xref: /openbmc/linux/drivers/spi/spi.c (revision 275876e2)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/mutex.h>
30 #include <linux/of_device.h>
31 #include <linux/of_irq.h>
32 #include <linux/clk/clk-conf.h>
33 #include <linux/slab.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/spi/spi.h>
36 #include <linux/of_gpio.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/export.h>
39 #include <linux/sched/rt.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/ioport.h>
43 #include <linux/acpi.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/spi.h>
47 
48 static void spidev_release(struct device *dev)
49 {
50 	struct spi_device	*spi = to_spi_device(dev);
51 
52 	/* spi masters may cleanup for released devices */
53 	if (spi->master->cleanup)
54 		spi->master->cleanup(spi);
55 
56 	spi_master_put(spi->master);
57 	kfree(spi);
58 }
59 
60 static ssize_t
61 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
62 {
63 	const struct spi_device	*spi = to_spi_device(dev);
64 	int len;
65 
66 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
67 	if (len != -ENODEV)
68 		return len;
69 
70 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
71 }
72 static DEVICE_ATTR_RO(modalias);
73 
74 static struct attribute *spi_dev_attrs[] = {
75 	&dev_attr_modalias.attr,
76 	NULL,
77 };
78 ATTRIBUTE_GROUPS(spi_dev);
79 
80 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
81  * and the sysfs version makes coldplug work too.
82  */
83 
84 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
85 						const struct spi_device *sdev)
86 {
87 	while (id->name[0]) {
88 		if (!strcmp(sdev->modalias, id->name))
89 			return id;
90 		id++;
91 	}
92 	return NULL;
93 }
94 
95 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
96 {
97 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
98 
99 	return spi_match_id(sdrv->id_table, sdev);
100 }
101 EXPORT_SYMBOL_GPL(spi_get_device_id);
102 
103 static int spi_match_device(struct device *dev, struct device_driver *drv)
104 {
105 	const struct spi_device	*spi = to_spi_device(dev);
106 	const struct spi_driver	*sdrv = to_spi_driver(drv);
107 
108 	/* Attempt an OF style match */
109 	if (of_driver_match_device(dev, drv))
110 		return 1;
111 
112 	/* Then try ACPI */
113 	if (acpi_driver_match_device(dev, drv))
114 		return 1;
115 
116 	if (sdrv->id_table)
117 		return !!spi_match_id(sdrv->id_table, spi);
118 
119 	return strcmp(spi->modalias, drv->name) == 0;
120 }
121 
122 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
123 {
124 	const struct spi_device		*spi = to_spi_device(dev);
125 	int rc;
126 
127 	rc = acpi_device_uevent_modalias(dev, env);
128 	if (rc != -ENODEV)
129 		return rc;
130 
131 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
132 	return 0;
133 }
134 
135 #ifdef CONFIG_PM_SLEEP
136 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
137 {
138 	int			value = 0;
139 	struct spi_driver	*drv = to_spi_driver(dev->driver);
140 
141 	/* suspend will stop irqs and dma; no more i/o */
142 	if (drv) {
143 		if (drv->suspend)
144 			value = drv->suspend(to_spi_device(dev), message);
145 		else
146 			dev_dbg(dev, "... can't suspend\n");
147 	}
148 	return value;
149 }
150 
151 static int spi_legacy_resume(struct device *dev)
152 {
153 	int			value = 0;
154 	struct spi_driver	*drv = to_spi_driver(dev->driver);
155 
156 	/* resume may restart the i/o queue */
157 	if (drv) {
158 		if (drv->resume)
159 			value = drv->resume(to_spi_device(dev));
160 		else
161 			dev_dbg(dev, "... can't resume\n");
162 	}
163 	return value;
164 }
165 
166 static int spi_pm_suspend(struct device *dev)
167 {
168 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
169 
170 	if (pm)
171 		return pm_generic_suspend(dev);
172 	else
173 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
174 }
175 
176 static int spi_pm_resume(struct device *dev)
177 {
178 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
179 
180 	if (pm)
181 		return pm_generic_resume(dev);
182 	else
183 		return spi_legacy_resume(dev);
184 }
185 
186 static int spi_pm_freeze(struct device *dev)
187 {
188 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
189 
190 	if (pm)
191 		return pm_generic_freeze(dev);
192 	else
193 		return spi_legacy_suspend(dev, PMSG_FREEZE);
194 }
195 
196 static int spi_pm_thaw(struct device *dev)
197 {
198 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
199 
200 	if (pm)
201 		return pm_generic_thaw(dev);
202 	else
203 		return spi_legacy_resume(dev);
204 }
205 
206 static int spi_pm_poweroff(struct device *dev)
207 {
208 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
209 
210 	if (pm)
211 		return pm_generic_poweroff(dev);
212 	else
213 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
214 }
215 
216 static int spi_pm_restore(struct device *dev)
217 {
218 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
219 
220 	if (pm)
221 		return pm_generic_restore(dev);
222 	else
223 		return spi_legacy_resume(dev);
224 }
225 #else
226 #define spi_pm_suspend	NULL
227 #define spi_pm_resume	NULL
228 #define spi_pm_freeze	NULL
229 #define spi_pm_thaw	NULL
230 #define spi_pm_poweroff	NULL
231 #define spi_pm_restore	NULL
232 #endif
233 
234 static const struct dev_pm_ops spi_pm = {
235 	.suspend = spi_pm_suspend,
236 	.resume = spi_pm_resume,
237 	.freeze = spi_pm_freeze,
238 	.thaw = spi_pm_thaw,
239 	.poweroff = spi_pm_poweroff,
240 	.restore = spi_pm_restore,
241 	SET_RUNTIME_PM_OPS(
242 		pm_generic_runtime_suspend,
243 		pm_generic_runtime_resume,
244 		NULL
245 	)
246 };
247 
248 struct bus_type spi_bus_type = {
249 	.name		= "spi",
250 	.dev_groups	= spi_dev_groups,
251 	.match		= spi_match_device,
252 	.uevent		= spi_uevent,
253 	.pm		= &spi_pm,
254 };
255 EXPORT_SYMBOL_GPL(spi_bus_type);
256 
257 
258 static int spi_drv_probe(struct device *dev)
259 {
260 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
261 	int ret;
262 
263 	ret = of_clk_set_defaults(dev->of_node, false);
264 	if (ret)
265 		return ret;
266 
267 	acpi_dev_pm_attach(dev, true);
268 	ret = sdrv->probe(to_spi_device(dev));
269 	if (ret)
270 		acpi_dev_pm_detach(dev, true);
271 
272 	return ret;
273 }
274 
275 static int spi_drv_remove(struct device *dev)
276 {
277 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
278 	int ret;
279 
280 	ret = sdrv->remove(to_spi_device(dev));
281 	acpi_dev_pm_detach(dev, true);
282 
283 	return ret;
284 }
285 
286 static void spi_drv_shutdown(struct device *dev)
287 {
288 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
289 
290 	sdrv->shutdown(to_spi_device(dev));
291 }
292 
293 /**
294  * spi_register_driver - register a SPI driver
295  * @sdrv: the driver to register
296  * Context: can sleep
297  */
298 int spi_register_driver(struct spi_driver *sdrv)
299 {
300 	sdrv->driver.bus = &spi_bus_type;
301 	if (sdrv->probe)
302 		sdrv->driver.probe = spi_drv_probe;
303 	if (sdrv->remove)
304 		sdrv->driver.remove = spi_drv_remove;
305 	if (sdrv->shutdown)
306 		sdrv->driver.shutdown = spi_drv_shutdown;
307 	return driver_register(&sdrv->driver);
308 }
309 EXPORT_SYMBOL_GPL(spi_register_driver);
310 
311 /*-------------------------------------------------------------------------*/
312 
313 /* SPI devices should normally not be created by SPI device drivers; that
314  * would make them board-specific.  Similarly with SPI master drivers.
315  * Device registration normally goes into like arch/.../mach.../board-YYY.c
316  * with other readonly (flashable) information about mainboard devices.
317  */
318 
319 struct boardinfo {
320 	struct list_head	list;
321 	struct spi_board_info	board_info;
322 };
323 
324 static LIST_HEAD(board_list);
325 static LIST_HEAD(spi_master_list);
326 
327 /*
328  * Used to protect add/del opertion for board_info list and
329  * spi_master list, and their matching process
330  */
331 static DEFINE_MUTEX(board_lock);
332 
333 /**
334  * spi_alloc_device - Allocate a new SPI device
335  * @master: Controller to which device is connected
336  * Context: can sleep
337  *
338  * Allows a driver to allocate and initialize a spi_device without
339  * registering it immediately.  This allows a driver to directly
340  * fill the spi_device with device parameters before calling
341  * spi_add_device() on it.
342  *
343  * Caller is responsible to call spi_add_device() on the returned
344  * spi_device structure to add it to the SPI master.  If the caller
345  * needs to discard the spi_device without adding it, then it should
346  * call spi_dev_put() on it.
347  *
348  * Returns a pointer to the new device, or NULL.
349  */
350 struct spi_device *spi_alloc_device(struct spi_master *master)
351 {
352 	struct spi_device	*spi;
353 
354 	if (!spi_master_get(master))
355 		return NULL;
356 
357 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
358 	if (!spi) {
359 		spi_master_put(master);
360 		return NULL;
361 	}
362 
363 	spi->master = master;
364 	spi->dev.parent = &master->dev;
365 	spi->dev.bus = &spi_bus_type;
366 	spi->dev.release = spidev_release;
367 	spi->cs_gpio = -ENOENT;
368 	device_initialize(&spi->dev);
369 	return spi;
370 }
371 EXPORT_SYMBOL_GPL(spi_alloc_device);
372 
373 static void spi_dev_set_name(struct spi_device *spi)
374 {
375 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
376 
377 	if (adev) {
378 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
379 		return;
380 	}
381 
382 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
383 		     spi->chip_select);
384 }
385 
386 static int spi_dev_check(struct device *dev, void *data)
387 {
388 	struct spi_device *spi = to_spi_device(dev);
389 	struct spi_device *new_spi = data;
390 
391 	if (spi->master == new_spi->master &&
392 	    spi->chip_select == new_spi->chip_select)
393 		return -EBUSY;
394 	return 0;
395 }
396 
397 /**
398  * spi_add_device - Add spi_device allocated with spi_alloc_device
399  * @spi: spi_device to register
400  *
401  * Companion function to spi_alloc_device.  Devices allocated with
402  * spi_alloc_device can be added onto the spi bus with this function.
403  *
404  * Returns 0 on success; negative errno on failure
405  */
406 int spi_add_device(struct spi_device *spi)
407 {
408 	static DEFINE_MUTEX(spi_add_lock);
409 	struct spi_master *master = spi->master;
410 	struct device *dev = master->dev.parent;
411 	int status;
412 
413 	/* Chipselects are numbered 0..max; validate. */
414 	if (spi->chip_select >= master->num_chipselect) {
415 		dev_err(dev, "cs%d >= max %d\n",
416 			spi->chip_select,
417 			master->num_chipselect);
418 		return -EINVAL;
419 	}
420 
421 	/* Set the bus ID string */
422 	spi_dev_set_name(spi);
423 
424 	/* We need to make sure there's no other device with this
425 	 * chipselect **BEFORE** we call setup(), else we'll trash
426 	 * its configuration.  Lock against concurrent add() calls.
427 	 */
428 	mutex_lock(&spi_add_lock);
429 
430 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
431 	if (status) {
432 		dev_err(dev, "chipselect %d already in use\n",
433 				spi->chip_select);
434 		goto done;
435 	}
436 
437 	if (master->cs_gpios)
438 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
439 
440 	/* Drivers may modify this initial i/o setup, but will
441 	 * normally rely on the device being setup.  Devices
442 	 * using SPI_CS_HIGH can't coexist well otherwise...
443 	 */
444 	status = spi_setup(spi);
445 	if (status < 0) {
446 		dev_err(dev, "can't setup %s, status %d\n",
447 				dev_name(&spi->dev), status);
448 		goto done;
449 	}
450 
451 	/* Device may be bound to an active driver when this returns */
452 	status = device_add(&spi->dev);
453 	if (status < 0)
454 		dev_err(dev, "can't add %s, status %d\n",
455 				dev_name(&spi->dev), status);
456 	else
457 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
458 
459 done:
460 	mutex_unlock(&spi_add_lock);
461 	return status;
462 }
463 EXPORT_SYMBOL_GPL(spi_add_device);
464 
465 /**
466  * spi_new_device - instantiate one new SPI device
467  * @master: Controller to which device is connected
468  * @chip: Describes the SPI device
469  * Context: can sleep
470  *
471  * On typical mainboards, this is purely internal; and it's not needed
472  * after board init creates the hard-wired devices.  Some development
473  * platforms may not be able to use spi_register_board_info though, and
474  * this is exported so that for example a USB or parport based adapter
475  * driver could add devices (which it would learn about out-of-band).
476  *
477  * Returns the new device, or NULL.
478  */
479 struct spi_device *spi_new_device(struct spi_master *master,
480 				  struct spi_board_info *chip)
481 {
482 	struct spi_device	*proxy;
483 	int			status;
484 
485 	/* NOTE:  caller did any chip->bus_num checks necessary.
486 	 *
487 	 * Also, unless we change the return value convention to use
488 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
489 	 * suggests syslogged diagnostics are best here (ugh).
490 	 */
491 
492 	proxy = spi_alloc_device(master);
493 	if (!proxy)
494 		return NULL;
495 
496 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
497 
498 	proxy->chip_select = chip->chip_select;
499 	proxy->max_speed_hz = chip->max_speed_hz;
500 	proxy->mode = chip->mode;
501 	proxy->irq = chip->irq;
502 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
503 	proxy->dev.platform_data = (void *) chip->platform_data;
504 	proxy->controller_data = chip->controller_data;
505 	proxy->controller_state = NULL;
506 
507 	status = spi_add_device(proxy);
508 	if (status < 0) {
509 		spi_dev_put(proxy);
510 		return NULL;
511 	}
512 
513 	return proxy;
514 }
515 EXPORT_SYMBOL_GPL(spi_new_device);
516 
517 static void spi_match_master_to_boardinfo(struct spi_master *master,
518 				struct spi_board_info *bi)
519 {
520 	struct spi_device *dev;
521 
522 	if (master->bus_num != bi->bus_num)
523 		return;
524 
525 	dev = spi_new_device(master, bi);
526 	if (!dev)
527 		dev_err(master->dev.parent, "can't create new device for %s\n",
528 			bi->modalias);
529 }
530 
531 /**
532  * spi_register_board_info - register SPI devices for a given board
533  * @info: array of chip descriptors
534  * @n: how many descriptors are provided
535  * Context: can sleep
536  *
537  * Board-specific early init code calls this (probably during arch_initcall)
538  * with segments of the SPI device table.  Any device nodes are created later,
539  * after the relevant parent SPI controller (bus_num) is defined.  We keep
540  * this table of devices forever, so that reloading a controller driver will
541  * not make Linux forget about these hard-wired devices.
542  *
543  * Other code can also call this, e.g. a particular add-on board might provide
544  * SPI devices through its expansion connector, so code initializing that board
545  * would naturally declare its SPI devices.
546  *
547  * The board info passed can safely be __initdata ... but be careful of
548  * any embedded pointers (platform_data, etc), they're copied as-is.
549  */
550 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
551 {
552 	struct boardinfo *bi;
553 	int i;
554 
555 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
556 	if (!bi)
557 		return -ENOMEM;
558 
559 	for (i = 0; i < n; i++, bi++, info++) {
560 		struct spi_master *master;
561 
562 		memcpy(&bi->board_info, info, sizeof(*info));
563 		mutex_lock(&board_lock);
564 		list_add_tail(&bi->list, &board_list);
565 		list_for_each_entry(master, &spi_master_list, list)
566 			spi_match_master_to_boardinfo(master, &bi->board_info);
567 		mutex_unlock(&board_lock);
568 	}
569 
570 	return 0;
571 }
572 
573 /*-------------------------------------------------------------------------*/
574 
575 static void spi_set_cs(struct spi_device *spi, bool enable)
576 {
577 	if (spi->mode & SPI_CS_HIGH)
578 		enable = !enable;
579 
580 	if (spi->cs_gpio >= 0)
581 		gpio_set_value(spi->cs_gpio, !enable);
582 	else if (spi->master->set_cs)
583 		spi->master->set_cs(spi, !enable);
584 }
585 
586 #ifdef CONFIG_HAS_DMA
587 static int spi_map_buf(struct spi_master *master, struct device *dev,
588 		       struct sg_table *sgt, void *buf, size_t len,
589 		       enum dma_data_direction dir)
590 {
591 	const bool vmalloced_buf = is_vmalloc_addr(buf);
592 	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
593 	const int sgs = DIV_ROUND_UP(len, desc_len);
594 	struct page *vm_page;
595 	void *sg_buf;
596 	size_t min;
597 	int i, ret;
598 
599 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
600 	if (ret != 0)
601 		return ret;
602 
603 	for (i = 0; i < sgs; i++) {
604 		min = min_t(size_t, len, desc_len);
605 
606 		if (vmalloced_buf) {
607 			vm_page = vmalloc_to_page(buf);
608 			if (!vm_page) {
609 				sg_free_table(sgt);
610 				return -ENOMEM;
611 			}
612 			sg_buf = page_address(vm_page) +
613 				((size_t)buf & ~PAGE_MASK);
614 		} else {
615 			sg_buf = buf;
616 		}
617 
618 		sg_set_buf(&sgt->sgl[i], sg_buf, min);
619 
620 		buf += min;
621 		len -= min;
622 	}
623 
624 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
625 	if (!ret)
626 		ret = -ENOMEM;
627 	if (ret < 0) {
628 		sg_free_table(sgt);
629 		return ret;
630 	}
631 
632 	sgt->nents = ret;
633 
634 	return 0;
635 }
636 
637 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
638 			  struct sg_table *sgt, enum dma_data_direction dir)
639 {
640 	if (sgt->orig_nents) {
641 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
642 		sg_free_table(sgt);
643 	}
644 }
645 
646 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
647 {
648 	struct device *tx_dev, *rx_dev;
649 	struct spi_transfer *xfer;
650 	int ret;
651 
652 	if (!master->can_dma)
653 		return 0;
654 
655 	tx_dev = master->dma_tx->device->dev;
656 	rx_dev = master->dma_rx->device->dev;
657 
658 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
659 		if (!master->can_dma(master, msg->spi, xfer))
660 			continue;
661 
662 		if (xfer->tx_buf != NULL) {
663 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
664 					  (void *)xfer->tx_buf, xfer->len,
665 					  DMA_TO_DEVICE);
666 			if (ret != 0)
667 				return ret;
668 		}
669 
670 		if (xfer->rx_buf != NULL) {
671 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
672 					  xfer->rx_buf, xfer->len,
673 					  DMA_FROM_DEVICE);
674 			if (ret != 0) {
675 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
676 					      DMA_TO_DEVICE);
677 				return ret;
678 			}
679 		}
680 	}
681 
682 	master->cur_msg_mapped = true;
683 
684 	return 0;
685 }
686 
687 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
688 {
689 	struct spi_transfer *xfer;
690 	struct device *tx_dev, *rx_dev;
691 
692 	if (!master->cur_msg_mapped || !master->can_dma)
693 		return 0;
694 
695 	tx_dev = master->dma_tx->device->dev;
696 	rx_dev = master->dma_rx->device->dev;
697 
698 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
699 		if (!master->can_dma(master, msg->spi, xfer))
700 			continue;
701 
702 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
703 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
704 	}
705 
706 	return 0;
707 }
708 #else /* !CONFIG_HAS_DMA */
709 static inline int __spi_map_msg(struct spi_master *master,
710 				struct spi_message *msg)
711 {
712 	return 0;
713 }
714 
715 static inline int spi_unmap_msg(struct spi_master *master,
716 				struct spi_message *msg)
717 {
718 	return 0;
719 }
720 #endif /* !CONFIG_HAS_DMA */
721 
722 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
723 {
724 	struct spi_transfer *xfer;
725 	void *tmp;
726 	unsigned int max_tx, max_rx;
727 
728 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
729 		max_tx = 0;
730 		max_rx = 0;
731 
732 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
733 			if ((master->flags & SPI_MASTER_MUST_TX) &&
734 			    !xfer->tx_buf)
735 				max_tx = max(xfer->len, max_tx);
736 			if ((master->flags & SPI_MASTER_MUST_RX) &&
737 			    !xfer->rx_buf)
738 				max_rx = max(xfer->len, max_rx);
739 		}
740 
741 		if (max_tx) {
742 			tmp = krealloc(master->dummy_tx, max_tx,
743 				       GFP_KERNEL | GFP_DMA);
744 			if (!tmp)
745 				return -ENOMEM;
746 			master->dummy_tx = tmp;
747 			memset(tmp, 0, max_tx);
748 		}
749 
750 		if (max_rx) {
751 			tmp = krealloc(master->dummy_rx, max_rx,
752 				       GFP_KERNEL | GFP_DMA);
753 			if (!tmp)
754 				return -ENOMEM;
755 			master->dummy_rx = tmp;
756 		}
757 
758 		if (max_tx || max_rx) {
759 			list_for_each_entry(xfer, &msg->transfers,
760 					    transfer_list) {
761 				if (!xfer->tx_buf)
762 					xfer->tx_buf = master->dummy_tx;
763 				if (!xfer->rx_buf)
764 					xfer->rx_buf = master->dummy_rx;
765 			}
766 		}
767 	}
768 
769 	return __spi_map_msg(master, msg);
770 }
771 
772 /*
773  * spi_transfer_one_message - Default implementation of transfer_one_message()
774  *
775  * This is a standard implementation of transfer_one_message() for
776  * drivers which impelment a transfer_one() operation.  It provides
777  * standard handling of delays and chip select management.
778  */
779 static int spi_transfer_one_message(struct spi_master *master,
780 				    struct spi_message *msg)
781 {
782 	struct spi_transfer *xfer;
783 	bool keep_cs = false;
784 	int ret = 0;
785 	int ms = 1;
786 
787 	spi_set_cs(msg->spi, true);
788 
789 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
790 		trace_spi_transfer_start(msg, xfer);
791 
792 		reinit_completion(&master->xfer_completion);
793 
794 		ret = master->transfer_one(master, msg->spi, xfer);
795 		if (ret < 0) {
796 			dev_err(&msg->spi->dev,
797 				"SPI transfer failed: %d\n", ret);
798 			goto out;
799 		}
800 
801 		if (ret > 0) {
802 			ret = 0;
803 			ms = xfer->len * 8 * 1000 / xfer->speed_hz;
804 			ms += ms + 100; /* some tolerance */
805 
806 			ms = wait_for_completion_timeout(&master->xfer_completion,
807 							 msecs_to_jiffies(ms));
808 		}
809 
810 		if (ms == 0) {
811 			dev_err(&msg->spi->dev, "SPI transfer timed out\n");
812 			msg->status = -ETIMEDOUT;
813 		}
814 
815 		trace_spi_transfer_stop(msg, xfer);
816 
817 		if (msg->status != -EINPROGRESS)
818 			goto out;
819 
820 		if (xfer->delay_usecs)
821 			udelay(xfer->delay_usecs);
822 
823 		if (xfer->cs_change) {
824 			if (list_is_last(&xfer->transfer_list,
825 					 &msg->transfers)) {
826 				keep_cs = true;
827 			} else {
828 				spi_set_cs(msg->spi, false);
829 				udelay(10);
830 				spi_set_cs(msg->spi, true);
831 			}
832 		}
833 
834 		msg->actual_length += xfer->len;
835 	}
836 
837 out:
838 	if (ret != 0 || !keep_cs)
839 		spi_set_cs(msg->spi, false);
840 
841 	if (msg->status == -EINPROGRESS)
842 		msg->status = ret;
843 
844 	spi_finalize_current_message(master);
845 
846 	return ret;
847 }
848 
849 /**
850  * spi_finalize_current_transfer - report completion of a transfer
851  *
852  * Called by SPI drivers using the core transfer_one_message()
853  * implementation to notify it that the current interrupt driven
854  * transfer has finished and the next one may be scheduled.
855  */
856 void spi_finalize_current_transfer(struct spi_master *master)
857 {
858 	complete(&master->xfer_completion);
859 }
860 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
861 
862 /**
863  * spi_pump_messages - kthread work function which processes spi message queue
864  * @work: pointer to kthread work struct contained in the master struct
865  *
866  * This function checks if there is any spi message in the queue that
867  * needs processing and if so call out to the driver to initialize hardware
868  * and transfer each message.
869  *
870  */
871 static void spi_pump_messages(struct kthread_work *work)
872 {
873 	struct spi_master *master =
874 		container_of(work, struct spi_master, pump_messages);
875 	unsigned long flags;
876 	bool was_busy = false;
877 	int ret;
878 
879 	/* Lock queue and check for queue work */
880 	spin_lock_irqsave(&master->queue_lock, flags);
881 	if (list_empty(&master->queue) || !master->running) {
882 		if (!master->busy) {
883 			spin_unlock_irqrestore(&master->queue_lock, flags);
884 			return;
885 		}
886 		master->busy = false;
887 		spin_unlock_irqrestore(&master->queue_lock, flags);
888 		kfree(master->dummy_rx);
889 		master->dummy_rx = NULL;
890 		kfree(master->dummy_tx);
891 		master->dummy_tx = NULL;
892 		if (master->unprepare_transfer_hardware &&
893 		    master->unprepare_transfer_hardware(master))
894 			dev_err(&master->dev,
895 				"failed to unprepare transfer hardware\n");
896 		if (master->auto_runtime_pm) {
897 			pm_runtime_mark_last_busy(master->dev.parent);
898 			pm_runtime_put_autosuspend(master->dev.parent);
899 		}
900 		trace_spi_master_idle(master);
901 		return;
902 	}
903 
904 	/* Make sure we are not already running a message */
905 	if (master->cur_msg) {
906 		spin_unlock_irqrestore(&master->queue_lock, flags);
907 		return;
908 	}
909 	/* Extract head of queue */
910 	master->cur_msg =
911 		list_first_entry(&master->queue, struct spi_message, queue);
912 
913 	list_del_init(&master->cur_msg->queue);
914 	if (master->busy)
915 		was_busy = true;
916 	else
917 		master->busy = true;
918 	spin_unlock_irqrestore(&master->queue_lock, flags);
919 
920 	if (!was_busy && master->auto_runtime_pm) {
921 		ret = pm_runtime_get_sync(master->dev.parent);
922 		if (ret < 0) {
923 			dev_err(&master->dev, "Failed to power device: %d\n",
924 				ret);
925 			return;
926 		}
927 	}
928 
929 	if (!was_busy)
930 		trace_spi_master_busy(master);
931 
932 	if (!was_busy && master->prepare_transfer_hardware) {
933 		ret = master->prepare_transfer_hardware(master);
934 		if (ret) {
935 			dev_err(&master->dev,
936 				"failed to prepare transfer hardware\n");
937 
938 			if (master->auto_runtime_pm)
939 				pm_runtime_put(master->dev.parent);
940 			return;
941 		}
942 	}
943 
944 	trace_spi_message_start(master->cur_msg);
945 
946 	if (master->prepare_message) {
947 		ret = master->prepare_message(master, master->cur_msg);
948 		if (ret) {
949 			dev_err(&master->dev,
950 				"failed to prepare message: %d\n", ret);
951 			master->cur_msg->status = ret;
952 			spi_finalize_current_message(master);
953 			return;
954 		}
955 		master->cur_msg_prepared = true;
956 	}
957 
958 	ret = spi_map_msg(master, master->cur_msg);
959 	if (ret) {
960 		master->cur_msg->status = ret;
961 		spi_finalize_current_message(master);
962 		return;
963 	}
964 
965 	ret = master->transfer_one_message(master, master->cur_msg);
966 	if (ret) {
967 		dev_err(&master->dev,
968 			"failed to transfer one message from queue\n");
969 		return;
970 	}
971 }
972 
973 static int spi_init_queue(struct spi_master *master)
974 {
975 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
976 
977 	INIT_LIST_HEAD(&master->queue);
978 	spin_lock_init(&master->queue_lock);
979 
980 	master->running = false;
981 	master->busy = false;
982 
983 	init_kthread_worker(&master->kworker);
984 	master->kworker_task = kthread_run(kthread_worker_fn,
985 					   &master->kworker, "%s",
986 					   dev_name(&master->dev));
987 	if (IS_ERR(master->kworker_task)) {
988 		dev_err(&master->dev, "failed to create message pump task\n");
989 		return -ENOMEM;
990 	}
991 	init_kthread_work(&master->pump_messages, spi_pump_messages);
992 
993 	/*
994 	 * Master config will indicate if this controller should run the
995 	 * message pump with high (realtime) priority to reduce the transfer
996 	 * latency on the bus by minimising the delay between a transfer
997 	 * request and the scheduling of the message pump thread. Without this
998 	 * setting the message pump thread will remain at default priority.
999 	 */
1000 	if (master->rt) {
1001 		dev_info(&master->dev,
1002 			"will run message pump with realtime priority\n");
1003 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 /**
1010  * spi_get_next_queued_message() - called by driver to check for queued
1011  * messages
1012  * @master: the master to check for queued messages
1013  *
1014  * If there are more messages in the queue, the next message is returned from
1015  * this call.
1016  */
1017 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1018 {
1019 	struct spi_message *next;
1020 	unsigned long flags;
1021 
1022 	/* get a pointer to the next message, if any */
1023 	spin_lock_irqsave(&master->queue_lock, flags);
1024 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1025 					queue);
1026 	spin_unlock_irqrestore(&master->queue_lock, flags);
1027 
1028 	return next;
1029 }
1030 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1031 
1032 /**
1033  * spi_finalize_current_message() - the current message is complete
1034  * @master: the master to return the message to
1035  *
1036  * Called by the driver to notify the core that the message in the front of the
1037  * queue is complete and can be removed from the queue.
1038  */
1039 void spi_finalize_current_message(struct spi_master *master)
1040 {
1041 	struct spi_message *mesg;
1042 	unsigned long flags;
1043 	int ret;
1044 
1045 	spin_lock_irqsave(&master->queue_lock, flags);
1046 	mesg = master->cur_msg;
1047 	master->cur_msg = NULL;
1048 
1049 	queue_kthread_work(&master->kworker, &master->pump_messages);
1050 	spin_unlock_irqrestore(&master->queue_lock, flags);
1051 
1052 	spi_unmap_msg(master, mesg);
1053 
1054 	if (master->cur_msg_prepared && master->unprepare_message) {
1055 		ret = master->unprepare_message(master, mesg);
1056 		if (ret) {
1057 			dev_err(&master->dev,
1058 				"failed to unprepare message: %d\n", ret);
1059 		}
1060 	}
1061 	master->cur_msg_prepared = false;
1062 
1063 	mesg->state = NULL;
1064 	if (mesg->complete)
1065 		mesg->complete(mesg->context);
1066 
1067 	trace_spi_message_done(mesg);
1068 }
1069 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1070 
1071 static int spi_start_queue(struct spi_master *master)
1072 {
1073 	unsigned long flags;
1074 
1075 	spin_lock_irqsave(&master->queue_lock, flags);
1076 
1077 	if (master->running || master->busy) {
1078 		spin_unlock_irqrestore(&master->queue_lock, flags);
1079 		return -EBUSY;
1080 	}
1081 
1082 	master->running = true;
1083 	master->cur_msg = NULL;
1084 	spin_unlock_irqrestore(&master->queue_lock, flags);
1085 
1086 	queue_kthread_work(&master->kworker, &master->pump_messages);
1087 
1088 	return 0;
1089 }
1090 
1091 static int spi_stop_queue(struct spi_master *master)
1092 {
1093 	unsigned long flags;
1094 	unsigned limit = 500;
1095 	int ret = 0;
1096 
1097 	spin_lock_irqsave(&master->queue_lock, flags);
1098 
1099 	/*
1100 	 * This is a bit lame, but is optimized for the common execution path.
1101 	 * A wait_queue on the master->busy could be used, but then the common
1102 	 * execution path (pump_messages) would be required to call wake_up or
1103 	 * friends on every SPI message. Do this instead.
1104 	 */
1105 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1106 		spin_unlock_irqrestore(&master->queue_lock, flags);
1107 		usleep_range(10000, 11000);
1108 		spin_lock_irqsave(&master->queue_lock, flags);
1109 	}
1110 
1111 	if (!list_empty(&master->queue) || master->busy)
1112 		ret = -EBUSY;
1113 	else
1114 		master->running = false;
1115 
1116 	spin_unlock_irqrestore(&master->queue_lock, flags);
1117 
1118 	if (ret) {
1119 		dev_warn(&master->dev,
1120 			 "could not stop message queue\n");
1121 		return ret;
1122 	}
1123 	return ret;
1124 }
1125 
1126 static int spi_destroy_queue(struct spi_master *master)
1127 {
1128 	int ret;
1129 
1130 	ret = spi_stop_queue(master);
1131 
1132 	/*
1133 	 * flush_kthread_worker will block until all work is done.
1134 	 * If the reason that stop_queue timed out is that the work will never
1135 	 * finish, then it does no good to call flush/stop thread, so
1136 	 * return anyway.
1137 	 */
1138 	if (ret) {
1139 		dev_err(&master->dev, "problem destroying queue\n");
1140 		return ret;
1141 	}
1142 
1143 	flush_kthread_worker(&master->kworker);
1144 	kthread_stop(master->kworker_task);
1145 
1146 	return 0;
1147 }
1148 
1149 /**
1150  * spi_queued_transfer - transfer function for queued transfers
1151  * @spi: spi device which is requesting transfer
1152  * @msg: spi message which is to handled is queued to driver queue
1153  */
1154 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1155 {
1156 	struct spi_master *master = spi->master;
1157 	unsigned long flags;
1158 
1159 	spin_lock_irqsave(&master->queue_lock, flags);
1160 
1161 	if (!master->running) {
1162 		spin_unlock_irqrestore(&master->queue_lock, flags);
1163 		return -ESHUTDOWN;
1164 	}
1165 	msg->actual_length = 0;
1166 	msg->status = -EINPROGRESS;
1167 
1168 	list_add_tail(&msg->queue, &master->queue);
1169 	if (!master->busy)
1170 		queue_kthread_work(&master->kworker, &master->pump_messages);
1171 
1172 	spin_unlock_irqrestore(&master->queue_lock, flags);
1173 	return 0;
1174 }
1175 
1176 static int spi_master_initialize_queue(struct spi_master *master)
1177 {
1178 	int ret;
1179 
1180 	master->transfer = spi_queued_transfer;
1181 	if (!master->transfer_one_message)
1182 		master->transfer_one_message = spi_transfer_one_message;
1183 
1184 	/* Initialize and start queue */
1185 	ret = spi_init_queue(master);
1186 	if (ret) {
1187 		dev_err(&master->dev, "problem initializing queue\n");
1188 		goto err_init_queue;
1189 	}
1190 	master->queued = true;
1191 	ret = spi_start_queue(master);
1192 	if (ret) {
1193 		dev_err(&master->dev, "problem starting queue\n");
1194 		goto err_start_queue;
1195 	}
1196 
1197 	return 0;
1198 
1199 err_start_queue:
1200 	spi_destroy_queue(master);
1201 err_init_queue:
1202 	return ret;
1203 }
1204 
1205 /*-------------------------------------------------------------------------*/
1206 
1207 #if defined(CONFIG_OF)
1208 /**
1209  * of_register_spi_devices() - Register child devices onto the SPI bus
1210  * @master:	Pointer to spi_master device
1211  *
1212  * Registers an spi_device for each child node of master node which has a 'reg'
1213  * property.
1214  */
1215 static void of_register_spi_devices(struct spi_master *master)
1216 {
1217 	struct spi_device *spi;
1218 	struct device_node *nc;
1219 	int rc;
1220 	u32 value;
1221 
1222 	if (!master->dev.of_node)
1223 		return;
1224 
1225 	for_each_available_child_of_node(master->dev.of_node, nc) {
1226 		/* Alloc an spi_device */
1227 		spi = spi_alloc_device(master);
1228 		if (!spi) {
1229 			dev_err(&master->dev, "spi_device alloc error for %s\n",
1230 				nc->full_name);
1231 			spi_dev_put(spi);
1232 			continue;
1233 		}
1234 
1235 		/* Select device driver */
1236 		if (of_modalias_node(nc, spi->modalias,
1237 				     sizeof(spi->modalias)) < 0) {
1238 			dev_err(&master->dev, "cannot find modalias for %s\n",
1239 				nc->full_name);
1240 			spi_dev_put(spi);
1241 			continue;
1242 		}
1243 
1244 		/* Device address */
1245 		rc = of_property_read_u32(nc, "reg", &value);
1246 		if (rc) {
1247 			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1248 				nc->full_name, rc);
1249 			spi_dev_put(spi);
1250 			continue;
1251 		}
1252 		spi->chip_select = value;
1253 
1254 		/* Mode (clock phase/polarity/etc.) */
1255 		if (of_find_property(nc, "spi-cpha", NULL))
1256 			spi->mode |= SPI_CPHA;
1257 		if (of_find_property(nc, "spi-cpol", NULL))
1258 			spi->mode |= SPI_CPOL;
1259 		if (of_find_property(nc, "spi-cs-high", NULL))
1260 			spi->mode |= SPI_CS_HIGH;
1261 		if (of_find_property(nc, "spi-3wire", NULL))
1262 			spi->mode |= SPI_3WIRE;
1263 		if (of_find_property(nc, "spi-lsb-first", NULL))
1264 			spi->mode |= SPI_LSB_FIRST;
1265 
1266 		/* Device DUAL/QUAD mode */
1267 		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1268 			switch (value) {
1269 			case 1:
1270 				break;
1271 			case 2:
1272 				spi->mode |= SPI_TX_DUAL;
1273 				break;
1274 			case 4:
1275 				spi->mode |= SPI_TX_QUAD;
1276 				break;
1277 			default:
1278 				dev_warn(&master->dev,
1279 					 "spi-tx-bus-width %d not supported\n",
1280 					 value);
1281 				break;
1282 			}
1283 		}
1284 
1285 		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1286 			switch (value) {
1287 			case 1:
1288 				break;
1289 			case 2:
1290 				spi->mode |= SPI_RX_DUAL;
1291 				break;
1292 			case 4:
1293 				spi->mode |= SPI_RX_QUAD;
1294 				break;
1295 			default:
1296 				dev_warn(&master->dev,
1297 					 "spi-rx-bus-width %d not supported\n",
1298 					 value);
1299 				break;
1300 			}
1301 		}
1302 
1303 		/* Device speed */
1304 		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1305 		if (rc) {
1306 			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1307 				nc->full_name, rc);
1308 			spi_dev_put(spi);
1309 			continue;
1310 		}
1311 		spi->max_speed_hz = value;
1312 
1313 		/* IRQ */
1314 		spi->irq = irq_of_parse_and_map(nc, 0);
1315 
1316 		/* Store a pointer to the node in the device structure */
1317 		of_node_get(nc);
1318 		spi->dev.of_node = nc;
1319 
1320 		/* Register the new device */
1321 		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1322 		rc = spi_add_device(spi);
1323 		if (rc) {
1324 			dev_err(&master->dev, "spi_device register error %s\n",
1325 				nc->full_name);
1326 			spi_dev_put(spi);
1327 		}
1328 
1329 	}
1330 }
1331 #else
1332 static void of_register_spi_devices(struct spi_master *master) { }
1333 #endif
1334 
1335 #ifdef CONFIG_ACPI
1336 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1337 {
1338 	struct spi_device *spi = data;
1339 
1340 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1341 		struct acpi_resource_spi_serialbus *sb;
1342 
1343 		sb = &ares->data.spi_serial_bus;
1344 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1345 			spi->chip_select = sb->device_selection;
1346 			spi->max_speed_hz = sb->connection_speed;
1347 
1348 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1349 				spi->mode |= SPI_CPHA;
1350 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1351 				spi->mode |= SPI_CPOL;
1352 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1353 				spi->mode |= SPI_CS_HIGH;
1354 		}
1355 	} else if (spi->irq < 0) {
1356 		struct resource r;
1357 
1358 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1359 			spi->irq = r.start;
1360 	}
1361 
1362 	/* Always tell the ACPI core to skip this resource */
1363 	return 1;
1364 }
1365 
1366 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1367 				       void *data, void **return_value)
1368 {
1369 	struct spi_master *master = data;
1370 	struct list_head resource_list;
1371 	struct acpi_device *adev;
1372 	struct spi_device *spi;
1373 	int ret;
1374 
1375 	if (acpi_bus_get_device(handle, &adev))
1376 		return AE_OK;
1377 	if (acpi_bus_get_status(adev) || !adev->status.present)
1378 		return AE_OK;
1379 
1380 	spi = spi_alloc_device(master);
1381 	if (!spi) {
1382 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1383 			dev_name(&adev->dev));
1384 		return AE_NO_MEMORY;
1385 	}
1386 
1387 	ACPI_COMPANION_SET(&spi->dev, adev);
1388 	spi->irq = -1;
1389 
1390 	INIT_LIST_HEAD(&resource_list);
1391 	ret = acpi_dev_get_resources(adev, &resource_list,
1392 				     acpi_spi_add_resource, spi);
1393 	acpi_dev_free_resource_list(&resource_list);
1394 
1395 	if (ret < 0 || !spi->max_speed_hz) {
1396 		spi_dev_put(spi);
1397 		return AE_OK;
1398 	}
1399 
1400 	adev->power.flags.ignore_parent = true;
1401 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1402 	if (spi_add_device(spi)) {
1403 		adev->power.flags.ignore_parent = false;
1404 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1405 			dev_name(&adev->dev));
1406 		spi_dev_put(spi);
1407 	}
1408 
1409 	return AE_OK;
1410 }
1411 
1412 static void acpi_register_spi_devices(struct spi_master *master)
1413 {
1414 	acpi_status status;
1415 	acpi_handle handle;
1416 
1417 	handle = ACPI_HANDLE(master->dev.parent);
1418 	if (!handle)
1419 		return;
1420 
1421 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1422 				     acpi_spi_add_device, NULL,
1423 				     master, NULL);
1424 	if (ACPI_FAILURE(status))
1425 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1426 }
1427 #else
1428 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1429 #endif /* CONFIG_ACPI */
1430 
1431 static void spi_master_release(struct device *dev)
1432 {
1433 	struct spi_master *master;
1434 
1435 	master = container_of(dev, struct spi_master, dev);
1436 	kfree(master);
1437 }
1438 
1439 static struct class spi_master_class = {
1440 	.name		= "spi_master",
1441 	.owner		= THIS_MODULE,
1442 	.dev_release	= spi_master_release,
1443 };
1444 
1445 
1446 
1447 /**
1448  * spi_alloc_master - allocate SPI master controller
1449  * @dev: the controller, possibly using the platform_bus
1450  * @size: how much zeroed driver-private data to allocate; the pointer to this
1451  *	memory is in the driver_data field of the returned device,
1452  *	accessible with spi_master_get_devdata().
1453  * Context: can sleep
1454  *
1455  * This call is used only by SPI master controller drivers, which are the
1456  * only ones directly touching chip registers.  It's how they allocate
1457  * an spi_master structure, prior to calling spi_register_master().
1458  *
1459  * This must be called from context that can sleep.  It returns the SPI
1460  * master structure on success, else NULL.
1461  *
1462  * The caller is responsible for assigning the bus number and initializing
1463  * the master's methods before calling spi_register_master(); and (after errors
1464  * adding the device) calling spi_master_put() and kfree() to prevent a memory
1465  * leak.
1466  */
1467 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1468 {
1469 	struct spi_master	*master;
1470 
1471 	if (!dev)
1472 		return NULL;
1473 
1474 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1475 	if (!master)
1476 		return NULL;
1477 
1478 	device_initialize(&master->dev);
1479 	master->bus_num = -1;
1480 	master->num_chipselect = 1;
1481 	master->dev.class = &spi_master_class;
1482 	master->dev.parent = get_device(dev);
1483 	spi_master_set_devdata(master, &master[1]);
1484 
1485 	return master;
1486 }
1487 EXPORT_SYMBOL_GPL(spi_alloc_master);
1488 
1489 #ifdef CONFIG_OF
1490 static int of_spi_register_master(struct spi_master *master)
1491 {
1492 	int nb, i, *cs;
1493 	struct device_node *np = master->dev.of_node;
1494 
1495 	if (!np)
1496 		return 0;
1497 
1498 	nb = of_gpio_named_count(np, "cs-gpios");
1499 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1500 
1501 	/* Return error only for an incorrectly formed cs-gpios property */
1502 	if (nb == 0 || nb == -ENOENT)
1503 		return 0;
1504 	else if (nb < 0)
1505 		return nb;
1506 
1507 	cs = devm_kzalloc(&master->dev,
1508 			  sizeof(int) * master->num_chipselect,
1509 			  GFP_KERNEL);
1510 	master->cs_gpios = cs;
1511 
1512 	if (!master->cs_gpios)
1513 		return -ENOMEM;
1514 
1515 	for (i = 0; i < master->num_chipselect; i++)
1516 		cs[i] = -ENOENT;
1517 
1518 	for (i = 0; i < nb; i++)
1519 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1520 
1521 	return 0;
1522 }
1523 #else
1524 static int of_spi_register_master(struct spi_master *master)
1525 {
1526 	return 0;
1527 }
1528 #endif
1529 
1530 /**
1531  * spi_register_master - register SPI master controller
1532  * @master: initialized master, originally from spi_alloc_master()
1533  * Context: can sleep
1534  *
1535  * SPI master controllers connect to their drivers using some non-SPI bus,
1536  * such as the platform bus.  The final stage of probe() in that code
1537  * includes calling spi_register_master() to hook up to this SPI bus glue.
1538  *
1539  * SPI controllers use board specific (often SOC specific) bus numbers,
1540  * and board-specific addressing for SPI devices combines those numbers
1541  * with chip select numbers.  Since SPI does not directly support dynamic
1542  * device identification, boards need configuration tables telling which
1543  * chip is at which address.
1544  *
1545  * This must be called from context that can sleep.  It returns zero on
1546  * success, else a negative error code (dropping the master's refcount).
1547  * After a successful return, the caller is responsible for calling
1548  * spi_unregister_master().
1549  */
1550 int spi_register_master(struct spi_master *master)
1551 {
1552 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1553 	struct device		*dev = master->dev.parent;
1554 	struct boardinfo	*bi;
1555 	int			status = -ENODEV;
1556 	int			dynamic = 0;
1557 
1558 	if (!dev)
1559 		return -ENODEV;
1560 
1561 	status = of_spi_register_master(master);
1562 	if (status)
1563 		return status;
1564 
1565 	/* even if it's just one always-selected device, there must
1566 	 * be at least one chipselect
1567 	 */
1568 	if (master->num_chipselect == 0)
1569 		return -EINVAL;
1570 
1571 	if ((master->bus_num < 0) && master->dev.of_node)
1572 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1573 
1574 	/* convention:  dynamically assigned bus IDs count down from the max */
1575 	if (master->bus_num < 0) {
1576 		/* FIXME switch to an IDR based scheme, something like
1577 		 * I2C now uses, so we can't run out of "dynamic" IDs
1578 		 */
1579 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1580 		dynamic = 1;
1581 	}
1582 
1583 	spin_lock_init(&master->bus_lock_spinlock);
1584 	mutex_init(&master->bus_lock_mutex);
1585 	master->bus_lock_flag = 0;
1586 	init_completion(&master->xfer_completion);
1587 	if (!master->max_dma_len)
1588 		master->max_dma_len = INT_MAX;
1589 
1590 	/* register the device, then userspace will see it.
1591 	 * registration fails if the bus ID is in use.
1592 	 */
1593 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1594 	status = device_add(&master->dev);
1595 	if (status < 0)
1596 		goto done;
1597 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1598 			dynamic ? " (dynamic)" : "");
1599 
1600 	/* If we're using a queued driver, start the queue */
1601 	if (master->transfer)
1602 		dev_info(dev, "master is unqueued, this is deprecated\n");
1603 	else {
1604 		status = spi_master_initialize_queue(master);
1605 		if (status) {
1606 			device_del(&master->dev);
1607 			goto done;
1608 		}
1609 	}
1610 
1611 	mutex_lock(&board_lock);
1612 	list_add_tail(&master->list, &spi_master_list);
1613 	list_for_each_entry(bi, &board_list, list)
1614 		spi_match_master_to_boardinfo(master, &bi->board_info);
1615 	mutex_unlock(&board_lock);
1616 
1617 	/* Register devices from the device tree and ACPI */
1618 	of_register_spi_devices(master);
1619 	acpi_register_spi_devices(master);
1620 done:
1621 	return status;
1622 }
1623 EXPORT_SYMBOL_GPL(spi_register_master);
1624 
1625 static void devm_spi_unregister(struct device *dev, void *res)
1626 {
1627 	spi_unregister_master(*(struct spi_master **)res);
1628 }
1629 
1630 /**
1631  * dev_spi_register_master - register managed SPI master controller
1632  * @dev:    device managing SPI master
1633  * @master: initialized master, originally from spi_alloc_master()
1634  * Context: can sleep
1635  *
1636  * Register a SPI device as with spi_register_master() which will
1637  * automatically be unregister
1638  */
1639 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1640 {
1641 	struct spi_master **ptr;
1642 	int ret;
1643 
1644 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1645 	if (!ptr)
1646 		return -ENOMEM;
1647 
1648 	ret = spi_register_master(master);
1649 	if (!ret) {
1650 		*ptr = master;
1651 		devres_add(dev, ptr);
1652 	} else {
1653 		devres_free(ptr);
1654 	}
1655 
1656 	return ret;
1657 }
1658 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1659 
1660 static int __unregister(struct device *dev, void *null)
1661 {
1662 	spi_unregister_device(to_spi_device(dev));
1663 	return 0;
1664 }
1665 
1666 /**
1667  * spi_unregister_master - unregister SPI master controller
1668  * @master: the master being unregistered
1669  * Context: can sleep
1670  *
1671  * This call is used only by SPI master controller drivers, which are the
1672  * only ones directly touching chip registers.
1673  *
1674  * This must be called from context that can sleep.
1675  */
1676 void spi_unregister_master(struct spi_master *master)
1677 {
1678 	int dummy;
1679 
1680 	if (master->queued) {
1681 		if (spi_destroy_queue(master))
1682 			dev_err(&master->dev, "queue remove failed\n");
1683 	}
1684 
1685 	mutex_lock(&board_lock);
1686 	list_del(&master->list);
1687 	mutex_unlock(&board_lock);
1688 
1689 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1690 	device_unregister(&master->dev);
1691 }
1692 EXPORT_SYMBOL_GPL(spi_unregister_master);
1693 
1694 int spi_master_suspend(struct spi_master *master)
1695 {
1696 	int ret;
1697 
1698 	/* Basically no-ops for non-queued masters */
1699 	if (!master->queued)
1700 		return 0;
1701 
1702 	ret = spi_stop_queue(master);
1703 	if (ret)
1704 		dev_err(&master->dev, "queue stop failed\n");
1705 
1706 	return ret;
1707 }
1708 EXPORT_SYMBOL_GPL(spi_master_suspend);
1709 
1710 int spi_master_resume(struct spi_master *master)
1711 {
1712 	int ret;
1713 
1714 	if (!master->queued)
1715 		return 0;
1716 
1717 	ret = spi_start_queue(master);
1718 	if (ret)
1719 		dev_err(&master->dev, "queue restart failed\n");
1720 
1721 	return ret;
1722 }
1723 EXPORT_SYMBOL_GPL(spi_master_resume);
1724 
1725 static int __spi_master_match(struct device *dev, const void *data)
1726 {
1727 	struct spi_master *m;
1728 	const u16 *bus_num = data;
1729 
1730 	m = container_of(dev, struct spi_master, dev);
1731 	return m->bus_num == *bus_num;
1732 }
1733 
1734 /**
1735  * spi_busnum_to_master - look up master associated with bus_num
1736  * @bus_num: the master's bus number
1737  * Context: can sleep
1738  *
1739  * This call may be used with devices that are registered after
1740  * arch init time.  It returns a refcounted pointer to the relevant
1741  * spi_master (which the caller must release), or NULL if there is
1742  * no such master registered.
1743  */
1744 struct spi_master *spi_busnum_to_master(u16 bus_num)
1745 {
1746 	struct device		*dev;
1747 	struct spi_master	*master = NULL;
1748 
1749 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1750 				__spi_master_match);
1751 	if (dev)
1752 		master = container_of(dev, struct spi_master, dev);
1753 	/* reference got in class_find_device */
1754 	return master;
1755 }
1756 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1757 
1758 
1759 /*-------------------------------------------------------------------------*/
1760 
1761 /* Core methods for SPI master protocol drivers.  Some of the
1762  * other core methods are currently defined as inline functions.
1763  */
1764 
1765 /**
1766  * spi_setup - setup SPI mode and clock rate
1767  * @spi: the device whose settings are being modified
1768  * Context: can sleep, and no requests are queued to the device
1769  *
1770  * SPI protocol drivers may need to update the transfer mode if the
1771  * device doesn't work with its default.  They may likewise need
1772  * to update clock rates or word sizes from initial values.  This function
1773  * changes those settings, and must be called from a context that can sleep.
1774  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1775  * effect the next time the device is selected and data is transferred to
1776  * or from it.  When this function returns, the spi device is deselected.
1777  *
1778  * Note that this call will fail if the protocol driver specifies an option
1779  * that the underlying controller or its driver does not support.  For
1780  * example, not all hardware supports wire transfers using nine bit words,
1781  * LSB-first wire encoding, or active-high chipselects.
1782  */
1783 int spi_setup(struct spi_device *spi)
1784 {
1785 	unsigned	bad_bits, ugly_bits;
1786 	int		status = 0;
1787 
1788 	/* check mode to prevent that DUAL and QUAD set at the same time
1789 	 */
1790 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1791 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1792 		dev_err(&spi->dev,
1793 		"setup: can not select dual and quad at the same time\n");
1794 		return -EINVAL;
1795 	}
1796 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1797 	 */
1798 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1799 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1800 		return -EINVAL;
1801 	/* help drivers fail *cleanly* when they need options
1802 	 * that aren't supported with their current master
1803 	 */
1804 	bad_bits = spi->mode & ~spi->master->mode_bits;
1805 	ugly_bits = bad_bits &
1806 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1807 	if (ugly_bits) {
1808 		dev_warn(&spi->dev,
1809 			 "setup: ignoring unsupported mode bits %x\n",
1810 			 ugly_bits);
1811 		spi->mode &= ~ugly_bits;
1812 		bad_bits &= ~ugly_bits;
1813 	}
1814 	if (bad_bits) {
1815 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1816 			bad_bits);
1817 		return -EINVAL;
1818 	}
1819 
1820 	if (!spi->bits_per_word)
1821 		spi->bits_per_word = 8;
1822 
1823 	if (!spi->max_speed_hz)
1824 		spi->max_speed_hz = spi->master->max_speed_hz;
1825 
1826 	if (spi->master->setup)
1827 		status = spi->master->setup(spi);
1828 
1829 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1830 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1831 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1832 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1833 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1834 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1835 			spi->bits_per_word, spi->max_speed_hz,
1836 			status);
1837 
1838 	return status;
1839 }
1840 EXPORT_SYMBOL_GPL(spi_setup);
1841 
1842 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1843 {
1844 	struct spi_master *master = spi->master;
1845 	struct spi_transfer *xfer;
1846 	int w_size;
1847 
1848 	if (list_empty(&message->transfers))
1849 		return -EINVAL;
1850 
1851 	/* Half-duplex links include original MicroWire, and ones with
1852 	 * only one data pin like SPI_3WIRE (switches direction) or where
1853 	 * either MOSI or MISO is missing.  They can also be caused by
1854 	 * software limitations.
1855 	 */
1856 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1857 			|| (spi->mode & SPI_3WIRE)) {
1858 		unsigned flags = master->flags;
1859 
1860 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1861 			if (xfer->rx_buf && xfer->tx_buf)
1862 				return -EINVAL;
1863 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1864 				return -EINVAL;
1865 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1866 				return -EINVAL;
1867 		}
1868 	}
1869 
1870 	/**
1871 	 * Set transfer bits_per_word and max speed as spi device default if
1872 	 * it is not set for this transfer.
1873 	 * Set transfer tx_nbits and rx_nbits as single transfer default
1874 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1875 	 */
1876 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1877 		message->frame_length += xfer->len;
1878 		if (!xfer->bits_per_word)
1879 			xfer->bits_per_word = spi->bits_per_word;
1880 
1881 		if (!xfer->speed_hz)
1882 			xfer->speed_hz = spi->max_speed_hz;
1883 
1884 		if (master->max_speed_hz &&
1885 		    xfer->speed_hz > master->max_speed_hz)
1886 			xfer->speed_hz = master->max_speed_hz;
1887 
1888 		if (master->bits_per_word_mask) {
1889 			/* Only 32 bits fit in the mask */
1890 			if (xfer->bits_per_word > 32)
1891 				return -EINVAL;
1892 			if (!(master->bits_per_word_mask &
1893 					BIT(xfer->bits_per_word - 1)))
1894 				return -EINVAL;
1895 		}
1896 
1897 		/*
1898 		 * SPI transfer length should be multiple of SPI word size
1899 		 * where SPI word size should be power-of-two multiple
1900 		 */
1901 		if (xfer->bits_per_word <= 8)
1902 			w_size = 1;
1903 		else if (xfer->bits_per_word <= 16)
1904 			w_size = 2;
1905 		else
1906 			w_size = 4;
1907 
1908 		/* No partial transfers accepted */
1909 		if (xfer->len % w_size)
1910 			return -EINVAL;
1911 
1912 		if (xfer->speed_hz && master->min_speed_hz &&
1913 		    xfer->speed_hz < master->min_speed_hz)
1914 			return -EINVAL;
1915 
1916 		if (xfer->tx_buf && !xfer->tx_nbits)
1917 			xfer->tx_nbits = SPI_NBITS_SINGLE;
1918 		if (xfer->rx_buf && !xfer->rx_nbits)
1919 			xfer->rx_nbits = SPI_NBITS_SINGLE;
1920 		/* check transfer tx/rx_nbits:
1921 		 * 1. check the value matches one of single, dual and quad
1922 		 * 2. check tx/rx_nbits match the mode in spi_device
1923 		 */
1924 		if (xfer->tx_buf) {
1925 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1926 				xfer->tx_nbits != SPI_NBITS_DUAL &&
1927 				xfer->tx_nbits != SPI_NBITS_QUAD)
1928 				return -EINVAL;
1929 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1930 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1931 				return -EINVAL;
1932 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1933 				!(spi->mode & SPI_TX_QUAD))
1934 				return -EINVAL;
1935 		}
1936 		/* check transfer rx_nbits */
1937 		if (xfer->rx_buf) {
1938 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1939 				xfer->rx_nbits != SPI_NBITS_DUAL &&
1940 				xfer->rx_nbits != SPI_NBITS_QUAD)
1941 				return -EINVAL;
1942 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1943 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1944 				return -EINVAL;
1945 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1946 				!(spi->mode & SPI_RX_QUAD))
1947 				return -EINVAL;
1948 		}
1949 	}
1950 
1951 	message->status = -EINPROGRESS;
1952 
1953 	return 0;
1954 }
1955 
1956 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1957 {
1958 	struct spi_master *master = spi->master;
1959 
1960 	message->spi = spi;
1961 
1962 	trace_spi_message_submit(message);
1963 
1964 	return master->transfer(spi, message);
1965 }
1966 
1967 /**
1968  * spi_async - asynchronous SPI transfer
1969  * @spi: device with which data will be exchanged
1970  * @message: describes the data transfers, including completion callback
1971  * Context: any (irqs may be blocked, etc)
1972  *
1973  * This call may be used in_irq and other contexts which can't sleep,
1974  * as well as from task contexts which can sleep.
1975  *
1976  * The completion callback is invoked in a context which can't sleep.
1977  * Before that invocation, the value of message->status is undefined.
1978  * When the callback is issued, message->status holds either zero (to
1979  * indicate complete success) or a negative error code.  After that
1980  * callback returns, the driver which issued the transfer request may
1981  * deallocate the associated memory; it's no longer in use by any SPI
1982  * core or controller driver code.
1983  *
1984  * Note that although all messages to a spi_device are handled in
1985  * FIFO order, messages may go to different devices in other orders.
1986  * Some device might be higher priority, or have various "hard" access
1987  * time requirements, for example.
1988  *
1989  * On detection of any fault during the transfer, processing of
1990  * the entire message is aborted, and the device is deselected.
1991  * Until returning from the associated message completion callback,
1992  * no other spi_message queued to that device will be processed.
1993  * (This rule applies equally to all the synchronous transfer calls,
1994  * which are wrappers around this core asynchronous primitive.)
1995  */
1996 int spi_async(struct spi_device *spi, struct spi_message *message)
1997 {
1998 	struct spi_master *master = spi->master;
1999 	int ret;
2000 	unsigned long flags;
2001 
2002 	ret = __spi_validate(spi, message);
2003 	if (ret != 0)
2004 		return ret;
2005 
2006 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2007 
2008 	if (master->bus_lock_flag)
2009 		ret = -EBUSY;
2010 	else
2011 		ret = __spi_async(spi, message);
2012 
2013 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2014 
2015 	return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(spi_async);
2018 
2019 /**
2020  * spi_async_locked - version of spi_async with exclusive bus usage
2021  * @spi: device with which data will be exchanged
2022  * @message: describes the data transfers, including completion callback
2023  * Context: any (irqs may be blocked, etc)
2024  *
2025  * This call may be used in_irq and other contexts which can't sleep,
2026  * as well as from task contexts which can sleep.
2027  *
2028  * The completion callback is invoked in a context which can't sleep.
2029  * Before that invocation, the value of message->status is undefined.
2030  * When the callback is issued, message->status holds either zero (to
2031  * indicate complete success) or a negative error code.  After that
2032  * callback returns, the driver which issued the transfer request may
2033  * deallocate the associated memory; it's no longer in use by any SPI
2034  * core or controller driver code.
2035  *
2036  * Note that although all messages to a spi_device are handled in
2037  * FIFO order, messages may go to different devices in other orders.
2038  * Some device might be higher priority, or have various "hard" access
2039  * time requirements, for example.
2040  *
2041  * On detection of any fault during the transfer, processing of
2042  * the entire message is aborted, and the device is deselected.
2043  * Until returning from the associated message completion callback,
2044  * no other spi_message queued to that device will be processed.
2045  * (This rule applies equally to all the synchronous transfer calls,
2046  * which are wrappers around this core asynchronous primitive.)
2047  */
2048 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2049 {
2050 	struct spi_master *master = spi->master;
2051 	int ret;
2052 	unsigned long flags;
2053 
2054 	ret = __spi_validate(spi, message);
2055 	if (ret != 0)
2056 		return ret;
2057 
2058 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2059 
2060 	ret = __spi_async(spi, message);
2061 
2062 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2063 
2064 	return ret;
2065 
2066 }
2067 EXPORT_SYMBOL_GPL(spi_async_locked);
2068 
2069 
2070 /*-------------------------------------------------------------------------*/
2071 
2072 /* Utility methods for SPI master protocol drivers, layered on
2073  * top of the core.  Some other utility methods are defined as
2074  * inline functions.
2075  */
2076 
2077 static void spi_complete(void *arg)
2078 {
2079 	complete(arg);
2080 }
2081 
2082 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2083 		      int bus_locked)
2084 {
2085 	DECLARE_COMPLETION_ONSTACK(done);
2086 	int status;
2087 	struct spi_master *master = spi->master;
2088 
2089 	message->complete = spi_complete;
2090 	message->context = &done;
2091 
2092 	if (!bus_locked)
2093 		mutex_lock(&master->bus_lock_mutex);
2094 
2095 	status = spi_async_locked(spi, message);
2096 
2097 	if (!bus_locked)
2098 		mutex_unlock(&master->bus_lock_mutex);
2099 
2100 	if (status == 0) {
2101 		wait_for_completion(&done);
2102 		status = message->status;
2103 	}
2104 	message->context = NULL;
2105 	return status;
2106 }
2107 
2108 /**
2109  * spi_sync - blocking/synchronous SPI data transfers
2110  * @spi: device with which data will be exchanged
2111  * @message: describes the data transfers
2112  * Context: can sleep
2113  *
2114  * This call may only be used from a context that may sleep.  The sleep
2115  * is non-interruptible, and has no timeout.  Low-overhead controller
2116  * drivers may DMA directly into and out of the message buffers.
2117  *
2118  * Note that the SPI device's chip select is active during the message,
2119  * and then is normally disabled between messages.  Drivers for some
2120  * frequently-used devices may want to minimize costs of selecting a chip,
2121  * by leaving it selected in anticipation that the next message will go
2122  * to the same chip.  (That may increase power usage.)
2123  *
2124  * Also, the caller is guaranteeing that the memory associated with the
2125  * message will not be freed before this call returns.
2126  *
2127  * It returns zero on success, else a negative error code.
2128  */
2129 int spi_sync(struct spi_device *spi, struct spi_message *message)
2130 {
2131 	return __spi_sync(spi, message, 0);
2132 }
2133 EXPORT_SYMBOL_GPL(spi_sync);
2134 
2135 /**
2136  * spi_sync_locked - version of spi_sync with exclusive bus usage
2137  * @spi: device with which data will be exchanged
2138  * @message: describes the data transfers
2139  * Context: can sleep
2140  *
2141  * This call may only be used from a context that may sleep.  The sleep
2142  * is non-interruptible, and has no timeout.  Low-overhead controller
2143  * drivers may DMA directly into and out of the message buffers.
2144  *
2145  * This call should be used by drivers that require exclusive access to the
2146  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2147  * be released by a spi_bus_unlock call when the exclusive access is over.
2148  *
2149  * It returns zero on success, else a negative error code.
2150  */
2151 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2152 {
2153 	return __spi_sync(spi, message, 1);
2154 }
2155 EXPORT_SYMBOL_GPL(spi_sync_locked);
2156 
2157 /**
2158  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2159  * @master: SPI bus master that should be locked for exclusive bus access
2160  * Context: can sleep
2161  *
2162  * This call may only be used from a context that may sleep.  The sleep
2163  * is non-interruptible, and has no timeout.
2164  *
2165  * This call should be used by drivers that require exclusive access to the
2166  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2167  * exclusive access is over. Data transfer must be done by spi_sync_locked
2168  * and spi_async_locked calls when the SPI bus lock is held.
2169  *
2170  * It returns zero on success, else a negative error code.
2171  */
2172 int spi_bus_lock(struct spi_master *master)
2173 {
2174 	unsigned long flags;
2175 
2176 	mutex_lock(&master->bus_lock_mutex);
2177 
2178 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2179 	master->bus_lock_flag = 1;
2180 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2181 
2182 	/* mutex remains locked until spi_bus_unlock is called */
2183 
2184 	return 0;
2185 }
2186 EXPORT_SYMBOL_GPL(spi_bus_lock);
2187 
2188 /**
2189  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2190  * @master: SPI bus master that was locked for exclusive bus access
2191  * Context: can sleep
2192  *
2193  * This call may only be used from a context that may sleep.  The sleep
2194  * is non-interruptible, and has no timeout.
2195  *
2196  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2197  * call.
2198  *
2199  * It returns zero on success, else a negative error code.
2200  */
2201 int spi_bus_unlock(struct spi_master *master)
2202 {
2203 	master->bus_lock_flag = 0;
2204 
2205 	mutex_unlock(&master->bus_lock_mutex);
2206 
2207 	return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2210 
2211 /* portable code must never pass more than 32 bytes */
2212 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2213 
2214 static u8	*buf;
2215 
2216 /**
2217  * spi_write_then_read - SPI synchronous write followed by read
2218  * @spi: device with which data will be exchanged
2219  * @txbuf: data to be written (need not be dma-safe)
2220  * @n_tx: size of txbuf, in bytes
2221  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2222  * @n_rx: size of rxbuf, in bytes
2223  * Context: can sleep
2224  *
2225  * This performs a half duplex MicroWire style transaction with the
2226  * device, sending txbuf and then reading rxbuf.  The return value
2227  * is zero for success, else a negative errno status code.
2228  * This call may only be used from a context that may sleep.
2229  *
2230  * Parameters to this routine are always copied using a small buffer;
2231  * portable code should never use this for more than 32 bytes.
2232  * Performance-sensitive or bulk transfer code should instead use
2233  * spi_{async,sync}() calls with dma-safe buffers.
2234  */
2235 int spi_write_then_read(struct spi_device *spi,
2236 		const void *txbuf, unsigned n_tx,
2237 		void *rxbuf, unsigned n_rx)
2238 {
2239 	static DEFINE_MUTEX(lock);
2240 
2241 	int			status;
2242 	struct spi_message	message;
2243 	struct spi_transfer	x[2];
2244 	u8			*local_buf;
2245 
2246 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2247 	 * copying here, (as a pure convenience thing), but we can
2248 	 * keep heap costs out of the hot path unless someone else is
2249 	 * using the pre-allocated buffer or the transfer is too large.
2250 	 */
2251 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2252 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2253 				    GFP_KERNEL | GFP_DMA);
2254 		if (!local_buf)
2255 			return -ENOMEM;
2256 	} else {
2257 		local_buf = buf;
2258 	}
2259 
2260 	spi_message_init(&message);
2261 	memset(x, 0, sizeof(x));
2262 	if (n_tx) {
2263 		x[0].len = n_tx;
2264 		spi_message_add_tail(&x[0], &message);
2265 	}
2266 	if (n_rx) {
2267 		x[1].len = n_rx;
2268 		spi_message_add_tail(&x[1], &message);
2269 	}
2270 
2271 	memcpy(local_buf, txbuf, n_tx);
2272 	x[0].tx_buf = local_buf;
2273 	x[1].rx_buf = local_buf + n_tx;
2274 
2275 	/* do the i/o */
2276 	status = spi_sync(spi, &message);
2277 	if (status == 0)
2278 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2279 
2280 	if (x[0].tx_buf == buf)
2281 		mutex_unlock(&lock);
2282 	else
2283 		kfree(local_buf);
2284 
2285 	return status;
2286 }
2287 EXPORT_SYMBOL_GPL(spi_write_then_read);
2288 
2289 /*-------------------------------------------------------------------------*/
2290 
2291 static int __init spi_init(void)
2292 {
2293 	int	status;
2294 
2295 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2296 	if (!buf) {
2297 		status = -ENOMEM;
2298 		goto err0;
2299 	}
2300 
2301 	status = bus_register(&spi_bus_type);
2302 	if (status < 0)
2303 		goto err1;
2304 
2305 	status = class_register(&spi_master_class);
2306 	if (status < 0)
2307 		goto err2;
2308 	return 0;
2309 
2310 err2:
2311 	bus_unregister(&spi_bus_type);
2312 err1:
2313 	kfree(buf);
2314 	buf = NULL;
2315 err0:
2316 	return status;
2317 }
2318 
2319 /* board_info is normally registered in arch_initcall(),
2320  * but even essential drivers wait till later
2321  *
2322  * REVISIT only boardinfo really needs static linking. the rest (device and
2323  * driver registration) _could_ be dynamically linked (modular) ... costs
2324  * include needing to have boardinfo data structures be much more public.
2325  */
2326 postcore_initcall(spi_init);
2327 
2328