xref: /openbmc/linux/drivers/spi/spi.c (revision 2154aca2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 #define spi_pcpu_stats_totalize(ret, in, field)				\
121 do {									\
122 	int i;								\
123 	ret = 0;							\
124 	for_each_possible_cpu(i) {					\
125 		const struct spi_statistics *pcpu_stats;		\
126 		u64 inc;						\
127 		unsigned int start;					\
128 		pcpu_stats = per_cpu_ptr(in, i);			\
129 		do {							\
130 			start = u64_stats_fetch_begin_irq(		\
131 					&pcpu_stats->syncp);		\
132 			inc = u64_stats_read(&pcpu_stats->field);	\
133 		} while (u64_stats_fetch_retry_irq(			\
134 					&pcpu_stats->syncp, start));	\
135 		ret += inc;						\
136 	}								\
137 } while (0)
138 
139 #define SPI_STATISTICS_ATTRS(field, file)				\
140 static ssize_t spi_controller_##field##_show(struct device *dev,	\
141 					     struct device_attribute *attr, \
142 					     char *buf)			\
143 {									\
144 	struct spi_controller *ctlr = container_of(dev,			\
145 					 struct spi_controller, dev);	\
146 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
147 }									\
148 static struct device_attribute dev_attr_spi_controller_##field = {	\
149 	.attr = { .name = file, .mode = 0444 },				\
150 	.show = spi_controller_##field##_show,				\
151 };									\
152 static ssize_t spi_device_##field##_show(struct device *dev,		\
153 					 struct device_attribute *attr,	\
154 					char *buf)			\
155 {									\
156 	struct spi_device *spi = to_spi_device(dev);			\
157 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
158 }									\
159 static struct device_attribute dev_attr_spi_device_##field = {		\
160 	.attr = { .name = file, .mode = 0444 },				\
161 	.show = spi_device_##field##_show,				\
162 }
163 
164 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
166 					    char *buf)			\
167 {									\
168 	ssize_t len;							\
169 	u64 val;							\
170 	spi_pcpu_stats_totalize(val, stat, field);			\
171 	len = sysfs_emit(buf, "%llu\n", val);				\
172 	return len;							\
173 }									\
174 SPI_STATISTICS_ATTRS(name, file)
175 
176 #define SPI_STATISTICS_SHOW(field)					\
177 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
178 				 field)
179 
180 SPI_STATISTICS_SHOW(messages);
181 SPI_STATISTICS_SHOW(transfers);
182 SPI_STATISTICS_SHOW(errors);
183 SPI_STATISTICS_SHOW(timedout);
184 
185 SPI_STATISTICS_SHOW(spi_sync);
186 SPI_STATISTICS_SHOW(spi_sync_immediate);
187 SPI_STATISTICS_SHOW(spi_async);
188 
189 SPI_STATISTICS_SHOW(bytes);
190 SPI_STATISTICS_SHOW(bytes_rx);
191 SPI_STATISTICS_SHOW(bytes_tx);
192 
193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
194 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
195 				 "transfer_bytes_histo_" number,	\
196 				 transfer_bytes_histo[index])
197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
214 
215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
216 
217 static struct attribute *spi_dev_attrs[] = {
218 	&dev_attr_modalias.attr,
219 	&dev_attr_driver_override.attr,
220 	NULL,
221 };
222 
223 static const struct attribute_group spi_dev_group = {
224 	.attrs  = spi_dev_attrs,
225 };
226 
227 static struct attribute *spi_device_statistics_attrs[] = {
228 	&dev_attr_spi_device_messages.attr,
229 	&dev_attr_spi_device_transfers.attr,
230 	&dev_attr_spi_device_errors.attr,
231 	&dev_attr_spi_device_timedout.attr,
232 	&dev_attr_spi_device_spi_sync.attr,
233 	&dev_attr_spi_device_spi_sync_immediate.attr,
234 	&dev_attr_spi_device_spi_async.attr,
235 	&dev_attr_spi_device_bytes.attr,
236 	&dev_attr_spi_device_bytes_rx.attr,
237 	&dev_attr_spi_device_bytes_tx.attr,
238 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
255 	&dev_attr_spi_device_transfers_split_maxsize.attr,
256 	NULL,
257 };
258 
259 static const struct attribute_group spi_device_statistics_group = {
260 	.name  = "statistics",
261 	.attrs  = spi_device_statistics_attrs,
262 };
263 
264 static const struct attribute_group *spi_dev_groups[] = {
265 	&spi_dev_group,
266 	&spi_device_statistics_group,
267 	NULL,
268 };
269 
270 static struct attribute *spi_controller_statistics_attrs[] = {
271 	&dev_attr_spi_controller_messages.attr,
272 	&dev_attr_spi_controller_transfers.attr,
273 	&dev_attr_spi_controller_errors.attr,
274 	&dev_attr_spi_controller_timedout.attr,
275 	&dev_attr_spi_controller_spi_sync.attr,
276 	&dev_attr_spi_controller_spi_sync_immediate.attr,
277 	&dev_attr_spi_controller_spi_async.attr,
278 	&dev_attr_spi_controller_bytes.attr,
279 	&dev_attr_spi_controller_bytes_rx.attr,
280 	&dev_attr_spi_controller_bytes_tx.attr,
281 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
298 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
299 	NULL,
300 };
301 
302 static const struct attribute_group spi_controller_statistics_group = {
303 	.name  = "statistics",
304 	.attrs  = spi_controller_statistics_attrs,
305 };
306 
307 static const struct attribute_group *spi_master_groups[] = {
308 	&spi_controller_statistics_group,
309 	NULL,
310 };
311 
312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
313 					      struct spi_transfer *xfer,
314 					      struct spi_controller *ctlr)
315 {
316 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
317 	struct spi_statistics *stats;
318 
319 	if (l2len < 0)
320 		l2len = 0;
321 
322 	get_cpu();
323 	stats = this_cpu_ptr(pcpu_stats);
324 	u64_stats_update_begin(&stats->syncp);
325 
326 	u64_stats_inc(&stats->transfers);
327 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
328 
329 	u64_stats_add(&stats->bytes, xfer->len);
330 	if ((xfer->tx_buf) &&
331 	    (xfer->tx_buf != ctlr->dummy_tx))
332 		u64_stats_add(&stats->bytes_tx, xfer->len);
333 	if ((xfer->rx_buf) &&
334 	    (xfer->rx_buf != ctlr->dummy_rx))
335 		u64_stats_add(&stats->bytes_rx, xfer->len);
336 
337 	u64_stats_update_end(&stats->syncp);
338 	put_cpu();
339 }
340 
341 /*
342  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343  * and the sysfs version makes coldplug work too.
344  */
345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347 	while (id->name[0]) {
348 		if (!strcmp(name, id->name))
349 			return id;
350 		id++;
351 	}
352 	return NULL;
353 }
354 
355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358 
359 	return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362 
363 static int spi_match_device(struct device *dev, struct device_driver *drv)
364 {
365 	const struct spi_device	*spi = to_spi_device(dev);
366 	const struct spi_driver	*sdrv = to_spi_driver(drv);
367 
368 	/* Check override first, and if set, only use the named driver */
369 	if (spi->driver_override)
370 		return strcmp(spi->driver_override, drv->name) == 0;
371 
372 	/* Attempt an OF style match */
373 	if (of_driver_match_device(dev, drv))
374 		return 1;
375 
376 	/* Then try ACPI */
377 	if (acpi_driver_match_device(dev, drv))
378 		return 1;
379 
380 	if (sdrv->id_table)
381 		return !!spi_match_id(sdrv->id_table, spi->modalias);
382 
383 	return strcmp(spi->modalias, drv->name) == 0;
384 }
385 
386 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
387 {
388 	const struct spi_device		*spi = to_spi_device(dev);
389 	int rc;
390 
391 	rc = acpi_device_uevent_modalias(dev, env);
392 	if (rc != -ENODEV)
393 		return rc;
394 
395 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
396 }
397 
398 static int spi_probe(struct device *dev)
399 {
400 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
401 	struct spi_device		*spi = to_spi_device(dev);
402 	int ret;
403 
404 	ret = of_clk_set_defaults(dev->of_node, false);
405 	if (ret)
406 		return ret;
407 
408 	if (dev->of_node) {
409 		spi->irq = of_irq_get(dev->of_node, 0);
410 		if (spi->irq == -EPROBE_DEFER)
411 			return -EPROBE_DEFER;
412 		if (spi->irq < 0)
413 			spi->irq = 0;
414 	}
415 
416 	ret = dev_pm_domain_attach(dev, true);
417 	if (ret)
418 		return ret;
419 
420 	if (sdrv->probe) {
421 		ret = sdrv->probe(spi);
422 		if (ret)
423 			dev_pm_domain_detach(dev, true);
424 	}
425 
426 	return ret;
427 }
428 
429 static void spi_remove(struct device *dev)
430 {
431 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
432 
433 	if (sdrv->remove)
434 		sdrv->remove(to_spi_device(dev));
435 
436 	dev_pm_domain_detach(dev, true);
437 }
438 
439 static void spi_shutdown(struct device *dev)
440 {
441 	if (dev->driver) {
442 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
443 
444 		if (sdrv->shutdown)
445 			sdrv->shutdown(to_spi_device(dev));
446 	}
447 }
448 
449 struct bus_type spi_bus_type = {
450 	.name		= "spi",
451 	.dev_groups	= spi_dev_groups,
452 	.match		= spi_match_device,
453 	.uevent		= spi_uevent,
454 	.probe		= spi_probe,
455 	.remove		= spi_remove,
456 	.shutdown	= spi_shutdown,
457 };
458 EXPORT_SYMBOL_GPL(spi_bus_type);
459 
460 /**
461  * __spi_register_driver - register a SPI driver
462  * @owner: owner module of the driver to register
463  * @sdrv: the driver to register
464  * Context: can sleep
465  *
466  * Return: zero on success, else a negative error code.
467  */
468 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
469 {
470 	sdrv->driver.owner = owner;
471 	sdrv->driver.bus = &spi_bus_type;
472 
473 	/*
474 	 * For Really Good Reasons we use spi: modaliases not of:
475 	 * modaliases for DT so module autoloading won't work if we
476 	 * don't have a spi_device_id as well as a compatible string.
477 	 */
478 	if (sdrv->driver.of_match_table) {
479 		const struct of_device_id *of_id;
480 
481 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
482 		     of_id++) {
483 			const char *of_name;
484 
485 			/* Strip off any vendor prefix */
486 			of_name = strnchr(of_id->compatible,
487 					  sizeof(of_id->compatible), ',');
488 			if (of_name)
489 				of_name++;
490 			else
491 				of_name = of_id->compatible;
492 
493 			if (sdrv->id_table) {
494 				const struct spi_device_id *spi_id;
495 
496 				spi_id = spi_match_id(sdrv->id_table, of_name);
497 				if (spi_id)
498 					continue;
499 			} else {
500 				if (strcmp(sdrv->driver.name, of_name) == 0)
501 					continue;
502 			}
503 
504 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
505 				sdrv->driver.name, of_id->compatible);
506 		}
507 	}
508 
509 	return driver_register(&sdrv->driver);
510 }
511 EXPORT_SYMBOL_GPL(__spi_register_driver);
512 
513 /*-------------------------------------------------------------------------*/
514 
515 /*
516  * SPI devices should normally not be created by SPI device drivers; that
517  * would make them board-specific.  Similarly with SPI controller drivers.
518  * Device registration normally goes into like arch/.../mach.../board-YYY.c
519  * with other readonly (flashable) information about mainboard devices.
520  */
521 
522 struct boardinfo {
523 	struct list_head	list;
524 	struct spi_board_info	board_info;
525 };
526 
527 static LIST_HEAD(board_list);
528 static LIST_HEAD(spi_controller_list);
529 
530 /*
531  * Used to protect add/del operation for board_info list and
532  * spi_controller list, and their matching process also used
533  * to protect object of type struct idr.
534  */
535 static DEFINE_MUTEX(board_lock);
536 
537 /**
538  * spi_alloc_device - Allocate a new SPI device
539  * @ctlr: Controller to which device is connected
540  * Context: can sleep
541  *
542  * Allows a driver to allocate and initialize a spi_device without
543  * registering it immediately.  This allows a driver to directly
544  * fill the spi_device with device parameters before calling
545  * spi_add_device() on it.
546  *
547  * Caller is responsible to call spi_add_device() on the returned
548  * spi_device structure to add it to the SPI controller.  If the caller
549  * needs to discard the spi_device without adding it, then it should
550  * call spi_dev_put() on it.
551  *
552  * Return: a pointer to the new device, or NULL.
553  */
554 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
555 {
556 	struct spi_device	*spi;
557 
558 	if (!spi_controller_get(ctlr))
559 		return NULL;
560 
561 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
562 	if (!spi) {
563 		spi_controller_put(ctlr);
564 		return NULL;
565 	}
566 
567 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
568 	if (!spi->pcpu_statistics) {
569 		kfree(spi);
570 		spi_controller_put(ctlr);
571 		return NULL;
572 	}
573 
574 	spi->master = spi->controller = ctlr;
575 	spi->dev.parent = &ctlr->dev;
576 	spi->dev.bus = &spi_bus_type;
577 	spi->dev.release = spidev_release;
578 	spi->mode = ctlr->buswidth_override_bits;
579 
580 	device_initialize(&spi->dev);
581 	return spi;
582 }
583 EXPORT_SYMBOL_GPL(spi_alloc_device);
584 
585 static void spi_dev_set_name(struct spi_device *spi)
586 {
587 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
588 
589 	if (adev) {
590 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
591 		return;
592 	}
593 
594 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
595 		     spi->chip_select);
596 }
597 
598 static int spi_dev_check(struct device *dev, void *data)
599 {
600 	struct spi_device *spi = to_spi_device(dev);
601 	struct spi_device *new_spi = data;
602 
603 	if (spi->controller == new_spi->controller &&
604 	    spi->chip_select == new_spi->chip_select)
605 		return -EBUSY;
606 	return 0;
607 }
608 
609 static void spi_cleanup(struct spi_device *spi)
610 {
611 	if (spi->controller->cleanup)
612 		spi->controller->cleanup(spi);
613 }
614 
615 static int __spi_add_device(struct spi_device *spi)
616 {
617 	struct spi_controller *ctlr = spi->controller;
618 	struct device *dev = ctlr->dev.parent;
619 	int status;
620 
621 	/*
622 	 * We need to make sure there's no other device with this
623 	 * chipselect **BEFORE** we call setup(), else we'll trash
624 	 * its configuration.
625 	 */
626 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
627 	if (status) {
628 		dev_err(dev, "chipselect %d already in use\n",
629 				spi->chip_select);
630 		return status;
631 	}
632 
633 	/* Controller may unregister concurrently */
634 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
635 	    !device_is_registered(&ctlr->dev)) {
636 		return -ENODEV;
637 	}
638 
639 	if (ctlr->cs_gpiods)
640 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
641 
642 	/*
643 	 * Drivers may modify this initial i/o setup, but will
644 	 * normally rely on the device being setup.  Devices
645 	 * using SPI_CS_HIGH can't coexist well otherwise...
646 	 */
647 	status = spi_setup(spi);
648 	if (status < 0) {
649 		dev_err(dev, "can't setup %s, status %d\n",
650 				dev_name(&spi->dev), status);
651 		return status;
652 	}
653 
654 	/* Device may be bound to an active driver when this returns */
655 	status = device_add(&spi->dev);
656 	if (status < 0) {
657 		dev_err(dev, "can't add %s, status %d\n",
658 				dev_name(&spi->dev), status);
659 		spi_cleanup(spi);
660 	} else {
661 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
662 	}
663 
664 	return status;
665 }
666 
667 /**
668  * spi_add_device - Add spi_device allocated with spi_alloc_device
669  * @spi: spi_device to register
670  *
671  * Companion function to spi_alloc_device.  Devices allocated with
672  * spi_alloc_device can be added onto the spi bus with this function.
673  *
674  * Return: 0 on success; negative errno on failure
675  */
676 int spi_add_device(struct spi_device *spi)
677 {
678 	struct spi_controller *ctlr = spi->controller;
679 	struct device *dev = ctlr->dev.parent;
680 	int status;
681 
682 	/* Chipselects are numbered 0..max; validate. */
683 	if (spi->chip_select >= ctlr->num_chipselect) {
684 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
685 			ctlr->num_chipselect);
686 		return -EINVAL;
687 	}
688 
689 	/* Set the bus ID string */
690 	spi_dev_set_name(spi);
691 
692 	mutex_lock(&ctlr->add_lock);
693 	status = __spi_add_device(spi);
694 	mutex_unlock(&ctlr->add_lock);
695 	return status;
696 }
697 EXPORT_SYMBOL_GPL(spi_add_device);
698 
699 static int spi_add_device_locked(struct spi_device *spi)
700 {
701 	struct spi_controller *ctlr = spi->controller;
702 	struct device *dev = ctlr->dev.parent;
703 
704 	/* Chipselects are numbered 0..max; validate. */
705 	if (spi->chip_select >= ctlr->num_chipselect) {
706 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
707 			ctlr->num_chipselect);
708 		return -EINVAL;
709 	}
710 
711 	/* Set the bus ID string */
712 	spi_dev_set_name(spi);
713 
714 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
715 	return __spi_add_device(spi);
716 }
717 
718 /**
719  * spi_new_device - instantiate one new SPI device
720  * @ctlr: Controller to which device is connected
721  * @chip: Describes the SPI device
722  * Context: can sleep
723  *
724  * On typical mainboards, this is purely internal; and it's not needed
725  * after board init creates the hard-wired devices.  Some development
726  * platforms may not be able to use spi_register_board_info though, and
727  * this is exported so that for example a USB or parport based adapter
728  * driver could add devices (which it would learn about out-of-band).
729  *
730  * Return: the new device, or NULL.
731  */
732 struct spi_device *spi_new_device(struct spi_controller *ctlr,
733 				  struct spi_board_info *chip)
734 {
735 	struct spi_device	*proxy;
736 	int			status;
737 
738 	/*
739 	 * NOTE:  caller did any chip->bus_num checks necessary.
740 	 *
741 	 * Also, unless we change the return value convention to use
742 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
743 	 * suggests syslogged diagnostics are best here (ugh).
744 	 */
745 
746 	proxy = spi_alloc_device(ctlr);
747 	if (!proxy)
748 		return NULL;
749 
750 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
751 
752 	proxy->chip_select = chip->chip_select;
753 	proxy->max_speed_hz = chip->max_speed_hz;
754 	proxy->mode = chip->mode;
755 	proxy->irq = chip->irq;
756 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
757 	proxy->dev.platform_data = (void *) chip->platform_data;
758 	proxy->controller_data = chip->controller_data;
759 	proxy->controller_state = NULL;
760 
761 	if (chip->swnode) {
762 		status = device_add_software_node(&proxy->dev, chip->swnode);
763 		if (status) {
764 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
765 				chip->modalias, status);
766 			goto err_dev_put;
767 		}
768 	}
769 
770 	status = spi_add_device(proxy);
771 	if (status < 0)
772 		goto err_dev_put;
773 
774 	return proxy;
775 
776 err_dev_put:
777 	device_remove_software_node(&proxy->dev);
778 	spi_dev_put(proxy);
779 	return NULL;
780 }
781 EXPORT_SYMBOL_GPL(spi_new_device);
782 
783 /**
784  * spi_unregister_device - unregister a single SPI device
785  * @spi: spi_device to unregister
786  *
787  * Start making the passed SPI device vanish. Normally this would be handled
788  * by spi_unregister_controller().
789  */
790 void spi_unregister_device(struct spi_device *spi)
791 {
792 	if (!spi)
793 		return;
794 
795 	if (spi->dev.of_node) {
796 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
797 		of_node_put(spi->dev.of_node);
798 	}
799 	if (ACPI_COMPANION(&spi->dev))
800 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
801 	device_remove_software_node(&spi->dev);
802 	device_del(&spi->dev);
803 	spi_cleanup(spi);
804 	put_device(&spi->dev);
805 }
806 EXPORT_SYMBOL_GPL(spi_unregister_device);
807 
808 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
809 					      struct spi_board_info *bi)
810 {
811 	struct spi_device *dev;
812 
813 	if (ctlr->bus_num != bi->bus_num)
814 		return;
815 
816 	dev = spi_new_device(ctlr, bi);
817 	if (!dev)
818 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
819 			bi->modalias);
820 }
821 
822 /**
823  * spi_register_board_info - register SPI devices for a given board
824  * @info: array of chip descriptors
825  * @n: how many descriptors are provided
826  * Context: can sleep
827  *
828  * Board-specific early init code calls this (probably during arch_initcall)
829  * with segments of the SPI device table.  Any device nodes are created later,
830  * after the relevant parent SPI controller (bus_num) is defined.  We keep
831  * this table of devices forever, so that reloading a controller driver will
832  * not make Linux forget about these hard-wired devices.
833  *
834  * Other code can also call this, e.g. a particular add-on board might provide
835  * SPI devices through its expansion connector, so code initializing that board
836  * would naturally declare its SPI devices.
837  *
838  * The board info passed can safely be __initdata ... but be careful of
839  * any embedded pointers (platform_data, etc), they're copied as-is.
840  *
841  * Return: zero on success, else a negative error code.
842  */
843 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
844 {
845 	struct boardinfo *bi;
846 	int i;
847 
848 	if (!n)
849 		return 0;
850 
851 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
852 	if (!bi)
853 		return -ENOMEM;
854 
855 	for (i = 0; i < n; i++, bi++, info++) {
856 		struct spi_controller *ctlr;
857 
858 		memcpy(&bi->board_info, info, sizeof(*info));
859 
860 		mutex_lock(&board_lock);
861 		list_add_tail(&bi->list, &board_list);
862 		list_for_each_entry(ctlr, &spi_controller_list, list)
863 			spi_match_controller_to_boardinfo(ctlr,
864 							  &bi->board_info);
865 		mutex_unlock(&board_lock);
866 	}
867 
868 	return 0;
869 }
870 
871 /*-------------------------------------------------------------------------*/
872 
873 /* Core methods for SPI resource management */
874 
875 /**
876  * spi_res_alloc - allocate a spi resource that is life-cycle managed
877  *                 during the processing of a spi_message while using
878  *                 spi_transfer_one
879  * @spi:     the spi device for which we allocate memory
880  * @release: the release code to execute for this resource
881  * @size:    size to alloc and return
882  * @gfp:     GFP allocation flags
883  *
884  * Return: the pointer to the allocated data
885  *
886  * This may get enhanced in the future to allocate from a memory pool
887  * of the @spi_device or @spi_controller to avoid repeated allocations.
888  */
889 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
890 			   size_t size, gfp_t gfp)
891 {
892 	struct spi_res *sres;
893 
894 	sres = kzalloc(sizeof(*sres) + size, gfp);
895 	if (!sres)
896 		return NULL;
897 
898 	INIT_LIST_HEAD(&sres->entry);
899 	sres->release = release;
900 
901 	return sres->data;
902 }
903 
904 /**
905  * spi_res_free - free an spi resource
906  * @res: pointer to the custom data of a resource
907  */
908 static void spi_res_free(void *res)
909 {
910 	struct spi_res *sres = container_of(res, struct spi_res, data);
911 
912 	if (!res)
913 		return;
914 
915 	WARN_ON(!list_empty(&sres->entry));
916 	kfree(sres);
917 }
918 
919 /**
920  * spi_res_add - add a spi_res to the spi_message
921  * @message: the spi message
922  * @res:     the spi_resource
923  */
924 static void spi_res_add(struct spi_message *message, void *res)
925 {
926 	struct spi_res *sres = container_of(res, struct spi_res, data);
927 
928 	WARN_ON(!list_empty(&sres->entry));
929 	list_add_tail(&sres->entry, &message->resources);
930 }
931 
932 /**
933  * spi_res_release - release all spi resources for this message
934  * @ctlr:  the @spi_controller
935  * @message: the @spi_message
936  */
937 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
938 {
939 	struct spi_res *res, *tmp;
940 
941 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
942 		if (res->release)
943 			res->release(ctlr, message, res->data);
944 
945 		list_del(&res->entry);
946 
947 		kfree(res);
948 	}
949 }
950 
951 /*-------------------------------------------------------------------------*/
952 
953 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
954 {
955 	bool activate = enable;
956 
957 	/*
958 	 * Avoid calling into the driver (or doing delays) if the chip select
959 	 * isn't actually changing from the last time this was called.
960 	 */
961 	if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
962 				(!enable && spi->controller->last_cs != spi->chip_select)) &&
963 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
964 		return;
965 
966 	trace_spi_set_cs(spi, activate);
967 
968 	spi->controller->last_cs = enable ? spi->chip_select : -1;
969 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
970 
971 	if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
972 		spi_delay_exec(&spi->cs_hold, NULL);
973 	}
974 
975 	if (spi->mode & SPI_CS_HIGH)
976 		enable = !enable;
977 
978 	if (spi->cs_gpiod) {
979 		if (!(spi->mode & SPI_NO_CS)) {
980 			/*
981 			 * Historically ACPI has no means of the GPIO polarity and
982 			 * thus the SPISerialBus() resource defines it on the per-chip
983 			 * basis. In order to avoid a chain of negations, the GPIO
984 			 * polarity is considered being Active High. Even for the cases
985 			 * when _DSD() is involved (in the updated versions of ACPI)
986 			 * the GPIO CS polarity must be defined Active High to avoid
987 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
988 			 * into account.
989 			 */
990 			if (has_acpi_companion(&spi->dev))
991 				gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
992 			else
993 				/* Polarity handled by GPIO library */
994 				gpiod_set_value_cansleep(spi->cs_gpiod, activate);
995 		}
996 		/* Some SPI masters need both GPIO CS & slave_select */
997 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
998 		    spi->controller->set_cs)
999 			spi->controller->set_cs(spi, !enable);
1000 	} else if (spi->controller->set_cs) {
1001 		spi->controller->set_cs(spi, !enable);
1002 	}
1003 
1004 	if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
1005 		if (activate)
1006 			spi_delay_exec(&spi->cs_setup, NULL);
1007 		else
1008 			spi_delay_exec(&spi->cs_inactive, NULL);
1009 	}
1010 }
1011 
1012 #ifdef CONFIG_HAS_DMA
1013 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1014 		struct sg_table *sgt, void *buf, size_t len,
1015 		enum dma_data_direction dir)
1016 {
1017 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1018 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1019 #ifdef CONFIG_HIGHMEM
1020 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1021 				(unsigned long)buf < (PKMAP_BASE +
1022 					(LAST_PKMAP * PAGE_SIZE)));
1023 #else
1024 	const bool kmap_buf = false;
1025 #endif
1026 	int desc_len;
1027 	int sgs;
1028 	struct page *vm_page;
1029 	struct scatterlist *sg;
1030 	void *sg_buf;
1031 	size_t min;
1032 	int i, ret;
1033 
1034 	if (vmalloced_buf || kmap_buf) {
1035 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1036 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1037 	} else if (virt_addr_valid(buf)) {
1038 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1039 		sgs = DIV_ROUND_UP(len, desc_len);
1040 	} else {
1041 		return -EINVAL;
1042 	}
1043 
1044 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1045 	if (ret != 0)
1046 		return ret;
1047 
1048 	sg = &sgt->sgl[0];
1049 	for (i = 0; i < sgs; i++) {
1050 
1051 		if (vmalloced_buf || kmap_buf) {
1052 			/*
1053 			 * Next scatterlist entry size is the minimum between
1054 			 * the desc_len and the remaining buffer length that
1055 			 * fits in a page.
1056 			 */
1057 			min = min_t(size_t, desc_len,
1058 				    min_t(size_t, len,
1059 					  PAGE_SIZE - offset_in_page(buf)));
1060 			if (vmalloced_buf)
1061 				vm_page = vmalloc_to_page(buf);
1062 			else
1063 				vm_page = kmap_to_page(buf);
1064 			if (!vm_page) {
1065 				sg_free_table(sgt);
1066 				return -ENOMEM;
1067 			}
1068 			sg_set_page(sg, vm_page,
1069 				    min, offset_in_page(buf));
1070 		} else {
1071 			min = min_t(size_t, len, desc_len);
1072 			sg_buf = buf;
1073 			sg_set_buf(sg, sg_buf, min);
1074 		}
1075 
1076 		buf += min;
1077 		len -= min;
1078 		sg = sg_next(sg);
1079 	}
1080 
1081 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1082 	if (!ret)
1083 		ret = -ENOMEM;
1084 	if (ret < 0) {
1085 		sg_free_table(sgt);
1086 		return ret;
1087 	}
1088 
1089 	sgt->nents = ret;
1090 
1091 	return 0;
1092 }
1093 
1094 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1095 		   struct sg_table *sgt, enum dma_data_direction dir)
1096 {
1097 	if (sgt->orig_nents) {
1098 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1099 		sg_free_table(sgt);
1100 	}
1101 }
1102 
1103 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1104 {
1105 	struct device *tx_dev, *rx_dev;
1106 	struct spi_transfer *xfer;
1107 	int ret;
1108 
1109 	if (!ctlr->can_dma)
1110 		return 0;
1111 
1112 	if (ctlr->dma_tx)
1113 		tx_dev = ctlr->dma_tx->device->dev;
1114 	else if (ctlr->dma_map_dev)
1115 		tx_dev = ctlr->dma_map_dev;
1116 	else
1117 		tx_dev = ctlr->dev.parent;
1118 
1119 	if (ctlr->dma_rx)
1120 		rx_dev = ctlr->dma_rx->device->dev;
1121 	else if (ctlr->dma_map_dev)
1122 		rx_dev = ctlr->dma_map_dev;
1123 	else
1124 		rx_dev = ctlr->dev.parent;
1125 
1126 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1127 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1128 			continue;
1129 
1130 		if (xfer->tx_buf != NULL) {
1131 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1132 					  (void *)xfer->tx_buf, xfer->len,
1133 					  DMA_TO_DEVICE);
1134 			if (ret != 0)
1135 				return ret;
1136 		}
1137 
1138 		if (xfer->rx_buf != NULL) {
1139 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1140 					  xfer->rx_buf, xfer->len,
1141 					  DMA_FROM_DEVICE);
1142 			if (ret != 0) {
1143 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1144 					      DMA_TO_DEVICE);
1145 				return ret;
1146 			}
1147 		}
1148 	}
1149 
1150 	ctlr->cur_msg_mapped = true;
1151 
1152 	return 0;
1153 }
1154 
1155 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1156 {
1157 	struct spi_transfer *xfer;
1158 	struct device *tx_dev, *rx_dev;
1159 
1160 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1161 		return 0;
1162 
1163 	if (ctlr->dma_tx)
1164 		tx_dev = ctlr->dma_tx->device->dev;
1165 	else if (ctlr->dma_map_dev)
1166 		tx_dev = ctlr->dma_map_dev;
1167 	else
1168 		tx_dev = ctlr->dev.parent;
1169 
1170 	if (ctlr->dma_rx)
1171 		rx_dev = ctlr->dma_rx->device->dev;
1172 	else if (ctlr->dma_map_dev)
1173 		rx_dev = ctlr->dma_map_dev;
1174 	else
1175 		rx_dev = ctlr->dev.parent;
1176 
1177 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1179 			continue;
1180 
1181 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1182 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1183 	}
1184 
1185 	ctlr->cur_msg_mapped = false;
1186 
1187 	return 0;
1188 }
1189 #else /* !CONFIG_HAS_DMA */
1190 static inline int __spi_map_msg(struct spi_controller *ctlr,
1191 				struct spi_message *msg)
1192 {
1193 	return 0;
1194 }
1195 
1196 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1197 				  struct spi_message *msg)
1198 {
1199 	return 0;
1200 }
1201 #endif /* !CONFIG_HAS_DMA */
1202 
1203 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1204 				struct spi_message *msg)
1205 {
1206 	struct spi_transfer *xfer;
1207 
1208 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1209 		/*
1210 		 * Restore the original value of tx_buf or rx_buf if they are
1211 		 * NULL.
1212 		 */
1213 		if (xfer->tx_buf == ctlr->dummy_tx)
1214 			xfer->tx_buf = NULL;
1215 		if (xfer->rx_buf == ctlr->dummy_rx)
1216 			xfer->rx_buf = NULL;
1217 	}
1218 
1219 	return __spi_unmap_msg(ctlr, msg);
1220 }
1221 
1222 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223 {
1224 	struct spi_transfer *xfer;
1225 	void *tmp;
1226 	unsigned int max_tx, max_rx;
1227 
1228 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1229 		&& !(msg->spi->mode & SPI_3WIRE)) {
1230 		max_tx = 0;
1231 		max_rx = 0;
1232 
1233 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1234 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1235 			    !xfer->tx_buf)
1236 				max_tx = max(xfer->len, max_tx);
1237 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1238 			    !xfer->rx_buf)
1239 				max_rx = max(xfer->len, max_rx);
1240 		}
1241 
1242 		if (max_tx) {
1243 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1244 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1245 			if (!tmp)
1246 				return -ENOMEM;
1247 			ctlr->dummy_tx = tmp;
1248 		}
1249 
1250 		if (max_rx) {
1251 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1252 				       GFP_KERNEL | GFP_DMA);
1253 			if (!tmp)
1254 				return -ENOMEM;
1255 			ctlr->dummy_rx = tmp;
1256 		}
1257 
1258 		if (max_tx || max_rx) {
1259 			list_for_each_entry(xfer, &msg->transfers,
1260 					    transfer_list) {
1261 				if (!xfer->len)
1262 					continue;
1263 				if (!xfer->tx_buf)
1264 					xfer->tx_buf = ctlr->dummy_tx;
1265 				if (!xfer->rx_buf)
1266 					xfer->rx_buf = ctlr->dummy_rx;
1267 			}
1268 		}
1269 	}
1270 
1271 	return __spi_map_msg(ctlr, msg);
1272 }
1273 
1274 static int spi_transfer_wait(struct spi_controller *ctlr,
1275 			     struct spi_message *msg,
1276 			     struct spi_transfer *xfer)
1277 {
1278 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1279 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1280 	u32 speed_hz = xfer->speed_hz;
1281 	unsigned long long ms;
1282 
1283 	if (spi_controller_is_slave(ctlr)) {
1284 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1285 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1286 			return -EINTR;
1287 		}
1288 	} else {
1289 		if (!speed_hz)
1290 			speed_hz = 100000;
1291 
1292 		/*
1293 		 * For each byte we wait for 8 cycles of the SPI clock.
1294 		 * Since speed is defined in Hz and we want milliseconds,
1295 		 * use respective multiplier, but before the division,
1296 		 * otherwise we may get 0 for short transfers.
1297 		 */
1298 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1299 		do_div(ms, speed_hz);
1300 
1301 		/*
1302 		 * Increase it twice and add 200 ms tolerance, use
1303 		 * predefined maximum in case of overflow.
1304 		 */
1305 		ms += ms + 200;
1306 		if (ms > UINT_MAX)
1307 			ms = UINT_MAX;
1308 
1309 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1310 						 msecs_to_jiffies(ms));
1311 
1312 		if (ms == 0) {
1313 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1314 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1315 			dev_err(&msg->spi->dev,
1316 				"SPI transfer timed out\n");
1317 			return -ETIMEDOUT;
1318 		}
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static void _spi_transfer_delay_ns(u32 ns)
1325 {
1326 	if (!ns)
1327 		return;
1328 	if (ns <= NSEC_PER_USEC) {
1329 		ndelay(ns);
1330 	} else {
1331 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1332 
1333 		if (us <= 10)
1334 			udelay(us);
1335 		else
1336 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1337 	}
1338 }
1339 
1340 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1341 {
1342 	u32 delay = _delay->value;
1343 	u32 unit = _delay->unit;
1344 	u32 hz;
1345 
1346 	if (!delay)
1347 		return 0;
1348 
1349 	switch (unit) {
1350 	case SPI_DELAY_UNIT_USECS:
1351 		delay *= NSEC_PER_USEC;
1352 		break;
1353 	case SPI_DELAY_UNIT_NSECS:
1354 		/* Nothing to do here */
1355 		break;
1356 	case SPI_DELAY_UNIT_SCK:
1357 		/* Clock cycles need to be obtained from spi_transfer */
1358 		if (!xfer)
1359 			return -EINVAL;
1360 		/*
1361 		 * If there is unknown effective speed, approximate it
1362 		 * by underestimating with half of the requested hz.
1363 		 */
1364 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1365 		if (!hz)
1366 			return -EINVAL;
1367 
1368 		/* Convert delay to nanoseconds */
1369 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1370 		break;
1371 	default:
1372 		return -EINVAL;
1373 	}
1374 
1375 	return delay;
1376 }
1377 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1378 
1379 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1380 {
1381 	int delay;
1382 
1383 	might_sleep();
1384 
1385 	if (!_delay)
1386 		return -EINVAL;
1387 
1388 	delay = spi_delay_to_ns(_delay, xfer);
1389 	if (delay < 0)
1390 		return delay;
1391 
1392 	_spi_transfer_delay_ns(delay);
1393 
1394 	return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(spi_delay_exec);
1397 
1398 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1399 					  struct spi_transfer *xfer)
1400 {
1401 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1402 	u32 delay = xfer->cs_change_delay.value;
1403 	u32 unit = xfer->cs_change_delay.unit;
1404 	int ret;
1405 
1406 	/* Return early on "fast" mode - for everything but USECS */
1407 	if (!delay) {
1408 		if (unit == SPI_DELAY_UNIT_USECS)
1409 			_spi_transfer_delay_ns(default_delay_ns);
1410 		return;
1411 	}
1412 
1413 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1414 	if (ret) {
1415 		dev_err_once(&msg->spi->dev,
1416 			     "Use of unsupported delay unit %i, using default of %luus\n",
1417 			     unit, default_delay_ns / NSEC_PER_USEC);
1418 		_spi_transfer_delay_ns(default_delay_ns);
1419 	}
1420 }
1421 
1422 /*
1423  * spi_transfer_one_message - Default implementation of transfer_one_message()
1424  *
1425  * This is a standard implementation of transfer_one_message() for
1426  * drivers which implement a transfer_one() operation.  It provides
1427  * standard handling of delays and chip select management.
1428  */
1429 static int spi_transfer_one_message(struct spi_controller *ctlr,
1430 				    struct spi_message *msg)
1431 {
1432 	struct spi_transfer *xfer;
1433 	bool keep_cs = false;
1434 	int ret = 0;
1435 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1436 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1437 
1438 	spi_set_cs(msg->spi, true, false);
1439 
1440 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1441 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1442 
1443 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1444 		trace_spi_transfer_start(msg, xfer);
1445 
1446 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1447 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1448 
1449 		if (!ctlr->ptp_sts_supported) {
1450 			xfer->ptp_sts_word_pre = 0;
1451 			ptp_read_system_prets(xfer->ptp_sts);
1452 		}
1453 
1454 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1455 			reinit_completion(&ctlr->xfer_completion);
1456 
1457 fallback_pio:
1458 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1459 			if (ret < 0) {
1460 				if (ctlr->cur_msg_mapped &&
1461 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1462 					__spi_unmap_msg(ctlr, msg);
1463 					ctlr->fallback = true;
1464 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1465 					goto fallback_pio;
1466 				}
1467 
1468 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1469 							       errors);
1470 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1471 							       errors);
1472 				dev_err(&msg->spi->dev,
1473 					"SPI transfer failed: %d\n", ret);
1474 				goto out;
1475 			}
1476 
1477 			if (ret > 0) {
1478 				ret = spi_transfer_wait(ctlr, msg, xfer);
1479 				if (ret < 0)
1480 					msg->status = ret;
1481 			}
1482 		} else {
1483 			if (xfer->len)
1484 				dev_err(&msg->spi->dev,
1485 					"Bufferless transfer has length %u\n",
1486 					xfer->len);
1487 		}
1488 
1489 		if (!ctlr->ptp_sts_supported) {
1490 			ptp_read_system_postts(xfer->ptp_sts);
1491 			xfer->ptp_sts_word_post = xfer->len;
1492 		}
1493 
1494 		trace_spi_transfer_stop(msg, xfer);
1495 
1496 		if (msg->status != -EINPROGRESS)
1497 			goto out;
1498 
1499 		spi_transfer_delay_exec(xfer);
1500 
1501 		if (xfer->cs_change) {
1502 			if (list_is_last(&xfer->transfer_list,
1503 					 &msg->transfers)) {
1504 				keep_cs = true;
1505 			} else {
1506 				spi_set_cs(msg->spi, false, false);
1507 				_spi_transfer_cs_change_delay(msg, xfer);
1508 				spi_set_cs(msg->spi, true, false);
1509 			}
1510 		}
1511 
1512 		msg->actual_length += xfer->len;
1513 	}
1514 
1515 out:
1516 	if (ret != 0 || !keep_cs)
1517 		spi_set_cs(msg->spi, false, false);
1518 
1519 	if (msg->status == -EINPROGRESS)
1520 		msg->status = ret;
1521 
1522 	if (msg->status && ctlr->handle_err)
1523 		ctlr->handle_err(ctlr, msg);
1524 
1525 	spi_finalize_current_message(ctlr);
1526 
1527 	return ret;
1528 }
1529 
1530 /**
1531  * spi_finalize_current_transfer - report completion of a transfer
1532  * @ctlr: the controller reporting completion
1533  *
1534  * Called by SPI drivers using the core transfer_one_message()
1535  * implementation to notify it that the current interrupt driven
1536  * transfer has finished and the next one may be scheduled.
1537  */
1538 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1539 {
1540 	complete(&ctlr->xfer_completion);
1541 }
1542 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1543 
1544 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1545 {
1546 	if (ctlr->auto_runtime_pm) {
1547 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1548 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1549 	}
1550 }
1551 
1552 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1553 		struct spi_message *msg, bool was_busy)
1554 {
1555 	struct spi_transfer *xfer;
1556 	int ret;
1557 
1558 	if (!was_busy && ctlr->auto_runtime_pm) {
1559 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1560 		if (ret < 0) {
1561 			pm_runtime_put_noidle(ctlr->dev.parent);
1562 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1563 				ret);
1564 			return ret;
1565 		}
1566 	}
1567 
1568 	if (!was_busy)
1569 		trace_spi_controller_busy(ctlr);
1570 
1571 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1572 		ret = ctlr->prepare_transfer_hardware(ctlr);
1573 		if (ret) {
1574 			dev_err(&ctlr->dev,
1575 				"failed to prepare transfer hardware: %d\n",
1576 				ret);
1577 
1578 			if (ctlr->auto_runtime_pm)
1579 				pm_runtime_put(ctlr->dev.parent);
1580 
1581 			msg->status = ret;
1582 			spi_finalize_current_message(ctlr);
1583 
1584 			return ret;
1585 		}
1586 	}
1587 
1588 	trace_spi_message_start(msg);
1589 
1590 	if (ctlr->prepare_message) {
1591 		ret = ctlr->prepare_message(ctlr, msg);
1592 		if (ret) {
1593 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1594 				ret);
1595 			msg->status = ret;
1596 			spi_finalize_current_message(ctlr);
1597 			return ret;
1598 		}
1599 		msg->prepared = true;
1600 	}
1601 
1602 	ret = spi_map_msg(ctlr, msg);
1603 	if (ret) {
1604 		msg->status = ret;
1605 		spi_finalize_current_message(ctlr);
1606 		return ret;
1607 	}
1608 
1609 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1610 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1611 			xfer->ptp_sts_word_pre = 0;
1612 			ptp_read_system_prets(xfer->ptp_sts);
1613 		}
1614 	}
1615 
1616 	/*
1617 	 * Drivers implementation of transfer_one_message() must arrange for
1618 	 * spi_finalize_current_message() to get called. Most drivers will do
1619 	 * this in the calling context, but some don't. For those cases, a
1620 	 * completion is used to guarantee that this function does not return
1621 	 * until spi_finalize_current_message() is done accessing
1622 	 * ctlr->cur_msg.
1623 	 * Use of the following two flags enable to opportunistically skip the
1624 	 * use of the completion since its use involves expensive spin locks.
1625 	 * In case of a race with the context that calls
1626 	 * spi_finalize_current_message() the completion will always be used,
1627 	 * due to strict ordering of these flags using barriers.
1628 	 */
1629 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1630 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1631 	reinit_completion(&ctlr->cur_msg_completion);
1632 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1633 
1634 	ret = ctlr->transfer_one_message(ctlr, msg);
1635 	if (ret) {
1636 		dev_err(&ctlr->dev,
1637 			"failed to transfer one message from queue\n");
1638 		return ret;
1639 	}
1640 
1641 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1642 	smp_mb(); /* See spi_finalize_current_message()... */
1643 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1644 		wait_for_completion(&ctlr->cur_msg_completion);
1645 
1646 	return 0;
1647 }
1648 
1649 /**
1650  * __spi_pump_messages - function which processes spi message queue
1651  * @ctlr: controller to process queue for
1652  * @in_kthread: true if we are in the context of the message pump thread
1653  *
1654  * This function checks if there is any spi message in the queue that
1655  * needs processing and if so call out to the driver to initialize hardware
1656  * and transfer each message.
1657  *
1658  * Note that it is called both from the kthread itself and also from
1659  * inside spi_sync(); the queue extraction handling at the top of the
1660  * function should deal with this safely.
1661  */
1662 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1663 {
1664 	struct spi_message *msg;
1665 	bool was_busy = false;
1666 	unsigned long flags;
1667 	int ret;
1668 
1669 	/* Take the IO mutex */
1670 	mutex_lock(&ctlr->io_mutex);
1671 
1672 	/* Lock queue */
1673 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1674 
1675 	/* Make sure we are not already running a message */
1676 	if (ctlr->cur_msg)
1677 		goto out_unlock;
1678 
1679 	/* Check if the queue is idle */
1680 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1681 		if (!ctlr->busy)
1682 			goto out_unlock;
1683 
1684 		/* Defer any non-atomic teardown to the thread */
1685 		if (!in_kthread) {
1686 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1687 			    !ctlr->unprepare_transfer_hardware) {
1688 				spi_idle_runtime_pm(ctlr);
1689 				ctlr->busy = false;
1690 				ctlr->queue_empty = true;
1691 				trace_spi_controller_idle(ctlr);
1692 			} else {
1693 				kthread_queue_work(ctlr->kworker,
1694 						   &ctlr->pump_messages);
1695 			}
1696 			goto out_unlock;
1697 		}
1698 
1699 		ctlr->busy = false;
1700 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1701 
1702 		kfree(ctlr->dummy_rx);
1703 		ctlr->dummy_rx = NULL;
1704 		kfree(ctlr->dummy_tx);
1705 		ctlr->dummy_tx = NULL;
1706 		if (ctlr->unprepare_transfer_hardware &&
1707 		    ctlr->unprepare_transfer_hardware(ctlr))
1708 			dev_err(&ctlr->dev,
1709 				"failed to unprepare transfer hardware\n");
1710 		spi_idle_runtime_pm(ctlr);
1711 		trace_spi_controller_idle(ctlr);
1712 
1713 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1714 		ctlr->queue_empty = true;
1715 		goto out_unlock;
1716 	}
1717 
1718 	/* Extract head of queue */
1719 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1720 	ctlr->cur_msg = msg;
1721 
1722 	list_del_init(&msg->queue);
1723 	if (ctlr->busy)
1724 		was_busy = true;
1725 	else
1726 		ctlr->busy = true;
1727 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1728 
1729 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1730 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1731 
1732 	ctlr->cur_msg = NULL;
1733 	ctlr->fallback = false;
1734 
1735 	mutex_unlock(&ctlr->io_mutex);
1736 
1737 	/* Prod the scheduler in case transfer_one() was busy waiting */
1738 	if (!ret)
1739 		cond_resched();
1740 	return;
1741 
1742 out_unlock:
1743 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1744 	mutex_unlock(&ctlr->io_mutex);
1745 }
1746 
1747 /**
1748  * spi_pump_messages - kthread work function which processes spi message queue
1749  * @work: pointer to kthread work struct contained in the controller struct
1750  */
1751 static void spi_pump_messages(struct kthread_work *work)
1752 {
1753 	struct spi_controller *ctlr =
1754 		container_of(work, struct spi_controller, pump_messages);
1755 
1756 	__spi_pump_messages(ctlr, true);
1757 }
1758 
1759 /**
1760  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1761  * @ctlr: Pointer to the spi_controller structure of the driver
1762  * @xfer: Pointer to the transfer being timestamped
1763  * @progress: How many words (not bytes) have been transferred so far
1764  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1765  *	      transfer, for less jitter in time measurement. Only compatible
1766  *	      with PIO drivers. If true, must follow up with
1767  *	      spi_take_timestamp_post or otherwise system will crash.
1768  *	      WARNING: for fully predictable results, the CPU frequency must
1769  *	      also be under control (governor).
1770  *
1771  * This is a helper for drivers to collect the beginning of the TX timestamp
1772  * for the requested byte from the SPI transfer. The frequency with which this
1773  * function must be called (once per word, once for the whole transfer, once
1774  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1775  * greater than or equal to the requested byte at the time of the call. The
1776  * timestamp is only taken once, at the first such call. It is assumed that
1777  * the driver advances its @tx buffer pointer monotonically.
1778  */
1779 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1780 			    struct spi_transfer *xfer,
1781 			    size_t progress, bool irqs_off)
1782 {
1783 	if (!xfer->ptp_sts)
1784 		return;
1785 
1786 	if (xfer->timestamped)
1787 		return;
1788 
1789 	if (progress > xfer->ptp_sts_word_pre)
1790 		return;
1791 
1792 	/* Capture the resolution of the timestamp */
1793 	xfer->ptp_sts_word_pre = progress;
1794 
1795 	if (irqs_off) {
1796 		local_irq_save(ctlr->irq_flags);
1797 		preempt_disable();
1798 	}
1799 
1800 	ptp_read_system_prets(xfer->ptp_sts);
1801 }
1802 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1803 
1804 /**
1805  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1806  * @ctlr: Pointer to the spi_controller structure of the driver
1807  * @xfer: Pointer to the transfer being timestamped
1808  * @progress: How many words (not bytes) have been transferred so far
1809  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1810  *
1811  * This is a helper for drivers to collect the end of the TX timestamp for
1812  * the requested byte from the SPI transfer. Can be called with an arbitrary
1813  * frequency: only the first call where @tx exceeds or is equal to the
1814  * requested word will be timestamped.
1815  */
1816 void spi_take_timestamp_post(struct spi_controller *ctlr,
1817 			     struct spi_transfer *xfer,
1818 			     size_t progress, bool irqs_off)
1819 {
1820 	if (!xfer->ptp_sts)
1821 		return;
1822 
1823 	if (xfer->timestamped)
1824 		return;
1825 
1826 	if (progress < xfer->ptp_sts_word_post)
1827 		return;
1828 
1829 	ptp_read_system_postts(xfer->ptp_sts);
1830 
1831 	if (irqs_off) {
1832 		local_irq_restore(ctlr->irq_flags);
1833 		preempt_enable();
1834 	}
1835 
1836 	/* Capture the resolution of the timestamp */
1837 	xfer->ptp_sts_word_post = progress;
1838 
1839 	xfer->timestamped = true;
1840 }
1841 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1842 
1843 /**
1844  * spi_set_thread_rt - set the controller to pump at realtime priority
1845  * @ctlr: controller to boost priority of
1846  *
1847  * This can be called because the controller requested realtime priority
1848  * (by setting the ->rt value before calling spi_register_controller()) or
1849  * because a device on the bus said that its transfers needed realtime
1850  * priority.
1851  *
1852  * NOTE: at the moment if any device on a bus says it needs realtime then
1853  * the thread will be at realtime priority for all transfers on that
1854  * controller.  If this eventually becomes a problem we may see if we can
1855  * find a way to boost the priority only temporarily during relevant
1856  * transfers.
1857  */
1858 static void spi_set_thread_rt(struct spi_controller *ctlr)
1859 {
1860 	dev_info(&ctlr->dev,
1861 		"will run message pump with realtime priority\n");
1862 	sched_set_fifo(ctlr->kworker->task);
1863 }
1864 
1865 static int spi_init_queue(struct spi_controller *ctlr)
1866 {
1867 	ctlr->running = false;
1868 	ctlr->busy = false;
1869 	ctlr->queue_empty = true;
1870 
1871 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1872 	if (IS_ERR(ctlr->kworker)) {
1873 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1874 		return PTR_ERR(ctlr->kworker);
1875 	}
1876 
1877 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1878 
1879 	/*
1880 	 * Controller config will indicate if this controller should run the
1881 	 * message pump with high (realtime) priority to reduce the transfer
1882 	 * latency on the bus by minimising the delay between a transfer
1883 	 * request and the scheduling of the message pump thread. Without this
1884 	 * setting the message pump thread will remain at default priority.
1885 	 */
1886 	if (ctlr->rt)
1887 		spi_set_thread_rt(ctlr);
1888 
1889 	return 0;
1890 }
1891 
1892 /**
1893  * spi_get_next_queued_message() - called by driver to check for queued
1894  * messages
1895  * @ctlr: the controller to check for queued messages
1896  *
1897  * If there are more messages in the queue, the next message is returned from
1898  * this call.
1899  *
1900  * Return: the next message in the queue, else NULL if the queue is empty.
1901  */
1902 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1903 {
1904 	struct spi_message *next;
1905 	unsigned long flags;
1906 
1907 	/* Get a pointer to the next message, if any */
1908 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1909 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1910 					queue);
1911 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1912 
1913 	return next;
1914 }
1915 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1916 
1917 /**
1918  * spi_finalize_current_message() - the current message is complete
1919  * @ctlr: the controller to return the message to
1920  *
1921  * Called by the driver to notify the core that the message in the front of the
1922  * queue is complete and can be removed from the queue.
1923  */
1924 void spi_finalize_current_message(struct spi_controller *ctlr)
1925 {
1926 	struct spi_transfer *xfer;
1927 	struct spi_message *mesg;
1928 	int ret;
1929 
1930 	mesg = ctlr->cur_msg;
1931 
1932 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1933 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1934 			ptp_read_system_postts(xfer->ptp_sts);
1935 			xfer->ptp_sts_word_post = xfer->len;
1936 		}
1937 	}
1938 
1939 	if (unlikely(ctlr->ptp_sts_supported))
1940 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1941 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1942 
1943 	spi_unmap_msg(ctlr, mesg);
1944 
1945 	/*
1946 	 * In the prepare_messages callback the SPI bus has the opportunity
1947 	 * to split a transfer to smaller chunks.
1948 	 *
1949 	 * Release the split transfers here since spi_map_msg() is done on
1950 	 * the split transfers.
1951 	 */
1952 	spi_res_release(ctlr, mesg);
1953 
1954 	if (mesg->prepared && ctlr->unprepare_message) {
1955 		ret = ctlr->unprepare_message(ctlr, mesg);
1956 		if (ret) {
1957 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1958 				ret);
1959 		}
1960 	}
1961 
1962 	mesg->prepared = false;
1963 
1964 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
1965 	smp_mb(); /* See __spi_pump_transfer_message()... */
1966 	if (READ_ONCE(ctlr->cur_msg_need_completion))
1967 		complete(&ctlr->cur_msg_completion);
1968 
1969 	trace_spi_message_done(mesg);
1970 
1971 	mesg->state = NULL;
1972 	if (mesg->complete)
1973 		mesg->complete(mesg->context);
1974 }
1975 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1976 
1977 static int spi_start_queue(struct spi_controller *ctlr)
1978 {
1979 	unsigned long flags;
1980 
1981 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1982 
1983 	if (ctlr->running || ctlr->busy) {
1984 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1985 		return -EBUSY;
1986 	}
1987 
1988 	ctlr->running = true;
1989 	ctlr->cur_msg = NULL;
1990 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1991 
1992 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1993 
1994 	return 0;
1995 }
1996 
1997 static int spi_stop_queue(struct spi_controller *ctlr)
1998 {
1999 	unsigned long flags;
2000 	unsigned limit = 500;
2001 	int ret = 0;
2002 
2003 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2004 
2005 	/*
2006 	 * This is a bit lame, but is optimized for the common execution path.
2007 	 * A wait_queue on the ctlr->busy could be used, but then the common
2008 	 * execution path (pump_messages) would be required to call wake_up or
2009 	 * friends on every SPI message. Do this instead.
2010 	 */
2011 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2012 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2013 		usleep_range(10000, 11000);
2014 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2015 	}
2016 
2017 	if (!list_empty(&ctlr->queue) || ctlr->busy)
2018 		ret = -EBUSY;
2019 	else
2020 		ctlr->running = false;
2021 
2022 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2023 
2024 	if (ret) {
2025 		dev_warn(&ctlr->dev, "could not stop message queue\n");
2026 		return ret;
2027 	}
2028 	return ret;
2029 }
2030 
2031 static int spi_destroy_queue(struct spi_controller *ctlr)
2032 {
2033 	int ret;
2034 
2035 	ret = spi_stop_queue(ctlr);
2036 
2037 	/*
2038 	 * kthread_flush_worker will block until all work is done.
2039 	 * If the reason that stop_queue timed out is that the work will never
2040 	 * finish, then it does no good to call flush/stop thread, so
2041 	 * return anyway.
2042 	 */
2043 	if (ret) {
2044 		dev_err(&ctlr->dev, "problem destroying queue\n");
2045 		return ret;
2046 	}
2047 
2048 	kthread_destroy_worker(ctlr->kworker);
2049 
2050 	return 0;
2051 }
2052 
2053 static int __spi_queued_transfer(struct spi_device *spi,
2054 				 struct spi_message *msg,
2055 				 bool need_pump)
2056 {
2057 	struct spi_controller *ctlr = spi->controller;
2058 	unsigned long flags;
2059 
2060 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2061 
2062 	if (!ctlr->running) {
2063 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2064 		return -ESHUTDOWN;
2065 	}
2066 	msg->actual_length = 0;
2067 	msg->status = -EINPROGRESS;
2068 
2069 	list_add_tail(&msg->queue, &ctlr->queue);
2070 	ctlr->queue_empty = false;
2071 	if (!ctlr->busy && need_pump)
2072 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2073 
2074 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2075 	return 0;
2076 }
2077 
2078 /**
2079  * spi_queued_transfer - transfer function for queued transfers
2080  * @spi: spi device which is requesting transfer
2081  * @msg: spi message which is to handled is queued to driver queue
2082  *
2083  * Return: zero on success, else a negative error code.
2084  */
2085 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2086 {
2087 	return __spi_queued_transfer(spi, msg, true);
2088 }
2089 
2090 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2091 {
2092 	int ret;
2093 
2094 	ctlr->transfer = spi_queued_transfer;
2095 	if (!ctlr->transfer_one_message)
2096 		ctlr->transfer_one_message = spi_transfer_one_message;
2097 
2098 	/* Initialize and start queue */
2099 	ret = spi_init_queue(ctlr);
2100 	if (ret) {
2101 		dev_err(&ctlr->dev, "problem initializing queue\n");
2102 		goto err_init_queue;
2103 	}
2104 	ctlr->queued = true;
2105 	ret = spi_start_queue(ctlr);
2106 	if (ret) {
2107 		dev_err(&ctlr->dev, "problem starting queue\n");
2108 		goto err_start_queue;
2109 	}
2110 
2111 	return 0;
2112 
2113 err_start_queue:
2114 	spi_destroy_queue(ctlr);
2115 err_init_queue:
2116 	return ret;
2117 }
2118 
2119 /**
2120  * spi_flush_queue - Send all pending messages in the queue from the callers'
2121  *		     context
2122  * @ctlr: controller to process queue for
2123  *
2124  * This should be used when one wants to ensure all pending messages have been
2125  * sent before doing something. Is used by the spi-mem code to make sure SPI
2126  * memory operations do not preempt regular SPI transfers that have been queued
2127  * before the spi-mem operation.
2128  */
2129 void spi_flush_queue(struct spi_controller *ctlr)
2130 {
2131 	if (ctlr->transfer == spi_queued_transfer)
2132 		__spi_pump_messages(ctlr, false);
2133 }
2134 
2135 /*-------------------------------------------------------------------------*/
2136 
2137 #if defined(CONFIG_OF)
2138 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2139 			   struct device_node *nc)
2140 {
2141 	u32 value;
2142 	int rc;
2143 
2144 	/* Mode (clock phase/polarity/etc.) */
2145 	if (of_property_read_bool(nc, "spi-cpha"))
2146 		spi->mode |= SPI_CPHA;
2147 	if (of_property_read_bool(nc, "spi-cpol"))
2148 		spi->mode |= SPI_CPOL;
2149 	if (of_property_read_bool(nc, "spi-3wire"))
2150 		spi->mode |= SPI_3WIRE;
2151 	if (of_property_read_bool(nc, "spi-lsb-first"))
2152 		spi->mode |= SPI_LSB_FIRST;
2153 	if (of_property_read_bool(nc, "spi-cs-high"))
2154 		spi->mode |= SPI_CS_HIGH;
2155 
2156 	/* Device DUAL/QUAD mode */
2157 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2158 		switch (value) {
2159 		case 0:
2160 			spi->mode |= SPI_NO_TX;
2161 			break;
2162 		case 1:
2163 			break;
2164 		case 2:
2165 			spi->mode |= SPI_TX_DUAL;
2166 			break;
2167 		case 4:
2168 			spi->mode |= SPI_TX_QUAD;
2169 			break;
2170 		case 8:
2171 			spi->mode |= SPI_TX_OCTAL;
2172 			break;
2173 		default:
2174 			dev_warn(&ctlr->dev,
2175 				"spi-tx-bus-width %d not supported\n",
2176 				value);
2177 			break;
2178 		}
2179 	}
2180 
2181 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2182 		switch (value) {
2183 		case 0:
2184 			spi->mode |= SPI_NO_RX;
2185 			break;
2186 		case 1:
2187 			break;
2188 		case 2:
2189 			spi->mode |= SPI_RX_DUAL;
2190 			break;
2191 		case 4:
2192 			spi->mode |= SPI_RX_QUAD;
2193 			break;
2194 		case 8:
2195 			spi->mode |= SPI_RX_OCTAL;
2196 			break;
2197 		default:
2198 			dev_warn(&ctlr->dev,
2199 				"spi-rx-bus-width %d not supported\n",
2200 				value);
2201 			break;
2202 		}
2203 	}
2204 
2205 	if (spi_controller_is_slave(ctlr)) {
2206 		if (!of_node_name_eq(nc, "slave")) {
2207 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2208 				nc);
2209 			return -EINVAL;
2210 		}
2211 		return 0;
2212 	}
2213 
2214 	/* Device address */
2215 	rc = of_property_read_u32(nc, "reg", &value);
2216 	if (rc) {
2217 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2218 			nc, rc);
2219 		return rc;
2220 	}
2221 	spi->chip_select = value;
2222 
2223 	/* Device speed */
2224 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2225 		spi->max_speed_hz = value;
2226 
2227 	return 0;
2228 }
2229 
2230 static struct spi_device *
2231 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2232 {
2233 	struct spi_device *spi;
2234 	int rc;
2235 
2236 	/* Alloc an spi_device */
2237 	spi = spi_alloc_device(ctlr);
2238 	if (!spi) {
2239 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2240 		rc = -ENOMEM;
2241 		goto err_out;
2242 	}
2243 
2244 	/* Select device driver */
2245 	rc = of_modalias_node(nc, spi->modalias,
2246 				sizeof(spi->modalias));
2247 	if (rc < 0) {
2248 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2249 		goto err_out;
2250 	}
2251 
2252 	rc = of_spi_parse_dt(ctlr, spi, nc);
2253 	if (rc)
2254 		goto err_out;
2255 
2256 	/* Store a pointer to the node in the device structure */
2257 	of_node_get(nc);
2258 	spi->dev.of_node = nc;
2259 	spi->dev.fwnode = of_fwnode_handle(nc);
2260 
2261 	/* Register the new device */
2262 	rc = spi_add_device(spi);
2263 	if (rc) {
2264 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2265 		goto err_of_node_put;
2266 	}
2267 
2268 	return spi;
2269 
2270 err_of_node_put:
2271 	of_node_put(nc);
2272 err_out:
2273 	spi_dev_put(spi);
2274 	return ERR_PTR(rc);
2275 }
2276 
2277 /**
2278  * of_register_spi_devices() - Register child devices onto the SPI bus
2279  * @ctlr:	Pointer to spi_controller device
2280  *
2281  * Registers an spi_device for each child node of controller node which
2282  * represents a valid SPI slave.
2283  */
2284 static void of_register_spi_devices(struct spi_controller *ctlr)
2285 {
2286 	struct spi_device *spi;
2287 	struct device_node *nc;
2288 
2289 	if (!ctlr->dev.of_node)
2290 		return;
2291 
2292 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2293 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2294 			continue;
2295 		spi = of_register_spi_device(ctlr, nc);
2296 		if (IS_ERR(spi)) {
2297 			dev_warn(&ctlr->dev,
2298 				 "Failed to create SPI device for %pOF\n", nc);
2299 			of_node_clear_flag(nc, OF_POPULATED);
2300 		}
2301 	}
2302 }
2303 #else
2304 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2305 #endif
2306 
2307 /**
2308  * spi_new_ancillary_device() - Register ancillary SPI device
2309  * @spi:         Pointer to the main SPI device registering the ancillary device
2310  * @chip_select: Chip Select of the ancillary device
2311  *
2312  * Register an ancillary SPI device; for example some chips have a chip-select
2313  * for normal device usage and another one for setup/firmware upload.
2314  *
2315  * This may only be called from main SPI device's probe routine.
2316  *
2317  * Return: 0 on success; negative errno on failure
2318  */
2319 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2320 					     u8 chip_select)
2321 {
2322 	struct spi_device *ancillary;
2323 	int rc = 0;
2324 
2325 	/* Alloc an spi_device */
2326 	ancillary = spi_alloc_device(spi->controller);
2327 	if (!ancillary) {
2328 		rc = -ENOMEM;
2329 		goto err_out;
2330 	}
2331 
2332 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2333 
2334 	/* Use provided chip-select for ancillary device */
2335 	ancillary->chip_select = chip_select;
2336 
2337 	/* Take over SPI mode/speed from SPI main device */
2338 	ancillary->max_speed_hz = spi->max_speed_hz;
2339 	ancillary->mode = spi->mode;
2340 
2341 	/* Register the new device */
2342 	rc = spi_add_device_locked(ancillary);
2343 	if (rc) {
2344 		dev_err(&spi->dev, "failed to register ancillary device\n");
2345 		goto err_out;
2346 	}
2347 
2348 	return ancillary;
2349 
2350 err_out:
2351 	spi_dev_put(ancillary);
2352 	return ERR_PTR(rc);
2353 }
2354 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2355 
2356 #ifdef CONFIG_ACPI
2357 struct acpi_spi_lookup {
2358 	struct spi_controller 	*ctlr;
2359 	u32			max_speed_hz;
2360 	u32			mode;
2361 	int			irq;
2362 	u8			bits_per_word;
2363 	u8			chip_select;
2364 	int			n;
2365 	int			index;
2366 };
2367 
2368 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2369 {
2370 	struct acpi_resource_spi_serialbus *sb;
2371 	int *count = data;
2372 
2373 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2374 		return 1;
2375 
2376 	sb = &ares->data.spi_serial_bus;
2377 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2378 		return 1;
2379 
2380 	*count = *count + 1;
2381 
2382 	return 1;
2383 }
2384 
2385 /**
2386  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2387  * @adev:	ACPI device
2388  *
2389  * Returns the number of SpiSerialBus resources in the ACPI-device's
2390  * resource-list; or a negative error code.
2391  */
2392 int acpi_spi_count_resources(struct acpi_device *adev)
2393 {
2394 	LIST_HEAD(r);
2395 	int count = 0;
2396 	int ret;
2397 
2398 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2399 	if (ret < 0)
2400 		return ret;
2401 
2402 	acpi_dev_free_resource_list(&r);
2403 
2404 	return count;
2405 }
2406 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2407 
2408 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2409 					    struct acpi_spi_lookup *lookup)
2410 {
2411 	const union acpi_object *obj;
2412 
2413 	if (!x86_apple_machine)
2414 		return;
2415 
2416 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2417 	    && obj->buffer.length >= 4)
2418 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2419 
2420 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2421 	    && obj->buffer.length == 8)
2422 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2423 
2424 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2425 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2426 		lookup->mode |= SPI_LSB_FIRST;
2427 
2428 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2429 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2430 		lookup->mode |= SPI_CPOL;
2431 
2432 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2433 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2434 		lookup->mode |= SPI_CPHA;
2435 }
2436 
2437 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2438 
2439 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2440 {
2441 	struct acpi_spi_lookup *lookup = data;
2442 	struct spi_controller *ctlr = lookup->ctlr;
2443 
2444 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2445 		struct acpi_resource_spi_serialbus *sb;
2446 		acpi_handle parent_handle;
2447 		acpi_status status;
2448 
2449 		sb = &ares->data.spi_serial_bus;
2450 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2451 
2452 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2453 				return 1;
2454 
2455 			status = acpi_get_handle(NULL,
2456 						 sb->resource_source.string_ptr,
2457 						 &parent_handle);
2458 
2459 			if (ACPI_FAILURE(status))
2460 				return -ENODEV;
2461 
2462 			if (ctlr) {
2463 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2464 					return -ENODEV;
2465 			} else {
2466 				struct acpi_device *adev;
2467 
2468 				adev = acpi_fetch_acpi_dev(parent_handle);
2469 				if (!adev)
2470 					return -ENODEV;
2471 
2472 				ctlr = acpi_spi_find_controller_by_adev(adev);
2473 				if (!ctlr)
2474 					return -EPROBE_DEFER;
2475 
2476 				lookup->ctlr = ctlr;
2477 			}
2478 
2479 			/*
2480 			 * ACPI DeviceSelection numbering is handled by the
2481 			 * host controller driver in Windows and can vary
2482 			 * from driver to driver. In Linux we always expect
2483 			 * 0 .. max - 1 so we need to ask the driver to
2484 			 * translate between the two schemes.
2485 			 */
2486 			if (ctlr->fw_translate_cs) {
2487 				int cs = ctlr->fw_translate_cs(ctlr,
2488 						sb->device_selection);
2489 				if (cs < 0)
2490 					return cs;
2491 				lookup->chip_select = cs;
2492 			} else {
2493 				lookup->chip_select = sb->device_selection;
2494 			}
2495 
2496 			lookup->max_speed_hz = sb->connection_speed;
2497 			lookup->bits_per_word = sb->data_bit_length;
2498 
2499 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2500 				lookup->mode |= SPI_CPHA;
2501 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2502 				lookup->mode |= SPI_CPOL;
2503 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2504 				lookup->mode |= SPI_CS_HIGH;
2505 		}
2506 	} else if (lookup->irq < 0) {
2507 		struct resource r;
2508 
2509 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2510 			lookup->irq = r.start;
2511 	}
2512 
2513 	/* Always tell the ACPI core to skip this resource */
2514 	return 1;
2515 }
2516 
2517 /**
2518  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2519  * @ctlr: controller to which the spi device belongs
2520  * @adev: ACPI Device for the spi device
2521  * @index: Index of the spi resource inside the ACPI Node
2522  *
2523  * This should be used to allocate a new spi device from and ACPI Node.
2524  * The caller is responsible for calling spi_add_device to register the spi device.
2525  *
2526  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2527  * using the resource.
2528  * If index is set to -1, index is not used.
2529  * Note: If index is -1, ctlr must be set.
2530  *
2531  * Return: a pointer to the new device, or ERR_PTR on error.
2532  */
2533 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2534 					 struct acpi_device *adev,
2535 					 int index)
2536 {
2537 	acpi_handle parent_handle = NULL;
2538 	struct list_head resource_list;
2539 	struct acpi_spi_lookup lookup = {};
2540 	struct spi_device *spi;
2541 	int ret;
2542 
2543 	if (!ctlr && index == -1)
2544 		return ERR_PTR(-EINVAL);
2545 
2546 	lookup.ctlr		= ctlr;
2547 	lookup.irq		= -1;
2548 	lookup.index		= index;
2549 	lookup.n		= 0;
2550 
2551 	INIT_LIST_HEAD(&resource_list);
2552 	ret = acpi_dev_get_resources(adev, &resource_list,
2553 				     acpi_spi_add_resource, &lookup);
2554 	acpi_dev_free_resource_list(&resource_list);
2555 
2556 	if (ret < 0)
2557 		/* Found SPI in _CRS but it points to another controller */
2558 		return ERR_PTR(ret);
2559 
2560 	if (!lookup.max_speed_hz &&
2561 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2562 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2563 		/* Apple does not use _CRS but nested devices for SPI slaves */
2564 		acpi_spi_parse_apple_properties(adev, &lookup);
2565 	}
2566 
2567 	if (!lookup.max_speed_hz)
2568 		return ERR_PTR(-ENODEV);
2569 
2570 	spi = spi_alloc_device(lookup.ctlr);
2571 	if (!spi) {
2572 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2573 			dev_name(&adev->dev));
2574 		return ERR_PTR(-ENOMEM);
2575 	}
2576 
2577 	ACPI_COMPANION_SET(&spi->dev, adev);
2578 	spi->max_speed_hz	= lookup.max_speed_hz;
2579 	spi->mode		|= lookup.mode;
2580 	spi->irq		= lookup.irq;
2581 	spi->bits_per_word	= lookup.bits_per_word;
2582 	spi->chip_select	= lookup.chip_select;
2583 
2584 	return spi;
2585 }
2586 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2587 
2588 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2589 					    struct acpi_device *adev)
2590 {
2591 	struct spi_device *spi;
2592 
2593 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2594 	    acpi_device_enumerated(adev))
2595 		return AE_OK;
2596 
2597 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2598 	if (IS_ERR(spi)) {
2599 		if (PTR_ERR(spi) == -ENOMEM)
2600 			return AE_NO_MEMORY;
2601 		else
2602 			return AE_OK;
2603 	}
2604 
2605 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2606 			  sizeof(spi->modalias));
2607 
2608 	if (spi->irq < 0)
2609 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2610 
2611 	acpi_device_set_enumerated(adev);
2612 
2613 	adev->power.flags.ignore_parent = true;
2614 	if (spi_add_device(spi)) {
2615 		adev->power.flags.ignore_parent = false;
2616 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2617 			dev_name(&adev->dev));
2618 		spi_dev_put(spi);
2619 	}
2620 
2621 	return AE_OK;
2622 }
2623 
2624 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2625 				       void *data, void **return_value)
2626 {
2627 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2628 	struct spi_controller *ctlr = data;
2629 
2630 	if (!adev)
2631 		return AE_OK;
2632 
2633 	return acpi_register_spi_device(ctlr, adev);
2634 }
2635 
2636 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2637 
2638 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2639 {
2640 	acpi_status status;
2641 	acpi_handle handle;
2642 
2643 	handle = ACPI_HANDLE(ctlr->dev.parent);
2644 	if (!handle)
2645 		return;
2646 
2647 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2648 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2649 				     acpi_spi_add_device, NULL, ctlr, NULL);
2650 	if (ACPI_FAILURE(status))
2651 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2652 }
2653 #else
2654 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2655 #endif /* CONFIG_ACPI */
2656 
2657 static void spi_controller_release(struct device *dev)
2658 {
2659 	struct spi_controller *ctlr;
2660 
2661 	ctlr = container_of(dev, struct spi_controller, dev);
2662 	kfree(ctlr);
2663 }
2664 
2665 static struct class spi_master_class = {
2666 	.name		= "spi_master",
2667 	.owner		= THIS_MODULE,
2668 	.dev_release	= spi_controller_release,
2669 	.dev_groups	= spi_master_groups,
2670 };
2671 
2672 #ifdef CONFIG_SPI_SLAVE
2673 /**
2674  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2675  *		     controller
2676  * @spi: device used for the current transfer
2677  */
2678 int spi_slave_abort(struct spi_device *spi)
2679 {
2680 	struct spi_controller *ctlr = spi->controller;
2681 
2682 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2683 		return ctlr->slave_abort(ctlr);
2684 
2685 	return -ENOTSUPP;
2686 }
2687 EXPORT_SYMBOL_GPL(spi_slave_abort);
2688 
2689 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2690 			  char *buf)
2691 {
2692 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2693 						   dev);
2694 	struct device *child;
2695 
2696 	child = device_find_any_child(&ctlr->dev);
2697 	return sprintf(buf, "%s\n",
2698 		       child ? to_spi_device(child)->modalias : NULL);
2699 }
2700 
2701 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2702 			   const char *buf, size_t count)
2703 {
2704 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2705 						   dev);
2706 	struct spi_device *spi;
2707 	struct device *child;
2708 	char name[32];
2709 	int rc;
2710 
2711 	rc = sscanf(buf, "%31s", name);
2712 	if (rc != 1 || !name[0])
2713 		return -EINVAL;
2714 
2715 	child = device_find_any_child(&ctlr->dev);
2716 	if (child) {
2717 		/* Remove registered slave */
2718 		device_unregister(child);
2719 		put_device(child);
2720 	}
2721 
2722 	if (strcmp(name, "(null)")) {
2723 		/* Register new slave */
2724 		spi = spi_alloc_device(ctlr);
2725 		if (!spi)
2726 			return -ENOMEM;
2727 
2728 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2729 
2730 		rc = spi_add_device(spi);
2731 		if (rc) {
2732 			spi_dev_put(spi);
2733 			return rc;
2734 		}
2735 	}
2736 
2737 	return count;
2738 }
2739 
2740 static DEVICE_ATTR_RW(slave);
2741 
2742 static struct attribute *spi_slave_attrs[] = {
2743 	&dev_attr_slave.attr,
2744 	NULL,
2745 };
2746 
2747 static const struct attribute_group spi_slave_group = {
2748 	.attrs = spi_slave_attrs,
2749 };
2750 
2751 static const struct attribute_group *spi_slave_groups[] = {
2752 	&spi_controller_statistics_group,
2753 	&spi_slave_group,
2754 	NULL,
2755 };
2756 
2757 static struct class spi_slave_class = {
2758 	.name		= "spi_slave",
2759 	.owner		= THIS_MODULE,
2760 	.dev_release	= spi_controller_release,
2761 	.dev_groups	= spi_slave_groups,
2762 };
2763 #else
2764 extern struct class spi_slave_class;	/* dummy */
2765 #endif
2766 
2767 /**
2768  * __spi_alloc_controller - allocate an SPI master or slave controller
2769  * @dev: the controller, possibly using the platform_bus
2770  * @size: how much zeroed driver-private data to allocate; the pointer to this
2771  *	memory is in the driver_data field of the returned device, accessible
2772  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2773  *	drivers granting DMA access to portions of their private data need to
2774  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2775  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2776  *	slave (true) controller
2777  * Context: can sleep
2778  *
2779  * This call is used only by SPI controller drivers, which are the
2780  * only ones directly touching chip registers.  It's how they allocate
2781  * an spi_controller structure, prior to calling spi_register_controller().
2782  *
2783  * This must be called from context that can sleep.
2784  *
2785  * The caller is responsible for assigning the bus number and initializing the
2786  * controller's methods before calling spi_register_controller(); and (after
2787  * errors adding the device) calling spi_controller_put() to prevent a memory
2788  * leak.
2789  *
2790  * Return: the SPI controller structure on success, else NULL.
2791  */
2792 struct spi_controller *__spi_alloc_controller(struct device *dev,
2793 					      unsigned int size, bool slave)
2794 {
2795 	struct spi_controller	*ctlr;
2796 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2797 
2798 	if (!dev)
2799 		return NULL;
2800 
2801 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2802 	if (!ctlr)
2803 		return NULL;
2804 
2805 	device_initialize(&ctlr->dev);
2806 	INIT_LIST_HEAD(&ctlr->queue);
2807 	spin_lock_init(&ctlr->queue_lock);
2808 	spin_lock_init(&ctlr->bus_lock_spinlock);
2809 	mutex_init(&ctlr->bus_lock_mutex);
2810 	mutex_init(&ctlr->io_mutex);
2811 	mutex_init(&ctlr->add_lock);
2812 	ctlr->bus_num = -1;
2813 	ctlr->num_chipselect = 1;
2814 	ctlr->slave = slave;
2815 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2816 		ctlr->dev.class = &spi_slave_class;
2817 	else
2818 		ctlr->dev.class = &spi_master_class;
2819 	ctlr->dev.parent = dev;
2820 	pm_suspend_ignore_children(&ctlr->dev, true);
2821 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2822 
2823 	return ctlr;
2824 }
2825 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2826 
2827 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2828 {
2829 	spi_controller_put(*(struct spi_controller **)ctlr);
2830 }
2831 
2832 /**
2833  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2834  * @dev: physical device of SPI controller
2835  * @size: how much zeroed driver-private data to allocate
2836  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2837  * Context: can sleep
2838  *
2839  * Allocate an SPI controller and automatically release a reference on it
2840  * when @dev is unbound from its driver.  Drivers are thus relieved from
2841  * having to call spi_controller_put().
2842  *
2843  * The arguments to this function are identical to __spi_alloc_controller().
2844  *
2845  * Return: the SPI controller structure on success, else NULL.
2846  */
2847 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2848 						   unsigned int size,
2849 						   bool slave)
2850 {
2851 	struct spi_controller **ptr, *ctlr;
2852 
2853 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2854 			   GFP_KERNEL);
2855 	if (!ptr)
2856 		return NULL;
2857 
2858 	ctlr = __spi_alloc_controller(dev, size, slave);
2859 	if (ctlr) {
2860 		ctlr->devm_allocated = true;
2861 		*ptr = ctlr;
2862 		devres_add(dev, ptr);
2863 	} else {
2864 		devres_free(ptr);
2865 	}
2866 
2867 	return ctlr;
2868 }
2869 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2870 
2871 /**
2872  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2873  * @ctlr: The SPI master to grab GPIO descriptors for
2874  */
2875 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2876 {
2877 	int nb, i;
2878 	struct gpio_desc **cs;
2879 	struct device *dev = &ctlr->dev;
2880 	unsigned long native_cs_mask = 0;
2881 	unsigned int num_cs_gpios = 0;
2882 
2883 	nb = gpiod_count(dev, "cs");
2884 	if (nb < 0) {
2885 		/* No GPIOs at all is fine, else return the error */
2886 		if (nb == -ENOENT)
2887 			return 0;
2888 		return nb;
2889 	}
2890 
2891 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2892 
2893 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2894 			  GFP_KERNEL);
2895 	if (!cs)
2896 		return -ENOMEM;
2897 	ctlr->cs_gpiods = cs;
2898 
2899 	for (i = 0; i < nb; i++) {
2900 		/*
2901 		 * Most chipselects are active low, the inverted
2902 		 * semantics are handled by special quirks in gpiolib,
2903 		 * so initializing them GPIOD_OUT_LOW here means
2904 		 * "unasserted", in most cases this will drive the physical
2905 		 * line high.
2906 		 */
2907 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2908 						      GPIOD_OUT_LOW);
2909 		if (IS_ERR(cs[i]))
2910 			return PTR_ERR(cs[i]);
2911 
2912 		if (cs[i]) {
2913 			/*
2914 			 * If we find a CS GPIO, name it after the device and
2915 			 * chip select line.
2916 			 */
2917 			char *gpioname;
2918 
2919 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2920 						  dev_name(dev), i);
2921 			if (!gpioname)
2922 				return -ENOMEM;
2923 			gpiod_set_consumer_name(cs[i], gpioname);
2924 			num_cs_gpios++;
2925 			continue;
2926 		}
2927 
2928 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2929 			dev_err(dev, "Invalid native chip select %d\n", i);
2930 			return -EINVAL;
2931 		}
2932 		native_cs_mask |= BIT(i);
2933 	}
2934 
2935 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2936 
2937 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2938 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2939 		dev_err(dev, "No unused native chip select available\n");
2940 		return -EINVAL;
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 static int spi_controller_check_ops(struct spi_controller *ctlr)
2947 {
2948 	/*
2949 	 * The controller may implement only the high-level SPI-memory like
2950 	 * operations if it does not support regular SPI transfers, and this is
2951 	 * valid use case.
2952 	 * If ->mem_ops is NULL, we request that at least one of the
2953 	 * ->transfer_xxx() method be implemented.
2954 	 */
2955 	if (ctlr->mem_ops) {
2956 		if (!ctlr->mem_ops->exec_op)
2957 			return -EINVAL;
2958 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2959 		   !ctlr->transfer_one_message) {
2960 		return -EINVAL;
2961 	}
2962 
2963 	return 0;
2964 }
2965 
2966 /**
2967  * spi_register_controller - register SPI master or slave controller
2968  * @ctlr: initialized master, originally from spi_alloc_master() or
2969  *	spi_alloc_slave()
2970  * Context: can sleep
2971  *
2972  * SPI controllers connect to their drivers using some non-SPI bus,
2973  * such as the platform bus.  The final stage of probe() in that code
2974  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2975  *
2976  * SPI controllers use board specific (often SOC specific) bus numbers,
2977  * and board-specific addressing for SPI devices combines those numbers
2978  * with chip select numbers.  Since SPI does not directly support dynamic
2979  * device identification, boards need configuration tables telling which
2980  * chip is at which address.
2981  *
2982  * This must be called from context that can sleep.  It returns zero on
2983  * success, else a negative error code (dropping the controller's refcount).
2984  * After a successful return, the caller is responsible for calling
2985  * spi_unregister_controller().
2986  *
2987  * Return: zero on success, else a negative error code.
2988  */
2989 int spi_register_controller(struct spi_controller *ctlr)
2990 {
2991 	struct device		*dev = ctlr->dev.parent;
2992 	struct boardinfo	*bi;
2993 	int			status;
2994 	int			id, first_dynamic;
2995 
2996 	if (!dev)
2997 		return -ENODEV;
2998 
2999 	/*
3000 	 * Make sure all necessary hooks are implemented before registering
3001 	 * the SPI controller.
3002 	 */
3003 	status = spi_controller_check_ops(ctlr);
3004 	if (status)
3005 		return status;
3006 
3007 	if (ctlr->bus_num >= 0) {
3008 		/* Devices with a fixed bus num must check-in with the num */
3009 		mutex_lock(&board_lock);
3010 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3011 			ctlr->bus_num + 1, GFP_KERNEL);
3012 		mutex_unlock(&board_lock);
3013 		if (WARN(id < 0, "couldn't get idr"))
3014 			return id == -ENOSPC ? -EBUSY : id;
3015 		ctlr->bus_num = id;
3016 	} else if (ctlr->dev.of_node) {
3017 		/* Allocate dynamic bus number using Linux idr */
3018 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
3019 		if (id >= 0) {
3020 			ctlr->bus_num = id;
3021 			mutex_lock(&board_lock);
3022 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3023 				       ctlr->bus_num + 1, GFP_KERNEL);
3024 			mutex_unlock(&board_lock);
3025 			if (WARN(id < 0, "couldn't get idr"))
3026 				return id == -ENOSPC ? -EBUSY : id;
3027 		}
3028 	}
3029 	if (ctlr->bus_num < 0) {
3030 		first_dynamic = of_alias_get_highest_id("spi");
3031 		if (first_dynamic < 0)
3032 			first_dynamic = 0;
3033 		else
3034 			first_dynamic++;
3035 
3036 		mutex_lock(&board_lock);
3037 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3038 			       0, GFP_KERNEL);
3039 		mutex_unlock(&board_lock);
3040 		if (WARN(id < 0, "couldn't get idr"))
3041 			return id;
3042 		ctlr->bus_num = id;
3043 	}
3044 	ctlr->bus_lock_flag = 0;
3045 	init_completion(&ctlr->xfer_completion);
3046 	init_completion(&ctlr->cur_msg_completion);
3047 	if (!ctlr->max_dma_len)
3048 		ctlr->max_dma_len = INT_MAX;
3049 
3050 	/*
3051 	 * Register the device, then userspace will see it.
3052 	 * Registration fails if the bus ID is in use.
3053 	 */
3054 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3055 
3056 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3057 		status = spi_get_gpio_descs(ctlr);
3058 		if (status)
3059 			goto free_bus_id;
3060 		/*
3061 		 * A controller using GPIO descriptors always
3062 		 * supports SPI_CS_HIGH if need be.
3063 		 */
3064 		ctlr->mode_bits |= SPI_CS_HIGH;
3065 	}
3066 
3067 	/*
3068 	 * Even if it's just one always-selected device, there must
3069 	 * be at least one chipselect.
3070 	 */
3071 	if (!ctlr->num_chipselect) {
3072 		status = -EINVAL;
3073 		goto free_bus_id;
3074 	}
3075 
3076 	/* Setting last_cs to -1 means no chip selected */
3077 	ctlr->last_cs = -1;
3078 
3079 	status = device_add(&ctlr->dev);
3080 	if (status < 0)
3081 		goto free_bus_id;
3082 	dev_dbg(dev, "registered %s %s\n",
3083 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3084 			dev_name(&ctlr->dev));
3085 
3086 	/*
3087 	 * If we're using a queued driver, start the queue. Note that we don't
3088 	 * need the queueing logic if the driver is only supporting high-level
3089 	 * memory operations.
3090 	 */
3091 	if (ctlr->transfer) {
3092 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3093 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3094 		status = spi_controller_initialize_queue(ctlr);
3095 		if (status) {
3096 			device_del(&ctlr->dev);
3097 			goto free_bus_id;
3098 		}
3099 	}
3100 	/* Add statistics */
3101 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3102 	if (!ctlr->pcpu_statistics) {
3103 		dev_err(dev, "Error allocating per-cpu statistics\n");
3104 		status = -ENOMEM;
3105 		goto destroy_queue;
3106 	}
3107 
3108 	mutex_lock(&board_lock);
3109 	list_add_tail(&ctlr->list, &spi_controller_list);
3110 	list_for_each_entry(bi, &board_list, list)
3111 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3112 	mutex_unlock(&board_lock);
3113 
3114 	/* Register devices from the device tree and ACPI */
3115 	of_register_spi_devices(ctlr);
3116 	acpi_register_spi_devices(ctlr);
3117 	return status;
3118 
3119 destroy_queue:
3120 	spi_destroy_queue(ctlr);
3121 free_bus_id:
3122 	mutex_lock(&board_lock);
3123 	idr_remove(&spi_master_idr, ctlr->bus_num);
3124 	mutex_unlock(&board_lock);
3125 	return status;
3126 }
3127 EXPORT_SYMBOL_GPL(spi_register_controller);
3128 
3129 static void devm_spi_unregister(struct device *dev, void *res)
3130 {
3131 	spi_unregister_controller(*(struct spi_controller **)res);
3132 }
3133 
3134 /**
3135  * devm_spi_register_controller - register managed SPI master or slave
3136  *	controller
3137  * @dev:    device managing SPI controller
3138  * @ctlr: initialized controller, originally from spi_alloc_master() or
3139  *	spi_alloc_slave()
3140  * Context: can sleep
3141  *
3142  * Register a SPI device as with spi_register_controller() which will
3143  * automatically be unregistered and freed.
3144  *
3145  * Return: zero on success, else a negative error code.
3146  */
3147 int devm_spi_register_controller(struct device *dev,
3148 				 struct spi_controller *ctlr)
3149 {
3150 	struct spi_controller **ptr;
3151 	int ret;
3152 
3153 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3154 	if (!ptr)
3155 		return -ENOMEM;
3156 
3157 	ret = spi_register_controller(ctlr);
3158 	if (!ret) {
3159 		*ptr = ctlr;
3160 		devres_add(dev, ptr);
3161 	} else {
3162 		devres_free(ptr);
3163 	}
3164 
3165 	return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3168 
3169 static int __unregister(struct device *dev, void *null)
3170 {
3171 	spi_unregister_device(to_spi_device(dev));
3172 	return 0;
3173 }
3174 
3175 /**
3176  * spi_unregister_controller - unregister SPI master or slave controller
3177  * @ctlr: the controller being unregistered
3178  * Context: can sleep
3179  *
3180  * This call is used only by SPI controller drivers, which are the
3181  * only ones directly touching chip registers.
3182  *
3183  * This must be called from context that can sleep.
3184  *
3185  * Note that this function also drops a reference to the controller.
3186  */
3187 void spi_unregister_controller(struct spi_controller *ctlr)
3188 {
3189 	struct spi_controller *found;
3190 	int id = ctlr->bus_num;
3191 
3192 	/* Prevent addition of new devices, unregister existing ones */
3193 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3194 		mutex_lock(&ctlr->add_lock);
3195 
3196 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3197 
3198 	/* First make sure that this controller was ever added */
3199 	mutex_lock(&board_lock);
3200 	found = idr_find(&spi_master_idr, id);
3201 	mutex_unlock(&board_lock);
3202 	if (ctlr->queued) {
3203 		if (spi_destroy_queue(ctlr))
3204 			dev_err(&ctlr->dev, "queue remove failed\n");
3205 	}
3206 	mutex_lock(&board_lock);
3207 	list_del(&ctlr->list);
3208 	mutex_unlock(&board_lock);
3209 
3210 	device_del(&ctlr->dev);
3211 
3212 	/* Free bus id */
3213 	mutex_lock(&board_lock);
3214 	if (found == ctlr)
3215 		idr_remove(&spi_master_idr, id);
3216 	mutex_unlock(&board_lock);
3217 
3218 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3219 		mutex_unlock(&ctlr->add_lock);
3220 
3221 	/* Release the last reference on the controller if its driver
3222 	 * has not yet been converted to devm_spi_alloc_master/slave().
3223 	 */
3224 	if (!ctlr->devm_allocated)
3225 		put_device(&ctlr->dev);
3226 }
3227 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3228 
3229 int spi_controller_suspend(struct spi_controller *ctlr)
3230 {
3231 	int ret;
3232 
3233 	/* Basically no-ops for non-queued controllers */
3234 	if (!ctlr->queued)
3235 		return 0;
3236 
3237 	ret = spi_stop_queue(ctlr);
3238 	if (ret)
3239 		dev_err(&ctlr->dev, "queue stop failed\n");
3240 
3241 	return ret;
3242 }
3243 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3244 
3245 int spi_controller_resume(struct spi_controller *ctlr)
3246 {
3247 	int ret;
3248 
3249 	if (!ctlr->queued)
3250 		return 0;
3251 
3252 	ret = spi_start_queue(ctlr);
3253 	if (ret)
3254 		dev_err(&ctlr->dev, "queue restart failed\n");
3255 
3256 	return ret;
3257 }
3258 EXPORT_SYMBOL_GPL(spi_controller_resume);
3259 
3260 /*-------------------------------------------------------------------------*/
3261 
3262 /* Core methods for spi_message alterations */
3263 
3264 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3265 					    struct spi_message *msg,
3266 					    void *res)
3267 {
3268 	struct spi_replaced_transfers *rxfer = res;
3269 	size_t i;
3270 
3271 	/* Call extra callback if requested */
3272 	if (rxfer->release)
3273 		rxfer->release(ctlr, msg, res);
3274 
3275 	/* Insert replaced transfers back into the message */
3276 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3277 
3278 	/* Remove the formerly inserted entries */
3279 	for (i = 0; i < rxfer->inserted; i++)
3280 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3281 }
3282 
3283 /**
3284  * spi_replace_transfers - replace transfers with several transfers
3285  *                         and register change with spi_message.resources
3286  * @msg:           the spi_message we work upon
3287  * @xfer_first:    the first spi_transfer we want to replace
3288  * @remove:        number of transfers to remove
3289  * @insert:        the number of transfers we want to insert instead
3290  * @release:       extra release code necessary in some circumstances
3291  * @extradatasize: extra data to allocate (with alignment guarantees
3292  *                 of struct @spi_transfer)
3293  * @gfp:           gfp flags
3294  *
3295  * Returns: pointer to @spi_replaced_transfers,
3296  *          PTR_ERR(...) in case of errors.
3297  */
3298 static struct spi_replaced_transfers *spi_replace_transfers(
3299 	struct spi_message *msg,
3300 	struct spi_transfer *xfer_first,
3301 	size_t remove,
3302 	size_t insert,
3303 	spi_replaced_release_t release,
3304 	size_t extradatasize,
3305 	gfp_t gfp)
3306 {
3307 	struct spi_replaced_transfers *rxfer;
3308 	struct spi_transfer *xfer;
3309 	size_t i;
3310 
3311 	/* Allocate the structure using spi_res */
3312 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3313 			      struct_size(rxfer, inserted_transfers, insert)
3314 			      + extradatasize,
3315 			      gfp);
3316 	if (!rxfer)
3317 		return ERR_PTR(-ENOMEM);
3318 
3319 	/* The release code to invoke before running the generic release */
3320 	rxfer->release = release;
3321 
3322 	/* Assign extradata */
3323 	if (extradatasize)
3324 		rxfer->extradata =
3325 			&rxfer->inserted_transfers[insert];
3326 
3327 	/* Init the replaced_transfers list */
3328 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3329 
3330 	/*
3331 	 * Assign the list_entry after which we should reinsert
3332 	 * the @replaced_transfers - it may be spi_message.messages!
3333 	 */
3334 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3335 
3336 	/* Remove the requested number of transfers */
3337 	for (i = 0; i < remove; i++) {
3338 		/*
3339 		 * If the entry after replaced_after it is msg->transfers
3340 		 * then we have been requested to remove more transfers
3341 		 * than are in the list.
3342 		 */
3343 		if (rxfer->replaced_after->next == &msg->transfers) {
3344 			dev_err(&msg->spi->dev,
3345 				"requested to remove more spi_transfers than are available\n");
3346 			/* Insert replaced transfers back into the message */
3347 			list_splice(&rxfer->replaced_transfers,
3348 				    rxfer->replaced_after);
3349 
3350 			/* Free the spi_replace_transfer structure... */
3351 			spi_res_free(rxfer);
3352 
3353 			/* ...and return with an error */
3354 			return ERR_PTR(-EINVAL);
3355 		}
3356 
3357 		/*
3358 		 * Remove the entry after replaced_after from list of
3359 		 * transfers and add it to list of replaced_transfers.
3360 		 */
3361 		list_move_tail(rxfer->replaced_after->next,
3362 			       &rxfer->replaced_transfers);
3363 	}
3364 
3365 	/*
3366 	 * Create copy of the given xfer with identical settings
3367 	 * based on the first transfer to get removed.
3368 	 */
3369 	for (i = 0; i < insert; i++) {
3370 		/* We need to run in reverse order */
3371 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3372 
3373 		/* Copy all spi_transfer data */
3374 		memcpy(xfer, xfer_first, sizeof(*xfer));
3375 
3376 		/* Add to list */
3377 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3378 
3379 		/* Clear cs_change and delay for all but the last */
3380 		if (i) {
3381 			xfer->cs_change = false;
3382 			xfer->delay.value = 0;
3383 		}
3384 	}
3385 
3386 	/* Set up inserted... */
3387 	rxfer->inserted = insert;
3388 
3389 	/* ...and register it with spi_res/spi_message */
3390 	spi_res_add(msg, rxfer);
3391 
3392 	return rxfer;
3393 }
3394 
3395 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3396 					struct spi_message *msg,
3397 					struct spi_transfer **xferp,
3398 					size_t maxsize,
3399 					gfp_t gfp)
3400 {
3401 	struct spi_transfer *xfer = *xferp, *xfers;
3402 	struct spi_replaced_transfers *srt;
3403 	size_t offset;
3404 	size_t count, i;
3405 
3406 	/* Calculate how many we have to replace */
3407 	count = DIV_ROUND_UP(xfer->len, maxsize);
3408 
3409 	/* Create replacement */
3410 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3411 	if (IS_ERR(srt))
3412 		return PTR_ERR(srt);
3413 	xfers = srt->inserted_transfers;
3414 
3415 	/*
3416 	 * Now handle each of those newly inserted spi_transfers.
3417 	 * Note that the replacements spi_transfers all are preset
3418 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3419 	 * are all identical (as well as most others)
3420 	 * so we just have to fix up len and the pointers.
3421 	 *
3422 	 * This also includes support for the depreciated
3423 	 * spi_message.is_dma_mapped interface.
3424 	 */
3425 
3426 	/*
3427 	 * The first transfer just needs the length modified, so we
3428 	 * run it outside the loop.
3429 	 */
3430 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3431 
3432 	/* All the others need rx_buf/tx_buf also set */
3433 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3434 		/* Update rx_buf, tx_buf and dma */
3435 		if (xfers[i].rx_buf)
3436 			xfers[i].rx_buf += offset;
3437 		if (xfers[i].rx_dma)
3438 			xfers[i].rx_dma += offset;
3439 		if (xfers[i].tx_buf)
3440 			xfers[i].tx_buf += offset;
3441 		if (xfers[i].tx_dma)
3442 			xfers[i].tx_dma += offset;
3443 
3444 		/* Update length */
3445 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3446 	}
3447 
3448 	/*
3449 	 * We set up xferp to the last entry we have inserted,
3450 	 * so that we skip those already split transfers.
3451 	 */
3452 	*xferp = &xfers[count - 1];
3453 
3454 	/* Increment statistics counters */
3455 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3456 				       transfers_split_maxsize);
3457 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3458 				       transfers_split_maxsize);
3459 
3460 	return 0;
3461 }
3462 
3463 /**
3464  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3465  *                               when an individual transfer exceeds a
3466  *                               certain size
3467  * @ctlr:    the @spi_controller for this transfer
3468  * @msg:   the @spi_message to transform
3469  * @maxsize:  the maximum when to apply this
3470  * @gfp: GFP allocation flags
3471  *
3472  * Return: status of transformation
3473  */
3474 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3475 				struct spi_message *msg,
3476 				size_t maxsize,
3477 				gfp_t gfp)
3478 {
3479 	struct spi_transfer *xfer;
3480 	int ret;
3481 
3482 	/*
3483 	 * Iterate over the transfer_list,
3484 	 * but note that xfer is advanced to the last transfer inserted
3485 	 * to avoid checking sizes again unnecessarily (also xfer does
3486 	 * potentially belong to a different list by the time the
3487 	 * replacement has happened).
3488 	 */
3489 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3490 		if (xfer->len > maxsize) {
3491 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3492 							   maxsize, gfp);
3493 			if (ret)
3494 				return ret;
3495 		}
3496 	}
3497 
3498 	return 0;
3499 }
3500 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3501 
3502 /*-------------------------------------------------------------------------*/
3503 
3504 /* Core methods for SPI controller protocol drivers.  Some of the
3505  * other core methods are currently defined as inline functions.
3506  */
3507 
3508 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3509 					u8 bits_per_word)
3510 {
3511 	if (ctlr->bits_per_word_mask) {
3512 		/* Only 32 bits fit in the mask */
3513 		if (bits_per_word > 32)
3514 			return -EINVAL;
3515 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3516 			return -EINVAL;
3517 	}
3518 
3519 	return 0;
3520 }
3521 
3522 /**
3523  * spi_setup - setup SPI mode and clock rate
3524  * @spi: the device whose settings are being modified
3525  * Context: can sleep, and no requests are queued to the device
3526  *
3527  * SPI protocol drivers may need to update the transfer mode if the
3528  * device doesn't work with its default.  They may likewise need
3529  * to update clock rates or word sizes from initial values.  This function
3530  * changes those settings, and must be called from a context that can sleep.
3531  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3532  * effect the next time the device is selected and data is transferred to
3533  * or from it.  When this function returns, the spi device is deselected.
3534  *
3535  * Note that this call will fail if the protocol driver specifies an option
3536  * that the underlying controller or its driver does not support.  For
3537  * example, not all hardware supports wire transfers using nine bit words,
3538  * LSB-first wire encoding, or active-high chipselects.
3539  *
3540  * Return: zero on success, else a negative error code.
3541  */
3542 int spi_setup(struct spi_device *spi)
3543 {
3544 	unsigned	bad_bits, ugly_bits;
3545 	int		status = 0;
3546 
3547 	/*
3548 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3549 	 * are set at the same time.
3550 	 */
3551 	if ((hweight_long(spi->mode &
3552 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3553 	    (hweight_long(spi->mode &
3554 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3555 		dev_err(&spi->dev,
3556 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3557 		return -EINVAL;
3558 	}
3559 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3560 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3561 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3562 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3563 		return -EINVAL;
3564 	/*
3565 	 * Help drivers fail *cleanly* when they need options
3566 	 * that aren't supported with their current controller.
3567 	 * SPI_CS_WORD has a fallback software implementation,
3568 	 * so it is ignored here.
3569 	 */
3570 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3571 				 SPI_NO_TX | SPI_NO_RX);
3572 	ugly_bits = bad_bits &
3573 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3574 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3575 	if (ugly_bits) {
3576 		dev_warn(&spi->dev,
3577 			 "setup: ignoring unsupported mode bits %x\n",
3578 			 ugly_bits);
3579 		spi->mode &= ~ugly_bits;
3580 		bad_bits &= ~ugly_bits;
3581 	}
3582 	if (bad_bits) {
3583 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3584 			bad_bits);
3585 		return -EINVAL;
3586 	}
3587 
3588 	if (!spi->bits_per_word) {
3589 		spi->bits_per_word = 8;
3590 	} else {
3591 		/*
3592 		 * Some controllers may not support the default 8 bits-per-word
3593 		 * so only perform the check when this is explicitly provided.
3594 		 */
3595 		status = __spi_validate_bits_per_word(spi->controller,
3596 						      spi->bits_per_word);
3597 		if (status)
3598 			return status;
3599 	}
3600 
3601 	if (spi->controller->max_speed_hz &&
3602 	    (!spi->max_speed_hz ||
3603 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3604 		spi->max_speed_hz = spi->controller->max_speed_hz;
3605 
3606 	mutex_lock(&spi->controller->io_mutex);
3607 
3608 	if (spi->controller->setup) {
3609 		status = spi->controller->setup(spi);
3610 		if (status) {
3611 			mutex_unlock(&spi->controller->io_mutex);
3612 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3613 				status);
3614 			return status;
3615 		}
3616 	}
3617 
3618 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3619 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3620 		if (status < 0) {
3621 			mutex_unlock(&spi->controller->io_mutex);
3622 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3623 				status);
3624 			return status;
3625 		}
3626 
3627 		/*
3628 		 * We do not want to return positive value from pm_runtime_get,
3629 		 * there are many instances of devices calling spi_setup() and
3630 		 * checking for a non-zero return value instead of a negative
3631 		 * return value.
3632 		 */
3633 		status = 0;
3634 
3635 		spi_set_cs(spi, false, true);
3636 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3637 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3638 	} else {
3639 		spi_set_cs(spi, false, true);
3640 	}
3641 
3642 	mutex_unlock(&spi->controller->io_mutex);
3643 
3644 	if (spi->rt && !spi->controller->rt) {
3645 		spi->controller->rt = true;
3646 		spi_set_thread_rt(spi->controller);
3647 	}
3648 
3649 	trace_spi_setup(spi, status);
3650 
3651 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3652 			spi->mode & SPI_MODE_X_MASK,
3653 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3654 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3655 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3656 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3657 			spi->bits_per_word, spi->max_speed_hz,
3658 			status);
3659 
3660 	return status;
3661 }
3662 EXPORT_SYMBOL_GPL(spi_setup);
3663 
3664 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3665 				       struct spi_device *spi)
3666 {
3667 	int delay1, delay2;
3668 
3669 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3670 	if (delay1 < 0)
3671 		return delay1;
3672 
3673 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3674 	if (delay2 < 0)
3675 		return delay2;
3676 
3677 	if (delay1 < delay2)
3678 		memcpy(&xfer->word_delay, &spi->word_delay,
3679 		       sizeof(xfer->word_delay));
3680 
3681 	return 0;
3682 }
3683 
3684 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3685 {
3686 	struct spi_controller *ctlr = spi->controller;
3687 	struct spi_transfer *xfer;
3688 	int w_size;
3689 
3690 	if (list_empty(&message->transfers))
3691 		return -EINVAL;
3692 
3693 	/*
3694 	 * If an SPI controller does not support toggling the CS line on each
3695 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3696 	 * for the CS line, we can emulate the CS-per-word hardware function by
3697 	 * splitting transfers into one-word transfers and ensuring that
3698 	 * cs_change is set for each transfer.
3699 	 */
3700 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3701 					  spi->cs_gpiod)) {
3702 		size_t maxsize;
3703 		int ret;
3704 
3705 		maxsize = (spi->bits_per_word + 7) / 8;
3706 
3707 		/* spi_split_transfers_maxsize() requires message->spi */
3708 		message->spi = spi;
3709 
3710 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3711 						  GFP_KERNEL);
3712 		if (ret)
3713 			return ret;
3714 
3715 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3716 			/* Don't change cs_change on the last entry in the list */
3717 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3718 				break;
3719 			xfer->cs_change = 1;
3720 		}
3721 	}
3722 
3723 	/*
3724 	 * Half-duplex links include original MicroWire, and ones with
3725 	 * only one data pin like SPI_3WIRE (switches direction) or where
3726 	 * either MOSI or MISO is missing.  They can also be caused by
3727 	 * software limitations.
3728 	 */
3729 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3730 	    (spi->mode & SPI_3WIRE)) {
3731 		unsigned flags = ctlr->flags;
3732 
3733 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3734 			if (xfer->rx_buf && xfer->tx_buf)
3735 				return -EINVAL;
3736 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3737 				return -EINVAL;
3738 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3739 				return -EINVAL;
3740 		}
3741 	}
3742 
3743 	/*
3744 	 * Set transfer bits_per_word and max speed as spi device default if
3745 	 * it is not set for this transfer.
3746 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3747 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3748 	 * Ensure transfer word_delay is at least as long as that required by
3749 	 * device itself.
3750 	 */
3751 	message->frame_length = 0;
3752 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3753 		xfer->effective_speed_hz = 0;
3754 		message->frame_length += xfer->len;
3755 		if (!xfer->bits_per_word)
3756 			xfer->bits_per_word = spi->bits_per_word;
3757 
3758 		if (!xfer->speed_hz)
3759 			xfer->speed_hz = spi->max_speed_hz;
3760 
3761 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3762 			xfer->speed_hz = ctlr->max_speed_hz;
3763 
3764 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3765 			return -EINVAL;
3766 
3767 		/*
3768 		 * SPI transfer length should be multiple of SPI word size
3769 		 * where SPI word size should be power-of-two multiple.
3770 		 */
3771 		if (xfer->bits_per_word <= 8)
3772 			w_size = 1;
3773 		else if (xfer->bits_per_word <= 16)
3774 			w_size = 2;
3775 		else
3776 			w_size = 4;
3777 
3778 		/* No partial transfers accepted */
3779 		if (xfer->len % w_size)
3780 			return -EINVAL;
3781 
3782 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3783 		    xfer->speed_hz < ctlr->min_speed_hz)
3784 			return -EINVAL;
3785 
3786 		if (xfer->tx_buf && !xfer->tx_nbits)
3787 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3788 		if (xfer->rx_buf && !xfer->rx_nbits)
3789 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3790 		/*
3791 		 * Check transfer tx/rx_nbits:
3792 		 * 1. check the value matches one of single, dual and quad
3793 		 * 2. check tx/rx_nbits match the mode in spi_device
3794 		 */
3795 		if (xfer->tx_buf) {
3796 			if (spi->mode & SPI_NO_TX)
3797 				return -EINVAL;
3798 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3799 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3800 				xfer->tx_nbits != SPI_NBITS_QUAD)
3801 				return -EINVAL;
3802 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3803 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3804 				return -EINVAL;
3805 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3806 				!(spi->mode & SPI_TX_QUAD))
3807 				return -EINVAL;
3808 		}
3809 		/* Check transfer rx_nbits */
3810 		if (xfer->rx_buf) {
3811 			if (spi->mode & SPI_NO_RX)
3812 				return -EINVAL;
3813 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3814 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3815 				xfer->rx_nbits != SPI_NBITS_QUAD)
3816 				return -EINVAL;
3817 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3818 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3819 				return -EINVAL;
3820 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3821 				!(spi->mode & SPI_RX_QUAD))
3822 				return -EINVAL;
3823 		}
3824 
3825 		if (_spi_xfer_word_delay_update(xfer, spi))
3826 			return -EINVAL;
3827 	}
3828 
3829 	message->status = -EINPROGRESS;
3830 
3831 	return 0;
3832 }
3833 
3834 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3835 {
3836 	struct spi_controller *ctlr = spi->controller;
3837 	struct spi_transfer *xfer;
3838 
3839 	/*
3840 	 * Some controllers do not support doing regular SPI transfers. Return
3841 	 * ENOTSUPP when this is the case.
3842 	 */
3843 	if (!ctlr->transfer)
3844 		return -ENOTSUPP;
3845 
3846 	message->spi = spi;
3847 
3848 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
3849 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
3850 
3851 	trace_spi_message_submit(message);
3852 
3853 	if (!ctlr->ptp_sts_supported) {
3854 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3855 			xfer->ptp_sts_word_pre = 0;
3856 			ptp_read_system_prets(xfer->ptp_sts);
3857 		}
3858 	}
3859 
3860 	return ctlr->transfer(spi, message);
3861 }
3862 
3863 /**
3864  * spi_async - asynchronous SPI transfer
3865  * @spi: device with which data will be exchanged
3866  * @message: describes the data transfers, including completion callback
3867  * Context: any (irqs may be blocked, etc)
3868  *
3869  * This call may be used in_irq and other contexts which can't sleep,
3870  * as well as from task contexts which can sleep.
3871  *
3872  * The completion callback is invoked in a context which can't sleep.
3873  * Before that invocation, the value of message->status is undefined.
3874  * When the callback is issued, message->status holds either zero (to
3875  * indicate complete success) or a negative error code.  After that
3876  * callback returns, the driver which issued the transfer request may
3877  * deallocate the associated memory; it's no longer in use by any SPI
3878  * core or controller driver code.
3879  *
3880  * Note that although all messages to a spi_device are handled in
3881  * FIFO order, messages may go to different devices in other orders.
3882  * Some device might be higher priority, or have various "hard" access
3883  * time requirements, for example.
3884  *
3885  * On detection of any fault during the transfer, processing of
3886  * the entire message is aborted, and the device is deselected.
3887  * Until returning from the associated message completion callback,
3888  * no other spi_message queued to that device will be processed.
3889  * (This rule applies equally to all the synchronous transfer calls,
3890  * which are wrappers around this core asynchronous primitive.)
3891  *
3892  * Return: zero on success, else a negative error code.
3893  */
3894 int spi_async(struct spi_device *spi, struct spi_message *message)
3895 {
3896 	struct spi_controller *ctlr = spi->controller;
3897 	int ret;
3898 	unsigned long flags;
3899 
3900 	ret = __spi_validate(spi, message);
3901 	if (ret != 0)
3902 		return ret;
3903 
3904 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3905 
3906 	if (ctlr->bus_lock_flag)
3907 		ret = -EBUSY;
3908 	else
3909 		ret = __spi_async(spi, message);
3910 
3911 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3912 
3913 	return ret;
3914 }
3915 EXPORT_SYMBOL_GPL(spi_async);
3916 
3917 /**
3918  * spi_async_locked - version of spi_async with exclusive bus usage
3919  * @spi: device with which data will be exchanged
3920  * @message: describes the data transfers, including completion callback
3921  * Context: any (irqs may be blocked, etc)
3922  *
3923  * This call may be used in_irq and other contexts which can't sleep,
3924  * as well as from task contexts which can sleep.
3925  *
3926  * The completion callback is invoked in a context which can't sleep.
3927  * Before that invocation, the value of message->status is undefined.
3928  * When the callback is issued, message->status holds either zero (to
3929  * indicate complete success) or a negative error code.  After that
3930  * callback returns, the driver which issued the transfer request may
3931  * deallocate the associated memory; it's no longer in use by any SPI
3932  * core or controller driver code.
3933  *
3934  * Note that although all messages to a spi_device are handled in
3935  * FIFO order, messages may go to different devices in other orders.
3936  * Some device might be higher priority, or have various "hard" access
3937  * time requirements, for example.
3938  *
3939  * On detection of any fault during the transfer, processing of
3940  * the entire message is aborted, and the device is deselected.
3941  * Until returning from the associated message completion callback,
3942  * no other spi_message queued to that device will be processed.
3943  * (This rule applies equally to all the synchronous transfer calls,
3944  * which are wrappers around this core asynchronous primitive.)
3945  *
3946  * Return: zero on success, else a negative error code.
3947  */
3948 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3949 {
3950 	struct spi_controller *ctlr = spi->controller;
3951 	int ret;
3952 	unsigned long flags;
3953 
3954 	ret = __spi_validate(spi, message);
3955 	if (ret != 0)
3956 		return ret;
3957 
3958 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3959 
3960 	ret = __spi_async(spi, message);
3961 
3962 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3963 
3964 	return ret;
3965 
3966 }
3967 
3968 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
3969 {
3970 	bool was_busy;
3971 	int ret;
3972 
3973 	mutex_lock(&ctlr->io_mutex);
3974 
3975 	was_busy = ctlr->busy;
3976 
3977 	ctlr->cur_msg = msg;
3978 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
3979 	if (ret)
3980 		goto out;
3981 
3982 	ctlr->cur_msg = NULL;
3983 	ctlr->fallback = false;
3984 
3985 	if (!was_busy) {
3986 		kfree(ctlr->dummy_rx);
3987 		ctlr->dummy_rx = NULL;
3988 		kfree(ctlr->dummy_tx);
3989 		ctlr->dummy_tx = NULL;
3990 		if (ctlr->unprepare_transfer_hardware &&
3991 		    ctlr->unprepare_transfer_hardware(ctlr))
3992 			dev_err(&ctlr->dev,
3993 				"failed to unprepare transfer hardware\n");
3994 		spi_idle_runtime_pm(ctlr);
3995 	}
3996 
3997 out:
3998 	mutex_unlock(&ctlr->io_mutex);
3999 }
4000 
4001 /*-------------------------------------------------------------------------*/
4002 
4003 /*
4004  * Utility methods for SPI protocol drivers, layered on
4005  * top of the core.  Some other utility methods are defined as
4006  * inline functions.
4007  */
4008 
4009 static void spi_complete(void *arg)
4010 {
4011 	complete(arg);
4012 }
4013 
4014 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4015 {
4016 	DECLARE_COMPLETION_ONSTACK(done);
4017 	int status;
4018 	struct spi_controller *ctlr = spi->controller;
4019 
4020 	status = __spi_validate(spi, message);
4021 	if (status != 0)
4022 		return status;
4023 
4024 	message->spi = spi;
4025 
4026 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4027 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4028 
4029 	/*
4030 	 * Checking queue_empty here only guarantees async/sync message
4031 	 * ordering when coming from the same context. It does not need to
4032 	 * guard against reentrancy from a different context. The io_mutex
4033 	 * will catch those cases.
4034 	 */
4035 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4036 		message->actual_length = 0;
4037 		message->status = -EINPROGRESS;
4038 
4039 		trace_spi_message_submit(message);
4040 
4041 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4042 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4043 
4044 		__spi_transfer_message_noqueue(ctlr, message);
4045 
4046 		return message->status;
4047 	}
4048 
4049 	/*
4050 	 * There are messages in the async queue that could have originated
4051 	 * from the same context, so we need to preserve ordering.
4052 	 * Therefor we send the message to the async queue and wait until they
4053 	 * are completed.
4054 	 */
4055 	message->complete = spi_complete;
4056 	message->context = &done;
4057 	status = spi_async_locked(spi, message);
4058 	if (status == 0) {
4059 		wait_for_completion(&done);
4060 		status = message->status;
4061 	}
4062 	message->context = NULL;
4063 
4064 	return status;
4065 }
4066 
4067 /**
4068  * spi_sync - blocking/synchronous SPI data transfers
4069  * @spi: device with which data will be exchanged
4070  * @message: describes the data transfers
4071  * Context: can sleep
4072  *
4073  * This call may only be used from a context that may sleep.  The sleep
4074  * is non-interruptible, and has no timeout.  Low-overhead controller
4075  * drivers may DMA directly into and out of the message buffers.
4076  *
4077  * Note that the SPI device's chip select is active during the message,
4078  * and then is normally disabled between messages.  Drivers for some
4079  * frequently-used devices may want to minimize costs of selecting a chip,
4080  * by leaving it selected in anticipation that the next message will go
4081  * to the same chip.  (That may increase power usage.)
4082  *
4083  * Also, the caller is guaranteeing that the memory associated with the
4084  * message will not be freed before this call returns.
4085  *
4086  * Return: zero on success, else a negative error code.
4087  */
4088 int spi_sync(struct spi_device *spi, struct spi_message *message)
4089 {
4090 	int ret;
4091 
4092 	mutex_lock(&spi->controller->bus_lock_mutex);
4093 	ret = __spi_sync(spi, message);
4094 	mutex_unlock(&spi->controller->bus_lock_mutex);
4095 
4096 	return ret;
4097 }
4098 EXPORT_SYMBOL_GPL(spi_sync);
4099 
4100 /**
4101  * spi_sync_locked - version of spi_sync with exclusive bus usage
4102  * @spi: device with which data will be exchanged
4103  * @message: describes the data transfers
4104  * Context: can sleep
4105  *
4106  * This call may only be used from a context that may sleep.  The sleep
4107  * is non-interruptible, and has no timeout.  Low-overhead controller
4108  * drivers may DMA directly into and out of the message buffers.
4109  *
4110  * This call should be used by drivers that require exclusive access to the
4111  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4112  * be released by a spi_bus_unlock call when the exclusive access is over.
4113  *
4114  * Return: zero on success, else a negative error code.
4115  */
4116 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4117 {
4118 	return __spi_sync(spi, message);
4119 }
4120 EXPORT_SYMBOL_GPL(spi_sync_locked);
4121 
4122 /**
4123  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4124  * @ctlr: SPI bus master that should be locked for exclusive bus access
4125  * Context: can sleep
4126  *
4127  * This call may only be used from a context that may sleep.  The sleep
4128  * is non-interruptible, and has no timeout.
4129  *
4130  * This call should be used by drivers that require exclusive access to the
4131  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4132  * exclusive access is over. Data transfer must be done by spi_sync_locked
4133  * and spi_async_locked calls when the SPI bus lock is held.
4134  *
4135  * Return: always zero.
4136  */
4137 int spi_bus_lock(struct spi_controller *ctlr)
4138 {
4139 	unsigned long flags;
4140 
4141 	mutex_lock(&ctlr->bus_lock_mutex);
4142 
4143 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4144 	ctlr->bus_lock_flag = 1;
4145 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4146 
4147 	/* Mutex remains locked until spi_bus_unlock() is called */
4148 
4149 	return 0;
4150 }
4151 EXPORT_SYMBOL_GPL(spi_bus_lock);
4152 
4153 /**
4154  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4155  * @ctlr: SPI bus master that was locked for exclusive bus access
4156  * Context: can sleep
4157  *
4158  * This call may only be used from a context that may sleep.  The sleep
4159  * is non-interruptible, and has no timeout.
4160  *
4161  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4162  * call.
4163  *
4164  * Return: always zero.
4165  */
4166 int spi_bus_unlock(struct spi_controller *ctlr)
4167 {
4168 	ctlr->bus_lock_flag = 0;
4169 
4170 	mutex_unlock(&ctlr->bus_lock_mutex);
4171 
4172 	return 0;
4173 }
4174 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4175 
4176 /* Portable code must never pass more than 32 bytes */
4177 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4178 
4179 static u8	*buf;
4180 
4181 /**
4182  * spi_write_then_read - SPI synchronous write followed by read
4183  * @spi: device with which data will be exchanged
4184  * @txbuf: data to be written (need not be dma-safe)
4185  * @n_tx: size of txbuf, in bytes
4186  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4187  * @n_rx: size of rxbuf, in bytes
4188  * Context: can sleep
4189  *
4190  * This performs a half duplex MicroWire style transaction with the
4191  * device, sending txbuf and then reading rxbuf.  The return value
4192  * is zero for success, else a negative errno status code.
4193  * This call may only be used from a context that may sleep.
4194  *
4195  * Parameters to this routine are always copied using a small buffer.
4196  * Performance-sensitive or bulk transfer code should instead use
4197  * spi_{async,sync}() calls with dma-safe buffers.
4198  *
4199  * Return: zero on success, else a negative error code.
4200  */
4201 int spi_write_then_read(struct spi_device *spi,
4202 		const void *txbuf, unsigned n_tx,
4203 		void *rxbuf, unsigned n_rx)
4204 {
4205 	static DEFINE_MUTEX(lock);
4206 
4207 	int			status;
4208 	struct spi_message	message;
4209 	struct spi_transfer	x[2];
4210 	u8			*local_buf;
4211 
4212 	/*
4213 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4214 	 * copying here, (as a pure convenience thing), but we can
4215 	 * keep heap costs out of the hot path unless someone else is
4216 	 * using the pre-allocated buffer or the transfer is too large.
4217 	 */
4218 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4219 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4220 				    GFP_KERNEL | GFP_DMA);
4221 		if (!local_buf)
4222 			return -ENOMEM;
4223 	} else {
4224 		local_buf = buf;
4225 	}
4226 
4227 	spi_message_init(&message);
4228 	memset(x, 0, sizeof(x));
4229 	if (n_tx) {
4230 		x[0].len = n_tx;
4231 		spi_message_add_tail(&x[0], &message);
4232 	}
4233 	if (n_rx) {
4234 		x[1].len = n_rx;
4235 		spi_message_add_tail(&x[1], &message);
4236 	}
4237 
4238 	memcpy(local_buf, txbuf, n_tx);
4239 	x[0].tx_buf = local_buf;
4240 	x[1].rx_buf = local_buf + n_tx;
4241 
4242 	/* Do the i/o */
4243 	status = spi_sync(spi, &message);
4244 	if (status == 0)
4245 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4246 
4247 	if (x[0].tx_buf == buf)
4248 		mutex_unlock(&lock);
4249 	else
4250 		kfree(local_buf);
4251 
4252 	return status;
4253 }
4254 EXPORT_SYMBOL_GPL(spi_write_then_read);
4255 
4256 /*-------------------------------------------------------------------------*/
4257 
4258 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4259 /* Must call put_device() when done with returned spi_device device */
4260 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4261 {
4262 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4263 
4264 	return dev ? to_spi_device(dev) : NULL;
4265 }
4266 
4267 /* The spi controllers are not using spi_bus, so we find it with another way */
4268 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4269 {
4270 	struct device *dev;
4271 
4272 	dev = class_find_device_by_of_node(&spi_master_class, node);
4273 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4274 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4275 	if (!dev)
4276 		return NULL;
4277 
4278 	/* Reference got in class_find_device */
4279 	return container_of(dev, struct spi_controller, dev);
4280 }
4281 
4282 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4283 			 void *arg)
4284 {
4285 	struct of_reconfig_data *rd = arg;
4286 	struct spi_controller *ctlr;
4287 	struct spi_device *spi;
4288 
4289 	switch (of_reconfig_get_state_change(action, arg)) {
4290 	case OF_RECONFIG_CHANGE_ADD:
4291 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4292 		if (ctlr == NULL)
4293 			return NOTIFY_OK;	/* Not for us */
4294 
4295 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4296 			put_device(&ctlr->dev);
4297 			return NOTIFY_OK;
4298 		}
4299 
4300 		spi = of_register_spi_device(ctlr, rd->dn);
4301 		put_device(&ctlr->dev);
4302 
4303 		if (IS_ERR(spi)) {
4304 			pr_err("%s: failed to create for '%pOF'\n",
4305 					__func__, rd->dn);
4306 			of_node_clear_flag(rd->dn, OF_POPULATED);
4307 			return notifier_from_errno(PTR_ERR(spi));
4308 		}
4309 		break;
4310 
4311 	case OF_RECONFIG_CHANGE_REMOVE:
4312 		/* Already depopulated? */
4313 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4314 			return NOTIFY_OK;
4315 
4316 		/* Find our device by node */
4317 		spi = of_find_spi_device_by_node(rd->dn);
4318 		if (spi == NULL)
4319 			return NOTIFY_OK;	/* No? not meant for us */
4320 
4321 		/* Unregister takes one ref away */
4322 		spi_unregister_device(spi);
4323 
4324 		/* And put the reference of the find */
4325 		put_device(&spi->dev);
4326 		break;
4327 	}
4328 
4329 	return NOTIFY_OK;
4330 }
4331 
4332 static struct notifier_block spi_of_notifier = {
4333 	.notifier_call = of_spi_notify,
4334 };
4335 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4336 extern struct notifier_block spi_of_notifier;
4337 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4338 
4339 #if IS_ENABLED(CONFIG_ACPI)
4340 static int spi_acpi_controller_match(struct device *dev, const void *data)
4341 {
4342 	return ACPI_COMPANION(dev->parent) == data;
4343 }
4344 
4345 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4346 {
4347 	struct device *dev;
4348 
4349 	dev = class_find_device(&spi_master_class, NULL, adev,
4350 				spi_acpi_controller_match);
4351 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4352 		dev = class_find_device(&spi_slave_class, NULL, adev,
4353 					spi_acpi_controller_match);
4354 	if (!dev)
4355 		return NULL;
4356 
4357 	return container_of(dev, struct spi_controller, dev);
4358 }
4359 
4360 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4361 {
4362 	struct device *dev;
4363 
4364 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4365 	return to_spi_device(dev);
4366 }
4367 
4368 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4369 			   void *arg)
4370 {
4371 	struct acpi_device *adev = arg;
4372 	struct spi_controller *ctlr;
4373 	struct spi_device *spi;
4374 
4375 	switch (value) {
4376 	case ACPI_RECONFIG_DEVICE_ADD:
4377 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4378 		if (!ctlr)
4379 			break;
4380 
4381 		acpi_register_spi_device(ctlr, adev);
4382 		put_device(&ctlr->dev);
4383 		break;
4384 	case ACPI_RECONFIG_DEVICE_REMOVE:
4385 		if (!acpi_device_enumerated(adev))
4386 			break;
4387 
4388 		spi = acpi_spi_find_device_by_adev(adev);
4389 		if (!spi)
4390 			break;
4391 
4392 		spi_unregister_device(spi);
4393 		put_device(&spi->dev);
4394 		break;
4395 	}
4396 
4397 	return NOTIFY_OK;
4398 }
4399 
4400 static struct notifier_block spi_acpi_notifier = {
4401 	.notifier_call = acpi_spi_notify,
4402 };
4403 #else
4404 extern struct notifier_block spi_acpi_notifier;
4405 #endif
4406 
4407 static int __init spi_init(void)
4408 {
4409 	int	status;
4410 
4411 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4412 	if (!buf) {
4413 		status = -ENOMEM;
4414 		goto err0;
4415 	}
4416 
4417 	status = bus_register(&spi_bus_type);
4418 	if (status < 0)
4419 		goto err1;
4420 
4421 	status = class_register(&spi_master_class);
4422 	if (status < 0)
4423 		goto err2;
4424 
4425 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4426 		status = class_register(&spi_slave_class);
4427 		if (status < 0)
4428 			goto err3;
4429 	}
4430 
4431 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4432 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4433 	if (IS_ENABLED(CONFIG_ACPI))
4434 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4435 
4436 	return 0;
4437 
4438 err3:
4439 	class_unregister(&spi_master_class);
4440 err2:
4441 	bus_unregister(&spi_bus_type);
4442 err1:
4443 	kfree(buf);
4444 	buf = NULL;
4445 err0:
4446 	return status;
4447 }
4448 
4449 /*
4450  * A board_info is normally registered in arch_initcall(),
4451  * but even essential drivers wait till later.
4452  *
4453  * REVISIT only boardinfo really needs static linking. The rest (device and
4454  * driver registration) _could_ be dynamically linked (modular) ... Costs
4455  * include needing to have boardinfo data structures be much more public.
4456  */
4457 postcore_initcall(spi_init);
4458