xref: /openbmc/linux/drivers/spi/spi.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	spi_controller_put(spi->controller);
51 	kfree(spi->driver_override);
52 	kfree(spi);
53 }
54 
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 	const struct spi_device	*spi = to_spi_device(dev);
59 	int len;
60 
61 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 	if (len != -ENODEV)
63 		return len;
64 
65 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68 
69 static ssize_t driver_override_store(struct device *dev,
70 				     struct device_attribute *a,
71 				     const char *buf, size_t count)
72 {
73 	struct spi_device *spi = to_spi_device(dev);
74 	const char *end = memchr(buf, '\n', count);
75 	const size_t len = end ? end - buf : count;
76 	const char *driver_override, *old;
77 
78 	/* We need to keep extra room for a newline when displaying value */
79 	if (len >= (PAGE_SIZE - 1))
80 		return -EINVAL;
81 
82 	driver_override = kstrndup(buf, len, GFP_KERNEL);
83 	if (!driver_override)
84 		return -ENOMEM;
85 
86 	device_lock(dev);
87 	old = spi->driver_override;
88 	if (len) {
89 		spi->driver_override = driver_override;
90 	} else {
91 		/* Empty string, disable driver override */
92 		spi->driver_override = NULL;
93 		kfree(driver_override);
94 	}
95 	device_unlock(dev);
96 	kfree(old);
97 
98 	return count;
99 }
100 
101 static ssize_t driver_override_show(struct device *dev,
102 				    struct device_attribute *a, char *buf)
103 {
104 	const struct spi_device *spi = to_spi_device(dev);
105 	ssize_t len;
106 
107 	device_lock(dev);
108 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 	device_unlock(dev);
110 	return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113 
114 #define SPI_STATISTICS_ATTRS(field, file)				\
115 static ssize_t spi_controller_##field##_show(struct device *dev,	\
116 					     struct device_attribute *attr, \
117 					     char *buf)			\
118 {									\
119 	struct spi_controller *ctlr = container_of(dev,			\
120 					 struct spi_controller, dev);	\
121 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
122 }									\
123 static struct device_attribute dev_attr_spi_controller_##field = {	\
124 	.attr = { .name = file, .mode = 0444 },				\
125 	.show = spi_controller_##field##_show,				\
126 };									\
127 static ssize_t spi_device_##field##_show(struct device *dev,		\
128 					 struct device_attribute *attr,	\
129 					char *buf)			\
130 {									\
131 	struct spi_device *spi = to_spi_device(dev);			\
132 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
133 }									\
134 static struct device_attribute dev_attr_spi_device_##field = {		\
135 	.attr = { .name = file, .mode = 0444 },				\
136 	.show = spi_device_##field##_show,				\
137 }
138 
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 					    char *buf)			\
142 {									\
143 	unsigned long flags;						\
144 	ssize_t len;							\
145 	spin_lock_irqsave(&stat->lock, flags);				\
146 	len = sysfs_emit(buf, format_string "\n", stat->field);		\
147 	spin_unlock_irqrestore(&stat->lock, flags);			\
148 	return len;							\
149 }									\
150 SPI_STATISTICS_ATTRS(name, file)
151 
152 #define SPI_STATISTICS_SHOW(field, format_string)			\
153 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
154 				 field, format_string)
155 
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160 
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164 
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168 
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
170 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
171 				 "transfer_bytes_histo_" number,	\
172 				 transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190 
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192 
193 static struct attribute *spi_dev_attrs[] = {
194 	&dev_attr_modalias.attr,
195 	&dev_attr_driver_override.attr,
196 	NULL,
197 };
198 
199 static const struct attribute_group spi_dev_group = {
200 	.attrs  = spi_dev_attrs,
201 };
202 
203 static struct attribute *spi_device_statistics_attrs[] = {
204 	&dev_attr_spi_device_messages.attr,
205 	&dev_attr_spi_device_transfers.attr,
206 	&dev_attr_spi_device_errors.attr,
207 	&dev_attr_spi_device_timedout.attr,
208 	&dev_attr_spi_device_spi_sync.attr,
209 	&dev_attr_spi_device_spi_sync_immediate.attr,
210 	&dev_attr_spi_device_spi_async.attr,
211 	&dev_attr_spi_device_bytes.attr,
212 	&dev_attr_spi_device_bytes_rx.attr,
213 	&dev_attr_spi_device_bytes_tx.attr,
214 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
231 	&dev_attr_spi_device_transfers_split_maxsize.attr,
232 	NULL,
233 };
234 
235 static const struct attribute_group spi_device_statistics_group = {
236 	.name  = "statistics",
237 	.attrs  = spi_device_statistics_attrs,
238 };
239 
240 static const struct attribute_group *spi_dev_groups[] = {
241 	&spi_dev_group,
242 	&spi_device_statistics_group,
243 	NULL,
244 };
245 
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 	&dev_attr_spi_controller_messages.attr,
248 	&dev_attr_spi_controller_transfers.attr,
249 	&dev_attr_spi_controller_errors.attr,
250 	&dev_attr_spi_controller_timedout.attr,
251 	&dev_attr_spi_controller_spi_sync.attr,
252 	&dev_attr_spi_controller_spi_sync_immediate.attr,
253 	&dev_attr_spi_controller_spi_async.attr,
254 	&dev_attr_spi_controller_bytes.attr,
255 	&dev_attr_spi_controller_bytes_rx.attr,
256 	&dev_attr_spi_controller_bytes_tx.attr,
257 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
275 	NULL,
276 };
277 
278 static const struct attribute_group spi_controller_statistics_group = {
279 	.name  = "statistics",
280 	.attrs  = spi_controller_statistics_attrs,
281 };
282 
283 static const struct attribute_group *spi_master_groups[] = {
284 	&spi_controller_statistics_group,
285 	NULL,
286 };
287 
288 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 					      struct spi_transfer *xfer,
290 					      struct spi_controller *ctlr)
291 {
292 	unsigned long flags;
293 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294 
295 	if (l2len < 0)
296 		l2len = 0;
297 
298 	spin_lock_irqsave(&stats->lock, flags);
299 
300 	stats->transfers++;
301 	stats->transfer_bytes_histo[l2len]++;
302 
303 	stats->bytes += xfer->len;
304 	if ((xfer->tx_buf) &&
305 	    (xfer->tx_buf != ctlr->dummy_tx))
306 		stats->bytes_tx += xfer->len;
307 	if ((xfer->rx_buf) &&
308 	    (xfer->rx_buf != ctlr->dummy_rx))
309 		stats->bytes_rx += xfer->len;
310 
311 	spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 
314 /*
315  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316  * and the sysfs version makes coldplug work too.
317  */
318 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
319 {
320 	while (id->name[0]) {
321 		if (!strcmp(name, id->name))
322 			return id;
323 		id++;
324 	}
325 	return NULL;
326 }
327 
328 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
329 {
330 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
331 
332 	return spi_match_id(sdrv->id_table, sdev->modalias);
333 }
334 EXPORT_SYMBOL_GPL(spi_get_device_id);
335 
336 static int spi_match_device(struct device *dev, struct device_driver *drv)
337 {
338 	const struct spi_device	*spi = to_spi_device(dev);
339 	const struct spi_driver	*sdrv = to_spi_driver(drv);
340 
341 	/* Check override first, and if set, only use the named driver */
342 	if (spi->driver_override)
343 		return strcmp(spi->driver_override, drv->name) == 0;
344 
345 	/* Attempt an OF style match */
346 	if (of_driver_match_device(dev, drv))
347 		return 1;
348 
349 	/* Then try ACPI */
350 	if (acpi_driver_match_device(dev, drv))
351 		return 1;
352 
353 	if (sdrv->id_table)
354 		return !!spi_match_id(sdrv->id_table, spi->modalias);
355 
356 	return strcmp(spi->modalias, drv->name) == 0;
357 }
358 
359 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
360 {
361 	const struct spi_device		*spi = to_spi_device(dev);
362 	int rc;
363 
364 	rc = acpi_device_uevent_modalias(dev, env);
365 	if (rc != -ENODEV)
366 		return rc;
367 
368 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
369 }
370 
371 static int spi_probe(struct device *dev)
372 {
373 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
374 	struct spi_device		*spi = to_spi_device(dev);
375 	int ret;
376 
377 	ret = of_clk_set_defaults(dev->of_node, false);
378 	if (ret)
379 		return ret;
380 
381 	if (dev->of_node) {
382 		spi->irq = of_irq_get(dev->of_node, 0);
383 		if (spi->irq == -EPROBE_DEFER)
384 			return -EPROBE_DEFER;
385 		if (spi->irq < 0)
386 			spi->irq = 0;
387 	}
388 
389 	ret = dev_pm_domain_attach(dev, true);
390 	if (ret)
391 		return ret;
392 
393 	if (sdrv->probe) {
394 		ret = sdrv->probe(spi);
395 		if (ret)
396 			dev_pm_domain_detach(dev, true);
397 	}
398 
399 	return ret;
400 }
401 
402 static void spi_remove(struct device *dev)
403 {
404 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
405 
406 	if (sdrv->remove)
407 		sdrv->remove(to_spi_device(dev));
408 
409 	dev_pm_domain_detach(dev, true);
410 }
411 
412 static void spi_shutdown(struct device *dev)
413 {
414 	if (dev->driver) {
415 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
416 
417 		if (sdrv->shutdown)
418 			sdrv->shutdown(to_spi_device(dev));
419 	}
420 }
421 
422 struct bus_type spi_bus_type = {
423 	.name		= "spi",
424 	.dev_groups	= spi_dev_groups,
425 	.match		= spi_match_device,
426 	.uevent		= spi_uevent,
427 	.probe		= spi_probe,
428 	.remove		= spi_remove,
429 	.shutdown	= spi_shutdown,
430 };
431 EXPORT_SYMBOL_GPL(spi_bus_type);
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 
446 	/*
447 	 * For Really Good Reasons we use spi: modaliases not of:
448 	 * modaliases for DT so module autoloading won't work if we
449 	 * don't have a spi_device_id as well as a compatible string.
450 	 */
451 	if (sdrv->driver.of_match_table) {
452 		const struct of_device_id *of_id;
453 
454 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
455 		     of_id++) {
456 			const char *of_name;
457 
458 			/* Strip off any vendor prefix */
459 			of_name = strnchr(of_id->compatible,
460 					  sizeof(of_id->compatible), ',');
461 			if (of_name)
462 				of_name++;
463 			else
464 				of_name = of_id->compatible;
465 
466 			if (sdrv->id_table) {
467 				const struct spi_device_id *spi_id;
468 
469 				spi_id = spi_match_id(sdrv->id_table, of_name);
470 				if (spi_id)
471 					continue;
472 			} else {
473 				if (strcmp(sdrv->driver.name, of_name) == 0)
474 					continue;
475 			}
476 
477 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
478 				sdrv->driver.name, of_id->compatible);
479 		}
480 	}
481 
482 	return driver_register(&sdrv->driver);
483 }
484 EXPORT_SYMBOL_GPL(__spi_register_driver);
485 
486 /*-------------------------------------------------------------------------*/
487 
488 /*
489  * SPI devices should normally not be created by SPI device drivers; that
490  * would make them board-specific.  Similarly with SPI controller drivers.
491  * Device registration normally goes into like arch/.../mach.../board-YYY.c
492  * with other readonly (flashable) information about mainboard devices.
493  */
494 
495 struct boardinfo {
496 	struct list_head	list;
497 	struct spi_board_info	board_info;
498 };
499 
500 static LIST_HEAD(board_list);
501 static LIST_HEAD(spi_controller_list);
502 
503 /*
504  * Used to protect add/del operation for board_info list and
505  * spi_controller list, and their matching process also used
506  * to protect object of type struct idr.
507  */
508 static DEFINE_MUTEX(board_lock);
509 
510 /**
511  * spi_alloc_device - Allocate a new SPI device
512  * @ctlr: Controller to which device is connected
513  * Context: can sleep
514  *
515  * Allows a driver to allocate and initialize a spi_device without
516  * registering it immediately.  This allows a driver to directly
517  * fill the spi_device with device parameters before calling
518  * spi_add_device() on it.
519  *
520  * Caller is responsible to call spi_add_device() on the returned
521  * spi_device structure to add it to the SPI controller.  If the caller
522  * needs to discard the spi_device without adding it, then it should
523  * call spi_dev_put() on it.
524  *
525  * Return: a pointer to the new device, or NULL.
526  */
527 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
528 {
529 	struct spi_device	*spi;
530 
531 	if (!spi_controller_get(ctlr))
532 		return NULL;
533 
534 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
535 	if (!spi) {
536 		spi_controller_put(ctlr);
537 		return NULL;
538 	}
539 
540 	spi->master = spi->controller = ctlr;
541 	spi->dev.parent = &ctlr->dev;
542 	spi->dev.bus = &spi_bus_type;
543 	spi->dev.release = spidev_release;
544 	spi->mode = ctlr->buswidth_override_bits;
545 
546 	spin_lock_init(&spi->statistics.lock);
547 
548 	device_initialize(&spi->dev);
549 	return spi;
550 }
551 EXPORT_SYMBOL_GPL(spi_alloc_device);
552 
553 static void spi_dev_set_name(struct spi_device *spi)
554 {
555 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
556 
557 	if (adev) {
558 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
559 		return;
560 	}
561 
562 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
563 		     spi->chip_select);
564 }
565 
566 static int spi_dev_check(struct device *dev, void *data)
567 {
568 	struct spi_device *spi = to_spi_device(dev);
569 	struct spi_device *new_spi = data;
570 
571 	if (spi->controller == new_spi->controller &&
572 	    spi->chip_select == new_spi->chip_select)
573 		return -EBUSY;
574 	return 0;
575 }
576 
577 static void spi_cleanup(struct spi_device *spi)
578 {
579 	if (spi->controller->cleanup)
580 		spi->controller->cleanup(spi);
581 }
582 
583 static int __spi_add_device(struct spi_device *spi)
584 {
585 	struct spi_controller *ctlr = spi->controller;
586 	struct device *dev = ctlr->dev.parent;
587 	int status;
588 
589 	/*
590 	 * We need to make sure there's no other device with this
591 	 * chipselect **BEFORE** we call setup(), else we'll trash
592 	 * its configuration.
593 	 */
594 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
595 	if (status) {
596 		dev_err(dev, "chipselect %d already in use\n",
597 				spi->chip_select);
598 		return status;
599 	}
600 
601 	/* Controller may unregister concurrently */
602 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
603 	    !device_is_registered(&ctlr->dev)) {
604 		return -ENODEV;
605 	}
606 
607 	if (ctlr->cs_gpiods)
608 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
609 
610 	/*
611 	 * Drivers may modify this initial i/o setup, but will
612 	 * normally rely on the device being setup.  Devices
613 	 * using SPI_CS_HIGH can't coexist well otherwise...
614 	 */
615 	status = spi_setup(spi);
616 	if (status < 0) {
617 		dev_err(dev, "can't setup %s, status %d\n",
618 				dev_name(&spi->dev), status);
619 		return status;
620 	}
621 
622 	/* Device may be bound to an active driver when this returns */
623 	status = device_add(&spi->dev);
624 	if (status < 0) {
625 		dev_err(dev, "can't add %s, status %d\n",
626 				dev_name(&spi->dev), status);
627 		spi_cleanup(spi);
628 	} else {
629 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
630 	}
631 
632 	return status;
633 }
634 
635 /**
636  * spi_add_device - Add spi_device allocated with spi_alloc_device
637  * @spi: spi_device to register
638  *
639  * Companion function to spi_alloc_device.  Devices allocated with
640  * spi_alloc_device can be added onto the spi bus with this function.
641  *
642  * Return: 0 on success; negative errno on failure
643  */
644 int spi_add_device(struct spi_device *spi)
645 {
646 	struct spi_controller *ctlr = spi->controller;
647 	struct device *dev = ctlr->dev.parent;
648 	int status;
649 
650 	/* Chipselects are numbered 0..max; validate. */
651 	if (spi->chip_select >= ctlr->num_chipselect) {
652 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
653 			ctlr->num_chipselect);
654 		return -EINVAL;
655 	}
656 
657 	/* Set the bus ID string */
658 	spi_dev_set_name(spi);
659 
660 	mutex_lock(&ctlr->add_lock);
661 	status = __spi_add_device(spi);
662 	mutex_unlock(&ctlr->add_lock);
663 	return status;
664 }
665 EXPORT_SYMBOL_GPL(spi_add_device);
666 
667 static int spi_add_device_locked(struct spi_device *spi)
668 {
669 	struct spi_controller *ctlr = spi->controller;
670 	struct device *dev = ctlr->dev.parent;
671 
672 	/* Chipselects are numbered 0..max; validate. */
673 	if (spi->chip_select >= ctlr->num_chipselect) {
674 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
675 			ctlr->num_chipselect);
676 		return -EINVAL;
677 	}
678 
679 	/* Set the bus ID string */
680 	spi_dev_set_name(spi);
681 
682 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
683 	return __spi_add_device(spi);
684 }
685 
686 /**
687  * spi_new_device - instantiate one new SPI device
688  * @ctlr: Controller to which device is connected
689  * @chip: Describes the SPI device
690  * Context: can sleep
691  *
692  * On typical mainboards, this is purely internal; and it's not needed
693  * after board init creates the hard-wired devices.  Some development
694  * platforms may not be able to use spi_register_board_info though, and
695  * this is exported so that for example a USB or parport based adapter
696  * driver could add devices (which it would learn about out-of-band).
697  *
698  * Return: the new device, or NULL.
699  */
700 struct spi_device *spi_new_device(struct spi_controller *ctlr,
701 				  struct spi_board_info *chip)
702 {
703 	struct spi_device	*proxy;
704 	int			status;
705 
706 	/*
707 	 * NOTE:  caller did any chip->bus_num checks necessary.
708 	 *
709 	 * Also, unless we change the return value convention to use
710 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
711 	 * suggests syslogged diagnostics are best here (ugh).
712 	 */
713 
714 	proxy = spi_alloc_device(ctlr);
715 	if (!proxy)
716 		return NULL;
717 
718 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
719 
720 	proxy->chip_select = chip->chip_select;
721 	proxy->max_speed_hz = chip->max_speed_hz;
722 	proxy->mode = chip->mode;
723 	proxy->irq = chip->irq;
724 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
725 	proxy->dev.platform_data = (void *) chip->platform_data;
726 	proxy->controller_data = chip->controller_data;
727 	proxy->controller_state = NULL;
728 
729 	if (chip->swnode) {
730 		status = device_add_software_node(&proxy->dev, chip->swnode);
731 		if (status) {
732 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
733 				chip->modalias, status);
734 			goto err_dev_put;
735 		}
736 	}
737 
738 	status = spi_add_device(proxy);
739 	if (status < 0)
740 		goto err_dev_put;
741 
742 	return proxy;
743 
744 err_dev_put:
745 	device_remove_software_node(&proxy->dev);
746 	spi_dev_put(proxy);
747 	return NULL;
748 }
749 EXPORT_SYMBOL_GPL(spi_new_device);
750 
751 /**
752  * spi_unregister_device - unregister a single SPI device
753  * @spi: spi_device to unregister
754  *
755  * Start making the passed SPI device vanish. Normally this would be handled
756  * by spi_unregister_controller().
757  */
758 void spi_unregister_device(struct spi_device *spi)
759 {
760 	if (!spi)
761 		return;
762 
763 	if (spi->dev.of_node) {
764 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
765 		of_node_put(spi->dev.of_node);
766 	}
767 	if (ACPI_COMPANION(&spi->dev))
768 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
769 	device_remove_software_node(&spi->dev);
770 	device_del(&spi->dev);
771 	spi_cleanup(spi);
772 	put_device(&spi->dev);
773 }
774 EXPORT_SYMBOL_GPL(spi_unregister_device);
775 
776 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
777 					      struct spi_board_info *bi)
778 {
779 	struct spi_device *dev;
780 
781 	if (ctlr->bus_num != bi->bus_num)
782 		return;
783 
784 	dev = spi_new_device(ctlr, bi);
785 	if (!dev)
786 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
787 			bi->modalias);
788 }
789 
790 /**
791  * spi_register_board_info - register SPI devices for a given board
792  * @info: array of chip descriptors
793  * @n: how many descriptors are provided
794  * Context: can sleep
795  *
796  * Board-specific early init code calls this (probably during arch_initcall)
797  * with segments of the SPI device table.  Any device nodes are created later,
798  * after the relevant parent SPI controller (bus_num) is defined.  We keep
799  * this table of devices forever, so that reloading a controller driver will
800  * not make Linux forget about these hard-wired devices.
801  *
802  * Other code can also call this, e.g. a particular add-on board might provide
803  * SPI devices through its expansion connector, so code initializing that board
804  * would naturally declare its SPI devices.
805  *
806  * The board info passed can safely be __initdata ... but be careful of
807  * any embedded pointers (platform_data, etc), they're copied as-is.
808  *
809  * Return: zero on success, else a negative error code.
810  */
811 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
812 {
813 	struct boardinfo *bi;
814 	int i;
815 
816 	if (!n)
817 		return 0;
818 
819 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
820 	if (!bi)
821 		return -ENOMEM;
822 
823 	for (i = 0; i < n; i++, bi++, info++) {
824 		struct spi_controller *ctlr;
825 
826 		memcpy(&bi->board_info, info, sizeof(*info));
827 
828 		mutex_lock(&board_lock);
829 		list_add_tail(&bi->list, &board_list);
830 		list_for_each_entry(ctlr, &spi_controller_list, list)
831 			spi_match_controller_to_boardinfo(ctlr,
832 							  &bi->board_info);
833 		mutex_unlock(&board_lock);
834 	}
835 
836 	return 0;
837 }
838 
839 /*-------------------------------------------------------------------------*/
840 
841 /* Core methods for SPI resource management */
842 
843 /**
844  * spi_res_alloc - allocate a spi resource that is life-cycle managed
845  *                 during the processing of a spi_message while using
846  *                 spi_transfer_one
847  * @spi:     the spi device for which we allocate memory
848  * @release: the release code to execute for this resource
849  * @size:    size to alloc and return
850  * @gfp:     GFP allocation flags
851  *
852  * Return: the pointer to the allocated data
853  *
854  * This may get enhanced in the future to allocate from a memory pool
855  * of the @spi_device or @spi_controller to avoid repeated allocations.
856  */
857 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
858 			   size_t size, gfp_t gfp)
859 {
860 	struct spi_res *sres;
861 
862 	sres = kzalloc(sizeof(*sres) + size, gfp);
863 	if (!sres)
864 		return NULL;
865 
866 	INIT_LIST_HEAD(&sres->entry);
867 	sres->release = release;
868 
869 	return sres->data;
870 }
871 
872 /**
873  * spi_res_free - free an spi resource
874  * @res: pointer to the custom data of a resource
875  */
876 static void spi_res_free(void *res)
877 {
878 	struct spi_res *sres = container_of(res, struct spi_res, data);
879 
880 	if (!res)
881 		return;
882 
883 	WARN_ON(!list_empty(&sres->entry));
884 	kfree(sres);
885 }
886 
887 /**
888  * spi_res_add - add a spi_res to the spi_message
889  * @message: the spi message
890  * @res:     the spi_resource
891  */
892 static void spi_res_add(struct spi_message *message, void *res)
893 {
894 	struct spi_res *sres = container_of(res, struct spi_res, data);
895 
896 	WARN_ON(!list_empty(&sres->entry));
897 	list_add_tail(&sres->entry, &message->resources);
898 }
899 
900 /**
901  * spi_res_release - release all spi resources for this message
902  * @ctlr:  the @spi_controller
903  * @message: the @spi_message
904  */
905 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
906 {
907 	struct spi_res *res, *tmp;
908 
909 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
910 		if (res->release)
911 			res->release(ctlr, message, res->data);
912 
913 		list_del(&res->entry);
914 
915 		kfree(res);
916 	}
917 }
918 
919 /*-------------------------------------------------------------------------*/
920 
921 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
922 {
923 	bool activate = enable;
924 
925 	/*
926 	 * Avoid calling into the driver (or doing delays) if the chip select
927 	 * isn't actually changing from the last time this was called.
928 	 */
929 	if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
930 				(!enable && spi->controller->last_cs != spi->chip_select)) &&
931 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
932 		return;
933 
934 	trace_spi_set_cs(spi, activate);
935 
936 	spi->controller->last_cs = enable ? spi->chip_select : -1;
937 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
938 
939 	if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
940 		spi_delay_exec(&spi->cs_hold, NULL);
941 	}
942 
943 	if (spi->mode & SPI_CS_HIGH)
944 		enable = !enable;
945 
946 	if (spi->cs_gpiod) {
947 		if (!(spi->mode & SPI_NO_CS)) {
948 			/*
949 			 * Historically ACPI has no means of the GPIO polarity and
950 			 * thus the SPISerialBus() resource defines it on the per-chip
951 			 * basis. In order to avoid a chain of negations, the GPIO
952 			 * polarity is considered being Active High. Even for the cases
953 			 * when _DSD() is involved (in the updated versions of ACPI)
954 			 * the GPIO CS polarity must be defined Active High to avoid
955 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
956 			 * into account.
957 			 */
958 			if (has_acpi_companion(&spi->dev))
959 				gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
960 			else
961 				/* Polarity handled by GPIO library */
962 				gpiod_set_value_cansleep(spi->cs_gpiod, activate);
963 		}
964 		/* Some SPI masters need both GPIO CS & slave_select */
965 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
966 		    spi->controller->set_cs)
967 			spi->controller->set_cs(spi, !enable);
968 	} else if (spi->controller->set_cs) {
969 		spi->controller->set_cs(spi, !enable);
970 	}
971 
972 	if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
973 		if (activate)
974 			spi_delay_exec(&spi->cs_setup, NULL);
975 		else
976 			spi_delay_exec(&spi->cs_inactive, NULL);
977 	}
978 }
979 
980 #ifdef CONFIG_HAS_DMA
981 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
982 		struct sg_table *sgt, void *buf, size_t len,
983 		enum dma_data_direction dir)
984 {
985 	const bool vmalloced_buf = is_vmalloc_addr(buf);
986 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
987 #ifdef CONFIG_HIGHMEM
988 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
989 				(unsigned long)buf < (PKMAP_BASE +
990 					(LAST_PKMAP * PAGE_SIZE)));
991 #else
992 	const bool kmap_buf = false;
993 #endif
994 	int desc_len;
995 	int sgs;
996 	struct page *vm_page;
997 	struct scatterlist *sg;
998 	void *sg_buf;
999 	size_t min;
1000 	int i, ret;
1001 
1002 	if (vmalloced_buf || kmap_buf) {
1003 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1004 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1005 	} else if (virt_addr_valid(buf)) {
1006 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1007 		sgs = DIV_ROUND_UP(len, desc_len);
1008 	} else {
1009 		return -EINVAL;
1010 	}
1011 
1012 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1013 	if (ret != 0)
1014 		return ret;
1015 
1016 	sg = &sgt->sgl[0];
1017 	for (i = 0; i < sgs; i++) {
1018 
1019 		if (vmalloced_buf || kmap_buf) {
1020 			/*
1021 			 * Next scatterlist entry size is the minimum between
1022 			 * the desc_len and the remaining buffer length that
1023 			 * fits in a page.
1024 			 */
1025 			min = min_t(size_t, desc_len,
1026 				    min_t(size_t, len,
1027 					  PAGE_SIZE - offset_in_page(buf)));
1028 			if (vmalloced_buf)
1029 				vm_page = vmalloc_to_page(buf);
1030 			else
1031 				vm_page = kmap_to_page(buf);
1032 			if (!vm_page) {
1033 				sg_free_table(sgt);
1034 				return -ENOMEM;
1035 			}
1036 			sg_set_page(sg, vm_page,
1037 				    min, offset_in_page(buf));
1038 		} else {
1039 			min = min_t(size_t, len, desc_len);
1040 			sg_buf = buf;
1041 			sg_set_buf(sg, sg_buf, min);
1042 		}
1043 
1044 		buf += min;
1045 		len -= min;
1046 		sg = sg_next(sg);
1047 	}
1048 
1049 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1050 	if (!ret)
1051 		ret = -ENOMEM;
1052 	if (ret < 0) {
1053 		sg_free_table(sgt);
1054 		return ret;
1055 	}
1056 
1057 	sgt->nents = ret;
1058 
1059 	return 0;
1060 }
1061 
1062 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1063 		   struct sg_table *sgt, enum dma_data_direction dir)
1064 {
1065 	if (sgt->orig_nents) {
1066 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1067 		sg_free_table(sgt);
1068 	}
1069 }
1070 
1071 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1072 {
1073 	struct device *tx_dev, *rx_dev;
1074 	struct spi_transfer *xfer;
1075 	int ret;
1076 
1077 	if (!ctlr->can_dma)
1078 		return 0;
1079 
1080 	if (ctlr->dma_tx)
1081 		tx_dev = ctlr->dma_tx->device->dev;
1082 	else if (ctlr->dma_map_dev)
1083 		tx_dev = ctlr->dma_map_dev;
1084 	else
1085 		tx_dev = ctlr->dev.parent;
1086 
1087 	if (ctlr->dma_rx)
1088 		rx_dev = ctlr->dma_rx->device->dev;
1089 	else if (ctlr->dma_map_dev)
1090 		rx_dev = ctlr->dma_map_dev;
1091 	else
1092 		rx_dev = ctlr->dev.parent;
1093 
1094 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1095 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1096 			continue;
1097 
1098 		if (xfer->tx_buf != NULL) {
1099 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1100 					  (void *)xfer->tx_buf, xfer->len,
1101 					  DMA_TO_DEVICE);
1102 			if (ret != 0)
1103 				return ret;
1104 		}
1105 
1106 		if (xfer->rx_buf != NULL) {
1107 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1108 					  xfer->rx_buf, xfer->len,
1109 					  DMA_FROM_DEVICE);
1110 			if (ret != 0) {
1111 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1112 					      DMA_TO_DEVICE);
1113 				return ret;
1114 			}
1115 		}
1116 	}
1117 
1118 	ctlr->cur_msg_mapped = true;
1119 
1120 	return 0;
1121 }
1122 
1123 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1124 {
1125 	struct spi_transfer *xfer;
1126 	struct device *tx_dev, *rx_dev;
1127 
1128 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1129 		return 0;
1130 
1131 	if (ctlr->dma_tx)
1132 		tx_dev = ctlr->dma_tx->device->dev;
1133 	else
1134 		tx_dev = ctlr->dev.parent;
1135 
1136 	if (ctlr->dma_rx)
1137 		rx_dev = ctlr->dma_rx->device->dev;
1138 	else
1139 		rx_dev = ctlr->dev.parent;
1140 
1141 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1142 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1143 			continue;
1144 
1145 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1146 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1147 	}
1148 
1149 	ctlr->cur_msg_mapped = false;
1150 
1151 	return 0;
1152 }
1153 #else /* !CONFIG_HAS_DMA */
1154 static inline int __spi_map_msg(struct spi_controller *ctlr,
1155 				struct spi_message *msg)
1156 {
1157 	return 0;
1158 }
1159 
1160 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1161 				  struct spi_message *msg)
1162 {
1163 	return 0;
1164 }
1165 #endif /* !CONFIG_HAS_DMA */
1166 
1167 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1168 				struct spi_message *msg)
1169 {
1170 	struct spi_transfer *xfer;
1171 
1172 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1173 		/*
1174 		 * Restore the original value of tx_buf or rx_buf if they are
1175 		 * NULL.
1176 		 */
1177 		if (xfer->tx_buf == ctlr->dummy_tx)
1178 			xfer->tx_buf = NULL;
1179 		if (xfer->rx_buf == ctlr->dummy_rx)
1180 			xfer->rx_buf = NULL;
1181 	}
1182 
1183 	return __spi_unmap_msg(ctlr, msg);
1184 }
1185 
1186 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1187 {
1188 	struct spi_transfer *xfer;
1189 	void *tmp;
1190 	unsigned int max_tx, max_rx;
1191 
1192 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1193 		&& !(msg->spi->mode & SPI_3WIRE)) {
1194 		max_tx = 0;
1195 		max_rx = 0;
1196 
1197 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1198 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1199 			    !xfer->tx_buf)
1200 				max_tx = max(xfer->len, max_tx);
1201 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1202 			    !xfer->rx_buf)
1203 				max_rx = max(xfer->len, max_rx);
1204 		}
1205 
1206 		if (max_tx) {
1207 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1208 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1209 			if (!tmp)
1210 				return -ENOMEM;
1211 			ctlr->dummy_tx = tmp;
1212 		}
1213 
1214 		if (max_rx) {
1215 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1216 				       GFP_KERNEL | GFP_DMA);
1217 			if (!tmp)
1218 				return -ENOMEM;
1219 			ctlr->dummy_rx = tmp;
1220 		}
1221 
1222 		if (max_tx || max_rx) {
1223 			list_for_each_entry(xfer, &msg->transfers,
1224 					    transfer_list) {
1225 				if (!xfer->len)
1226 					continue;
1227 				if (!xfer->tx_buf)
1228 					xfer->tx_buf = ctlr->dummy_tx;
1229 				if (!xfer->rx_buf)
1230 					xfer->rx_buf = ctlr->dummy_rx;
1231 			}
1232 		}
1233 	}
1234 
1235 	return __spi_map_msg(ctlr, msg);
1236 }
1237 
1238 static int spi_transfer_wait(struct spi_controller *ctlr,
1239 			     struct spi_message *msg,
1240 			     struct spi_transfer *xfer)
1241 {
1242 	struct spi_statistics *statm = &ctlr->statistics;
1243 	struct spi_statistics *stats = &msg->spi->statistics;
1244 	u32 speed_hz = xfer->speed_hz;
1245 	unsigned long long ms;
1246 
1247 	if (spi_controller_is_slave(ctlr)) {
1248 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1249 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1250 			return -EINTR;
1251 		}
1252 	} else {
1253 		if (!speed_hz)
1254 			speed_hz = 100000;
1255 
1256 		/*
1257 		 * For each byte we wait for 8 cycles of the SPI clock.
1258 		 * Since speed is defined in Hz and we want milliseconds,
1259 		 * use respective multiplier, but before the division,
1260 		 * otherwise we may get 0 for short transfers.
1261 		 */
1262 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1263 		do_div(ms, speed_hz);
1264 
1265 		/*
1266 		 * Increase it twice and add 200 ms tolerance, use
1267 		 * predefined maximum in case of overflow.
1268 		 */
1269 		ms += ms + 200;
1270 		if (ms > UINT_MAX)
1271 			ms = UINT_MAX;
1272 
1273 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1274 						 msecs_to_jiffies(ms));
1275 
1276 		if (ms == 0) {
1277 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1278 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1279 			dev_err(&msg->spi->dev,
1280 				"SPI transfer timed out\n");
1281 			return -ETIMEDOUT;
1282 		}
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 static void _spi_transfer_delay_ns(u32 ns)
1289 {
1290 	if (!ns)
1291 		return;
1292 	if (ns <= NSEC_PER_USEC) {
1293 		ndelay(ns);
1294 	} else {
1295 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1296 
1297 		if (us <= 10)
1298 			udelay(us);
1299 		else
1300 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1301 	}
1302 }
1303 
1304 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1305 {
1306 	u32 delay = _delay->value;
1307 	u32 unit = _delay->unit;
1308 	u32 hz;
1309 
1310 	if (!delay)
1311 		return 0;
1312 
1313 	switch (unit) {
1314 	case SPI_DELAY_UNIT_USECS:
1315 		delay *= NSEC_PER_USEC;
1316 		break;
1317 	case SPI_DELAY_UNIT_NSECS:
1318 		/* Nothing to do here */
1319 		break;
1320 	case SPI_DELAY_UNIT_SCK:
1321 		/* clock cycles need to be obtained from spi_transfer */
1322 		if (!xfer)
1323 			return -EINVAL;
1324 		/*
1325 		 * If there is unknown effective speed, approximate it
1326 		 * by underestimating with half of the requested hz.
1327 		 */
1328 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1329 		if (!hz)
1330 			return -EINVAL;
1331 
1332 		/* Convert delay to nanoseconds */
1333 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1334 		break;
1335 	default:
1336 		return -EINVAL;
1337 	}
1338 
1339 	return delay;
1340 }
1341 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1342 
1343 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1344 {
1345 	int delay;
1346 
1347 	might_sleep();
1348 
1349 	if (!_delay)
1350 		return -EINVAL;
1351 
1352 	delay = spi_delay_to_ns(_delay, xfer);
1353 	if (delay < 0)
1354 		return delay;
1355 
1356 	_spi_transfer_delay_ns(delay);
1357 
1358 	return 0;
1359 }
1360 EXPORT_SYMBOL_GPL(spi_delay_exec);
1361 
1362 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1363 					  struct spi_transfer *xfer)
1364 {
1365 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1366 	u32 delay = xfer->cs_change_delay.value;
1367 	u32 unit = xfer->cs_change_delay.unit;
1368 	int ret;
1369 
1370 	/* return early on "fast" mode - for everything but USECS */
1371 	if (!delay) {
1372 		if (unit == SPI_DELAY_UNIT_USECS)
1373 			_spi_transfer_delay_ns(default_delay_ns);
1374 		return;
1375 	}
1376 
1377 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1378 	if (ret) {
1379 		dev_err_once(&msg->spi->dev,
1380 			     "Use of unsupported delay unit %i, using default of %luus\n",
1381 			     unit, default_delay_ns / NSEC_PER_USEC);
1382 		_spi_transfer_delay_ns(default_delay_ns);
1383 	}
1384 }
1385 
1386 /*
1387  * spi_transfer_one_message - Default implementation of transfer_one_message()
1388  *
1389  * This is a standard implementation of transfer_one_message() for
1390  * drivers which implement a transfer_one() operation.  It provides
1391  * standard handling of delays and chip select management.
1392  */
1393 static int spi_transfer_one_message(struct spi_controller *ctlr,
1394 				    struct spi_message *msg)
1395 {
1396 	struct spi_transfer *xfer;
1397 	bool keep_cs = false;
1398 	int ret = 0;
1399 	struct spi_statistics *statm = &ctlr->statistics;
1400 	struct spi_statistics *stats = &msg->spi->statistics;
1401 
1402 	spi_set_cs(msg->spi, true, false);
1403 
1404 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1405 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1406 
1407 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1408 		trace_spi_transfer_start(msg, xfer);
1409 
1410 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1411 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1412 
1413 		if (!ctlr->ptp_sts_supported) {
1414 			xfer->ptp_sts_word_pre = 0;
1415 			ptp_read_system_prets(xfer->ptp_sts);
1416 		}
1417 
1418 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1419 			reinit_completion(&ctlr->xfer_completion);
1420 
1421 fallback_pio:
1422 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1423 			if (ret < 0) {
1424 				if (ctlr->cur_msg_mapped &&
1425 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1426 					__spi_unmap_msg(ctlr, msg);
1427 					ctlr->fallback = true;
1428 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1429 					goto fallback_pio;
1430 				}
1431 
1432 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1433 							       errors);
1434 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1435 							       errors);
1436 				dev_err(&msg->spi->dev,
1437 					"SPI transfer failed: %d\n", ret);
1438 				goto out;
1439 			}
1440 
1441 			if (ret > 0) {
1442 				ret = spi_transfer_wait(ctlr, msg, xfer);
1443 				if (ret < 0)
1444 					msg->status = ret;
1445 			}
1446 		} else {
1447 			if (xfer->len)
1448 				dev_err(&msg->spi->dev,
1449 					"Bufferless transfer has length %u\n",
1450 					xfer->len);
1451 		}
1452 
1453 		if (!ctlr->ptp_sts_supported) {
1454 			ptp_read_system_postts(xfer->ptp_sts);
1455 			xfer->ptp_sts_word_post = xfer->len;
1456 		}
1457 
1458 		trace_spi_transfer_stop(msg, xfer);
1459 
1460 		if (msg->status != -EINPROGRESS)
1461 			goto out;
1462 
1463 		spi_transfer_delay_exec(xfer);
1464 
1465 		if (xfer->cs_change) {
1466 			if (list_is_last(&xfer->transfer_list,
1467 					 &msg->transfers)) {
1468 				keep_cs = true;
1469 			} else {
1470 				spi_set_cs(msg->spi, false, false);
1471 				_spi_transfer_cs_change_delay(msg, xfer);
1472 				spi_set_cs(msg->spi, true, false);
1473 			}
1474 		}
1475 
1476 		msg->actual_length += xfer->len;
1477 	}
1478 
1479 out:
1480 	if (ret != 0 || !keep_cs)
1481 		spi_set_cs(msg->spi, false, false);
1482 
1483 	if (msg->status == -EINPROGRESS)
1484 		msg->status = ret;
1485 
1486 	if (msg->status && ctlr->handle_err)
1487 		ctlr->handle_err(ctlr, msg);
1488 
1489 	spi_finalize_current_message(ctlr);
1490 
1491 	return ret;
1492 }
1493 
1494 /**
1495  * spi_finalize_current_transfer - report completion of a transfer
1496  * @ctlr: the controller reporting completion
1497  *
1498  * Called by SPI drivers using the core transfer_one_message()
1499  * implementation to notify it that the current interrupt driven
1500  * transfer has finished and the next one may be scheduled.
1501  */
1502 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1503 {
1504 	complete(&ctlr->xfer_completion);
1505 }
1506 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1507 
1508 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1509 {
1510 	if (ctlr->auto_runtime_pm) {
1511 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1512 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1513 	}
1514 }
1515 
1516 /**
1517  * __spi_pump_messages - function which processes spi message queue
1518  * @ctlr: controller to process queue for
1519  * @in_kthread: true if we are in the context of the message pump thread
1520  *
1521  * This function checks if there is any spi message in the queue that
1522  * needs processing and if so call out to the driver to initialize hardware
1523  * and transfer each message.
1524  *
1525  * Note that it is called both from the kthread itself and also from
1526  * inside spi_sync(); the queue extraction handling at the top of the
1527  * function should deal with this safely.
1528  */
1529 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1530 {
1531 	struct spi_transfer *xfer;
1532 	struct spi_message *msg;
1533 	bool was_busy = false;
1534 	unsigned long flags;
1535 	int ret;
1536 
1537 	/* Lock queue */
1538 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1539 
1540 	/* Make sure we are not already running a message */
1541 	if (ctlr->cur_msg) {
1542 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1543 		return;
1544 	}
1545 
1546 	/* If another context is idling the device then defer */
1547 	if (ctlr->idling) {
1548 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1549 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1550 		return;
1551 	}
1552 
1553 	/* Check if the queue is idle */
1554 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1555 		if (!ctlr->busy) {
1556 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1557 			return;
1558 		}
1559 
1560 		/* Defer any non-atomic teardown to the thread */
1561 		if (!in_kthread) {
1562 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1563 			    !ctlr->unprepare_transfer_hardware) {
1564 				spi_idle_runtime_pm(ctlr);
1565 				ctlr->busy = false;
1566 				trace_spi_controller_idle(ctlr);
1567 			} else {
1568 				kthread_queue_work(ctlr->kworker,
1569 						   &ctlr->pump_messages);
1570 			}
1571 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1572 			return;
1573 		}
1574 
1575 		ctlr->busy = false;
1576 		ctlr->idling = true;
1577 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1578 
1579 		kfree(ctlr->dummy_rx);
1580 		ctlr->dummy_rx = NULL;
1581 		kfree(ctlr->dummy_tx);
1582 		ctlr->dummy_tx = NULL;
1583 		if (ctlr->unprepare_transfer_hardware &&
1584 		    ctlr->unprepare_transfer_hardware(ctlr))
1585 			dev_err(&ctlr->dev,
1586 				"failed to unprepare transfer hardware\n");
1587 		spi_idle_runtime_pm(ctlr);
1588 		trace_spi_controller_idle(ctlr);
1589 
1590 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1591 		ctlr->idling = false;
1592 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1593 		return;
1594 	}
1595 
1596 	/* Extract head of queue */
1597 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1598 	ctlr->cur_msg = msg;
1599 
1600 	list_del_init(&msg->queue);
1601 	if (ctlr->busy)
1602 		was_busy = true;
1603 	else
1604 		ctlr->busy = true;
1605 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1606 
1607 	mutex_lock(&ctlr->io_mutex);
1608 
1609 	if (!was_busy && ctlr->auto_runtime_pm) {
1610 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1611 		if (ret < 0) {
1612 			pm_runtime_put_noidle(ctlr->dev.parent);
1613 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1614 				ret);
1615 			mutex_unlock(&ctlr->io_mutex);
1616 			return;
1617 		}
1618 	}
1619 
1620 	if (!was_busy)
1621 		trace_spi_controller_busy(ctlr);
1622 
1623 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1624 		ret = ctlr->prepare_transfer_hardware(ctlr);
1625 		if (ret) {
1626 			dev_err(&ctlr->dev,
1627 				"failed to prepare transfer hardware: %d\n",
1628 				ret);
1629 
1630 			if (ctlr->auto_runtime_pm)
1631 				pm_runtime_put(ctlr->dev.parent);
1632 
1633 			msg->status = ret;
1634 			spi_finalize_current_message(ctlr);
1635 
1636 			mutex_unlock(&ctlr->io_mutex);
1637 			return;
1638 		}
1639 	}
1640 
1641 	trace_spi_message_start(msg);
1642 
1643 	if (ctlr->prepare_message) {
1644 		ret = ctlr->prepare_message(ctlr, msg);
1645 		if (ret) {
1646 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1647 				ret);
1648 			msg->status = ret;
1649 			spi_finalize_current_message(ctlr);
1650 			goto out;
1651 		}
1652 		ctlr->cur_msg_prepared = true;
1653 	}
1654 
1655 	ret = spi_map_msg(ctlr, msg);
1656 	if (ret) {
1657 		msg->status = ret;
1658 		spi_finalize_current_message(ctlr);
1659 		goto out;
1660 	}
1661 
1662 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1663 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1664 			xfer->ptp_sts_word_pre = 0;
1665 			ptp_read_system_prets(xfer->ptp_sts);
1666 		}
1667 	}
1668 
1669 	ret = ctlr->transfer_one_message(ctlr, msg);
1670 	if (ret) {
1671 		dev_err(&ctlr->dev,
1672 			"failed to transfer one message from queue\n");
1673 		goto out;
1674 	}
1675 
1676 out:
1677 	mutex_unlock(&ctlr->io_mutex);
1678 
1679 	/* Prod the scheduler in case transfer_one() was busy waiting */
1680 	if (!ret)
1681 		cond_resched();
1682 }
1683 
1684 /**
1685  * spi_pump_messages - kthread work function which processes spi message queue
1686  * @work: pointer to kthread work struct contained in the controller struct
1687  */
1688 static void spi_pump_messages(struct kthread_work *work)
1689 {
1690 	struct spi_controller *ctlr =
1691 		container_of(work, struct spi_controller, pump_messages);
1692 
1693 	__spi_pump_messages(ctlr, true);
1694 }
1695 
1696 /**
1697  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1698  * @ctlr: Pointer to the spi_controller structure of the driver
1699  * @xfer: Pointer to the transfer being timestamped
1700  * @progress: How many words (not bytes) have been transferred so far
1701  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1702  *	      transfer, for less jitter in time measurement. Only compatible
1703  *	      with PIO drivers. If true, must follow up with
1704  *	      spi_take_timestamp_post or otherwise system will crash.
1705  *	      WARNING: for fully predictable results, the CPU frequency must
1706  *	      also be under control (governor).
1707  *
1708  * This is a helper for drivers to collect the beginning of the TX timestamp
1709  * for the requested byte from the SPI transfer. The frequency with which this
1710  * function must be called (once per word, once for the whole transfer, once
1711  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1712  * greater than or equal to the requested byte at the time of the call. The
1713  * timestamp is only taken once, at the first such call. It is assumed that
1714  * the driver advances its @tx buffer pointer monotonically.
1715  */
1716 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1717 			    struct spi_transfer *xfer,
1718 			    size_t progress, bool irqs_off)
1719 {
1720 	if (!xfer->ptp_sts)
1721 		return;
1722 
1723 	if (xfer->timestamped)
1724 		return;
1725 
1726 	if (progress > xfer->ptp_sts_word_pre)
1727 		return;
1728 
1729 	/* Capture the resolution of the timestamp */
1730 	xfer->ptp_sts_word_pre = progress;
1731 
1732 	if (irqs_off) {
1733 		local_irq_save(ctlr->irq_flags);
1734 		preempt_disable();
1735 	}
1736 
1737 	ptp_read_system_prets(xfer->ptp_sts);
1738 }
1739 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1740 
1741 /**
1742  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1743  * @ctlr: Pointer to the spi_controller structure of the driver
1744  * @xfer: Pointer to the transfer being timestamped
1745  * @progress: How many words (not bytes) have been transferred so far
1746  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1747  *
1748  * This is a helper for drivers to collect the end of the TX timestamp for
1749  * the requested byte from the SPI transfer. Can be called with an arbitrary
1750  * frequency: only the first call where @tx exceeds or is equal to the
1751  * requested word will be timestamped.
1752  */
1753 void spi_take_timestamp_post(struct spi_controller *ctlr,
1754 			     struct spi_transfer *xfer,
1755 			     size_t progress, bool irqs_off)
1756 {
1757 	if (!xfer->ptp_sts)
1758 		return;
1759 
1760 	if (xfer->timestamped)
1761 		return;
1762 
1763 	if (progress < xfer->ptp_sts_word_post)
1764 		return;
1765 
1766 	ptp_read_system_postts(xfer->ptp_sts);
1767 
1768 	if (irqs_off) {
1769 		local_irq_restore(ctlr->irq_flags);
1770 		preempt_enable();
1771 	}
1772 
1773 	/* Capture the resolution of the timestamp */
1774 	xfer->ptp_sts_word_post = progress;
1775 
1776 	xfer->timestamped = true;
1777 }
1778 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1779 
1780 /**
1781  * spi_set_thread_rt - set the controller to pump at realtime priority
1782  * @ctlr: controller to boost priority of
1783  *
1784  * This can be called because the controller requested realtime priority
1785  * (by setting the ->rt value before calling spi_register_controller()) or
1786  * because a device on the bus said that its transfers needed realtime
1787  * priority.
1788  *
1789  * NOTE: at the moment if any device on a bus says it needs realtime then
1790  * the thread will be at realtime priority for all transfers on that
1791  * controller.  If this eventually becomes a problem we may see if we can
1792  * find a way to boost the priority only temporarily during relevant
1793  * transfers.
1794  */
1795 static void spi_set_thread_rt(struct spi_controller *ctlr)
1796 {
1797 	dev_info(&ctlr->dev,
1798 		"will run message pump with realtime priority\n");
1799 	sched_set_fifo(ctlr->kworker->task);
1800 }
1801 
1802 static int spi_init_queue(struct spi_controller *ctlr)
1803 {
1804 	ctlr->running = false;
1805 	ctlr->busy = false;
1806 
1807 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1808 	if (IS_ERR(ctlr->kworker)) {
1809 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1810 		return PTR_ERR(ctlr->kworker);
1811 	}
1812 
1813 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1814 
1815 	/*
1816 	 * Controller config will indicate if this controller should run the
1817 	 * message pump with high (realtime) priority to reduce the transfer
1818 	 * latency on the bus by minimising the delay between a transfer
1819 	 * request and the scheduling of the message pump thread. Without this
1820 	 * setting the message pump thread will remain at default priority.
1821 	 */
1822 	if (ctlr->rt)
1823 		spi_set_thread_rt(ctlr);
1824 
1825 	return 0;
1826 }
1827 
1828 /**
1829  * spi_get_next_queued_message() - called by driver to check for queued
1830  * messages
1831  * @ctlr: the controller to check for queued messages
1832  *
1833  * If there are more messages in the queue, the next message is returned from
1834  * this call.
1835  *
1836  * Return: the next message in the queue, else NULL if the queue is empty.
1837  */
1838 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1839 {
1840 	struct spi_message *next;
1841 	unsigned long flags;
1842 
1843 	/* get a pointer to the next message, if any */
1844 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1845 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1846 					queue);
1847 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1848 
1849 	return next;
1850 }
1851 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1852 
1853 /**
1854  * spi_finalize_current_message() - the current message is complete
1855  * @ctlr: the controller to return the message to
1856  *
1857  * Called by the driver to notify the core that the message in the front of the
1858  * queue is complete and can be removed from the queue.
1859  */
1860 void spi_finalize_current_message(struct spi_controller *ctlr)
1861 {
1862 	struct spi_transfer *xfer;
1863 	struct spi_message *mesg;
1864 	unsigned long flags;
1865 	int ret;
1866 
1867 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1868 	mesg = ctlr->cur_msg;
1869 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1870 
1871 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1872 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1873 			ptp_read_system_postts(xfer->ptp_sts);
1874 			xfer->ptp_sts_word_post = xfer->len;
1875 		}
1876 	}
1877 
1878 	if (unlikely(ctlr->ptp_sts_supported))
1879 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1880 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1881 
1882 	spi_unmap_msg(ctlr, mesg);
1883 
1884 	/*
1885 	 * In the prepare_messages callback the SPI bus has the opportunity
1886 	 * to split a transfer to smaller chunks.
1887 	 *
1888 	 * Release the split transfers here since spi_map_msg() is done on
1889 	 * the split transfers.
1890 	 */
1891 	spi_res_release(ctlr, mesg);
1892 
1893 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1894 		ret = ctlr->unprepare_message(ctlr, mesg);
1895 		if (ret) {
1896 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1897 				ret);
1898 		}
1899 	}
1900 
1901 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1902 	ctlr->cur_msg = NULL;
1903 	ctlr->cur_msg_prepared = false;
1904 	ctlr->fallback = false;
1905 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1906 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1907 
1908 	trace_spi_message_done(mesg);
1909 
1910 	mesg->state = NULL;
1911 	if (mesg->complete)
1912 		mesg->complete(mesg->context);
1913 }
1914 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1915 
1916 static int spi_start_queue(struct spi_controller *ctlr)
1917 {
1918 	unsigned long flags;
1919 
1920 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1921 
1922 	if (ctlr->running || ctlr->busy) {
1923 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1924 		return -EBUSY;
1925 	}
1926 
1927 	ctlr->running = true;
1928 	ctlr->cur_msg = NULL;
1929 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1930 
1931 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1932 
1933 	return 0;
1934 }
1935 
1936 static int spi_stop_queue(struct spi_controller *ctlr)
1937 {
1938 	unsigned long flags;
1939 	unsigned limit = 500;
1940 	int ret = 0;
1941 
1942 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1943 
1944 	/*
1945 	 * This is a bit lame, but is optimized for the common execution path.
1946 	 * A wait_queue on the ctlr->busy could be used, but then the common
1947 	 * execution path (pump_messages) would be required to call wake_up or
1948 	 * friends on every SPI message. Do this instead.
1949 	 */
1950 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1951 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1952 		usleep_range(10000, 11000);
1953 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1954 	}
1955 
1956 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1957 		ret = -EBUSY;
1958 	else
1959 		ctlr->running = false;
1960 
1961 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1962 
1963 	if (ret) {
1964 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1965 		return ret;
1966 	}
1967 	return ret;
1968 }
1969 
1970 static int spi_destroy_queue(struct spi_controller *ctlr)
1971 {
1972 	int ret;
1973 
1974 	ret = spi_stop_queue(ctlr);
1975 
1976 	/*
1977 	 * kthread_flush_worker will block until all work is done.
1978 	 * If the reason that stop_queue timed out is that the work will never
1979 	 * finish, then it does no good to call flush/stop thread, so
1980 	 * return anyway.
1981 	 */
1982 	if (ret) {
1983 		dev_err(&ctlr->dev, "problem destroying queue\n");
1984 		return ret;
1985 	}
1986 
1987 	kthread_destroy_worker(ctlr->kworker);
1988 
1989 	return 0;
1990 }
1991 
1992 static int __spi_queued_transfer(struct spi_device *spi,
1993 				 struct spi_message *msg,
1994 				 bool need_pump)
1995 {
1996 	struct spi_controller *ctlr = spi->controller;
1997 	unsigned long flags;
1998 
1999 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2000 
2001 	if (!ctlr->running) {
2002 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2003 		return -ESHUTDOWN;
2004 	}
2005 	msg->actual_length = 0;
2006 	msg->status = -EINPROGRESS;
2007 
2008 	list_add_tail(&msg->queue, &ctlr->queue);
2009 	if (!ctlr->busy && need_pump)
2010 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2011 
2012 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2013 	return 0;
2014 }
2015 
2016 /**
2017  * spi_queued_transfer - transfer function for queued transfers
2018  * @spi: spi device which is requesting transfer
2019  * @msg: spi message which is to handled is queued to driver queue
2020  *
2021  * Return: zero on success, else a negative error code.
2022  */
2023 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2024 {
2025 	return __spi_queued_transfer(spi, msg, true);
2026 }
2027 
2028 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2029 {
2030 	int ret;
2031 
2032 	ctlr->transfer = spi_queued_transfer;
2033 	if (!ctlr->transfer_one_message)
2034 		ctlr->transfer_one_message = spi_transfer_one_message;
2035 
2036 	/* Initialize and start queue */
2037 	ret = spi_init_queue(ctlr);
2038 	if (ret) {
2039 		dev_err(&ctlr->dev, "problem initializing queue\n");
2040 		goto err_init_queue;
2041 	}
2042 	ctlr->queued = true;
2043 	ret = spi_start_queue(ctlr);
2044 	if (ret) {
2045 		dev_err(&ctlr->dev, "problem starting queue\n");
2046 		goto err_start_queue;
2047 	}
2048 
2049 	return 0;
2050 
2051 err_start_queue:
2052 	spi_destroy_queue(ctlr);
2053 err_init_queue:
2054 	return ret;
2055 }
2056 
2057 /**
2058  * spi_flush_queue - Send all pending messages in the queue from the callers'
2059  *		     context
2060  * @ctlr: controller to process queue for
2061  *
2062  * This should be used when one wants to ensure all pending messages have been
2063  * sent before doing something. Is used by the spi-mem code to make sure SPI
2064  * memory operations do not preempt regular SPI transfers that have been queued
2065  * before the spi-mem operation.
2066  */
2067 void spi_flush_queue(struct spi_controller *ctlr)
2068 {
2069 	if (ctlr->transfer == spi_queued_transfer)
2070 		__spi_pump_messages(ctlr, false);
2071 }
2072 
2073 /*-------------------------------------------------------------------------*/
2074 
2075 #if defined(CONFIG_OF)
2076 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2077 			   struct device_node *nc)
2078 {
2079 	u32 value;
2080 	int rc;
2081 
2082 	/* Mode (clock phase/polarity/etc.) */
2083 	if (of_property_read_bool(nc, "spi-cpha"))
2084 		spi->mode |= SPI_CPHA;
2085 	if (of_property_read_bool(nc, "spi-cpol"))
2086 		spi->mode |= SPI_CPOL;
2087 	if (of_property_read_bool(nc, "spi-3wire"))
2088 		spi->mode |= SPI_3WIRE;
2089 	if (of_property_read_bool(nc, "spi-lsb-first"))
2090 		spi->mode |= SPI_LSB_FIRST;
2091 	if (of_property_read_bool(nc, "spi-cs-high"))
2092 		spi->mode |= SPI_CS_HIGH;
2093 
2094 	/* Device DUAL/QUAD mode */
2095 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2096 		switch (value) {
2097 		case 0:
2098 			spi->mode |= SPI_NO_TX;
2099 			break;
2100 		case 1:
2101 			break;
2102 		case 2:
2103 			spi->mode |= SPI_TX_DUAL;
2104 			break;
2105 		case 4:
2106 			spi->mode |= SPI_TX_QUAD;
2107 			break;
2108 		case 8:
2109 			spi->mode |= SPI_TX_OCTAL;
2110 			break;
2111 		default:
2112 			dev_warn(&ctlr->dev,
2113 				"spi-tx-bus-width %d not supported\n",
2114 				value);
2115 			break;
2116 		}
2117 	}
2118 
2119 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2120 		switch (value) {
2121 		case 0:
2122 			spi->mode |= SPI_NO_RX;
2123 			break;
2124 		case 1:
2125 			break;
2126 		case 2:
2127 			spi->mode |= SPI_RX_DUAL;
2128 			break;
2129 		case 4:
2130 			spi->mode |= SPI_RX_QUAD;
2131 			break;
2132 		case 8:
2133 			spi->mode |= SPI_RX_OCTAL;
2134 			break;
2135 		default:
2136 			dev_warn(&ctlr->dev,
2137 				"spi-rx-bus-width %d not supported\n",
2138 				value);
2139 			break;
2140 		}
2141 	}
2142 
2143 	if (spi_controller_is_slave(ctlr)) {
2144 		if (!of_node_name_eq(nc, "slave")) {
2145 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2146 				nc);
2147 			return -EINVAL;
2148 		}
2149 		return 0;
2150 	}
2151 
2152 	/* Device address */
2153 	rc = of_property_read_u32(nc, "reg", &value);
2154 	if (rc) {
2155 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2156 			nc, rc);
2157 		return rc;
2158 	}
2159 	spi->chip_select = value;
2160 
2161 	/* Device speed */
2162 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2163 		spi->max_speed_hz = value;
2164 
2165 	return 0;
2166 }
2167 
2168 static struct spi_device *
2169 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2170 {
2171 	struct spi_device *spi;
2172 	int rc;
2173 
2174 	/* Alloc an spi_device */
2175 	spi = spi_alloc_device(ctlr);
2176 	if (!spi) {
2177 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2178 		rc = -ENOMEM;
2179 		goto err_out;
2180 	}
2181 
2182 	/* Select device driver */
2183 	rc = of_modalias_node(nc, spi->modalias,
2184 				sizeof(spi->modalias));
2185 	if (rc < 0) {
2186 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2187 		goto err_out;
2188 	}
2189 
2190 	rc = of_spi_parse_dt(ctlr, spi, nc);
2191 	if (rc)
2192 		goto err_out;
2193 
2194 	/* Store a pointer to the node in the device structure */
2195 	of_node_get(nc);
2196 	spi->dev.of_node = nc;
2197 	spi->dev.fwnode = of_fwnode_handle(nc);
2198 
2199 	/* Register the new device */
2200 	rc = spi_add_device(spi);
2201 	if (rc) {
2202 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2203 		goto err_of_node_put;
2204 	}
2205 
2206 	return spi;
2207 
2208 err_of_node_put:
2209 	of_node_put(nc);
2210 err_out:
2211 	spi_dev_put(spi);
2212 	return ERR_PTR(rc);
2213 }
2214 
2215 /**
2216  * of_register_spi_devices() - Register child devices onto the SPI bus
2217  * @ctlr:	Pointer to spi_controller device
2218  *
2219  * Registers an spi_device for each child node of controller node which
2220  * represents a valid SPI slave.
2221  */
2222 static void of_register_spi_devices(struct spi_controller *ctlr)
2223 {
2224 	struct spi_device *spi;
2225 	struct device_node *nc;
2226 
2227 	if (!ctlr->dev.of_node)
2228 		return;
2229 
2230 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2231 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2232 			continue;
2233 		spi = of_register_spi_device(ctlr, nc);
2234 		if (IS_ERR(spi)) {
2235 			dev_warn(&ctlr->dev,
2236 				 "Failed to create SPI device for %pOF\n", nc);
2237 			of_node_clear_flag(nc, OF_POPULATED);
2238 		}
2239 	}
2240 }
2241 #else
2242 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2243 #endif
2244 
2245 /**
2246  * spi_new_ancillary_device() - Register ancillary SPI device
2247  * @spi:         Pointer to the main SPI device registering the ancillary device
2248  * @chip_select: Chip Select of the ancillary device
2249  *
2250  * Register an ancillary SPI device; for example some chips have a chip-select
2251  * for normal device usage and another one for setup/firmware upload.
2252  *
2253  * This may only be called from main SPI device's probe routine.
2254  *
2255  * Return: 0 on success; negative errno on failure
2256  */
2257 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2258 					     u8 chip_select)
2259 {
2260 	struct spi_device *ancillary;
2261 	int rc = 0;
2262 
2263 	/* Alloc an spi_device */
2264 	ancillary = spi_alloc_device(spi->controller);
2265 	if (!ancillary) {
2266 		rc = -ENOMEM;
2267 		goto err_out;
2268 	}
2269 
2270 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2271 
2272 	/* Use provided chip-select for ancillary device */
2273 	ancillary->chip_select = chip_select;
2274 
2275 	/* Take over SPI mode/speed from SPI main device */
2276 	ancillary->max_speed_hz = spi->max_speed_hz;
2277 	ancillary->mode = spi->mode;
2278 
2279 	/* Register the new device */
2280 	rc = spi_add_device_locked(ancillary);
2281 	if (rc) {
2282 		dev_err(&spi->dev, "failed to register ancillary device\n");
2283 		goto err_out;
2284 	}
2285 
2286 	return ancillary;
2287 
2288 err_out:
2289 	spi_dev_put(ancillary);
2290 	return ERR_PTR(rc);
2291 }
2292 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2293 
2294 #ifdef CONFIG_ACPI
2295 struct acpi_spi_lookup {
2296 	struct spi_controller 	*ctlr;
2297 	u32			max_speed_hz;
2298 	u32			mode;
2299 	int			irq;
2300 	u8			bits_per_word;
2301 	u8			chip_select;
2302 	int			n;
2303 	int			index;
2304 };
2305 
2306 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2307 {
2308 	struct acpi_resource_spi_serialbus *sb;
2309 	int *count = data;
2310 
2311 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2312 		return 1;
2313 
2314 	sb = &ares->data.spi_serial_bus;
2315 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2316 		return 1;
2317 
2318 	*count = *count + 1;
2319 
2320 	return 1;
2321 }
2322 
2323 /**
2324  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2325  * @adev:	ACPI device
2326  *
2327  * Returns the number of SpiSerialBus resources in the ACPI-device's
2328  * resource-list; or a negative error code.
2329  */
2330 int acpi_spi_count_resources(struct acpi_device *adev)
2331 {
2332 	LIST_HEAD(r);
2333 	int count = 0;
2334 	int ret;
2335 
2336 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2337 	if (ret < 0)
2338 		return ret;
2339 
2340 	acpi_dev_free_resource_list(&r);
2341 
2342 	return count;
2343 }
2344 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2345 
2346 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2347 					    struct acpi_spi_lookup *lookup)
2348 {
2349 	const union acpi_object *obj;
2350 
2351 	if (!x86_apple_machine)
2352 		return;
2353 
2354 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2355 	    && obj->buffer.length >= 4)
2356 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2357 
2358 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2359 	    && obj->buffer.length == 8)
2360 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2361 
2362 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2363 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2364 		lookup->mode |= SPI_LSB_FIRST;
2365 
2366 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2367 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2368 		lookup->mode |= SPI_CPOL;
2369 
2370 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2371 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2372 		lookup->mode |= SPI_CPHA;
2373 }
2374 
2375 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2376 
2377 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2378 {
2379 	struct acpi_spi_lookup *lookup = data;
2380 	struct spi_controller *ctlr = lookup->ctlr;
2381 
2382 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2383 		struct acpi_resource_spi_serialbus *sb;
2384 		acpi_handle parent_handle;
2385 		acpi_status status;
2386 
2387 		sb = &ares->data.spi_serial_bus;
2388 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2389 
2390 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2391 				return 1;
2392 
2393 			if (lookup->index == -1 && !ctlr)
2394 				return -ENODEV;
2395 
2396 			status = acpi_get_handle(NULL,
2397 						 sb->resource_source.string_ptr,
2398 						 &parent_handle);
2399 
2400 			if (ACPI_FAILURE(status))
2401 				return -ENODEV;
2402 
2403 			if (ctlr) {
2404 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2405 					return -ENODEV;
2406 			} else {
2407 				struct acpi_device *adev;
2408 
2409 				if (acpi_bus_get_device(parent_handle, &adev))
2410 					return -ENODEV;
2411 
2412 				ctlr = acpi_spi_find_controller_by_adev(adev);
2413 				if (!ctlr)
2414 					return -ENODEV;
2415 
2416 				lookup->ctlr = ctlr;
2417 			}
2418 
2419 			/*
2420 			 * ACPI DeviceSelection numbering is handled by the
2421 			 * host controller driver in Windows and can vary
2422 			 * from driver to driver. In Linux we always expect
2423 			 * 0 .. max - 1 so we need to ask the driver to
2424 			 * translate between the two schemes.
2425 			 */
2426 			if (ctlr->fw_translate_cs) {
2427 				int cs = ctlr->fw_translate_cs(ctlr,
2428 						sb->device_selection);
2429 				if (cs < 0)
2430 					return cs;
2431 				lookup->chip_select = cs;
2432 			} else {
2433 				lookup->chip_select = sb->device_selection;
2434 			}
2435 
2436 			lookup->max_speed_hz = sb->connection_speed;
2437 			lookup->bits_per_word = sb->data_bit_length;
2438 
2439 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2440 				lookup->mode |= SPI_CPHA;
2441 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2442 				lookup->mode |= SPI_CPOL;
2443 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2444 				lookup->mode |= SPI_CS_HIGH;
2445 		}
2446 	} else if (lookup->irq < 0) {
2447 		struct resource r;
2448 
2449 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2450 			lookup->irq = r.start;
2451 	}
2452 
2453 	/* Always tell the ACPI core to skip this resource */
2454 	return 1;
2455 }
2456 
2457 /**
2458  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2459  * @ctlr: controller to which the spi device belongs
2460  * @adev: ACPI Device for the spi device
2461  * @index: Index of the spi resource inside the ACPI Node
2462  *
2463  * This should be used to allocate a new spi device from and ACPI Node.
2464  * The caller is responsible for calling spi_add_device to register the spi device.
2465  *
2466  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2467  * using the resource.
2468  * If index is set to -1, index is not used.
2469  * Note: If index is -1, ctlr must be set.
2470  *
2471  * Return: a pointer to the new device, or ERR_PTR on error.
2472  */
2473 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2474 					 struct acpi_device *adev,
2475 					 int index)
2476 {
2477 	acpi_handle parent_handle = NULL;
2478 	struct list_head resource_list;
2479 	struct acpi_spi_lookup lookup = {};
2480 	struct spi_device *spi;
2481 	int ret;
2482 
2483 	if (!ctlr && index == -1)
2484 		return ERR_PTR(-EINVAL);
2485 
2486 	lookup.ctlr		= ctlr;
2487 	lookup.irq		= -1;
2488 	lookup.index		= index;
2489 	lookup.n		= 0;
2490 
2491 	INIT_LIST_HEAD(&resource_list);
2492 	ret = acpi_dev_get_resources(adev, &resource_list,
2493 				     acpi_spi_add_resource, &lookup);
2494 	acpi_dev_free_resource_list(&resource_list);
2495 
2496 	if (ret < 0)
2497 		/* found SPI in _CRS but it points to another controller */
2498 		return ERR_PTR(-ENODEV);
2499 
2500 	if (!lookup.max_speed_hz &&
2501 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2502 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2503 		/* Apple does not use _CRS but nested devices for SPI slaves */
2504 		acpi_spi_parse_apple_properties(adev, &lookup);
2505 	}
2506 
2507 	if (!lookup.max_speed_hz)
2508 		return ERR_PTR(-ENODEV);
2509 
2510 	spi = spi_alloc_device(lookup.ctlr);
2511 	if (!spi) {
2512 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2513 			dev_name(&adev->dev));
2514 		return ERR_PTR(-ENOMEM);
2515 	}
2516 
2517 	ACPI_COMPANION_SET(&spi->dev, adev);
2518 	spi->max_speed_hz	= lookup.max_speed_hz;
2519 	spi->mode		|= lookup.mode;
2520 	spi->irq		= lookup.irq;
2521 	spi->bits_per_word	= lookup.bits_per_word;
2522 	spi->chip_select	= lookup.chip_select;
2523 
2524 	return spi;
2525 }
2526 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2527 
2528 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2529 					    struct acpi_device *adev)
2530 {
2531 	struct spi_device *spi;
2532 
2533 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2534 	    acpi_device_enumerated(adev))
2535 		return AE_OK;
2536 
2537 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2538 	if (IS_ERR(spi)) {
2539 		if (PTR_ERR(spi) == -ENOMEM)
2540 			return AE_NO_MEMORY;
2541 		else
2542 			return AE_OK;
2543 	}
2544 
2545 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2546 			  sizeof(spi->modalias));
2547 
2548 	if (spi->irq < 0)
2549 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2550 
2551 	acpi_device_set_enumerated(adev);
2552 
2553 	adev->power.flags.ignore_parent = true;
2554 	if (spi_add_device(spi)) {
2555 		adev->power.flags.ignore_parent = false;
2556 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2557 			dev_name(&adev->dev));
2558 		spi_dev_put(spi);
2559 	}
2560 
2561 	return AE_OK;
2562 }
2563 
2564 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2565 				       void *data, void **return_value)
2566 {
2567 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2568 	struct spi_controller *ctlr = data;
2569 
2570 	if (!adev)
2571 		return AE_OK;
2572 
2573 	return acpi_register_spi_device(ctlr, adev);
2574 }
2575 
2576 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2577 
2578 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2579 {
2580 	acpi_status status;
2581 	acpi_handle handle;
2582 
2583 	handle = ACPI_HANDLE(ctlr->dev.parent);
2584 	if (!handle)
2585 		return;
2586 
2587 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2588 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2589 				     acpi_spi_add_device, NULL, ctlr, NULL);
2590 	if (ACPI_FAILURE(status))
2591 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2592 }
2593 #else
2594 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2595 #endif /* CONFIG_ACPI */
2596 
2597 static void spi_controller_release(struct device *dev)
2598 {
2599 	struct spi_controller *ctlr;
2600 
2601 	ctlr = container_of(dev, struct spi_controller, dev);
2602 	kfree(ctlr);
2603 }
2604 
2605 static struct class spi_master_class = {
2606 	.name		= "spi_master",
2607 	.owner		= THIS_MODULE,
2608 	.dev_release	= spi_controller_release,
2609 	.dev_groups	= spi_master_groups,
2610 };
2611 
2612 #ifdef CONFIG_SPI_SLAVE
2613 /**
2614  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2615  *		     controller
2616  * @spi: device used for the current transfer
2617  */
2618 int spi_slave_abort(struct spi_device *spi)
2619 {
2620 	struct spi_controller *ctlr = spi->controller;
2621 
2622 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2623 		return ctlr->slave_abort(ctlr);
2624 
2625 	return -ENOTSUPP;
2626 }
2627 EXPORT_SYMBOL_GPL(spi_slave_abort);
2628 
2629 static int match_true(struct device *dev, void *data)
2630 {
2631 	return 1;
2632 }
2633 
2634 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2635 			  char *buf)
2636 {
2637 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2638 						   dev);
2639 	struct device *child;
2640 
2641 	child = device_find_child(&ctlr->dev, NULL, match_true);
2642 	return sprintf(buf, "%s\n",
2643 		       child ? to_spi_device(child)->modalias : NULL);
2644 }
2645 
2646 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2647 			   const char *buf, size_t count)
2648 {
2649 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2650 						   dev);
2651 	struct spi_device *spi;
2652 	struct device *child;
2653 	char name[32];
2654 	int rc;
2655 
2656 	rc = sscanf(buf, "%31s", name);
2657 	if (rc != 1 || !name[0])
2658 		return -EINVAL;
2659 
2660 	child = device_find_child(&ctlr->dev, NULL, match_true);
2661 	if (child) {
2662 		/* Remove registered slave */
2663 		device_unregister(child);
2664 		put_device(child);
2665 	}
2666 
2667 	if (strcmp(name, "(null)")) {
2668 		/* Register new slave */
2669 		spi = spi_alloc_device(ctlr);
2670 		if (!spi)
2671 			return -ENOMEM;
2672 
2673 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2674 
2675 		rc = spi_add_device(spi);
2676 		if (rc) {
2677 			spi_dev_put(spi);
2678 			return rc;
2679 		}
2680 	}
2681 
2682 	return count;
2683 }
2684 
2685 static DEVICE_ATTR_RW(slave);
2686 
2687 static struct attribute *spi_slave_attrs[] = {
2688 	&dev_attr_slave.attr,
2689 	NULL,
2690 };
2691 
2692 static const struct attribute_group spi_slave_group = {
2693 	.attrs = spi_slave_attrs,
2694 };
2695 
2696 static const struct attribute_group *spi_slave_groups[] = {
2697 	&spi_controller_statistics_group,
2698 	&spi_slave_group,
2699 	NULL,
2700 };
2701 
2702 static struct class spi_slave_class = {
2703 	.name		= "spi_slave",
2704 	.owner		= THIS_MODULE,
2705 	.dev_release	= spi_controller_release,
2706 	.dev_groups	= spi_slave_groups,
2707 };
2708 #else
2709 extern struct class spi_slave_class;	/* dummy */
2710 #endif
2711 
2712 /**
2713  * __spi_alloc_controller - allocate an SPI master or slave controller
2714  * @dev: the controller, possibly using the platform_bus
2715  * @size: how much zeroed driver-private data to allocate; the pointer to this
2716  *	memory is in the driver_data field of the returned device, accessible
2717  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2718  *	drivers granting DMA access to portions of their private data need to
2719  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2720  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2721  *	slave (true) controller
2722  * Context: can sleep
2723  *
2724  * This call is used only by SPI controller drivers, which are the
2725  * only ones directly touching chip registers.  It's how they allocate
2726  * an spi_controller structure, prior to calling spi_register_controller().
2727  *
2728  * This must be called from context that can sleep.
2729  *
2730  * The caller is responsible for assigning the bus number and initializing the
2731  * controller's methods before calling spi_register_controller(); and (after
2732  * errors adding the device) calling spi_controller_put() to prevent a memory
2733  * leak.
2734  *
2735  * Return: the SPI controller structure on success, else NULL.
2736  */
2737 struct spi_controller *__spi_alloc_controller(struct device *dev,
2738 					      unsigned int size, bool slave)
2739 {
2740 	struct spi_controller	*ctlr;
2741 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2742 
2743 	if (!dev)
2744 		return NULL;
2745 
2746 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2747 	if (!ctlr)
2748 		return NULL;
2749 
2750 	device_initialize(&ctlr->dev);
2751 	INIT_LIST_HEAD(&ctlr->queue);
2752 	spin_lock_init(&ctlr->queue_lock);
2753 	spin_lock_init(&ctlr->bus_lock_spinlock);
2754 	mutex_init(&ctlr->bus_lock_mutex);
2755 	mutex_init(&ctlr->io_mutex);
2756 	mutex_init(&ctlr->add_lock);
2757 	ctlr->bus_num = -1;
2758 	ctlr->num_chipselect = 1;
2759 	ctlr->slave = slave;
2760 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2761 		ctlr->dev.class = &spi_slave_class;
2762 	else
2763 		ctlr->dev.class = &spi_master_class;
2764 	ctlr->dev.parent = dev;
2765 	pm_suspend_ignore_children(&ctlr->dev, true);
2766 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2767 
2768 	return ctlr;
2769 }
2770 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2771 
2772 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2773 {
2774 	spi_controller_put(*(struct spi_controller **)ctlr);
2775 }
2776 
2777 /**
2778  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2779  * @dev: physical device of SPI controller
2780  * @size: how much zeroed driver-private data to allocate
2781  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2782  * Context: can sleep
2783  *
2784  * Allocate an SPI controller and automatically release a reference on it
2785  * when @dev is unbound from its driver.  Drivers are thus relieved from
2786  * having to call spi_controller_put().
2787  *
2788  * The arguments to this function are identical to __spi_alloc_controller().
2789  *
2790  * Return: the SPI controller structure on success, else NULL.
2791  */
2792 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2793 						   unsigned int size,
2794 						   bool slave)
2795 {
2796 	struct spi_controller **ptr, *ctlr;
2797 
2798 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2799 			   GFP_KERNEL);
2800 	if (!ptr)
2801 		return NULL;
2802 
2803 	ctlr = __spi_alloc_controller(dev, size, slave);
2804 	if (ctlr) {
2805 		ctlr->devm_allocated = true;
2806 		*ptr = ctlr;
2807 		devres_add(dev, ptr);
2808 	} else {
2809 		devres_free(ptr);
2810 	}
2811 
2812 	return ctlr;
2813 }
2814 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2815 
2816 /**
2817  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2818  * @ctlr: The SPI master to grab GPIO descriptors for
2819  */
2820 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2821 {
2822 	int nb, i;
2823 	struct gpio_desc **cs;
2824 	struct device *dev = &ctlr->dev;
2825 	unsigned long native_cs_mask = 0;
2826 	unsigned int num_cs_gpios = 0;
2827 
2828 	nb = gpiod_count(dev, "cs");
2829 	if (nb < 0) {
2830 		/* No GPIOs at all is fine, else return the error */
2831 		if (nb == -ENOENT)
2832 			return 0;
2833 		return nb;
2834 	}
2835 
2836 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2837 
2838 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2839 			  GFP_KERNEL);
2840 	if (!cs)
2841 		return -ENOMEM;
2842 	ctlr->cs_gpiods = cs;
2843 
2844 	for (i = 0; i < nb; i++) {
2845 		/*
2846 		 * Most chipselects are active low, the inverted
2847 		 * semantics are handled by special quirks in gpiolib,
2848 		 * so initializing them GPIOD_OUT_LOW here means
2849 		 * "unasserted", in most cases this will drive the physical
2850 		 * line high.
2851 		 */
2852 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2853 						      GPIOD_OUT_LOW);
2854 		if (IS_ERR(cs[i]))
2855 			return PTR_ERR(cs[i]);
2856 
2857 		if (cs[i]) {
2858 			/*
2859 			 * If we find a CS GPIO, name it after the device and
2860 			 * chip select line.
2861 			 */
2862 			char *gpioname;
2863 
2864 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2865 						  dev_name(dev), i);
2866 			if (!gpioname)
2867 				return -ENOMEM;
2868 			gpiod_set_consumer_name(cs[i], gpioname);
2869 			num_cs_gpios++;
2870 			continue;
2871 		}
2872 
2873 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2874 			dev_err(dev, "Invalid native chip select %d\n", i);
2875 			return -EINVAL;
2876 		}
2877 		native_cs_mask |= BIT(i);
2878 	}
2879 
2880 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2881 
2882 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2883 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2884 		dev_err(dev, "No unused native chip select available\n");
2885 		return -EINVAL;
2886 	}
2887 
2888 	return 0;
2889 }
2890 
2891 static int spi_controller_check_ops(struct spi_controller *ctlr)
2892 {
2893 	/*
2894 	 * The controller may implement only the high-level SPI-memory like
2895 	 * operations if it does not support regular SPI transfers, and this is
2896 	 * valid use case.
2897 	 * If ->mem_ops is NULL, we request that at least one of the
2898 	 * ->transfer_xxx() method be implemented.
2899 	 */
2900 	if (ctlr->mem_ops) {
2901 		if (!ctlr->mem_ops->exec_op)
2902 			return -EINVAL;
2903 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2904 		   !ctlr->transfer_one_message) {
2905 		return -EINVAL;
2906 	}
2907 
2908 	return 0;
2909 }
2910 
2911 /**
2912  * spi_register_controller - register SPI master or slave controller
2913  * @ctlr: initialized master, originally from spi_alloc_master() or
2914  *	spi_alloc_slave()
2915  * Context: can sleep
2916  *
2917  * SPI controllers connect to their drivers using some non-SPI bus,
2918  * such as the platform bus.  The final stage of probe() in that code
2919  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2920  *
2921  * SPI controllers use board specific (often SOC specific) bus numbers,
2922  * and board-specific addressing for SPI devices combines those numbers
2923  * with chip select numbers.  Since SPI does not directly support dynamic
2924  * device identification, boards need configuration tables telling which
2925  * chip is at which address.
2926  *
2927  * This must be called from context that can sleep.  It returns zero on
2928  * success, else a negative error code (dropping the controller's refcount).
2929  * After a successful return, the caller is responsible for calling
2930  * spi_unregister_controller().
2931  *
2932  * Return: zero on success, else a negative error code.
2933  */
2934 int spi_register_controller(struct spi_controller *ctlr)
2935 {
2936 	struct device		*dev = ctlr->dev.parent;
2937 	struct boardinfo	*bi;
2938 	int			status;
2939 	int			id, first_dynamic;
2940 
2941 	if (!dev)
2942 		return -ENODEV;
2943 
2944 	/*
2945 	 * Make sure all necessary hooks are implemented before registering
2946 	 * the SPI controller.
2947 	 */
2948 	status = spi_controller_check_ops(ctlr);
2949 	if (status)
2950 		return status;
2951 
2952 	if (ctlr->bus_num >= 0) {
2953 		/* devices with a fixed bus num must check-in with the num */
2954 		mutex_lock(&board_lock);
2955 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2956 			ctlr->bus_num + 1, GFP_KERNEL);
2957 		mutex_unlock(&board_lock);
2958 		if (WARN(id < 0, "couldn't get idr"))
2959 			return id == -ENOSPC ? -EBUSY : id;
2960 		ctlr->bus_num = id;
2961 	} else if (ctlr->dev.of_node) {
2962 		/* allocate dynamic bus number using Linux idr */
2963 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2964 		if (id >= 0) {
2965 			ctlr->bus_num = id;
2966 			mutex_lock(&board_lock);
2967 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2968 				       ctlr->bus_num + 1, GFP_KERNEL);
2969 			mutex_unlock(&board_lock);
2970 			if (WARN(id < 0, "couldn't get idr"))
2971 				return id == -ENOSPC ? -EBUSY : id;
2972 		}
2973 	}
2974 	if (ctlr->bus_num < 0) {
2975 		first_dynamic = of_alias_get_highest_id("spi");
2976 		if (first_dynamic < 0)
2977 			first_dynamic = 0;
2978 		else
2979 			first_dynamic++;
2980 
2981 		mutex_lock(&board_lock);
2982 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2983 			       0, GFP_KERNEL);
2984 		mutex_unlock(&board_lock);
2985 		if (WARN(id < 0, "couldn't get idr"))
2986 			return id;
2987 		ctlr->bus_num = id;
2988 	}
2989 	ctlr->bus_lock_flag = 0;
2990 	init_completion(&ctlr->xfer_completion);
2991 	if (!ctlr->max_dma_len)
2992 		ctlr->max_dma_len = INT_MAX;
2993 
2994 	/*
2995 	 * Register the device, then userspace will see it.
2996 	 * Registration fails if the bus ID is in use.
2997 	 */
2998 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2999 
3000 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3001 		status = spi_get_gpio_descs(ctlr);
3002 		if (status)
3003 			goto free_bus_id;
3004 		/*
3005 		 * A controller using GPIO descriptors always
3006 		 * supports SPI_CS_HIGH if need be.
3007 		 */
3008 		ctlr->mode_bits |= SPI_CS_HIGH;
3009 	}
3010 
3011 	/*
3012 	 * Even if it's just one always-selected device, there must
3013 	 * be at least one chipselect.
3014 	 */
3015 	if (!ctlr->num_chipselect) {
3016 		status = -EINVAL;
3017 		goto free_bus_id;
3018 	}
3019 
3020 	/* setting last_cs to -1 means no chip selected */
3021 	ctlr->last_cs = -1;
3022 
3023 	status = device_add(&ctlr->dev);
3024 	if (status < 0)
3025 		goto free_bus_id;
3026 	dev_dbg(dev, "registered %s %s\n",
3027 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3028 			dev_name(&ctlr->dev));
3029 
3030 	/*
3031 	 * If we're using a queued driver, start the queue. Note that we don't
3032 	 * need the queueing logic if the driver is only supporting high-level
3033 	 * memory operations.
3034 	 */
3035 	if (ctlr->transfer) {
3036 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3037 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3038 		status = spi_controller_initialize_queue(ctlr);
3039 		if (status) {
3040 			device_del(&ctlr->dev);
3041 			goto free_bus_id;
3042 		}
3043 	}
3044 	/* add statistics */
3045 	spin_lock_init(&ctlr->statistics.lock);
3046 
3047 	mutex_lock(&board_lock);
3048 	list_add_tail(&ctlr->list, &spi_controller_list);
3049 	list_for_each_entry(bi, &board_list, list)
3050 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3051 	mutex_unlock(&board_lock);
3052 
3053 	/* Register devices from the device tree and ACPI */
3054 	of_register_spi_devices(ctlr);
3055 	acpi_register_spi_devices(ctlr);
3056 	return status;
3057 
3058 free_bus_id:
3059 	mutex_lock(&board_lock);
3060 	idr_remove(&spi_master_idr, ctlr->bus_num);
3061 	mutex_unlock(&board_lock);
3062 	return status;
3063 }
3064 EXPORT_SYMBOL_GPL(spi_register_controller);
3065 
3066 static void devm_spi_unregister(void *ctlr)
3067 {
3068 	spi_unregister_controller(ctlr);
3069 }
3070 
3071 /**
3072  * devm_spi_register_controller - register managed SPI master or slave
3073  *	controller
3074  * @dev:    device managing SPI controller
3075  * @ctlr: initialized controller, originally from spi_alloc_master() or
3076  *	spi_alloc_slave()
3077  * Context: can sleep
3078  *
3079  * Register a SPI device as with spi_register_controller() which will
3080  * automatically be unregistered and freed.
3081  *
3082  * Return: zero on success, else a negative error code.
3083  */
3084 int devm_spi_register_controller(struct device *dev,
3085 				 struct spi_controller *ctlr)
3086 {
3087 	int ret;
3088 
3089 	ret = spi_register_controller(ctlr);
3090 	if (ret)
3091 		return ret;
3092 
3093 	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
3094 }
3095 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3096 
3097 static int __unregister(struct device *dev, void *null)
3098 {
3099 	spi_unregister_device(to_spi_device(dev));
3100 	return 0;
3101 }
3102 
3103 /**
3104  * spi_unregister_controller - unregister SPI master or slave controller
3105  * @ctlr: the controller being unregistered
3106  * Context: can sleep
3107  *
3108  * This call is used only by SPI controller drivers, which are the
3109  * only ones directly touching chip registers.
3110  *
3111  * This must be called from context that can sleep.
3112  *
3113  * Note that this function also drops a reference to the controller.
3114  */
3115 void spi_unregister_controller(struct spi_controller *ctlr)
3116 {
3117 	struct spi_controller *found;
3118 	int id = ctlr->bus_num;
3119 
3120 	/* Prevent addition of new devices, unregister existing ones */
3121 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3122 		mutex_lock(&ctlr->add_lock);
3123 
3124 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3125 
3126 	/* First make sure that this controller was ever added */
3127 	mutex_lock(&board_lock);
3128 	found = idr_find(&spi_master_idr, id);
3129 	mutex_unlock(&board_lock);
3130 	if (ctlr->queued) {
3131 		if (spi_destroy_queue(ctlr))
3132 			dev_err(&ctlr->dev, "queue remove failed\n");
3133 	}
3134 	mutex_lock(&board_lock);
3135 	list_del(&ctlr->list);
3136 	mutex_unlock(&board_lock);
3137 
3138 	device_del(&ctlr->dev);
3139 
3140 	/* free bus id */
3141 	mutex_lock(&board_lock);
3142 	if (found == ctlr)
3143 		idr_remove(&spi_master_idr, id);
3144 	mutex_unlock(&board_lock);
3145 
3146 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3147 		mutex_unlock(&ctlr->add_lock);
3148 
3149 	/* Release the last reference on the controller if its driver
3150 	 * has not yet been converted to devm_spi_alloc_master/slave().
3151 	 */
3152 	if (!ctlr->devm_allocated)
3153 		put_device(&ctlr->dev);
3154 }
3155 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3156 
3157 int spi_controller_suspend(struct spi_controller *ctlr)
3158 {
3159 	int ret;
3160 
3161 	/* Basically no-ops for non-queued controllers */
3162 	if (!ctlr->queued)
3163 		return 0;
3164 
3165 	ret = spi_stop_queue(ctlr);
3166 	if (ret)
3167 		dev_err(&ctlr->dev, "queue stop failed\n");
3168 
3169 	return ret;
3170 }
3171 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3172 
3173 int spi_controller_resume(struct spi_controller *ctlr)
3174 {
3175 	int ret;
3176 
3177 	if (!ctlr->queued)
3178 		return 0;
3179 
3180 	ret = spi_start_queue(ctlr);
3181 	if (ret)
3182 		dev_err(&ctlr->dev, "queue restart failed\n");
3183 
3184 	return ret;
3185 }
3186 EXPORT_SYMBOL_GPL(spi_controller_resume);
3187 
3188 /*-------------------------------------------------------------------------*/
3189 
3190 /* Core methods for spi_message alterations */
3191 
3192 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3193 					    struct spi_message *msg,
3194 					    void *res)
3195 {
3196 	struct spi_replaced_transfers *rxfer = res;
3197 	size_t i;
3198 
3199 	/* call extra callback if requested */
3200 	if (rxfer->release)
3201 		rxfer->release(ctlr, msg, res);
3202 
3203 	/* insert replaced transfers back into the message */
3204 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3205 
3206 	/* remove the formerly inserted entries */
3207 	for (i = 0; i < rxfer->inserted; i++)
3208 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3209 }
3210 
3211 /**
3212  * spi_replace_transfers - replace transfers with several transfers
3213  *                         and register change with spi_message.resources
3214  * @msg:           the spi_message we work upon
3215  * @xfer_first:    the first spi_transfer we want to replace
3216  * @remove:        number of transfers to remove
3217  * @insert:        the number of transfers we want to insert instead
3218  * @release:       extra release code necessary in some circumstances
3219  * @extradatasize: extra data to allocate (with alignment guarantees
3220  *                 of struct @spi_transfer)
3221  * @gfp:           gfp flags
3222  *
3223  * Returns: pointer to @spi_replaced_transfers,
3224  *          PTR_ERR(...) in case of errors.
3225  */
3226 static struct spi_replaced_transfers *spi_replace_transfers(
3227 	struct spi_message *msg,
3228 	struct spi_transfer *xfer_first,
3229 	size_t remove,
3230 	size_t insert,
3231 	spi_replaced_release_t release,
3232 	size_t extradatasize,
3233 	gfp_t gfp)
3234 {
3235 	struct spi_replaced_transfers *rxfer;
3236 	struct spi_transfer *xfer;
3237 	size_t i;
3238 
3239 	/* allocate the structure using spi_res */
3240 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3241 			      struct_size(rxfer, inserted_transfers, insert)
3242 			      + extradatasize,
3243 			      gfp);
3244 	if (!rxfer)
3245 		return ERR_PTR(-ENOMEM);
3246 
3247 	/* the release code to invoke before running the generic release */
3248 	rxfer->release = release;
3249 
3250 	/* assign extradata */
3251 	if (extradatasize)
3252 		rxfer->extradata =
3253 			&rxfer->inserted_transfers[insert];
3254 
3255 	/* init the replaced_transfers list */
3256 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3257 
3258 	/*
3259 	 * Assign the list_entry after which we should reinsert
3260 	 * the @replaced_transfers - it may be spi_message.messages!
3261 	 */
3262 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3263 
3264 	/* remove the requested number of transfers */
3265 	for (i = 0; i < remove; i++) {
3266 		/*
3267 		 * If the entry after replaced_after it is msg->transfers
3268 		 * then we have been requested to remove more transfers
3269 		 * than are in the list.
3270 		 */
3271 		if (rxfer->replaced_after->next == &msg->transfers) {
3272 			dev_err(&msg->spi->dev,
3273 				"requested to remove more spi_transfers than are available\n");
3274 			/* insert replaced transfers back into the message */
3275 			list_splice(&rxfer->replaced_transfers,
3276 				    rxfer->replaced_after);
3277 
3278 			/* free the spi_replace_transfer structure */
3279 			spi_res_free(rxfer);
3280 
3281 			/* and return with an error */
3282 			return ERR_PTR(-EINVAL);
3283 		}
3284 
3285 		/*
3286 		 * Remove the entry after replaced_after from list of
3287 		 * transfers and add it to list of replaced_transfers.
3288 		 */
3289 		list_move_tail(rxfer->replaced_after->next,
3290 			       &rxfer->replaced_transfers);
3291 	}
3292 
3293 	/*
3294 	 * Create copy of the given xfer with identical settings
3295 	 * based on the first transfer to get removed.
3296 	 */
3297 	for (i = 0; i < insert; i++) {
3298 		/* we need to run in reverse order */
3299 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3300 
3301 		/* copy all spi_transfer data */
3302 		memcpy(xfer, xfer_first, sizeof(*xfer));
3303 
3304 		/* add to list */
3305 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3306 
3307 		/* clear cs_change and delay for all but the last */
3308 		if (i) {
3309 			xfer->cs_change = false;
3310 			xfer->delay.value = 0;
3311 		}
3312 	}
3313 
3314 	/* set up inserted */
3315 	rxfer->inserted = insert;
3316 
3317 	/* and register it with spi_res/spi_message */
3318 	spi_res_add(msg, rxfer);
3319 
3320 	return rxfer;
3321 }
3322 
3323 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3324 					struct spi_message *msg,
3325 					struct spi_transfer **xferp,
3326 					size_t maxsize,
3327 					gfp_t gfp)
3328 {
3329 	struct spi_transfer *xfer = *xferp, *xfers;
3330 	struct spi_replaced_transfers *srt;
3331 	size_t offset;
3332 	size_t count, i;
3333 
3334 	/* calculate how many we have to replace */
3335 	count = DIV_ROUND_UP(xfer->len, maxsize);
3336 
3337 	/* create replacement */
3338 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3339 	if (IS_ERR(srt))
3340 		return PTR_ERR(srt);
3341 	xfers = srt->inserted_transfers;
3342 
3343 	/*
3344 	 * Now handle each of those newly inserted spi_transfers.
3345 	 * Note that the replacements spi_transfers all are preset
3346 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3347 	 * are all identical (as well as most others)
3348 	 * so we just have to fix up len and the pointers.
3349 	 *
3350 	 * This also includes support for the depreciated
3351 	 * spi_message.is_dma_mapped interface.
3352 	 */
3353 
3354 	/*
3355 	 * The first transfer just needs the length modified, so we
3356 	 * run it outside the loop.
3357 	 */
3358 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3359 
3360 	/* all the others need rx_buf/tx_buf also set */
3361 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3362 		/* update rx_buf, tx_buf and dma */
3363 		if (xfers[i].rx_buf)
3364 			xfers[i].rx_buf += offset;
3365 		if (xfers[i].rx_dma)
3366 			xfers[i].rx_dma += offset;
3367 		if (xfers[i].tx_buf)
3368 			xfers[i].tx_buf += offset;
3369 		if (xfers[i].tx_dma)
3370 			xfers[i].tx_dma += offset;
3371 
3372 		/* update length */
3373 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3374 	}
3375 
3376 	/*
3377 	 * We set up xferp to the last entry we have inserted,
3378 	 * so that we skip those already split transfers.
3379 	 */
3380 	*xferp = &xfers[count - 1];
3381 
3382 	/* increment statistics counters */
3383 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3384 				       transfers_split_maxsize);
3385 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3386 				       transfers_split_maxsize);
3387 
3388 	return 0;
3389 }
3390 
3391 /**
3392  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3393  *                               when an individual transfer exceeds a
3394  *                               certain size
3395  * @ctlr:    the @spi_controller for this transfer
3396  * @msg:   the @spi_message to transform
3397  * @maxsize:  the maximum when to apply this
3398  * @gfp: GFP allocation flags
3399  *
3400  * Return: status of transformation
3401  */
3402 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3403 				struct spi_message *msg,
3404 				size_t maxsize,
3405 				gfp_t gfp)
3406 {
3407 	struct spi_transfer *xfer;
3408 	int ret;
3409 
3410 	/*
3411 	 * Iterate over the transfer_list,
3412 	 * but note that xfer is advanced to the last transfer inserted
3413 	 * to avoid checking sizes again unnecessarily (also xfer does
3414 	 * potentially belong to a different list by the time the
3415 	 * replacement has happened).
3416 	 */
3417 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3418 		if (xfer->len > maxsize) {
3419 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3420 							   maxsize, gfp);
3421 			if (ret)
3422 				return ret;
3423 		}
3424 	}
3425 
3426 	return 0;
3427 }
3428 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3429 
3430 /*-------------------------------------------------------------------------*/
3431 
3432 /* Core methods for SPI controller protocol drivers.  Some of the
3433  * other core methods are currently defined as inline functions.
3434  */
3435 
3436 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3437 					u8 bits_per_word)
3438 {
3439 	if (ctlr->bits_per_word_mask) {
3440 		/* Only 32 bits fit in the mask */
3441 		if (bits_per_word > 32)
3442 			return -EINVAL;
3443 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3444 			return -EINVAL;
3445 	}
3446 
3447 	return 0;
3448 }
3449 
3450 /**
3451  * spi_setup - setup SPI mode and clock rate
3452  * @spi: the device whose settings are being modified
3453  * Context: can sleep, and no requests are queued to the device
3454  *
3455  * SPI protocol drivers may need to update the transfer mode if the
3456  * device doesn't work with its default.  They may likewise need
3457  * to update clock rates or word sizes from initial values.  This function
3458  * changes those settings, and must be called from a context that can sleep.
3459  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3460  * effect the next time the device is selected and data is transferred to
3461  * or from it.  When this function returns, the spi device is deselected.
3462  *
3463  * Note that this call will fail if the protocol driver specifies an option
3464  * that the underlying controller or its driver does not support.  For
3465  * example, not all hardware supports wire transfers using nine bit words,
3466  * LSB-first wire encoding, or active-high chipselects.
3467  *
3468  * Return: zero on success, else a negative error code.
3469  */
3470 int spi_setup(struct spi_device *spi)
3471 {
3472 	unsigned	bad_bits, ugly_bits;
3473 	int		status;
3474 
3475 	/*
3476 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3477 	 * are set at the same time.
3478 	 */
3479 	if ((hweight_long(spi->mode &
3480 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3481 	    (hweight_long(spi->mode &
3482 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3483 		dev_err(&spi->dev,
3484 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3485 		return -EINVAL;
3486 	}
3487 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3488 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3489 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3490 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3491 		return -EINVAL;
3492 	/*
3493 	 * Help drivers fail *cleanly* when they need options
3494 	 * that aren't supported with their current controller.
3495 	 * SPI_CS_WORD has a fallback software implementation,
3496 	 * so it is ignored here.
3497 	 */
3498 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3499 				 SPI_NO_TX | SPI_NO_RX);
3500 	ugly_bits = bad_bits &
3501 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3502 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3503 	if (ugly_bits) {
3504 		dev_warn(&spi->dev,
3505 			 "setup: ignoring unsupported mode bits %x\n",
3506 			 ugly_bits);
3507 		spi->mode &= ~ugly_bits;
3508 		bad_bits &= ~ugly_bits;
3509 	}
3510 	if (bad_bits) {
3511 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3512 			bad_bits);
3513 		return -EINVAL;
3514 	}
3515 
3516 	if (!spi->bits_per_word)
3517 		spi->bits_per_word = 8;
3518 
3519 	status = __spi_validate_bits_per_word(spi->controller,
3520 					      spi->bits_per_word);
3521 	if (status)
3522 		return status;
3523 
3524 	if (spi->controller->max_speed_hz &&
3525 	    (!spi->max_speed_hz ||
3526 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3527 		spi->max_speed_hz = spi->controller->max_speed_hz;
3528 
3529 	mutex_lock(&spi->controller->io_mutex);
3530 
3531 	if (spi->controller->setup) {
3532 		status = spi->controller->setup(spi);
3533 		if (status) {
3534 			mutex_unlock(&spi->controller->io_mutex);
3535 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3536 				status);
3537 			return status;
3538 		}
3539 	}
3540 
3541 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3542 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3543 		if (status < 0) {
3544 			mutex_unlock(&spi->controller->io_mutex);
3545 			pm_runtime_put_noidle(spi->controller->dev.parent);
3546 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3547 				status);
3548 			return status;
3549 		}
3550 
3551 		/*
3552 		 * We do not want to return positive value from pm_runtime_get,
3553 		 * there are many instances of devices calling spi_setup() and
3554 		 * checking for a non-zero return value instead of a negative
3555 		 * return value.
3556 		 */
3557 		status = 0;
3558 
3559 		spi_set_cs(spi, false, true);
3560 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3561 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3562 	} else {
3563 		spi_set_cs(spi, false, true);
3564 	}
3565 
3566 	mutex_unlock(&spi->controller->io_mutex);
3567 
3568 	if (spi->rt && !spi->controller->rt) {
3569 		spi->controller->rt = true;
3570 		spi_set_thread_rt(spi->controller);
3571 	}
3572 
3573 	trace_spi_setup(spi, status);
3574 
3575 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3576 			spi->mode & SPI_MODE_X_MASK,
3577 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3578 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3579 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3580 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3581 			spi->bits_per_word, spi->max_speed_hz,
3582 			status);
3583 
3584 	return status;
3585 }
3586 EXPORT_SYMBOL_GPL(spi_setup);
3587 
3588 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3589 				       struct spi_device *spi)
3590 {
3591 	int delay1, delay2;
3592 
3593 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3594 	if (delay1 < 0)
3595 		return delay1;
3596 
3597 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3598 	if (delay2 < 0)
3599 		return delay2;
3600 
3601 	if (delay1 < delay2)
3602 		memcpy(&xfer->word_delay, &spi->word_delay,
3603 		       sizeof(xfer->word_delay));
3604 
3605 	return 0;
3606 }
3607 
3608 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3609 {
3610 	struct spi_controller *ctlr = spi->controller;
3611 	struct spi_transfer *xfer;
3612 	int w_size;
3613 
3614 	if (list_empty(&message->transfers))
3615 		return -EINVAL;
3616 
3617 	/*
3618 	 * If an SPI controller does not support toggling the CS line on each
3619 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3620 	 * for the CS line, we can emulate the CS-per-word hardware function by
3621 	 * splitting transfers into one-word transfers and ensuring that
3622 	 * cs_change is set for each transfer.
3623 	 */
3624 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3625 					  spi->cs_gpiod)) {
3626 		size_t maxsize;
3627 		int ret;
3628 
3629 		maxsize = (spi->bits_per_word + 7) / 8;
3630 
3631 		/* spi_split_transfers_maxsize() requires message->spi */
3632 		message->spi = spi;
3633 
3634 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3635 						  GFP_KERNEL);
3636 		if (ret)
3637 			return ret;
3638 
3639 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3640 			/* don't change cs_change on the last entry in the list */
3641 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3642 				break;
3643 			xfer->cs_change = 1;
3644 		}
3645 	}
3646 
3647 	/*
3648 	 * Half-duplex links include original MicroWire, and ones with
3649 	 * only one data pin like SPI_3WIRE (switches direction) or where
3650 	 * either MOSI or MISO is missing.  They can also be caused by
3651 	 * software limitations.
3652 	 */
3653 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3654 	    (spi->mode & SPI_3WIRE)) {
3655 		unsigned flags = ctlr->flags;
3656 
3657 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3658 			if (xfer->rx_buf && xfer->tx_buf)
3659 				return -EINVAL;
3660 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3661 				return -EINVAL;
3662 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3663 				return -EINVAL;
3664 		}
3665 	}
3666 
3667 	/*
3668 	 * Set transfer bits_per_word and max speed as spi device default if
3669 	 * it is not set for this transfer.
3670 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3671 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3672 	 * Ensure transfer word_delay is at least as long as that required by
3673 	 * device itself.
3674 	 */
3675 	message->frame_length = 0;
3676 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3677 		xfer->effective_speed_hz = 0;
3678 		message->frame_length += xfer->len;
3679 		if (!xfer->bits_per_word)
3680 			xfer->bits_per_word = spi->bits_per_word;
3681 
3682 		if (!xfer->speed_hz)
3683 			xfer->speed_hz = spi->max_speed_hz;
3684 
3685 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3686 			xfer->speed_hz = ctlr->max_speed_hz;
3687 
3688 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3689 			return -EINVAL;
3690 
3691 		/*
3692 		 * SPI transfer length should be multiple of SPI word size
3693 		 * where SPI word size should be power-of-two multiple.
3694 		 */
3695 		if (xfer->bits_per_word <= 8)
3696 			w_size = 1;
3697 		else if (xfer->bits_per_word <= 16)
3698 			w_size = 2;
3699 		else
3700 			w_size = 4;
3701 
3702 		/* No partial transfers accepted */
3703 		if (xfer->len % w_size)
3704 			return -EINVAL;
3705 
3706 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3707 		    xfer->speed_hz < ctlr->min_speed_hz)
3708 			return -EINVAL;
3709 
3710 		if (xfer->tx_buf && !xfer->tx_nbits)
3711 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3712 		if (xfer->rx_buf && !xfer->rx_nbits)
3713 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3714 		/*
3715 		 * Check transfer tx/rx_nbits:
3716 		 * 1. check the value matches one of single, dual and quad
3717 		 * 2. check tx/rx_nbits match the mode in spi_device
3718 		 */
3719 		if (xfer->tx_buf) {
3720 			if (spi->mode & SPI_NO_TX)
3721 				return -EINVAL;
3722 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3723 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3724 				xfer->tx_nbits != SPI_NBITS_QUAD)
3725 				return -EINVAL;
3726 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3727 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3728 				return -EINVAL;
3729 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3730 				!(spi->mode & SPI_TX_QUAD))
3731 				return -EINVAL;
3732 		}
3733 		/* check transfer rx_nbits */
3734 		if (xfer->rx_buf) {
3735 			if (spi->mode & SPI_NO_RX)
3736 				return -EINVAL;
3737 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3738 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3739 				xfer->rx_nbits != SPI_NBITS_QUAD)
3740 				return -EINVAL;
3741 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3742 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3743 				return -EINVAL;
3744 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3745 				!(spi->mode & SPI_RX_QUAD))
3746 				return -EINVAL;
3747 		}
3748 
3749 		if (_spi_xfer_word_delay_update(xfer, spi))
3750 			return -EINVAL;
3751 	}
3752 
3753 	message->status = -EINPROGRESS;
3754 
3755 	return 0;
3756 }
3757 
3758 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3759 {
3760 	struct spi_controller *ctlr = spi->controller;
3761 	struct spi_transfer *xfer;
3762 
3763 	/*
3764 	 * Some controllers do not support doing regular SPI transfers. Return
3765 	 * ENOTSUPP when this is the case.
3766 	 */
3767 	if (!ctlr->transfer)
3768 		return -ENOTSUPP;
3769 
3770 	message->spi = spi;
3771 
3772 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3773 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3774 
3775 	trace_spi_message_submit(message);
3776 
3777 	if (!ctlr->ptp_sts_supported) {
3778 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3779 			xfer->ptp_sts_word_pre = 0;
3780 			ptp_read_system_prets(xfer->ptp_sts);
3781 		}
3782 	}
3783 
3784 	return ctlr->transfer(spi, message);
3785 }
3786 
3787 /**
3788  * spi_async - asynchronous SPI transfer
3789  * @spi: device with which data will be exchanged
3790  * @message: describes the data transfers, including completion callback
3791  * Context: any (irqs may be blocked, etc)
3792  *
3793  * This call may be used in_irq and other contexts which can't sleep,
3794  * as well as from task contexts which can sleep.
3795  *
3796  * The completion callback is invoked in a context which can't sleep.
3797  * Before that invocation, the value of message->status is undefined.
3798  * When the callback is issued, message->status holds either zero (to
3799  * indicate complete success) or a negative error code.  After that
3800  * callback returns, the driver which issued the transfer request may
3801  * deallocate the associated memory; it's no longer in use by any SPI
3802  * core or controller driver code.
3803  *
3804  * Note that although all messages to a spi_device are handled in
3805  * FIFO order, messages may go to different devices in other orders.
3806  * Some device might be higher priority, or have various "hard" access
3807  * time requirements, for example.
3808  *
3809  * On detection of any fault during the transfer, processing of
3810  * the entire message is aborted, and the device is deselected.
3811  * Until returning from the associated message completion callback,
3812  * no other spi_message queued to that device will be processed.
3813  * (This rule applies equally to all the synchronous transfer calls,
3814  * which are wrappers around this core asynchronous primitive.)
3815  *
3816  * Return: zero on success, else a negative error code.
3817  */
3818 int spi_async(struct spi_device *spi, struct spi_message *message)
3819 {
3820 	struct spi_controller *ctlr = spi->controller;
3821 	int ret;
3822 	unsigned long flags;
3823 
3824 	ret = __spi_validate(spi, message);
3825 	if (ret != 0)
3826 		return ret;
3827 
3828 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3829 
3830 	if (ctlr->bus_lock_flag)
3831 		ret = -EBUSY;
3832 	else
3833 		ret = __spi_async(spi, message);
3834 
3835 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3836 
3837 	return ret;
3838 }
3839 EXPORT_SYMBOL_GPL(spi_async);
3840 
3841 /**
3842  * spi_async_locked - version of spi_async with exclusive bus usage
3843  * @spi: device with which data will be exchanged
3844  * @message: describes the data transfers, including completion callback
3845  * Context: any (irqs may be blocked, etc)
3846  *
3847  * This call may be used in_irq and other contexts which can't sleep,
3848  * as well as from task contexts which can sleep.
3849  *
3850  * The completion callback is invoked in a context which can't sleep.
3851  * Before that invocation, the value of message->status is undefined.
3852  * When the callback is issued, message->status holds either zero (to
3853  * indicate complete success) or a negative error code.  After that
3854  * callback returns, the driver which issued the transfer request may
3855  * deallocate the associated memory; it's no longer in use by any SPI
3856  * core or controller driver code.
3857  *
3858  * Note that although all messages to a spi_device are handled in
3859  * FIFO order, messages may go to different devices in other orders.
3860  * Some device might be higher priority, or have various "hard" access
3861  * time requirements, for example.
3862  *
3863  * On detection of any fault during the transfer, processing of
3864  * the entire message is aborted, and the device is deselected.
3865  * Until returning from the associated message completion callback,
3866  * no other spi_message queued to that device will be processed.
3867  * (This rule applies equally to all the synchronous transfer calls,
3868  * which are wrappers around this core asynchronous primitive.)
3869  *
3870  * Return: zero on success, else a negative error code.
3871  */
3872 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3873 {
3874 	struct spi_controller *ctlr = spi->controller;
3875 	int ret;
3876 	unsigned long flags;
3877 
3878 	ret = __spi_validate(spi, message);
3879 	if (ret != 0)
3880 		return ret;
3881 
3882 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3883 
3884 	ret = __spi_async(spi, message);
3885 
3886 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3887 
3888 	return ret;
3889 
3890 }
3891 
3892 /*-------------------------------------------------------------------------*/
3893 
3894 /*
3895  * Utility methods for SPI protocol drivers, layered on
3896  * top of the core.  Some other utility methods are defined as
3897  * inline functions.
3898  */
3899 
3900 static void spi_complete(void *arg)
3901 {
3902 	complete(arg);
3903 }
3904 
3905 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3906 {
3907 	DECLARE_COMPLETION_ONSTACK(done);
3908 	int status;
3909 	struct spi_controller *ctlr = spi->controller;
3910 	unsigned long flags;
3911 
3912 	status = __spi_validate(spi, message);
3913 	if (status != 0)
3914 		return status;
3915 
3916 	message->complete = spi_complete;
3917 	message->context = &done;
3918 	message->spi = spi;
3919 
3920 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3921 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3922 
3923 	/*
3924 	 * If we're not using the legacy transfer method then we will
3925 	 * try to transfer in the calling context so special case.
3926 	 * This code would be less tricky if we could remove the
3927 	 * support for driver implemented message queues.
3928 	 */
3929 	if (ctlr->transfer == spi_queued_transfer) {
3930 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3931 
3932 		trace_spi_message_submit(message);
3933 
3934 		status = __spi_queued_transfer(spi, message, false);
3935 
3936 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3937 	} else {
3938 		status = spi_async_locked(spi, message);
3939 	}
3940 
3941 	if (status == 0) {
3942 		/* Push out the messages in the calling context if we can */
3943 		if (ctlr->transfer == spi_queued_transfer) {
3944 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3945 						       spi_sync_immediate);
3946 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3947 						       spi_sync_immediate);
3948 			__spi_pump_messages(ctlr, false);
3949 		}
3950 
3951 		wait_for_completion(&done);
3952 		status = message->status;
3953 	}
3954 	message->context = NULL;
3955 	return status;
3956 }
3957 
3958 /**
3959  * spi_sync - blocking/synchronous SPI data transfers
3960  * @spi: device with which data will be exchanged
3961  * @message: describes the data transfers
3962  * Context: can sleep
3963  *
3964  * This call may only be used from a context that may sleep.  The sleep
3965  * is non-interruptible, and has no timeout.  Low-overhead controller
3966  * drivers may DMA directly into and out of the message buffers.
3967  *
3968  * Note that the SPI device's chip select is active during the message,
3969  * and then is normally disabled between messages.  Drivers for some
3970  * frequently-used devices may want to minimize costs of selecting a chip,
3971  * by leaving it selected in anticipation that the next message will go
3972  * to the same chip.  (That may increase power usage.)
3973  *
3974  * Also, the caller is guaranteeing that the memory associated with the
3975  * message will not be freed before this call returns.
3976  *
3977  * Return: zero on success, else a negative error code.
3978  */
3979 int spi_sync(struct spi_device *spi, struct spi_message *message)
3980 {
3981 	int ret;
3982 
3983 	mutex_lock(&spi->controller->bus_lock_mutex);
3984 	ret = __spi_sync(spi, message);
3985 	mutex_unlock(&spi->controller->bus_lock_mutex);
3986 
3987 	return ret;
3988 }
3989 EXPORT_SYMBOL_GPL(spi_sync);
3990 
3991 /**
3992  * spi_sync_locked - version of spi_sync with exclusive bus usage
3993  * @spi: device with which data will be exchanged
3994  * @message: describes the data transfers
3995  * Context: can sleep
3996  *
3997  * This call may only be used from a context that may sleep.  The sleep
3998  * is non-interruptible, and has no timeout.  Low-overhead controller
3999  * drivers may DMA directly into and out of the message buffers.
4000  *
4001  * This call should be used by drivers that require exclusive access to the
4002  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4003  * be released by a spi_bus_unlock call when the exclusive access is over.
4004  *
4005  * Return: zero on success, else a negative error code.
4006  */
4007 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4008 {
4009 	return __spi_sync(spi, message);
4010 }
4011 EXPORT_SYMBOL_GPL(spi_sync_locked);
4012 
4013 /**
4014  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4015  * @ctlr: SPI bus master that should be locked for exclusive bus access
4016  * Context: can sleep
4017  *
4018  * This call may only be used from a context that may sleep.  The sleep
4019  * is non-interruptible, and has no timeout.
4020  *
4021  * This call should be used by drivers that require exclusive access to the
4022  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4023  * exclusive access is over. Data transfer must be done by spi_sync_locked
4024  * and spi_async_locked calls when the SPI bus lock is held.
4025  *
4026  * Return: always zero.
4027  */
4028 int spi_bus_lock(struct spi_controller *ctlr)
4029 {
4030 	unsigned long flags;
4031 
4032 	mutex_lock(&ctlr->bus_lock_mutex);
4033 
4034 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4035 	ctlr->bus_lock_flag = 1;
4036 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4037 
4038 	/* mutex remains locked until spi_bus_unlock is called */
4039 
4040 	return 0;
4041 }
4042 EXPORT_SYMBOL_GPL(spi_bus_lock);
4043 
4044 /**
4045  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4046  * @ctlr: SPI bus master that was locked for exclusive bus access
4047  * Context: can sleep
4048  *
4049  * This call may only be used from a context that may sleep.  The sleep
4050  * is non-interruptible, and has no timeout.
4051  *
4052  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4053  * call.
4054  *
4055  * Return: always zero.
4056  */
4057 int spi_bus_unlock(struct spi_controller *ctlr)
4058 {
4059 	ctlr->bus_lock_flag = 0;
4060 
4061 	mutex_unlock(&ctlr->bus_lock_mutex);
4062 
4063 	return 0;
4064 }
4065 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4066 
4067 /* portable code must never pass more than 32 bytes */
4068 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4069 
4070 static u8	*buf;
4071 
4072 /**
4073  * spi_write_then_read - SPI synchronous write followed by read
4074  * @spi: device with which data will be exchanged
4075  * @txbuf: data to be written (need not be dma-safe)
4076  * @n_tx: size of txbuf, in bytes
4077  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4078  * @n_rx: size of rxbuf, in bytes
4079  * Context: can sleep
4080  *
4081  * This performs a half duplex MicroWire style transaction with the
4082  * device, sending txbuf and then reading rxbuf.  The return value
4083  * is zero for success, else a negative errno status code.
4084  * This call may only be used from a context that may sleep.
4085  *
4086  * Parameters to this routine are always copied using a small buffer.
4087  * Performance-sensitive or bulk transfer code should instead use
4088  * spi_{async,sync}() calls with dma-safe buffers.
4089  *
4090  * Return: zero on success, else a negative error code.
4091  */
4092 int spi_write_then_read(struct spi_device *spi,
4093 		const void *txbuf, unsigned n_tx,
4094 		void *rxbuf, unsigned n_rx)
4095 {
4096 	static DEFINE_MUTEX(lock);
4097 
4098 	int			status;
4099 	struct spi_message	message;
4100 	struct spi_transfer	x[2];
4101 	u8			*local_buf;
4102 
4103 	/*
4104 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4105 	 * copying here, (as a pure convenience thing), but we can
4106 	 * keep heap costs out of the hot path unless someone else is
4107 	 * using the pre-allocated buffer or the transfer is too large.
4108 	 */
4109 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4110 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4111 				    GFP_KERNEL | GFP_DMA);
4112 		if (!local_buf)
4113 			return -ENOMEM;
4114 	} else {
4115 		local_buf = buf;
4116 	}
4117 
4118 	spi_message_init(&message);
4119 	memset(x, 0, sizeof(x));
4120 	if (n_tx) {
4121 		x[0].len = n_tx;
4122 		spi_message_add_tail(&x[0], &message);
4123 	}
4124 	if (n_rx) {
4125 		x[1].len = n_rx;
4126 		spi_message_add_tail(&x[1], &message);
4127 	}
4128 
4129 	memcpy(local_buf, txbuf, n_tx);
4130 	x[0].tx_buf = local_buf;
4131 	x[1].rx_buf = local_buf + n_tx;
4132 
4133 	/* do the i/o */
4134 	status = spi_sync(spi, &message);
4135 	if (status == 0)
4136 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4137 
4138 	if (x[0].tx_buf == buf)
4139 		mutex_unlock(&lock);
4140 	else
4141 		kfree(local_buf);
4142 
4143 	return status;
4144 }
4145 EXPORT_SYMBOL_GPL(spi_write_then_read);
4146 
4147 /*-------------------------------------------------------------------------*/
4148 
4149 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4150 /* must call put_device() when done with returned spi_device device */
4151 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4152 {
4153 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4154 
4155 	return dev ? to_spi_device(dev) : NULL;
4156 }
4157 
4158 /* the spi controllers are not using spi_bus, so we find it with another way */
4159 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4160 {
4161 	struct device *dev;
4162 
4163 	dev = class_find_device_by_of_node(&spi_master_class, node);
4164 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4165 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4166 	if (!dev)
4167 		return NULL;
4168 
4169 	/* reference got in class_find_device */
4170 	return container_of(dev, struct spi_controller, dev);
4171 }
4172 
4173 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4174 			 void *arg)
4175 {
4176 	struct of_reconfig_data *rd = arg;
4177 	struct spi_controller *ctlr;
4178 	struct spi_device *spi;
4179 
4180 	switch (of_reconfig_get_state_change(action, arg)) {
4181 	case OF_RECONFIG_CHANGE_ADD:
4182 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4183 		if (ctlr == NULL)
4184 			return NOTIFY_OK;	/* not for us */
4185 
4186 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4187 			put_device(&ctlr->dev);
4188 			return NOTIFY_OK;
4189 		}
4190 
4191 		spi = of_register_spi_device(ctlr, rd->dn);
4192 		put_device(&ctlr->dev);
4193 
4194 		if (IS_ERR(spi)) {
4195 			pr_err("%s: failed to create for '%pOF'\n",
4196 					__func__, rd->dn);
4197 			of_node_clear_flag(rd->dn, OF_POPULATED);
4198 			return notifier_from_errno(PTR_ERR(spi));
4199 		}
4200 		break;
4201 
4202 	case OF_RECONFIG_CHANGE_REMOVE:
4203 		/* already depopulated? */
4204 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4205 			return NOTIFY_OK;
4206 
4207 		/* find our device by node */
4208 		spi = of_find_spi_device_by_node(rd->dn);
4209 		if (spi == NULL)
4210 			return NOTIFY_OK;	/* no? not meant for us */
4211 
4212 		/* unregister takes one ref away */
4213 		spi_unregister_device(spi);
4214 
4215 		/* and put the reference of the find */
4216 		put_device(&spi->dev);
4217 		break;
4218 	}
4219 
4220 	return NOTIFY_OK;
4221 }
4222 
4223 static struct notifier_block spi_of_notifier = {
4224 	.notifier_call = of_spi_notify,
4225 };
4226 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4227 extern struct notifier_block spi_of_notifier;
4228 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4229 
4230 #if IS_ENABLED(CONFIG_ACPI)
4231 static int spi_acpi_controller_match(struct device *dev, const void *data)
4232 {
4233 	return ACPI_COMPANION(dev->parent) == data;
4234 }
4235 
4236 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4237 {
4238 	struct device *dev;
4239 
4240 	dev = class_find_device(&spi_master_class, NULL, adev,
4241 				spi_acpi_controller_match);
4242 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4243 		dev = class_find_device(&spi_slave_class, NULL, adev,
4244 					spi_acpi_controller_match);
4245 	if (!dev)
4246 		return NULL;
4247 
4248 	return container_of(dev, struct spi_controller, dev);
4249 }
4250 
4251 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4252 {
4253 	struct device *dev;
4254 
4255 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4256 	return to_spi_device(dev);
4257 }
4258 
4259 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4260 			   void *arg)
4261 {
4262 	struct acpi_device *adev = arg;
4263 	struct spi_controller *ctlr;
4264 	struct spi_device *spi;
4265 
4266 	switch (value) {
4267 	case ACPI_RECONFIG_DEVICE_ADD:
4268 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4269 		if (!ctlr)
4270 			break;
4271 
4272 		acpi_register_spi_device(ctlr, adev);
4273 		put_device(&ctlr->dev);
4274 		break;
4275 	case ACPI_RECONFIG_DEVICE_REMOVE:
4276 		if (!acpi_device_enumerated(adev))
4277 			break;
4278 
4279 		spi = acpi_spi_find_device_by_adev(adev);
4280 		if (!spi)
4281 			break;
4282 
4283 		spi_unregister_device(spi);
4284 		put_device(&spi->dev);
4285 		break;
4286 	}
4287 
4288 	return NOTIFY_OK;
4289 }
4290 
4291 static struct notifier_block spi_acpi_notifier = {
4292 	.notifier_call = acpi_spi_notify,
4293 };
4294 #else
4295 extern struct notifier_block spi_acpi_notifier;
4296 #endif
4297 
4298 static int __init spi_init(void)
4299 {
4300 	int	status;
4301 
4302 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4303 	if (!buf) {
4304 		status = -ENOMEM;
4305 		goto err0;
4306 	}
4307 
4308 	status = bus_register(&spi_bus_type);
4309 	if (status < 0)
4310 		goto err1;
4311 
4312 	status = class_register(&spi_master_class);
4313 	if (status < 0)
4314 		goto err2;
4315 
4316 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4317 		status = class_register(&spi_slave_class);
4318 		if (status < 0)
4319 			goto err3;
4320 	}
4321 
4322 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4323 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4324 	if (IS_ENABLED(CONFIG_ACPI))
4325 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4326 
4327 	return 0;
4328 
4329 err3:
4330 	class_unregister(&spi_master_class);
4331 err2:
4332 	bus_unregister(&spi_bus_type);
4333 err1:
4334 	kfree(buf);
4335 	buf = NULL;
4336 err0:
4337 	return status;
4338 }
4339 
4340 /*
4341  * A board_info is normally registered in arch_initcall(),
4342  * but even essential drivers wait till later.
4343  *
4344  * REVISIT only boardinfo really needs static linking. The rest (device and
4345  * driver registration) _could_ be dynamically linked (modular) ... Costs
4346  * include needing to have boardinfo data structures be much more public.
4347  */
4348 postcore_initcall(spi_init);
4349