1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 spi_controller_put(spi->controller); 51 kfree(spi->driver_override); 52 kfree(spi); 53 } 54 55 static ssize_t 56 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 57 { 58 const struct spi_device *spi = to_spi_device(dev); 59 int len; 60 61 len = of_device_modalias(dev, buf, PAGE_SIZE); 62 if (len != -ENODEV) 63 return len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = of_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 rc = acpi_device_uevent_modalias(dev, env); 375 if (rc != -ENODEV) 376 return rc; 377 378 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 379 } 380 381 static int spi_probe(struct device *dev) 382 { 383 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 384 struct spi_device *spi = to_spi_device(dev); 385 int ret; 386 387 ret = of_clk_set_defaults(dev->of_node, false); 388 if (ret) 389 return ret; 390 391 if (dev->of_node) { 392 spi->irq = of_irq_get(dev->of_node, 0); 393 if (spi->irq == -EPROBE_DEFER) 394 return -EPROBE_DEFER; 395 if (spi->irq < 0) 396 spi->irq = 0; 397 } 398 399 ret = dev_pm_domain_attach(dev, true); 400 if (ret) 401 return ret; 402 403 if (sdrv->probe) { 404 ret = sdrv->probe(spi); 405 if (ret) 406 dev_pm_domain_detach(dev, true); 407 } 408 409 return ret; 410 } 411 412 static void spi_remove(struct device *dev) 413 { 414 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 415 416 if (sdrv->remove) { 417 int ret; 418 419 ret = sdrv->remove(to_spi_device(dev)); 420 if (ret) 421 dev_warn(dev, 422 "Failed to unbind driver (%pe), ignoring\n", 423 ERR_PTR(ret)); 424 } 425 426 dev_pm_domain_detach(dev, true); 427 } 428 429 static void spi_shutdown(struct device *dev) 430 { 431 if (dev->driver) { 432 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 433 434 if (sdrv->shutdown) 435 sdrv->shutdown(to_spi_device(dev)); 436 } 437 } 438 439 struct bus_type spi_bus_type = { 440 .name = "spi", 441 .dev_groups = spi_dev_groups, 442 .match = spi_match_device, 443 .uevent = spi_uevent, 444 .probe = spi_probe, 445 .remove = spi_remove, 446 .shutdown = spi_shutdown, 447 }; 448 EXPORT_SYMBOL_GPL(spi_bus_type); 449 450 /** 451 * __spi_register_driver - register a SPI driver 452 * @owner: owner module of the driver to register 453 * @sdrv: the driver to register 454 * Context: can sleep 455 * 456 * Return: zero on success, else a negative error code. 457 */ 458 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 459 { 460 sdrv->driver.owner = owner; 461 sdrv->driver.bus = &spi_bus_type; 462 return driver_register(&sdrv->driver); 463 } 464 EXPORT_SYMBOL_GPL(__spi_register_driver); 465 466 /*-------------------------------------------------------------------------*/ 467 468 /* SPI devices should normally not be created by SPI device drivers; that 469 * would make them board-specific. Similarly with SPI controller drivers. 470 * Device registration normally goes into like arch/.../mach.../board-YYY.c 471 * with other readonly (flashable) information about mainboard devices. 472 */ 473 474 struct boardinfo { 475 struct list_head list; 476 struct spi_board_info board_info; 477 }; 478 479 static LIST_HEAD(board_list); 480 static LIST_HEAD(spi_controller_list); 481 482 /* 483 * Used to protect add/del operation for board_info list and 484 * spi_controller list, and their matching process 485 * also used to protect object of type struct idr 486 */ 487 static DEFINE_MUTEX(board_lock); 488 489 /* 490 * Prevents addition of devices with same chip select and 491 * addition of devices below an unregistering controller. 492 */ 493 static DEFINE_MUTEX(spi_add_lock); 494 495 /** 496 * spi_alloc_device - Allocate a new SPI device 497 * @ctlr: Controller to which device is connected 498 * Context: can sleep 499 * 500 * Allows a driver to allocate and initialize a spi_device without 501 * registering it immediately. This allows a driver to directly 502 * fill the spi_device with device parameters before calling 503 * spi_add_device() on it. 504 * 505 * Caller is responsible to call spi_add_device() on the returned 506 * spi_device structure to add it to the SPI controller. If the caller 507 * needs to discard the spi_device without adding it, then it should 508 * call spi_dev_put() on it. 509 * 510 * Return: a pointer to the new device, or NULL. 511 */ 512 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 513 { 514 struct spi_device *spi; 515 516 if (!spi_controller_get(ctlr)) 517 return NULL; 518 519 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 520 if (!spi) { 521 spi_controller_put(ctlr); 522 return NULL; 523 } 524 525 spi->master = spi->controller = ctlr; 526 spi->dev.parent = &ctlr->dev; 527 spi->dev.bus = &spi_bus_type; 528 spi->dev.release = spidev_release; 529 spi->cs_gpio = -ENOENT; 530 spi->mode = ctlr->buswidth_override_bits; 531 532 spin_lock_init(&spi->statistics.lock); 533 534 device_initialize(&spi->dev); 535 return spi; 536 } 537 EXPORT_SYMBOL_GPL(spi_alloc_device); 538 539 static void spi_dev_set_name(struct spi_device *spi) 540 { 541 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 542 543 if (adev) { 544 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 545 return; 546 } 547 548 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 549 spi->chip_select); 550 } 551 552 static int spi_dev_check(struct device *dev, void *data) 553 { 554 struct spi_device *spi = to_spi_device(dev); 555 struct spi_device *new_spi = data; 556 557 if (spi->controller == new_spi->controller && 558 spi->chip_select == new_spi->chip_select) 559 return -EBUSY; 560 return 0; 561 } 562 563 static void spi_cleanup(struct spi_device *spi) 564 { 565 if (spi->controller->cleanup) 566 spi->controller->cleanup(spi); 567 } 568 569 static int __spi_add_device(struct spi_device *spi) 570 { 571 struct spi_controller *ctlr = spi->controller; 572 struct device *dev = ctlr->dev.parent; 573 int status; 574 575 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 576 if (status) { 577 dev_err(dev, "chipselect %d already in use\n", 578 spi->chip_select); 579 return status; 580 } 581 582 /* Controller may unregister concurrently */ 583 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 584 !device_is_registered(&ctlr->dev)) { 585 return -ENODEV; 586 } 587 588 /* Descriptors take precedence */ 589 if (ctlr->cs_gpiods) 590 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 591 else if (ctlr->cs_gpios) 592 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 593 594 /* Drivers may modify this initial i/o setup, but will 595 * normally rely on the device being setup. Devices 596 * using SPI_CS_HIGH can't coexist well otherwise... 597 */ 598 status = spi_setup(spi); 599 if (status < 0) { 600 dev_err(dev, "can't setup %s, status %d\n", 601 dev_name(&spi->dev), status); 602 return status; 603 } 604 605 /* Device may be bound to an active driver when this returns */ 606 status = device_add(&spi->dev); 607 if (status < 0) { 608 dev_err(dev, "can't add %s, status %d\n", 609 dev_name(&spi->dev), status); 610 spi_cleanup(spi); 611 } else { 612 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 613 } 614 615 return status; 616 } 617 618 /** 619 * spi_add_device - Add spi_device allocated with spi_alloc_device 620 * @spi: spi_device to register 621 * 622 * Companion function to spi_alloc_device. Devices allocated with 623 * spi_alloc_device can be added onto the spi bus with this function. 624 * 625 * Return: 0 on success; negative errno on failure 626 */ 627 int spi_add_device(struct spi_device *spi) 628 { 629 struct spi_controller *ctlr = spi->controller; 630 struct device *dev = ctlr->dev.parent; 631 int status; 632 633 /* Chipselects are numbered 0..max; validate. */ 634 if (spi->chip_select >= ctlr->num_chipselect) { 635 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 636 ctlr->num_chipselect); 637 return -EINVAL; 638 } 639 640 /* Set the bus ID string */ 641 spi_dev_set_name(spi); 642 643 /* We need to make sure there's no other device with this 644 * chipselect **BEFORE** we call setup(), else we'll trash 645 * its configuration. Lock against concurrent add() calls. 646 */ 647 mutex_lock(&spi_add_lock); 648 status = __spi_add_device(spi); 649 mutex_unlock(&spi_add_lock); 650 return status; 651 } 652 EXPORT_SYMBOL_GPL(spi_add_device); 653 654 static int spi_add_device_locked(struct spi_device *spi) 655 { 656 struct spi_controller *ctlr = spi->controller; 657 struct device *dev = ctlr->dev.parent; 658 659 /* Chipselects are numbered 0..max; validate. */ 660 if (spi->chip_select >= ctlr->num_chipselect) { 661 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 662 ctlr->num_chipselect); 663 return -EINVAL; 664 } 665 666 /* Set the bus ID string */ 667 spi_dev_set_name(spi); 668 669 WARN_ON(!mutex_is_locked(&spi_add_lock)); 670 return __spi_add_device(spi); 671 } 672 673 /** 674 * spi_new_device - instantiate one new SPI device 675 * @ctlr: Controller to which device is connected 676 * @chip: Describes the SPI device 677 * Context: can sleep 678 * 679 * On typical mainboards, this is purely internal; and it's not needed 680 * after board init creates the hard-wired devices. Some development 681 * platforms may not be able to use spi_register_board_info though, and 682 * this is exported so that for example a USB or parport based adapter 683 * driver could add devices (which it would learn about out-of-band). 684 * 685 * Return: the new device, or NULL. 686 */ 687 struct spi_device *spi_new_device(struct spi_controller *ctlr, 688 struct spi_board_info *chip) 689 { 690 struct spi_device *proxy; 691 int status; 692 693 /* NOTE: caller did any chip->bus_num checks necessary. 694 * 695 * Also, unless we change the return value convention to use 696 * error-or-pointer (not NULL-or-pointer), troubleshootability 697 * suggests syslogged diagnostics are best here (ugh). 698 */ 699 700 proxy = spi_alloc_device(ctlr); 701 if (!proxy) 702 return NULL; 703 704 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 705 706 proxy->chip_select = chip->chip_select; 707 proxy->max_speed_hz = chip->max_speed_hz; 708 proxy->mode = chip->mode; 709 proxy->irq = chip->irq; 710 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 711 proxy->dev.platform_data = (void *) chip->platform_data; 712 proxy->controller_data = chip->controller_data; 713 proxy->controller_state = NULL; 714 715 if (chip->swnode) { 716 status = device_add_software_node(&proxy->dev, chip->swnode); 717 if (status) { 718 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 719 chip->modalias, status); 720 goto err_dev_put; 721 } 722 } 723 724 status = spi_add_device(proxy); 725 if (status < 0) 726 goto err_dev_put; 727 728 return proxy; 729 730 err_dev_put: 731 device_remove_software_node(&proxy->dev); 732 spi_dev_put(proxy); 733 return NULL; 734 } 735 EXPORT_SYMBOL_GPL(spi_new_device); 736 737 /** 738 * spi_unregister_device - unregister a single SPI device 739 * @spi: spi_device to unregister 740 * 741 * Start making the passed SPI device vanish. Normally this would be handled 742 * by spi_unregister_controller(). 743 */ 744 void spi_unregister_device(struct spi_device *spi) 745 { 746 if (!spi) 747 return; 748 749 if (spi->dev.of_node) { 750 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 751 of_node_put(spi->dev.of_node); 752 } 753 if (ACPI_COMPANION(&spi->dev)) 754 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 755 device_remove_software_node(&spi->dev); 756 device_del(&spi->dev); 757 spi_cleanup(spi); 758 put_device(&spi->dev); 759 } 760 EXPORT_SYMBOL_GPL(spi_unregister_device); 761 762 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 763 struct spi_board_info *bi) 764 { 765 struct spi_device *dev; 766 767 if (ctlr->bus_num != bi->bus_num) 768 return; 769 770 dev = spi_new_device(ctlr, bi); 771 if (!dev) 772 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 773 bi->modalias); 774 } 775 776 /** 777 * spi_register_board_info - register SPI devices for a given board 778 * @info: array of chip descriptors 779 * @n: how many descriptors are provided 780 * Context: can sleep 781 * 782 * Board-specific early init code calls this (probably during arch_initcall) 783 * with segments of the SPI device table. Any device nodes are created later, 784 * after the relevant parent SPI controller (bus_num) is defined. We keep 785 * this table of devices forever, so that reloading a controller driver will 786 * not make Linux forget about these hard-wired devices. 787 * 788 * Other code can also call this, e.g. a particular add-on board might provide 789 * SPI devices through its expansion connector, so code initializing that board 790 * would naturally declare its SPI devices. 791 * 792 * The board info passed can safely be __initdata ... but be careful of 793 * any embedded pointers (platform_data, etc), they're copied as-is. 794 * 795 * Return: zero on success, else a negative error code. 796 */ 797 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 798 { 799 struct boardinfo *bi; 800 int i; 801 802 if (!n) 803 return 0; 804 805 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 806 if (!bi) 807 return -ENOMEM; 808 809 for (i = 0; i < n; i++, bi++, info++) { 810 struct spi_controller *ctlr; 811 812 memcpy(&bi->board_info, info, sizeof(*info)); 813 814 mutex_lock(&board_lock); 815 list_add_tail(&bi->list, &board_list); 816 list_for_each_entry(ctlr, &spi_controller_list, list) 817 spi_match_controller_to_boardinfo(ctlr, 818 &bi->board_info); 819 mutex_unlock(&board_lock); 820 } 821 822 return 0; 823 } 824 825 /*-------------------------------------------------------------------------*/ 826 827 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 828 { 829 bool activate = enable; 830 831 /* 832 * Avoid calling into the driver (or doing delays) if the chip select 833 * isn't actually changing from the last time this was called. 834 */ 835 if (!force && (spi->controller->last_cs_enable == enable) && 836 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 837 return; 838 839 trace_spi_set_cs(spi, activate); 840 841 spi->controller->last_cs_enable = enable; 842 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 843 844 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 845 !spi->controller->set_cs_timing) { 846 if (activate) 847 spi_delay_exec(&spi->cs_setup, NULL); 848 else 849 spi_delay_exec(&spi->cs_hold, NULL); 850 } 851 852 if (spi->mode & SPI_CS_HIGH) 853 enable = !enable; 854 855 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 856 if (!(spi->mode & SPI_NO_CS)) { 857 if (spi->cs_gpiod) { 858 /* 859 * Historically ACPI has no means of the GPIO polarity and 860 * thus the SPISerialBus() resource defines it on the per-chip 861 * basis. In order to avoid a chain of negations, the GPIO 862 * polarity is considered being Active High. Even for the cases 863 * when _DSD() is involved (in the updated versions of ACPI) 864 * the GPIO CS polarity must be defined Active High to avoid 865 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 866 * into account. 867 */ 868 if (has_acpi_companion(&spi->dev)) 869 gpiod_set_value_cansleep(spi->cs_gpiod, !enable); 870 else 871 /* Polarity handled by GPIO library */ 872 gpiod_set_value_cansleep(spi->cs_gpiod, activate); 873 } else { 874 /* 875 * invert the enable line, as active low is 876 * default for SPI. 877 */ 878 gpio_set_value_cansleep(spi->cs_gpio, !enable); 879 } 880 } 881 /* Some SPI masters need both GPIO CS & slave_select */ 882 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 883 spi->controller->set_cs) 884 spi->controller->set_cs(spi, !enable); 885 } else if (spi->controller->set_cs) { 886 spi->controller->set_cs(spi, !enable); 887 } 888 889 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 890 !spi->controller->set_cs_timing) { 891 if (!activate) 892 spi_delay_exec(&spi->cs_inactive, NULL); 893 } 894 } 895 896 #ifdef CONFIG_HAS_DMA 897 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 898 struct sg_table *sgt, void *buf, size_t len, 899 enum dma_data_direction dir) 900 { 901 const bool vmalloced_buf = is_vmalloc_addr(buf); 902 unsigned int max_seg_size = dma_get_max_seg_size(dev); 903 #ifdef CONFIG_HIGHMEM 904 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 905 (unsigned long)buf < (PKMAP_BASE + 906 (LAST_PKMAP * PAGE_SIZE))); 907 #else 908 const bool kmap_buf = false; 909 #endif 910 int desc_len; 911 int sgs; 912 struct page *vm_page; 913 struct scatterlist *sg; 914 void *sg_buf; 915 size_t min; 916 int i, ret; 917 918 if (vmalloced_buf || kmap_buf) { 919 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 920 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 921 } else if (virt_addr_valid(buf)) { 922 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 923 sgs = DIV_ROUND_UP(len, desc_len); 924 } else { 925 return -EINVAL; 926 } 927 928 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 929 if (ret != 0) 930 return ret; 931 932 sg = &sgt->sgl[0]; 933 for (i = 0; i < sgs; i++) { 934 935 if (vmalloced_buf || kmap_buf) { 936 /* 937 * Next scatterlist entry size is the minimum between 938 * the desc_len and the remaining buffer length that 939 * fits in a page. 940 */ 941 min = min_t(size_t, desc_len, 942 min_t(size_t, len, 943 PAGE_SIZE - offset_in_page(buf))); 944 if (vmalloced_buf) 945 vm_page = vmalloc_to_page(buf); 946 else 947 vm_page = kmap_to_page(buf); 948 if (!vm_page) { 949 sg_free_table(sgt); 950 return -ENOMEM; 951 } 952 sg_set_page(sg, vm_page, 953 min, offset_in_page(buf)); 954 } else { 955 min = min_t(size_t, len, desc_len); 956 sg_buf = buf; 957 sg_set_buf(sg, sg_buf, min); 958 } 959 960 buf += min; 961 len -= min; 962 sg = sg_next(sg); 963 } 964 965 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 966 if (!ret) 967 ret = -ENOMEM; 968 if (ret < 0) { 969 sg_free_table(sgt); 970 return ret; 971 } 972 973 sgt->nents = ret; 974 975 return 0; 976 } 977 978 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 979 struct sg_table *sgt, enum dma_data_direction dir) 980 { 981 if (sgt->orig_nents) { 982 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 983 sg_free_table(sgt); 984 } 985 } 986 987 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 988 { 989 struct device *tx_dev, *rx_dev; 990 struct spi_transfer *xfer; 991 int ret; 992 993 if (!ctlr->can_dma) 994 return 0; 995 996 if (ctlr->dma_tx) 997 tx_dev = ctlr->dma_tx->device->dev; 998 else if (ctlr->dma_map_dev) 999 tx_dev = ctlr->dma_map_dev; 1000 else 1001 tx_dev = ctlr->dev.parent; 1002 1003 if (ctlr->dma_rx) 1004 rx_dev = ctlr->dma_rx->device->dev; 1005 else if (ctlr->dma_map_dev) 1006 rx_dev = ctlr->dma_map_dev; 1007 else 1008 rx_dev = ctlr->dev.parent; 1009 1010 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1011 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1012 continue; 1013 1014 if (xfer->tx_buf != NULL) { 1015 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 1016 (void *)xfer->tx_buf, xfer->len, 1017 DMA_TO_DEVICE); 1018 if (ret != 0) 1019 return ret; 1020 } 1021 1022 if (xfer->rx_buf != NULL) { 1023 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 1024 xfer->rx_buf, xfer->len, 1025 DMA_FROM_DEVICE); 1026 if (ret != 0) { 1027 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 1028 DMA_TO_DEVICE); 1029 return ret; 1030 } 1031 } 1032 } 1033 1034 ctlr->cur_msg_mapped = true; 1035 1036 return 0; 1037 } 1038 1039 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1040 { 1041 struct spi_transfer *xfer; 1042 struct device *tx_dev, *rx_dev; 1043 1044 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1045 return 0; 1046 1047 if (ctlr->dma_tx) 1048 tx_dev = ctlr->dma_tx->device->dev; 1049 else 1050 tx_dev = ctlr->dev.parent; 1051 1052 if (ctlr->dma_rx) 1053 rx_dev = ctlr->dma_rx->device->dev; 1054 else 1055 rx_dev = ctlr->dev.parent; 1056 1057 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1058 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1059 continue; 1060 1061 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1062 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1063 } 1064 1065 ctlr->cur_msg_mapped = false; 1066 1067 return 0; 1068 } 1069 #else /* !CONFIG_HAS_DMA */ 1070 static inline int __spi_map_msg(struct spi_controller *ctlr, 1071 struct spi_message *msg) 1072 { 1073 return 0; 1074 } 1075 1076 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1077 struct spi_message *msg) 1078 { 1079 return 0; 1080 } 1081 #endif /* !CONFIG_HAS_DMA */ 1082 1083 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1084 struct spi_message *msg) 1085 { 1086 struct spi_transfer *xfer; 1087 1088 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1089 /* 1090 * Restore the original value of tx_buf or rx_buf if they are 1091 * NULL. 1092 */ 1093 if (xfer->tx_buf == ctlr->dummy_tx) 1094 xfer->tx_buf = NULL; 1095 if (xfer->rx_buf == ctlr->dummy_rx) 1096 xfer->rx_buf = NULL; 1097 } 1098 1099 return __spi_unmap_msg(ctlr, msg); 1100 } 1101 1102 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1103 { 1104 struct spi_transfer *xfer; 1105 void *tmp; 1106 unsigned int max_tx, max_rx; 1107 1108 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1109 && !(msg->spi->mode & SPI_3WIRE)) { 1110 max_tx = 0; 1111 max_rx = 0; 1112 1113 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1114 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1115 !xfer->tx_buf) 1116 max_tx = max(xfer->len, max_tx); 1117 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1118 !xfer->rx_buf) 1119 max_rx = max(xfer->len, max_rx); 1120 } 1121 1122 if (max_tx) { 1123 tmp = krealloc(ctlr->dummy_tx, max_tx, 1124 GFP_KERNEL | GFP_DMA); 1125 if (!tmp) 1126 return -ENOMEM; 1127 ctlr->dummy_tx = tmp; 1128 memset(tmp, 0, max_tx); 1129 } 1130 1131 if (max_rx) { 1132 tmp = krealloc(ctlr->dummy_rx, max_rx, 1133 GFP_KERNEL | GFP_DMA); 1134 if (!tmp) 1135 return -ENOMEM; 1136 ctlr->dummy_rx = tmp; 1137 } 1138 1139 if (max_tx || max_rx) { 1140 list_for_each_entry(xfer, &msg->transfers, 1141 transfer_list) { 1142 if (!xfer->len) 1143 continue; 1144 if (!xfer->tx_buf) 1145 xfer->tx_buf = ctlr->dummy_tx; 1146 if (!xfer->rx_buf) 1147 xfer->rx_buf = ctlr->dummy_rx; 1148 } 1149 } 1150 } 1151 1152 return __spi_map_msg(ctlr, msg); 1153 } 1154 1155 static int spi_transfer_wait(struct spi_controller *ctlr, 1156 struct spi_message *msg, 1157 struct spi_transfer *xfer) 1158 { 1159 struct spi_statistics *statm = &ctlr->statistics; 1160 struct spi_statistics *stats = &msg->spi->statistics; 1161 u32 speed_hz = xfer->speed_hz; 1162 unsigned long long ms; 1163 1164 if (spi_controller_is_slave(ctlr)) { 1165 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1166 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1167 return -EINTR; 1168 } 1169 } else { 1170 if (!speed_hz) 1171 speed_hz = 100000; 1172 1173 /* 1174 * For each byte we wait for 8 cycles of the SPI clock. 1175 * Since speed is defined in Hz and we want milliseconds, 1176 * use respective multiplier, but before the division, 1177 * otherwise we may get 0 for short transfers. 1178 */ 1179 ms = 8LL * MSEC_PER_SEC * xfer->len; 1180 do_div(ms, speed_hz); 1181 1182 /* 1183 * Increase it twice and add 200 ms tolerance, use 1184 * predefined maximum in case of overflow. 1185 */ 1186 ms += ms + 200; 1187 if (ms > UINT_MAX) 1188 ms = UINT_MAX; 1189 1190 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1191 msecs_to_jiffies(ms)); 1192 1193 if (ms == 0) { 1194 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1195 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1196 dev_err(&msg->spi->dev, 1197 "SPI transfer timed out\n"); 1198 return -ETIMEDOUT; 1199 } 1200 } 1201 1202 return 0; 1203 } 1204 1205 static void _spi_transfer_delay_ns(u32 ns) 1206 { 1207 if (!ns) 1208 return; 1209 if (ns <= NSEC_PER_USEC) { 1210 ndelay(ns); 1211 } else { 1212 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1213 1214 if (us <= 10) 1215 udelay(us); 1216 else 1217 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1218 } 1219 } 1220 1221 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1222 { 1223 u32 delay = _delay->value; 1224 u32 unit = _delay->unit; 1225 u32 hz; 1226 1227 if (!delay) 1228 return 0; 1229 1230 switch (unit) { 1231 case SPI_DELAY_UNIT_USECS: 1232 delay *= NSEC_PER_USEC; 1233 break; 1234 case SPI_DELAY_UNIT_NSECS: 1235 /* Nothing to do here */ 1236 break; 1237 case SPI_DELAY_UNIT_SCK: 1238 /* clock cycles need to be obtained from spi_transfer */ 1239 if (!xfer) 1240 return -EINVAL; 1241 /* 1242 * If there is unknown effective speed, approximate it 1243 * by underestimating with half of the requested hz. 1244 */ 1245 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1246 if (!hz) 1247 return -EINVAL; 1248 1249 /* Convert delay to nanoseconds */ 1250 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1251 break; 1252 default: 1253 return -EINVAL; 1254 } 1255 1256 return delay; 1257 } 1258 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1259 1260 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1261 { 1262 int delay; 1263 1264 might_sleep(); 1265 1266 if (!_delay) 1267 return -EINVAL; 1268 1269 delay = spi_delay_to_ns(_delay, xfer); 1270 if (delay < 0) 1271 return delay; 1272 1273 _spi_transfer_delay_ns(delay); 1274 1275 return 0; 1276 } 1277 EXPORT_SYMBOL_GPL(spi_delay_exec); 1278 1279 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1280 struct spi_transfer *xfer) 1281 { 1282 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1283 u32 delay = xfer->cs_change_delay.value; 1284 u32 unit = xfer->cs_change_delay.unit; 1285 int ret; 1286 1287 /* return early on "fast" mode - for everything but USECS */ 1288 if (!delay) { 1289 if (unit == SPI_DELAY_UNIT_USECS) 1290 _spi_transfer_delay_ns(default_delay_ns); 1291 return; 1292 } 1293 1294 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1295 if (ret) { 1296 dev_err_once(&msg->spi->dev, 1297 "Use of unsupported delay unit %i, using default of %luus\n", 1298 unit, default_delay_ns / NSEC_PER_USEC); 1299 _spi_transfer_delay_ns(default_delay_ns); 1300 } 1301 } 1302 1303 /* 1304 * spi_transfer_one_message - Default implementation of transfer_one_message() 1305 * 1306 * This is a standard implementation of transfer_one_message() for 1307 * drivers which implement a transfer_one() operation. It provides 1308 * standard handling of delays and chip select management. 1309 */ 1310 static int spi_transfer_one_message(struct spi_controller *ctlr, 1311 struct spi_message *msg) 1312 { 1313 struct spi_transfer *xfer; 1314 bool keep_cs = false; 1315 int ret = 0; 1316 struct spi_statistics *statm = &ctlr->statistics; 1317 struct spi_statistics *stats = &msg->spi->statistics; 1318 1319 spi_set_cs(msg->spi, true, false); 1320 1321 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1322 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1323 1324 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1325 trace_spi_transfer_start(msg, xfer); 1326 1327 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1328 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1329 1330 if (!ctlr->ptp_sts_supported) { 1331 xfer->ptp_sts_word_pre = 0; 1332 ptp_read_system_prets(xfer->ptp_sts); 1333 } 1334 1335 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1336 reinit_completion(&ctlr->xfer_completion); 1337 1338 fallback_pio: 1339 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1340 if (ret < 0) { 1341 if (ctlr->cur_msg_mapped && 1342 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1343 __spi_unmap_msg(ctlr, msg); 1344 ctlr->fallback = true; 1345 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1346 goto fallback_pio; 1347 } 1348 1349 SPI_STATISTICS_INCREMENT_FIELD(statm, 1350 errors); 1351 SPI_STATISTICS_INCREMENT_FIELD(stats, 1352 errors); 1353 dev_err(&msg->spi->dev, 1354 "SPI transfer failed: %d\n", ret); 1355 goto out; 1356 } 1357 1358 if (ret > 0) { 1359 ret = spi_transfer_wait(ctlr, msg, xfer); 1360 if (ret < 0) 1361 msg->status = ret; 1362 } 1363 } else { 1364 if (xfer->len) 1365 dev_err(&msg->spi->dev, 1366 "Bufferless transfer has length %u\n", 1367 xfer->len); 1368 } 1369 1370 if (!ctlr->ptp_sts_supported) { 1371 ptp_read_system_postts(xfer->ptp_sts); 1372 xfer->ptp_sts_word_post = xfer->len; 1373 } 1374 1375 trace_spi_transfer_stop(msg, xfer); 1376 1377 if (msg->status != -EINPROGRESS) 1378 goto out; 1379 1380 spi_transfer_delay_exec(xfer); 1381 1382 if (xfer->cs_change) { 1383 if (list_is_last(&xfer->transfer_list, 1384 &msg->transfers)) { 1385 keep_cs = true; 1386 } else { 1387 spi_set_cs(msg->spi, false, false); 1388 _spi_transfer_cs_change_delay(msg, xfer); 1389 spi_set_cs(msg->spi, true, false); 1390 } 1391 } 1392 1393 msg->actual_length += xfer->len; 1394 } 1395 1396 out: 1397 if (ret != 0 || !keep_cs) 1398 spi_set_cs(msg->spi, false, false); 1399 1400 if (msg->status == -EINPROGRESS) 1401 msg->status = ret; 1402 1403 if (msg->status && ctlr->handle_err) 1404 ctlr->handle_err(ctlr, msg); 1405 1406 spi_finalize_current_message(ctlr); 1407 1408 return ret; 1409 } 1410 1411 /** 1412 * spi_finalize_current_transfer - report completion of a transfer 1413 * @ctlr: the controller reporting completion 1414 * 1415 * Called by SPI drivers using the core transfer_one_message() 1416 * implementation to notify it that the current interrupt driven 1417 * transfer has finished and the next one may be scheduled. 1418 */ 1419 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1420 { 1421 complete(&ctlr->xfer_completion); 1422 } 1423 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1424 1425 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1426 { 1427 if (ctlr->auto_runtime_pm) { 1428 pm_runtime_mark_last_busy(ctlr->dev.parent); 1429 pm_runtime_put_autosuspend(ctlr->dev.parent); 1430 } 1431 } 1432 1433 /** 1434 * __spi_pump_messages - function which processes spi message queue 1435 * @ctlr: controller to process queue for 1436 * @in_kthread: true if we are in the context of the message pump thread 1437 * 1438 * This function checks if there is any spi message in the queue that 1439 * needs processing and if so call out to the driver to initialize hardware 1440 * and transfer each message. 1441 * 1442 * Note that it is called both from the kthread itself and also from 1443 * inside spi_sync(); the queue extraction handling at the top of the 1444 * function should deal with this safely. 1445 */ 1446 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1447 { 1448 struct spi_transfer *xfer; 1449 struct spi_message *msg; 1450 bool was_busy = false; 1451 unsigned long flags; 1452 int ret; 1453 1454 /* Lock queue */ 1455 spin_lock_irqsave(&ctlr->queue_lock, flags); 1456 1457 /* Make sure we are not already running a message */ 1458 if (ctlr->cur_msg) { 1459 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1460 return; 1461 } 1462 1463 /* If another context is idling the device then defer */ 1464 if (ctlr->idling) { 1465 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1466 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1467 return; 1468 } 1469 1470 /* Check if the queue is idle */ 1471 if (list_empty(&ctlr->queue) || !ctlr->running) { 1472 if (!ctlr->busy) { 1473 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1474 return; 1475 } 1476 1477 /* Defer any non-atomic teardown to the thread */ 1478 if (!in_kthread) { 1479 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1480 !ctlr->unprepare_transfer_hardware) { 1481 spi_idle_runtime_pm(ctlr); 1482 ctlr->busy = false; 1483 trace_spi_controller_idle(ctlr); 1484 } else { 1485 kthread_queue_work(ctlr->kworker, 1486 &ctlr->pump_messages); 1487 } 1488 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1489 return; 1490 } 1491 1492 ctlr->busy = false; 1493 ctlr->idling = true; 1494 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1495 1496 kfree(ctlr->dummy_rx); 1497 ctlr->dummy_rx = NULL; 1498 kfree(ctlr->dummy_tx); 1499 ctlr->dummy_tx = NULL; 1500 if (ctlr->unprepare_transfer_hardware && 1501 ctlr->unprepare_transfer_hardware(ctlr)) 1502 dev_err(&ctlr->dev, 1503 "failed to unprepare transfer hardware\n"); 1504 spi_idle_runtime_pm(ctlr); 1505 trace_spi_controller_idle(ctlr); 1506 1507 spin_lock_irqsave(&ctlr->queue_lock, flags); 1508 ctlr->idling = false; 1509 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1510 return; 1511 } 1512 1513 /* Extract head of queue */ 1514 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1515 ctlr->cur_msg = msg; 1516 1517 list_del_init(&msg->queue); 1518 if (ctlr->busy) 1519 was_busy = true; 1520 else 1521 ctlr->busy = true; 1522 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1523 1524 mutex_lock(&ctlr->io_mutex); 1525 1526 if (!was_busy && ctlr->auto_runtime_pm) { 1527 ret = pm_runtime_get_sync(ctlr->dev.parent); 1528 if (ret < 0) { 1529 pm_runtime_put_noidle(ctlr->dev.parent); 1530 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1531 ret); 1532 mutex_unlock(&ctlr->io_mutex); 1533 return; 1534 } 1535 } 1536 1537 if (!was_busy) 1538 trace_spi_controller_busy(ctlr); 1539 1540 if (!was_busy && ctlr->prepare_transfer_hardware) { 1541 ret = ctlr->prepare_transfer_hardware(ctlr); 1542 if (ret) { 1543 dev_err(&ctlr->dev, 1544 "failed to prepare transfer hardware: %d\n", 1545 ret); 1546 1547 if (ctlr->auto_runtime_pm) 1548 pm_runtime_put(ctlr->dev.parent); 1549 1550 msg->status = ret; 1551 spi_finalize_current_message(ctlr); 1552 1553 mutex_unlock(&ctlr->io_mutex); 1554 return; 1555 } 1556 } 1557 1558 trace_spi_message_start(msg); 1559 1560 if (ctlr->prepare_message) { 1561 ret = ctlr->prepare_message(ctlr, msg); 1562 if (ret) { 1563 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1564 ret); 1565 msg->status = ret; 1566 spi_finalize_current_message(ctlr); 1567 goto out; 1568 } 1569 ctlr->cur_msg_prepared = true; 1570 } 1571 1572 ret = spi_map_msg(ctlr, msg); 1573 if (ret) { 1574 msg->status = ret; 1575 spi_finalize_current_message(ctlr); 1576 goto out; 1577 } 1578 1579 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1580 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1581 xfer->ptp_sts_word_pre = 0; 1582 ptp_read_system_prets(xfer->ptp_sts); 1583 } 1584 } 1585 1586 ret = ctlr->transfer_one_message(ctlr, msg); 1587 if (ret) { 1588 dev_err(&ctlr->dev, 1589 "failed to transfer one message from queue\n"); 1590 goto out; 1591 } 1592 1593 out: 1594 mutex_unlock(&ctlr->io_mutex); 1595 1596 /* Prod the scheduler in case transfer_one() was busy waiting */ 1597 if (!ret) 1598 cond_resched(); 1599 } 1600 1601 /** 1602 * spi_pump_messages - kthread work function which processes spi message queue 1603 * @work: pointer to kthread work struct contained in the controller struct 1604 */ 1605 static void spi_pump_messages(struct kthread_work *work) 1606 { 1607 struct spi_controller *ctlr = 1608 container_of(work, struct spi_controller, pump_messages); 1609 1610 __spi_pump_messages(ctlr, true); 1611 } 1612 1613 /** 1614 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1615 * TX timestamp for the requested byte from the SPI 1616 * transfer. The frequency with which this function 1617 * must be called (once per word, once for the whole 1618 * transfer, once per batch of words etc) is arbitrary 1619 * as long as the @tx buffer offset is greater than or 1620 * equal to the requested byte at the time of the 1621 * call. The timestamp is only taken once, at the 1622 * first such call. It is assumed that the driver 1623 * advances its @tx buffer pointer monotonically. 1624 * @ctlr: Pointer to the spi_controller structure of the driver 1625 * @xfer: Pointer to the transfer being timestamped 1626 * @progress: How many words (not bytes) have been transferred so far 1627 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1628 * transfer, for less jitter in time measurement. Only compatible 1629 * with PIO drivers. If true, must follow up with 1630 * spi_take_timestamp_post or otherwise system will crash. 1631 * WARNING: for fully predictable results, the CPU frequency must 1632 * also be under control (governor). 1633 */ 1634 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1635 struct spi_transfer *xfer, 1636 size_t progress, bool irqs_off) 1637 { 1638 if (!xfer->ptp_sts) 1639 return; 1640 1641 if (xfer->timestamped) 1642 return; 1643 1644 if (progress > xfer->ptp_sts_word_pre) 1645 return; 1646 1647 /* Capture the resolution of the timestamp */ 1648 xfer->ptp_sts_word_pre = progress; 1649 1650 if (irqs_off) { 1651 local_irq_save(ctlr->irq_flags); 1652 preempt_disable(); 1653 } 1654 1655 ptp_read_system_prets(xfer->ptp_sts); 1656 } 1657 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1658 1659 /** 1660 * spi_take_timestamp_post - helper for drivers to collect the end of the 1661 * TX timestamp for the requested byte from the SPI 1662 * transfer. Can be called with an arbitrary 1663 * frequency: only the first call where @tx exceeds 1664 * or is equal to the requested word will be 1665 * timestamped. 1666 * @ctlr: Pointer to the spi_controller structure of the driver 1667 * @xfer: Pointer to the transfer being timestamped 1668 * @progress: How many words (not bytes) have been transferred so far 1669 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1670 */ 1671 void spi_take_timestamp_post(struct spi_controller *ctlr, 1672 struct spi_transfer *xfer, 1673 size_t progress, bool irqs_off) 1674 { 1675 if (!xfer->ptp_sts) 1676 return; 1677 1678 if (xfer->timestamped) 1679 return; 1680 1681 if (progress < xfer->ptp_sts_word_post) 1682 return; 1683 1684 ptp_read_system_postts(xfer->ptp_sts); 1685 1686 if (irqs_off) { 1687 local_irq_restore(ctlr->irq_flags); 1688 preempt_enable(); 1689 } 1690 1691 /* Capture the resolution of the timestamp */ 1692 xfer->ptp_sts_word_post = progress; 1693 1694 xfer->timestamped = true; 1695 } 1696 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1697 1698 /** 1699 * spi_set_thread_rt - set the controller to pump at realtime priority 1700 * @ctlr: controller to boost priority of 1701 * 1702 * This can be called because the controller requested realtime priority 1703 * (by setting the ->rt value before calling spi_register_controller()) or 1704 * because a device on the bus said that its transfers needed realtime 1705 * priority. 1706 * 1707 * NOTE: at the moment if any device on a bus says it needs realtime then 1708 * the thread will be at realtime priority for all transfers on that 1709 * controller. If this eventually becomes a problem we may see if we can 1710 * find a way to boost the priority only temporarily during relevant 1711 * transfers. 1712 */ 1713 static void spi_set_thread_rt(struct spi_controller *ctlr) 1714 { 1715 dev_info(&ctlr->dev, 1716 "will run message pump with realtime priority\n"); 1717 sched_set_fifo(ctlr->kworker->task); 1718 } 1719 1720 static int spi_init_queue(struct spi_controller *ctlr) 1721 { 1722 ctlr->running = false; 1723 ctlr->busy = false; 1724 1725 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1726 if (IS_ERR(ctlr->kworker)) { 1727 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1728 return PTR_ERR(ctlr->kworker); 1729 } 1730 1731 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1732 1733 /* 1734 * Controller config will indicate if this controller should run the 1735 * message pump with high (realtime) priority to reduce the transfer 1736 * latency on the bus by minimising the delay between a transfer 1737 * request and the scheduling of the message pump thread. Without this 1738 * setting the message pump thread will remain at default priority. 1739 */ 1740 if (ctlr->rt) 1741 spi_set_thread_rt(ctlr); 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * spi_get_next_queued_message() - called by driver to check for queued 1748 * messages 1749 * @ctlr: the controller to check for queued messages 1750 * 1751 * If there are more messages in the queue, the next message is returned from 1752 * this call. 1753 * 1754 * Return: the next message in the queue, else NULL if the queue is empty. 1755 */ 1756 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1757 { 1758 struct spi_message *next; 1759 unsigned long flags; 1760 1761 /* get a pointer to the next message, if any */ 1762 spin_lock_irqsave(&ctlr->queue_lock, flags); 1763 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1764 queue); 1765 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1766 1767 return next; 1768 } 1769 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1770 1771 /** 1772 * spi_finalize_current_message() - the current message is complete 1773 * @ctlr: the controller to return the message to 1774 * 1775 * Called by the driver to notify the core that the message in the front of the 1776 * queue is complete and can be removed from the queue. 1777 */ 1778 void spi_finalize_current_message(struct spi_controller *ctlr) 1779 { 1780 struct spi_transfer *xfer; 1781 struct spi_message *mesg; 1782 unsigned long flags; 1783 int ret; 1784 1785 spin_lock_irqsave(&ctlr->queue_lock, flags); 1786 mesg = ctlr->cur_msg; 1787 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1788 1789 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1790 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1791 ptp_read_system_postts(xfer->ptp_sts); 1792 xfer->ptp_sts_word_post = xfer->len; 1793 } 1794 } 1795 1796 if (unlikely(ctlr->ptp_sts_supported)) 1797 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1798 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1799 1800 spi_unmap_msg(ctlr, mesg); 1801 1802 /* In the prepare_messages callback the spi bus has the opportunity to 1803 * split a transfer to smaller chunks. 1804 * Release splited transfers here since spi_map_msg is done on the 1805 * splited transfers. 1806 */ 1807 spi_res_release(ctlr, mesg); 1808 1809 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1810 ret = ctlr->unprepare_message(ctlr, mesg); 1811 if (ret) { 1812 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1813 ret); 1814 } 1815 } 1816 1817 spin_lock_irqsave(&ctlr->queue_lock, flags); 1818 ctlr->cur_msg = NULL; 1819 ctlr->cur_msg_prepared = false; 1820 ctlr->fallback = false; 1821 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1822 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1823 1824 trace_spi_message_done(mesg); 1825 1826 mesg->state = NULL; 1827 if (mesg->complete) 1828 mesg->complete(mesg->context); 1829 } 1830 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1831 1832 static int spi_start_queue(struct spi_controller *ctlr) 1833 { 1834 unsigned long flags; 1835 1836 spin_lock_irqsave(&ctlr->queue_lock, flags); 1837 1838 if (ctlr->running || ctlr->busy) { 1839 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1840 return -EBUSY; 1841 } 1842 1843 ctlr->running = true; 1844 ctlr->cur_msg = NULL; 1845 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1846 1847 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1848 1849 return 0; 1850 } 1851 1852 static int spi_stop_queue(struct spi_controller *ctlr) 1853 { 1854 unsigned long flags; 1855 unsigned limit = 500; 1856 int ret = 0; 1857 1858 spin_lock_irqsave(&ctlr->queue_lock, flags); 1859 1860 /* 1861 * This is a bit lame, but is optimized for the common execution path. 1862 * A wait_queue on the ctlr->busy could be used, but then the common 1863 * execution path (pump_messages) would be required to call wake_up or 1864 * friends on every SPI message. Do this instead. 1865 */ 1866 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1867 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1868 usleep_range(10000, 11000); 1869 spin_lock_irqsave(&ctlr->queue_lock, flags); 1870 } 1871 1872 if (!list_empty(&ctlr->queue) || ctlr->busy) 1873 ret = -EBUSY; 1874 else 1875 ctlr->running = false; 1876 1877 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1878 1879 if (ret) { 1880 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1881 return ret; 1882 } 1883 return ret; 1884 } 1885 1886 static int spi_destroy_queue(struct spi_controller *ctlr) 1887 { 1888 int ret; 1889 1890 ret = spi_stop_queue(ctlr); 1891 1892 /* 1893 * kthread_flush_worker will block until all work is done. 1894 * If the reason that stop_queue timed out is that the work will never 1895 * finish, then it does no good to call flush/stop thread, so 1896 * return anyway. 1897 */ 1898 if (ret) { 1899 dev_err(&ctlr->dev, "problem destroying queue\n"); 1900 return ret; 1901 } 1902 1903 kthread_destroy_worker(ctlr->kworker); 1904 1905 return 0; 1906 } 1907 1908 static int __spi_queued_transfer(struct spi_device *spi, 1909 struct spi_message *msg, 1910 bool need_pump) 1911 { 1912 struct spi_controller *ctlr = spi->controller; 1913 unsigned long flags; 1914 1915 spin_lock_irqsave(&ctlr->queue_lock, flags); 1916 1917 if (!ctlr->running) { 1918 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1919 return -ESHUTDOWN; 1920 } 1921 msg->actual_length = 0; 1922 msg->status = -EINPROGRESS; 1923 1924 list_add_tail(&msg->queue, &ctlr->queue); 1925 if (!ctlr->busy && need_pump) 1926 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1927 1928 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1929 return 0; 1930 } 1931 1932 /** 1933 * spi_queued_transfer - transfer function for queued transfers 1934 * @spi: spi device which is requesting transfer 1935 * @msg: spi message which is to handled is queued to driver queue 1936 * 1937 * Return: zero on success, else a negative error code. 1938 */ 1939 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1940 { 1941 return __spi_queued_transfer(spi, msg, true); 1942 } 1943 1944 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1945 { 1946 int ret; 1947 1948 ctlr->transfer = spi_queued_transfer; 1949 if (!ctlr->transfer_one_message) 1950 ctlr->transfer_one_message = spi_transfer_one_message; 1951 1952 /* Initialize and start queue */ 1953 ret = spi_init_queue(ctlr); 1954 if (ret) { 1955 dev_err(&ctlr->dev, "problem initializing queue\n"); 1956 goto err_init_queue; 1957 } 1958 ctlr->queued = true; 1959 ret = spi_start_queue(ctlr); 1960 if (ret) { 1961 dev_err(&ctlr->dev, "problem starting queue\n"); 1962 goto err_start_queue; 1963 } 1964 1965 return 0; 1966 1967 err_start_queue: 1968 spi_destroy_queue(ctlr); 1969 err_init_queue: 1970 return ret; 1971 } 1972 1973 /** 1974 * spi_flush_queue - Send all pending messages in the queue from the callers' 1975 * context 1976 * @ctlr: controller to process queue for 1977 * 1978 * This should be used when one wants to ensure all pending messages have been 1979 * sent before doing something. Is used by the spi-mem code to make sure SPI 1980 * memory operations do not preempt regular SPI transfers that have been queued 1981 * before the spi-mem operation. 1982 */ 1983 void spi_flush_queue(struct spi_controller *ctlr) 1984 { 1985 if (ctlr->transfer == spi_queued_transfer) 1986 __spi_pump_messages(ctlr, false); 1987 } 1988 1989 /*-------------------------------------------------------------------------*/ 1990 1991 #if defined(CONFIG_OF) 1992 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1993 struct device_node *nc) 1994 { 1995 u32 value; 1996 int rc; 1997 1998 /* Mode (clock phase/polarity/etc.) */ 1999 if (of_property_read_bool(nc, "spi-cpha")) 2000 spi->mode |= SPI_CPHA; 2001 if (of_property_read_bool(nc, "spi-cpol")) 2002 spi->mode |= SPI_CPOL; 2003 if (of_property_read_bool(nc, "spi-3wire")) 2004 spi->mode |= SPI_3WIRE; 2005 if (of_property_read_bool(nc, "spi-lsb-first")) 2006 spi->mode |= SPI_LSB_FIRST; 2007 if (of_property_read_bool(nc, "spi-cs-high")) 2008 spi->mode |= SPI_CS_HIGH; 2009 2010 /* Device DUAL/QUAD mode */ 2011 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2012 switch (value) { 2013 case 0: 2014 spi->mode |= SPI_NO_TX; 2015 break; 2016 case 1: 2017 break; 2018 case 2: 2019 spi->mode |= SPI_TX_DUAL; 2020 break; 2021 case 4: 2022 spi->mode |= SPI_TX_QUAD; 2023 break; 2024 case 8: 2025 spi->mode |= SPI_TX_OCTAL; 2026 break; 2027 default: 2028 dev_warn(&ctlr->dev, 2029 "spi-tx-bus-width %d not supported\n", 2030 value); 2031 break; 2032 } 2033 } 2034 2035 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2036 switch (value) { 2037 case 0: 2038 spi->mode |= SPI_NO_RX; 2039 break; 2040 case 1: 2041 break; 2042 case 2: 2043 spi->mode |= SPI_RX_DUAL; 2044 break; 2045 case 4: 2046 spi->mode |= SPI_RX_QUAD; 2047 break; 2048 case 8: 2049 spi->mode |= SPI_RX_OCTAL; 2050 break; 2051 default: 2052 dev_warn(&ctlr->dev, 2053 "spi-rx-bus-width %d not supported\n", 2054 value); 2055 break; 2056 } 2057 } 2058 2059 if (spi_controller_is_slave(ctlr)) { 2060 if (!of_node_name_eq(nc, "slave")) { 2061 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2062 nc); 2063 return -EINVAL; 2064 } 2065 return 0; 2066 } 2067 2068 /* Device address */ 2069 rc = of_property_read_u32(nc, "reg", &value); 2070 if (rc) { 2071 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2072 nc, rc); 2073 return rc; 2074 } 2075 spi->chip_select = value; 2076 2077 /* Device speed */ 2078 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2079 spi->max_speed_hz = value; 2080 2081 return 0; 2082 } 2083 2084 static struct spi_device * 2085 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2086 { 2087 struct spi_device *spi; 2088 int rc; 2089 2090 /* Alloc an spi_device */ 2091 spi = spi_alloc_device(ctlr); 2092 if (!spi) { 2093 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2094 rc = -ENOMEM; 2095 goto err_out; 2096 } 2097 2098 /* Select device driver */ 2099 rc = of_modalias_node(nc, spi->modalias, 2100 sizeof(spi->modalias)); 2101 if (rc < 0) { 2102 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2103 goto err_out; 2104 } 2105 2106 rc = of_spi_parse_dt(ctlr, spi, nc); 2107 if (rc) 2108 goto err_out; 2109 2110 /* Store a pointer to the node in the device structure */ 2111 of_node_get(nc); 2112 spi->dev.of_node = nc; 2113 spi->dev.fwnode = of_fwnode_handle(nc); 2114 2115 /* Register the new device */ 2116 rc = spi_add_device(spi); 2117 if (rc) { 2118 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2119 goto err_of_node_put; 2120 } 2121 2122 return spi; 2123 2124 err_of_node_put: 2125 of_node_put(nc); 2126 err_out: 2127 spi_dev_put(spi); 2128 return ERR_PTR(rc); 2129 } 2130 2131 /** 2132 * of_register_spi_devices() - Register child devices onto the SPI bus 2133 * @ctlr: Pointer to spi_controller device 2134 * 2135 * Registers an spi_device for each child node of controller node which 2136 * represents a valid SPI slave. 2137 */ 2138 static void of_register_spi_devices(struct spi_controller *ctlr) 2139 { 2140 struct spi_device *spi; 2141 struct device_node *nc; 2142 2143 if (!ctlr->dev.of_node) 2144 return; 2145 2146 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2147 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2148 continue; 2149 spi = of_register_spi_device(ctlr, nc); 2150 if (IS_ERR(spi)) { 2151 dev_warn(&ctlr->dev, 2152 "Failed to create SPI device for %pOF\n", nc); 2153 of_node_clear_flag(nc, OF_POPULATED); 2154 } 2155 } 2156 } 2157 #else 2158 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2159 #endif 2160 2161 /** 2162 * spi_new_ancillary_device() - Register ancillary SPI device 2163 * @spi: Pointer to the main SPI device registering the ancillary device 2164 * @chip_select: Chip Select of the ancillary device 2165 * 2166 * Register an ancillary SPI device; for example some chips have a chip-select 2167 * for normal device usage and another one for setup/firmware upload. 2168 * 2169 * This may only be called from main SPI device's probe routine. 2170 * 2171 * Return: 0 on success; negative errno on failure 2172 */ 2173 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2174 u8 chip_select) 2175 { 2176 struct spi_device *ancillary; 2177 int rc = 0; 2178 2179 /* Alloc an spi_device */ 2180 ancillary = spi_alloc_device(spi->controller); 2181 if (!ancillary) { 2182 rc = -ENOMEM; 2183 goto err_out; 2184 } 2185 2186 strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2187 2188 /* Use provided chip-select for ancillary device */ 2189 ancillary->chip_select = chip_select; 2190 2191 /* Take over SPI mode/speed from SPI main device */ 2192 ancillary->max_speed_hz = spi->max_speed_hz; 2193 ancillary->mode = spi->mode; 2194 2195 /* Register the new device */ 2196 rc = spi_add_device_locked(ancillary); 2197 if (rc) { 2198 dev_err(&spi->dev, "failed to register ancillary device\n"); 2199 goto err_out; 2200 } 2201 2202 return ancillary; 2203 2204 err_out: 2205 spi_dev_put(ancillary); 2206 return ERR_PTR(rc); 2207 } 2208 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2209 2210 #ifdef CONFIG_ACPI 2211 struct acpi_spi_lookup { 2212 struct spi_controller *ctlr; 2213 u32 max_speed_hz; 2214 u32 mode; 2215 int irq; 2216 u8 bits_per_word; 2217 u8 chip_select; 2218 }; 2219 2220 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2221 struct acpi_spi_lookup *lookup) 2222 { 2223 const union acpi_object *obj; 2224 2225 if (!x86_apple_machine) 2226 return; 2227 2228 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2229 && obj->buffer.length >= 4) 2230 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2231 2232 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2233 && obj->buffer.length == 8) 2234 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2235 2236 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2237 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2238 lookup->mode |= SPI_LSB_FIRST; 2239 2240 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2241 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2242 lookup->mode |= SPI_CPOL; 2243 2244 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2245 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2246 lookup->mode |= SPI_CPHA; 2247 } 2248 2249 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2250 { 2251 struct acpi_spi_lookup *lookup = data; 2252 struct spi_controller *ctlr = lookup->ctlr; 2253 2254 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2255 struct acpi_resource_spi_serialbus *sb; 2256 acpi_handle parent_handle; 2257 acpi_status status; 2258 2259 sb = &ares->data.spi_serial_bus; 2260 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2261 2262 status = acpi_get_handle(NULL, 2263 sb->resource_source.string_ptr, 2264 &parent_handle); 2265 2266 if (ACPI_FAILURE(status) || 2267 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2268 return -ENODEV; 2269 2270 /* 2271 * ACPI DeviceSelection numbering is handled by the 2272 * host controller driver in Windows and can vary 2273 * from driver to driver. In Linux we always expect 2274 * 0 .. max - 1 so we need to ask the driver to 2275 * translate between the two schemes. 2276 */ 2277 if (ctlr->fw_translate_cs) { 2278 int cs = ctlr->fw_translate_cs(ctlr, 2279 sb->device_selection); 2280 if (cs < 0) 2281 return cs; 2282 lookup->chip_select = cs; 2283 } else { 2284 lookup->chip_select = sb->device_selection; 2285 } 2286 2287 lookup->max_speed_hz = sb->connection_speed; 2288 lookup->bits_per_word = sb->data_bit_length; 2289 2290 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2291 lookup->mode |= SPI_CPHA; 2292 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2293 lookup->mode |= SPI_CPOL; 2294 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2295 lookup->mode |= SPI_CS_HIGH; 2296 } 2297 } else if (lookup->irq < 0) { 2298 struct resource r; 2299 2300 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2301 lookup->irq = r.start; 2302 } 2303 2304 /* Always tell the ACPI core to skip this resource */ 2305 return 1; 2306 } 2307 2308 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2309 struct acpi_device *adev) 2310 { 2311 acpi_handle parent_handle = NULL; 2312 struct list_head resource_list; 2313 struct acpi_spi_lookup lookup = {}; 2314 struct spi_device *spi; 2315 int ret; 2316 2317 if (acpi_bus_get_status(adev) || !adev->status.present || 2318 acpi_device_enumerated(adev)) 2319 return AE_OK; 2320 2321 lookup.ctlr = ctlr; 2322 lookup.irq = -1; 2323 2324 INIT_LIST_HEAD(&resource_list); 2325 ret = acpi_dev_get_resources(adev, &resource_list, 2326 acpi_spi_add_resource, &lookup); 2327 acpi_dev_free_resource_list(&resource_list); 2328 2329 if (ret < 0) 2330 /* found SPI in _CRS but it points to another controller */ 2331 return AE_OK; 2332 2333 if (!lookup.max_speed_hz && 2334 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2335 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2336 /* Apple does not use _CRS but nested devices for SPI slaves */ 2337 acpi_spi_parse_apple_properties(adev, &lookup); 2338 } 2339 2340 if (!lookup.max_speed_hz) 2341 return AE_OK; 2342 2343 spi = spi_alloc_device(ctlr); 2344 if (!spi) { 2345 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2346 dev_name(&adev->dev)); 2347 return AE_NO_MEMORY; 2348 } 2349 2350 2351 ACPI_COMPANION_SET(&spi->dev, adev); 2352 spi->max_speed_hz = lookup.max_speed_hz; 2353 spi->mode |= lookup.mode; 2354 spi->irq = lookup.irq; 2355 spi->bits_per_word = lookup.bits_per_word; 2356 spi->chip_select = lookup.chip_select; 2357 2358 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2359 sizeof(spi->modalias)); 2360 2361 if (spi->irq < 0) 2362 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2363 2364 acpi_device_set_enumerated(adev); 2365 2366 adev->power.flags.ignore_parent = true; 2367 if (spi_add_device(spi)) { 2368 adev->power.flags.ignore_parent = false; 2369 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2370 dev_name(&adev->dev)); 2371 spi_dev_put(spi); 2372 } 2373 2374 return AE_OK; 2375 } 2376 2377 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2378 void *data, void **return_value) 2379 { 2380 struct spi_controller *ctlr = data; 2381 struct acpi_device *adev; 2382 2383 if (acpi_bus_get_device(handle, &adev)) 2384 return AE_OK; 2385 2386 return acpi_register_spi_device(ctlr, adev); 2387 } 2388 2389 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2390 2391 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2392 { 2393 acpi_status status; 2394 acpi_handle handle; 2395 2396 handle = ACPI_HANDLE(ctlr->dev.parent); 2397 if (!handle) 2398 return; 2399 2400 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2401 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2402 acpi_spi_add_device, NULL, ctlr, NULL); 2403 if (ACPI_FAILURE(status)) 2404 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2405 } 2406 #else 2407 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2408 #endif /* CONFIG_ACPI */ 2409 2410 static void spi_controller_release(struct device *dev) 2411 { 2412 struct spi_controller *ctlr; 2413 2414 ctlr = container_of(dev, struct spi_controller, dev); 2415 kfree(ctlr); 2416 } 2417 2418 static struct class spi_master_class = { 2419 .name = "spi_master", 2420 .owner = THIS_MODULE, 2421 .dev_release = spi_controller_release, 2422 .dev_groups = spi_master_groups, 2423 }; 2424 2425 #ifdef CONFIG_SPI_SLAVE 2426 /** 2427 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2428 * controller 2429 * @spi: device used for the current transfer 2430 */ 2431 int spi_slave_abort(struct spi_device *spi) 2432 { 2433 struct spi_controller *ctlr = spi->controller; 2434 2435 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2436 return ctlr->slave_abort(ctlr); 2437 2438 return -ENOTSUPP; 2439 } 2440 EXPORT_SYMBOL_GPL(spi_slave_abort); 2441 2442 static int match_true(struct device *dev, void *data) 2443 { 2444 return 1; 2445 } 2446 2447 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2448 char *buf) 2449 { 2450 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2451 dev); 2452 struct device *child; 2453 2454 child = device_find_child(&ctlr->dev, NULL, match_true); 2455 return sprintf(buf, "%s\n", 2456 child ? to_spi_device(child)->modalias : NULL); 2457 } 2458 2459 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2460 const char *buf, size_t count) 2461 { 2462 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2463 dev); 2464 struct spi_device *spi; 2465 struct device *child; 2466 char name[32]; 2467 int rc; 2468 2469 rc = sscanf(buf, "%31s", name); 2470 if (rc != 1 || !name[0]) 2471 return -EINVAL; 2472 2473 child = device_find_child(&ctlr->dev, NULL, match_true); 2474 if (child) { 2475 /* Remove registered slave */ 2476 device_unregister(child); 2477 put_device(child); 2478 } 2479 2480 if (strcmp(name, "(null)")) { 2481 /* Register new slave */ 2482 spi = spi_alloc_device(ctlr); 2483 if (!spi) 2484 return -ENOMEM; 2485 2486 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2487 2488 rc = spi_add_device(spi); 2489 if (rc) { 2490 spi_dev_put(spi); 2491 return rc; 2492 } 2493 } 2494 2495 return count; 2496 } 2497 2498 static DEVICE_ATTR_RW(slave); 2499 2500 static struct attribute *spi_slave_attrs[] = { 2501 &dev_attr_slave.attr, 2502 NULL, 2503 }; 2504 2505 static const struct attribute_group spi_slave_group = { 2506 .attrs = spi_slave_attrs, 2507 }; 2508 2509 static const struct attribute_group *spi_slave_groups[] = { 2510 &spi_controller_statistics_group, 2511 &spi_slave_group, 2512 NULL, 2513 }; 2514 2515 static struct class spi_slave_class = { 2516 .name = "spi_slave", 2517 .owner = THIS_MODULE, 2518 .dev_release = spi_controller_release, 2519 .dev_groups = spi_slave_groups, 2520 }; 2521 #else 2522 extern struct class spi_slave_class; /* dummy */ 2523 #endif 2524 2525 /** 2526 * __spi_alloc_controller - allocate an SPI master or slave controller 2527 * @dev: the controller, possibly using the platform_bus 2528 * @size: how much zeroed driver-private data to allocate; the pointer to this 2529 * memory is in the driver_data field of the returned device, accessible 2530 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2531 * drivers granting DMA access to portions of their private data need to 2532 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2533 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2534 * slave (true) controller 2535 * Context: can sleep 2536 * 2537 * This call is used only by SPI controller drivers, which are the 2538 * only ones directly touching chip registers. It's how they allocate 2539 * an spi_controller structure, prior to calling spi_register_controller(). 2540 * 2541 * This must be called from context that can sleep. 2542 * 2543 * The caller is responsible for assigning the bus number and initializing the 2544 * controller's methods before calling spi_register_controller(); and (after 2545 * errors adding the device) calling spi_controller_put() to prevent a memory 2546 * leak. 2547 * 2548 * Return: the SPI controller structure on success, else NULL. 2549 */ 2550 struct spi_controller *__spi_alloc_controller(struct device *dev, 2551 unsigned int size, bool slave) 2552 { 2553 struct spi_controller *ctlr; 2554 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2555 2556 if (!dev) 2557 return NULL; 2558 2559 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2560 if (!ctlr) 2561 return NULL; 2562 2563 device_initialize(&ctlr->dev); 2564 ctlr->bus_num = -1; 2565 ctlr->num_chipselect = 1; 2566 ctlr->slave = slave; 2567 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2568 ctlr->dev.class = &spi_slave_class; 2569 else 2570 ctlr->dev.class = &spi_master_class; 2571 ctlr->dev.parent = dev; 2572 pm_suspend_ignore_children(&ctlr->dev, true); 2573 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2574 2575 return ctlr; 2576 } 2577 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2578 2579 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2580 { 2581 spi_controller_put(*(struct spi_controller **)ctlr); 2582 } 2583 2584 /** 2585 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2586 * @dev: physical device of SPI controller 2587 * @size: how much zeroed driver-private data to allocate 2588 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2589 * Context: can sleep 2590 * 2591 * Allocate an SPI controller and automatically release a reference on it 2592 * when @dev is unbound from its driver. Drivers are thus relieved from 2593 * having to call spi_controller_put(). 2594 * 2595 * The arguments to this function are identical to __spi_alloc_controller(). 2596 * 2597 * Return: the SPI controller structure on success, else NULL. 2598 */ 2599 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2600 unsigned int size, 2601 bool slave) 2602 { 2603 struct spi_controller **ptr, *ctlr; 2604 2605 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2606 GFP_KERNEL); 2607 if (!ptr) 2608 return NULL; 2609 2610 ctlr = __spi_alloc_controller(dev, size, slave); 2611 if (ctlr) { 2612 ctlr->devm_allocated = true; 2613 *ptr = ctlr; 2614 devres_add(dev, ptr); 2615 } else { 2616 devres_free(ptr); 2617 } 2618 2619 return ctlr; 2620 } 2621 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2622 2623 #ifdef CONFIG_OF 2624 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2625 { 2626 int nb, i, *cs; 2627 struct device_node *np = ctlr->dev.of_node; 2628 2629 if (!np) 2630 return 0; 2631 2632 nb = of_gpio_named_count(np, "cs-gpios"); 2633 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2634 2635 /* Return error only for an incorrectly formed cs-gpios property */ 2636 if (nb == 0 || nb == -ENOENT) 2637 return 0; 2638 else if (nb < 0) 2639 return nb; 2640 2641 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2642 GFP_KERNEL); 2643 ctlr->cs_gpios = cs; 2644 2645 if (!ctlr->cs_gpios) 2646 return -ENOMEM; 2647 2648 for (i = 0; i < ctlr->num_chipselect; i++) 2649 cs[i] = -ENOENT; 2650 2651 for (i = 0; i < nb; i++) 2652 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2653 2654 return 0; 2655 } 2656 #else 2657 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2658 { 2659 return 0; 2660 } 2661 #endif 2662 2663 /** 2664 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2665 * @ctlr: The SPI master to grab GPIO descriptors for 2666 */ 2667 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2668 { 2669 int nb, i; 2670 struct gpio_desc **cs; 2671 struct device *dev = &ctlr->dev; 2672 unsigned long native_cs_mask = 0; 2673 unsigned int num_cs_gpios = 0; 2674 2675 nb = gpiod_count(dev, "cs"); 2676 if (nb < 0) { 2677 /* No GPIOs at all is fine, else return the error */ 2678 if (nb == -ENOENT) 2679 return 0; 2680 return nb; 2681 } 2682 2683 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2684 2685 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2686 GFP_KERNEL); 2687 if (!cs) 2688 return -ENOMEM; 2689 ctlr->cs_gpiods = cs; 2690 2691 for (i = 0; i < nb; i++) { 2692 /* 2693 * Most chipselects are active low, the inverted 2694 * semantics are handled by special quirks in gpiolib, 2695 * so initializing them GPIOD_OUT_LOW here means 2696 * "unasserted", in most cases this will drive the physical 2697 * line high. 2698 */ 2699 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2700 GPIOD_OUT_LOW); 2701 if (IS_ERR(cs[i])) 2702 return PTR_ERR(cs[i]); 2703 2704 if (cs[i]) { 2705 /* 2706 * If we find a CS GPIO, name it after the device and 2707 * chip select line. 2708 */ 2709 char *gpioname; 2710 2711 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2712 dev_name(dev), i); 2713 if (!gpioname) 2714 return -ENOMEM; 2715 gpiod_set_consumer_name(cs[i], gpioname); 2716 num_cs_gpios++; 2717 continue; 2718 } 2719 2720 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2721 dev_err(dev, "Invalid native chip select %d\n", i); 2722 return -EINVAL; 2723 } 2724 native_cs_mask |= BIT(i); 2725 } 2726 2727 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 2728 2729 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios && 2730 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 2731 dev_err(dev, "No unused native chip select available\n"); 2732 return -EINVAL; 2733 } 2734 2735 return 0; 2736 } 2737 2738 static int spi_controller_check_ops(struct spi_controller *ctlr) 2739 { 2740 /* 2741 * The controller may implement only the high-level SPI-memory like 2742 * operations if it does not support regular SPI transfers, and this is 2743 * valid use case. 2744 * If ->mem_ops is NULL, we request that at least one of the 2745 * ->transfer_xxx() method be implemented. 2746 */ 2747 if (ctlr->mem_ops) { 2748 if (!ctlr->mem_ops->exec_op) 2749 return -EINVAL; 2750 } else if (!ctlr->transfer && !ctlr->transfer_one && 2751 !ctlr->transfer_one_message) { 2752 return -EINVAL; 2753 } 2754 2755 return 0; 2756 } 2757 2758 /** 2759 * spi_register_controller - register SPI master or slave controller 2760 * @ctlr: initialized master, originally from spi_alloc_master() or 2761 * spi_alloc_slave() 2762 * Context: can sleep 2763 * 2764 * SPI controllers connect to their drivers using some non-SPI bus, 2765 * such as the platform bus. The final stage of probe() in that code 2766 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2767 * 2768 * SPI controllers use board specific (often SOC specific) bus numbers, 2769 * and board-specific addressing for SPI devices combines those numbers 2770 * with chip select numbers. Since SPI does not directly support dynamic 2771 * device identification, boards need configuration tables telling which 2772 * chip is at which address. 2773 * 2774 * This must be called from context that can sleep. It returns zero on 2775 * success, else a negative error code (dropping the controller's refcount). 2776 * After a successful return, the caller is responsible for calling 2777 * spi_unregister_controller(). 2778 * 2779 * Return: zero on success, else a negative error code. 2780 */ 2781 int spi_register_controller(struct spi_controller *ctlr) 2782 { 2783 struct device *dev = ctlr->dev.parent; 2784 struct boardinfo *bi; 2785 int status; 2786 int id, first_dynamic; 2787 2788 if (!dev) 2789 return -ENODEV; 2790 2791 /* 2792 * Make sure all necessary hooks are implemented before registering 2793 * the SPI controller. 2794 */ 2795 status = spi_controller_check_ops(ctlr); 2796 if (status) 2797 return status; 2798 2799 if (ctlr->bus_num >= 0) { 2800 /* devices with a fixed bus num must check-in with the num */ 2801 mutex_lock(&board_lock); 2802 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2803 ctlr->bus_num + 1, GFP_KERNEL); 2804 mutex_unlock(&board_lock); 2805 if (WARN(id < 0, "couldn't get idr")) 2806 return id == -ENOSPC ? -EBUSY : id; 2807 ctlr->bus_num = id; 2808 } else if (ctlr->dev.of_node) { 2809 /* allocate dynamic bus number using Linux idr */ 2810 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2811 if (id >= 0) { 2812 ctlr->bus_num = id; 2813 mutex_lock(&board_lock); 2814 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2815 ctlr->bus_num + 1, GFP_KERNEL); 2816 mutex_unlock(&board_lock); 2817 if (WARN(id < 0, "couldn't get idr")) 2818 return id == -ENOSPC ? -EBUSY : id; 2819 } 2820 } 2821 if (ctlr->bus_num < 0) { 2822 first_dynamic = of_alias_get_highest_id("spi"); 2823 if (first_dynamic < 0) 2824 first_dynamic = 0; 2825 else 2826 first_dynamic++; 2827 2828 mutex_lock(&board_lock); 2829 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2830 0, GFP_KERNEL); 2831 mutex_unlock(&board_lock); 2832 if (WARN(id < 0, "couldn't get idr")) 2833 return id; 2834 ctlr->bus_num = id; 2835 } 2836 INIT_LIST_HEAD(&ctlr->queue); 2837 spin_lock_init(&ctlr->queue_lock); 2838 spin_lock_init(&ctlr->bus_lock_spinlock); 2839 mutex_init(&ctlr->bus_lock_mutex); 2840 mutex_init(&ctlr->io_mutex); 2841 ctlr->bus_lock_flag = 0; 2842 init_completion(&ctlr->xfer_completion); 2843 if (!ctlr->max_dma_len) 2844 ctlr->max_dma_len = INT_MAX; 2845 2846 /* register the device, then userspace will see it. 2847 * registration fails if the bus ID is in use. 2848 */ 2849 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2850 2851 if (!spi_controller_is_slave(ctlr)) { 2852 if (ctlr->use_gpio_descriptors) { 2853 status = spi_get_gpio_descs(ctlr); 2854 if (status) 2855 goto free_bus_id; 2856 /* 2857 * A controller using GPIO descriptors always 2858 * supports SPI_CS_HIGH if need be. 2859 */ 2860 ctlr->mode_bits |= SPI_CS_HIGH; 2861 } else { 2862 /* Legacy code path for GPIOs from DT */ 2863 status = of_spi_get_gpio_numbers(ctlr); 2864 if (status) 2865 goto free_bus_id; 2866 } 2867 } 2868 2869 /* 2870 * Even if it's just one always-selected device, there must 2871 * be at least one chipselect. 2872 */ 2873 if (!ctlr->num_chipselect) { 2874 status = -EINVAL; 2875 goto free_bus_id; 2876 } 2877 2878 status = device_add(&ctlr->dev); 2879 if (status < 0) 2880 goto free_bus_id; 2881 dev_dbg(dev, "registered %s %s\n", 2882 spi_controller_is_slave(ctlr) ? "slave" : "master", 2883 dev_name(&ctlr->dev)); 2884 2885 /* 2886 * If we're using a queued driver, start the queue. Note that we don't 2887 * need the queueing logic if the driver is only supporting high-level 2888 * memory operations. 2889 */ 2890 if (ctlr->transfer) { 2891 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2892 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2893 status = spi_controller_initialize_queue(ctlr); 2894 if (status) { 2895 device_del(&ctlr->dev); 2896 goto free_bus_id; 2897 } 2898 } 2899 /* add statistics */ 2900 spin_lock_init(&ctlr->statistics.lock); 2901 2902 mutex_lock(&board_lock); 2903 list_add_tail(&ctlr->list, &spi_controller_list); 2904 list_for_each_entry(bi, &board_list, list) 2905 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2906 mutex_unlock(&board_lock); 2907 2908 /* Register devices from the device tree and ACPI */ 2909 of_register_spi_devices(ctlr); 2910 acpi_register_spi_devices(ctlr); 2911 return status; 2912 2913 free_bus_id: 2914 mutex_lock(&board_lock); 2915 idr_remove(&spi_master_idr, ctlr->bus_num); 2916 mutex_unlock(&board_lock); 2917 return status; 2918 } 2919 EXPORT_SYMBOL_GPL(spi_register_controller); 2920 2921 static void devm_spi_unregister(void *ctlr) 2922 { 2923 spi_unregister_controller(ctlr); 2924 } 2925 2926 /** 2927 * devm_spi_register_controller - register managed SPI master or slave 2928 * controller 2929 * @dev: device managing SPI controller 2930 * @ctlr: initialized controller, originally from spi_alloc_master() or 2931 * spi_alloc_slave() 2932 * Context: can sleep 2933 * 2934 * Register a SPI device as with spi_register_controller() which will 2935 * automatically be unregistered and freed. 2936 * 2937 * Return: zero on success, else a negative error code. 2938 */ 2939 int devm_spi_register_controller(struct device *dev, 2940 struct spi_controller *ctlr) 2941 { 2942 int ret; 2943 2944 ret = spi_register_controller(ctlr); 2945 if (ret) 2946 return ret; 2947 2948 return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr); 2949 } 2950 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2951 2952 static int __unregister(struct device *dev, void *null) 2953 { 2954 spi_unregister_device(to_spi_device(dev)); 2955 return 0; 2956 } 2957 2958 /** 2959 * spi_unregister_controller - unregister SPI master or slave controller 2960 * @ctlr: the controller being unregistered 2961 * Context: can sleep 2962 * 2963 * This call is used only by SPI controller drivers, which are the 2964 * only ones directly touching chip registers. 2965 * 2966 * This must be called from context that can sleep. 2967 * 2968 * Note that this function also drops a reference to the controller. 2969 */ 2970 void spi_unregister_controller(struct spi_controller *ctlr) 2971 { 2972 struct spi_controller *found; 2973 int id = ctlr->bus_num; 2974 2975 /* Prevent addition of new devices, unregister existing ones */ 2976 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2977 mutex_lock(&spi_add_lock); 2978 2979 device_for_each_child(&ctlr->dev, NULL, __unregister); 2980 2981 /* First make sure that this controller was ever added */ 2982 mutex_lock(&board_lock); 2983 found = idr_find(&spi_master_idr, id); 2984 mutex_unlock(&board_lock); 2985 if (ctlr->queued) { 2986 if (spi_destroy_queue(ctlr)) 2987 dev_err(&ctlr->dev, "queue remove failed\n"); 2988 } 2989 mutex_lock(&board_lock); 2990 list_del(&ctlr->list); 2991 mutex_unlock(&board_lock); 2992 2993 device_del(&ctlr->dev); 2994 2995 /* Release the last reference on the controller if its driver 2996 * has not yet been converted to devm_spi_alloc_master/slave(). 2997 */ 2998 if (!ctlr->devm_allocated) 2999 put_device(&ctlr->dev); 3000 3001 /* free bus id */ 3002 mutex_lock(&board_lock); 3003 if (found == ctlr) 3004 idr_remove(&spi_master_idr, id); 3005 mutex_unlock(&board_lock); 3006 3007 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3008 mutex_unlock(&spi_add_lock); 3009 } 3010 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3011 3012 int spi_controller_suspend(struct spi_controller *ctlr) 3013 { 3014 int ret; 3015 3016 /* Basically no-ops for non-queued controllers */ 3017 if (!ctlr->queued) 3018 return 0; 3019 3020 ret = spi_stop_queue(ctlr); 3021 if (ret) 3022 dev_err(&ctlr->dev, "queue stop failed\n"); 3023 3024 return ret; 3025 } 3026 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3027 3028 int spi_controller_resume(struct spi_controller *ctlr) 3029 { 3030 int ret; 3031 3032 if (!ctlr->queued) 3033 return 0; 3034 3035 ret = spi_start_queue(ctlr); 3036 if (ret) 3037 dev_err(&ctlr->dev, "queue restart failed\n"); 3038 3039 return ret; 3040 } 3041 EXPORT_SYMBOL_GPL(spi_controller_resume); 3042 3043 static int __spi_controller_match(struct device *dev, const void *data) 3044 { 3045 struct spi_controller *ctlr; 3046 const u16 *bus_num = data; 3047 3048 ctlr = container_of(dev, struct spi_controller, dev); 3049 return ctlr->bus_num == *bus_num; 3050 } 3051 3052 /** 3053 * spi_busnum_to_master - look up master associated with bus_num 3054 * @bus_num: the master's bus number 3055 * Context: can sleep 3056 * 3057 * This call may be used with devices that are registered after 3058 * arch init time. It returns a refcounted pointer to the relevant 3059 * spi_controller (which the caller must release), or NULL if there is 3060 * no such master registered. 3061 * 3062 * Return: the SPI master structure on success, else NULL. 3063 */ 3064 struct spi_controller *spi_busnum_to_master(u16 bus_num) 3065 { 3066 struct device *dev; 3067 struct spi_controller *ctlr = NULL; 3068 3069 dev = class_find_device(&spi_master_class, NULL, &bus_num, 3070 __spi_controller_match); 3071 if (dev) 3072 ctlr = container_of(dev, struct spi_controller, dev); 3073 /* reference got in class_find_device */ 3074 return ctlr; 3075 } 3076 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 3077 3078 /*-------------------------------------------------------------------------*/ 3079 3080 /* Core methods for SPI resource management */ 3081 3082 /** 3083 * spi_res_alloc - allocate a spi resource that is life-cycle managed 3084 * during the processing of a spi_message while using 3085 * spi_transfer_one 3086 * @spi: the spi device for which we allocate memory 3087 * @release: the release code to execute for this resource 3088 * @size: size to alloc and return 3089 * @gfp: GFP allocation flags 3090 * 3091 * Return: the pointer to the allocated data 3092 * 3093 * This may get enhanced in the future to allocate from a memory pool 3094 * of the @spi_device or @spi_controller to avoid repeated allocations. 3095 */ 3096 void *spi_res_alloc(struct spi_device *spi, 3097 spi_res_release_t release, 3098 size_t size, gfp_t gfp) 3099 { 3100 struct spi_res *sres; 3101 3102 sres = kzalloc(sizeof(*sres) + size, gfp); 3103 if (!sres) 3104 return NULL; 3105 3106 INIT_LIST_HEAD(&sres->entry); 3107 sres->release = release; 3108 3109 return sres->data; 3110 } 3111 EXPORT_SYMBOL_GPL(spi_res_alloc); 3112 3113 /** 3114 * spi_res_free - free an spi resource 3115 * @res: pointer to the custom data of a resource 3116 * 3117 */ 3118 void spi_res_free(void *res) 3119 { 3120 struct spi_res *sres = container_of(res, struct spi_res, data); 3121 3122 if (!res) 3123 return; 3124 3125 WARN_ON(!list_empty(&sres->entry)); 3126 kfree(sres); 3127 } 3128 EXPORT_SYMBOL_GPL(spi_res_free); 3129 3130 /** 3131 * spi_res_add - add a spi_res to the spi_message 3132 * @message: the spi message 3133 * @res: the spi_resource 3134 */ 3135 void spi_res_add(struct spi_message *message, void *res) 3136 { 3137 struct spi_res *sres = container_of(res, struct spi_res, data); 3138 3139 WARN_ON(!list_empty(&sres->entry)); 3140 list_add_tail(&sres->entry, &message->resources); 3141 } 3142 EXPORT_SYMBOL_GPL(spi_res_add); 3143 3144 /** 3145 * spi_res_release - release all spi resources for this message 3146 * @ctlr: the @spi_controller 3147 * @message: the @spi_message 3148 */ 3149 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 3150 { 3151 struct spi_res *res, *tmp; 3152 3153 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 3154 if (res->release) 3155 res->release(ctlr, message, res->data); 3156 3157 list_del(&res->entry); 3158 3159 kfree(res); 3160 } 3161 } 3162 EXPORT_SYMBOL_GPL(spi_res_release); 3163 3164 /*-------------------------------------------------------------------------*/ 3165 3166 /* Core methods for spi_message alterations */ 3167 3168 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3169 struct spi_message *msg, 3170 void *res) 3171 { 3172 struct spi_replaced_transfers *rxfer = res; 3173 size_t i; 3174 3175 /* call extra callback if requested */ 3176 if (rxfer->release) 3177 rxfer->release(ctlr, msg, res); 3178 3179 /* insert replaced transfers back into the message */ 3180 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3181 3182 /* remove the formerly inserted entries */ 3183 for (i = 0; i < rxfer->inserted; i++) 3184 list_del(&rxfer->inserted_transfers[i].transfer_list); 3185 } 3186 3187 /** 3188 * spi_replace_transfers - replace transfers with several transfers 3189 * and register change with spi_message.resources 3190 * @msg: the spi_message we work upon 3191 * @xfer_first: the first spi_transfer we want to replace 3192 * @remove: number of transfers to remove 3193 * @insert: the number of transfers we want to insert instead 3194 * @release: extra release code necessary in some circumstances 3195 * @extradatasize: extra data to allocate (with alignment guarantees 3196 * of struct @spi_transfer) 3197 * @gfp: gfp flags 3198 * 3199 * Returns: pointer to @spi_replaced_transfers, 3200 * PTR_ERR(...) in case of errors. 3201 */ 3202 struct spi_replaced_transfers *spi_replace_transfers( 3203 struct spi_message *msg, 3204 struct spi_transfer *xfer_first, 3205 size_t remove, 3206 size_t insert, 3207 spi_replaced_release_t release, 3208 size_t extradatasize, 3209 gfp_t gfp) 3210 { 3211 struct spi_replaced_transfers *rxfer; 3212 struct spi_transfer *xfer; 3213 size_t i; 3214 3215 /* allocate the structure using spi_res */ 3216 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3217 struct_size(rxfer, inserted_transfers, insert) 3218 + extradatasize, 3219 gfp); 3220 if (!rxfer) 3221 return ERR_PTR(-ENOMEM); 3222 3223 /* the release code to invoke before running the generic release */ 3224 rxfer->release = release; 3225 3226 /* assign extradata */ 3227 if (extradatasize) 3228 rxfer->extradata = 3229 &rxfer->inserted_transfers[insert]; 3230 3231 /* init the replaced_transfers list */ 3232 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3233 3234 /* assign the list_entry after which we should reinsert 3235 * the @replaced_transfers - it may be spi_message.messages! 3236 */ 3237 rxfer->replaced_after = xfer_first->transfer_list.prev; 3238 3239 /* remove the requested number of transfers */ 3240 for (i = 0; i < remove; i++) { 3241 /* if the entry after replaced_after it is msg->transfers 3242 * then we have been requested to remove more transfers 3243 * than are in the list 3244 */ 3245 if (rxfer->replaced_after->next == &msg->transfers) { 3246 dev_err(&msg->spi->dev, 3247 "requested to remove more spi_transfers than are available\n"); 3248 /* insert replaced transfers back into the message */ 3249 list_splice(&rxfer->replaced_transfers, 3250 rxfer->replaced_after); 3251 3252 /* free the spi_replace_transfer structure */ 3253 spi_res_free(rxfer); 3254 3255 /* and return with an error */ 3256 return ERR_PTR(-EINVAL); 3257 } 3258 3259 /* remove the entry after replaced_after from list of 3260 * transfers and add it to list of replaced_transfers 3261 */ 3262 list_move_tail(rxfer->replaced_after->next, 3263 &rxfer->replaced_transfers); 3264 } 3265 3266 /* create copy of the given xfer with identical settings 3267 * based on the first transfer to get removed 3268 */ 3269 for (i = 0; i < insert; i++) { 3270 /* we need to run in reverse order */ 3271 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3272 3273 /* copy all spi_transfer data */ 3274 memcpy(xfer, xfer_first, sizeof(*xfer)); 3275 3276 /* add to list */ 3277 list_add(&xfer->transfer_list, rxfer->replaced_after); 3278 3279 /* clear cs_change and delay for all but the last */ 3280 if (i) { 3281 xfer->cs_change = false; 3282 xfer->delay.value = 0; 3283 } 3284 } 3285 3286 /* set up inserted */ 3287 rxfer->inserted = insert; 3288 3289 /* and register it with spi_res/spi_message */ 3290 spi_res_add(msg, rxfer); 3291 3292 return rxfer; 3293 } 3294 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3295 3296 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3297 struct spi_message *msg, 3298 struct spi_transfer **xferp, 3299 size_t maxsize, 3300 gfp_t gfp) 3301 { 3302 struct spi_transfer *xfer = *xferp, *xfers; 3303 struct spi_replaced_transfers *srt; 3304 size_t offset; 3305 size_t count, i; 3306 3307 /* calculate how many we have to replace */ 3308 count = DIV_ROUND_UP(xfer->len, maxsize); 3309 3310 /* create replacement */ 3311 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3312 if (IS_ERR(srt)) 3313 return PTR_ERR(srt); 3314 xfers = srt->inserted_transfers; 3315 3316 /* now handle each of those newly inserted spi_transfers 3317 * note that the replacements spi_transfers all are preset 3318 * to the same values as *xferp, so tx_buf, rx_buf and len 3319 * are all identical (as well as most others) 3320 * so we just have to fix up len and the pointers. 3321 * 3322 * this also includes support for the depreciated 3323 * spi_message.is_dma_mapped interface 3324 */ 3325 3326 /* the first transfer just needs the length modified, so we 3327 * run it outside the loop 3328 */ 3329 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3330 3331 /* all the others need rx_buf/tx_buf also set */ 3332 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3333 /* update rx_buf, tx_buf and dma */ 3334 if (xfers[i].rx_buf) 3335 xfers[i].rx_buf += offset; 3336 if (xfers[i].rx_dma) 3337 xfers[i].rx_dma += offset; 3338 if (xfers[i].tx_buf) 3339 xfers[i].tx_buf += offset; 3340 if (xfers[i].tx_dma) 3341 xfers[i].tx_dma += offset; 3342 3343 /* update length */ 3344 xfers[i].len = min(maxsize, xfers[i].len - offset); 3345 } 3346 3347 /* we set up xferp to the last entry we have inserted, 3348 * so that we skip those already split transfers 3349 */ 3350 *xferp = &xfers[count - 1]; 3351 3352 /* increment statistics counters */ 3353 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3354 transfers_split_maxsize); 3355 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3356 transfers_split_maxsize); 3357 3358 return 0; 3359 } 3360 3361 /** 3362 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3363 * when an individual transfer exceeds a 3364 * certain size 3365 * @ctlr: the @spi_controller for this transfer 3366 * @msg: the @spi_message to transform 3367 * @maxsize: the maximum when to apply this 3368 * @gfp: GFP allocation flags 3369 * 3370 * Return: status of transformation 3371 */ 3372 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3373 struct spi_message *msg, 3374 size_t maxsize, 3375 gfp_t gfp) 3376 { 3377 struct spi_transfer *xfer; 3378 int ret; 3379 3380 /* iterate over the transfer_list, 3381 * but note that xfer is advanced to the last transfer inserted 3382 * to avoid checking sizes again unnecessarily (also xfer does 3383 * potentiall belong to a different list by the time the 3384 * replacement has happened 3385 */ 3386 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3387 if (xfer->len > maxsize) { 3388 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3389 maxsize, gfp); 3390 if (ret) 3391 return ret; 3392 } 3393 } 3394 3395 return 0; 3396 } 3397 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3398 3399 /*-------------------------------------------------------------------------*/ 3400 3401 /* Core methods for SPI controller protocol drivers. Some of the 3402 * other core methods are currently defined as inline functions. 3403 */ 3404 3405 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3406 u8 bits_per_word) 3407 { 3408 if (ctlr->bits_per_word_mask) { 3409 /* Only 32 bits fit in the mask */ 3410 if (bits_per_word > 32) 3411 return -EINVAL; 3412 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3413 return -EINVAL; 3414 } 3415 3416 return 0; 3417 } 3418 3419 /** 3420 * spi_setup - setup SPI mode and clock rate 3421 * @spi: the device whose settings are being modified 3422 * Context: can sleep, and no requests are queued to the device 3423 * 3424 * SPI protocol drivers may need to update the transfer mode if the 3425 * device doesn't work with its default. They may likewise need 3426 * to update clock rates or word sizes from initial values. This function 3427 * changes those settings, and must be called from a context that can sleep. 3428 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3429 * effect the next time the device is selected and data is transferred to 3430 * or from it. When this function returns, the spi device is deselected. 3431 * 3432 * Note that this call will fail if the protocol driver specifies an option 3433 * that the underlying controller or its driver does not support. For 3434 * example, not all hardware supports wire transfers using nine bit words, 3435 * LSB-first wire encoding, or active-high chipselects. 3436 * 3437 * Return: zero on success, else a negative error code. 3438 */ 3439 int spi_setup(struct spi_device *spi) 3440 { 3441 unsigned bad_bits, ugly_bits; 3442 int status; 3443 3444 /* 3445 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3446 * are set at the same time 3447 */ 3448 if ((hweight_long(spi->mode & 3449 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3450 (hweight_long(spi->mode & 3451 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3452 dev_err(&spi->dev, 3453 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3454 return -EINVAL; 3455 } 3456 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3457 */ 3458 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3459 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3460 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3461 return -EINVAL; 3462 /* help drivers fail *cleanly* when they need options 3463 * that aren't supported with their current controller 3464 * SPI_CS_WORD has a fallback software implementation, 3465 * so it is ignored here. 3466 */ 3467 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3468 SPI_NO_TX | SPI_NO_RX); 3469 /* nothing prevents from working with active-high CS in case if it 3470 * is driven by GPIO. 3471 */ 3472 if (gpio_is_valid(spi->cs_gpio)) 3473 bad_bits &= ~SPI_CS_HIGH; 3474 ugly_bits = bad_bits & 3475 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3476 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3477 if (ugly_bits) { 3478 dev_warn(&spi->dev, 3479 "setup: ignoring unsupported mode bits %x\n", 3480 ugly_bits); 3481 spi->mode &= ~ugly_bits; 3482 bad_bits &= ~ugly_bits; 3483 } 3484 if (bad_bits) { 3485 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3486 bad_bits); 3487 return -EINVAL; 3488 } 3489 3490 if (!spi->bits_per_word) 3491 spi->bits_per_word = 8; 3492 3493 status = __spi_validate_bits_per_word(spi->controller, 3494 spi->bits_per_word); 3495 if (status) 3496 return status; 3497 3498 if (spi->controller->max_speed_hz && 3499 (!spi->max_speed_hz || 3500 spi->max_speed_hz > spi->controller->max_speed_hz)) 3501 spi->max_speed_hz = spi->controller->max_speed_hz; 3502 3503 mutex_lock(&spi->controller->io_mutex); 3504 3505 if (spi->controller->setup) { 3506 status = spi->controller->setup(spi); 3507 if (status) { 3508 mutex_unlock(&spi->controller->io_mutex); 3509 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3510 status); 3511 return status; 3512 } 3513 } 3514 3515 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3516 status = pm_runtime_get_sync(spi->controller->dev.parent); 3517 if (status < 0) { 3518 mutex_unlock(&spi->controller->io_mutex); 3519 pm_runtime_put_noidle(spi->controller->dev.parent); 3520 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3521 status); 3522 return status; 3523 } 3524 3525 /* 3526 * We do not want to return positive value from pm_runtime_get, 3527 * there are many instances of devices calling spi_setup() and 3528 * checking for a non-zero return value instead of a negative 3529 * return value. 3530 */ 3531 status = 0; 3532 3533 spi_set_cs(spi, false, true); 3534 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3535 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3536 } else { 3537 spi_set_cs(spi, false, true); 3538 } 3539 3540 mutex_unlock(&spi->controller->io_mutex); 3541 3542 if (spi->rt && !spi->controller->rt) { 3543 spi->controller->rt = true; 3544 spi_set_thread_rt(spi->controller); 3545 } 3546 3547 trace_spi_setup(spi, status); 3548 3549 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3550 spi->mode & SPI_MODE_X_MASK, 3551 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3552 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3553 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3554 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3555 spi->bits_per_word, spi->max_speed_hz, 3556 status); 3557 3558 return status; 3559 } 3560 EXPORT_SYMBOL_GPL(spi_setup); 3561 3562 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3563 struct spi_device *spi) 3564 { 3565 int delay1, delay2; 3566 3567 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3568 if (delay1 < 0) 3569 return delay1; 3570 3571 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3572 if (delay2 < 0) 3573 return delay2; 3574 3575 if (delay1 < delay2) 3576 memcpy(&xfer->word_delay, &spi->word_delay, 3577 sizeof(xfer->word_delay)); 3578 3579 return 0; 3580 } 3581 3582 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3583 { 3584 struct spi_controller *ctlr = spi->controller; 3585 struct spi_transfer *xfer; 3586 int w_size; 3587 3588 if (list_empty(&message->transfers)) 3589 return -EINVAL; 3590 3591 /* If an SPI controller does not support toggling the CS line on each 3592 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3593 * for the CS line, we can emulate the CS-per-word hardware function by 3594 * splitting transfers into one-word transfers and ensuring that 3595 * cs_change is set for each transfer. 3596 */ 3597 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3598 spi->cs_gpiod || 3599 gpio_is_valid(spi->cs_gpio))) { 3600 size_t maxsize; 3601 int ret; 3602 3603 maxsize = (spi->bits_per_word + 7) / 8; 3604 3605 /* spi_split_transfers_maxsize() requires message->spi */ 3606 message->spi = spi; 3607 3608 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3609 GFP_KERNEL); 3610 if (ret) 3611 return ret; 3612 3613 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3614 /* don't change cs_change on the last entry in the list */ 3615 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3616 break; 3617 xfer->cs_change = 1; 3618 } 3619 } 3620 3621 /* Half-duplex links include original MicroWire, and ones with 3622 * only one data pin like SPI_3WIRE (switches direction) or where 3623 * either MOSI or MISO is missing. They can also be caused by 3624 * software limitations. 3625 */ 3626 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3627 (spi->mode & SPI_3WIRE)) { 3628 unsigned flags = ctlr->flags; 3629 3630 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3631 if (xfer->rx_buf && xfer->tx_buf) 3632 return -EINVAL; 3633 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3634 return -EINVAL; 3635 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3636 return -EINVAL; 3637 } 3638 } 3639 3640 /** 3641 * Set transfer bits_per_word and max speed as spi device default if 3642 * it is not set for this transfer. 3643 * Set transfer tx_nbits and rx_nbits as single transfer default 3644 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3645 * Ensure transfer word_delay is at least as long as that required by 3646 * device itself. 3647 */ 3648 message->frame_length = 0; 3649 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3650 xfer->effective_speed_hz = 0; 3651 message->frame_length += xfer->len; 3652 if (!xfer->bits_per_word) 3653 xfer->bits_per_word = spi->bits_per_word; 3654 3655 if (!xfer->speed_hz) 3656 xfer->speed_hz = spi->max_speed_hz; 3657 3658 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3659 xfer->speed_hz = ctlr->max_speed_hz; 3660 3661 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3662 return -EINVAL; 3663 3664 /* 3665 * SPI transfer length should be multiple of SPI word size 3666 * where SPI word size should be power-of-two multiple 3667 */ 3668 if (xfer->bits_per_word <= 8) 3669 w_size = 1; 3670 else if (xfer->bits_per_word <= 16) 3671 w_size = 2; 3672 else 3673 w_size = 4; 3674 3675 /* No partial transfers accepted */ 3676 if (xfer->len % w_size) 3677 return -EINVAL; 3678 3679 if (xfer->speed_hz && ctlr->min_speed_hz && 3680 xfer->speed_hz < ctlr->min_speed_hz) 3681 return -EINVAL; 3682 3683 if (xfer->tx_buf && !xfer->tx_nbits) 3684 xfer->tx_nbits = SPI_NBITS_SINGLE; 3685 if (xfer->rx_buf && !xfer->rx_nbits) 3686 xfer->rx_nbits = SPI_NBITS_SINGLE; 3687 /* check transfer tx/rx_nbits: 3688 * 1. check the value matches one of single, dual and quad 3689 * 2. check tx/rx_nbits match the mode in spi_device 3690 */ 3691 if (xfer->tx_buf) { 3692 if (spi->mode & SPI_NO_TX) 3693 return -EINVAL; 3694 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3695 xfer->tx_nbits != SPI_NBITS_DUAL && 3696 xfer->tx_nbits != SPI_NBITS_QUAD) 3697 return -EINVAL; 3698 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3699 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3700 return -EINVAL; 3701 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3702 !(spi->mode & SPI_TX_QUAD)) 3703 return -EINVAL; 3704 } 3705 /* check transfer rx_nbits */ 3706 if (xfer->rx_buf) { 3707 if (spi->mode & SPI_NO_RX) 3708 return -EINVAL; 3709 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3710 xfer->rx_nbits != SPI_NBITS_DUAL && 3711 xfer->rx_nbits != SPI_NBITS_QUAD) 3712 return -EINVAL; 3713 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3714 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3715 return -EINVAL; 3716 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3717 !(spi->mode & SPI_RX_QUAD)) 3718 return -EINVAL; 3719 } 3720 3721 if (_spi_xfer_word_delay_update(xfer, spi)) 3722 return -EINVAL; 3723 } 3724 3725 message->status = -EINPROGRESS; 3726 3727 return 0; 3728 } 3729 3730 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3731 { 3732 struct spi_controller *ctlr = spi->controller; 3733 struct spi_transfer *xfer; 3734 3735 /* 3736 * Some controllers do not support doing regular SPI transfers. Return 3737 * ENOTSUPP when this is the case. 3738 */ 3739 if (!ctlr->transfer) 3740 return -ENOTSUPP; 3741 3742 message->spi = spi; 3743 3744 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3745 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3746 3747 trace_spi_message_submit(message); 3748 3749 if (!ctlr->ptp_sts_supported) { 3750 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3751 xfer->ptp_sts_word_pre = 0; 3752 ptp_read_system_prets(xfer->ptp_sts); 3753 } 3754 } 3755 3756 return ctlr->transfer(spi, message); 3757 } 3758 3759 /** 3760 * spi_async - asynchronous SPI transfer 3761 * @spi: device with which data will be exchanged 3762 * @message: describes the data transfers, including completion callback 3763 * Context: any (irqs may be blocked, etc) 3764 * 3765 * This call may be used in_irq and other contexts which can't sleep, 3766 * as well as from task contexts which can sleep. 3767 * 3768 * The completion callback is invoked in a context which can't sleep. 3769 * Before that invocation, the value of message->status is undefined. 3770 * When the callback is issued, message->status holds either zero (to 3771 * indicate complete success) or a negative error code. After that 3772 * callback returns, the driver which issued the transfer request may 3773 * deallocate the associated memory; it's no longer in use by any SPI 3774 * core or controller driver code. 3775 * 3776 * Note that although all messages to a spi_device are handled in 3777 * FIFO order, messages may go to different devices in other orders. 3778 * Some device might be higher priority, or have various "hard" access 3779 * time requirements, for example. 3780 * 3781 * On detection of any fault during the transfer, processing of 3782 * the entire message is aborted, and the device is deselected. 3783 * Until returning from the associated message completion callback, 3784 * no other spi_message queued to that device will be processed. 3785 * (This rule applies equally to all the synchronous transfer calls, 3786 * which are wrappers around this core asynchronous primitive.) 3787 * 3788 * Return: zero on success, else a negative error code. 3789 */ 3790 int spi_async(struct spi_device *spi, struct spi_message *message) 3791 { 3792 struct spi_controller *ctlr = spi->controller; 3793 int ret; 3794 unsigned long flags; 3795 3796 ret = __spi_validate(spi, message); 3797 if (ret != 0) 3798 return ret; 3799 3800 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3801 3802 if (ctlr->bus_lock_flag) 3803 ret = -EBUSY; 3804 else 3805 ret = __spi_async(spi, message); 3806 3807 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3808 3809 return ret; 3810 } 3811 EXPORT_SYMBOL_GPL(spi_async); 3812 3813 /** 3814 * spi_async_locked - version of spi_async with exclusive bus usage 3815 * @spi: device with which data will be exchanged 3816 * @message: describes the data transfers, including completion callback 3817 * Context: any (irqs may be blocked, etc) 3818 * 3819 * This call may be used in_irq and other contexts which can't sleep, 3820 * as well as from task contexts which can sleep. 3821 * 3822 * The completion callback is invoked in a context which can't sleep. 3823 * Before that invocation, the value of message->status is undefined. 3824 * When the callback is issued, message->status holds either zero (to 3825 * indicate complete success) or a negative error code. After that 3826 * callback returns, the driver which issued the transfer request may 3827 * deallocate the associated memory; it's no longer in use by any SPI 3828 * core or controller driver code. 3829 * 3830 * Note that although all messages to a spi_device are handled in 3831 * FIFO order, messages may go to different devices in other orders. 3832 * Some device might be higher priority, or have various "hard" access 3833 * time requirements, for example. 3834 * 3835 * On detection of any fault during the transfer, processing of 3836 * the entire message is aborted, and the device is deselected. 3837 * Until returning from the associated message completion callback, 3838 * no other spi_message queued to that device will be processed. 3839 * (This rule applies equally to all the synchronous transfer calls, 3840 * which are wrappers around this core asynchronous primitive.) 3841 * 3842 * Return: zero on success, else a negative error code. 3843 */ 3844 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3845 { 3846 struct spi_controller *ctlr = spi->controller; 3847 int ret; 3848 unsigned long flags; 3849 3850 ret = __spi_validate(spi, message); 3851 if (ret != 0) 3852 return ret; 3853 3854 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3855 3856 ret = __spi_async(spi, message); 3857 3858 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3859 3860 return ret; 3861 3862 } 3863 EXPORT_SYMBOL_GPL(spi_async_locked); 3864 3865 /*-------------------------------------------------------------------------*/ 3866 3867 /* Utility methods for SPI protocol drivers, layered on 3868 * top of the core. Some other utility methods are defined as 3869 * inline functions. 3870 */ 3871 3872 static void spi_complete(void *arg) 3873 { 3874 complete(arg); 3875 } 3876 3877 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3878 { 3879 DECLARE_COMPLETION_ONSTACK(done); 3880 int status; 3881 struct spi_controller *ctlr = spi->controller; 3882 unsigned long flags; 3883 3884 status = __spi_validate(spi, message); 3885 if (status != 0) 3886 return status; 3887 3888 message->complete = spi_complete; 3889 message->context = &done; 3890 message->spi = spi; 3891 3892 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3893 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3894 3895 /* If we're not using the legacy transfer method then we will 3896 * try to transfer in the calling context so special case. 3897 * This code would be less tricky if we could remove the 3898 * support for driver implemented message queues. 3899 */ 3900 if (ctlr->transfer == spi_queued_transfer) { 3901 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3902 3903 trace_spi_message_submit(message); 3904 3905 status = __spi_queued_transfer(spi, message, false); 3906 3907 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3908 } else { 3909 status = spi_async_locked(spi, message); 3910 } 3911 3912 if (status == 0) { 3913 /* Push out the messages in the calling context if we 3914 * can. 3915 */ 3916 if (ctlr->transfer == spi_queued_transfer) { 3917 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3918 spi_sync_immediate); 3919 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3920 spi_sync_immediate); 3921 __spi_pump_messages(ctlr, false); 3922 } 3923 3924 wait_for_completion(&done); 3925 status = message->status; 3926 } 3927 message->context = NULL; 3928 return status; 3929 } 3930 3931 /** 3932 * spi_sync - blocking/synchronous SPI data transfers 3933 * @spi: device with which data will be exchanged 3934 * @message: describes the data transfers 3935 * Context: can sleep 3936 * 3937 * This call may only be used from a context that may sleep. The sleep 3938 * is non-interruptible, and has no timeout. Low-overhead controller 3939 * drivers may DMA directly into and out of the message buffers. 3940 * 3941 * Note that the SPI device's chip select is active during the message, 3942 * and then is normally disabled between messages. Drivers for some 3943 * frequently-used devices may want to minimize costs of selecting a chip, 3944 * by leaving it selected in anticipation that the next message will go 3945 * to the same chip. (That may increase power usage.) 3946 * 3947 * Also, the caller is guaranteeing that the memory associated with the 3948 * message will not be freed before this call returns. 3949 * 3950 * Return: zero on success, else a negative error code. 3951 */ 3952 int spi_sync(struct spi_device *spi, struct spi_message *message) 3953 { 3954 int ret; 3955 3956 mutex_lock(&spi->controller->bus_lock_mutex); 3957 ret = __spi_sync(spi, message); 3958 mutex_unlock(&spi->controller->bus_lock_mutex); 3959 3960 return ret; 3961 } 3962 EXPORT_SYMBOL_GPL(spi_sync); 3963 3964 /** 3965 * spi_sync_locked - version of spi_sync with exclusive bus usage 3966 * @spi: device with which data will be exchanged 3967 * @message: describes the data transfers 3968 * Context: can sleep 3969 * 3970 * This call may only be used from a context that may sleep. The sleep 3971 * is non-interruptible, and has no timeout. Low-overhead controller 3972 * drivers may DMA directly into and out of the message buffers. 3973 * 3974 * This call should be used by drivers that require exclusive access to the 3975 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3976 * be released by a spi_bus_unlock call when the exclusive access is over. 3977 * 3978 * Return: zero on success, else a negative error code. 3979 */ 3980 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3981 { 3982 return __spi_sync(spi, message); 3983 } 3984 EXPORT_SYMBOL_GPL(spi_sync_locked); 3985 3986 /** 3987 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3988 * @ctlr: SPI bus master that should be locked for exclusive bus access 3989 * Context: can sleep 3990 * 3991 * This call may only be used from a context that may sleep. The sleep 3992 * is non-interruptible, and has no timeout. 3993 * 3994 * This call should be used by drivers that require exclusive access to the 3995 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3996 * exclusive access is over. Data transfer must be done by spi_sync_locked 3997 * and spi_async_locked calls when the SPI bus lock is held. 3998 * 3999 * Return: always zero. 4000 */ 4001 int spi_bus_lock(struct spi_controller *ctlr) 4002 { 4003 unsigned long flags; 4004 4005 mutex_lock(&ctlr->bus_lock_mutex); 4006 4007 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4008 ctlr->bus_lock_flag = 1; 4009 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4010 4011 /* mutex remains locked until spi_bus_unlock is called */ 4012 4013 return 0; 4014 } 4015 EXPORT_SYMBOL_GPL(spi_bus_lock); 4016 4017 /** 4018 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4019 * @ctlr: SPI bus master that was locked for exclusive bus access 4020 * Context: can sleep 4021 * 4022 * This call may only be used from a context that may sleep. The sleep 4023 * is non-interruptible, and has no timeout. 4024 * 4025 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4026 * call. 4027 * 4028 * Return: always zero. 4029 */ 4030 int spi_bus_unlock(struct spi_controller *ctlr) 4031 { 4032 ctlr->bus_lock_flag = 0; 4033 4034 mutex_unlock(&ctlr->bus_lock_mutex); 4035 4036 return 0; 4037 } 4038 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4039 4040 /* portable code must never pass more than 32 bytes */ 4041 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4042 4043 static u8 *buf; 4044 4045 /** 4046 * spi_write_then_read - SPI synchronous write followed by read 4047 * @spi: device with which data will be exchanged 4048 * @txbuf: data to be written (need not be dma-safe) 4049 * @n_tx: size of txbuf, in bytes 4050 * @rxbuf: buffer into which data will be read (need not be dma-safe) 4051 * @n_rx: size of rxbuf, in bytes 4052 * Context: can sleep 4053 * 4054 * This performs a half duplex MicroWire style transaction with the 4055 * device, sending txbuf and then reading rxbuf. The return value 4056 * is zero for success, else a negative errno status code. 4057 * This call may only be used from a context that may sleep. 4058 * 4059 * Parameters to this routine are always copied using a small buffer. 4060 * Performance-sensitive or bulk transfer code should instead use 4061 * spi_{async,sync}() calls with dma-safe buffers. 4062 * 4063 * Return: zero on success, else a negative error code. 4064 */ 4065 int spi_write_then_read(struct spi_device *spi, 4066 const void *txbuf, unsigned n_tx, 4067 void *rxbuf, unsigned n_rx) 4068 { 4069 static DEFINE_MUTEX(lock); 4070 4071 int status; 4072 struct spi_message message; 4073 struct spi_transfer x[2]; 4074 u8 *local_buf; 4075 4076 /* Use preallocated DMA-safe buffer if we can. We can't avoid 4077 * copying here, (as a pure convenience thing), but we can 4078 * keep heap costs out of the hot path unless someone else is 4079 * using the pre-allocated buffer or the transfer is too large. 4080 */ 4081 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4082 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4083 GFP_KERNEL | GFP_DMA); 4084 if (!local_buf) 4085 return -ENOMEM; 4086 } else { 4087 local_buf = buf; 4088 } 4089 4090 spi_message_init(&message); 4091 memset(x, 0, sizeof(x)); 4092 if (n_tx) { 4093 x[0].len = n_tx; 4094 spi_message_add_tail(&x[0], &message); 4095 } 4096 if (n_rx) { 4097 x[1].len = n_rx; 4098 spi_message_add_tail(&x[1], &message); 4099 } 4100 4101 memcpy(local_buf, txbuf, n_tx); 4102 x[0].tx_buf = local_buf; 4103 x[1].rx_buf = local_buf + n_tx; 4104 4105 /* do the i/o */ 4106 status = spi_sync(spi, &message); 4107 if (status == 0) 4108 memcpy(rxbuf, x[1].rx_buf, n_rx); 4109 4110 if (x[0].tx_buf == buf) 4111 mutex_unlock(&lock); 4112 else 4113 kfree(local_buf); 4114 4115 return status; 4116 } 4117 EXPORT_SYMBOL_GPL(spi_write_then_read); 4118 4119 /*-------------------------------------------------------------------------*/ 4120 4121 #if IS_ENABLED(CONFIG_OF) 4122 /* must call put_device() when done with returned spi_device device */ 4123 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4124 { 4125 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4126 4127 return dev ? to_spi_device(dev) : NULL; 4128 } 4129 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 4130 #endif /* IS_ENABLED(CONFIG_OF) */ 4131 4132 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4133 /* the spi controllers are not using spi_bus, so we find it with another way */ 4134 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4135 { 4136 struct device *dev; 4137 4138 dev = class_find_device_by_of_node(&spi_master_class, node); 4139 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4140 dev = class_find_device_by_of_node(&spi_slave_class, node); 4141 if (!dev) 4142 return NULL; 4143 4144 /* reference got in class_find_device */ 4145 return container_of(dev, struct spi_controller, dev); 4146 } 4147 4148 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4149 void *arg) 4150 { 4151 struct of_reconfig_data *rd = arg; 4152 struct spi_controller *ctlr; 4153 struct spi_device *spi; 4154 4155 switch (of_reconfig_get_state_change(action, arg)) { 4156 case OF_RECONFIG_CHANGE_ADD: 4157 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4158 if (ctlr == NULL) 4159 return NOTIFY_OK; /* not for us */ 4160 4161 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4162 put_device(&ctlr->dev); 4163 return NOTIFY_OK; 4164 } 4165 4166 spi = of_register_spi_device(ctlr, rd->dn); 4167 put_device(&ctlr->dev); 4168 4169 if (IS_ERR(spi)) { 4170 pr_err("%s: failed to create for '%pOF'\n", 4171 __func__, rd->dn); 4172 of_node_clear_flag(rd->dn, OF_POPULATED); 4173 return notifier_from_errno(PTR_ERR(spi)); 4174 } 4175 break; 4176 4177 case OF_RECONFIG_CHANGE_REMOVE: 4178 /* already depopulated? */ 4179 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4180 return NOTIFY_OK; 4181 4182 /* find our device by node */ 4183 spi = of_find_spi_device_by_node(rd->dn); 4184 if (spi == NULL) 4185 return NOTIFY_OK; /* no? not meant for us */ 4186 4187 /* unregister takes one ref away */ 4188 spi_unregister_device(spi); 4189 4190 /* and put the reference of the find */ 4191 put_device(&spi->dev); 4192 break; 4193 } 4194 4195 return NOTIFY_OK; 4196 } 4197 4198 static struct notifier_block spi_of_notifier = { 4199 .notifier_call = of_spi_notify, 4200 }; 4201 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4202 extern struct notifier_block spi_of_notifier; 4203 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4204 4205 #if IS_ENABLED(CONFIG_ACPI) 4206 static int spi_acpi_controller_match(struct device *dev, const void *data) 4207 { 4208 return ACPI_COMPANION(dev->parent) == data; 4209 } 4210 4211 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4212 { 4213 struct device *dev; 4214 4215 dev = class_find_device(&spi_master_class, NULL, adev, 4216 spi_acpi_controller_match); 4217 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4218 dev = class_find_device(&spi_slave_class, NULL, adev, 4219 spi_acpi_controller_match); 4220 if (!dev) 4221 return NULL; 4222 4223 return container_of(dev, struct spi_controller, dev); 4224 } 4225 4226 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4227 { 4228 struct device *dev; 4229 4230 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4231 return to_spi_device(dev); 4232 } 4233 4234 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4235 void *arg) 4236 { 4237 struct acpi_device *adev = arg; 4238 struct spi_controller *ctlr; 4239 struct spi_device *spi; 4240 4241 switch (value) { 4242 case ACPI_RECONFIG_DEVICE_ADD: 4243 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4244 if (!ctlr) 4245 break; 4246 4247 acpi_register_spi_device(ctlr, adev); 4248 put_device(&ctlr->dev); 4249 break; 4250 case ACPI_RECONFIG_DEVICE_REMOVE: 4251 if (!acpi_device_enumerated(adev)) 4252 break; 4253 4254 spi = acpi_spi_find_device_by_adev(adev); 4255 if (!spi) 4256 break; 4257 4258 spi_unregister_device(spi); 4259 put_device(&spi->dev); 4260 break; 4261 } 4262 4263 return NOTIFY_OK; 4264 } 4265 4266 static struct notifier_block spi_acpi_notifier = { 4267 .notifier_call = acpi_spi_notify, 4268 }; 4269 #else 4270 extern struct notifier_block spi_acpi_notifier; 4271 #endif 4272 4273 static int __init spi_init(void) 4274 { 4275 int status; 4276 4277 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4278 if (!buf) { 4279 status = -ENOMEM; 4280 goto err0; 4281 } 4282 4283 status = bus_register(&spi_bus_type); 4284 if (status < 0) 4285 goto err1; 4286 4287 status = class_register(&spi_master_class); 4288 if (status < 0) 4289 goto err2; 4290 4291 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4292 status = class_register(&spi_slave_class); 4293 if (status < 0) 4294 goto err3; 4295 } 4296 4297 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4298 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4299 if (IS_ENABLED(CONFIG_ACPI)) 4300 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4301 4302 return 0; 4303 4304 err3: 4305 class_unregister(&spi_master_class); 4306 err2: 4307 bus_unregister(&spi_bus_type); 4308 err1: 4309 kfree(buf); 4310 buf = NULL; 4311 err0: 4312 return status; 4313 } 4314 4315 /* board_info is normally registered in arch_initcall(), 4316 * but even essential drivers wait till later 4317 * 4318 * REVISIT only boardinfo really needs static linking. the rest (device and 4319 * driver registration) _could_ be dynamically linked (modular) ... costs 4320 * include needing to have boardinfo data structures be much more public. 4321 */ 4322 postcore_initcall(spi_init); 4323