1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/kmod.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/cache.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/dmaengine.h> 29 #include <linux/mutex.h> 30 #include <linux/of_device.h> 31 #include <linux/of_irq.h> 32 #include <linux/clk/clk-conf.h> 33 #include <linux/slab.h> 34 #include <linux/mod_devicetable.h> 35 #include <linux/spi/spi.h> 36 #include <linux/of_gpio.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/export.h> 39 #include <linux/sched/rt.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/ioport.h> 43 #include <linux/acpi.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/spi.h> 47 48 static void spidev_release(struct device *dev) 49 { 50 struct spi_device *spi = to_spi_device(dev); 51 52 /* spi masters may cleanup for released devices */ 53 if (spi->master->cleanup) 54 spi->master->cleanup(spi); 55 56 spi_master_put(spi->master); 57 kfree(spi); 58 } 59 60 static ssize_t 61 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 62 { 63 const struct spi_device *spi = to_spi_device(dev); 64 int len; 65 66 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 67 if (len != -ENODEV) 68 return len; 69 70 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 71 } 72 static DEVICE_ATTR_RO(modalias); 73 74 static struct attribute *spi_dev_attrs[] = { 75 &dev_attr_modalias.attr, 76 NULL, 77 }; 78 ATTRIBUTE_GROUPS(spi_dev); 79 80 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 81 * and the sysfs version makes coldplug work too. 82 */ 83 84 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 85 const struct spi_device *sdev) 86 { 87 while (id->name[0]) { 88 if (!strcmp(sdev->modalias, id->name)) 89 return id; 90 id++; 91 } 92 return NULL; 93 } 94 95 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 96 { 97 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 98 99 return spi_match_id(sdrv->id_table, sdev); 100 } 101 EXPORT_SYMBOL_GPL(spi_get_device_id); 102 103 static int spi_match_device(struct device *dev, struct device_driver *drv) 104 { 105 const struct spi_device *spi = to_spi_device(dev); 106 const struct spi_driver *sdrv = to_spi_driver(drv); 107 108 /* Attempt an OF style match */ 109 if (of_driver_match_device(dev, drv)) 110 return 1; 111 112 /* Then try ACPI */ 113 if (acpi_driver_match_device(dev, drv)) 114 return 1; 115 116 if (sdrv->id_table) 117 return !!spi_match_id(sdrv->id_table, spi); 118 119 return strcmp(spi->modalias, drv->name) == 0; 120 } 121 122 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 123 { 124 const struct spi_device *spi = to_spi_device(dev); 125 int rc; 126 127 rc = acpi_device_uevent_modalias(dev, env); 128 if (rc != -ENODEV) 129 return rc; 130 131 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 132 return 0; 133 } 134 135 #ifdef CONFIG_PM_SLEEP 136 static int spi_legacy_suspend(struct device *dev, pm_message_t message) 137 { 138 int value = 0; 139 struct spi_driver *drv = to_spi_driver(dev->driver); 140 141 /* suspend will stop irqs and dma; no more i/o */ 142 if (drv) { 143 if (drv->suspend) 144 value = drv->suspend(to_spi_device(dev), message); 145 else 146 dev_dbg(dev, "... can't suspend\n"); 147 } 148 return value; 149 } 150 151 static int spi_legacy_resume(struct device *dev) 152 { 153 int value = 0; 154 struct spi_driver *drv = to_spi_driver(dev->driver); 155 156 /* resume may restart the i/o queue */ 157 if (drv) { 158 if (drv->resume) 159 value = drv->resume(to_spi_device(dev)); 160 else 161 dev_dbg(dev, "... can't resume\n"); 162 } 163 return value; 164 } 165 166 static int spi_pm_suspend(struct device *dev) 167 { 168 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 169 170 if (pm) 171 return pm_generic_suspend(dev); 172 else 173 return spi_legacy_suspend(dev, PMSG_SUSPEND); 174 } 175 176 static int spi_pm_resume(struct device *dev) 177 { 178 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 179 180 if (pm) 181 return pm_generic_resume(dev); 182 else 183 return spi_legacy_resume(dev); 184 } 185 186 static int spi_pm_freeze(struct device *dev) 187 { 188 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 189 190 if (pm) 191 return pm_generic_freeze(dev); 192 else 193 return spi_legacy_suspend(dev, PMSG_FREEZE); 194 } 195 196 static int spi_pm_thaw(struct device *dev) 197 { 198 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 199 200 if (pm) 201 return pm_generic_thaw(dev); 202 else 203 return spi_legacy_resume(dev); 204 } 205 206 static int spi_pm_poweroff(struct device *dev) 207 { 208 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 209 210 if (pm) 211 return pm_generic_poweroff(dev); 212 else 213 return spi_legacy_suspend(dev, PMSG_HIBERNATE); 214 } 215 216 static int spi_pm_restore(struct device *dev) 217 { 218 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 219 220 if (pm) 221 return pm_generic_restore(dev); 222 else 223 return spi_legacy_resume(dev); 224 } 225 #else 226 #define spi_pm_suspend NULL 227 #define spi_pm_resume NULL 228 #define spi_pm_freeze NULL 229 #define spi_pm_thaw NULL 230 #define spi_pm_poweroff NULL 231 #define spi_pm_restore NULL 232 #endif 233 234 static const struct dev_pm_ops spi_pm = { 235 .suspend = spi_pm_suspend, 236 .resume = spi_pm_resume, 237 .freeze = spi_pm_freeze, 238 .thaw = spi_pm_thaw, 239 .poweroff = spi_pm_poweroff, 240 .restore = spi_pm_restore, 241 SET_RUNTIME_PM_OPS( 242 pm_generic_runtime_suspend, 243 pm_generic_runtime_resume, 244 NULL 245 ) 246 }; 247 248 struct bus_type spi_bus_type = { 249 .name = "spi", 250 .dev_groups = spi_dev_groups, 251 .match = spi_match_device, 252 .uevent = spi_uevent, 253 .pm = &spi_pm, 254 }; 255 EXPORT_SYMBOL_GPL(spi_bus_type); 256 257 258 static int spi_drv_probe(struct device *dev) 259 { 260 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 261 int ret; 262 263 ret = of_clk_set_defaults(dev->of_node, false); 264 if (ret) 265 return ret; 266 267 acpi_dev_pm_attach(dev, true); 268 ret = sdrv->probe(to_spi_device(dev)); 269 if (ret) 270 acpi_dev_pm_detach(dev, true); 271 272 return ret; 273 } 274 275 static int spi_drv_remove(struct device *dev) 276 { 277 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 278 int ret; 279 280 ret = sdrv->remove(to_spi_device(dev)); 281 acpi_dev_pm_detach(dev, true); 282 283 return ret; 284 } 285 286 static void spi_drv_shutdown(struct device *dev) 287 { 288 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 289 290 sdrv->shutdown(to_spi_device(dev)); 291 } 292 293 /** 294 * spi_register_driver - register a SPI driver 295 * @sdrv: the driver to register 296 * Context: can sleep 297 */ 298 int spi_register_driver(struct spi_driver *sdrv) 299 { 300 sdrv->driver.bus = &spi_bus_type; 301 if (sdrv->probe) 302 sdrv->driver.probe = spi_drv_probe; 303 if (sdrv->remove) 304 sdrv->driver.remove = spi_drv_remove; 305 if (sdrv->shutdown) 306 sdrv->driver.shutdown = spi_drv_shutdown; 307 return driver_register(&sdrv->driver); 308 } 309 EXPORT_SYMBOL_GPL(spi_register_driver); 310 311 /*-------------------------------------------------------------------------*/ 312 313 /* SPI devices should normally not be created by SPI device drivers; that 314 * would make them board-specific. Similarly with SPI master drivers. 315 * Device registration normally goes into like arch/.../mach.../board-YYY.c 316 * with other readonly (flashable) information about mainboard devices. 317 */ 318 319 struct boardinfo { 320 struct list_head list; 321 struct spi_board_info board_info; 322 }; 323 324 static LIST_HEAD(board_list); 325 static LIST_HEAD(spi_master_list); 326 327 /* 328 * Used to protect add/del opertion for board_info list and 329 * spi_master list, and their matching process 330 */ 331 static DEFINE_MUTEX(board_lock); 332 333 /** 334 * spi_alloc_device - Allocate a new SPI device 335 * @master: Controller to which device is connected 336 * Context: can sleep 337 * 338 * Allows a driver to allocate and initialize a spi_device without 339 * registering it immediately. This allows a driver to directly 340 * fill the spi_device with device parameters before calling 341 * spi_add_device() on it. 342 * 343 * Caller is responsible to call spi_add_device() on the returned 344 * spi_device structure to add it to the SPI master. If the caller 345 * needs to discard the spi_device without adding it, then it should 346 * call spi_dev_put() on it. 347 * 348 * Returns a pointer to the new device, or NULL. 349 */ 350 struct spi_device *spi_alloc_device(struct spi_master *master) 351 { 352 struct spi_device *spi; 353 354 if (!spi_master_get(master)) 355 return NULL; 356 357 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 358 if (!spi) { 359 spi_master_put(master); 360 return NULL; 361 } 362 363 spi->master = master; 364 spi->dev.parent = &master->dev; 365 spi->dev.bus = &spi_bus_type; 366 spi->dev.release = spidev_release; 367 spi->cs_gpio = -ENOENT; 368 device_initialize(&spi->dev); 369 return spi; 370 } 371 EXPORT_SYMBOL_GPL(spi_alloc_device); 372 373 static void spi_dev_set_name(struct spi_device *spi) 374 { 375 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 376 377 if (adev) { 378 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 379 return; 380 } 381 382 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 383 spi->chip_select); 384 } 385 386 static int spi_dev_check(struct device *dev, void *data) 387 { 388 struct spi_device *spi = to_spi_device(dev); 389 struct spi_device *new_spi = data; 390 391 if (spi->master == new_spi->master && 392 spi->chip_select == new_spi->chip_select) 393 return -EBUSY; 394 return 0; 395 } 396 397 /** 398 * spi_add_device - Add spi_device allocated with spi_alloc_device 399 * @spi: spi_device to register 400 * 401 * Companion function to spi_alloc_device. Devices allocated with 402 * spi_alloc_device can be added onto the spi bus with this function. 403 * 404 * Returns 0 on success; negative errno on failure 405 */ 406 int spi_add_device(struct spi_device *spi) 407 { 408 static DEFINE_MUTEX(spi_add_lock); 409 struct spi_master *master = spi->master; 410 struct device *dev = master->dev.parent; 411 int status; 412 413 /* Chipselects are numbered 0..max; validate. */ 414 if (spi->chip_select >= master->num_chipselect) { 415 dev_err(dev, "cs%d >= max %d\n", 416 spi->chip_select, 417 master->num_chipselect); 418 return -EINVAL; 419 } 420 421 /* Set the bus ID string */ 422 spi_dev_set_name(spi); 423 424 /* We need to make sure there's no other device with this 425 * chipselect **BEFORE** we call setup(), else we'll trash 426 * its configuration. Lock against concurrent add() calls. 427 */ 428 mutex_lock(&spi_add_lock); 429 430 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 431 if (status) { 432 dev_err(dev, "chipselect %d already in use\n", 433 spi->chip_select); 434 goto done; 435 } 436 437 if (master->cs_gpios) 438 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 439 440 /* Drivers may modify this initial i/o setup, but will 441 * normally rely on the device being setup. Devices 442 * using SPI_CS_HIGH can't coexist well otherwise... 443 */ 444 status = spi_setup(spi); 445 if (status < 0) { 446 dev_err(dev, "can't setup %s, status %d\n", 447 dev_name(&spi->dev), status); 448 goto done; 449 } 450 451 /* Device may be bound to an active driver when this returns */ 452 status = device_add(&spi->dev); 453 if (status < 0) 454 dev_err(dev, "can't add %s, status %d\n", 455 dev_name(&spi->dev), status); 456 else 457 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 458 459 done: 460 mutex_unlock(&spi_add_lock); 461 return status; 462 } 463 EXPORT_SYMBOL_GPL(spi_add_device); 464 465 /** 466 * spi_new_device - instantiate one new SPI device 467 * @master: Controller to which device is connected 468 * @chip: Describes the SPI device 469 * Context: can sleep 470 * 471 * On typical mainboards, this is purely internal; and it's not needed 472 * after board init creates the hard-wired devices. Some development 473 * platforms may not be able to use spi_register_board_info though, and 474 * this is exported so that for example a USB or parport based adapter 475 * driver could add devices (which it would learn about out-of-band). 476 * 477 * Returns the new device, or NULL. 478 */ 479 struct spi_device *spi_new_device(struct spi_master *master, 480 struct spi_board_info *chip) 481 { 482 struct spi_device *proxy; 483 int status; 484 485 /* NOTE: caller did any chip->bus_num checks necessary. 486 * 487 * Also, unless we change the return value convention to use 488 * error-or-pointer (not NULL-or-pointer), troubleshootability 489 * suggests syslogged diagnostics are best here (ugh). 490 */ 491 492 proxy = spi_alloc_device(master); 493 if (!proxy) 494 return NULL; 495 496 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 497 498 proxy->chip_select = chip->chip_select; 499 proxy->max_speed_hz = chip->max_speed_hz; 500 proxy->mode = chip->mode; 501 proxy->irq = chip->irq; 502 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 503 proxy->dev.platform_data = (void *) chip->platform_data; 504 proxy->controller_data = chip->controller_data; 505 proxy->controller_state = NULL; 506 507 status = spi_add_device(proxy); 508 if (status < 0) { 509 spi_dev_put(proxy); 510 return NULL; 511 } 512 513 return proxy; 514 } 515 EXPORT_SYMBOL_GPL(spi_new_device); 516 517 static void spi_match_master_to_boardinfo(struct spi_master *master, 518 struct spi_board_info *bi) 519 { 520 struct spi_device *dev; 521 522 if (master->bus_num != bi->bus_num) 523 return; 524 525 dev = spi_new_device(master, bi); 526 if (!dev) 527 dev_err(master->dev.parent, "can't create new device for %s\n", 528 bi->modalias); 529 } 530 531 /** 532 * spi_register_board_info - register SPI devices for a given board 533 * @info: array of chip descriptors 534 * @n: how many descriptors are provided 535 * Context: can sleep 536 * 537 * Board-specific early init code calls this (probably during arch_initcall) 538 * with segments of the SPI device table. Any device nodes are created later, 539 * after the relevant parent SPI controller (bus_num) is defined. We keep 540 * this table of devices forever, so that reloading a controller driver will 541 * not make Linux forget about these hard-wired devices. 542 * 543 * Other code can also call this, e.g. a particular add-on board might provide 544 * SPI devices through its expansion connector, so code initializing that board 545 * would naturally declare its SPI devices. 546 * 547 * The board info passed can safely be __initdata ... but be careful of 548 * any embedded pointers (platform_data, etc), they're copied as-is. 549 */ 550 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 551 { 552 struct boardinfo *bi; 553 int i; 554 555 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 556 if (!bi) 557 return -ENOMEM; 558 559 for (i = 0; i < n; i++, bi++, info++) { 560 struct spi_master *master; 561 562 memcpy(&bi->board_info, info, sizeof(*info)); 563 mutex_lock(&board_lock); 564 list_add_tail(&bi->list, &board_list); 565 list_for_each_entry(master, &spi_master_list, list) 566 spi_match_master_to_boardinfo(master, &bi->board_info); 567 mutex_unlock(&board_lock); 568 } 569 570 return 0; 571 } 572 573 /*-------------------------------------------------------------------------*/ 574 575 static void spi_set_cs(struct spi_device *spi, bool enable) 576 { 577 if (spi->mode & SPI_CS_HIGH) 578 enable = !enable; 579 580 if (spi->cs_gpio >= 0) 581 gpio_set_value(spi->cs_gpio, !enable); 582 else if (spi->master->set_cs) 583 spi->master->set_cs(spi, !enable); 584 } 585 586 #ifdef CONFIG_HAS_DMA 587 static int spi_map_buf(struct spi_master *master, struct device *dev, 588 struct sg_table *sgt, void *buf, size_t len, 589 enum dma_data_direction dir) 590 { 591 const bool vmalloced_buf = is_vmalloc_addr(buf); 592 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len; 593 const int sgs = DIV_ROUND_UP(len, desc_len); 594 struct page *vm_page; 595 void *sg_buf; 596 size_t min; 597 int i, ret; 598 599 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 600 if (ret != 0) 601 return ret; 602 603 for (i = 0; i < sgs; i++) { 604 min = min_t(size_t, len, desc_len); 605 606 if (vmalloced_buf) { 607 vm_page = vmalloc_to_page(buf); 608 if (!vm_page) { 609 sg_free_table(sgt); 610 return -ENOMEM; 611 } 612 sg_buf = page_address(vm_page) + 613 ((size_t)buf & ~PAGE_MASK); 614 } else { 615 sg_buf = buf; 616 } 617 618 sg_set_buf(&sgt->sgl[i], sg_buf, min); 619 620 buf += min; 621 len -= min; 622 } 623 624 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 625 if (!ret) 626 ret = -ENOMEM; 627 if (ret < 0) { 628 sg_free_table(sgt); 629 return ret; 630 } 631 632 sgt->nents = ret; 633 634 return 0; 635 } 636 637 static void spi_unmap_buf(struct spi_master *master, struct device *dev, 638 struct sg_table *sgt, enum dma_data_direction dir) 639 { 640 if (sgt->orig_nents) { 641 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 642 sg_free_table(sgt); 643 } 644 } 645 646 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg) 647 { 648 struct device *tx_dev, *rx_dev; 649 struct spi_transfer *xfer; 650 int ret; 651 652 if (!master->can_dma) 653 return 0; 654 655 tx_dev = master->dma_tx->device->dev; 656 rx_dev = master->dma_rx->device->dev; 657 658 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 659 if (!master->can_dma(master, msg->spi, xfer)) 660 continue; 661 662 if (xfer->tx_buf != NULL) { 663 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg, 664 (void *)xfer->tx_buf, xfer->len, 665 DMA_TO_DEVICE); 666 if (ret != 0) 667 return ret; 668 } 669 670 if (xfer->rx_buf != NULL) { 671 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg, 672 xfer->rx_buf, xfer->len, 673 DMA_FROM_DEVICE); 674 if (ret != 0) { 675 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, 676 DMA_TO_DEVICE); 677 return ret; 678 } 679 } 680 } 681 682 master->cur_msg_mapped = true; 683 684 return 0; 685 } 686 687 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg) 688 { 689 struct spi_transfer *xfer; 690 struct device *tx_dev, *rx_dev; 691 692 if (!master->cur_msg_mapped || !master->can_dma) 693 return 0; 694 695 tx_dev = master->dma_tx->device->dev; 696 rx_dev = master->dma_rx->device->dev; 697 698 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 699 if (!master->can_dma(master, msg->spi, xfer)) 700 continue; 701 702 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 703 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 704 } 705 706 return 0; 707 } 708 #else /* !CONFIG_HAS_DMA */ 709 static inline int __spi_map_msg(struct spi_master *master, 710 struct spi_message *msg) 711 { 712 return 0; 713 } 714 715 static inline int spi_unmap_msg(struct spi_master *master, 716 struct spi_message *msg) 717 { 718 return 0; 719 } 720 #endif /* !CONFIG_HAS_DMA */ 721 722 static int spi_map_msg(struct spi_master *master, struct spi_message *msg) 723 { 724 struct spi_transfer *xfer; 725 void *tmp; 726 unsigned int max_tx, max_rx; 727 728 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) { 729 max_tx = 0; 730 max_rx = 0; 731 732 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 733 if ((master->flags & SPI_MASTER_MUST_TX) && 734 !xfer->tx_buf) 735 max_tx = max(xfer->len, max_tx); 736 if ((master->flags & SPI_MASTER_MUST_RX) && 737 !xfer->rx_buf) 738 max_rx = max(xfer->len, max_rx); 739 } 740 741 if (max_tx) { 742 tmp = krealloc(master->dummy_tx, max_tx, 743 GFP_KERNEL | GFP_DMA); 744 if (!tmp) 745 return -ENOMEM; 746 master->dummy_tx = tmp; 747 memset(tmp, 0, max_tx); 748 } 749 750 if (max_rx) { 751 tmp = krealloc(master->dummy_rx, max_rx, 752 GFP_KERNEL | GFP_DMA); 753 if (!tmp) 754 return -ENOMEM; 755 master->dummy_rx = tmp; 756 } 757 758 if (max_tx || max_rx) { 759 list_for_each_entry(xfer, &msg->transfers, 760 transfer_list) { 761 if (!xfer->tx_buf) 762 xfer->tx_buf = master->dummy_tx; 763 if (!xfer->rx_buf) 764 xfer->rx_buf = master->dummy_rx; 765 } 766 } 767 } 768 769 return __spi_map_msg(master, msg); 770 } 771 772 /* 773 * spi_transfer_one_message - Default implementation of transfer_one_message() 774 * 775 * This is a standard implementation of transfer_one_message() for 776 * drivers which impelment a transfer_one() operation. It provides 777 * standard handling of delays and chip select management. 778 */ 779 static int spi_transfer_one_message(struct spi_master *master, 780 struct spi_message *msg) 781 { 782 struct spi_transfer *xfer; 783 bool keep_cs = false; 784 int ret = 0; 785 int ms = 1; 786 787 spi_set_cs(msg->spi, true); 788 789 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 790 trace_spi_transfer_start(msg, xfer); 791 792 reinit_completion(&master->xfer_completion); 793 794 ret = master->transfer_one(master, msg->spi, xfer); 795 if (ret < 0) { 796 dev_err(&msg->spi->dev, 797 "SPI transfer failed: %d\n", ret); 798 goto out; 799 } 800 801 if (ret > 0) { 802 ret = 0; 803 ms = xfer->len * 8 * 1000 / xfer->speed_hz; 804 ms += ms + 100; /* some tolerance */ 805 806 ms = wait_for_completion_timeout(&master->xfer_completion, 807 msecs_to_jiffies(ms)); 808 } 809 810 if (ms == 0) { 811 dev_err(&msg->spi->dev, "SPI transfer timed out\n"); 812 msg->status = -ETIMEDOUT; 813 } 814 815 trace_spi_transfer_stop(msg, xfer); 816 817 if (msg->status != -EINPROGRESS) 818 goto out; 819 820 if (xfer->delay_usecs) 821 udelay(xfer->delay_usecs); 822 823 if (xfer->cs_change) { 824 if (list_is_last(&xfer->transfer_list, 825 &msg->transfers)) { 826 keep_cs = true; 827 } else { 828 spi_set_cs(msg->spi, false); 829 udelay(10); 830 spi_set_cs(msg->spi, true); 831 } 832 } 833 834 msg->actual_length += xfer->len; 835 } 836 837 out: 838 if (ret != 0 || !keep_cs) 839 spi_set_cs(msg->spi, false); 840 841 if (msg->status == -EINPROGRESS) 842 msg->status = ret; 843 844 spi_finalize_current_message(master); 845 846 return ret; 847 } 848 849 /** 850 * spi_finalize_current_transfer - report completion of a transfer 851 * 852 * Called by SPI drivers using the core transfer_one_message() 853 * implementation to notify it that the current interrupt driven 854 * transfer has finished and the next one may be scheduled. 855 */ 856 void spi_finalize_current_transfer(struct spi_master *master) 857 { 858 complete(&master->xfer_completion); 859 } 860 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 861 862 /** 863 * spi_pump_messages - kthread work function which processes spi message queue 864 * @work: pointer to kthread work struct contained in the master struct 865 * 866 * This function checks if there is any spi message in the queue that 867 * needs processing and if so call out to the driver to initialize hardware 868 * and transfer each message. 869 * 870 */ 871 static void spi_pump_messages(struct kthread_work *work) 872 { 873 struct spi_master *master = 874 container_of(work, struct spi_master, pump_messages); 875 unsigned long flags; 876 bool was_busy = false; 877 int ret; 878 879 /* Lock queue and check for queue work */ 880 spin_lock_irqsave(&master->queue_lock, flags); 881 if (list_empty(&master->queue) || !master->running) { 882 if (!master->busy) { 883 spin_unlock_irqrestore(&master->queue_lock, flags); 884 return; 885 } 886 master->busy = false; 887 spin_unlock_irqrestore(&master->queue_lock, flags); 888 kfree(master->dummy_rx); 889 master->dummy_rx = NULL; 890 kfree(master->dummy_tx); 891 master->dummy_tx = NULL; 892 if (master->unprepare_transfer_hardware && 893 master->unprepare_transfer_hardware(master)) 894 dev_err(&master->dev, 895 "failed to unprepare transfer hardware\n"); 896 if (master->auto_runtime_pm) { 897 pm_runtime_mark_last_busy(master->dev.parent); 898 pm_runtime_put_autosuspend(master->dev.parent); 899 } 900 trace_spi_master_idle(master); 901 return; 902 } 903 904 /* Make sure we are not already running a message */ 905 if (master->cur_msg) { 906 spin_unlock_irqrestore(&master->queue_lock, flags); 907 return; 908 } 909 /* Extract head of queue */ 910 master->cur_msg = 911 list_first_entry(&master->queue, struct spi_message, queue); 912 913 list_del_init(&master->cur_msg->queue); 914 if (master->busy) 915 was_busy = true; 916 else 917 master->busy = true; 918 spin_unlock_irqrestore(&master->queue_lock, flags); 919 920 if (!was_busy && master->auto_runtime_pm) { 921 ret = pm_runtime_get_sync(master->dev.parent); 922 if (ret < 0) { 923 dev_err(&master->dev, "Failed to power device: %d\n", 924 ret); 925 return; 926 } 927 } 928 929 if (!was_busy) 930 trace_spi_master_busy(master); 931 932 if (!was_busy && master->prepare_transfer_hardware) { 933 ret = master->prepare_transfer_hardware(master); 934 if (ret) { 935 dev_err(&master->dev, 936 "failed to prepare transfer hardware\n"); 937 938 if (master->auto_runtime_pm) 939 pm_runtime_put(master->dev.parent); 940 return; 941 } 942 } 943 944 trace_spi_message_start(master->cur_msg); 945 946 if (master->prepare_message) { 947 ret = master->prepare_message(master, master->cur_msg); 948 if (ret) { 949 dev_err(&master->dev, 950 "failed to prepare message: %d\n", ret); 951 master->cur_msg->status = ret; 952 spi_finalize_current_message(master); 953 return; 954 } 955 master->cur_msg_prepared = true; 956 } 957 958 ret = spi_map_msg(master, master->cur_msg); 959 if (ret) { 960 master->cur_msg->status = ret; 961 spi_finalize_current_message(master); 962 return; 963 } 964 965 ret = master->transfer_one_message(master, master->cur_msg); 966 if (ret) { 967 dev_err(&master->dev, 968 "failed to transfer one message from queue\n"); 969 return; 970 } 971 } 972 973 static int spi_init_queue(struct spi_master *master) 974 { 975 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 976 977 INIT_LIST_HEAD(&master->queue); 978 spin_lock_init(&master->queue_lock); 979 980 master->running = false; 981 master->busy = false; 982 983 init_kthread_worker(&master->kworker); 984 master->kworker_task = kthread_run(kthread_worker_fn, 985 &master->kworker, "%s", 986 dev_name(&master->dev)); 987 if (IS_ERR(master->kworker_task)) { 988 dev_err(&master->dev, "failed to create message pump task\n"); 989 return -ENOMEM; 990 } 991 init_kthread_work(&master->pump_messages, spi_pump_messages); 992 993 /* 994 * Master config will indicate if this controller should run the 995 * message pump with high (realtime) priority to reduce the transfer 996 * latency on the bus by minimising the delay between a transfer 997 * request and the scheduling of the message pump thread. Without this 998 * setting the message pump thread will remain at default priority. 999 */ 1000 if (master->rt) { 1001 dev_info(&master->dev, 1002 "will run message pump with realtime priority\n"); 1003 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 1004 } 1005 1006 return 0; 1007 } 1008 1009 /** 1010 * spi_get_next_queued_message() - called by driver to check for queued 1011 * messages 1012 * @master: the master to check for queued messages 1013 * 1014 * If there are more messages in the queue, the next message is returned from 1015 * this call. 1016 */ 1017 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 1018 { 1019 struct spi_message *next; 1020 unsigned long flags; 1021 1022 /* get a pointer to the next message, if any */ 1023 spin_lock_irqsave(&master->queue_lock, flags); 1024 next = list_first_entry_or_null(&master->queue, struct spi_message, 1025 queue); 1026 spin_unlock_irqrestore(&master->queue_lock, flags); 1027 1028 return next; 1029 } 1030 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1031 1032 /** 1033 * spi_finalize_current_message() - the current message is complete 1034 * @master: the master to return the message to 1035 * 1036 * Called by the driver to notify the core that the message in the front of the 1037 * queue is complete and can be removed from the queue. 1038 */ 1039 void spi_finalize_current_message(struct spi_master *master) 1040 { 1041 struct spi_message *mesg; 1042 unsigned long flags; 1043 int ret; 1044 1045 spin_lock_irqsave(&master->queue_lock, flags); 1046 mesg = master->cur_msg; 1047 master->cur_msg = NULL; 1048 1049 queue_kthread_work(&master->kworker, &master->pump_messages); 1050 spin_unlock_irqrestore(&master->queue_lock, flags); 1051 1052 spi_unmap_msg(master, mesg); 1053 1054 if (master->cur_msg_prepared && master->unprepare_message) { 1055 ret = master->unprepare_message(master, mesg); 1056 if (ret) { 1057 dev_err(&master->dev, 1058 "failed to unprepare message: %d\n", ret); 1059 } 1060 } 1061 master->cur_msg_prepared = false; 1062 1063 mesg->state = NULL; 1064 if (mesg->complete) 1065 mesg->complete(mesg->context); 1066 1067 trace_spi_message_done(mesg); 1068 } 1069 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1070 1071 static int spi_start_queue(struct spi_master *master) 1072 { 1073 unsigned long flags; 1074 1075 spin_lock_irqsave(&master->queue_lock, flags); 1076 1077 if (master->running || master->busy) { 1078 spin_unlock_irqrestore(&master->queue_lock, flags); 1079 return -EBUSY; 1080 } 1081 1082 master->running = true; 1083 master->cur_msg = NULL; 1084 spin_unlock_irqrestore(&master->queue_lock, flags); 1085 1086 queue_kthread_work(&master->kworker, &master->pump_messages); 1087 1088 return 0; 1089 } 1090 1091 static int spi_stop_queue(struct spi_master *master) 1092 { 1093 unsigned long flags; 1094 unsigned limit = 500; 1095 int ret = 0; 1096 1097 spin_lock_irqsave(&master->queue_lock, flags); 1098 1099 /* 1100 * This is a bit lame, but is optimized for the common execution path. 1101 * A wait_queue on the master->busy could be used, but then the common 1102 * execution path (pump_messages) would be required to call wake_up or 1103 * friends on every SPI message. Do this instead. 1104 */ 1105 while ((!list_empty(&master->queue) || master->busy) && limit--) { 1106 spin_unlock_irqrestore(&master->queue_lock, flags); 1107 usleep_range(10000, 11000); 1108 spin_lock_irqsave(&master->queue_lock, flags); 1109 } 1110 1111 if (!list_empty(&master->queue) || master->busy) 1112 ret = -EBUSY; 1113 else 1114 master->running = false; 1115 1116 spin_unlock_irqrestore(&master->queue_lock, flags); 1117 1118 if (ret) { 1119 dev_warn(&master->dev, 1120 "could not stop message queue\n"); 1121 return ret; 1122 } 1123 return ret; 1124 } 1125 1126 static int spi_destroy_queue(struct spi_master *master) 1127 { 1128 int ret; 1129 1130 ret = spi_stop_queue(master); 1131 1132 /* 1133 * flush_kthread_worker will block until all work is done. 1134 * If the reason that stop_queue timed out is that the work will never 1135 * finish, then it does no good to call flush/stop thread, so 1136 * return anyway. 1137 */ 1138 if (ret) { 1139 dev_err(&master->dev, "problem destroying queue\n"); 1140 return ret; 1141 } 1142 1143 flush_kthread_worker(&master->kworker); 1144 kthread_stop(master->kworker_task); 1145 1146 return 0; 1147 } 1148 1149 /** 1150 * spi_queued_transfer - transfer function for queued transfers 1151 * @spi: spi device which is requesting transfer 1152 * @msg: spi message which is to handled is queued to driver queue 1153 */ 1154 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1155 { 1156 struct spi_master *master = spi->master; 1157 unsigned long flags; 1158 1159 spin_lock_irqsave(&master->queue_lock, flags); 1160 1161 if (!master->running) { 1162 spin_unlock_irqrestore(&master->queue_lock, flags); 1163 return -ESHUTDOWN; 1164 } 1165 msg->actual_length = 0; 1166 msg->status = -EINPROGRESS; 1167 1168 list_add_tail(&msg->queue, &master->queue); 1169 if (!master->busy) 1170 queue_kthread_work(&master->kworker, &master->pump_messages); 1171 1172 spin_unlock_irqrestore(&master->queue_lock, flags); 1173 return 0; 1174 } 1175 1176 static int spi_master_initialize_queue(struct spi_master *master) 1177 { 1178 int ret; 1179 1180 master->transfer = spi_queued_transfer; 1181 if (!master->transfer_one_message) 1182 master->transfer_one_message = spi_transfer_one_message; 1183 1184 /* Initialize and start queue */ 1185 ret = spi_init_queue(master); 1186 if (ret) { 1187 dev_err(&master->dev, "problem initializing queue\n"); 1188 goto err_init_queue; 1189 } 1190 master->queued = true; 1191 ret = spi_start_queue(master); 1192 if (ret) { 1193 dev_err(&master->dev, "problem starting queue\n"); 1194 goto err_start_queue; 1195 } 1196 1197 return 0; 1198 1199 err_start_queue: 1200 spi_destroy_queue(master); 1201 err_init_queue: 1202 return ret; 1203 } 1204 1205 /*-------------------------------------------------------------------------*/ 1206 1207 #if defined(CONFIG_OF) 1208 /** 1209 * of_register_spi_devices() - Register child devices onto the SPI bus 1210 * @master: Pointer to spi_master device 1211 * 1212 * Registers an spi_device for each child node of master node which has a 'reg' 1213 * property. 1214 */ 1215 static void of_register_spi_devices(struct spi_master *master) 1216 { 1217 struct spi_device *spi; 1218 struct device_node *nc; 1219 int rc; 1220 u32 value; 1221 1222 if (!master->dev.of_node) 1223 return; 1224 1225 for_each_available_child_of_node(master->dev.of_node, nc) { 1226 /* Alloc an spi_device */ 1227 spi = spi_alloc_device(master); 1228 if (!spi) { 1229 dev_err(&master->dev, "spi_device alloc error for %s\n", 1230 nc->full_name); 1231 spi_dev_put(spi); 1232 continue; 1233 } 1234 1235 /* Select device driver */ 1236 if (of_modalias_node(nc, spi->modalias, 1237 sizeof(spi->modalias)) < 0) { 1238 dev_err(&master->dev, "cannot find modalias for %s\n", 1239 nc->full_name); 1240 spi_dev_put(spi); 1241 continue; 1242 } 1243 1244 /* Device address */ 1245 rc = of_property_read_u32(nc, "reg", &value); 1246 if (rc) { 1247 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", 1248 nc->full_name, rc); 1249 spi_dev_put(spi); 1250 continue; 1251 } 1252 spi->chip_select = value; 1253 1254 /* Mode (clock phase/polarity/etc.) */ 1255 if (of_find_property(nc, "spi-cpha", NULL)) 1256 spi->mode |= SPI_CPHA; 1257 if (of_find_property(nc, "spi-cpol", NULL)) 1258 spi->mode |= SPI_CPOL; 1259 if (of_find_property(nc, "spi-cs-high", NULL)) 1260 spi->mode |= SPI_CS_HIGH; 1261 if (of_find_property(nc, "spi-3wire", NULL)) 1262 spi->mode |= SPI_3WIRE; 1263 if (of_find_property(nc, "spi-lsb-first", NULL)) 1264 spi->mode |= SPI_LSB_FIRST; 1265 1266 /* Device DUAL/QUAD mode */ 1267 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1268 switch (value) { 1269 case 1: 1270 break; 1271 case 2: 1272 spi->mode |= SPI_TX_DUAL; 1273 break; 1274 case 4: 1275 spi->mode |= SPI_TX_QUAD; 1276 break; 1277 default: 1278 dev_warn(&master->dev, 1279 "spi-tx-bus-width %d not supported\n", 1280 value); 1281 break; 1282 } 1283 } 1284 1285 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1286 switch (value) { 1287 case 1: 1288 break; 1289 case 2: 1290 spi->mode |= SPI_RX_DUAL; 1291 break; 1292 case 4: 1293 spi->mode |= SPI_RX_QUAD; 1294 break; 1295 default: 1296 dev_warn(&master->dev, 1297 "spi-rx-bus-width %d not supported\n", 1298 value); 1299 break; 1300 } 1301 } 1302 1303 /* Device speed */ 1304 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1305 if (rc) { 1306 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", 1307 nc->full_name, rc); 1308 spi_dev_put(spi); 1309 continue; 1310 } 1311 spi->max_speed_hz = value; 1312 1313 /* IRQ */ 1314 spi->irq = irq_of_parse_and_map(nc, 0); 1315 1316 /* Store a pointer to the node in the device structure */ 1317 of_node_get(nc); 1318 spi->dev.of_node = nc; 1319 1320 /* Register the new device */ 1321 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias); 1322 rc = spi_add_device(spi); 1323 if (rc) { 1324 dev_err(&master->dev, "spi_device register error %s\n", 1325 nc->full_name); 1326 spi_dev_put(spi); 1327 } 1328 1329 } 1330 } 1331 #else 1332 static void of_register_spi_devices(struct spi_master *master) { } 1333 #endif 1334 1335 #ifdef CONFIG_ACPI 1336 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1337 { 1338 struct spi_device *spi = data; 1339 1340 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1341 struct acpi_resource_spi_serialbus *sb; 1342 1343 sb = &ares->data.spi_serial_bus; 1344 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1345 spi->chip_select = sb->device_selection; 1346 spi->max_speed_hz = sb->connection_speed; 1347 1348 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1349 spi->mode |= SPI_CPHA; 1350 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1351 spi->mode |= SPI_CPOL; 1352 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1353 spi->mode |= SPI_CS_HIGH; 1354 } 1355 } else if (spi->irq < 0) { 1356 struct resource r; 1357 1358 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1359 spi->irq = r.start; 1360 } 1361 1362 /* Always tell the ACPI core to skip this resource */ 1363 return 1; 1364 } 1365 1366 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1367 void *data, void **return_value) 1368 { 1369 struct spi_master *master = data; 1370 struct list_head resource_list; 1371 struct acpi_device *adev; 1372 struct spi_device *spi; 1373 int ret; 1374 1375 if (acpi_bus_get_device(handle, &adev)) 1376 return AE_OK; 1377 if (acpi_bus_get_status(adev) || !adev->status.present) 1378 return AE_OK; 1379 1380 spi = spi_alloc_device(master); 1381 if (!spi) { 1382 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 1383 dev_name(&adev->dev)); 1384 return AE_NO_MEMORY; 1385 } 1386 1387 ACPI_COMPANION_SET(&spi->dev, adev); 1388 spi->irq = -1; 1389 1390 INIT_LIST_HEAD(&resource_list); 1391 ret = acpi_dev_get_resources(adev, &resource_list, 1392 acpi_spi_add_resource, spi); 1393 acpi_dev_free_resource_list(&resource_list); 1394 1395 if (ret < 0 || !spi->max_speed_hz) { 1396 spi_dev_put(spi); 1397 return AE_OK; 1398 } 1399 1400 adev->power.flags.ignore_parent = true; 1401 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); 1402 if (spi_add_device(spi)) { 1403 adev->power.flags.ignore_parent = false; 1404 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 1405 dev_name(&adev->dev)); 1406 spi_dev_put(spi); 1407 } 1408 1409 return AE_OK; 1410 } 1411 1412 static void acpi_register_spi_devices(struct spi_master *master) 1413 { 1414 acpi_status status; 1415 acpi_handle handle; 1416 1417 handle = ACPI_HANDLE(master->dev.parent); 1418 if (!handle) 1419 return; 1420 1421 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1422 acpi_spi_add_device, NULL, 1423 master, NULL); 1424 if (ACPI_FAILURE(status)) 1425 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 1426 } 1427 #else 1428 static inline void acpi_register_spi_devices(struct spi_master *master) {} 1429 #endif /* CONFIG_ACPI */ 1430 1431 static void spi_master_release(struct device *dev) 1432 { 1433 struct spi_master *master; 1434 1435 master = container_of(dev, struct spi_master, dev); 1436 kfree(master); 1437 } 1438 1439 static struct class spi_master_class = { 1440 .name = "spi_master", 1441 .owner = THIS_MODULE, 1442 .dev_release = spi_master_release, 1443 }; 1444 1445 1446 1447 /** 1448 * spi_alloc_master - allocate SPI master controller 1449 * @dev: the controller, possibly using the platform_bus 1450 * @size: how much zeroed driver-private data to allocate; the pointer to this 1451 * memory is in the driver_data field of the returned device, 1452 * accessible with spi_master_get_devdata(). 1453 * Context: can sleep 1454 * 1455 * This call is used only by SPI master controller drivers, which are the 1456 * only ones directly touching chip registers. It's how they allocate 1457 * an spi_master structure, prior to calling spi_register_master(). 1458 * 1459 * This must be called from context that can sleep. It returns the SPI 1460 * master structure on success, else NULL. 1461 * 1462 * The caller is responsible for assigning the bus number and initializing 1463 * the master's methods before calling spi_register_master(); and (after errors 1464 * adding the device) calling spi_master_put() and kfree() to prevent a memory 1465 * leak. 1466 */ 1467 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1468 { 1469 struct spi_master *master; 1470 1471 if (!dev) 1472 return NULL; 1473 1474 master = kzalloc(size + sizeof(*master), GFP_KERNEL); 1475 if (!master) 1476 return NULL; 1477 1478 device_initialize(&master->dev); 1479 master->bus_num = -1; 1480 master->num_chipselect = 1; 1481 master->dev.class = &spi_master_class; 1482 master->dev.parent = get_device(dev); 1483 spi_master_set_devdata(master, &master[1]); 1484 1485 return master; 1486 } 1487 EXPORT_SYMBOL_GPL(spi_alloc_master); 1488 1489 #ifdef CONFIG_OF 1490 static int of_spi_register_master(struct spi_master *master) 1491 { 1492 int nb, i, *cs; 1493 struct device_node *np = master->dev.of_node; 1494 1495 if (!np) 1496 return 0; 1497 1498 nb = of_gpio_named_count(np, "cs-gpios"); 1499 master->num_chipselect = max_t(int, nb, master->num_chipselect); 1500 1501 /* Return error only for an incorrectly formed cs-gpios property */ 1502 if (nb == 0 || nb == -ENOENT) 1503 return 0; 1504 else if (nb < 0) 1505 return nb; 1506 1507 cs = devm_kzalloc(&master->dev, 1508 sizeof(int) * master->num_chipselect, 1509 GFP_KERNEL); 1510 master->cs_gpios = cs; 1511 1512 if (!master->cs_gpios) 1513 return -ENOMEM; 1514 1515 for (i = 0; i < master->num_chipselect; i++) 1516 cs[i] = -ENOENT; 1517 1518 for (i = 0; i < nb; i++) 1519 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1520 1521 return 0; 1522 } 1523 #else 1524 static int of_spi_register_master(struct spi_master *master) 1525 { 1526 return 0; 1527 } 1528 #endif 1529 1530 /** 1531 * spi_register_master - register SPI master controller 1532 * @master: initialized master, originally from spi_alloc_master() 1533 * Context: can sleep 1534 * 1535 * SPI master controllers connect to their drivers using some non-SPI bus, 1536 * such as the platform bus. The final stage of probe() in that code 1537 * includes calling spi_register_master() to hook up to this SPI bus glue. 1538 * 1539 * SPI controllers use board specific (often SOC specific) bus numbers, 1540 * and board-specific addressing for SPI devices combines those numbers 1541 * with chip select numbers. Since SPI does not directly support dynamic 1542 * device identification, boards need configuration tables telling which 1543 * chip is at which address. 1544 * 1545 * This must be called from context that can sleep. It returns zero on 1546 * success, else a negative error code (dropping the master's refcount). 1547 * After a successful return, the caller is responsible for calling 1548 * spi_unregister_master(). 1549 */ 1550 int spi_register_master(struct spi_master *master) 1551 { 1552 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1553 struct device *dev = master->dev.parent; 1554 struct boardinfo *bi; 1555 int status = -ENODEV; 1556 int dynamic = 0; 1557 1558 if (!dev) 1559 return -ENODEV; 1560 1561 status = of_spi_register_master(master); 1562 if (status) 1563 return status; 1564 1565 /* even if it's just one always-selected device, there must 1566 * be at least one chipselect 1567 */ 1568 if (master->num_chipselect == 0) 1569 return -EINVAL; 1570 1571 if ((master->bus_num < 0) && master->dev.of_node) 1572 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1573 1574 /* convention: dynamically assigned bus IDs count down from the max */ 1575 if (master->bus_num < 0) { 1576 /* FIXME switch to an IDR based scheme, something like 1577 * I2C now uses, so we can't run out of "dynamic" IDs 1578 */ 1579 master->bus_num = atomic_dec_return(&dyn_bus_id); 1580 dynamic = 1; 1581 } 1582 1583 spin_lock_init(&master->bus_lock_spinlock); 1584 mutex_init(&master->bus_lock_mutex); 1585 master->bus_lock_flag = 0; 1586 init_completion(&master->xfer_completion); 1587 if (!master->max_dma_len) 1588 master->max_dma_len = INT_MAX; 1589 1590 /* register the device, then userspace will see it. 1591 * registration fails if the bus ID is in use. 1592 */ 1593 dev_set_name(&master->dev, "spi%u", master->bus_num); 1594 status = device_add(&master->dev); 1595 if (status < 0) 1596 goto done; 1597 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1598 dynamic ? " (dynamic)" : ""); 1599 1600 /* If we're using a queued driver, start the queue */ 1601 if (master->transfer) 1602 dev_info(dev, "master is unqueued, this is deprecated\n"); 1603 else { 1604 status = spi_master_initialize_queue(master); 1605 if (status) { 1606 device_del(&master->dev); 1607 goto done; 1608 } 1609 } 1610 1611 mutex_lock(&board_lock); 1612 list_add_tail(&master->list, &spi_master_list); 1613 list_for_each_entry(bi, &board_list, list) 1614 spi_match_master_to_boardinfo(master, &bi->board_info); 1615 mutex_unlock(&board_lock); 1616 1617 /* Register devices from the device tree and ACPI */ 1618 of_register_spi_devices(master); 1619 acpi_register_spi_devices(master); 1620 done: 1621 return status; 1622 } 1623 EXPORT_SYMBOL_GPL(spi_register_master); 1624 1625 static void devm_spi_unregister(struct device *dev, void *res) 1626 { 1627 spi_unregister_master(*(struct spi_master **)res); 1628 } 1629 1630 /** 1631 * dev_spi_register_master - register managed SPI master controller 1632 * @dev: device managing SPI master 1633 * @master: initialized master, originally from spi_alloc_master() 1634 * Context: can sleep 1635 * 1636 * Register a SPI device as with spi_register_master() which will 1637 * automatically be unregister 1638 */ 1639 int devm_spi_register_master(struct device *dev, struct spi_master *master) 1640 { 1641 struct spi_master **ptr; 1642 int ret; 1643 1644 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 1645 if (!ptr) 1646 return -ENOMEM; 1647 1648 ret = spi_register_master(master); 1649 if (!ret) { 1650 *ptr = master; 1651 devres_add(dev, ptr); 1652 } else { 1653 devres_free(ptr); 1654 } 1655 1656 return ret; 1657 } 1658 EXPORT_SYMBOL_GPL(devm_spi_register_master); 1659 1660 static int __unregister(struct device *dev, void *null) 1661 { 1662 spi_unregister_device(to_spi_device(dev)); 1663 return 0; 1664 } 1665 1666 /** 1667 * spi_unregister_master - unregister SPI master controller 1668 * @master: the master being unregistered 1669 * Context: can sleep 1670 * 1671 * This call is used only by SPI master controller drivers, which are the 1672 * only ones directly touching chip registers. 1673 * 1674 * This must be called from context that can sleep. 1675 */ 1676 void spi_unregister_master(struct spi_master *master) 1677 { 1678 int dummy; 1679 1680 if (master->queued) { 1681 if (spi_destroy_queue(master)) 1682 dev_err(&master->dev, "queue remove failed\n"); 1683 } 1684 1685 mutex_lock(&board_lock); 1686 list_del(&master->list); 1687 mutex_unlock(&board_lock); 1688 1689 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1690 device_unregister(&master->dev); 1691 } 1692 EXPORT_SYMBOL_GPL(spi_unregister_master); 1693 1694 int spi_master_suspend(struct spi_master *master) 1695 { 1696 int ret; 1697 1698 /* Basically no-ops for non-queued masters */ 1699 if (!master->queued) 1700 return 0; 1701 1702 ret = spi_stop_queue(master); 1703 if (ret) 1704 dev_err(&master->dev, "queue stop failed\n"); 1705 1706 return ret; 1707 } 1708 EXPORT_SYMBOL_GPL(spi_master_suspend); 1709 1710 int spi_master_resume(struct spi_master *master) 1711 { 1712 int ret; 1713 1714 if (!master->queued) 1715 return 0; 1716 1717 ret = spi_start_queue(master); 1718 if (ret) 1719 dev_err(&master->dev, "queue restart failed\n"); 1720 1721 return ret; 1722 } 1723 EXPORT_SYMBOL_GPL(spi_master_resume); 1724 1725 static int __spi_master_match(struct device *dev, const void *data) 1726 { 1727 struct spi_master *m; 1728 const u16 *bus_num = data; 1729 1730 m = container_of(dev, struct spi_master, dev); 1731 return m->bus_num == *bus_num; 1732 } 1733 1734 /** 1735 * spi_busnum_to_master - look up master associated with bus_num 1736 * @bus_num: the master's bus number 1737 * Context: can sleep 1738 * 1739 * This call may be used with devices that are registered after 1740 * arch init time. It returns a refcounted pointer to the relevant 1741 * spi_master (which the caller must release), or NULL if there is 1742 * no such master registered. 1743 */ 1744 struct spi_master *spi_busnum_to_master(u16 bus_num) 1745 { 1746 struct device *dev; 1747 struct spi_master *master = NULL; 1748 1749 dev = class_find_device(&spi_master_class, NULL, &bus_num, 1750 __spi_master_match); 1751 if (dev) 1752 master = container_of(dev, struct spi_master, dev); 1753 /* reference got in class_find_device */ 1754 return master; 1755 } 1756 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 1757 1758 1759 /*-------------------------------------------------------------------------*/ 1760 1761 /* Core methods for SPI master protocol drivers. Some of the 1762 * other core methods are currently defined as inline functions. 1763 */ 1764 1765 /** 1766 * spi_setup - setup SPI mode and clock rate 1767 * @spi: the device whose settings are being modified 1768 * Context: can sleep, and no requests are queued to the device 1769 * 1770 * SPI protocol drivers may need to update the transfer mode if the 1771 * device doesn't work with its default. They may likewise need 1772 * to update clock rates or word sizes from initial values. This function 1773 * changes those settings, and must be called from a context that can sleep. 1774 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 1775 * effect the next time the device is selected and data is transferred to 1776 * or from it. When this function returns, the spi device is deselected. 1777 * 1778 * Note that this call will fail if the protocol driver specifies an option 1779 * that the underlying controller or its driver does not support. For 1780 * example, not all hardware supports wire transfers using nine bit words, 1781 * LSB-first wire encoding, or active-high chipselects. 1782 */ 1783 int spi_setup(struct spi_device *spi) 1784 { 1785 unsigned bad_bits, ugly_bits; 1786 int status = 0; 1787 1788 /* check mode to prevent that DUAL and QUAD set at the same time 1789 */ 1790 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 1791 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 1792 dev_err(&spi->dev, 1793 "setup: can not select dual and quad at the same time\n"); 1794 return -EINVAL; 1795 } 1796 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 1797 */ 1798 if ((spi->mode & SPI_3WIRE) && (spi->mode & 1799 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 1800 return -EINVAL; 1801 /* help drivers fail *cleanly* when they need options 1802 * that aren't supported with their current master 1803 */ 1804 bad_bits = spi->mode & ~spi->master->mode_bits; 1805 ugly_bits = bad_bits & 1806 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); 1807 if (ugly_bits) { 1808 dev_warn(&spi->dev, 1809 "setup: ignoring unsupported mode bits %x\n", 1810 ugly_bits); 1811 spi->mode &= ~ugly_bits; 1812 bad_bits &= ~ugly_bits; 1813 } 1814 if (bad_bits) { 1815 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 1816 bad_bits); 1817 return -EINVAL; 1818 } 1819 1820 if (!spi->bits_per_word) 1821 spi->bits_per_word = 8; 1822 1823 if (!spi->max_speed_hz) 1824 spi->max_speed_hz = spi->master->max_speed_hz; 1825 1826 if (spi->master->setup) 1827 status = spi->master->setup(spi); 1828 1829 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 1830 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 1831 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 1832 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 1833 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 1834 (spi->mode & SPI_LOOP) ? "loopback, " : "", 1835 spi->bits_per_word, spi->max_speed_hz, 1836 status); 1837 1838 return status; 1839 } 1840 EXPORT_SYMBOL_GPL(spi_setup); 1841 1842 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 1843 { 1844 struct spi_master *master = spi->master; 1845 struct spi_transfer *xfer; 1846 int w_size; 1847 1848 if (list_empty(&message->transfers)) 1849 return -EINVAL; 1850 1851 /* Half-duplex links include original MicroWire, and ones with 1852 * only one data pin like SPI_3WIRE (switches direction) or where 1853 * either MOSI or MISO is missing. They can also be caused by 1854 * software limitations. 1855 */ 1856 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 1857 || (spi->mode & SPI_3WIRE)) { 1858 unsigned flags = master->flags; 1859 1860 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1861 if (xfer->rx_buf && xfer->tx_buf) 1862 return -EINVAL; 1863 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 1864 return -EINVAL; 1865 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 1866 return -EINVAL; 1867 } 1868 } 1869 1870 /** 1871 * Set transfer bits_per_word and max speed as spi device default if 1872 * it is not set for this transfer. 1873 * Set transfer tx_nbits and rx_nbits as single transfer default 1874 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 1875 */ 1876 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1877 message->frame_length += xfer->len; 1878 if (!xfer->bits_per_word) 1879 xfer->bits_per_word = spi->bits_per_word; 1880 1881 if (!xfer->speed_hz) 1882 xfer->speed_hz = spi->max_speed_hz; 1883 1884 if (master->max_speed_hz && 1885 xfer->speed_hz > master->max_speed_hz) 1886 xfer->speed_hz = master->max_speed_hz; 1887 1888 if (master->bits_per_word_mask) { 1889 /* Only 32 bits fit in the mask */ 1890 if (xfer->bits_per_word > 32) 1891 return -EINVAL; 1892 if (!(master->bits_per_word_mask & 1893 BIT(xfer->bits_per_word - 1))) 1894 return -EINVAL; 1895 } 1896 1897 /* 1898 * SPI transfer length should be multiple of SPI word size 1899 * where SPI word size should be power-of-two multiple 1900 */ 1901 if (xfer->bits_per_word <= 8) 1902 w_size = 1; 1903 else if (xfer->bits_per_word <= 16) 1904 w_size = 2; 1905 else 1906 w_size = 4; 1907 1908 /* No partial transfers accepted */ 1909 if (xfer->len % w_size) 1910 return -EINVAL; 1911 1912 if (xfer->speed_hz && master->min_speed_hz && 1913 xfer->speed_hz < master->min_speed_hz) 1914 return -EINVAL; 1915 1916 if (xfer->tx_buf && !xfer->tx_nbits) 1917 xfer->tx_nbits = SPI_NBITS_SINGLE; 1918 if (xfer->rx_buf && !xfer->rx_nbits) 1919 xfer->rx_nbits = SPI_NBITS_SINGLE; 1920 /* check transfer tx/rx_nbits: 1921 * 1. check the value matches one of single, dual and quad 1922 * 2. check tx/rx_nbits match the mode in spi_device 1923 */ 1924 if (xfer->tx_buf) { 1925 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 1926 xfer->tx_nbits != SPI_NBITS_DUAL && 1927 xfer->tx_nbits != SPI_NBITS_QUAD) 1928 return -EINVAL; 1929 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 1930 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 1931 return -EINVAL; 1932 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 1933 !(spi->mode & SPI_TX_QUAD)) 1934 return -EINVAL; 1935 } 1936 /* check transfer rx_nbits */ 1937 if (xfer->rx_buf) { 1938 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 1939 xfer->rx_nbits != SPI_NBITS_DUAL && 1940 xfer->rx_nbits != SPI_NBITS_QUAD) 1941 return -EINVAL; 1942 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 1943 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 1944 return -EINVAL; 1945 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 1946 !(spi->mode & SPI_RX_QUAD)) 1947 return -EINVAL; 1948 } 1949 } 1950 1951 message->status = -EINPROGRESS; 1952 1953 return 0; 1954 } 1955 1956 static int __spi_async(struct spi_device *spi, struct spi_message *message) 1957 { 1958 struct spi_master *master = spi->master; 1959 1960 message->spi = spi; 1961 1962 trace_spi_message_submit(message); 1963 1964 return master->transfer(spi, message); 1965 } 1966 1967 /** 1968 * spi_async - asynchronous SPI transfer 1969 * @spi: device with which data will be exchanged 1970 * @message: describes the data transfers, including completion callback 1971 * Context: any (irqs may be blocked, etc) 1972 * 1973 * This call may be used in_irq and other contexts which can't sleep, 1974 * as well as from task contexts which can sleep. 1975 * 1976 * The completion callback is invoked in a context which can't sleep. 1977 * Before that invocation, the value of message->status is undefined. 1978 * When the callback is issued, message->status holds either zero (to 1979 * indicate complete success) or a negative error code. After that 1980 * callback returns, the driver which issued the transfer request may 1981 * deallocate the associated memory; it's no longer in use by any SPI 1982 * core or controller driver code. 1983 * 1984 * Note that although all messages to a spi_device are handled in 1985 * FIFO order, messages may go to different devices in other orders. 1986 * Some device might be higher priority, or have various "hard" access 1987 * time requirements, for example. 1988 * 1989 * On detection of any fault during the transfer, processing of 1990 * the entire message is aborted, and the device is deselected. 1991 * Until returning from the associated message completion callback, 1992 * no other spi_message queued to that device will be processed. 1993 * (This rule applies equally to all the synchronous transfer calls, 1994 * which are wrappers around this core asynchronous primitive.) 1995 */ 1996 int spi_async(struct spi_device *spi, struct spi_message *message) 1997 { 1998 struct spi_master *master = spi->master; 1999 int ret; 2000 unsigned long flags; 2001 2002 ret = __spi_validate(spi, message); 2003 if (ret != 0) 2004 return ret; 2005 2006 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2007 2008 if (master->bus_lock_flag) 2009 ret = -EBUSY; 2010 else 2011 ret = __spi_async(spi, message); 2012 2013 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2014 2015 return ret; 2016 } 2017 EXPORT_SYMBOL_GPL(spi_async); 2018 2019 /** 2020 * spi_async_locked - version of spi_async with exclusive bus usage 2021 * @spi: device with which data will be exchanged 2022 * @message: describes the data transfers, including completion callback 2023 * Context: any (irqs may be blocked, etc) 2024 * 2025 * This call may be used in_irq and other contexts which can't sleep, 2026 * as well as from task contexts which can sleep. 2027 * 2028 * The completion callback is invoked in a context which can't sleep. 2029 * Before that invocation, the value of message->status is undefined. 2030 * When the callback is issued, message->status holds either zero (to 2031 * indicate complete success) or a negative error code. After that 2032 * callback returns, the driver which issued the transfer request may 2033 * deallocate the associated memory; it's no longer in use by any SPI 2034 * core or controller driver code. 2035 * 2036 * Note that although all messages to a spi_device are handled in 2037 * FIFO order, messages may go to different devices in other orders. 2038 * Some device might be higher priority, or have various "hard" access 2039 * time requirements, for example. 2040 * 2041 * On detection of any fault during the transfer, processing of 2042 * the entire message is aborted, and the device is deselected. 2043 * Until returning from the associated message completion callback, 2044 * no other spi_message queued to that device will be processed. 2045 * (This rule applies equally to all the synchronous transfer calls, 2046 * which are wrappers around this core asynchronous primitive.) 2047 */ 2048 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 2049 { 2050 struct spi_master *master = spi->master; 2051 int ret; 2052 unsigned long flags; 2053 2054 ret = __spi_validate(spi, message); 2055 if (ret != 0) 2056 return ret; 2057 2058 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2059 2060 ret = __spi_async(spi, message); 2061 2062 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2063 2064 return ret; 2065 2066 } 2067 EXPORT_SYMBOL_GPL(spi_async_locked); 2068 2069 2070 /*-------------------------------------------------------------------------*/ 2071 2072 /* Utility methods for SPI master protocol drivers, layered on 2073 * top of the core. Some other utility methods are defined as 2074 * inline functions. 2075 */ 2076 2077 static void spi_complete(void *arg) 2078 { 2079 complete(arg); 2080 } 2081 2082 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 2083 int bus_locked) 2084 { 2085 DECLARE_COMPLETION_ONSTACK(done); 2086 int status; 2087 struct spi_master *master = spi->master; 2088 2089 message->complete = spi_complete; 2090 message->context = &done; 2091 2092 if (!bus_locked) 2093 mutex_lock(&master->bus_lock_mutex); 2094 2095 status = spi_async_locked(spi, message); 2096 2097 if (!bus_locked) 2098 mutex_unlock(&master->bus_lock_mutex); 2099 2100 if (status == 0) { 2101 wait_for_completion(&done); 2102 status = message->status; 2103 } 2104 message->context = NULL; 2105 return status; 2106 } 2107 2108 /** 2109 * spi_sync - blocking/synchronous SPI data transfers 2110 * @spi: device with which data will be exchanged 2111 * @message: describes the data transfers 2112 * Context: can sleep 2113 * 2114 * This call may only be used from a context that may sleep. The sleep 2115 * is non-interruptible, and has no timeout. Low-overhead controller 2116 * drivers may DMA directly into and out of the message buffers. 2117 * 2118 * Note that the SPI device's chip select is active during the message, 2119 * and then is normally disabled between messages. Drivers for some 2120 * frequently-used devices may want to minimize costs of selecting a chip, 2121 * by leaving it selected in anticipation that the next message will go 2122 * to the same chip. (That may increase power usage.) 2123 * 2124 * Also, the caller is guaranteeing that the memory associated with the 2125 * message will not be freed before this call returns. 2126 * 2127 * It returns zero on success, else a negative error code. 2128 */ 2129 int spi_sync(struct spi_device *spi, struct spi_message *message) 2130 { 2131 return __spi_sync(spi, message, 0); 2132 } 2133 EXPORT_SYMBOL_GPL(spi_sync); 2134 2135 /** 2136 * spi_sync_locked - version of spi_sync with exclusive bus usage 2137 * @spi: device with which data will be exchanged 2138 * @message: describes the data transfers 2139 * Context: can sleep 2140 * 2141 * This call may only be used from a context that may sleep. The sleep 2142 * is non-interruptible, and has no timeout. Low-overhead controller 2143 * drivers may DMA directly into and out of the message buffers. 2144 * 2145 * This call should be used by drivers that require exclusive access to the 2146 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 2147 * be released by a spi_bus_unlock call when the exclusive access is over. 2148 * 2149 * It returns zero on success, else a negative error code. 2150 */ 2151 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 2152 { 2153 return __spi_sync(spi, message, 1); 2154 } 2155 EXPORT_SYMBOL_GPL(spi_sync_locked); 2156 2157 /** 2158 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 2159 * @master: SPI bus master that should be locked for exclusive bus access 2160 * Context: can sleep 2161 * 2162 * This call may only be used from a context that may sleep. The sleep 2163 * is non-interruptible, and has no timeout. 2164 * 2165 * This call should be used by drivers that require exclusive access to the 2166 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 2167 * exclusive access is over. Data transfer must be done by spi_sync_locked 2168 * and spi_async_locked calls when the SPI bus lock is held. 2169 * 2170 * It returns zero on success, else a negative error code. 2171 */ 2172 int spi_bus_lock(struct spi_master *master) 2173 { 2174 unsigned long flags; 2175 2176 mutex_lock(&master->bus_lock_mutex); 2177 2178 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2179 master->bus_lock_flag = 1; 2180 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2181 2182 /* mutex remains locked until spi_bus_unlock is called */ 2183 2184 return 0; 2185 } 2186 EXPORT_SYMBOL_GPL(spi_bus_lock); 2187 2188 /** 2189 * spi_bus_unlock - release the lock for exclusive SPI bus usage 2190 * @master: SPI bus master that was locked for exclusive bus access 2191 * Context: can sleep 2192 * 2193 * This call may only be used from a context that may sleep. The sleep 2194 * is non-interruptible, and has no timeout. 2195 * 2196 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 2197 * call. 2198 * 2199 * It returns zero on success, else a negative error code. 2200 */ 2201 int spi_bus_unlock(struct spi_master *master) 2202 { 2203 master->bus_lock_flag = 0; 2204 2205 mutex_unlock(&master->bus_lock_mutex); 2206 2207 return 0; 2208 } 2209 EXPORT_SYMBOL_GPL(spi_bus_unlock); 2210 2211 /* portable code must never pass more than 32 bytes */ 2212 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 2213 2214 static u8 *buf; 2215 2216 /** 2217 * spi_write_then_read - SPI synchronous write followed by read 2218 * @spi: device with which data will be exchanged 2219 * @txbuf: data to be written (need not be dma-safe) 2220 * @n_tx: size of txbuf, in bytes 2221 * @rxbuf: buffer into which data will be read (need not be dma-safe) 2222 * @n_rx: size of rxbuf, in bytes 2223 * Context: can sleep 2224 * 2225 * This performs a half duplex MicroWire style transaction with the 2226 * device, sending txbuf and then reading rxbuf. The return value 2227 * is zero for success, else a negative errno status code. 2228 * This call may only be used from a context that may sleep. 2229 * 2230 * Parameters to this routine are always copied using a small buffer; 2231 * portable code should never use this for more than 32 bytes. 2232 * Performance-sensitive or bulk transfer code should instead use 2233 * spi_{async,sync}() calls with dma-safe buffers. 2234 */ 2235 int spi_write_then_read(struct spi_device *spi, 2236 const void *txbuf, unsigned n_tx, 2237 void *rxbuf, unsigned n_rx) 2238 { 2239 static DEFINE_MUTEX(lock); 2240 2241 int status; 2242 struct spi_message message; 2243 struct spi_transfer x[2]; 2244 u8 *local_buf; 2245 2246 /* Use preallocated DMA-safe buffer if we can. We can't avoid 2247 * copying here, (as a pure convenience thing), but we can 2248 * keep heap costs out of the hot path unless someone else is 2249 * using the pre-allocated buffer or the transfer is too large. 2250 */ 2251 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 2252 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 2253 GFP_KERNEL | GFP_DMA); 2254 if (!local_buf) 2255 return -ENOMEM; 2256 } else { 2257 local_buf = buf; 2258 } 2259 2260 spi_message_init(&message); 2261 memset(x, 0, sizeof(x)); 2262 if (n_tx) { 2263 x[0].len = n_tx; 2264 spi_message_add_tail(&x[0], &message); 2265 } 2266 if (n_rx) { 2267 x[1].len = n_rx; 2268 spi_message_add_tail(&x[1], &message); 2269 } 2270 2271 memcpy(local_buf, txbuf, n_tx); 2272 x[0].tx_buf = local_buf; 2273 x[1].rx_buf = local_buf + n_tx; 2274 2275 /* do the i/o */ 2276 status = spi_sync(spi, &message); 2277 if (status == 0) 2278 memcpy(rxbuf, x[1].rx_buf, n_rx); 2279 2280 if (x[0].tx_buf == buf) 2281 mutex_unlock(&lock); 2282 else 2283 kfree(local_buf); 2284 2285 return status; 2286 } 2287 EXPORT_SYMBOL_GPL(spi_write_then_read); 2288 2289 /*-------------------------------------------------------------------------*/ 2290 2291 static int __init spi_init(void) 2292 { 2293 int status; 2294 2295 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 2296 if (!buf) { 2297 status = -ENOMEM; 2298 goto err0; 2299 } 2300 2301 status = bus_register(&spi_bus_type); 2302 if (status < 0) 2303 goto err1; 2304 2305 status = class_register(&spi_master_class); 2306 if (status < 0) 2307 goto err2; 2308 return 0; 2309 2310 err2: 2311 bus_unregister(&spi_bus_type); 2312 err1: 2313 kfree(buf); 2314 buf = NULL; 2315 err0: 2316 return status; 2317 } 2318 2319 /* board_info is normally registered in arch_initcall(), 2320 * but even essential drivers wait till later 2321 * 2322 * REVISIT only boardinfo really needs static linking. the rest (device and 2323 * driver registration) _could_ be dynamically linked (modular) ... costs 2324 * include needing to have boardinfo data structures be much more public. 2325 */ 2326 postcore_initcall(spi_init); 2327 2328