811 		}
2812 	}
2813 	if (ctlr->bus_num < 0) {
2814 		first_dynamic = of_alias_get_highest_id("spi");
2815 		if (first_dynamic < 0)
2816 			first_dynamic = 0;
2817 		else
2818 			first_dynamic++;
2819 
2820 		mutex_lock(&board_lock);
2821 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2822 			       0, GFP_KERNEL);
2823 		mutex_unlock(&board_lock);
2824 		if (WARN(id < 0, "couldn't get idr"))
2825 			return id;
2826 		ctlr->bus_num = id;
2827 	}
2828 	INIT_LIST_HEAD(&ctlr->queue);
2829 	spin_lock_init(&ctlr->queue_lock);
2830 	spin_lock_init(&ctlr->bus_lock_spinlock);
2831 	mutex_init(&ctlr->bus_lock_mutex);
2832 	mutex_init(&ctlr->io_mutex);
2833 	ctlr->bus_lock_flag = 0;
2834 	init_completion(&ctlr->xfer_completion);
2835 	if (!ctlr->max_dma_len)
2836 		ctlr->max_dma_len = INT_MAX;
2837 
2838 	/* register the device, then userspace will see it.
2839 	 * registration fails if the bus ID is in use.
2840 	 */
2841 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2842 
2843 	if (!spi_controller_is_slave(ctlr)) {
2844 		if (ctlr->use_gpio_descriptors) {
2845 			status = spi_get_gpio_descs(ctlr);
2846 			if (status)
2847 				goto free_bus_id;
2848 			/*
2849 			 * A controller using GPIO descriptors always
2850 			 * supports SPI_CS_HIGH if need be.
2851 			 */
2852 			ctlr->mode_bits |= SPI_CS_HIGH;
2853 		} else {
2854 			/* Legacy code path for GPIOs from DT */
2855 			status = of_spi_get_gpio_numbers(ctlr);
2856 			if (status)
2857 				goto free_bus_id;
2858 		}
2859 	}
2860 
2861 	/*
2862 	 * Even if it's just one always-selected device, there must
2863 	 * be at least one chipselect.
2864 	 */
2865 	if (!ctlr->num_chipselect) {
2866 		status = -EINVAL;
2867 		goto free_bus_id;
2868 	}
2869 
2870 	status = device_add(&ctlr->dev);
2871 	if (status < 0)
2872 		goto free_bus_id;
2873 	dev_dbg(dev, "registered %s %s\n",
2874 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2875 			dev_name(&ctlr->dev));
2876 
2877 	/*
2878 	 * If we're using a queued driver, start the queue. Note that we don't
2879 	 * need the queueing logic if the driver is only supporting high-level
2880 	 * memory operations.
2881 	 */
2882 	if (ctlr->transfer) {
2883 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2884 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2885 		status = spi_controller_initialize_queue(ctlr);
2886 		if (status) {
2887 			device_del(&ctlr->dev);
2888 			goto free_bus_id;
2889 		}
2890 	}
2891 	/* add statistics */
2892 	spin_lock_init(&ctlr->statistics.lock);
2893 
2894 	mutex_lock(&board_lock);
2895 	list_add_tail(&ctlr->list, &spi_controller_list);
2896 	list_for_each_entry(bi, &board_list, list)
2897 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2898 	mutex_unlock(&board_lock);
2899 
2900 	/* Register devices from the device tree and ACPI */
2901 	of_register_spi_devices(ctlr);
2902 	acpi_register_spi_devices(ctlr);
2903 	return status;
2904 
2905 free_bus_id:
2906 	mutex_lock(&board_lock);
2907 	idr_remove(&spi_master_idr, ctlr->bus_num);
2908 	mutex_unlock(&board_lock);
2909 	return status;
2910 }
2911 EXPORT_SYMBOL_GPL(spi_register_controller);
2912 
2913 static void devm_spi_unregister(void *ctlr)
2914 {
2915 	spi_unregister_controller(ctlr);
2916 }
2917 
2918 /**
2919  * devm_spi_register_controller - register managed SPI master or slave
2920  *	controller
2921  * @dev:    device managing SPI controller
2922  * @ctlr: initialized controller, originally from spi_alloc_master() or
2923  *	spi_alloc_slave()
2924  * Context: can sleep
2925  *
2926  * Register a SPI device as with spi_register_controller() which will
2927  * automatically be unregistered and freed.
2928  *
2929  * Return: zero on success, else a negative error code.
2930  */
2931 int devm_spi_register_controller(struct device *dev,
2932 				 struct spi_controller *ctlr)
2933 {
2934 	int ret;
2935 
2936 	ret = spi_register_controller(ctlr);
2937 	if (ret)
2938 		return ret;
2939 
2940 	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
2941 }
2942 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2943 
2944 static int __unregister(struct device *dev, void *null)
2945 {
2946 	spi_unregister_device(to_spi_device(dev));
2947 	return 0;
2948 }
2949 
2950 /**
2951  * spi_unregister_controller - unregister SPI master or slave controller
2952  * @ctlr: the controller being unregistered
2953  * Context: can sleep
2954  *
2955  * This call is used only by SPI controller drivers, which are the
2956  * only ones directly touching chip registers.
2957  *
2958  * This must be called from context that can sleep.
2959  *
2960  * Note that this function also drops a reference to the controller.
2961  */
2962 void spi_unregister_controller(struct spi_controller *ctlr)
2963 {
2964 	struct spi_controller *found;
2965 	int id = ctlr->bus_num;
2966 
2967 	/* Prevent addition of new devices, unregister existing ones */
2968 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2969 		mutex_lock(&spi_add_lock);
2970 
2971 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2972 
2973 	/* First make sure that this controller was ever added */
2974 	mutex_lock(&board_lock);
2975 	found = idr_find(&spi_master_idr, id);
2976 	mutex_unlock(&board_lock);
2977 	if (ctlr->queued) {
2978 		if (spi_destroy_queue(ctlr))
2979 			dev_err(&ctlr->dev, "queue remove failed\n");
2980 	}
2981 	mutex_lock(&board_lock);
2982 	list_del(&ctlr->list);
2983 	mutex_unlock(&board_lock);
2984 
2985 	device_del(&ctlr->dev);
2986 
2987 	/* Release the last reference on the controller if its driver
2988 	 * has not yet been converted to devm_spi_alloc_master/slave().
2989 	 */
2990 	if (!ctlr->devm_allocated)
2991 		put_device(&ctlr->dev);
2992 
2993 	/* free bus id */
2994 	mutex_lock(&board_lock);
2995 	if (found == ctlr)
2996 		idr_remove(&spi_master_idr, id);
2997 	mutex_unlock(&board_lock);
2998 
2999 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3000 		mutex_unlock(&spi_add_lock);
3001 }
3002 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3003 
3004 int spi_controller_suspend(struct spi_controller *ctlr)
3005 {
3006 	int ret;
3007 
3008 	/* Basically no-ops for non-queued controllers */
3009 	if (!ctlr->queued)
3010 		return 0;
3011 
3012 	ret = spi_stop_queue(ctlr);
3013 	if (ret)
3014 		dev_err(&ctlr->dev, "queue stop failed\n");
3015 
3016 	return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3019 
3020 int spi_controller_resume(struct spi_controller *ctlr)
3021 {
3022 	int ret;
3023 
3024 	if (!ctlr->queued)
3025 		return 0;
3026 
3027 	ret = spi_start_queue(ctlr);
3028 	if (ret)
3029 		dev_err(&ctlr->dev, "queue restart failed\n");
3030 
3031 	return ret;
3032 }
3033 EXPORT_SYMBOL_GPL(spi_controller_resume);
3034 
3035 static int __spi_controller_match(struct device *dev, const void *data)
3036 {
3037 	struct spi_controller *ctlr;
3038 	const u16 *bus_num = data;
3039 
3040 	ctlr = container_of(dev, struct spi_controller, dev);
3041 	return ctlr->bus_num == *bus_num;
3042 }
3043 
3044 /**
3045  * spi_busnum_to_master - look up master associated with bus_num
3046  * @bus_num: the master's bus number
3047  * Context: can sleep
3048  *
3049  * This call may be used with devices that are registered after
3050  * arch init time.  It returns a refcounted pointer to the relevant
3051  * spi_controller (which the caller must release), or NULL if there is
3052  * no such master registered.
3053  *
3054  * Return: the SPI master structure on success, else NULL.
3055  */
3056 struct spi_controller *spi_busnum_to_master(u16 bus_num)
3057 {
3058 	struct device		*dev;
3059 	struct spi_controller	*ctlr = NULL;
3060 
3061 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
3062 				__spi_controller_match);
3063 	if (dev)
3064 		ctlr = container_of(dev, struct spi_controller, dev);
3065 	/* reference got in class_find_device */
3066 	return ctlr;
3067 }
3068 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3069 
3070 /*-------------------------------------------------------------------------*/
3071 
3072 /* Core methods for SPI resource management */
3073 
3074 /**
3075  * spi_res_alloc - allocate a spi resource that is life-cycle managed
3076  *                 during the processing of a spi_message while using
3077  *                 spi_transfer_one
3078  * @spi:     the spi device for which we allocate memory
3079  * @release: the release code to execute for this resource
3080  * @size:    size to alloc and return
3081  * @gfp:     GFP allocation flags
3082  *
3083  * Return: the pointer to the allocated data
3084  *
3085  * This may get enhanced in the future to allocate from a memory pool
3086  * of the @spi_device or @spi_controller to avoid repeated allocations.
3087  */
3088 void *spi_res_alloc(struct spi_device *spi,
3089 		    spi_res_release_t release,
3090 		    size_t size, gfp_t gfp)
3091 {
3092 	struct spi_res *sres;
3093 
3094 	sres = kzalloc(sizeof(*sres) + size, gfp);
3095 	if (!sres)
3096 		return NULL;
3097 
3098 	INIT_LIST_HEAD(&sres->entry);
3099 	sres->release = release;
3100 
3101 	return sres->data;
3102 }
3103 EXPORT_SYMBOL_GPL(spi_res_alloc);
3104 
3105 /**
3106  * spi_res_free - free an spi resource
3107  * @res: pointer to the custom data of a resource
3108  *
3109  */
3110 void spi_res_free(void *res)
3111 {
3112 	struct spi_res *sres = container_of(res, struct spi_res, data);
3113 
3114 	if (!res)
3115 		return;
3116 
3117 	WARN_ON(!list_empty(&sres->entry));
3118 	kfree(sres);
3119 }
3120 EXPORT_SYMBOL_GPL(spi_res_free);
3121 
3122 /**
3123  * spi_res_add - add a spi_res to the spi_message
3124  * @message: the spi message
3125  * @res:     the spi_resource
3126  */
3127 void spi_res_add(struct spi_message *message, void *res)
3128 {
3129 	struct spi_res *sres = container_of(res, struct spi_res, data);
3130 
3131 	WARN_ON(!list_empty(&sres->entry));
3132 	list_add_tail(&sres->entry, &message->resources);
3133 }
3134 EXPORT_SYMBOL_GPL(spi_res_add);
3135 
3136 /**
3137  * spi_res_release - release all spi resources for this message
3138  * @ctlr:  the @spi_controller
3139  * @message: the @spi_message
3140  */
3141 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3142 {
3143 	struct spi_res *res, *tmp;
3144 
3145 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3146 		if (res->release)
3147 			res->release(ctlr, message, res->data);
3148 
3149 		list_del(&res->entry);
3150 
3151 		kfree(res);
3152 	}
3153 }
3154 EXPORT_SYMBOL_GPL(spi_res_release);
3155 
3156 /*-------------------------------------------------------------------------*/
3157 
3158 /* Core methods for spi_message alterations */
3159 
3160 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3161 					    struct spi_message *msg,
3162 					    void *res)
3163 {
3164 	struct spi_replaced_transfers *rxfer = res;
3165 	size_t i;
3166 
3167 	/* call extra callback if requested */
3168 	if (rxfer->release)
3169 		rxfer->release(ctlr, msg, res);
3170 
3171 	/* insert replaced transfers back into the message */
3172 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3173 
3174 	/* remove the formerly inserted entries */
3175 	for (i = 0; i < rxfer->inserted; i++)
3176 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3177 }
3178 
3179 /**
3180  * spi_replace_transfers - replace transfers with several transfers
3181  *                         and register change with spi_message.resources
3182  * @msg:           the spi_message we work upon
3183  * @xfer_first:    the first spi_transfer we want to replace
3184  * @remove:        number of transfers to remove
3185  * @insert:        the number of transfers we want to insert instead
3186  * @release:       extra release code necessary in some circumstances
3187  * @extradatasize: extra data to allocate (with alignment guarantees
3188  *                 of struct @spi_transfer)
3189  * @gfp:           gfp flags
3190  *
3191  * Returns: pointer to @spi_replaced_transfers,
3192  *          PTR_ERR(...) in case of errors.
3193  */
3194 struct spi_replaced_transfers *spi_replace_transfers(
3195 	struct spi_message *msg,
3196 	struct spi_transfer *xfer_first,
3197 	size_t remove,
3198 	size_t insert,
3199 	spi_replaced_release_t release,
3200 	size_t extradatasize,
3201 	gfp_t gfp)
3202 {
3203 	struct spi_replaced_transfers *rxfer;
3204 	struct spi_transfer *xfer;
3205 	size_t i;
3206 
3207 	/* allocate the structure using spi_res */
3208 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3209 			      struct_size(rxfer, inserted_transfers, insert)
3210 			      + extradatasize,
3211 			      gfp);
3212 	if (!rxfer)
3213 		return ERR_PTR(-ENOMEM);
3214 
3215 	/* the release code to invoke before running the generic release */
3216 	rxfer->release = release;
3217 
3218 	/* assign extradata */
3219 	if (extradatasize)
3220 		rxfer->extradata =
3221 			&rxfer->inserted_transfers[insert];
3222 
3223 	/* init the replaced_transfers list */
3224 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3225 
3226 	/* assign the list_entry after which we should reinsert
3227 	 * the @replaced_transfers - it may be spi_message.messages!
3228 	 */
3229 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3230 
3231 	/* remove the requested number of transfers */
3232 	for (i = 0; i < remove; i++) {
3233 		/* if the entry after replaced_after it is msg->transfers
3234 		 * then we have been requested to remove more transfers
3235 		 * than are in the list
3236 		 */
3237 		if (rxfer->replaced_after->next == &msg->transfers) {
3238 			dev_err(&msg->spi->dev,
3239 				"requested to remove more spi_transfers than are available\n");
3240 			/* insert replaced transfers back into the message */
3241 			list_splice(&rxfer->replaced_transfers,
3242 				    rxfer->replaced_after);
3243 
3244 			/* free the spi_replace_transfer structure */
3245 			spi_res_free(rxfer);
3246 
3247 			/* and return with an error */
3248 			return ERR_PTR(-EINVAL);
3249 		}
3250 
3251 		/* remove the entry after replaced_after from list of
3252 		 * transfers and add it to list of replaced_transfers
3253 		 */
3254 		list_move_tail(rxfer->replaced_after->next,
3255 			       &rxfer->replaced_transfers);
3256 	}
3257 
3258 	/* create copy of the given xfer with identical settings
3259 	 * based on the first transfer to get removed
3260 	 */
3261 	for (i = 0; i < insert; i++) {
3262 		/* we need to run in reverse order */
3263 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3264 
3265 		/* copy all spi_transfer data */
3266 		memcpy(xfer, xfer_first, sizeof(*xfer));
3267 
3268 		/* add to list */
3269 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3270 
3271 		/* clear cs_change and delay for all but the last */
3272 		if (i) {
3273 			xfer->cs_change = false;
3274 			xfer->delay.value = 0;
3275 		}
3276 	}
3277 
3278 	/* set up inserted */
3279 	rxfer->inserted = insert;
3280 
3281 	/* and register it with spi_res/spi_message */
3282 	spi_res_add(msg, rxfer);
3283 
3284 	return rxfer;
3285 }
3286 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3287 
3288 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3289 					struct spi_message *msg,
3290 					struct spi_transfer **xferp,
3291 					size_t maxsize,
3292 					gfp_t gfp)
3293 {
3294 	struct spi_transfer *xfer = *xferp, *xfers;
3295 	struct spi_replaced_transfers *srt;
3296 	size_t offset;
3297 	size_t count, i;
3298 
3299 	/* calculate how many we have to replace */
3300 	count = DIV_ROUND_UP(xfer->len, maxsize);
3301 
3302 	/* create replacement */
3303 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3304 	if (IS_ERR(srt))
3305 		return PTR_ERR(srt);
3306 	xfers = srt->inserted_transfers;
3307 
3308 	/* now handle each of those newly inserted spi_transfers
3309 	 * note that the replacements spi_transfers all are preset
3310 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3311 	 * are all identical (as well as most others)
3312 	 * so we just have to fix up len and the pointers.
3313 	 *
3314 	 * this also includes support for the depreciated
3315 	 * spi_message.is_dma_mapped interface
3316 	 */
3317 
3318 	/* the first transfer just needs the length modified, so we
3319 	 * run it outside the loop
3320 	 */
3321 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3322 
3323 	/* all the others need rx_buf/tx_buf also set */
3324 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3325 		/* update rx_buf, tx_buf and dma */
3326 		if (xfers[i].rx_buf)
3327 			xfers[i].rx_buf += offset;
3328 		if (xfers[i].rx_dma)
3329 			xfers[i].rx_dma += offset;
3330 		if (xfers[i].tx_buf)
3331 			xfers[i].tx_buf += offset;
3332 		if (xfers[i].tx_dma)
3333 			xfers[i].tx_dma += offset;
3334 
3335 		/* update length */
3336 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3337 	}
3338 
3339 	/* we set up xferp to the last entry we have inserted,
3340 	 * so that we skip those already split transfers
3341 	 */
3342 	*xferp = &xfers[count - 1];
3343 
3344 	/* increment statistics counters */
3345 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3346 				       transfers_split_maxsize);
3347 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3348 				       transfers_split_maxsize);
3349 
3350 	return 0;
3351 }
3352 
3353 /**
3354  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3355  *                               when an individual transfer exceeds a
3356  *                               certain size
3357  * @ctlr:    the @spi_controller for this transfer
3358  * @msg:   the @spi_message to transform
3359  * @maxsize:  the maximum when to apply this
3360  * @gfp: GFP allocation flags
3361  *
3362  * Return: status of transformation
3363  */
3364 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3365 				struct spi_message *msg,
3366 				size_t maxsize,
3367 				gfp_t gfp)
3368 {
3369 	struct spi_transfer *xfer;
3370 	int ret;
3371 
3372 	/* iterate over the transfer_list,
3373 	 * but note that xfer is advanced to the last transfer inserted
3374 	 * to avoid checking sizes again unnecessarily (also xfer does
3375 	 * potentiall belong to a different list by the time the
3376 	 * replacement has happened
3377 	 */
3378 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3379 		if (xfer->len > maxsize) {
3380 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3381 							   maxsize, gfp);
3382 			if (ret)
3383 				return ret;
3384 		}
3385 	}
3386 
3387 	return 0;
3388 }
3389 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3390 
3391 /*-------------------------------------------------------------------------*/
3392 
3393 /* Core methods for SPI controller protocol drivers.  Some of the
3394  * other core methods are currently defined as inline functions.
3395  */
3396 
3397 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3398 					u8 bits_per_word)
3399 {
3400 	if (ctlr->bits_per_word_mask) {
3401 		/* Only 32 bits fit in the mask */
3402 		if (bits_per_word > 32)
3403 			return -EINVAL;
3404 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3405 			return -EINVAL;
3406 	}
3407 
3408 	return 0;
3409 }
3410 
3411 /**
3412  * spi_setup - setup SPI mode and clock rate
3413  * @spi: the device whose settings are being modified
3414  * Context: can sleep, and no requests are queued to the device
3415  *
3416  * SPI protocol drivers may need to update the transfer mode if the
3417  * device doesn't work with its default.  They may likewise need
3418  * to update clock rates or word sizes from initial values.  This function
3419  * changes those settings, and must be called from a context that can sleep.
3420  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3421  * effect the next time the device is selected and data is transferred to
3422  * or from it.  When this function returns, the spi device is deselected.
3423  *
3424  * Note that this call will fail if the protocol driver specifies an option
3425  * that the underlying controller or its driver does not support.  For
3426  * example, not all hardware supports wire transfers using nine bit words,
3427  * LSB-first wire encoding, or active-high chipselects.
3428  *
3429  * Return: zero on success, else a negative error code.
3430  */
3431 int spi_setup(struct spi_device *spi)
3432 {
3433 	unsigned	bad_bits, ugly_bits;
3434 	int		status;
3435 
3436 	/*
3437 	 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3438 	 * are set at the same time
3439 	 */
3440 	if ((hweight_long(spi->mode &
3441 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3442 	    (hweight_long(spi->mode &
3443 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3444 		dev_err(&spi->dev,
3445 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3446 		return -EINVAL;
3447 	}
3448 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3449 	 */
3450 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3451 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3452 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3453 		return -EINVAL;
3454 	/* help drivers fail *cleanly* when they need options
3455 	 * that aren't supported with their current controller
3456 	 * SPI_CS_WORD has a fallback software implementation,
3457 	 * so it is ignored here.
3458 	 */
3459 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3460 				 SPI_NO_TX | SPI_NO_RX);
3461 	/* nothing prevents from working with active-high CS in case if it
3462 	 * is driven by GPIO.
3463 	 */
3464 	if (gpio_is_valid(spi->cs_gpio))
3465 		bad_bits &= ~SPI_CS_HIGH;
3466 	ugly_bits = bad_bits &
3467 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3468 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3469 	if (ugly_bits) {
3470 		dev_warn(&spi->dev,
3471 			 "setup: ignoring unsupported mode bits %x\n",
3472 			 ugly_bits);
3473 		spi->mode &= ~ugly_bits;
3474 		bad_bits &= ~ugly_bits;
3475 	}
3476 	if (bad_bits) {
3477 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3478 			bad_bits);
3479 		return -EINVAL;
3480 	}
3481 
3482 	if (!spi->bits_per_word)
3483 		spi->bits_per_word = 8;
3484 
3485 	status = __spi_validate_bits_per_word(spi->controller,
3486 					      spi->bits_per_word);
3487 	if (status)
3488 		return status;
3489 
3490 	if (spi->controller->max_speed_hz &&
3491 	    (!spi->max_speed_hz ||
3492 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3493 		spi->max_speed_hz = spi->controller->max_speed_hz;
3494 
3495 	mutex_lock(&spi->controller->io_mutex);
3496 
3497 	if (spi->controller->setup) {
3498 		status = spi->controller->setup(spi);
3499 		if (status) {
3500 			mutex_unlock(&spi->controller->io_mutex);
3501 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3502 				status);
3503 			return status;
3504 		}
3505 	}
3506 
3507 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3508 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3509 		if (status < 0) {
3510 			mutex_unlock(&spi->controller->io_mutex);
3511 			pm_runtime_put_noidle(spi->controller->dev.parent);
3512 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3513 				status);
3514 			return status;
3515 		}
3516 
3517 		/*
3518 		 * We do not want to return positive value from pm_runtime_get,
3519 		 * there are many instances of devices calling spi_setup() and
3520 		 * checking for a non-zero return value instead of a negative
3521 		 * return value.
3522 		 */
3523 		status = 0;
3524 
3525 		spi_set_cs(spi, false, true);
3526 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3527 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3528 	} else {
3529 		spi_set_cs(spi, false, true);
3530 	}
3531 
3532 	mutex_unlock(&spi->controller->io_mutex);
3533 
3534 	if (spi->rt && !spi->controller->rt) {
3535 		spi->controller->rt = true;
3536 		spi_set_thread_rt(spi->controller);
3537 	}
3538 
3539 	trace_spi_setup(spi, status);
3540 
3541 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3542 			spi->mode & SPI_MODE_X_MASK,
3543 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3544 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3545 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3546 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3547 			spi->bits_per_word, spi->max_speed_hz,
3548 			status);
3549 
3550 	return status;
3551 }
3552 EXPORT_SYMBOL_GPL(spi_setup);
3553 
3554 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3555 				       struct spi_device *spi)
3556 {
3557 	int delay1, delay2;
3558 
3559 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3560 	if (delay1 < 0)
3561 		return delay1;
3562 
3563 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3564 	if (delay2 < 0)
3565 		return delay2;
3566 
3567 	if (delay1 < delay2)
3568 		memcpy(&xfer->word_delay, &spi->word_delay,
3569 		       sizeof(xfer->word_delay));
3570 
3571 	return 0;
3572 }
3573 
3574 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3575 {
3576 	struct spi_controller *ctlr = spi->controller;
3577 	struct spi_transfer *xfer;
3578 	int w_size;
3579 
3580 	if (list_empty(&message->transfers))
3581 		return -EINVAL;
3582 
3583 	/* If an SPI controller does not support toggling the CS line on each
3584 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3585 	 * for the CS line, we can emulate the CS-per-word hardware function by
3586 	 * splitting transfers into one-word transfers and ensuring that
3587 	 * cs_change is set for each transfer.
3588 	 */
3589 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3590 					  spi->cs_gpiod ||
3591 					  gpio_is_valid(spi->cs_gpio))) {
3592 		size_t maxsize;
3593 		int ret;
3594 
3595 		maxsize = (spi->bits_per_word + 7) / 8;
3596 
3597 		/* spi_split_transfers_maxsize() requires message->spi */
3598 		message->spi = spi;
3599 
3600 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3601 						  GFP_KERNEL);
3602 		if (ret)
3603 			return ret;
3604 
3605 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3606 			/* don't change cs_change on the last entry in the list */
3607 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3608 				break;
3609 			xfer->cs_change = 1;
3610 		}
3611 	}
3612 
3613 	/* Half-duplex links include original MicroWire, and ones with
3614 	 * only one data pin like SPI_3WIRE (switches direction) or where
3615 	 * either MOSI or MISO is missing.  They can also be caused by
3616 	 * software limitations.
3617 	 */
3618 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3619 	    (spi->mode & SPI_3WIRE)) {
3620 		unsigned flags = ctlr->flags;
3621 
3622 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3623 			if (xfer->rx_buf && xfer->tx_buf)
3624 				return -EINVAL;
3625 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3626 				return -EINVAL;
3627 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3628 				return -EINVAL;
3629 		}
3630 	}
3631 
3632 	/**
3633 	 * Set transfer bits_per_word and max speed as spi device default if
3634 	 * it is not set for this transfer.
3635 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3636 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3637 	 * Ensure transfer word_delay is at least as long as that required by
3638 	 * device itself.
3639 	 */
3640 	message->frame_length = 0;
3641 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3642 		xfer->effective_speed_hz = 0;
3643 		message->frame_length += xfer->len;
3644 		if (!xfer->bits_per_word)
3645 			xfer->bits_per_word = spi->bits_per_word;
3646 
3647 		if (!xfer->speed_hz)
3648 			xfer->speed_hz = spi->max_speed_hz;
3649 
3650 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3651 			xfer->speed_hz = ctlr->max_speed_hz;
3652 
3653 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3654 			return -EINVAL;
3655 
3656 		/*
3657 		 * SPI transfer length should be multiple of SPI word size
3658 		 * where SPI word size should be power-of-two multiple
3659 		 */
3660 		if (xfer->bits_per_word <= 8)
3661 			w_size = 1;
3662 		else if (xfer->bits_per_word <= 16)
3663 			w_size = 2;
3664 		else
3665 			w_size = 4;
3666 
3667 		/* No partial transfers accepted */
3668 		if (xfer->len % w_size)
3669 			return -EINVAL;
3670 
3671 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3672 		    xfer->speed_hz < ctlr->min_speed_hz)
3673 			return -EINVAL;
3674 
3675 		if (xfer->tx_buf && !xfer->tx_nbits)
3676 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3677 		if (xfer->rx_buf && !xfer->rx_nbits)
3678 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3679 		/* check transfer tx/rx_nbits:
3680 		 * 1. check the value matches one of single, dual and quad
3681 		 * 2. check tx/rx_nbits match the mode in spi_device
3682 		 */
3683 		if (xfer->tx_buf) {
3684 			if (spi->mode & SPI_NO_TX)
3685 				return -EINVAL;
3686 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3687 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3688 				xfer->tx_nbits != SPI_NBITS_QUAD)
3689 				return -EINVAL;
3690 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3691 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3692 				return -EINVAL;
3693 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3694 				!(spi->mode & SPI_TX_QUAD))
3695 				return -EINVAL;
3696 		}
3697 		/* check transfer rx_nbits */
3698 		if (xfer->rx_buf) {
3699 			if (spi->mode & SPI_NO_RX)
3700 				return -EINVAL;
3701 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3702 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3703 				xfer->rx_nbits != SPI_NBITS_QUAD)
3704 				return -EINVAL;
3705 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3706 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3707 				return -EINVAL;
3708 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3709 				!(spi->mode & SPI_RX_QUAD))
3710 				return -EINVAL;
3711 		}
3712 
3713 		if (_spi_xfer_word_delay_update(xfer, spi))
3714 			return -EINVAL;
3715 	}
3716 
3717 	message->status = -EINPROGRESS;
3718 
3719 	return 0;
3720 }
3721 
3722 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3723 {
3724 	struct spi_controller *ctlr = spi->controller;
3725 	struct spi_transfer *xfer;
3726 
3727 	/*
3728 	 * Some controllers do not support doing regular SPI transfers. Return
3729 	 * ENOTSUPP when this is the case.
3730 	 */
3731 	if (!ctlr->transfer)
3732 		return -ENOTSUPP;
3733 
3734 	message->spi = spi;
3735 
3736 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3737 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3738 
3739 	trace_spi_message_submit(message);
3740 
3741 	if (!ctlr->ptp_sts_supported) {
3742 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3743 			xfer->ptp_sts_word_pre = 0;
3744 			ptp_read_system_prets(xfer->ptp_sts);
3745 		}
3746 	}
3747 
3748 	return ctlr->transfer(spi, message);
3749 }
3750 
3751 /**
3752  * spi_async - asynchronous SPI transfer
3753  * @spi: device with which data will be exchanged
3754  * @message: describes the data transfers, including completion callback
3755  * Context: any (irqs may be blocked, etc)
3756  *
3757  * This call may be used in_irq and other contexts which can't sleep,
3758  * as well as from task contexts which can sleep.
3759  *
3760  * The completion callback is invoked in a context which can't sleep.
3761  * Before that invocation, the value of message->status is undefined.
3762  * When the callback is issued, message->status holds either zero (to
3763  * indicate complete success) or a negative error code.  After that
3764  * callback returns, the driver which issued the transfer request may
3765  * deallocate the associated memory; it's no longer in use by any SPI
3766  * core or controller driver code.
3767  *
3768  * Note that although all messages to a spi_device are handled in
3769  * FIFO order, messages may go to different devices in other orders.
3770  * Some device might be higher priority, or have various "hard" access
3771  * time requirements, for example.
3772  *
3773  * On detection of any fault during the transfer, processing of
3774  * the entire message is aborted, and the device is deselected.
3775  * Until returning from the associated message completion callback,
3776  * no other spi_message queued to that device will be processed.
3777  * (This rule applies equally to all the synchronous transfer calls,
3778  * which are wrappers around this core asynchronous primitive.)
3779  *
3780  * Return: zero on success, else a negative error code.
3781  */
3782 int spi_async(struct spi_device *spi, struct spi_message *message)
3783 {
3784 	struct spi_controller *ctlr = spi->controller;
3785 	int ret;
3786 	unsigned long flags;
3787 
3788 	ret = __spi_validate(spi, message);
3789 	if (ret != 0)
3790 		return ret;
3791 
3792 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3793 
3794 	if (ctlr->bus_lock_flag)
3795 		ret = -EBUSY;
3796 	else
3797 		ret = __spi_async(spi, message);
3798 
3799 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3800 
3801 	return ret;
3802 }
3803 EXPORT_SYMBOL_GPL(spi_async);
3804 
3805 /**
3806  * spi_async_locked - version of spi_async with exclusive bus usage
3807  * @spi: device with which data will be exchanged
3808  * @message: describes the data transfers, including completion callback
3809  * Context: any (irqs may be blocked, etc)
3810  *
3811  * This call may be used in_irq and other contexts which can't sleep,
3812  * as well as from task contexts which can sleep.
3813  *
3814  * The completion callback is invoked in a context which can't sleep.
3815  * Before that invocation, the value of message->status is undefined.
3816  * When the callback is issued, message->status holds either zero (to
3817  * indicate complete success) or a negative error code.  After that
3818  * callback returns, the driver which issued the transfer request may
3819  * deallocate the associated memory; it's no longer in use by any SPI
3820  * core or controller driver code.
3821  *
3822  * Note that although all messages to a spi_device are handled in
3823  * FIFO order, messages may go to different devices in other orders.
3824  * Some device might be higher priority, or have various "hard" access
3825  * time requirements, for example.
3826  *
3827  * On detection of any fault during the transfer, processing of
3828  * the entire message is aborted, and the device is deselected.
3829  * Until returning from the associated message completion callback,
3830  * no other spi_message queued to that device will be processed.
3831  * (This rule applies equally to all the synchronous transfer calls,
3832  * which are wrappers around this core asynchronous primitive.)
3833  *
3834  * Return: zero on success, else a negative error code.
3835  */
3836 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3837 {
3838 	struct spi_controller *ctlr = spi->controller;
3839 	int ret;
3840 	unsigned long flags;
3841 
3842 	ret = __spi_validate(spi, message);
3843 	if (ret != 0)
3844 		return ret;
3845 
3846 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3847 
3848 	ret = __spi_async(spi, message);
3849 
3850 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3851 
3852 	return ret;
3853 
3854 }
3855 EXPORT_SYMBOL_GPL(spi_async_locked);
3856 
3857 /*-------------------------------------------------------------------------*/
3858 
3859 /* Utility methods for SPI protocol drivers, layered on
3860  * top of the core.  Some other utility methods are defined as
3861  * inline functions.
3862  */
3863 
3864 static void spi_complete(void *arg)
3865 {
3866 	complete(arg);
3867 }
3868 
3869 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3870 {
3871 	DECLARE_COMPLETION_ONSTACK(done);
3872 	int status;
3873 	struct spi_controller *ctlr = spi->controller;
3874 	unsigned long flags;
3875 
3876 	status = __spi_validate(spi, message);
3877 	if (status != 0)
3878 		return status;
3879 
3880 	message->complete = spi_complete;
3881 	message->context = &done;
3882 	message->spi = spi;
3883 
3884 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3885 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3886 
3887 	/* If we're not using the legacy transfer method then we will
3888 	 * try to transfer in the calling context so special case.
3889 	 * This code would be less tricky if we could remove the
3890 	 * support for driver implemented message queues.
3891 	 */
3892 	if (ctlr->transfer == spi_queued_transfer) {
3893 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3894 
3895 		trace_spi_message_submit(message);
3896 
3897 		status = __spi_queued_transfer(spi, message, false);
3898 
3899 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3900 	} else {
3901 		status = spi_async_locked(spi, message);
3902 	}
3903 
3904 	if (status == 0) {
3905 		/* Push out the messages in the calling context if we
3906 		 * can.
3907 		 */
3908 		if (ctlr->transfer == spi_queued_transfer) {
3909 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3910 						       spi_sync_immediate);
3911 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3912 						       spi_sync_immediate);
3913 			__spi_pump_messages(ctlr, false);
3914 		}
3915 
3916 		wait_for_completion(&done);
3917 		status = message->status;
3918 	}
3919 	message->context = NULL;
3920 	return status;
3921 }
3922 
3923 /**
3924  * spi_sync - blocking/synchronous SPI data transfers
3925  * @spi: device with which data will be exchanged
3926  * @message: describes the data transfers
3927  * Context: can sleep
3928  *
3929  * This call may only be used from a context that may sleep.  The sleep
3930  * is non-interruptible, and has no timeout.  Low-overhead controller
3931  * drivers may DMA directly into and out of the message buffers.
3932  *
3933  * Note that the SPI device's chip select is active during the message,
3934  * and then is normally disabled between messages.  Drivers for some
3935  * frequently-used devices may want to minimize costs of selecting a chip,
3936  * by leaving it selected in anticipation that the next message will go
3937  * to the same chip.  (That may increase power usage.)
3938  *
3939  * Also, the caller is guaranteeing that the memory associated with the
3940  * message will not be freed before this call returns.
3941  *
3942  * Return: zero on success, else a negative error code.
3943  */
3944 int spi_sync(struct spi_device *spi, struct spi_message *message)
3945 {
3946 	int ret;
3947 
3948 	mutex_lock(&spi->controller->bus_lock_mutex);
3949 	ret = __spi_sync(spi, message);
3950 	mutex_unlock(&spi->controller->bus_lock_mutex);
3951 
3952 	return ret;
3953 }
3954 EXPORT_SYMBOL_GPL(spi_sync);
3955 
3956 /**
3957  * spi_sync_locked - version of spi_sync with exclusive bus usage
3958  * @spi: device with which data will be exchanged
3959  * @message: describes the data transfers
3960  * Context: can sleep
3961  *
3962  * This call may only be used from a context that may sleep.  The sleep
3963  * is non-interruptible, and has no timeout.  Low-overhead controller
3964  * drivers may DMA directly into and out of the message buffers.
3965  *
3966  * This call should be used by drivers that require exclusive access to the
3967  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3968  * be released by a spi_bus_unlock call when the exclusive access is over.
3969  *
3970  * Return: zero on success, else a negative error code.
3971  */
3972 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3973 {
3974 	return __spi_sync(spi, message);
3975 }
3976 EXPORT_SYMBOL_GPL(spi_sync_locked);
3977 
3978 /**
3979  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3980  * @ctlr: SPI bus master that should be locked for exclusive bus access
3981  * Context: can sleep
3982  *
3983  * This call may only be used from a context that may sleep.  The sleep
3984  * is non-interruptible, and has no timeout.
3985  *
3986  * This call should be used by drivers that require exclusive access to the
3987  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3988  * exclusive access is over. Data transfer must be done by spi_sync_locked
3989  * and spi_async_locked calls when the SPI bus lock is held.
3990  *
3991  * Return: always zero.
3992  */
3993 int spi_bus_lock(struct spi_controller *ctlr)
3994 {
3995 	unsigned long flags;
3996 
3997 	mutex_lock(&ctlr->bus_lock_mutex);
3998 
3999 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4000 	ctlr->bus_lock_flag = 1;
4001 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4002 
4003 	/* mutex remains locked until spi_bus_unlock is called */
4004 
4005 	return 0;
4006 }
4007 EXPORT_SYMBOL_GPL(spi_bus_lock);
4008 
4009 /**
4010  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4011  * @ctlr: SPI bus master that was locked for exclusive bus access
4012  * Context: can sleep
4013  *
4014  * This call may only be used from a context that may sleep.  The sleep
4015  * is non-interruptible, and has no timeout.
4016  *
4017  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4018  * call.
4019  *
4020  * Return: always zero.
4021  */
4022 int spi_bus_unlock(struct spi_controller *ctlr)
4023 {
4024 	ctlr->bus_lock_flag = 0;
4025 
4026 	mutex_unlock(&ctlr->bus_lock_mutex);
4027 
4028 	return 0;
4029 }
4030 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4031 
4032 /* portable code must never pass more than 32 bytes */
4033 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4034 
4035 static u8	*buf;
4036 
4037 /**
4038  * spi_write_then_read - SPI synchronous write followed by read
4039  * @spi: device with which data will be exchanged
4040  * @txbuf: data to be written (need not be dma-safe)
4041  * @n_tx: size of txbuf, in bytes
4042  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4043  * @n_rx: size of rxbuf, in bytes
4044  * Context: can sleep
4045  *
4046  * This performs a half duplex MicroWire style transaction with the
4047  * device, sending txbuf and then reading rxbuf.  The return value
4048  * is zero for success, else a negative errno status code.
4049  * This call may only be used from a context that may sleep.
4050  *
4051  * Parameters to this routine are always copied using a small buffer.
4052  * Performance-sensitive or bulk transfer code should instead use
4053  * spi_{async,sync}() calls with dma-safe buffers.
4054  *
4055  * Return: zero on success, else a negative error code.
4056  */
4057 int spi_write_then_read(struct spi_device *spi,
4058 		const void *txbuf, unsigned n_tx,
4059 		void *rxbuf, unsigned n_rx)
4060 {
4061 	static DEFINE_MUTEX(lock);
4062 
4063 	int			status;
4064 	struct spi_message	message;
4065 	struct spi_transfer	x[2];
4066 	u8			*local_buf;
4067 
4068 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
4069 	 * copying here, (as a pure convenience thing), but we can
4070 	 * keep heap costs out of the hot path unless someone else is
4071 	 * using the pre-allocated buffer or the transfer is too large.
4072 	 */
4073 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4074 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4075 				    GFP_KERNEL | GFP_DMA);
4076 		if (!local_buf)
4077 			return -ENOMEM;
4078 	} else {
4079 		local_buf = buf;
4080 	}
4081 
4082 	spi_message_init(&message);
4083 	memset(x, 0, sizeof(x));
4084 	if (n_tx) {
4085 		x[0].len = n_tx;
4086 		spi_message_add_tail(&x[0], &message);
4087 	}
4088 	if (n_rx) {
4089 		x[1].len = n_rx;
4090 		spi_message_add_tail(&x[1], &message);
4091 	}
4092 
4093 	memcpy(local_buf, txbuf, n_tx);
4094 	x[0].tx_buf = local_buf;
4095 	x[1].rx_buf = local_buf + n_tx;
4096 
4097 	/* do the i/o */
4098 	status = spi_sync(spi, &message);
4099 	if (status == 0)
4100 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4101 
4102 	if (x[0].tx_buf == buf)
4103 		mutex_unlock(&lock);
4104 	else
4105 		kfree(local_buf);
4106 
4107 	return status;
4108 }
4109 EXPORT_SYMBOL_GPL(spi_write_then_read);
4110 
4111 /*-------------------------------------------------------------------------*/
4112 
4113 #if IS_ENABLED(CONFIG_OF)
4114 /* must call put_device() when done with returned spi_device device */
4115 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4116 {
4117 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4118 
4119 	return dev ? to_spi_device(dev) : NULL;
4120 }
4121 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4122 #endif /* IS_ENABLED(CONFIG_OF) */
4123 
4124 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4125 /* the spi controllers are not using spi_bus, so we find it with another way */
4126 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4127 {
4128 	struct device *dev;
4129 
4130 	dev = class_find_device_by_of_node(&spi_master_class, node);
4131 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4132 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4133 	if (!dev)
4134 		return NULL;
4135 
4136 	/* reference got in class_find_device */
4137 	return container_of(dev, struct spi_controller, dev);
4138 }
4139 
4140 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4141 			 void *arg)
4142 {
4143 	struct of_reconfig_data *rd = arg;
4144 	struct spi_controller *ctlr;
4145 	struct spi_device *spi;
4146 
4147 	switch (of_reconfig_get_state_change(action, arg)) {
4148 	case OF_RECONFIG_CHANGE_ADD:
4149 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4150 		if (ctlr == NULL)
4151 			return NOTIFY_OK;	/* not for us */
4152 
4153 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4154 			put_device(&ctlr->dev);
4155 			return NOTIFY_OK;
4156 		}
4157 
4158 		spi = of_register_spi_device(ctlr, rd->dn);
4159 		put_device(&ctlr->dev);
4160 
4161 		if (IS_ERR(spi)) {
4162 			pr_err("%s: failed to create for '%pOF'\n",
4163 					__func__, rd->dn);
4164 			of_node_clear_flag(rd->dn, OF_POPULATED);
4165 			return notifier_from_errno(PTR_ERR(spi));
4166 		}
4167 		break;
4168 
4169 	case OF_RECONFIG_CHANGE_REMOVE:
4170 		/* already depopulated? */
4171 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4172 			return NOTIFY_OK;
4173 
4174 		/* find our device by node */
4175 		spi = of_find_spi_device_by_node(rd->dn);
4176 		if (spi == NULL)
4177 			return NOTIFY_OK;	/* no? not meant for us */
4178 
4179 		/* unregister takes one ref away */
4180 		spi_unregister_device(spi);
4181 
4182 		/* and put the reference of the find */
4183 		put_device(&spi->dev);
4184 		break;
4185 	}
4186 
4187 	return NOTIFY_OK;
4188 }
4189 
4190 static struct notifier_block spi_of_notifier = {
4191 	.notifier_call = of_spi_notify,
4192 };
4193 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4194 extern struct notifier_block spi_of_notifier;
4195 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4196 
4197 #if IS_ENABLED(CONFIG_ACPI)
4198 static int spi_acpi_controller_match(struct device *dev, const void *data)
4199 {
4200 	return ACPI_COMPANION(dev->parent) == data;
4201 }
4202 
4203 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4204 {
4205 	struct device *dev;
4206 
4207 	dev = class_find_device(&spi_master_class, NULL, adev,
4208 				spi_acpi_controller_match);
4209 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4210 		dev = class_find_device(&spi_slave_class, NULL, adev,
4211 					spi_acpi_controller_match);
4212 	if (!dev)
4213 		return NULL;
4214 
4215 	return container_of(dev, struct spi_controller, dev);
4216 }
4217 
4218 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4219 {
4220 	struct device *dev;
4221 
4222 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4223 	return to_spi_device(dev);
4224 }
4225 
4226 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4227 			   void *arg)
4228 {
4229 	struct acpi_device *adev = arg;
4230 	struct spi_controller *ctlr;
4231 	struct spi_device *spi;
4232 
4233 	switch (value) {
4234 	case ACPI_RECONFIG_DEVICE_ADD:
4235 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4236 		if (!ctlr)
4237 			break;
4238 
4239 		acpi_register_spi_device(ctlr, adev);
4240 		put_device(&ctlr->dev);
4241 		break;
4242 	case ACPI_RECONFIG_DEVICE_REMOVE:
4243 		if (!acpi_device_enumerated(adev))
4244 			break;
4245 
4246 		spi = acpi_spi_find_device_by_adev(adev);
4247 		if (!spi)
4248 			break;
4249 
4250 		spi_unregister_device(spi);
4251 		put_device(&spi->dev);
4252 		break;
4253 	}
4254 
4255 	return NOTIFY_OK;
4256 }
4257 
4258 static struct notifier_block spi_acpi_notifier = {
4259 	.notifier_call = acpi_spi_notify,
4260 };
4261 #else
4262 extern struct notifier_block spi_acpi_notifier;
4263 #endif
4264 
4265 static int __init spi_init(void)
4266 {
4267 	int	status;
4268 
4269 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4270 	if (!buf) {
4271 		status = -ENOMEM;
4272 		goto err0;
4273 	}
4274 
4275 	status = bus_register(&spi_bus_type);
4276 	if (status < 0)
4277 		goto err1;
4278 
4279 	status = class_register(&spi_master_class);
4280 	if (status < 0)
4281 		goto err2;
4282 
4283 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4284 		status = class_register(&spi_slave_class);
4285 		if (status < 0)
4286 			goto err3;
4287 	}
4288 
4289 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4290 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4291 	if (IS_ENABLED(CONFIG_ACPI))
4292 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4293 
4294 	return 0;
4295 
4296 err3:
4297 	class_unregister(&spi_master_class);
4298 err2:
4299 	bus_unregister(&spi_bus_type);
4300 err1:
4301 	kfree(buf);
4302 	buf = NULL;
4303 err0:
4304 	return status;
4305 }
4306 
4307 /* board_info is normally registered in arch_initcall(),
4308  * but even essential drivers wait till later
4309  *
4310  * REVISIT only boardinfo really needs static linking. the rest (device and
4311  * driver registration) _could_ be dynamically linked (modular) ... costs
4312  * include needing to have boardinfo data structures be much more public.
4313  */
4314 postcore_initcall(spi_init);
4315