1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/pm_domain.h> 24 #include <linux/property.h> 25 #include <linux/export.h> 26 #include <linux/sched/rt.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/ioport.h> 31 #include <linux/acpi.h> 32 #include <linux/highmem.h> 33 #include <linux/idr.h> 34 #include <linux/platform_data/x86/apple.h> 35 #include <linux/ptp_clock_kernel.h> 36 #include <linux/percpu.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 #define spi_pcpu_stats_totalize(ret, in, field) \ 121 do { \ 122 int i; \ 123 ret = 0; \ 124 for_each_possible_cpu(i) { \ 125 const struct spi_statistics *pcpu_stats; \ 126 u64 inc; \ 127 unsigned int start; \ 128 pcpu_stats = per_cpu_ptr(in, i); \ 129 do { \ 130 start = u64_stats_fetch_begin( \ 131 &pcpu_stats->syncp); \ 132 inc = u64_stats_read(&pcpu_stats->field); \ 133 } while (u64_stats_fetch_retry( \ 134 &pcpu_stats->syncp, start)); \ 135 ret += inc; \ 136 } \ 137 } while (0) 138 139 #define SPI_STATISTICS_ATTRS(field, file) \ 140 static ssize_t spi_controller_##field##_show(struct device *dev, \ 141 struct device_attribute *attr, \ 142 char *buf) \ 143 { \ 144 struct spi_controller *ctlr = container_of(dev, \ 145 struct spi_controller, dev); \ 146 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 147 } \ 148 static struct device_attribute dev_attr_spi_controller_##field = { \ 149 .attr = { .name = file, .mode = 0444 }, \ 150 .show = spi_controller_##field##_show, \ 151 }; \ 152 static ssize_t spi_device_##field##_show(struct device *dev, \ 153 struct device_attribute *attr, \ 154 char *buf) \ 155 { \ 156 struct spi_device *spi = to_spi_device(dev); \ 157 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 158 } \ 159 static struct device_attribute dev_attr_spi_device_##field = { \ 160 .attr = { .name = file, .mode = 0444 }, \ 161 .show = spi_device_##field##_show, \ 162 } 163 164 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 166 char *buf) \ 167 { \ 168 ssize_t len; \ 169 u64 val; \ 170 spi_pcpu_stats_totalize(val, stat, field); \ 171 len = sysfs_emit(buf, "%llu\n", val); \ 172 return len; \ 173 } \ 174 SPI_STATISTICS_ATTRS(name, file) 175 176 #define SPI_STATISTICS_SHOW(field) \ 177 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 178 field) 179 180 SPI_STATISTICS_SHOW(messages); 181 SPI_STATISTICS_SHOW(transfers); 182 SPI_STATISTICS_SHOW(errors); 183 SPI_STATISTICS_SHOW(timedout); 184 185 SPI_STATISTICS_SHOW(spi_sync); 186 SPI_STATISTICS_SHOW(spi_sync_immediate); 187 SPI_STATISTICS_SHOW(spi_async); 188 189 SPI_STATISTICS_SHOW(bytes); 190 SPI_STATISTICS_SHOW(bytes_rx); 191 SPI_STATISTICS_SHOW(bytes_tx); 192 193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 194 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 195 "transfer_bytes_histo_" number, \ 196 transfer_bytes_histo[index]) 197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 214 215 SPI_STATISTICS_SHOW(transfers_split_maxsize); 216 217 static struct attribute *spi_dev_attrs[] = { 218 &dev_attr_modalias.attr, 219 &dev_attr_driver_override.attr, 220 NULL, 221 }; 222 223 static const struct attribute_group spi_dev_group = { 224 .attrs = spi_dev_attrs, 225 }; 226 227 static struct attribute *spi_device_statistics_attrs[] = { 228 &dev_attr_spi_device_messages.attr, 229 &dev_attr_spi_device_transfers.attr, 230 &dev_attr_spi_device_errors.attr, 231 &dev_attr_spi_device_timedout.attr, 232 &dev_attr_spi_device_spi_sync.attr, 233 &dev_attr_spi_device_spi_sync_immediate.attr, 234 &dev_attr_spi_device_spi_async.attr, 235 &dev_attr_spi_device_bytes.attr, 236 &dev_attr_spi_device_bytes_rx.attr, 237 &dev_attr_spi_device_bytes_tx.attr, 238 &dev_attr_spi_device_transfer_bytes_histo0.attr, 239 &dev_attr_spi_device_transfer_bytes_histo1.attr, 240 &dev_attr_spi_device_transfer_bytes_histo2.attr, 241 &dev_attr_spi_device_transfer_bytes_histo3.attr, 242 &dev_attr_spi_device_transfer_bytes_histo4.attr, 243 &dev_attr_spi_device_transfer_bytes_histo5.attr, 244 &dev_attr_spi_device_transfer_bytes_histo6.attr, 245 &dev_attr_spi_device_transfer_bytes_histo7.attr, 246 &dev_attr_spi_device_transfer_bytes_histo8.attr, 247 &dev_attr_spi_device_transfer_bytes_histo9.attr, 248 &dev_attr_spi_device_transfer_bytes_histo10.attr, 249 &dev_attr_spi_device_transfer_bytes_histo11.attr, 250 &dev_attr_spi_device_transfer_bytes_histo12.attr, 251 &dev_attr_spi_device_transfer_bytes_histo13.attr, 252 &dev_attr_spi_device_transfer_bytes_histo14.attr, 253 &dev_attr_spi_device_transfer_bytes_histo15.attr, 254 &dev_attr_spi_device_transfer_bytes_histo16.attr, 255 &dev_attr_spi_device_transfers_split_maxsize.attr, 256 NULL, 257 }; 258 259 static const struct attribute_group spi_device_statistics_group = { 260 .name = "statistics", 261 .attrs = spi_device_statistics_attrs, 262 }; 263 264 static const struct attribute_group *spi_dev_groups[] = { 265 &spi_dev_group, 266 &spi_device_statistics_group, 267 NULL, 268 }; 269 270 static struct attribute *spi_controller_statistics_attrs[] = { 271 &dev_attr_spi_controller_messages.attr, 272 &dev_attr_spi_controller_transfers.attr, 273 &dev_attr_spi_controller_errors.attr, 274 &dev_attr_spi_controller_timedout.attr, 275 &dev_attr_spi_controller_spi_sync.attr, 276 &dev_attr_spi_controller_spi_sync_immediate.attr, 277 &dev_attr_spi_controller_spi_async.attr, 278 &dev_attr_spi_controller_bytes.attr, 279 &dev_attr_spi_controller_bytes_rx.attr, 280 &dev_attr_spi_controller_bytes_tx.attr, 281 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 298 &dev_attr_spi_controller_transfers_split_maxsize.attr, 299 NULL, 300 }; 301 302 static const struct attribute_group spi_controller_statistics_group = { 303 .name = "statistics", 304 .attrs = spi_controller_statistics_attrs, 305 }; 306 307 static const struct attribute_group *spi_master_groups[] = { 308 &spi_controller_statistics_group, 309 NULL, 310 }; 311 312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 313 struct spi_transfer *xfer, 314 struct spi_controller *ctlr) 315 { 316 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 317 struct spi_statistics *stats; 318 319 if (l2len < 0) 320 l2len = 0; 321 322 get_cpu(); 323 stats = this_cpu_ptr(pcpu_stats); 324 u64_stats_update_begin(&stats->syncp); 325 326 u64_stats_inc(&stats->transfers); 327 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 328 329 u64_stats_add(&stats->bytes, xfer->len); 330 if ((xfer->tx_buf) && 331 (xfer->tx_buf != ctlr->dummy_tx)) 332 u64_stats_add(&stats->bytes_tx, xfer->len); 333 if ((xfer->rx_buf) && 334 (xfer->rx_buf != ctlr->dummy_rx)) 335 u64_stats_add(&stats->bytes_rx, xfer->len); 336 337 u64_stats_update_end(&stats->syncp); 338 put_cpu(); 339 } 340 341 /* 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 343 * and the sysfs version makes coldplug work too. 344 */ 345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 346 { 347 while (id->name[0]) { 348 if (!strcmp(name, id->name)) 349 return id; 350 id++; 351 } 352 return NULL; 353 } 354 355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 356 { 357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 358 359 return spi_match_id(sdrv->id_table, sdev->modalias); 360 } 361 EXPORT_SYMBOL_GPL(spi_get_device_id); 362 363 const void *spi_get_device_match_data(const struct spi_device *sdev) 364 { 365 const void *match; 366 367 match = device_get_match_data(&sdev->dev); 368 if (match) 369 return match; 370 371 return (const void *)spi_get_device_id(sdev)->driver_data; 372 } 373 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 374 375 static int spi_match_device(struct device *dev, struct device_driver *drv) 376 { 377 const struct spi_device *spi = to_spi_device(dev); 378 const struct spi_driver *sdrv = to_spi_driver(drv); 379 380 /* Check override first, and if set, only use the named driver */ 381 if (spi->driver_override) 382 return strcmp(spi->driver_override, drv->name) == 0; 383 384 /* Attempt an OF style match */ 385 if (of_driver_match_device(dev, drv)) 386 return 1; 387 388 /* Then try ACPI */ 389 if (acpi_driver_match_device(dev, drv)) 390 return 1; 391 392 if (sdrv->id_table) 393 return !!spi_match_id(sdrv->id_table, spi->modalias); 394 395 return strcmp(spi->modalias, drv->name) == 0; 396 } 397 398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 399 { 400 const struct spi_device *spi = to_spi_device(dev); 401 int rc; 402 403 rc = acpi_device_uevent_modalias(dev, env); 404 if (rc != -ENODEV) 405 return rc; 406 407 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 408 } 409 410 static int spi_probe(struct device *dev) 411 { 412 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 413 struct spi_device *spi = to_spi_device(dev); 414 int ret; 415 416 ret = of_clk_set_defaults(dev->of_node, false); 417 if (ret) 418 return ret; 419 420 if (dev->of_node) { 421 spi->irq = of_irq_get(dev->of_node, 0); 422 if (spi->irq == -EPROBE_DEFER) 423 return -EPROBE_DEFER; 424 if (spi->irq < 0) 425 spi->irq = 0; 426 } 427 428 ret = dev_pm_domain_attach(dev, true); 429 if (ret) 430 return ret; 431 432 if (sdrv->probe) { 433 ret = sdrv->probe(spi); 434 if (ret) 435 dev_pm_domain_detach(dev, true); 436 } 437 438 return ret; 439 } 440 441 static void spi_remove(struct device *dev) 442 { 443 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 444 445 if (sdrv->remove) 446 sdrv->remove(to_spi_device(dev)); 447 448 dev_pm_domain_detach(dev, true); 449 } 450 451 static void spi_shutdown(struct device *dev) 452 { 453 if (dev->driver) { 454 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 455 456 if (sdrv->shutdown) 457 sdrv->shutdown(to_spi_device(dev)); 458 } 459 } 460 461 struct bus_type spi_bus_type = { 462 .name = "spi", 463 .dev_groups = spi_dev_groups, 464 .match = spi_match_device, 465 .uevent = spi_uevent, 466 .probe = spi_probe, 467 .remove = spi_remove, 468 .shutdown = spi_shutdown, 469 }; 470 EXPORT_SYMBOL_GPL(spi_bus_type); 471 472 /** 473 * __spi_register_driver - register a SPI driver 474 * @owner: owner module of the driver to register 475 * @sdrv: the driver to register 476 * Context: can sleep 477 * 478 * Return: zero on success, else a negative error code. 479 */ 480 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 481 { 482 sdrv->driver.owner = owner; 483 sdrv->driver.bus = &spi_bus_type; 484 485 /* 486 * For Really Good Reasons we use spi: modaliases not of: 487 * modaliases for DT so module autoloading won't work if we 488 * don't have a spi_device_id as well as a compatible string. 489 */ 490 if (sdrv->driver.of_match_table) { 491 const struct of_device_id *of_id; 492 493 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 494 of_id++) { 495 const char *of_name; 496 497 /* Strip off any vendor prefix */ 498 of_name = strnchr(of_id->compatible, 499 sizeof(of_id->compatible), ','); 500 if (of_name) 501 of_name++; 502 else 503 of_name = of_id->compatible; 504 505 if (sdrv->id_table) { 506 const struct spi_device_id *spi_id; 507 508 spi_id = spi_match_id(sdrv->id_table, of_name); 509 if (spi_id) 510 continue; 511 } else { 512 if (strcmp(sdrv->driver.name, of_name) == 0) 513 continue; 514 } 515 516 pr_warn("SPI driver %s has no spi_device_id for %s\n", 517 sdrv->driver.name, of_id->compatible); 518 } 519 } 520 521 return driver_register(&sdrv->driver); 522 } 523 EXPORT_SYMBOL_GPL(__spi_register_driver); 524 525 /*-------------------------------------------------------------------------*/ 526 527 /* 528 * SPI devices should normally not be created by SPI device drivers; that 529 * would make them board-specific. Similarly with SPI controller drivers. 530 * Device registration normally goes into like arch/.../mach.../board-YYY.c 531 * with other readonly (flashable) information about mainboard devices. 532 */ 533 534 struct boardinfo { 535 struct list_head list; 536 struct spi_board_info board_info; 537 }; 538 539 static LIST_HEAD(board_list); 540 static LIST_HEAD(spi_controller_list); 541 542 /* 543 * Used to protect add/del operation for board_info list and 544 * spi_controller list, and their matching process also used 545 * to protect object of type struct idr. 546 */ 547 static DEFINE_MUTEX(board_lock); 548 549 /** 550 * spi_alloc_device - Allocate a new SPI device 551 * @ctlr: Controller to which device is connected 552 * Context: can sleep 553 * 554 * Allows a driver to allocate and initialize a spi_device without 555 * registering it immediately. This allows a driver to directly 556 * fill the spi_device with device parameters before calling 557 * spi_add_device() on it. 558 * 559 * Caller is responsible to call spi_add_device() on the returned 560 * spi_device structure to add it to the SPI controller. If the caller 561 * needs to discard the spi_device without adding it, then it should 562 * call spi_dev_put() on it. 563 * 564 * Return: a pointer to the new device, or NULL. 565 */ 566 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 567 { 568 struct spi_device *spi; 569 570 if (!spi_controller_get(ctlr)) 571 return NULL; 572 573 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 574 if (!spi) { 575 spi_controller_put(ctlr); 576 return NULL; 577 } 578 579 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 580 if (!spi->pcpu_statistics) { 581 kfree(spi); 582 spi_controller_put(ctlr); 583 return NULL; 584 } 585 586 spi->master = spi->controller = ctlr; 587 spi->dev.parent = &ctlr->dev; 588 spi->dev.bus = &spi_bus_type; 589 spi->dev.release = spidev_release; 590 spi->mode = ctlr->buswidth_override_bits; 591 592 device_initialize(&spi->dev); 593 return spi; 594 } 595 EXPORT_SYMBOL_GPL(spi_alloc_device); 596 597 static void spi_dev_set_name(struct spi_device *spi) 598 { 599 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 600 601 if (adev) { 602 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 603 return; 604 } 605 606 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 607 spi_get_chipselect(spi, 0)); 608 } 609 610 static int spi_dev_check(struct device *dev, void *data) 611 { 612 struct spi_device *spi = to_spi_device(dev); 613 struct spi_device *new_spi = data; 614 615 if (spi->controller == new_spi->controller && 616 spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0)) 617 return -EBUSY; 618 return 0; 619 } 620 621 static void spi_cleanup(struct spi_device *spi) 622 { 623 if (spi->controller->cleanup) 624 spi->controller->cleanup(spi); 625 } 626 627 static int __spi_add_device(struct spi_device *spi) 628 { 629 struct spi_controller *ctlr = spi->controller; 630 struct device *dev = ctlr->dev.parent; 631 int status; 632 633 /* 634 * We need to make sure there's no other device with this 635 * chipselect **BEFORE** we call setup(), else we'll trash 636 * its configuration. 637 */ 638 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 639 if (status) { 640 dev_err(dev, "chipselect %d already in use\n", 641 spi_get_chipselect(spi, 0)); 642 return status; 643 } 644 645 /* Controller may unregister concurrently */ 646 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 647 !device_is_registered(&ctlr->dev)) { 648 return -ENODEV; 649 } 650 651 if (ctlr->cs_gpiods) 652 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]); 653 654 /* 655 * Drivers may modify this initial i/o setup, but will 656 * normally rely on the device being setup. Devices 657 * using SPI_CS_HIGH can't coexist well otherwise... 658 */ 659 status = spi_setup(spi); 660 if (status < 0) { 661 dev_err(dev, "can't setup %s, status %d\n", 662 dev_name(&spi->dev), status); 663 return status; 664 } 665 666 /* Device may be bound to an active driver when this returns */ 667 status = device_add(&spi->dev); 668 if (status < 0) { 669 dev_err(dev, "can't add %s, status %d\n", 670 dev_name(&spi->dev), status); 671 spi_cleanup(spi); 672 } else { 673 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 674 } 675 676 return status; 677 } 678 679 /** 680 * spi_add_device - Add spi_device allocated with spi_alloc_device 681 * @spi: spi_device to register 682 * 683 * Companion function to spi_alloc_device. Devices allocated with 684 * spi_alloc_device can be added onto the spi bus with this function. 685 * 686 * Return: 0 on success; negative errno on failure 687 */ 688 int spi_add_device(struct spi_device *spi) 689 { 690 struct spi_controller *ctlr = spi->controller; 691 struct device *dev = ctlr->dev.parent; 692 int status; 693 694 /* Chipselects are numbered 0..max; validate. */ 695 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) { 696 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0), 697 ctlr->num_chipselect); 698 return -EINVAL; 699 } 700 701 /* Set the bus ID string */ 702 spi_dev_set_name(spi); 703 704 mutex_lock(&ctlr->add_lock); 705 status = __spi_add_device(spi); 706 mutex_unlock(&ctlr->add_lock); 707 return status; 708 } 709 EXPORT_SYMBOL_GPL(spi_add_device); 710 711 static int spi_add_device_locked(struct spi_device *spi) 712 { 713 struct spi_controller *ctlr = spi->controller; 714 struct device *dev = ctlr->dev.parent; 715 716 /* Chipselects are numbered 0..max; validate. */ 717 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) { 718 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0), 719 ctlr->num_chipselect); 720 return -EINVAL; 721 } 722 723 /* Set the bus ID string */ 724 spi_dev_set_name(spi); 725 726 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 727 return __spi_add_device(spi); 728 } 729 730 /** 731 * spi_new_device - instantiate one new SPI device 732 * @ctlr: Controller to which device is connected 733 * @chip: Describes the SPI device 734 * Context: can sleep 735 * 736 * On typical mainboards, this is purely internal; and it's not needed 737 * after board init creates the hard-wired devices. Some development 738 * platforms may not be able to use spi_register_board_info though, and 739 * this is exported so that for example a USB or parport based adapter 740 * driver could add devices (which it would learn about out-of-band). 741 * 742 * Return: the new device, or NULL. 743 */ 744 struct spi_device *spi_new_device(struct spi_controller *ctlr, 745 struct spi_board_info *chip) 746 { 747 struct spi_device *proxy; 748 int status; 749 750 /* 751 * NOTE: caller did any chip->bus_num checks necessary. 752 * 753 * Also, unless we change the return value convention to use 754 * error-or-pointer (not NULL-or-pointer), troubleshootability 755 * suggests syslogged diagnostics are best here (ugh). 756 */ 757 758 proxy = spi_alloc_device(ctlr); 759 if (!proxy) 760 return NULL; 761 762 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 763 764 spi_set_chipselect(proxy, 0, chip->chip_select); 765 proxy->max_speed_hz = chip->max_speed_hz; 766 proxy->mode = chip->mode; 767 proxy->irq = chip->irq; 768 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 769 proxy->dev.platform_data = (void *) chip->platform_data; 770 proxy->controller_data = chip->controller_data; 771 proxy->controller_state = NULL; 772 773 if (chip->swnode) { 774 status = device_add_software_node(&proxy->dev, chip->swnode); 775 if (status) { 776 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 777 chip->modalias, status); 778 goto err_dev_put; 779 } 780 } 781 782 status = spi_add_device(proxy); 783 if (status < 0) 784 goto err_dev_put; 785 786 return proxy; 787 788 err_dev_put: 789 device_remove_software_node(&proxy->dev); 790 spi_dev_put(proxy); 791 return NULL; 792 } 793 EXPORT_SYMBOL_GPL(spi_new_device); 794 795 /** 796 * spi_unregister_device - unregister a single SPI device 797 * @spi: spi_device to unregister 798 * 799 * Start making the passed SPI device vanish. Normally this would be handled 800 * by spi_unregister_controller(). 801 */ 802 void spi_unregister_device(struct spi_device *spi) 803 { 804 if (!spi) 805 return; 806 807 if (spi->dev.of_node) { 808 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 809 of_node_put(spi->dev.of_node); 810 } 811 if (ACPI_COMPANION(&spi->dev)) 812 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 813 device_remove_software_node(&spi->dev); 814 device_del(&spi->dev); 815 spi_cleanup(spi); 816 put_device(&spi->dev); 817 } 818 EXPORT_SYMBOL_GPL(spi_unregister_device); 819 820 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 821 struct spi_board_info *bi) 822 { 823 struct spi_device *dev; 824 825 if (ctlr->bus_num != bi->bus_num) 826 return; 827 828 dev = spi_new_device(ctlr, bi); 829 if (!dev) 830 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 831 bi->modalias); 832 } 833 834 /** 835 * spi_register_board_info - register SPI devices for a given board 836 * @info: array of chip descriptors 837 * @n: how many descriptors are provided 838 * Context: can sleep 839 * 840 * Board-specific early init code calls this (probably during arch_initcall) 841 * with segments of the SPI device table. Any device nodes are created later, 842 * after the relevant parent SPI controller (bus_num) is defined. We keep 843 * this table of devices forever, so that reloading a controller driver will 844 * not make Linux forget about these hard-wired devices. 845 * 846 * Other code can also call this, e.g. a particular add-on board might provide 847 * SPI devices through its expansion connector, so code initializing that board 848 * would naturally declare its SPI devices. 849 * 850 * The board info passed can safely be __initdata ... but be careful of 851 * any embedded pointers (platform_data, etc), they're copied as-is. 852 * 853 * Return: zero on success, else a negative error code. 854 */ 855 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 856 { 857 struct boardinfo *bi; 858 int i; 859 860 if (!n) 861 return 0; 862 863 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 864 if (!bi) 865 return -ENOMEM; 866 867 for (i = 0; i < n; i++, bi++, info++) { 868 struct spi_controller *ctlr; 869 870 memcpy(&bi->board_info, info, sizeof(*info)); 871 872 mutex_lock(&board_lock); 873 list_add_tail(&bi->list, &board_list); 874 list_for_each_entry(ctlr, &spi_controller_list, list) 875 spi_match_controller_to_boardinfo(ctlr, 876 &bi->board_info); 877 mutex_unlock(&board_lock); 878 } 879 880 return 0; 881 } 882 883 /*-------------------------------------------------------------------------*/ 884 885 /* Core methods for SPI resource management */ 886 887 /** 888 * spi_res_alloc - allocate a spi resource that is life-cycle managed 889 * during the processing of a spi_message while using 890 * spi_transfer_one 891 * @spi: the spi device for which we allocate memory 892 * @release: the release code to execute for this resource 893 * @size: size to alloc and return 894 * @gfp: GFP allocation flags 895 * 896 * Return: the pointer to the allocated data 897 * 898 * This may get enhanced in the future to allocate from a memory pool 899 * of the @spi_device or @spi_controller to avoid repeated allocations. 900 */ 901 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 902 size_t size, gfp_t gfp) 903 { 904 struct spi_res *sres; 905 906 sres = kzalloc(sizeof(*sres) + size, gfp); 907 if (!sres) 908 return NULL; 909 910 INIT_LIST_HEAD(&sres->entry); 911 sres->release = release; 912 913 return sres->data; 914 } 915 916 /** 917 * spi_res_free - free an spi resource 918 * @res: pointer to the custom data of a resource 919 */ 920 static void spi_res_free(void *res) 921 { 922 struct spi_res *sres = container_of(res, struct spi_res, data); 923 924 if (!res) 925 return; 926 927 WARN_ON(!list_empty(&sres->entry)); 928 kfree(sres); 929 } 930 931 /** 932 * spi_res_add - add a spi_res to the spi_message 933 * @message: the spi message 934 * @res: the spi_resource 935 */ 936 static void spi_res_add(struct spi_message *message, void *res) 937 { 938 struct spi_res *sres = container_of(res, struct spi_res, data); 939 940 WARN_ON(!list_empty(&sres->entry)); 941 list_add_tail(&sres->entry, &message->resources); 942 } 943 944 /** 945 * spi_res_release - release all spi resources for this message 946 * @ctlr: the @spi_controller 947 * @message: the @spi_message 948 */ 949 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 950 { 951 struct spi_res *res, *tmp; 952 953 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 954 if (res->release) 955 res->release(ctlr, message, res->data); 956 957 list_del(&res->entry); 958 959 kfree(res); 960 } 961 } 962 963 /*-------------------------------------------------------------------------*/ 964 965 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 966 { 967 bool activate = enable; 968 969 /* 970 * Avoid calling into the driver (or doing delays) if the chip select 971 * isn't actually changing from the last time this was called. 972 */ 973 if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) || 974 (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) && 975 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 976 return; 977 978 trace_spi_set_cs(spi, activate); 979 980 spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1; 981 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 982 983 if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate) 984 spi_delay_exec(&spi->cs_hold, NULL); 985 986 if (spi->mode & SPI_CS_HIGH) 987 enable = !enable; 988 989 if (spi_get_csgpiod(spi, 0)) { 990 if (!(spi->mode & SPI_NO_CS)) { 991 /* 992 * Historically ACPI has no means of the GPIO polarity and 993 * thus the SPISerialBus() resource defines it on the per-chip 994 * basis. In order to avoid a chain of negations, the GPIO 995 * polarity is considered being Active High. Even for the cases 996 * when _DSD() is involved (in the updated versions of ACPI) 997 * the GPIO CS polarity must be defined Active High to avoid 998 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 999 * into account. 1000 */ 1001 if (has_acpi_companion(&spi->dev)) 1002 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable); 1003 else 1004 /* Polarity handled by GPIO library */ 1005 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate); 1006 } 1007 /* Some SPI masters need both GPIO CS & slave_select */ 1008 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 1009 spi->controller->set_cs) 1010 spi->controller->set_cs(spi, !enable); 1011 } else if (spi->controller->set_cs) { 1012 spi->controller->set_cs(spi, !enable); 1013 } 1014 1015 if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) { 1016 if (activate) 1017 spi_delay_exec(&spi->cs_setup, NULL); 1018 else 1019 spi_delay_exec(&spi->cs_inactive, NULL); 1020 } 1021 } 1022 1023 #ifdef CONFIG_HAS_DMA 1024 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1025 struct sg_table *sgt, void *buf, size_t len, 1026 enum dma_data_direction dir, unsigned long attrs) 1027 { 1028 const bool vmalloced_buf = is_vmalloc_addr(buf); 1029 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1030 #ifdef CONFIG_HIGHMEM 1031 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1032 (unsigned long)buf < (PKMAP_BASE + 1033 (LAST_PKMAP * PAGE_SIZE))); 1034 #else 1035 const bool kmap_buf = false; 1036 #endif 1037 int desc_len; 1038 int sgs; 1039 struct page *vm_page; 1040 struct scatterlist *sg; 1041 void *sg_buf; 1042 size_t min; 1043 int i, ret; 1044 1045 if (vmalloced_buf || kmap_buf) { 1046 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1047 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1048 } else if (virt_addr_valid(buf)) { 1049 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1050 sgs = DIV_ROUND_UP(len, desc_len); 1051 } else { 1052 return -EINVAL; 1053 } 1054 1055 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1056 if (ret != 0) 1057 return ret; 1058 1059 sg = &sgt->sgl[0]; 1060 for (i = 0; i < sgs; i++) { 1061 1062 if (vmalloced_buf || kmap_buf) { 1063 /* 1064 * Next scatterlist entry size is the minimum between 1065 * the desc_len and the remaining buffer length that 1066 * fits in a page. 1067 */ 1068 min = min_t(size_t, desc_len, 1069 min_t(size_t, len, 1070 PAGE_SIZE - offset_in_page(buf))); 1071 if (vmalloced_buf) 1072 vm_page = vmalloc_to_page(buf); 1073 else 1074 vm_page = kmap_to_page(buf); 1075 if (!vm_page) { 1076 sg_free_table(sgt); 1077 return -ENOMEM; 1078 } 1079 sg_set_page(sg, vm_page, 1080 min, offset_in_page(buf)); 1081 } else { 1082 min = min_t(size_t, len, desc_len); 1083 sg_buf = buf; 1084 sg_set_buf(sg, sg_buf, min); 1085 } 1086 1087 buf += min; 1088 len -= min; 1089 sg = sg_next(sg); 1090 } 1091 1092 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1093 if (ret < 0) { 1094 sg_free_table(sgt); 1095 return ret; 1096 } 1097 1098 return 0; 1099 } 1100 1101 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1102 struct sg_table *sgt, void *buf, size_t len, 1103 enum dma_data_direction dir) 1104 { 1105 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1106 } 1107 1108 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1109 struct device *dev, struct sg_table *sgt, 1110 enum dma_data_direction dir, 1111 unsigned long attrs) 1112 { 1113 if (sgt->orig_nents) { 1114 dma_unmap_sgtable(dev, sgt, dir, attrs); 1115 sg_free_table(sgt); 1116 sgt->orig_nents = 0; 1117 sgt->nents = 0; 1118 } 1119 } 1120 1121 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1122 struct sg_table *sgt, enum dma_data_direction dir) 1123 { 1124 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1125 } 1126 1127 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1128 { 1129 struct device *tx_dev, *rx_dev; 1130 struct spi_transfer *xfer; 1131 int ret; 1132 1133 if (!ctlr->can_dma) 1134 return 0; 1135 1136 if (ctlr->dma_tx) 1137 tx_dev = ctlr->dma_tx->device->dev; 1138 else if (ctlr->dma_map_dev) 1139 tx_dev = ctlr->dma_map_dev; 1140 else 1141 tx_dev = ctlr->dev.parent; 1142 1143 if (ctlr->dma_rx) 1144 rx_dev = ctlr->dma_rx->device->dev; 1145 else if (ctlr->dma_map_dev) 1146 rx_dev = ctlr->dma_map_dev; 1147 else 1148 rx_dev = ctlr->dev.parent; 1149 1150 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1151 /* The sync is done before each transfer. */ 1152 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1153 1154 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1155 continue; 1156 1157 if (xfer->tx_buf != NULL) { 1158 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1159 (void *)xfer->tx_buf, 1160 xfer->len, DMA_TO_DEVICE, 1161 attrs); 1162 if (ret != 0) 1163 return ret; 1164 } 1165 1166 if (xfer->rx_buf != NULL) { 1167 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1168 xfer->rx_buf, xfer->len, 1169 DMA_FROM_DEVICE, attrs); 1170 if (ret != 0) { 1171 spi_unmap_buf_attrs(ctlr, tx_dev, 1172 &xfer->tx_sg, DMA_TO_DEVICE, 1173 attrs); 1174 1175 return ret; 1176 } 1177 } 1178 } 1179 1180 ctlr->cur_rx_dma_dev = rx_dev; 1181 ctlr->cur_tx_dma_dev = tx_dev; 1182 ctlr->cur_msg_mapped = true; 1183 1184 return 0; 1185 } 1186 1187 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1188 { 1189 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1190 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1191 struct spi_transfer *xfer; 1192 1193 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1194 return 0; 1195 1196 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1197 /* The sync has already been done after each transfer. */ 1198 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1199 1200 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1201 continue; 1202 1203 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1204 DMA_FROM_DEVICE, attrs); 1205 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1206 DMA_TO_DEVICE, attrs); 1207 } 1208 1209 ctlr->cur_msg_mapped = false; 1210 1211 return 0; 1212 } 1213 1214 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1215 struct spi_transfer *xfer) 1216 { 1217 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1218 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1219 1220 if (!ctlr->cur_msg_mapped) 1221 return; 1222 1223 if (xfer->tx_sg.orig_nents) 1224 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1225 if (xfer->rx_sg.orig_nents) 1226 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1227 } 1228 1229 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1230 struct spi_transfer *xfer) 1231 { 1232 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1233 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1234 1235 if (!ctlr->cur_msg_mapped) 1236 return; 1237 1238 if (xfer->rx_sg.orig_nents) 1239 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1240 if (xfer->tx_sg.orig_nents) 1241 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1242 } 1243 #else /* !CONFIG_HAS_DMA */ 1244 static inline int __spi_map_msg(struct spi_controller *ctlr, 1245 struct spi_message *msg) 1246 { 1247 return 0; 1248 } 1249 1250 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1251 struct spi_message *msg) 1252 { 1253 return 0; 1254 } 1255 1256 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1257 struct spi_transfer *xfer) 1258 { 1259 } 1260 1261 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1262 struct spi_transfer *xfer) 1263 { 1264 } 1265 #endif /* !CONFIG_HAS_DMA */ 1266 1267 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1268 struct spi_message *msg) 1269 { 1270 struct spi_transfer *xfer; 1271 1272 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1273 /* 1274 * Restore the original value of tx_buf or rx_buf if they are 1275 * NULL. 1276 */ 1277 if (xfer->tx_buf == ctlr->dummy_tx) 1278 xfer->tx_buf = NULL; 1279 if (xfer->rx_buf == ctlr->dummy_rx) 1280 xfer->rx_buf = NULL; 1281 } 1282 1283 return __spi_unmap_msg(ctlr, msg); 1284 } 1285 1286 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1287 { 1288 struct spi_transfer *xfer; 1289 void *tmp; 1290 unsigned int max_tx, max_rx; 1291 1292 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1293 && !(msg->spi->mode & SPI_3WIRE)) { 1294 max_tx = 0; 1295 max_rx = 0; 1296 1297 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1298 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1299 !xfer->tx_buf) 1300 max_tx = max(xfer->len, max_tx); 1301 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1302 !xfer->rx_buf) 1303 max_rx = max(xfer->len, max_rx); 1304 } 1305 1306 if (max_tx) { 1307 tmp = krealloc(ctlr->dummy_tx, max_tx, 1308 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1309 if (!tmp) 1310 return -ENOMEM; 1311 ctlr->dummy_tx = tmp; 1312 } 1313 1314 if (max_rx) { 1315 tmp = krealloc(ctlr->dummy_rx, max_rx, 1316 GFP_KERNEL | GFP_DMA); 1317 if (!tmp) 1318 return -ENOMEM; 1319 ctlr->dummy_rx = tmp; 1320 } 1321 1322 if (max_tx || max_rx) { 1323 list_for_each_entry(xfer, &msg->transfers, 1324 transfer_list) { 1325 if (!xfer->len) 1326 continue; 1327 if (!xfer->tx_buf) 1328 xfer->tx_buf = ctlr->dummy_tx; 1329 if (!xfer->rx_buf) 1330 xfer->rx_buf = ctlr->dummy_rx; 1331 } 1332 } 1333 } 1334 1335 return __spi_map_msg(ctlr, msg); 1336 } 1337 1338 static int spi_transfer_wait(struct spi_controller *ctlr, 1339 struct spi_message *msg, 1340 struct spi_transfer *xfer) 1341 { 1342 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1343 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1344 u32 speed_hz = xfer->speed_hz; 1345 unsigned long long ms; 1346 1347 if (spi_controller_is_slave(ctlr)) { 1348 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1349 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1350 return -EINTR; 1351 } 1352 } else { 1353 if (!speed_hz) 1354 speed_hz = 100000; 1355 1356 /* 1357 * For each byte we wait for 8 cycles of the SPI clock. 1358 * Since speed is defined in Hz and we want milliseconds, 1359 * use respective multiplier, but before the division, 1360 * otherwise we may get 0 for short transfers. 1361 */ 1362 ms = 8LL * MSEC_PER_SEC * xfer->len; 1363 do_div(ms, speed_hz); 1364 1365 /* 1366 * Increase it twice and add 200 ms tolerance, use 1367 * predefined maximum in case of overflow. 1368 */ 1369 ms += ms + 200; 1370 if (ms > UINT_MAX) 1371 ms = UINT_MAX; 1372 1373 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1374 msecs_to_jiffies(ms)); 1375 1376 if (ms == 0) { 1377 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1378 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1379 dev_err(&msg->spi->dev, 1380 "SPI transfer timed out\n"); 1381 return -ETIMEDOUT; 1382 } 1383 } 1384 1385 return 0; 1386 } 1387 1388 static void _spi_transfer_delay_ns(u32 ns) 1389 { 1390 if (!ns) 1391 return; 1392 if (ns <= NSEC_PER_USEC) { 1393 ndelay(ns); 1394 } else { 1395 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1396 1397 if (us <= 10) 1398 udelay(us); 1399 else 1400 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1401 } 1402 } 1403 1404 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1405 { 1406 u32 delay = _delay->value; 1407 u32 unit = _delay->unit; 1408 u32 hz; 1409 1410 if (!delay) 1411 return 0; 1412 1413 switch (unit) { 1414 case SPI_DELAY_UNIT_USECS: 1415 delay *= NSEC_PER_USEC; 1416 break; 1417 case SPI_DELAY_UNIT_NSECS: 1418 /* Nothing to do here */ 1419 break; 1420 case SPI_DELAY_UNIT_SCK: 1421 /* Clock cycles need to be obtained from spi_transfer */ 1422 if (!xfer) 1423 return -EINVAL; 1424 /* 1425 * If there is unknown effective speed, approximate it 1426 * by underestimating with half of the requested hz. 1427 */ 1428 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1429 if (!hz) 1430 return -EINVAL; 1431 1432 /* Convert delay to nanoseconds */ 1433 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1434 break; 1435 default: 1436 return -EINVAL; 1437 } 1438 1439 return delay; 1440 } 1441 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1442 1443 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1444 { 1445 int delay; 1446 1447 might_sleep(); 1448 1449 if (!_delay) 1450 return -EINVAL; 1451 1452 delay = spi_delay_to_ns(_delay, xfer); 1453 if (delay < 0) 1454 return delay; 1455 1456 _spi_transfer_delay_ns(delay); 1457 1458 return 0; 1459 } 1460 EXPORT_SYMBOL_GPL(spi_delay_exec); 1461 1462 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1463 struct spi_transfer *xfer) 1464 { 1465 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1466 u32 delay = xfer->cs_change_delay.value; 1467 u32 unit = xfer->cs_change_delay.unit; 1468 int ret; 1469 1470 /* Return early on "fast" mode - for everything but USECS */ 1471 if (!delay) { 1472 if (unit == SPI_DELAY_UNIT_USECS) 1473 _spi_transfer_delay_ns(default_delay_ns); 1474 return; 1475 } 1476 1477 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1478 if (ret) { 1479 dev_err_once(&msg->spi->dev, 1480 "Use of unsupported delay unit %i, using default of %luus\n", 1481 unit, default_delay_ns / NSEC_PER_USEC); 1482 _spi_transfer_delay_ns(default_delay_ns); 1483 } 1484 } 1485 1486 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1487 struct spi_transfer *xfer) 1488 { 1489 _spi_transfer_cs_change_delay(msg, xfer); 1490 } 1491 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1492 1493 /* 1494 * spi_transfer_one_message - Default implementation of transfer_one_message() 1495 * 1496 * This is a standard implementation of transfer_one_message() for 1497 * drivers which implement a transfer_one() operation. It provides 1498 * standard handling of delays and chip select management. 1499 */ 1500 static int spi_transfer_one_message(struct spi_controller *ctlr, 1501 struct spi_message *msg) 1502 { 1503 struct spi_transfer *xfer; 1504 bool keep_cs = false; 1505 int ret = 0; 1506 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1507 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1508 1509 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1510 spi_set_cs(msg->spi, !xfer->cs_off, false); 1511 1512 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1513 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1514 1515 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1516 trace_spi_transfer_start(msg, xfer); 1517 1518 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1519 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1520 1521 if (!ctlr->ptp_sts_supported) { 1522 xfer->ptp_sts_word_pre = 0; 1523 ptp_read_system_prets(xfer->ptp_sts); 1524 } 1525 1526 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1527 reinit_completion(&ctlr->xfer_completion); 1528 1529 fallback_pio: 1530 spi_dma_sync_for_device(ctlr, xfer); 1531 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1532 if (ret < 0) { 1533 spi_dma_sync_for_cpu(ctlr, xfer); 1534 1535 if (ctlr->cur_msg_mapped && 1536 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1537 __spi_unmap_msg(ctlr, msg); 1538 ctlr->fallback = true; 1539 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1540 goto fallback_pio; 1541 } 1542 1543 SPI_STATISTICS_INCREMENT_FIELD(statm, 1544 errors); 1545 SPI_STATISTICS_INCREMENT_FIELD(stats, 1546 errors); 1547 dev_err(&msg->spi->dev, 1548 "SPI transfer failed: %d\n", ret); 1549 goto out; 1550 } 1551 1552 if (ret > 0) { 1553 ret = spi_transfer_wait(ctlr, msg, xfer); 1554 if (ret < 0) 1555 msg->status = ret; 1556 } 1557 1558 spi_dma_sync_for_cpu(ctlr, xfer); 1559 } else { 1560 if (xfer->len) 1561 dev_err(&msg->spi->dev, 1562 "Bufferless transfer has length %u\n", 1563 xfer->len); 1564 } 1565 1566 if (!ctlr->ptp_sts_supported) { 1567 ptp_read_system_postts(xfer->ptp_sts); 1568 xfer->ptp_sts_word_post = xfer->len; 1569 } 1570 1571 trace_spi_transfer_stop(msg, xfer); 1572 1573 if (msg->status != -EINPROGRESS) 1574 goto out; 1575 1576 spi_transfer_delay_exec(xfer); 1577 1578 if (xfer->cs_change) { 1579 if (list_is_last(&xfer->transfer_list, 1580 &msg->transfers)) { 1581 keep_cs = true; 1582 } else { 1583 if (!xfer->cs_off) 1584 spi_set_cs(msg->spi, false, false); 1585 _spi_transfer_cs_change_delay(msg, xfer); 1586 if (!list_next_entry(xfer, transfer_list)->cs_off) 1587 spi_set_cs(msg->spi, true, false); 1588 } 1589 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1590 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1591 spi_set_cs(msg->spi, xfer->cs_off, false); 1592 } 1593 1594 msg->actual_length += xfer->len; 1595 } 1596 1597 out: 1598 if (ret != 0 || !keep_cs) 1599 spi_set_cs(msg->spi, false, false); 1600 1601 if (msg->status == -EINPROGRESS) 1602 msg->status = ret; 1603 1604 if (msg->status && ctlr->handle_err) 1605 ctlr->handle_err(ctlr, msg); 1606 1607 spi_finalize_current_message(ctlr); 1608 1609 return ret; 1610 } 1611 1612 /** 1613 * spi_finalize_current_transfer - report completion of a transfer 1614 * @ctlr: the controller reporting completion 1615 * 1616 * Called by SPI drivers using the core transfer_one_message() 1617 * implementation to notify it that the current interrupt driven 1618 * transfer has finished and the next one may be scheduled. 1619 */ 1620 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1621 { 1622 complete(&ctlr->xfer_completion); 1623 } 1624 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1625 1626 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1627 { 1628 if (ctlr->auto_runtime_pm) { 1629 pm_runtime_mark_last_busy(ctlr->dev.parent); 1630 pm_runtime_put_autosuspend(ctlr->dev.parent); 1631 } 1632 } 1633 1634 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1635 struct spi_message *msg, bool was_busy) 1636 { 1637 struct spi_transfer *xfer; 1638 int ret; 1639 1640 if (!was_busy && ctlr->auto_runtime_pm) { 1641 ret = pm_runtime_get_sync(ctlr->dev.parent); 1642 if (ret < 0) { 1643 pm_runtime_put_noidle(ctlr->dev.parent); 1644 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1645 ret); 1646 return ret; 1647 } 1648 } 1649 1650 if (!was_busy) 1651 trace_spi_controller_busy(ctlr); 1652 1653 if (!was_busy && ctlr->prepare_transfer_hardware) { 1654 ret = ctlr->prepare_transfer_hardware(ctlr); 1655 if (ret) { 1656 dev_err(&ctlr->dev, 1657 "failed to prepare transfer hardware: %d\n", 1658 ret); 1659 1660 if (ctlr->auto_runtime_pm) 1661 pm_runtime_put(ctlr->dev.parent); 1662 1663 msg->status = ret; 1664 spi_finalize_current_message(ctlr); 1665 1666 return ret; 1667 } 1668 } 1669 1670 trace_spi_message_start(msg); 1671 1672 ret = spi_split_transfers_maxsize(ctlr, msg, 1673 spi_max_transfer_size(msg->spi), 1674 GFP_KERNEL | GFP_DMA); 1675 if (ret) { 1676 msg->status = ret; 1677 spi_finalize_current_message(ctlr); 1678 return ret; 1679 } 1680 1681 if (ctlr->prepare_message) { 1682 ret = ctlr->prepare_message(ctlr, msg); 1683 if (ret) { 1684 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1685 ret); 1686 msg->status = ret; 1687 spi_finalize_current_message(ctlr); 1688 return ret; 1689 } 1690 msg->prepared = true; 1691 } 1692 1693 ret = spi_map_msg(ctlr, msg); 1694 if (ret) { 1695 msg->status = ret; 1696 spi_finalize_current_message(ctlr); 1697 return ret; 1698 } 1699 1700 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1701 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1702 xfer->ptp_sts_word_pre = 0; 1703 ptp_read_system_prets(xfer->ptp_sts); 1704 } 1705 } 1706 1707 /* 1708 * Drivers implementation of transfer_one_message() must arrange for 1709 * spi_finalize_current_message() to get called. Most drivers will do 1710 * this in the calling context, but some don't. For those cases, a 1711 * completion is used to guarantee that this function does not return 1712 * until spi_finalize_current_message() is done accessing 1713 * ctlr->cur_msg. 1714 * Use of the following two flags enable to opportunistically skip the 1715 * use of the completion since its use involves expensive spin locks. 1716 * In case of a race with the context that calls 1717 * spi_finalize_current_message() the completion will always be used, 1718 * due to strict ordering of these flags using barriers. 1719 */ 1720 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1721 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1722 reinit_completion(&ctlr->cur_msg_completion); 1723 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1724 1725 ret = ctlr->transfer_one_message(ctlr, msg); 1726 if (ret) { 1727 dev_err(&ctlr->dev, 1728 "failed to transfer one message from queue\n"); 1729 return ret; 1730 } 1731 1732 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1733 smp_mb(); /* See spi_finalize_current_message()... */ 1734 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1735 wait_for_completion(&ctlr->cur_msg_completion); 1736 1737 return 0; 1738 } 1739 1740 /** 1741 * __spi_pump_messages - function which processes spi message queue 1742 * @ctlr: controller to process queue for 1743 * @in_kthread: true if we are in the context of the message pump thread 1744 * 1745 * This function checks if there is any spi message in the queue that 1746 * needs processing and if so call out to the driver to initialize hardware 1747 * and transfer each message. 1748 * 1749 * Note that it is called both from the kthread itself and also from 1750 * inside spi_sync(); the queue extraction handling at the top of the 1751 * function should deal with this safely. 1752 */ 1753 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1754 { 1755 struct spi_message *msg; 1756 bool was_busy = false; 1757 unsigned long flags; 1758 int ret; 1759 1760 /* Take the IO mutex */ 1761 mutex_lock(&ctlr->io_mutex); 1762 1763 /* Lock queue */ 1764 spin_lock_irqsave(&ctlr->queue_lock, flags); 1765 1766 /* Make sure we are not already running a message */ 1767 if (ctlr->cur_msg) 1768 goto out_unlock; 1769 1770 /* Check if the queue is idle */ 1771 if (list_empty(&ctlr->queue) || !ctlr->running) { 1772 if (!ctlr->busy) 1773 goto out_unlock; 1774 1775 /* Defer any non-atomic teardown to the thread */ 1776 if (!in_kthread) { 1777 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1778 !ctlr->unprepare_transfer_hardware) { 1779 spi_idle_runtime_pm(ctlr); 1780 ctlr->busy = false; 1781 ctlr->queue_empty = true; 1782 trace_spi_controller_idle(ctlr); 1783 } else { 1784 kthread_queue_work(ctlr->kworker, 1785 &ctlr->pump_messages); 1786 } 1787 goto out_unlock; 1788 } 1789 1790 ctlr->busy = false; 1791 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1792 1793 kfree(ctlr->dummy_rx); 1794 ctlr->dummy_rx = NULL; 1795 kfree(ctlr->dummy_tx); 1796 ctlr->dummy_tx = NULL; 1797 if (ctlr->unprepare_transfer_hardware && 1798 ctlr->unprepare_transfer_hardware(ctlr)) 1799 dev_err(&ctlr->dev, 1800 "failed to unprepare transfer hardware\n"); 1801 spi_idle_runtime_pm(ctlr); 1802 trace_spi_controller_idle(ctlr); 1803 1804 spin_lock_irqsave(&ctlr->queue_lock, flags); 1805 ctlr->queue_empty = true; 1806 goto out_unlock; 1807 } 1808 1809 /* Extract head of queue */ 1810 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1811 ctlr->cur_msg = msg; 1812 1813 list_del_init(&msg->queue); 1814 if (ctlr->busy) 1815 was_busy = true; 1816 else 1817 ctlr->busy = true; 1818 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1819 1820 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1821 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1822 1823 ctlr->cur_msg = NULL; 1824 ctlr->fallback = false; 1825 1826 mutex_unlock(&ctlr->io_mutex); 1827 1828 /* Prod the scheduler in case transfer_one() was busy waiting */ 1829 if (!ret) 1830 cond_resched(); 1831 return; 1832 1833 out_unlock: 1834 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1835 mutex_unlock(&ctlr->io_mutex); 1836 } 1837 1838 /** 1839 * spi_pump_messages - kthread work function which processes spi message queue 1840 * @work: pointer to kthread work struct contained in the controller struct 1841 */ 1842 static void spi_pump_messages(struct kthread_work *work) 1843 { 1844 struct spi_controller *ctlr = 1845 container_of(work, struct spi_controller, pump_messages); 1846 1847 __spi_pump_messages(ctlr, true); 1848 } 1849 1850 /** 1851 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1852 * @ctlr: Pointer to the spi_controller structure of the driver 1853 * @xfer: Pointer to the transfer being timestamped 1854 * @progress: How many words (not bytes) have been transferred so far 1855 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1856 * transfer, for less jitter in time measurement. Only compatible 1857 * with PIO drivers. If true, must follow up with 1858 * spi_take_timestamp_post or otherwise system will crash. 1859 * WARNING: for fully predictable results, the CPU frequency must 1860 * also be under control (governor). 1861 * 1862 * This is a helper for drivers to collect the beginning of the TX timestamp 1863 * for the requested byte from the SPI transfer. The frequency with which this 1864 * function must be called (once per word, once for the whole transfer, once 1865 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1866 * greater than or equal to the requested byte at the time of the call. The 1867 * timestamp is only taken once, at the first such call. It is assumed that 1868 * the driver advances its @tx buffer pointer monotonically. 1869 */ 1870 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1871 struct spi_transfer *xfer, 1872 size_t progress, bool irqs_off) 1873 { 1874 if (!xfer->ptp_sts) 1875 return; 1876 1877 if (xfer->timestamped) 1878 return; 1879 1880 if (progress > xfer->ptp_sts_word_pre) 1881 return; 1882 1883 /* Capture the resolution of the timestamp */ 1884 xfer->ptp_sts_word_pre = progress; 1885 1886 if (irqs_off) { 1887 local_irq_save(ctlr->irq_flags); 1888 preempt_disable(); 1889 } 1890 1891 ptp_read_system_prets(xfer->ptp_sts); 1892 } 1893 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1894 1895 /** 1896 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1897 * @ctlr: Pointer to the spi_controller structure of the driver 1898 * @xfer: Pointer to the transfer being timestamped 1899 * @progress: How many words (not bytes) have been transferred so far 1900 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1901 * 1902 * This is a helper for drivers to collect the end of the TX timestamp for 1903 * the requested byte from the SPI transfer. Can be called with an arbitrary 1904 * frequency: only the first call where @tx exceeds or is equal to the 1905 * requested word will be timestamped. 1906 */ 1907 void spi_take_timestamp_post(struct spi_controller *ctlr, 1908 struct spi_transfer *xfer, 1909 size_t progress, bool irqs_off) 1910 { 1911 if (!xfer->ptp_sts) 1912 return; 1913 1914 if (xfer->timestamped) 1915 return; 1916 1917 if (progress < xfer->ptp_sts_word_post) 1918 return; 1919 1920 ptp_read_system_postts(xfer->ptp_sts); 1921 1922 if (irqs_off) { 1923 local_irq_restore(ctlr->irq_flags); 1924 preempt_enable(); 1925 } 1926 1927 /* Capture the resolution of the timestamp */ 1928 xfer->ptp_sts_word_post = progress; 1929 1930 xfer->timestamped = 1; 1931 } 1932 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1933 1934 /** 1935 * spi_set_thread_rt - set the controller to pump at realtime priority 1936 * @ctlr: controller to boost priority of 1937 * 1938 * This can be called because the controller requested realtime priority 1939 * (by setting the ->rt value before calling spi_register_controller()) or 1940 * because a device on the bus said that its transfers needed realtime 1941 * priority. 1942 * 1943 * NOTE: at the moment if any device on a bus says it needs realtime then 1944 * the thread will be at realtime priority for all transfers on that 1945 * controller. If this eventually becomes a problem we may see if we can 1946 * find a way to boost the priority only temporarily during relevant 1947 * transfers. 1948 */ 1949 static void spi_set_thread_rt(struct spi_controller *ctlr) 1950 { 1951 dev_info(&ctlr->dev, 1952 "will run message pump with realtime priority\n"); 1953 sched_set_fifo(ctlr->kworker->task); 1954 } 1955 1956 static int spi_init_queue(struct spi_controller *ctlr) 1957 { 1958 ctlr->running = false; 1959 ctlr->busy = false; 1960 ctlr->queue_empty = true; 1961 1962 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1963 if (IS_ERR(ctlr->kworker)) { 1964 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1965 return PTR_ERR(ctlr->kworker); 1966 } 1967 1968 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1969 1970 /* 1971 * Controller config will indicate if this controller should run the 1972 * message pump with high (realtime) priority to reduce the transfer 1973 * latency on the bus by minimising the delay between a transfer 1974 * request and the scheduling of the message pump thread. Without this 1975 * setting the message pump thread will remain at default priority. 1976 */ 1977 if (ctlr->rt) 1978 spi_set_thread_rt(ctlr); 1979 1980 return 0; 1981 } 1982 1983 /** 1984 * spi_get_next_queued_message() - called by driver to check for queued 1985 * messages 1986 * @ctlr: the controller to check for queued messages 1987 * 1988 * If there are more messages in the queue, the next message is returned from 1989 * this call. 1990 * 1991 * Return: the next message in the queue, else NULL if the queue is empty. 1992 */ 1993 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1994 { 1995 struct spi_message *next; 1996 unsigned long flags; 1997 1998 /* Get a pointer to the next message, if any */ 1999 spin_lock_irqsave(&ctlr->queue_lock, flags); 2000 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2001 queue); 2002 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2003 2004 return next; 2005 } 2006 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2007 2008 /** 2009 * spi_finalize_current_message() - the current message is complete 2010 * @ctlr: the controller to return the message to 2011 * 2012 * Called by the driver to notify the core that the message in the front of the 2013 * queue is complete and can be removed from the queue. 2014 */ 2015 void spi_finalize_current_message(struct spi_controller *ctlr) 2016 { 2017 struct spi_transfer *xfer; 2018 struct spi_message *mesg; 2019 int ret; 2020 2021 mesg = ctlr->cur_msg; 2022 2023 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2024 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2025 ptp_read_system_postts(xfer->ptp_sts); 2026 xfer->ptp_sts_word_post = xfer->len; 2027 } 2028 } 2029 2030 if (unlikely(ctlr->ptp_sts_supported)) 2031 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2032 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2033 2034 spi_unmap_msg(ctlr, mesg); 2035 2036 /* 2037 * In the prepare_messages callback the SPI bus has the opportunity 2038 * to split a transfer to smaller chunks. 2039 * 2040 * Release the split transfers here since spi_map_msg() is done on 2041 * the split transfers. 2042 */ 2043 spi_res_release(ctlr, mesg); 2044 2045 if (mesg->prepared && ctlr->unprepare_message) { 2046 ret = ctlr->unprepare_message(ctlr, mesg); 2047 if (ret) { 2048 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2049 ret); 2050 } 2051 } 2052 2053 mesg->prepared = false; 2054 2055 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2056 smp_mb(); /* See __spi_pump_transfer_message()... */ 2057 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2058 complete(&ctlr->cur_msg_completion); 2059 2060 trace_spi_message_done(mesg); 2061 2062 mesg->state = NULL; 2063 if (mesg->complete) 2064 mesg->complete(mesg->context); 2065 } 2066 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2067 2068 static int spi_start_queue(struct spi_controller *ctlr) 2069 { 2070 unsigned long flags; 2071 2072 spin_lock_irqsave(&ctlr->queue_lock, flags); 2073 2074 if (ctlr->running || ctlr->busy) { 2075 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2076 return -EBUSY; 2077 } 2078 2079 ctlr->running = true; 2080 ctlr->cur_msg = NULL; 2081 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2082 2083 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2084 2085 return 0; 2086 } 2087 2088 static int spi_stop_queue(struct spi_controller *ctlr) 2089 { 2090 unsigned long flags; 2091 unsigned limit = 500; 2092 int ret = 0; 2093 2094 spin_lock_irqsave(&ctlr->queue_lock, flags); 2095 2096 /* 2097 * This is a bit lame, but is optimized for the common execution path. 2098 * A wait_queue on the ctlr->busy could be used, but then the common 2099 * execution path (pump_messages) would be required to call wake_up or 2100 * friends on every SPI message. Do this instead. 2101 */ 2102 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2103 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2104 usleep_range(10000, 11000); 2105 spin_lock_irqsave(&ctlr->queue_lock, flags); 2106 } 2107 2108 if (!list_empty(&ctlr->queue) || ctlr->busy) 2109 ret = -EBUSY; 2110 else 2111 ctlr->running = false; 2112 2113 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2114 2115 if (ret) { 2116 dev_warn(&ctlr->dev, "could not stop message queue\n"); 2117 return ret; 2118 } 2119 return ret; 2120 } 2121 2122 static int spi_destroy_queue(struct spi_controller *ctlr) 2123 { 2124 int ret; 2125 2126 ret = spi_stop_queue(ctlr); 2127 2128 /* 2129 * kthread_flush_worker will block until all work is done. 2130 * If the reason that stop_queue timed out is that the work will never 2131 * finish, then it does no good to call flush/stop thread, so 2132 * return anyway. 2133 */ 2134 if (ret) { 2135 dev_err(&ctlr->dev, "problem destroying queue\n"); 2136 return ret; 2137 } 2138 2139 kthread_destroy_worker(ctlr->kworker); 2140 2141 return 0; 2142 } 2143 2144 static int __spi_queued_transfer(struct spi_device *spi, 2145 struct spi_message *msg, 2146 bool need_pump) 2147 { 2148 struct spi_controller *ctlr = spi->controller; 2149 unsigned long flags; 2150 2151 spin_lock_irqsave(&ctlr->queue_lock, flags); 2152 2153 if (!ctlr->running) { 2154 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2155 return -ESHUTDOWN; 2156 } 2157 msg->actual_length = 0; 2158 msg->status = -EINPROGRESS; 2159 2160 list_add_tail(&msg->queue, &ctlr->queue); 2161 ctlr->queue_empty = false; 2162 if (!ctlr->busy && need_pump) 2163 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2164 2165 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2166 return 0; 2167 } 2168 2169 /** 2170 * spi_queued_transfer - transfer function for queued transfers 2171 * @spi: spi device which is requesting transfer 2172 * @msg: spi message which is to handled is queued to driver queue 2173 * 2174 * Return: zero on success, else a negative error code. 2175 */ 2176 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2177 { 2178 return __spi_queued_transfer(spi, msg, true); 2179 } 2180 2181 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2182 { 2183 int ret; 2184 2185 ctlr->transfer = spi_queued_transfer; 2186 if (!ctlr->transfer_one_message) 2187 ctlr->transfer_one_message = spi_transfer_one_message; 2188 2189 /* Initialize and start queue */ 2190 ret = spi_init_queue(ctlr); 2191 if (ret) { 2192 dev_err(&ctlr->dev, "problem initializing queue\n"); 2193 goto err_init_queue; 2194 } 2195 ctlr->queued = true; 2196 ret = spi_start_queue(ctlr); 2197 if (ret) { 2198 dev_err(&ctlr->dev, "problem starting queue\n"); 2199 goto err_start_queue; 2200 } 2201 2202 return 0; 2203 2204 err_start_queue: 2205 spi_destroy_queue(ctlr); 2206 err_init_queue: 2207 return ret; 2208 } 2209 2210 /** 2211 * spi_flush_queue - Send all pending messages in the queue from the callers' 2212 * context 2213 * @ctlr: controller to process queue for 2214 * 2215 * This should be used when one wants to ensure all pending messages have been 2216 * sent before doing something. Is used by the spi-mem code to make sure SPI 2217 * memory operations do not preempt regular SPI transfers that have been queued 2218 * before the spi-mem operation. 2219 */ 2220 void spi_flush_queue(struct spi_controller *ctlr) 2221 { 2222 if (ctlr->transfer == spi_queued_transfer) 2223 __spi_pump_messages(ctlr, false); 2224 } 2225 2226 /*-------------------------------------------------------------------------*/ 2227 2228 #if defined(CONFIG_OF) 2229 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2230 struct spi_delay *delay, const char *prop) 2231 { 2232 u32 value; 2233 2234 if (!of_property_read_u32(nc, prop, &value)) { 2235 if (value > U16_MAX) { 2236 delay->value = DIV_ROUND_UP(value, 1000); 2237 delay->unit = SPI_DELAY_UNIT_USECS; 2238 } else { 2239 delay->value = value; 2240 delay->unit = SPI_DELAY_UNIT_NSECS; 2241 } 2242 } 2243 } 2244 2245 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2246 struct device_node *nc) 2247 { 2248 u32 value; 2249 int rc; 2250 2251 /* Mode (clock phase/polarity/etc.) */ 2252 if (of_property_read_bool(nc, "spi-cpha")) 2253 spi->mode |= SPI_CPHA; 2254 if (of_property_read_bool(nc, "spi-cpol")) 2255 spi->mode |= SPI_CPOL; 2256 if (of_property_read_bool(nc, "spi-3wire")) 2257 spi->mode |= SPI_3WIRE; 2258 if (of_property_read_bool(nc, "spi-lsb-first")) 2259 spi->mode |= SPI_LSB_FIRST; 2260 if (of_property_read_bool(nc, "spi-cs-high")) 2261 spi->mode |= SPI_CS_HIGH; 2262 2263 /* Device DUAL/QUAD mode */ 2264 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2265 switch (value) { 2266 case 0: 2267 spi->mode |= SPI_NO_TX; 2268 break; 2269 case 1: 2270 break; 2271 case 2: 2272 spi->mode |= SPI_TX_DUAL; 2273 break; 2274 case 4: 2275 spi->mode |= SPI_TX_QUAD; 2276 break; 2277 case 8: 2278 spi->mode |= SPI_TX_OCTAL; 2279 break; 2280 default: 2281 dev_warn(&ctlr->dev, 2282 "spi-tx-bus-width %d not supported\n", 2283 value); 2284 break; 2285 } 2286 } 2287 2288 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2289 switch (value) { 2290 case 0: 2291 spi->mode |= SPI_NO_RX; 2292 break; 2293 case 1: 2294 break; 2295 case 2: 2296 spi->mode |= SPI_RX_DUAL; 2297 break; 2298 case 4: 2299 spi->mode |= SPI_RX_QUAD; 2300 break; 2301 case 8: 2302 spi->mode |= SPI_RX_OCTAL; 2303 break; 2304 default: 2305 dev_warn(&ctlr->dev, 2306 "spi-rx-bus-width %d not supported\n", 2307 value); 2308 break; 2309 } 2310 } 2311 2312 if (spi_controller_is_slave(ctlr)) { 2313 if (!of_node_name_eq(nc, "slave")) { 2314 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2315 nc); 2316 return -EINVAL; 2317 } 2318 return 0; 2319 } 2320 2321 /* Device address */ 2322 rc = of_property_read_u32(nc, "reg", &value); 2323 if (rc) { 2324 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2325 nc, rc); 2326 return rc; 2327 } 2328 spi_set_chipselect(spi, 0, value); 2329 2330 /* Device speed */ 2331 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2332 spi->max_speed_hz = value; 2333 2334 /* Device CS delays */ 2335 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2336 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2337 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2338 2339 return 0; 2340 } 2341 2342 static struct spi_device * 2343 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2344 { 2345 struct spi_device *spi; 2346 int rc; 2347 2348 /* Alloc an spi_device */ 2349 spi = spi_alloc_device(ctlr); 2350 if (!spi) { 2351 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2352 rc = -ENOMEM; 2353 goto err_out; 2354 } 2355 2356 /* Select device driver */ 2357 rc = of_modalias_node(nc, spi->modalias, 2358 sizeof(spi->modalias)); 2359 if (rc < 0) { 2360 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2361 goto err_out; 2362 } 2363 2364 rc = of_spi_parse_dt(ctlr, spi, nc); 2365 if (rc) 2366 goto err_out; 2367 2368 /* Store a pointer to the node in the device structure */ 2369 of_node_get(nc); 2370 spi->dev.of_node = nc; 2371 spi->dev.fwnode = of_fwnode_handle(nc); 2372 2373 /* Register the new device */ 2374 rc = spi_add_device(spi); 2375 if (rc) { 2376 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2377 goto err_of_node_put; 2378 } 2379 2380 return spi; 2381 2382 err_of_node_put: 2383 of_node_put(nc); 2384 err_out: 2385 spi_dev_put(spi); 2386 return ERR_PTR(rc); 2387 } 2388 2389 /** 2390 * of_register_spi_devices() - Register child devices onto the SPI bus 2391 * @ctlr: Pointer to spi_controller device 2392 * 2393 * Registers an spi_device for each child node of controller node which 2394 * represents a valid SPI slave. 2395 */ 2396 static void of_register_spi_devices(struct spi_controller *ctlr) 2397 { 2398 struct spi_device *spi; 2399 struct device_node *nc; 2400 2401 if (!ctlr->dev.of_node) 2402 return; 2403 2404 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2405 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2406 continue; 2407 spi = of_register_spi_device(ctlr, nc); 2408 if (IS_ERR(spi)) { 2409 dev_warn(&ctlr->dev, 2410 "Failed to create SPI device for %pOF\n", nc); 2411 of_node_clear_flag(nc, OF_POPULATED); 2412 } 2413 } 2414 } 2415 #else 2416 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2417 #endif 2418 2419 /** 2420 * spi_new_ancillary_device() - Register ancillary SPI device 2421 * @spi: Pointer to the main SPI device registering the ancillary device 2422 * @chip_select: Chip Select of the ancillary device 2423 * 2424 * Register an ancillary SPI device; for example some chips have a chip-select 2425 * for normal device usage and another one for setup/firmware upload. 2426 * 2427 * This may only be called from main SPI device's probe routine. 2428 * 2429 * Return: 0 on success; negative errno on failure 2430 */ 2431 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2432 u8 chip_select) 2433 { 2434 struct spi_device *ancillary; 2435 int rc = 0; 2436 2437 /* Alloc an spi_device */ 2438 ancillary = spi_alloc_device(spi->controller); 2439 if (!ancillary) { 2440 rc = -ENOMEM; 2441 goto err_out; 2442 } 2443 2444 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2445 2446 /* Use provided chip-select for ancillary device */ 2447 spi_set_chipselect(ancillary, 0, chip_select); 2448 2449 /* Take over SPI mode/speed from SPI main device */ 2450 ancillary->max_speed_hz = spi->max_speed_hz; 2451 ancillary->mode = spi->mode; 2452 2453 /* Register the new device */ 2454 rc = spi_add_device_locked(ancillary); 2455 if (rc) { 2456 dev_err(&spi->dev, "failed to register ancillary device\n"); 2457 goto err_out; 2458 } 2459 2460 return ancillary; 2461 2462 err_out: 2463 spi_dev_put(ancillary); 2464 return ERR_PTR(rc); 2465 } 2466 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2467 2468 #ifdef CONFIG_ACPI 2469 struct acpi_spi_lookup { 2470 struct spi_controller *ctlr; 2471 u32 max_speed_hz; 2472 u32 mode; 2473 int irq; 2474 u8 bits_per_word; 2475 u8 chip_select; 2476 int n; 2477 int index; 2478 }; 2479 2480 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2481 { 2482 struct acpi_resource_spi_serialbus *sb; 2483 int *count = data; 2484 2485 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2486 return 1; 2487 2488 sb = &ares->data.spi_serial_bus; 2489 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2490 return 1; 2491 2492 *count = *count + 1; 2493 2494 return 1; 2495 } 2496 2497 /** 2498 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2499 * @adev: ACPI device 2500 * 2501 * Returns the number of SpiSerialBus resources in the ACPI-device's 2502 * resource-list; or a negative error code. 2503 */ 2504 int acpi_spi_count_resources(struct acpi_device *adev) 2505 { 2506 LIST_HEAD(r); 2507 int count = 0; 2508 int ret; 2509 2510 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2511 if (ret < 0) 2512 return ret; 2513 2514 acpi_dev_free_resource_list(&r); 2515 2516 return count; 2517 } 2518 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2519 2520 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2521 struct acpi_spi_lookup *lookup) 2522 { 2523 const union acpi_object *obj; 2524 2525 if (!x86_apple_machine) 2526 return; 2527 2528 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2529 && obj->buffer.length >= 4) 2530 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2531 2532 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2533 && obj->buffer.length == 8) 2534 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2535 2536 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2537 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2538 lookup->mode |= SPI_LSB_FIRST; 2539 2540 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2541 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2542 lookup->mode |= SPI_CPOL; 2543 2544 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2545 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2546 lookup->mode |= SPI_CPHA; 2547 } 2548 2549 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 2550 2551 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2552 { 2553 struct acpi_spi_lookup *lookup = data; 2554 struct spi_controller *ctlr = lookup->ctlr; 2555 2556 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2557 struct acpi_resource_spi_serialbus *sb; 2558 acpi_handle parent_handle; 2559 acpi_status status; 2560 2561 sb = &ares->data.spi_serial_bus; 2562 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2563 2564 if (lookup->index != -1 && lookup->n++ != lookup->index) 2565 return 1; 2566 2567 status = acpi_get_handle(NULL, 2568 sb->resource_source.string_ptr, 2569 &parent_handle); 2570 2571 if (ACPI_FAILURE(status)) 2572 return -ENODEV; 2573 2574 if (ctlr) { 2575 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2576 return -ENODEV; 2577 } else { 2578 struct acpi_device *adev; 2579 2580 adev = acpi_fetch_acpi_dev(parent_handle); 2581 if (!adev) 2582 return -ENODEV; 2583 2584 ctlr = acpi_spi_find_controller_by_adev(adev); 2585 if (!ctlr) 2586 return -EPROBE_DEFER; 2587 2588 lookup->ctlr = ctlr; 2589 } 2590 2591 /* 2592 * ACPI DeviceSelection numbering is handled by the 2593 * host controller driver in Windows and can vary 2594 * from driver to driver. In Linux we always expect 2595 * 0 .. max - 1 so we need to ask the driver to 2596 * translate between the two schemes. 2597 */ 2598 if (ctlr->fw_translate_cs) { 2599 int cs = ctlr->fw_translate_cs(ctlr, 2600 sb->device_selection); 2601 if (cs < 0) 2602 return cs; 2603 lookup->chip_select = cs; 2604 } else { 2605 lookup->chip_select = sb->device_selection; 2606 } 2607 2608 lookup->max_speed_hz = sb->connection_speed; 2609 lookup->bits_per_word = sb->data_bit_length; 2610 2611 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2612 lookup->mode |= SPI_CPHA; 2613 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2614 lookup->mode |= SPI_CPOL; 2615 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2616 lookup->mode |= SPI_CS_HIGH; 2617 } 2618 } else if (lookup->irq < 0) { 2619 struct resource r; 2620 2621 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2622 lookup->irq = r.start; 2623 } 2624 2625 /* Always tell the ACPI core to skip this resource */ 2626 return 1; 2627 } 2628 2629 /** 2630 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2631 * @ctlr: controller to which the spi device belongs 2632 * @adev: ACPI Device for the spi device 2633 * @index: Index of the spi resource inside the ACPI Node 2634 * 2635 * This should be used to allocate a new spi device from and ACPI Node. 2636 * The caller is responsible for calling spi_add_device to register the spi device. 2637 * 2638 * If ctlr is set to NULL, the Controller for the spi device will be looked up 2639 * using the resource. 2640 * If index is set to -1, index is not used. 2641 * Note: If index is -1, ctlr must be set. 2642 * 2643 * Return: a pointer to the new device, or ERR_PTR on error. 2644 */ 2645 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2646 struct acpi_device *adev, 2647 int index) 2648 { 2649 acpi_handle parent_handle = NULL; 2650 struct list_head resource_list; 2651 struct acpi_spi_lookup lookup = {}; 2652 struct spi_device *spi; 2653 int ret; 2654 2655 if (!ctlr && index == -1) 2656 return ERR_PTR(-EINVAL); 2657 2658 lookup.ctlr = ctlr; 2659 lookup.irq = -1; 2660 lookup.index = index; 2661 lookup.n = 0; 2662 2663 INIT_LIST_HEAD(&resource_list); 2664 ret = acpi_dev_get_resources(adev, &resource_list, 2665 acpi_spi_add_resource, &lookup); 2666 acpi_dev_free_resource_list(&resource_list); 2667 2668 if (ret < 0) 2669 /* Found SPI in _CRS but it points to another controller */ 2670 return ERR_PTR(ret); 2671 2672 if (!lookup.max_speed_hz && 2673 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2674 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2675 /* Apple does not use _CRS but nested devices for SPI slaves */ 2676 acpi_spi_parse_apple_properties(adev, &lookup); 2677 } 2678 2679 if (!lookup.max_speed_hz) 2680 return ERR_PTR(-ENODEV); 2681 2682 spi = spi_alloc_device(lookup.ctlr); 2683 if (!spi) { 2684 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2685 dev_name(&adev->dev)); 2686 return ERR_PTR(-ENOMEM); 2687 } 2688 2689 ACPI_COMPANION_SET(&spi->dev, adev); 2690 spi->max_speed_hz = lookup.max_speed_hz; 2691 spi->mode |= lookup.mode; 2692 spi->irq = lookup.irq; 2693 spi->bits_per_word = lookup.bits_per_word; 2694 spi_set_chipselect(spi, 0, lookup.chip_select); 2695 2696 return spi; 2697 } 2698 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2699 2700 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2701 struct acpi_device *adev) 2702 { 2703 struct spi_device *spi; 2704 2705 if (acpi_bus_get_status(adev) || !adev->status.present || 2706 acpi_device_enumerated(adev)) 2707 return AE_OK; 2708 2709 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2710 if (IS_ERR(spi)) { 2711 if (PTR_ERR(spi) == -ENOMEM) 2712 return AE_NO_MEMORY; 2713 else 2714 return AE_OK; 2715 } 2716 2717 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2718 sizeof(spi->modalias)); 2719 2720 if (spi->irq < 0) 2721 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2722 2723 acpi_device_set_enumerated(adev); 2724 2725 adev->power.flags.ignore_parent = true; 2726 if (spi_add_device(spi)) { 2727 adev->power.flags.ignore_parent = false; 2728 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2729 dev_name(&adev->dev)); 2730 spi_dev_put(spi); 2731 } 2732 2733 return AE_OK; 2734 } 2735 2736 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2737 void *data, void **return_value) 2738 { 2739 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2740 struct spi_controller *ctlr = data; 2741 2742 if (!adev) 2743 return AE_OK; 2744 2745 return acpi_register_spi_device(ctlr, adev); 2746 } 2747 2748 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2749 2750 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2751 { 2752 acpi_status status; 2753 acpi_handle handle; 2754 2755 handle = ACPI_HANDLE(ctlr->dev.parent); 2756 if (!handle) 2757 return; 2758 2759 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2760 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2761 acpi_spi_add_device, NULL, ctlr, NULL); 2762 if (ACPI_FAILURE(status)) 2763 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2764 } 2765 #else 2766 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2767 #endif /* CONFIG_ACPI */ 2768 2769 static void spi_controller_release(struct device *dev) 2770 { 2771 struct spi_controller *ctlr; 2772 2773 ctlr = container_of(dev, struct spi_controller, dev); 2774 kfree(ctlr); 2775 } 2776 2777 static struct class spi_master_class = { 2778 .name = "spi_master", 2779 .owner = THIS_MODULE, 2780 .dev_release = spi_controller_release, 2781 .dev_groups = spi_master_groups, 2782 }; 2783 2784 #ifdef CONFIG_SPI_SLAVE 2785 /** 2786 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2787 * controller 2788 * @spi: device used for the current transfer 2789 */ 2790 int spi_slave_abort(struct spi_device *spi) 2791 { 2792 struct spi_controller *ctlr = spi->controller; 2793 2794 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2795 return ctlr->slave_abort(ctlr); 2796 2797 return -ENOTSUPP; 2798 } 2799 EXPORT_SYMBOL_GPL(spi_slave_abort); 2800 2801 int spi_target_abort(struct spi_device *spi) 2802 { 2803 struct spi_controller *ctlr = spi->controller; 2804 2805 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2806 return ctlr->target_abort(ctlr); 2807 2808 return -ENOTSUPP; 2809 } 2810 EXPORT_SYMBOL_GPL(spi_target_abort); 2811 2812 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2813 char *buf) 2814 { 2815 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2816 dev); 2817 struct device *child; 2818 2819 child = device_find_any_child(&ctlr->dev); 2820 return sprintf(buf, "%s\n", 2821 child ? to_spi_device(child)->modalias : NULL); 2822 } 2823 2824 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2825 const char *buf, size_t count) 2826 { 2827 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2828 dev); 2829 struct spi_device *spi; 2830 struct device *child; 2831 char name[32]; 2832 int rc; 2833 2834 rc = sscanf(buf, "%31s", name); 2835 if (rc != 1 || !name[0]) 2836 return -EINVAL; 2837 2838 child = device_find_any_child(&ctlr->dev); 2839 if (child) { 2840 /* Remove registered slave */ 2841 device_unregister(child); 2842 put_device(child); 2843 } 2844 2845 if (strcmp(name, "(null)")) { 2846 /* Register new slave */ 2847 spi = spi_alloc_device(ctlr); 2848 if (!spi) 2849 return -ENOMEM; 2850 2851 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2852 2853 rc = spi_add_device(spi); 2854 if (rc) { 2855 spi_dev_put(spi); 2856 return rc; 2857 } 2858 } 2859 2860 return count; 2861 } 2862 2863 static DEVICE_ATTR_RW(slave); 2864 2865 static struct attribute *spi_slave_attrs[] = { 2866 &dev_attr_slave.attr, 2867 NULL, 2868 }; 2869 2870 static const struct attribute_group spi_slave_group = { 2871 .attrs = spi_slave_attrs, 2872 }; 2873 2874 static const struct attribute_group *spi_slave_groups[] = { 2875 &spi_controller_statistics_group, 2876 &spi_slave_group, 2877 NULL, 2878 }; 2879 2880 static struct class spi_slave_class = { 2881 .name = "spi_slave", 2882 .owner = THIS_MODULE, 2883 .dev_release = spi_controller_release, 2884 .dev_groups = spi_slave_groups, 2885 }; 2886 #else 2887 extern struct class spi_slave_class; /* dummy */ 2888 #endif 2889 2890 /** 2891 * __spi_alloc_controller - allocate an SPI master or slave controller 2892 * @dev: the controller, possibly using the platform_bus 2893 * @size: how much zeroed driver-private data to allocate; the pointer to this 2894 * memory is in the driver_data field of the returned device, accessible 2895 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2896 * drivers granting DMA access to portions of their private data need to 2897 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2898 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2899 * slave (true) controller 2900 * Context: can sleep 2901 * 2902 * This call is used only by SPI controller drivers, which are the 2903 * only ones directly touching chip registers. It's how they allocate 2904 * an spi_controller structure, prior to calling spi_register_controller(). 2905 * 2906 * This must be called from context that can sleep. 2907 * 2908 * The caller is responsible for assigning the bus number and initializing the 2909 * controller's methods before calling spi_register_controller(); and (after 2910 * errors adding the device) calling spi_controller_put() to prevent a memory 2911 * leak. 2912 * 2913 * Return: the SPI controller structure on success, else NULL. 2914 */ 2915 struct spi_controller *__spi_alloc_controller(struct device *dev, 2916 unsigned int size, bool slave) 2917 { 2918 struct spi_controller *ctlr; 2919 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2920 2921 if (!dev) 2922 return NULL; 2923 2924 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2925 if (!ctlr) 2926 return NULL; 2927 2928 device_initialize(&ctlr->dev); 2929 INIT_LIST_HEAD(&ctlr->queue); 2930 spin_lock_init(&ctlr->queue_lock); 2931 spin_lock_init(&ctlr->bus_lock_spinlock); 2932 mutex_init(&ctlr->bus_lock_mutex); 2933 mutex_init(&ctlr->io_mutex); 2934 mutex_init(&ctlr->add_lock); 2935 ctlr->bus_num = -1; 2936 ctlr->num_chipselect = 1; 2937 ctlr->slave = slave; 2938 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2939 ctlr->dev.class = &spi_slave_class; 2940 else 2941 ctlr->dev.class = &spi_master_class; 2942 ctlr->dev.parent = dev; 2943 pm_suspend_ignore_children(&ctlr->dev, true); 2944 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2945 2946 return ctlr; 2947 } 2948 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2949 2950 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2951 { 2952 spi_controller_put(*(struct spi_controller **)ctlr); 2953 } 2954 2955 /** 2956 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2957 * @dev: physical device of SPI controller 2958 * @size: how much zeroed driver-private data to allocate 2959 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2960 * Context: can sleep 2961 * 2962 * Allocate an SPI controller and automatically release a reference on it 2963 * when @dev is unbound from its driver. Drivers are thus relieved from 2964 * having to call spi_controller_put(). 2965 * 2966 * The arguments to this function are identical to __spi_alloc_controller(). 2967 * 2968 * Return: the SPI controller structure on success, else NULL. 2969 */ 2970 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2971 unsigned int size, 2972 bool slave) 2973 { 2974 struct spi_controller **ptr, *ctlr; 2975 2976 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2977 GFP_KERNEL); 2978 if (!ptr) 2979 return NULL; 2980 2981 ctlr = __spi_alloc_controller(dev, size, slave); 2982 if (ctlr) { 2983 ctlr->devm_allocated = true; 2984 *ptr = ctlr; 2985 devres_add(dev, ptr); 2986 } else { 2987 devres_free(ptr); 2988 } 2989 2990 return ctlr; 2991 } 2992 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2993 2994 /** 2995 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2996 * @ctlr: The SPI master to grab GPIO descriptors for 2997 */ 2998 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2999 { 3000 int nb, i; 3001 struct gpio_desc **cs; 3002 struct device *dev = &ctlr->dev; 3003 unsigned long native_cs_mask = 0; 3004 unsigned int num_cs_gpios = 0; 3005 3006 nb = gpiod_count(dev, "cs"); 3007 if (nb < 0) { 3008 /* No GPIOs at all is fine, else return the error */ 3009 if (nb == -ENOENT) 3010 return 0; 3011 return nb; 3012 } 3013 3014 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3015 3016 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3017 GFP_KERNEL); 3018 if (!cs) 3019 return -ENOMEM; 3020 ctlr->cs_gpiods = cs; 3021 3022 for (i = 0; i < nb; i++) { 3023 /* 3024 * Most chipselects are active low, the inverted 3025 * semantics are handled by special quirks in gpiolib, 3026 * so initializing them GPIOD_OUT_LOW here means 3027 * "unasserted", in most cases this will drive the physical 3028 * line high. 3029 */ 3030 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3031 GPIOD_OUT_LOW); 3032 if (IS_ERR(cs[i])) 3033 return PTR_ERR(cs[i]); 3034 3035 if (cs[i]) { 3036 /* 3037 * If we find a CS GPIO, name it after the device and 3038 * chip select line. 3039 */ 3040 char *gpioname; 3041 3042 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3043 dev_name(dev), i); 3044 if (!gpioname) 3045 return -ENOMEM; 3046 gpiod_set_consumer_name(cs[i], gpioname); 3047 num_cs_gpios++; 3048 continue; 3049 } 3050 3051 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3052 dev_err(dev, "Invalid native chip select %d\n", i); 3053 return -EINVAL; 3054 } 3055 native_cs_mask |= BIT(i); 3056 } 3057 3058 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3059 3060 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios && 3061 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3062 dev_err(dev, "No unused native chip select available\n"); 3063 return -EINVAL; 3064 } 3065 3066 return 0; 3067 } 3068 3069 static int spi_controller_check_ops(struct spi_controller *ctlr) 3070 { 3071 /* 3072 * The controller may implement only the high-level SPI-memory like 3073 * operations if it does not support regular SPI transfers, and this is 3074 * valid use case. 3075 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3076 * one of the ->transfer_xxx() method be implemented. 3077 */ 3078 if (!ctlr->mem_ops || (ctlr->mem_ops && !ctlr->mem_ops->exec_op)) { 3079 if (!ctlr->transfer && !ctlr->transfer_one && 3080 !ctlr->transfer_one_message) { 3081 return -EINVAL; 3082 } 3083 } 3084 3085 return 0; 3086 } 3087 3088 /** 3089 * spi_register_controller - register SPI master or slave controller 3090 * @ctlr: initialized master, originally from spi_alloc_master() or 3091 * spi_alloc_slave() 3092 * Context: can sleep 3093 * 3094 * SPI controllers connect to their drivers using some non-SPI bus, 3095 * such as the platform bus. The final stage of probe() in that code 3096 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3097 * 3098 * SPI controllers use board specific (often SOC specific) bus numbers, 3099 * and board-specific addressing for SPI devices combines those numbers 3100 * with chip select numbers. Since SPI does not directly support dynamic 3101 * device identification, boards need configuration tables telling which 3102 * chip is at which address. 3103 * 3104 * This must be called from context that can sleep. It returns zero on 3105 * success, else a negative error code (dropping the controller's refcount). 3106 * After a successful return, the caller is responsible for calling 3107 * spi_unregister_controller(). 3108 * 3109 * Return: zero on success, else a negative error code. 3110 */ 3111 int spi_register_controller(struct spi_controller *ctlr) 3112 { 3113 struct device *dev = ctlr->dev.parent; 3114 struct boardinfo *bi; 3115 int status; 3116 int id, first_dynamic; 3117 3118 if (!dev) 3119 return -ENODEV; 3120 3121 /* 3122 * Make sure all necessary hooks are implemented before registering 3123 * the SPI controller. 3124 */ 3125 status = spi_controller_check_ops(ctlr); 3126 if (status) 3127 return status; 3128 3129 if (ctlr->bus_num >= 0) { 3130 /* Devices with a fixed bus num must check-in with the num */ 3131 mutex_lock(&board_lock); 3132 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 3133 ctlr->bus_num + 1, GFP_KERNEL); 3134 mutex_unlock(&board_lock); 3135 if (WARN(id < 0, "couldn't get idr")) 3136 return id == -ENOSPC ? -EBUSY : id; 3137 ctlr->bus_num = id; 3138 } else if (ctlr->dev.of_node) { 3139 /* Allocate dynamic bus number using Linux idr */ 3140 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 3141 if (id >= 0) { 3142 ctlr->bus_num = id; 3143 mutex_lock(&board_lock); 3144 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 3145 ctlr->bus_num + 1, GFP_KERNEL); 3146 mutex_unlock(&board_lock); 3147 if (WARN(id < 0, "couldn't get idr")) 3148 return id == -ENOSPC ? -EBUSY : id; 3149 } 3150 } 3151 if (ctlr->bus_num < 0) { 3152 first_dynamic = of_alias_get_highest_id("spi"); 3153 if (first_dynamic < 0) 3154 first_dynamic = 0; 3155 else 3156 first_dynamic++; 3157 3158 mutex_lock(&board_lock); 3159 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 3160 0, GFP_KERNEL); 3161 mutex_unlock(&board_lock); 3162 if (WARN(id < 0, "couldn't get idr")) 3163 return id; 3164 ctlr->bus_num = id; 3165 } 3166 ctlr->bus_lock_flag = 0; 3167 init_completion(&ctlr->xfer_completion); 3168 init_completion(&ctlr->cur_msg_completion); 3169 if (!ctlr->max_dma_len) 3170 ctlr->max_dma_len = INT_MAX; 3171 3172 /* 3173 * Register the device, then userspace will see it. 3174 * Registration fails if the bus ID is in use. 3175 */ 3176 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3177 3178 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3179 status = spi_get_gpio_descs(ctlr); 3180 if (status) 3181 goto free_bus_id; 3182 /* 3183 * A controller using GPIO descriptors always 3184 * supports SPI_CS_HIGH if need be. 3185 */ 3186 ctlr->mode_bits |= SPI_CS_HIGH; 3187 } 3188 3189 /* 3190 * Even if it's just one always-selected device, there must 3191 * be at least one chipselect. 3192 */ 3193 if (!ctlr->num_chipselect) { 3194 status = -EINVAL; 3195 goto free_bus_id; 3196 } 3197 3198 /* Setting last_cs to -1 means no chip selected */ 3199 ctlr->last_cs = -1; 3200 3201 status = device_add(&ctlr->dev); 3202 if (status < 0) 3203 goto free_bus_id; 3204 dev_dbg(dev, "registered %s %s\n", 3205 spi_controller_is_slave(ctlr) ? "slave" : "master", 3206 dev_name(&ctlr->dev)); 3207 3208 /* 3209 * If we're using a queued driver, start the queue. Note that we don't 3210 * need the queueing logic if the driver is only supporting high-level 3211 * memory operations. 3212 */ 3213 if (ctlr->transfer) { 3214 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3215 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3216 status = spi_controller_initialize_queue(ctlr); 3217 if (status) { 3218 device_del(&ctlr->dev); 3219 goto free_bus_id; 3220 } 3221 } 3222 /* Add statistics */ 3223 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3224 if (!ctlr->pcpu_statistics) { 3225 dev_err(dev, "Error allocating per-cpu statistics\n"); 3226 status = -ENOMEM; 3227 goto destroy_queue; 3228 } 3229 3230 mutex_lock(&board_lock); 3231 list_add_tail(&ctlr->list, &spi_controller_list); 3232 list_for_each_entry(bi, &board_list, list) 3233 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3234 mutex_unlock(&board_lock); 3235 3236 /* Register devices from the device tree and ACPI */ 3237 of_register_spi_devices(ctlr); 3238 acpi_register_spi_devices(ctlr); 3239 return status; 3240 3241 destroy_queue: 3242 spi_destroy_queue(ctlr); 3243 free_bus_id: 3244 mutex_lock(&board_lock); 3245 idr_remove(&spi_master_idr, ctlr->bus_num); 3246 mutex_unlock(&board_lock); 3247 return status; 3248 } 3249 EXPORT_SYMBOL_GPL(spi_register_controller); 3250 3251 static void devm_spi_unregister(struct device *dev, void *res) 3252 { 3253 spi_unregister_controller(*(struct spi_controller **)res); 3254 } 3255 3256 /** 3257 * devm_spi_register_controller - register managed SPI master or slave 3258 * controller 3259 * @dev: device managing SPI controller 3260 * @ctlr: initialized controller, originally from spi_alloc_master() or 3261 * spi_alloc_slave() 3262 * Context: can sleep 3263 * 3264 * Register a SPI device as with spi_register_controller() which will 3265 * automatically be unregistered and freed. 3266 * 3267 * Return: zero on success, else a negative error code. 3268 */ 3269 int devm_spi_register_controller(struct device *dev, 3270 struct spi_controller *ctlr) 3271 { 3272 struct spi_controller **ptr; 3273 int ret; 3274 3275 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3276 if (!ptr) 3277 return -ENOMEM; 3278 3279 ret = spi_register_controller(ctlr); 3280 if (!ret) { 3281 *ptr = ctlr; 3282 devres_add(dev, ptr); 3283 } else { 3284 devres_free(ptr); 3285 } 3286 3287 return ret; 3288 } 3289 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3290 3291 static int __unregister(struct device *dev, void *null) 3292 { 3293 spi_unregister_device(to_spi_device(dev)); 3294 return 0; 3295 } 3296 3297 /** 3298 * spi_unregister_controller - unregister SPI master or slave controller 3299 * @ctlr: the controller being unregistered 3300 * Context: can sleep 3301 * 3302 * This call is used only by SPI controller drivers, which are the 3303 * only ones directly touching chip registers. 3304 * 3305 * This must be called from context that can sleep. 3306 * 3307 * Note that this function also drops a reference to the controller. 3308 */ 3309 void spi_unregister_controller(struct spi_controller *ctlr) 3310 { 3311 struct spi_controller *found; 3312 int id = ctlr->bus_num; 3313 3314 /* Prevent addition of new devices, unregister existing ones */ 3315 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3316 mutex_lock(&ctlr->add_lock); 3317 3318 device_for_each_child(&ctlr->dev, NULL, __unregister); 3319 3320 /* First make sure that this controller was ever added */ 3321 mutex_lock(&board_lock); 3322 found = idr_find(&spi_master_idr, id); 3323 mutex_unlock(&board_lock); 3324 if (ctlr->queued) { 3325 if (spi_destroy_queue(ctlr)) 3326 dev_err(&ctlr->dev, "queue remove failed\n"); 3327 } 3328 mutex_lock(&board_lock); 3329 list_del(&ctlr->list); 3330 mutex_unlock(&board_lock); 3331 3332 device_del(&ctlr->dev); 3333 3334 /* Free bus id */ 3335 mutex_lock(&board_lock); 3336 if (found == ctlr) 3337 idr_remove(&spi_master_idr, id); 3338 mutex_unlock(&board_lock); 3339 3340 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3341 mutex_unlock(&ctlr->add_lock); 3342 3343 /* Release the last reference on the controller if its driver 3344 * has not yet been converted to devm_spi_alloc_master/slave(). 3345 */ 3346 if (!ctlr->devm_allocated) 3347 put_device(&ctlr->dev); 3348 } 3349 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3350 3351 int spi_controller_suspend(struct spi_controller *ctlr) 3352 { 3353 int ret; 3354 3355 /* Basically no-ops for non-queued controllers */ 3356 if (!ctlr->queued) 3357 return 0; 3358 3359 ret = spi_stop_queue(ctlr); 3360 if (ret) 3361 dev_err(&ctlr->dev, "queue stop failed\n"); 3362 3363 return ret; 3364 } 3365 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3366 3367 int spi_controller_resume(struct spi_controller *ctlr) 3368 { 3369 int ret; 3370 3371 if (!ctlr->queued) 3372 return 0; 3373 3374 ret = spi_start_queue(ctlr); 3375 if (ret) 3376 dev_err(&ctlr->dev, "queue restart failed\n"); 3377 3378 return ret; 3379 } 3380 EXPORT_SYMBOL_GPL(spi_controller_resume); 3381 3382 /*-------------------------------------------------------------------------*/ 3383 3384 /* Core methods for spi_message alterations */ 3385 3386 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3387 struct spi_message *msg, 3388 void *res) 3389 { 3390 struct spi_replaced_transfers *rxfer = res; 3391 size_t i; 3392 3393 /* Call extra callback if requested */ 3394 if (rxfer->release) 3395 rxfer->release(ctlr, msg, res); 3396 3397 /* Insert replaced transfers back into the message */ 3398 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3399 3400 /* Remove the formerly inserted entries */ 3401 for (i = 0; i < rxfer->inserted; i++) 3402 list_del(&rxfer->inserted_transfers[i].transfer_list); 3403 } 3404 3405 /** 3406 * spi_replace_transfers - replace transfers with several transfers 3407 * and register change with spi_message.resources 3408 * @msg: the spi_message we work upon 3409 * @xfer_first: the first spi_transfer we want to replace 3410 * @remove: number of transfers to remove 3411 * @insert: the number of transfers we want to insert instead 3412 * @release: extra release code necessary in some circumstances 3413 * @extradatasize: extra data to allocate (with alignment guarantees 3414 * of struct @spi_transfer) 3415 * @gfp: gfp flags 3416 * 3417 * Returns: pointer to @spi_replaced_transfers, 3418 * PTR_ERR(...) in case of errors. 3419 */ 3420 static struct spi_replaced_transfers *spi_replace_transfers( 3421 struct spi_message *msg, 3422 struct spi_transfer *xfer_first, 3423 size_t remove, 3424 size_t insert, 3425 spi_replaced_release_t release, 3426 size_t extradatasize, 3427 gfp_t gfp) 3428 { 3429 struct spi_replaced_transfers *rxfer; 3430 struct spi_transfer *xfer; 3431 size_t i; 3432 3433 /* Allocate the structure using spi_res */ 3434 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3435 struct_size(rxfer, inserted_transfers, insert) 3436 + extradatasize, 3437 gfp); 3438 if (!rxfer) 3439 return ERR_PTR(-ENOMEM); 3440 3441 /* The release code to invoke before running the generic release */ 3442 rxfer->release = release; 3443 3444 /* Assign extradata */ 3445 if (extradatasize) 3446 rxfer->extradata = 3447 &rxfer->inserted_transfers[insert]; 3448 3449 /* Init the replaced_transfers list */ 3450 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3451 3452 /* 3453 * Assign the list_entry after which we should reinsert 3454 * the @replaced_transfers - it may be spi_message.messages! 3455 */ 3456 rxfer->replaced_after = xfer_first->transfer_list.prev; 3457 3458 /* Remove the requested number of transfers */ 3459 for (i = 0; i < remove; i++) { 3460 /* 3461 * If the entry after replaced_after it is msg->transfers 3462 * then we have been requested to remove more transfers 3463 * than are in the list. 3464 */ 3465 if (rxfer->replaced_after->next == &msg->transfers) { 3466 dev_err(&msg->spi->dev, 3467 "requested to remove more spi_transfers than are available\n"); 3468 /* Insert replaced transfers back into the message */ 3469 list_splice(&rxfer->replaced_transfers, 3470 rxfer->replaced_after); 3471 3472 /* Free the spi_replace_transfer structure... */ 3473 spi_res_free(rxfer); 3474 3475 /* ...and return with an error */ 3476 return ERR_PTR(-EINVAL); 3477 } 3478 3479 /* 3480 * Remove the entry after replaced_after from list of 3481 * transfers and add it to list of replaced_transfers. 3482 */ 3483 list_move_tail(rxfer->replaced_after->next, 3484 &rxfer->replaced_transfers); 3485 } 3486 3487 /* 3488 * Create copy of the given xfer with identical settings 3489 * based on the first transfer to get removed. 3490 */ 3491 for (i = 0; i < insert; i++) { 3492 /* We need to run in reverse order */ 3493 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3494 3495 /* Copy all spi_transfer data */ 3496 memcpy(xfer, xfer_first, sizeof(*xfer)); 3497 3498 /* Add to list */ 3499 list_add(&xfer->transfer_list, rxfer->replaced_after); 3500 3501 /* Clear cs_change and delay for all but the last */ 3502 if (i) { 3503 xfer->cs_change = false; 3504 xfer->delay.value = 0; 3505 } 3506 } 3507 3508 /* Set up inserted... */ 3509 rxfer->inserted = insert; 3510 3511 /* ...and register it with spi_res/spi_message */ 3512 spi_res_add(msg, rxfer); 3513 3514 return rxfer; 3515 } 3516 3517 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3518 struct spi_message *msg, 3519 struct spi_transfer **xferp, 3520 size_t maxsize, 3521 gfp_t gfp) 3522 { 3523 struct spi_transfer *xfer = *xferp, *xfers; 3524 struct spi_replaced_transfers *srt; 3525 size_t offset; 3526 size_t count, i; 3527 3528 /* Calculate how many we have to replace */ 3529 count = DIV_ROUND_UP(xfer->len, maxsize); 3530 3531 /* Create replacement */ 3532 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3533 if (IS_ERR(srt)) 3534 return PTR_ERR(srt); 3535 xfers = srt->inserted_transfers; 3536 3537 /* 3538 * Now handle each of those newly inserted spi_transfers. 3539 * Note that the replacements spi_transfers all are preset 3540 * to the same values as *xferp, so tx_buf, rx_buf and len 3541 * are all identical (as well as most others) 3542 * so we just have to fix up len and the pointers. 3543 * 3544 * This also includes support for the depreciated 3545 * spi_message.is_dma_mapped interface. 3546 */ 3547 3548 /* 3549 * The first transfer just needs the length modified, so we 3550 * run it outside the loop. 3551 */ 3552 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3553 3554 /* All the others need rx_buf/tx_buf also set */ 3555 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3556 /* Update rx_buf, tx_buf and dma */ 3557 if (xfers[i].rx_buf) 3558 xfers[i].rx_buf += offset; 3559 if (xfers[i].rx_dma) 3560 xfers[i].rx_dma += offset; 3561 if (xfers[i].tx_buf) 3562 xfers[i].tx_buf += offset; 3563 if (xfers[i].tx_dma) 3564 xfers[i].tx_dma += offset; 3565 3566 /* Update length */ 3567 xfers[i].len = min(maxsize, xfers[i].len - offset); 3568 } 3569 3570 /* 3571 * We set up xferp to the last entry we have inserted, 3572 * so that we skip those already split transfers. 3573 */ 3574 *xferp = &xfers[count - 1]; 3575 3576 /* Increment statistics counters */ 3577 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3578 transfers_split_maxsize); 3579 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3580 transfers_split_maxsize); 3581 3582 return 0; 3583 } 3584 3585 /** 3586 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3587 * when an individual transfer exceeds a 3588 * certain size 3589 * @ctlr: the @spi_controller for this transfer 3590 * @msg: the @spi_message to transform 3591 * @maxsize: the maximum when to apply this 3592 * @gfp: GFP allocation flags 3593 * 3594 * Return: status of transformation 3595 */ 3596 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3597 struct spi_message *msg, 3598 size_t maxsize, 3599 gfp_t gfp) 3600 { 3601 struct spi_transfer *xfer; 3602 int ret; 3603 3604 /* 3605 * Iterate over the transfer_list, 3606 * but note that xfer is advanced to the last transfer inserted 3607 * to avoid checking sizes again unnecessarily (also xfer does 3608 * potentially belong to a different list by the time the 3609 * replacement has happened). 3610 */ 3611 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3612 if (xfer->len > maxsize) { 3613 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3614 maxsize, gfp); 3615 if (ret) 3616 return ret; 3617 } 3618 } 3619 3620 return 0; 3621 } 3622 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3623 3624 /*-------------------------------------------------------------------------*/ 3625 3626 /* Core methods for SPI controller protocol drivers. Some of the 3627 * other core methods are currently defined as inline functions. 3628 */ 3629 3630 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3631 u8 bits_per_word) 3632 { 3633 if (ctlr->bits_per_word_mask) { 3634 /* Only 32 bits fit in the mask */ 3635 if (bits_per_word > 32) 3636 return -EINVAL; 3637 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3638 return -EINVAL; 3639 } 3640 3641 return 0; 3642 } 3643 3644 /** 3645 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3646 * @spi: the device that requires specific CS timing configuration 3647 * 3648 * Return: zero on success, else a negative error code. 3649 */ 3650 static int spi_set_cs_timing(struct spi_device *spi) 3651 { 3652 struct device *parent = spi->controller->dev.parent; 3653 int status = 0; 3654 3655 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3656 if (spi->controller->auto_runtime_pm) { 3657 status = pm_runtime_get_sync(parent); 3658 if (status < 0) { 3659 pm_runtime_put_noidle(parent); 3660 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3661 status); 3662 return status; 3663 } 3664 3665 status = spi->controller->set_cs_timing(spi); 3666 pm_runtime_mark_last_busy(parent); 3667 pm_runtime_put_autosuspend(parent); 3668 } else { 3669 status = spi->controller->set_cs_timing(spi); 3670 } 3671 } 3672 return status; 3673 } 3674 3675 /** 3676 * spi_setup - setup SPI mode and clock rate 3677 * @spi: the device whose settings are being modified 3678 * Context: can sleep, and no requests are queued to the device 3679 * 3680 * SPI protocol drivers may need to update the transfer mode if the 3681 * device doesn't work with its default. They may likewise need 3682 * to update clock rates or word sizes from initial values. This function 3683 * changes those settings, and must be called from a context that can sleep. 3684 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3685 * effect the next time the device is selected and data is transferred to 3686 * or from it. When this function returns, the spi device is deselected. 3687 * 3688 * Note that this call will fail if the protocol driver specifies an option 3689 * that the underlying controller or its driver does not support. For 3690 * example, not all hardware supports wire transfers using nine bit words, 3691 * LSB-first wire encoding, or active-high chipselects. 3692 * 3693 * Return: zero on success, else a negative error code. 3694 */ 3695 int spi_setup(struct spi_device *spi) 3696 { 3697 unsigned bad_bits, ugly_bits; 3698 int status = 0; 3699 3700 /* 3701 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3702 * are set at the same time. 3703 */ 3704 if ((hweight_long(spi->mode & 3705 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3706 (hweight_long(spi->mode & 3707 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3708 dev_err(&spi->dev, 3709 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3710 return -EINVAL; 3711 } 3712 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3713 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3714 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3715 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3716 return -EINVAL; 3717 /* 3718 * Help drivers fail *cleanly* when they need options 3719 * that aren't supported with their current controller. 3720 * SPI_CS_WORD has a fallback software implementation, 3721 * so it is ignored here. 3722 */ 3723 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3724 SPI_NO_TX | SPI_NO_RX); 3725 ugly_bits = bad_bits & 3726 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3727 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3728 if (ugly_bits) { 3729 dev_warn(&spi->dev, 3730 "setup: ignoring unsupported mode bits %x\n", 3731 ugly_bits); 3732 spi->mode &= ~ugly_bits; 3733 bad_bits &= ~ugly_bits; 3734 } 3735 if (bad_bits) { 3736 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3737 bad_bits); 3738 return -EINVAL; 3739 } 3740 3741 if (!spi->bits_per_word) { 3742 spi->bits_per_word = 8; 3743 } else { 3744 /* 3745 * Some controllers may not support the default 8 bits-per-word 3746 * so only perform the check when this is explicitly provided. 3747 */ 3748 status = __spi_validate_bits_per_word(spi->controller, 3749 spi->bits_per_word); 3750 if (status) 3751 return status; 3752 } 3753 3754 if (spi->controller->max_speed_hz && 3755 (!spi->max_speed_hz || 3756 spi->max_speed_hz > spi->controller->max_speed_hz)) 3757 spi->max_speed_hz = spi->controller->max_speed_hz; 3758 3759 mutex_lock(&spi->controller->io_mutex); 3760 3761 if (spi->controller->setup) { 3762 status = spi->controller->setup(spi); 3763 if (status) { 3764 mutex_unlock(&spi->controller->io_mutex); 3765 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3766 status); 3767 return status; 3768 } 3769 } 3770 3771 status = spi_set_cs_timing(spi); 3772 if (status) { 3773 mutex_unlock(&spi->controller->io_mutex); 3774 return status; 3775 } 3776 3777 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3778 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3779 if (status < 0) { 3780 mutex_unlock(&spi->controller->io_mutex); 3781 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3782 status); 3783 return status; 3784 } 3785 3786 /* 3787 * We do not want to return positive value from pm_runtime_get, 3788 * there are many instances of devices calling spi_setup() and 3789 * checking for a non-zero return value instead of a negative 3790 * return value. 3791 */ 3792 status = 0; 3793 3794 spi_set_cs(spi, false, true); 3795 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3796 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3797 } else { 3798 spi_set_cs(spi, false, true); 3799 } 3800 3801 mutex_unlock(&spi->controller->io_mutex); 3802 3803 if (spi->rt && !spi->controller->rt) { 3804 spi->controller->rt = true; 3805 spi_set_thread_rt(spi->controller); 3806 } 3807 3808 trace_spi_setup(spi, status); 3809 3810 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3811 spi->mode & SPI_MODE_X_MASK, 3812 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3813 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3814 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3815 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3816 spi->bits_per_word, spi->max_speed_hz, 3817 status); 3818 3819 return status; 3820 } 3821 EXPORT_SYMBOL_GPL(spi_setup); 3822 3823 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3824 struct spi_device *spi) 3825 { 3826 int delay1, delay2; 3827 3828 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3829 if (delay1 < 0) 3830 return delay1; 3831 3832 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3833 if (delay2 < 0) 3834 return delay2; 3835 3836 if (delay1 < delay2) 3837 memcpy(&xfer->word_delay, &spi->word_delay, 3838 sizeof(xfer->word_delay)); 3839 3840 return 0; 3841 } 3842 3843 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3844 { 3845 struct spi_controller *ctlr = spi->controller; 3846 struct spi_transfer *xfer; 3847 int w_size; 3848 3849 if (list_empty(&message->transfers)) 3850 return -EINVAL; 3851 3852 /* 3853 * If an SPI controller does not support toggling the CS line on each 3854 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3855 * for the CS line, we can emulate the CS-per-word hardware function by 3856 * splitting transfers into one-word transfers and ensuring that 3857 * cs_change is set for each transfer. 3858 */ 3859 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3860 spi_get_csgpiod(spi, 0))) { 3861 size_t maxsize; 3862 int ret; 3863 3864 maxsize = (spi->bits_per_word + 7) / 8; 3865 3866 /* spi_split_transfers_maxsize() requires message->spi */ 3867 message->spi = spi; 3868 3869 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3870 GFP_KERNEL); 3871 if (ret) 3872 return ret; 3873 3874 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3875 /* Don't change cs_change on the last entry in the list */ 3876 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3877 break; 3878 xfer->cs_change = 1; 3879 } 3880 } 3881 3882 /* 3883 * Half-duplex links include original MicroWire, and ones with 3884 * only one data pin like SPI_3WIRE (switches direction) or where 3885 * either MOSI or MISO is missing. They can also be caused by 3886 * software limitations. 3887 */ 3888 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3889 (spi->mode & SPI_3WIRE)) { 3890 unsigned flags = ctlr->flags; 3891 3892 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3893 if (xfer->rx_buf && xfer->tx_buf) 3894 return -EINVAL; 3895 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3896 return -EINVAL; 3897 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3898 return -EINVAL; 3899 } 3900 } 3901 3902 /* 3903 * Set transfer bits_per_word and max speed as spi device default if 3904 * it is not set for this transfer. 3905 * Set transfer tx_nbits and rx_nbits as single transfer default 3906 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3907 * Ensure transfer word_delay is at least as long as that required by 3908 * device itself. 3909 */ 3910 message->frame_length = 0; 3911 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3912 xfer->effective_speed_hz = 0; 3913 message->frame_length += xfer->len; 3914 if (!xfer->bits_per_word) 3915 xfer->bits_per_word = spi->bits_per_word; 3916 3917 if (!xfer->speed_hz) 3918 xfer->speed_hz = spi->max_speed_hz; 3919 3920 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3921 xfer->speed_hz = ctlr->max_speed_hz; 3922 3923 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3924 return -EINVAL; 3925 3926 /* 3927 * SPI transfer length should be multiple of SPI word size 3928 * where SPI word size should be power-of-two multiple. 3929 */ 3930 if (xfer->bits_per_word <= 8) 3931 w_size = 1; 3932 else if (xfer->bits_per_word <= 16) 3933 w_size = 2; 3934 else 3935 w_size = 4; 3936 3937 /* No partial transfers accepted */ 3938 if (xfer->len % w_size) 3939 return -EINVAL; 3940 3941 if (xfer->speed_hz && ctlr->min_speed_hz && 3942 xfer->speed_hz < ctlr->min_speed_hz) 3943 return -EINVAL; 3944 3945 if (xfer->tx_buf && !xfer->tx_nbits) 3946 xfer->tx_nbits = SPI_NBITS_SINGLE; 3947 if (xfer->rx_buf && !xfer->rx_nbits) 3948 xfer->rx_nbits = SPI_NBITS_SINGLE; 3949 /* 3950 * Check transfer tx/rx_nbits: 3951 * 1. check the value matches one of single, dual and quad 3952 * 2. check tx/rx_nbits match the mode in spi_device 3953 */ 3954 if (xfer->tx_buf) { 3955 if (spi->mode & SPI_NO_TX) 3956 return -EINVAL; 3957 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3958 xfer->tx_nbits != SPI_NBITS_DUAL && 3959 xfer->tx_nbits != SPI_NBITS_QUAD) 3960 return -EINVAL; 3961 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3962 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3963 return -EINVAL; 3964 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3965 !(spi->mode & SPI_TX_QUAD)) 3966 return -EINVAL; 3967 } 3968 /* Check transfer rx_nbits */ 3969 if (xfer->rx_buf) { 3970 if (spi->mode & SPI_NO_RX) 3971 return -EINVAL; 3972 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3973 xfer->rx_nbits != SPI_NBITS_DUAL && 3974 xfer->rx_nbits != SPI_NBITS_QUAD) 3975 return -EINVAL; 3976 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3977 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3978 return -EINVAL; 3979 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3980 !(spi->mode & SPI_RX_QUAD)) 3981 return -EINVAL; 3982 } 3983 3984 if (_spi_xfer_word_delay_update(xfer, spi)) 3985 return -EINVAL; 3986 } 3987 3988 message->status = -EINPROGRESS; 3989 3990 return 0; 3991 } 3992 3993 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3994 { 3995 struct spi_controller *ctlr = spi->controller; 3996 struct spi_transfer *xfer; 3997 3998 /* 3999 * Some controllers do not support doing regular SPI transfers. Return 4000 * ENOTSUPP when this is the case. 4001 */ 4002 if (!ctlr->transfer) 4003 return -ENOTSUPP; 4004 4005 message->spi = spi; 4006 4007 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4008 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4009 4010 trace_spi_message_submit(message); 4011 4012 if (!ctlr->ptp_sts_supported) { 4013 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4014 xfer->ptp_sts_word_pre = 0; 4015 ptp_read_system_prets(xfer->ptp_sts); 4016 } 4017 } 4018 4019 return ctlr->transfer(spi, message); 4020 } 4021 4022 /** 4023 * spi_async - asynchronous SPI transfer 4024 * @spi: device with which data will be exchanged 4025 * @message: describes the data transfers, including completion callback 4026 * Context: any (irqs may be blocked, etc) 4027 * 4028 * This call may be used in_irq and other contexts which can't sleep, 4029 * as well as from task contexts which can sleep. 4030 * 4031 * The completion callback is invoked in a context which can't sleep. 4032 * Before that invocation, the value of message->status is undefined. 4033 * When the callback is issued, message->status holds either zero (to 4034 * indicate complete success) or a negative error code. After that 4035 * callback returns, the driver which issued the transfer request may 4036 * deallocate the associated memory; it's no longer in use by any SPI 4037 * core or controller driver code. 4038 * 4039 * Note that although all messages to a spi_device are handled in 4040 * FIFO order, messages may go to different devices in other orders. 4041 * Some device might be higher priority, or have various "hard" access 4042 * time requirements, for example. 4043 * 4044 * On detection of any fault during the transfer, processing of 4045 * the entire message is aborted, and the device is deselected. 4046 * Until returning from the associated message completion callback, 4047 * no other spi_message queued to that device will be processed. 4048 * (This rule applies equally to all the synchronous transfer calls, 4049 * which are wrappers around this core asynchronous primitive.) 4050 * 4051 * Return: zero on success, else a negative error code. 4052 */ 4053 int spi_async(struct spi_device *spi, struct spi_message *message) 4054 { 4055 struct spi_controller *ctlr = spi->controller; 4056 int ret; 4057 unsigned long flags; 4058 4059 ret = __spi_validate(spi, message); 4060 if (ret != 0) 4061 return ret; 4062 4063 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4064 4065 if (ctlr->bus_lock_flag) 4066 ret = -EBUSY; 4067 else 4068 ret = __spi_async(spi, message); 4069 4070 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4071 4072 return ret; 4073 } 4074 EXPORT_SYMBOL_GPL(spi_async); 4075 4076 /** 4077 * spi_async_locked - version of spi_async with exclusive bus usage 4078 * @spi: device with which data will be exchanged 4079 * @message: describes the data transfers, including completion callback 4080 * Context: any (irqs may be blocked, etc) 4081 * 4082 * This call may be used in_irq and other contexts which can't sleep, 4083 * as well as from task contexts which can sleep. 4084 * 4085 * The completion callback is invoked in a context which can't sleep. 4086 * Before that invocation, the value of message->status is undefined. 4087 * When the callback is issued, message->status holds either zero (to 4088 * indicate complete success) or a negative error code. After that 4089 * callback returns, the driver which issued the transfer request may 4090 * deallocate the associated memory; it's no longer in use by any SPI 4091 * core or controller driver code. 4092 * 4093 * Note that although all messages to a spi_device are handled in 4094 * FIFO order, messages may go to different devices in other orders. 4095 * Some device might be higher priority, or have various "hard" access 4096 * time requirements, for example. 4097 * 4098 * On detection of any fault during the transfer, processing of 4099 * the entire message is aborted, and the device is deselected. 4100 * Until returning from the associated message completion callback, 4101 * no other spi_message queued to that device will be processed. 4102 * (This rule applies equally to all the synchronous transfer calls, 4103 * which are wrappers around this core asynchronous primitive.) 4104 * 4105 * Return: zero on success, else a negative error code. 4106 */ 4107 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 4108 { 4109 struct spi_controller *ctlr = spi->controller; 4110 int ret; 4111 unsigned long flags; 4112 4113 ret = __spi_validate(spi, message); 4114 if (ret != 0) 4115 return ret; 4116 4117 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4118 4119 ret = __spi_async(spi, message); 4120 4121 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4122 4123 return ret; 4124 4125 } 4126 4127 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4128 { 4129 bool was_busy; 4130 int ret; 4131 4132 mutex_lock(&ctlr->io_mutex); 4133 4134 was_busy = ctlr->busy; 4135 4136 ctlr->cur_msg = msg; 4137 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4138 if (ret) 4139 goto out; 4140 4141 ctlr->cur_msg = NULL; 4142 ctlr->fallback = false; 4143 4144 if (!was_busy) { 4145 kfree(ctlr->dummy_rx); 4146 ctlr->dummy_rx = NULL; 4147 kfree(ctlr->dummy_tx); 4148 ctlr->dummy_tx = NULL; 4149 if (ctlr->unprepare_transfer_hardware && 4150 ctlr->unprepare_transfer_hardware(ctlr)) 4151 dev_err(&ctlr->dev, 4152 "failed to unprepare transfer hardware\n"); 4153 spi_idle_runtime_pm(ctlr); 4154 } 4155 4156 out: 4157 mutex_unlock(&ctlr->io_mutex); 4158 } 4159 4160 /*-------------------------------------------------------------------------*/ 4161 4162 /* 4163 * Utility methods for SPI protocol drivers, layered on 4164 * top of the core. Some other utility methods are defined as 4165 * inline functions. 4166 */ 4167 4168 static void spi_complete(void *arg) 4169 { 4170 complete(arg); 4171 } 4172 4173 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4174 { 4175 DECLARE_COMPLETION_ONSTACK(done); 4176 int status; 4177 struct spi_controller *ctlr = spi->controller; 4178 4179 status = __spi_validate(spi, message); 4180 if (status != 0) 4181 return status; 4182 4183 message->spi = spi; 4184 4185 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4186 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4187 4188 /* 4189 * Checking queue_empty here only guarantees async/sync message 4190 * ordering when coming from the same context. It does not need to 4191 * guard against reentrancy from a different context. The io_mutex 4192 * will catch those cases. 4193 */ 4194 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4195 message->actual_length = 0; 4196 message->status = -EINPROGRESS; 4197 4198 trace_spi_message_submit(message); 4199 4200 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4201 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4202 4203 __spi_transfer_message_noqueue(ctlr, message); 4204 4205 return message->status; 4206 } 4207 4208 /* 4209 * There are messages in the async queue that could have originated 4210 * from the same context, so we need to preserve ordering. 4211 * Therefor we send the message to the async queue and wait until they 4212 * are completed. 4213 */ 4214 message->complete = spi_complete; 4215 message->context = &done; 4216 status = spi_async_locked(spi, message); 4217 if (status == 0) { 4218 wait_for_completion(&done); 4219 status = message->status; 4220 } 4221 message->context = NULL; 4222 4223 return status; 4224 } 4225 4226 /** 4227 * spi_sync - blocking/synchronous SPI data transfers 4228 * @spi: device with which data will be exchanged 4229 * @message: describes the data transfers 4230 * Context: can sleep 4231 * 4232 * This call may only be used from a context that may sleep. The sleep 4233 * is non-interruptible, and has no timeout. Low-overhead controller 4234 * drivers may DMA directly into and out of the message buffers. 4235 * 4236 * Note that the SPI device's chip select is active during the message, 4237 * and then is normally disabled between messages. Drivers for some 4238 * frequently-used devices may want to minimize costs of selecting a chip, 4239 * by leaving it selected in anticipation that the next message will go 4240 * to the same chip. (That may increase power usage.) 4241 * 4242 * Also, the caller is guaranteeing that the memory associated with the 4243 * message will not be freed before this call returns. 4244 * 4245 * Return: zero on success, else a negative error code. 4246 */ 4247 int spi_sync(struct spi_device *spi, struct spi_message *message) 4248 { 4249 int ret; 4250 4251 mutex_lock(&spi->controller->bus_lock_mutex); 4252 ret = __spi_sync(spi, message); 4253 mutex_unlock(&spi->controller->bus_lock_mutex); 4254 4255 return ret; 4256 } 4257 EXPORT_SYMBOL_GPL(spi_sync); 4258 4259 /** 4260 * spi_sync_locked - version of spi_sync with exclusive bus usage 4261 * @spi: device with which data will be exchanged 4262 * @message: describes the data transfers 4263 * Context: can sleep 4264 * 4265 * This call may only be used from a context that may sleep. The sleep 4266 * is non-interruptible, and has no timeout. Low-overhead controller 4267 * drivers may DMA directly into and out of the message buffers. 4268 * 4269 * This call should be used by drivers that require exclusive access to the 4270 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4271 * be released by a spi_bus_unlock call when the exclusive access is over. 4272 * 4273 * Return: zero on success, else a negative error code. 4274 */ 4275 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4276 { 4277 return __spi_sync(spi, message); 4278 } 4279 EXPORT_SYMBOL_GPL(spi_sync_locked); 4280 4281 /** 4282 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4283 * @ctlr: SPI bus master that should be locked for exclusive bus access 4284 * Context: can sleep 4285 * 4286 * This call may only be used from a context that may sleep. The sleep 4287 * is non-interruptible, and has no timeout. 4288 * 4289 * This call should be used by drivers that require exclusive access to the 4290 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4291 * exclusive access is over. Data transfer must be done by spi_sync_locked 4292 * and spi_async_locked calls when the SPI bus lock is held. 4293 * 4294 * Return: always zero. 4295 */ 4296 int spi_bus_lock(struct spi_controller *ctlr) 4297 { 4298 unsigned long flags; 4299 4300 mutex_lock(&ctlr->bus_lock_mutex); 4301 4302 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4303 ctlr->bus_lock_flag = 1; 4304 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4305 4306 /* Mutex remains locked until spi_bus_unlock() is called */ 4307 4308 return 0; 4309 } 4310 EXPORT_SYMBOL_GPL(spi_bus_lock); 4311 4312 /** 4313 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4314 * @ctlr: SPI bus master that was locked for exclusive bus access 4315 * Context: can sleep 4316 * 4317 * This call may only be used from a context that may sleep. The sleep 4318 * is non-interruptible, and has no timeout. 4319 * 4320 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4321 * call. 4322 * 4323 * Return: always zero. 4324 */ 4325 int spi_bus_unlock(struct spi_controller *ctlr) 4326 { 4327 ctlr->bus_lock_flag = 0; 4328 4329 mutex_unlock(&ctlr->bus_lock_mutex); 4330 4331 return 0; 4332 } 4333 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4334 4335 /* Portable code must never pass more than 32 bytes */ 4336 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4337 4338 static u8 *buf; 4339 4340 /** 4341 * spi_write_then_read - SPI synchronous write followed by read 4342 * @spi: device with which data will be exchanged 4343 * @txbuf: data to be written (need not be dma-safe) 4344 * @n_tx: size of txbuf, in bytes 4345 * @rxbuf: buffer into which data will be read (need not be dma-safe) 4346 * @n_rx: size of rxbuf, in bytes 4347 * Context: can sleep 4348 * 4349 * This performs a half duplex MicroWire style transaction with the 4350 * device, sending txbuf and then reading rxbuf. The return value 4351 * is zero for success, else a negative errno status code. 4352 * This call may only be used from a context that may sleep. 4353 * 4354 * Parameters to this routine are always copied using a small buffer. 4355 * Performance-sensitive or bulk transfer code should instead use 4356 * spi_{async,sync}() calls with dma-safe buffers. 4357 * 4358 * Return: zero on success, else a negative error code. 4359 */ 4360 int spi_write_then_read(struct spi_device *spi, 4361 const void *txbuf, unsigned n_tx, 4362 void *rxbuf, unsigned n_rx) 4363 { 4364 static DEFINE_MUTEX(lock); 4365 4366 int status; 4367 struct spi_message message; 4368 struct spi_transfer x[2]; 4369 u8 *local_buf; 4370 4371 /* 4372 * Use preallocated DMA-safe buffer if we can. We can't avoid 4373 * copying here, (as a pure convenience thing), but we can 4374 * keep heap costs out of the hot path unless someone else is 4375 * using the pre-allocated buffer or the transfer is too large. 4376 */ 4377 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4378 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4379 GFP_KERNEL | GFP_DMA); 4380 if (!local_buf) 4381 return -ENOMEM; 4382 } else { 4383 local_buf = buf; 4384 } 4385 4386 spi_message_init(&message); 4387 memset(x, 0, sizeof(x)); 4388 if (n_tx) { 4389 x[0].len = n_tx; 4390 spi_message_add_tail(&x[0], &message); 4391 } 4392 if (n_rx) { 4393 x[1].len = n_rx; 4394 spi_message_add_tail(&x[1], &message); 4395 } 4396 4397 memcpy(local_buf, txbuf, n_tx); 4398 x[0].tx_buf = local_buf; 4399 x[1].rx_buf = local_buf + n_tx; 4400 4401 /* Do the i/o */ 4402 status = spi_sync(spi, &message); 4403 if (status == 0) 4404 memcpy(rxbuf, x[1].rx_buf, n_rx); 4405 4406 if (x[0].tx_buf == buf) 4407 mutex_unlock(&lock); 4408 else 4409 kfree(local_buf); 4410 4411 return status; 4412 } 4413 EXPORT_SYMBOL_GPL(spi_write_then_read); 4414 4415 /*-------------------------------------------------------------------------*/ 4416 4417 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4418 /* Must call put_device() when done with returned spi_device device */ 4419 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4420 { 4421 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4422 4423 return dev ? to_spi_device(dev) : NULL; 4424 } 4425 4426 /* The spi controllers are not using spi_bus, so we find it with another way */ 4427 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4428 { 4429 struct device *dev; 4430 4431 dev = class_find_device_by_of_node(&spi_master_class, node); 4432 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4433 dev = class_find_device_by_of_node(&spi_slave_class, node); 4434 if (!dev) 4435 return NULL; 4436 4437 /* Reference got in class_find_device */ 4438 return container_of(dev, struct spi_controller, dev); 4439 } 4440 4441 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4442 void *arg) 4443 { 4444 struct of_reconfig_data *rd = arg; 4445 struct spi_controller *ctlr; 4446 struct spi_device *spi; 4447 4448 switch (of_reconfig_get_state_change(action, arg)) { 4449 case OF_RECONFIG_CHANGE_ADD: 4450 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4451 if (ctlr == NULL) 4452 return NOTIFY_OK; /* Not for us */ 4453 4454 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4455 put_device(&ctlr->dev); 4456 return NOTIFY_OK; 4457 } 4458 4459 spi = of_register_spi_device(ctlr, rd->dn); 4460 put_device(&ctlr->dev); 4461 4462 if (IS_ERR(spi)) { 4463 pr_err("%s: failed to create for '%pOF'\n", 4464 __func__, rd->dn); 4465 of_node_clear_flag(rd->dn, OF_POPULATED); 4466 return notifier_from_errno(PTR_ERR(spi)); 4467 } 4468 break; 4469 4470 case OF_RECONFIG_CHANGE_REMOVE: 4471 /* Already depopulated? */ 4472 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4473 return NOTIFY_OK; 4474 4475 /* Find our device by node */ 4476 spi = of_find_spi_device_by_node(rd->dn); 4477 if (spi == NULL) 4478 return NOTIFY_OK; /* No? not meant for us */ 4479 4480 /* Unregister takes one ref away */ 4481 spi_unregister_device(spi); 4482 4483 /* And put the reference of the find */ 4484 put_device(&spi->dev); 4485 break; 4486 } 4487 4488 return NOTIFY_OK; 4489 } 4490 4491 static struct notifier_block spi_of_notifier = { 4492 .notifier_call = of_spi_notify, 4493 }; 4494 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4495 extern struct notifier_block spi_of_notifier; 4496 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4497 4498 #if IS_ENABLED(CONFIG_ACPI) 4499 static int spi_acpi_controller_match(struct device *dev, const void *data) 4500 { 4501 return ACPI_COMPANION(dev->parent) == data; 4502 } 4503 4504 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4505 { 4506 struct device *dev; 4507 4508 dev = class_find_device(&spi_master_class, NULL, adev, 4509 spi_acpi_controller_match); 4510 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4511 dev = class_find_device(&spi_slave_class, NULL, adev, 4512 spi_acpi_controller_match); 4513 if (!dev) 4514 return NULL; 4515 4516 return container_of(dev, struct spi_controller, dev); 4517 } 4518 4519 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4520 { 4521 struct device *dev; 4522 4523 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4524 return to_spi_device(dev); 4525 } 4526 4527 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4528 void *arg) 4529 { 4530 struct acpi_device *adev = arg; 4531 struct spi_controller *ctlr; 4532 struct spi_device *spi; 4533 4534 switch (value) { 4535 case ACPI_RECONFIG_DEVICE_ADD: 4536 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4537 if (!ctlr) 4538 break; 4539 4540 acpi_register_spi_device(ctlr, adev); 4541 put_device(&ctlr->dev); 4542 break; 4543 case ACPI_RECONFIG_DEVICE_REMOVE: 4544 if (!acpi_device_enumerated(adev)) 4545 break; 4546 4547 spi = acpi_spi_find_device_by_adev(adev); 4548 if (!spi) 4549 break; 4550 4551 spi_unregister_device(spi); 4552 put_device(&spi->dev); 4553 break; 4554 } 4555 4556 return NOTIFY_OK; 4557 } 4558 4559 static struct notifier_block spi_acpi_notifier = { 4560 .notifier_call = acpi_spi_notify, 4561 }; 4562 #else 4563 extern struct notifier_block spi_acpi_notifier; 4564 #endif 4565 4566 static int __init spi_init(void) 4567 { 4568 int status; 4569 4570 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4571 if (!buf) { 4572 status = -ENOMEM; 4573 goto err0; 4574 } 4575 4576 status = bus_register(&spi_bus_type); 4577 if (status < 0) 4578 goto err1; 4579 4580 status = class_register(&spi_master_class); 4581 if (status < 0) 4582 goto err2; 4583 4584 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4585 status = class_register(&spi_slave_class); 4586 if (status < 0) 4587 goto err3; 4588 } 4589 4590 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4591 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4592 if (IS_ENABLED(CONFIG_ACPI)) 4593 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4594 4595 return 0; 4596 4597 err3: 4598 class_unregister(&spi_master_class); 4599 err2: 4600 bus_unregister(&spi_bus_type); 4601 err1: 4602 kfree(buf); 4603 buf = NULL; 4604 err0: 4605 return status; 4606 } 4607 4608 /* 4609 * A board_info is normally registered in arch_initcall(), 4610 * but even essential drivers wait till later. 4611 * 4612 * REVISIT only boardinfo really needs static linking. The rest (device and 4613 * driver registration) _could_ be dynamically linked (modular) ... Costs 4614 * include needing to have boardinfo data structures be much more public. 4615 */ 4616 postcore_initcall(spi_init); 4617