xref: /openbmc/linux/drivers/spi/spi.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 #include <linux/ptp_clock_kernel.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 static ssize_t driver_override_store(struct device *dev,
71 				     struct device_attribute *a,
72 				     const char *buf, size_t count)
73 {
74 	struct spi_device *spi = to_spi_device(dev);
75 	const char *end = memchr(buf, '\n', count);
76 	const size_t len = end ? end - buf : count;
77 	const char *driver_override, *old;
78 
79 	/* We need to keep extra room for a newline when displaying value */
80 	if (len >= (PAGE_SIZE - 1))
81 		return -EINVAL;
82 
83 	driver_override = kstrndup(buf, len, GFP_KERNEL);
84 	if (!driver_override)
85 		return -ENOMEM;
86 
87 	device_lock(dev);
88 	old = spi->driver_override;
89 	if (len) {
90 		spi->driver_override = driver_override;
91 	} else {
92 		/* Empty string, disable driver override */
93 		spi->driver_override = NULL;
94 		kfree(driver_override);
95 	}
96 	device_unlock(dev);
97 	kfree(old);
98 
99 	return count;
100 }
101 
102 static ssize_t driver_override_show(struct device *dev,
103 				    struct device_attribute *a, char *buf)
104 {
105 	const struct spi_device *spi = to_spi_device(dev);
106 	ssize_t len;
107 
108 	device_lock(dev);
109 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
110 	device_unlock(dev);
111 	return len;
112 }
113 static DEVICE_ATTR_RW(driver_override);
114 
115 #define SPI_STATISTICS_ATTRS(field, file)				\
116 static ssize_t spi_controller_##field##_show(struct device *dev,	\
117 					     struct device_attribute *attr, \
118 					     char *buf)			\
119 {									\
120 	struct spi_controller *ctlr = container_of(dev,			\
121 					 struct spi_controller, dev);	\
122 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
123 }									\
124 static struct device_attribute dev_attr_spi_controller_##field = {	\
125 	.attr = { .name = file, .mode = 0444 },				\
126 	.show = spi_controller_##field##_show,				\
127 };									\
128 static ssize_t spi_device_##field##_show(struct device *dev,		\
129 					 struct device_attribute *attr,	\
130 					char *buf)			\
131 {									\
132 	struct spi_device *spi = to_spi_device(dev);			\
133 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
134 }									\
135 static struct device_attribute dev_attr_spi_device_##field = {		\
136 	.attr = { .name = file, .mode = 0444 },				\
137 	.show = spi_device_##field##_show,				\
138 }
139 
140 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
141 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
142 					    char *buf)			\
143 {									\
144 	unsigned long flags;						\
145 	ssize_t len;							\
146 	spin_lock_irqsave(&stat->lock, flags);				\
147 	len = sprintf(buf, format_string, stat->field);			\
148 	spin_unlock_irqrestore(&stat->lock, flags);			\
149 	return len;							\
150 }									\
151 SPI_STATISTICS_ATTRS(name, file)
152 
153 #define SPI_STATISTICS_SHOW(field, format_string)			\
154 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
155 				 field, format_string)
156 
157 SPI_STATISTICS_SHOW(messages, "%lu");
158 SPI_STATISTICS_SHOW(transfers, "%lu");
159 SPI_STATISTICS_SHOW(errors, "%lu");
160 SPI_STATISTICS_SHOW(timedout, "%lu");
161 
162 SPI_STATISTICS_SHOW(spi_sync, "%lu");
163 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
164 SPI_STATISTICS_SHOW(spi_async, "%lu");
165 
166 SPI_STATISTICS_SHOW(bytes, "%llu");
167 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
168 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
169 
170 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
171 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
172 				 "transfer_bytes_histo_" number,	\
173 				 transfer_bytes_histo[index],  "%lu")
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
191 
192 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
193 
194 static struct attribute *spi_dev_attrs[] = {
195 	&dev_attr_modalias.attr,
196 	&dev_attr_driver_override.attr,
197 	NULL,
198 };
199 
200 static const struct attribute_group spi_dev_group = {
201 	.attrs  = spi_dev_attrs,
202 };
203 
204 static struct attribute *spi_device_statistics_attrs[] = {
205 	&dev_attr_spi_device_messages.attr,
206 	&dev_attr_spi_device_transfers.attr,
207 	&dev_attr_spi_device_errors.attr,
208 	&dev_attr_spi_device_timedout.attr,
209 	&dev_attr_spi_device_spi_sync.attr,
210 	&dev_attr_spi_device_spi_sync_immediate.attr,
211 	&dev_attr_spi_device_spi_async.attr,
212 	&dev_attr_spi_device_bytes.attr,
213 	&dev_attr_spi_device_bytes_rx.attr,
214 	&dev_attr_spi_device_bytes_tx.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
232 	&dev_attr_spi_device_transfers_split_maxsize.attr,
233 	NULL,
234 };
235 
236 static const struct attribute_group spi_device_statistics_group = {
237 	.name  = "statistics",
238 	.attrs  = spi_device_statistics_attrs,
239 };
240 
241 static const struct attribute_group *spi_dev_groups[] = {
242 	&spi_dev_group,
243 	&spi_device_statistics_group,
244 	NULL,
245 };
246 
247 static struct attribute *spi_controller_statistics_attrs[] = {
248 	&dev_attr_spi_controller_messages.attr,
249 	&dev_attr_spi_controller_transfers.attr,
250 	&dev_attr_spi_controller_errors.attr,
251 	&dev_attr_spi_controller_timedout.attr,
252 	&dev_attr_spi_controller_spi_sync.attr,
253 	&dev_attr_spi_controller_spi_sync_immediate.attr,
254 	&dev_attr_spi_controller_spi_async.attr,
255 	&dev_attr_spi_controller_bytes.attr,
256 	&dev_attr_spi_controller_bytes_rx.attr,
257 	&dev_attr_spi_controller_bytes_tx.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
275 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
276 	NULL,
277 };
278 
279 static const struct attribute_group spi_controller_statistics_group = {
280 	.name  = "statistics",
281 	.attrs  = spi_controller_statistics_attrs,
282 };
283 
284 static const struct attribute_group *spi_master_groups[] = {
285 	&spi_controller_statistics_group,
286 	NULL,
287 };
288 
289 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
290 					      struct spi_transfer *xfer,
291 					      struct spi_controller *ctlr)
292 {
293 	unsigned long flags;
294 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
295 
296 	if (l2len < 0)
297 		l2len = 0;
298 
299 	spin_lock_irqsave(&stats->lock, flags);
300 
301 	stats->transfers++;
302 	stats->transfer_bytes_histo[l2len]++;
303 
304 	stats->bytes += xfer->len;
305 	if ((xfer->tx_buf) &&
306 	    (xfer->tx_buf != ctlr->dummy_tx))
307 		stats->bytes_tx += xfer->len;
308 	if ((xfer->rx_buf) &&
309 	    (xfer->rx_buf != ctlr->dummy_rx))
310 		stats->bytes_rx += xfer->len;
311 
312 	spin_unlock_irqrestore(&stats->lock, flags);
313 }
314 
315 /*
316  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
317  * and the sysfs version makes coldplug work too.
318  */
319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
320 {
321 	while (id->name[0]) {
322 		if (!strcmp(name, id->name))
323 			return id;
324 		id++;
325 	}
326 	return NULL;
327 }
328 
329 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
330 {
331 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
332 
333 	return spi_match_id(sdrv->id_table, sdev->modalias);
334 }
335 EXPORT_SYMBOL_GPL(spi_get_device_id);
336 
337 static int spi_match_device(struct device *dev, struct device_driver *drv)
338 {
339 	const struct spi_device	*spi = to_spi_device(dev);
340 	const struct spi_driver	*sdrv = to_spi_driver(drv);
341 
342 	/* Check override first, and if set, only use the named driver */
343 	if (spi->driver_override)
344 		return strcmp(spi->driver_override, drv->name) == 0;
345 
346 	/* Attempt an OF style match */
347 	if (of_driver_match_device(dev, drv))
348 		return 1;
349 
350 	/* Then try ACPI */
351 	if (acpi_driver_match_device(dev, drv))
352 		return 1;
353 
354 	if (sdrv->id_table)
355 		return !!spi_match_id(sdrv->id_table, spi->modalias);
356 
357 	return strcmp(spi->modalias, drv->name) == 0;
358 }
359 
360 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
361 {
362 	const struct spi_device		*spi = to_spi_device(dev);
363 	int rc;
364 
365 	rc = acpi_device_uevent_modalias(dev, env);
366 	if (rc != -ENODEV)
367 		return rc;
368 
369 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
370 }
371 
372 static int spi_probe(struct device *dev)
373 {
374 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
375 	struct spi_device		*spi = to_spi_device(dev);
376 	int ret;
377 
378 	ret = of_clk_set_defaults(dev->of_node, false);
379 	if (ret)
380 		return ret;
381 
382 	if (dev->of_node) {
383 		spi->irq = of_irq_get(dev->of_node, 0);
384 		if (spi->irq == -EPROBE_DEFER)
385 			return -EPROBE_DEFER;
386 		if (spi->irq < 0)
387 			spi->irq = 0;
388 	}
389 
390 	ret = dev_pm_domain_attach(dev, true);
391 	if (ret)
392 		return ret;
393 
394 	if (sdrv->probe) {
395 		ret = sdrv->probe(spi);
396 		if (ret)
397 			dev_pm_domain_detach(dev, true);
398 	}
399 
400 	return ret;
401 }
402 
403 static void spi_remove(struct device *dev)
404 {
405 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
406 
407 	if (sdrv->remove) {
408 		int ret;
409 
410 		ret = sdrv->remove(to_spi_device(dev));
411 		if (ret)
412 			dev_warn(dev,
413 				 "Failed to unbind driver (%pe), ignoring\n",
414 				 ERR_PTR(ret));
415 	}
416 
417 	dev_pm_domain_detach(dev, true);
418 }
419 
420 static void spi_shutdown(struct device *dev)
421 {
422 	if (dev->driver) {
423 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
424 
425 		if (sdrv->shutdown)
426 			sdrv->shutdown(to_spi_device(dev));
427 	}
428 }
429 
430 struct bus_type spi_bus_type = {
431 	.name		= "spi",
432 	.dev_groups	= spi_dev_groups,
433 	.match		= spi_match_device,
434 	.uevent		= spi_uevent,
435 	.probe		= spi_probe,
436 	.remove		= spi_remove,
437 	.shutdown	= spi_shutdown,
438 };
439 EXPORT_SYMBOL_GPL(spi_bus_type);
440 
441 /**
442  * __spi_register_driver - register a SPI driver
443  * @owner: owner module of the driver to register
444  * @sdrv: the driver to register
445  * Context: can sleep
446  *
447  * Return: zero on success, else a negative error code.
448  */
449 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
450 {
451 	sdrv->driver.owner = owner;
452 	sdrv->driver.bus = &spi_bus_type;
453 
454 	/*
455 	 * For Really Good Reasons we use spi: modaliases not of:
456 	 * modaliases for DT so module autoloading won't work if we
457 	 * don't have a spi_device_id as well as a compatible string.
458 	 */
459 	if (sdrv->driver.of_match_table) {
460 		const struct of_device_id *of_id;
461 
462 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
463 		     of_id++) {
464 			const char *of_name;
465 
466 			/* Strip off any vendor prefix */
467 			of_name = strnchr(of_id->compatible,
468 					  sizeof(of_id->compatible), ',');
469 			if (of_name)
470 				of_name++;
471 			else
472 				of_name = of_id->compatible;
473 
474 			if (sdrv->id_table) {
475 				const struct spi_device_id *spi_id;
476 
477 				spi_id = spi_match_id(sdrv->id_table, of_name);
478 				if (spi_id)
479 					continue;
480 			} else {
481 				if (strcmp(sdrv->driver.name, of_name) == 0)
482 					continue;
483 			}
484 
485 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
486 				sdrv->driver.name, of_id->compatible);
487 		}
488 	}
489 
490 	return driver_register(&sdrv->driver);
491 }
492 EXPORT_SYMBOL_GPL(__spi_register_driver);
493 
494 /*-------------------------------------------------------------------------*/
495 
496 /*
497  * SPI devices should normally not be created by SPI device drivers; that
498  * would make them board-specific.  Similarly with SPI controller drivers.
499  * Device registration normally goes into like arch/.../mach.../board-YYY.c
500  * with other readonly (flashable) information about mainboard devices.
501  */
502 
503 struct boardinfo {
504 	struct list_head	list;
505 	struct spi_board_info	board_info;
506 };
507 
508 static LIST_HEAD(board_list);
509 static LIST_HEAD(spi_controller_list);
510 
511 /*
512  * Used to protect add/del operation for board_info list and
513  * spi_controller list, and their matching process also used
514  * to protect object of type struct idr.
515  */
516 static DEFINE_MUTEX(board_lock);
517 
518 /**
519  * spi_alloc_device - Allocate a new SPI device
520  * @ctlr: Controller to which device is connected
521  * Context: can sleep
522  *
523  * Allows a driver to allocate and initialize a spi_device without
524  * registering it immediately.  This allows a driver to directly
525  * fill the spi_device with device parameters before calling
526  * spi_add_device() on it.
527  *
528  * Caller is responsible to call spi_add_device() on the returned
529  * spi_device structure to add it to the SPI controller.  If the caller
530  * needs to discard the spi_device without adding it, then it should
531  * call spi_dev_put() on it.
532  *
533  * Return: a pointer to the new device, or NULL.
534  */
535 static struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
536 {
537 	struct spi_device	*spi;
538 
539 	if (!spi_controller_get(ctlr))
540 		return NULL;
541 
542 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
543 	if (!spi) {
544 		spi_controller_put(ctlr);
545 		return NULL;
546 	}
547 
548 	spi->master = spi->controller = ctlr;
549 	spi->dev.parent = &ctlr->dev;
550 	spi->dev.bus = &spi_bus_type;
551 	spi->dev.release = spidev_release;
552 	spi->cs_gpio = -ENOENT;
553 	spi->mode = ctlr->buswidth_override_bits;
554 
555 	spin_lock_init(&spi->statistics.lock);
556 
557 	device_initialize(&spi->dev);
558 	return spi;
559 }
560 
561 static void spi_dev_set_name(struct spi_device *spi)
562 {
563 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
564 
565 	if (adev) {
566 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
567 		return;
568 	}
569 
570 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
571 		     spi->chip_select);
572 }
573 
574 static int spi_dev_check(struct device *dev, void *data)
575 {
576 	struct spi_device *spi = to_spi_device(dev);
577 	struct spi_device *new_spi = data;
578 
579 	if (spi->controller == new_spi->controller &&
580 	    spi->chip_select == new_spi->chip_select)
581 		return -EBUSY;
582 	return 0;
583 }
584 
585 static void spi_cleanup(struct spi_device *spi)
586 {
587 	if (spi->controller->cleanup)
588 		spi->controller->cleanup(spi);
589 }
590 
591 static int __spi_add_device(struct spi_device *spi)
592 {
593 	struct spi_controller *ctlr = spi->controller;
594 	struct device *dev = ctlr->dev.parent;
595 	int status;
596 
597 	/*
598 	 * We need to make sure there's no other device with this
599 	 * chipselect **BEFORE** we call setup(), else we'll trash
600 	 * its configuration.
601 	 */
602 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
603 	if (status) {
604 		dev_err(dev, "chipselect %d already in use\n",
605 				spi->chip_select);
606 		return status;
607 	}
608 
609 	/* Controller may unregister concurrently */
610 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
611 	    !device_is_registered(&ctlr->dev)) {
612 		return -ENODEV;
613 	}
614 
615 	/* Descriptors take precedence */
616 	if (ctlr->cs_gpiods)
617 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
618 	else if (ctlr->cs_gpios)
619 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
620 
621 	/*
622 	 * Drivers may modify this initial i/o setup, but will
623 	 * normally rely on the device being setup.  Devices
624 	 * using SPI_CS_HIGH can't coexist well otherwise...
625 	 */
626 	status = spi_setup(spi);
627 	if (status < 0) {
628 		dev_err(dev, "can't setup %s, status %d\n",
629 				dev_name(&spi->dev), status);
630 		return status;
631 	}
632 
633 	/* Device may be bound to an active driver when this returns */
634 	status = device_add(&spi->dev);
635 	if (status < 0) {
636 		dev_err(dev, "can't add %s, status %d\n",
637 				dev_name(&spi->dev), status);
638 		spi_cleanup(spi);
639 	} else {
640 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
641 	}
642 
643 	return status;
644 }
645 
646 /**
647  * spi_add_device - Add spi_device allocated with spi_alloc_device
648  * @spi: spi_device to register
649  *
650  * Companion function to spi_alloc_device.  Devices allocated with
651  * spi_alloc_device can be added onto the spi bus with this function.
652  *
653  * Return: 0 on success; negative errno on failure
654  */
655 static int spi_add_device(struct spi_device *spi)
656 {
657 	struct spi_controller *ctlr = spi->controller;
658 	struct device *dev = ctlr->dev.parent;
659 	int status;
660 
661 	/* Chipselects are numbered 0..max; validate. */
662 	if (spi->chip_select >= ctlr->num_chipselect) {
663 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
664 			ctlr->num_chipselect);
665 		return -EINVAL;
666 	}
667 
668 	/* Set the bus ID string */
669 	spi_dev_set_name(spi);
670 
671 	mutex_lock(&ctlr->add_lock);
672 	status = __spi_add_device(spi);
673 	mutex_unlock(&ctlr->add_lock);
674 	return status;
675 }
676 
677 static int spi_add_device_locked(struct spi_device *spi)
678 {
679 	struct spi_controller *ctlr = spi->controller;
680 	struct device *dev = ctlr->dev.parent;
681 
682 	/* Chipselects are numbered 0..max; validate. */
683 	if (spi->chip_select >= ctlr->num_chipselect) {
684 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
685 			ctlr->num_chipselect);
686 		return -EINVAL;
687 	}
688 
689 	/* Set the bus ID string */
690 	spi_dev_set_name(spi);
691 
692 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
693 	return __spi_add_device(spi);
694 }
695 
696 /**
697  * spi_new_device - instantiate one new SPI device
698  * @ctlr: Controller to which device is connected
699  * @chip: Describes the SPI device
700  * Context: can sleep
701  *
702  * On typical mainboards, this is purely internal; and it's not needed
703  * after board init creates the hard-wired devices.  Some development
704  * platforms may not be able to use spi_register_board_info though, and
705  * this is exported so that for example a USB or parport based adapter
706  * driver could add devices (which it would learn about out-of-band).
707  *
708  * Return: the new device, or NULL.
709  */
710 struct spi_device *spi_new_device(struct spi_controller *ctlr,
711 				  struct spi_board_info *chip)
712 {
713 	struct spi_device	*proxy;
714 	int			status;
715 
716 	/*
717 	 * NOTE:  caller did any chip->bus_num checks necessary.
718 	 *
719 	 * Also, unless we change the return value convention to use
720 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
721 	 * suggests syslogged diagnostics are best here (ugh).
722 	 */
723 
724 	proxy = spi_alloc_device(ctlr);
725 	if (!proxy)
726 		return NULL;
727 
728 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
729 
730 	proxy->chip_select = chip->chip_select;
731 	proxy->max_speed_hz = chip->max_speed_hz;
732 	proxy->mode = chip->mode;
733 	proxy->irq = chip->irq;
734 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
735 	proxy->dev.platform_data = (void *) chip->platform_data;
736 	proxy->controller_data = chip->controller_data;
737 	proxy->controller_state = NULL;
738 
739 	if (chip->swnode) {
740 		status = device_add_software_node(&proxy->dev, chip->swnode);
741 		if (status) {
742 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
743 				chip->modalias, status);
744 			goto err_dev_put;
745 		}
746 	}
747 
748 	status = spi_add_device(proxy);
749 	if (status < 0)
750 		goto err_dev_put;
751 
752 	return proxy;
753 
754 err_dev_put:
755 	device_remove_software_node(&proxy->dev);
756 	spi_dev_put(proxy);
757 	return NULL;
758 }
759 EXPORT_SYMBOL_GPL(spi_new_device);
760 
761 /**
762  * spi_unregister_device - unregister a single SPI device
763  * @spi: spi_device to unregister
764  *
765  * Start making the passed SPI device vanish. Normally this would be handled
766  * by spi_unregister_controller().
767  */
768 void spi_unregister_device(struct spi_device *spi)
769 {
770 	if (!spi)
771 		return;
772 
773 	if (spi->dev.of_node) {
774 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
775 		of_node_put(spi->dev.of_node);
776 	}
777 	if (ACPI_COMPANION(&spi->dev))
778 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
779 	device_remove_software_node(&spi->dev);
780 	device_del(&spi->dev);
781 	spi_cleanup(spi);
782 	put_device(&spi->dev);
783 }
784 EXPORT_SYMBOL_GPL(spi_unregister_device);
785 
786 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
787 					      struct spi_board_info *bi)
788 {
789 	struct spi_device *dev;
790 
791 	if (ctlr->bus_num != bi->bus_num)
792 		return;
793 
794 	dev = spi_new_device(ctlr, bi);
795 	if (!dev)
796 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
797 			bi->modalias);
798 }
799 
800 /**
801  * spi_register_board_info - register SPI devices for a given board
802  * @info: array of chip descriptors
803  * @n: how many descriptors are provided
804  * Context: can sleep
805  *
806  * Board-specific early init code calls this (probably during arch_initcall)
807  * with segments of the SPI device table.  Any device nodes are created later,
808  * after the relevant parent SPI controller (bus_num) is defined.  We keep
809  * this table of devices forever, so that reloading a controller driver will
810  * not make Linux forget about these hard-wired devices.
811  *
812  * Other code can also call this, e.g. a particular add-on board might provide
813  * SPI devices through its expansion connector, so code initializing that board
814  * would naturally declare its SPI devices.
815  *
816  * The board info passed can safely be __initdata ... but be careful of
817  * any embedded pointers (platform_data, etc), they're copied as-is.
818  *
819  * Return: zero on success, else a negative error code.
820  */
821 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
822 {
823 	struct boardinfo *bi;
824 	int i;
825 
826 	if (!n)
827 		return 0;
828 
829 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
830 	if (!bi)
831 		return -ENOMEM;
832 
833 	for (i = 0; i < n; i++, bi++, info++) {
834 		struct spi_controller *ctlr;
835 
836 		memcpy(&bi->board_info, info, sizeof(*info));
837 
838 		mutex_lock(&board_lock);
839 		list_add_tail(&bi->list, &board_list);
840 		list_for_each_entry(ctlr, &spi_controller_list, list)
841 			spi_match_controller_to_boardinfo(ctlr,
842 							  &bi->board_info);
843 		mutex_unlock(&board_lock);
844 	}
845 
846 	return 0;
847 }
848 
849 /*-------------------------------------------------------------------------*/
850 
851 /* Core methods for SPI resource management */
852 
853 /**
854  * spi_res_alloc - allocate a spi resource that is life-cycle managed
855  *                 during the processing of a spi_message while using
856  *                 spi_transfer_one
857  * @spi:     the spi device for which we allocate memory
858  * @release: the release code to execute for this resource
859  * @size:    size to alloc and return
860  * @gfp:     GFP allocation flags
861  *
862  * Return: the pointer to the allocated data
863  *
864  * This may get enhanced in the future to allocate from a memory pool
865  * of the @spi_device or @spi_controller to avoid repeated allocations.
866  */
867 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
868 			   size_t size, gfp_t gfp)
869 {
870 	struct spi_res *sres;
871 
872 	sres = kzalloc(sizeof(*sres) + size, gfp);
873 	if (!sres)
874 		return NULL;
875 
876 	INIT_LIST_HEAD(&sres->entry);
877 	sres->release = release;
878 
879 	return sres->data;
880 }
881 
882 /**
883  * spi_res_free - free an spi resource
884  * @res: pointer to the custom data of a resource
885  */
886 static void spi_res_free(void *res)
887 {
888 	struct spi_res *sres = container_of(res, struct spi_res, data);
889 
890 	if (!res)
891 		return;
892 
893 	WARN_ON(!list_empty(&sres->entry));
894 	kfree(sres);
895 }
896 
897 /**
898  * spi_res_add - add a spi_res to the spi_message
899  * @message: the spi message
900  * @res:     the spi_resource
901  */
902 static void spi_res_add(struct spi_message *message, void *res)
903 {
904 	struct spi_res *sres = container_of(res, struct spi_res, data);
905 
906 	WARN_ON(!list_empty(&sres->entry));
907 	list_add_tail(&sres->entry, &message->resources);
908 }
909 
910 /**
911  * spi_res_release - release all spi resources for this message
912  * @ctlr:  the @spi_controller
913  * @message: the @spi_message
914  */
915 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
916 {
917 	struct spi_res *res, *tmp;
918 
919 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
920 		if (res->release)
921 			res->release(ctlr, message, res->data);
922 
923 		list_del(&res->entry);
924 
925 		kfree(res);
926 	}
927 }
928 
929 /*-------------------------------------------------------------------------*/
930 
931 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
932 {
933 	bool activate = enable;
934 
935 	/*
936 	 * Avoid calling into the driver (or doing delays) if the chip select
937 	 * isn't actually changing from the last time this was called.
938 	 */
939 	if (!force && (spi->controller->last_cs_enable == enable) &&
940 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
941 		return;
942 
943 	trace_spi_set_cs(spi, activate);
944 
945 	spi->controller->last_cs_enable = enable;
946 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
947 
948 	if ((spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
949 	    !spi->controller->set_cs_timing) && !activate) {
950 		spi_delay_exec(&spi->cs_hold, NULL);
951 	}
952 
953 	if (spi->mode & SPI_CS_HIGH)
954 		enable = !enable;
955 
956 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
957 		if (!(spi->mode & SPI_NO_CS)) {
958 			if (spi->cs_gpiod) {
959 				/*
960 				 * Historically ACPI has no means of the GPIO polarity and
961 				 * thus the SPISerialBus() resource defines it on the per-chip
962 				 * basis. In order to avoid a chain of negations, the GPIO
963 				 * polarity is considered being Active High. Even for the cases
964 				 * when _DSD() is involved (in the updated versions of ACPI)
965 				 * the GPIO CS polarity must be defined Active High to avoid
966 				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
967 				 * into account.
968 				 */
969 				if (has_acpi_companion(&spi->dev))
970 					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
971 				else
972 					/* Polarity handled by GPIO library */
973 					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
974 			} else {
975 				/*
976 				 * Invert the enable line, as active low is
977 				 * default for SPI.
978 				 */
979 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
980 			}
981 		}
982 		/* Some SPI masters need both GPIO CS & slave_select */
983 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
984 		    spi->controller->set_cs)
985 			spi->controller->set_cs(spi, !enable);
986 	} else if (spi->controller->set_cs) {
987 		spi->controller->set_cs(spi, !enable);
988 	}
989 
990 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
991 	    !spi->controller->set_cs_timing) {
992 		if (activate)
993 			spi_delay_exec(&spi->cs_setup, NULL);
994 		else
995 			spi_delay_exec(&spi->cs_inactive, NULL);
996 	}
997 }
998 
999 #ifdef CONFIG_HAS_DMA
1000 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1001 		struct sg_table *sgt, void *buf, size_t len,
1002 		enum dma_data_direction dir)
1003 {
1004 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1005 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1006 #ifdef CONFIG_HIGHMEM
1007 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1008 				(unsigned long)buf < (PKMAP_BASE +
1009 					(LAST_PKMAP * PAGE_SIZE)));
1010 #else
1011 	const bool kmap_buf = false;
1012 #endif
1013 	int desc_len;
1014 	int sgs;
1015 	struct page *vm_page;
1016 	struct scatterlist *sg;
1017 	void *sg_buf;
1018 	size_t min;
1019 	int i, ret;
1020 
1021 	if (vmalloced_buf || kmap_buf) {
1022 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
1023 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1024 	} else if (virt_addr_valid(buf)) {
1025 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
1026 		sgs = DIV_ROUND_UP(len, desc_len);
1027 	} else {
1028 		return -EINVAL;
1029 	}
1030 
1031 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1032 	if (ret != 0)
1033 		return ret;
1034 
1035 	sg = &sgt->sgl[0];
1036 	for (i = 0; i < sgs; i++) {
1037 
1038 		if (vmalloced_buf || kmap_buf) {
1039 			/*
1040 			 * Next scatterlist entry size is the minimum between
1041 			 * the desc_len and the remaining buffer length that
1042 			 * fits in a page.
1043 			 */
1044 			min = min_t(size_t, desc_len,
1045 				    min_t(size_t, len,
1046 					  PAGE_SIZE - offset_in_page(buf)));
1047 			if (vmalloced_buf)
1048 				vm_page = vmalloc_to_page(buf);
1049 			else
1050 				vm_page = kmap_to_page(buf);
1051 			if (!vm_page) {
1052 				sg_free_table(sgt);
1053 				return -ENOMEM;
1054 			}
1055 			sg_set_page(sg, vm_page,
1056 				    min, offset_in_page(buf));
1057 		} else {
1058 			min = min_t(size_t, len, desc_len);
1059 			sg_buf = buf;
1060 			sg_set_buf(sg, sg_buf, min);
1061 		}
1062 
1063 		buf += min;
1064 		len -= min;
1065 		sg = sg_next(sg);
1066 	}
1067 
1068 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1069 	if (!ret)
1070 		ret = -ENOMEM;
1071 	if (ret < 0) {
1072 		sg_free_table(sgt);
1073 		return ret;
1074 	}
1075 
1076 	sgt->nents = ret;
1077 
1078 	return 0;
1079 }
1080 
1081 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1082 		   struct sg_table *sgt, enum dma_data_direction dir)
1083 {
1084 	if (sgt->orig_nents) {
1085 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1086 		sg_free_table(sgt);
1087 	}
1088 }
1089 
1090 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1091 {
1092 	struct device *tx_dev, *rx_dev;
1093 	struct spi_transfer *xfer;
1094 	int ret;
1095 
1096 	if (!ctlr->can_dma)
1097 		return 0;
1098 
1099 	if (ctlr->dma_tx)
1100 		tx_dev = ctlr->dma_tx->device->dev;
1101 	else if (ctlr->dma_map_dev)
1102 		tx_dev = ctlr->dma_map_dev;
1103 	else
1104 		tx_dev = ctlr->dev.parent;
1105 
1106 	if (ctlr->dma_rx)
1107 		rx_dev = ctlr->dma_rx->device->dev;
1108 	else if (ctlr->dma_map_dev)
1109 		rx_dev = ctlr->dma_map_dev;
1110 	else
1111 		rx_dev = ctlr->dev.parent;
1112 
1113 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1114 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1115 			continue;
1116 
1117 		if (xfer->tx_buf != NULL) {
1118 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1119 					  (void *)xfer->tx_buf, xfer->len,
1120 					  DMA_TO_DEVICE);
1121 			if (ret != 0)
1122 				return ret;
1123 		}
1124 
1125 		if (xfer->rx_buf != NULL) {
1126 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1127 					  xfer->rx_buf, xfer->len,
1128 					  DMA_FROM_DEVICE);
1129 			if (ret != 0) {
1130 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1131 					      DMA_TO_DEVICE);
1132 				return ret;
1133 			}
1134 		}
1135 	}
1136 
1137 	ctlr->cur_msg_mapped = true;
1138 
1139 	return 0;
1140 }
1141 
1142 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1143 {
1144 	struct spi_transfer *xfer;
1145 	struct device *tx_dev, *rx_dev;
1146 
1147 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1148 		return 0;
1149 
1150 	if (ctlr->dma_tx)
1151 		tx_dev = ctlr->dma_tx->device->dev;
1152 	else
1153 		tx_dev = ctlr->dev.parent;
1154 
1155 	if (ctlr->dma_rx)
1156 		rx_dev = ctlr->dma_rx->device->dev;
1157 	else
1158 		rx_dev = ctlr->dev.parent;
1159 
1160 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1161 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1162 			continue;
1163 
1164 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1165 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1166 	}
1167 
1168 	ctlr->cur_msg_mapped = false;
1169 
1170 	return 0;
1171 }
1172 #else /* !CONFIG_HAS_DMA */
1173 static inline int __spi_map_msg(struct spi_controller *ctlr,
1174 				struct spi_message *msg)
1175 {
1176 	return 0;
1177 }
1178 
1179 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1180 				  struct spi_message *msg)
1181 {
1182 	return 0;
1183 }
1184 #endif /* !CONFIG_HAS_DMA */
1185 
1186 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1187 				struct spi_message *msg)
1188 {
1189 	struct spi_transfer *xfer;
1190 
1191 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1192 		/*
1193 		 * Restore the original value of tx_buf or rx_buf if they are
1194 		 * NULL.
1195 		 */
1196 		if (xfer->tx_buf == ctlr->dummy_tx)
1197 			xfer->tx_buf = NULL;
1198 		if (xfer->rx_buf == ctlr->dummy_rx)
1199 			xfer->rx_buf = NULL;
1200 	}
1201 
1202 	return __spi_unmap_msg(ctlr, msg);
1203 }
1204 
1205 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1206 {
1207 	struct spi_transfer *xfer;
1208 	void *tmp;
1209 	unsigned int max_tx, max_rx;
1210 
1211 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1212 		&& !(msg->spi->mode & SPI_3WIRE)) {
1213 		max_tx = 0;
1214 		max_rx = 0;
1215 
1216 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1217 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1218 			    !xfer->tx_buf)
1219 				max_tx = max(xfer->len, max_tx);
1220 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1221 			    !xfer->rx_buf)
1222 				max_rx = max(xfer->len, max_rx);
1223 		}
1224 
1225 		if (max_tx) {
1226 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1227 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1228 			if (!tmp)
1229 				return -ENOMEM;
1230 			ctlr->dummy_tx = tmp;
1231 		}
1232 
1233 		if (max_rx) {
1234 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1235 				       GFP_KERNEL | GFP_DMA);
1236 			if (!tmp)
1237 				return -ENOMEM;
1238 			ctlr->dummy_rx = tmp;
1239 		}
1240 
1241 		if (max_tx || max_rx) {
1242 			list_for_each_entry(xfer, &msg->transfers,
1243 					    transfer_list) {
1244 				if (!xfer->len)
1245 					continue;
1246 				if (!xfer->tx_buf)
1247 					xfer->tx_buf = ctlr->dummy_tx;
1248 				if (!xfer->rx_buf)
1249 					xfer->rx_buf = ctlr->dummy_rx;
1250 			}
1251 		}
1252 	}
1253 
1254 	return __spi_map_msg(ctlr, msg);
1255 }
1256 
1257 static int spi_transfer_wait(struct spi_controller *ctlr,
1258 			     struct spi_message *msg,
1259 			     struct spi_transfer *xfer)
1260 {
1261 	struct spi_statistics *statm = &ctlr->statistics;
1262 	struct spi_statistics *stats = &msg->spi->statistics;
1263 	u32 speed_hz = xfer->speed_hz;
1264 	unsigned long long ms;
1265 
1266 	if (spi_controller_is_slave(ctlr)) {
1267 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1268 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1269 			return -EINTR;
1270 		}
1271 	} else {
1272 		if (!speed_hz)
1273 			speed_hz = 100000;
1274 
1275 		/*
1276 		 * For each byte we wait for 8 cycles of the SPI clock.
1277 		 * Since speed is defined in Hz and we want milliseconds,
1278 		 * use respective multiplier, but before the division,
1279 		 * otherwise we may get 0 for short transfers.
1280 		 */
1281 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1282 		do_div(ms, speed_hz);
1283 
1284 		/*
1285 		 * Increase it twice and add 200 ms tolerance, use
1286 		 * predefined maximum in case of overflow.
1287 		 */
1288 		ms += ms + 200;
1289 		if (ms > UINT_MAX)
1290 			ms = UINT_MAX;
1291 
1292 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1293 						 msecs_to_jiffies(ms));
1294 
1295 		if (ms == 0) {
1296 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1297 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1298 			dev_err(&msg->spi->dev,
1299 				"SPI transfer timed out\n");
1300 			return -ETIMEDOUT;
1301 		}
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 static void _spi_transfer_delay_ns(u32 ns)
1308 {
1309 	if (!ns)
1310 		return;
1311 	if (ns <= NSEC_PER_USEC) {
1312 		ndelay(ns);
1313 	} else {
1314 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1315 
1316 		if (us <= 10)
1317 			udelay(us);
1318 		else
1319 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1320 	}
1321 }
1322 
1323 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1324 {
1325 	u32 delay = _delay->value;
1326 	u32 unit = _delay->unit;
1327 	u32 hz;
1328 
1329 	if (!delay)
1330 		return 0;
1331 
1332 	switch (unit) {
1333 	case SPI_DELAY_UNIT_USECS:
1334 		delay *= NSEC_PER_USEC;
1335 		break;
1336 	case SPI_DELAY_UNIT_NSECS:
1337 		/* Nothing to do here */
1338 		break;
1339 	case SPI_DELAY_UNIT_SCK:
1340 		/* clock cycles need to be obtained from spi_transfer */
1341 		if (!xfer)
1342 			return -EINVAL;
1343 		/*
1344 		 * If there is unknown effective speed, approximate it
1345 		 * by underestimating with half of the requested hz.
1346 		 */
1347 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1348 		if (!hz)
1349 			return -EINVAL;
1350 
1351 		/* Convert delay to nanoseconds */
1352 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1353 		break;
1354 	default:
1355 		return -EINVAL;
1356 	}
1357 
1358 	return delay;
1359 }
1360 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1361 
1362 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1363 {
1364 	int delay;
1365 
1366 	might_sleep();
1367 
1368 	if (!_delay)
1369 		return -EINVAL;
1370 
1371 	delay = spi_delay_to_ns(_delay, xfer);
1372 	if (delay < 0)
1373 		return delay;
1374 
1375 	_spi_transfer_delay_ns(delay);
1376 
1377 	return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(spi_delay_exec);
1380 
1381 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1382 					  struct spi_transfer *xfer)
1383 {
1384 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1385 	u32 delay = xfer->cs_change_delay.value;
1386 	u32 unit = xfer->cs_change_delay.unit;
1387 	int ret;
1388 
1389 	/* return early on "fast" mode - for everything but USECS */
1390 	if (!delay) {
1391 		if (unit == SPI_DELAY_UNIT_USECS)
1392 			_spi_transfer_delay_ns(default_delay_ns);
1393 		return;
1394 	}
1395 
1396 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1397 	if (ret) {
1398 		dev_err_once(&msg->spi->dev,
1399 			     "Use of unsupported delay unit %i, using default of %luus\n",
1400 			     unit, default_delay_ns / NSEC_PER_USEC);
1401 		_spi_transfer_delay_ns(default_delay_ns);
1402 	}
1403 }
1404 
1405 /*
1406  * spi_transfer_one_message - Default implementation of transfer_one_message()
1407  *
1408  * This is a standard implementation of transfer_one_message() for
1409  * drivers which implement a transfer_one() operation.  It provides
1410  * standard handling of delays and chip select management.
1411  */
1412 static int spi_transfer_one_message(struct spi_controller *ctlr,
1413 				    struct spi_message *msg)
1414 {
1415 	struct spi_transfer *xfer;
1416 	bool keep_cs = false;
1417 	int ret = 0;
1418 	struct spi_statistics *statm = &ctlr->statistics;
1419 	struct spi_statistics *stats = &msg->spi->statistics;
1420 
1421 	spi_set_cs(msg->spi, true, false);
1422 
1423 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1424 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1425 
1426 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1427 		trace_spi_transfer_start(msg, xfer);
1428 
1429 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1430 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1431 
1432 		if (!ctlr->ptp_sts_supported) {
1433 			xfer->ptp_sts_word_pre = 0;
1434 			ptp_read_system_prets(xfer->ptp_sts);
1435 		}
1436 
1437 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1438 			reinit_completion(&ctlr->xfer_completion);
1439 
1440 fallback_pio:
1441 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1442 			if (ret < 0) {
1443 				if (ctlr->cur_msg_mapped &&
1444 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1445 					__spi_unmap_msg(ctlr, msg);
1446 					ctlr->fallback = true;
1447 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1448 					goto fallback_pio;
1449 				}
1450 
1451 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1452 							       errors);
1453 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1454 							       errors);
1455 				dev_err(&msg->spi->dev,
1456 					"SPI transfer failed: %d\n", ret);
1457 				goto out;
1458 			}
1459 
1460 			if (ret > 0) {
1461 				ret = spi_transfer_wait(ctlr, msg, xfer);
1462 				if (ret < 0)
1463 					msg->status = ret;
1464 			}
1465 		} else {
1466 			if (xfer->len)
1467 				dev_err(&msg->spi->dev,
1468 					"Bufferless transfer has length %u\n",
1469 					xfer->len);
1470 		}
1471 
1472 		if (!ctlr->ptp_sts_supported) {
1473 			ptp_read_system_postts(xfer->ptp_sts);
1474 			xfer->ptp_sts_word_post = xfer->len;
1475 		}
1476 
1477 		trace_spi_transfer_stop(msg, xfer);
1478 
1479 		if (msg->status != -EINPROGRESS)
1480 			goto out;
1481 
1482 		spi_transfer_delay_exec(xfer);
1483 
1484 		if (xfer->cs_change) {
1485 			if (list_is_last(&xfer->transfer_list,
1486 					 &msg->transfers)) {
1487 				keep_cs = true;
1488 			} else {
1489 				spi_set_cs(msg->spi, false, false);
1490 				_spi_transfer_cs_change_delay(msg, xfer);
1491 				spi_set_cs(msg->spi, true, false);
1492 			}
1493 		}
1494 
1495 		msg->actual_length += xfer->len;
1496 	}
1497 
1498 out:
1499 	if (ret != 0 || !keep_cs)
1500 		spi_set_cs(msg->spi, false, false);
1501 
1502 	if (msg->status == -EINPROGRESS)
1503 		msg->status = ret;
1504 
1505 	if (msg->status && ctlr->handle_err)
1506 		ctlr->handle_err(ctlr, msg);
1507 
1508 	spi_finalize_current_message(ctlr);
1509 
1510 	return ret;
1511 }
1512 
1513 /**
1514  * spi_finalize_current_transfer - report completion of a transfer
1515  * @ctlr: the controller reporting completion
1516  *
1517  * Called by SPI drivers using the core transfer_one_message()
1518  * implementation to notify it that the current interrupt driven
1519  * transfer has finished and the next one may be scheduled.
1520  */
1521 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1522 {
1523 	complete(&ctlr->xfer_completion);
1524 }
1525 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1526 
1527 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1528 {
1529 	if (ctlr->auto_runtime_pm) {
1530 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1531 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1532 	}
1533 }
1534 
1535 /**
1536  * __spi_pump_messages - function which processes spi message queue
1537  * @ctlr: controller to process queue for
1538  * @in_kthread: true if we are in the context of the message pump thread
1539  *
1540  * This function checks if there is any spi message in the queue that
1541  * needs processing and if so call out to the driver to initialize hardware
1542  * and transfer each message.
1543  *
1544  * Note that it is called both from the kthread itself and also from
1545  * inside spi_sync(); the queue extraction handling at the top of the
1546  * function should deal with this safely.
1547  */
1548 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1549 {
1550 	struct spi_transfer *xfer;
1551 	struct spi_message *msg;
1552 	bool was_busy = false;
1553 	unsigned long flags;
1554 	int ret;
1555 
1556 	/* Lock queue */
1557 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1558 
1559 	/* Make sure we are not already running a message */
1560 	if (ctlr->cur_msg) {
1561 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1562 		return;
1563 	}
1564 
1565 	/* If another context is idling the device then defer */
1566 	if (ctlr->idling) {
1567 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1568 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1569 		return;
1570 	}
1571 
1572 	/* Check if the queue is idle */
1573 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1574 		if (!ctlr->busy) {
1575 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1576 			return;
1577 		}
1578 
1579 		/* Defer any non-atomic teardown to the thread */
1580 		if (!in_kthread) {
1581 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1582 			    !ctlr->unprepare_transfer_hardware) {
1583 				spi_idle_runtime_pm(ctlr);
1584 				ctlr->busy = false;
1585 				trace_spi_controller_idle(ctlr);
1586 			} else {
1587 				kthread_queue_work(ctlr->kworker,
1588 						   &ctlr->pump_messages);
1589 			}
1590 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1591 			return;
1592 		}
1593 
1594 		ctlr->busy = false;
1595 		ctlr->idling = true;
1596 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1597 
1598 		kfree(ctlr->dummy_rx);
1599 		ctlr->dummy_rx = NULL;
1600 		kfree(ctlr->dummy_tx);
1601 		ctlr->dummy_tx = NULL;
1602 		if (ctlr->unprepare_transfer_hardware &&
1603 		    ctlr->unprepare_transfer_hardware(ctlr))
1604 			dev_err(&ctlr->dev,
1605 				"failed to unprepare transfer hardware\n");
1606 		spi_idle_runtime_pm(ctlr);
1607 		trace_spi_controller_idle(ctlr);
1608 
1609 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1610 		ctlr->idling = false;
1611 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1612 		return;
1613 	}
1614 
1615 	/* Extract head of queue */
1616 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1617 	ctlr->cur_msg = msg;
1618 
1619 	list_del_init(&msg->queue);
1620 	if (ctlr->busy)
1621 		was_busy = true;
1622 	else
1623 		ctlr->busy = true;
1624 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1625 
1626 	mutex_lock(&ctlr->io_mutex);
1627 
1628 	if (!was_busy && ctlr->auto_runtime_pm) {
1629 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1630 		if (ret < 0) {
1631 			pm_runtime_put_noidle(ctlr->dev.parent);
1632 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1633 				ret);
1634 			mutex_unlock(&ctlr->io_mutex);
1635 			return;
1636 		}
1637 	}
1638 
1639 	if (!was_busy)
1640 		trace_spi_controller_busy(ctlr);
1641 
1642 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1643 		ret = ctlr->prepare_transfer_hardware(ctlr);
1644 		if (ret) {
1645 			dev_err(&ctlr->dev,
1646 				"failed to prepare transfer hardware: %d\n",
1647 				ret);
1648 
1649 			if (ctlr->auto_runtime_pm)
1650 				pm_runtime_put(ctlr->dev.parent);
1651 
1652 			msg->status = ret;
1653 			spi_finalize_current_message(ctlr);
1654 
1655 			mutex_unlock(&ctlr->io_mutex);
1656 			return;
1657 		}
1658 	}
1659 
1660 	trace_spi_message_start(msg);
1661 
1662 	if (ctlr->prepare_message) {
1663 		ret = ctlr->prepare_message(ctlr, msg);
1664 		if (ret) {
1665 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1666 				ret);
1667 			msg->status = ret;
1668 			spi_finalize_current_message(ctlr);
1669 			goto out;
1670 		}
1671 		ctlr->cur_msg_prepared = true;
1672 	}
1673 
1674 	ret = spi_map_msg(ctlr, msg);
1675 	if (ret) {
1676 		msg->status = ret;
1677 		spi_finalize_current_message(ctlr);
1678 		goto out;
1679 	}
1680 
1681 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1682 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1683 			xfer->ptp_sts_word_pre = 0;
1684 			ptp_read_system_prets(xfer->ptp_sts);
1685 		}
1686 	}
1687 
1688 	ret = ctlr->transfer_one_message(ctlr, msg);
1689 	if (ret) {
1690 		dev_err(&ctlr->dev,
1691 			"failed to transfer one message from queue\n");
1692 		goto out;
1693 	}
1694 
1695 out:
1696 	mutex_unlock(&ctlr->io_mutex);
1697 
1698 	/* Prod the scheduler in case transfer_one() was busy waiting */
1699 	if (!ret)
1700 		cond_resched();
1701 }
1702 
1703 /**
1704  * spi_pump_messages - kthread work function which processes spi message queue
1705  * @work: pointer to kthread work struct contained in the controller struct
1706  */
1707 static void spi_pump_messages(struct kthread_work *work)
1708 {
1709 	struct spi_controller *ctlr =
1710 		container_of(work, struct spi_controller, pump_messages);
1711 
1712 	__spi_pump_messages(ctlr, true);
1713 }
1714 
1715 /**
1716  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1717  * @ctlr: Pointer to the spi_controller structure of the driver
1718  * @xfer: Pointer to the transfer being timestamped
1719  * @progress: How many words (not bytes) have been transferred so far
1720  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1721  *	      transfer, for less jitter in time measurement. Only compatible
1722  *	      with PIO drivers. If true, must follow up with
1723  *	      spi_take_timestamp_post or otherwise system will crash.
1724  *	      WARNING: for fully predictable results, the CPU frequency must
1725  *	      also be under control (governor).
1726  *
1727  * This is a helper for drivers to collect the beginning of the TX timestamp
1728  * for the requested byte from the SPI transfer. The frequency with which this
1729  * function must be called (once per word, once for the whole transfer, once
1730  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1731  * greater than or equal to the requested byte at the time of the call. The
1732  * timestamp is only taken once, at the first such call. It is assumed that
1733  * the driver advances its @tx buffer pointer monotonically.
1734  */
1735 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1736 			    struct spi_transfer *xfer,
1737 			    size_t progress, bool irqs_off)
1738 {
1739 	if (!xfer->ptp_sts)
1740 		return;
1741 
1742 	if (xfer->timestamped)
1743 		return;
1744 
1745 	if (progress > xfer->ptp_sts_word_pre)
1746 		return;
1747 
1748 	/* Capture the resolution of the timestamp */
1749 	xfer->ptp_sts_word_pre = progress;
1750 
1751 	if (irqs_off) {
1752 		local_irq_save(ctlr->irq_flags);
1753 		preempt_disable();
1754 	}
1755 
1756 	ptp_read_system_prets(xfer->ptp_sts);
1757 }
1758 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1759 
1760 /**
1761  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1762  * @ctlr: Pointer to the spi_controller structure of the driver
1763  * @xfer: Pointer to the transfer being timestamped
1764  * @progress: How many words (not bytes) have been transferred so far
1765  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1766  *
1767  * This is a helper for drivers to collect the end of the TX timestamp for
1768  * the requested byte from the SPI transfer. Can be called with an arbitrary
1769  * frequency: only the first call where @tx exceeds or is equal to the
1770  * requested word will be timestamped.
1771  */
1772 void spi_take_timestamp_post(struct spi_controller *ctlr,
1773 			     struct spi_transfer *xfer,
1774 			     size_t progress, bool irqs_off)
1775 {
1776 	if (!xfer->ptp_sts)
1777 		return;
1778 
1779 	if (xfer->timestamped)
1780 		return;
1781 
1782 	if (progress < xfer->ptp_sts_word_post)
1783 		return;
1784 
1785 	ptp_read_system_postts(xfer->ptp_sts);
1786 
1787 	if (irqs_off) {
1788 		local_irq_restore(ctlr->irq_flags);
1789 		preempt_enable();
1790 	}
1791 
1792 	/* Capture the resolution of the timestamp */
1793 	xfer->ptp_sts_word_post = progress;
1794 
1795 	xfer->timestamped = true;
1796 }
1797 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1798 
1799 /**
1800  * spi_set_thread_rt - set the controller to pump at realtime priority
1801  * @ctlr: controller to boost priority of
1802  *
1803  * This can be called because the controller requested realtime priority
1804  * (by setting the ->rt value before calling spi_register_controller()) or
1805  * because a device on the bus said that its transfers needed realtime
1806  * priority.
1807  *
1808  * NOTE: at the moment if any device on a bus says it needs realtime then
1809  * the thread will be at realtime priority for all transfers on that
1810  * controller.  If this eventually becomes a problem we may see if we can
1811  * find a way to boost the priority only temporarily during relevant
1812  * transfers.
1813  */
1814 static void spi_set_thread_rt(struct spi_controller *ctlr)
1815 {
1816 	dev_info(&ctlr->dev,
1817 		"will run message pump with realtime priority\n");
1818 	sched_set_fifo(ctlr->kworker->task);
1819 }
1820 
1821 static int spi_init_queue(struct spi_controller *ctlr)
1822 {
1823 	ctlr->running = false;
1824 	ctlr->busy = false;
1825 
1826 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1827 	if (IS_ERR(ctlr->kworker)) {
1828 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1829 		return PTR_ERR(ctlr->kworker);
1830 	}
1831 
1832 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1833 
1834 	/*
1835 	 * Controller config will indicate if this controller should run the
1836 	 * message pump with high (realtime) priority to reduce the transfer
1837 	 * latency on the bus by minimising the delay between a transfer
1838 	 * request and the scheduling of the message pump thread. Without this
1839 	 * setting the message pump thread will remain at default priority.
1840 	 */
1841 	if (ctlr->rt)
1842 		spi_set_thread_rt(ctlr);
1843 
1844 	return 0;
1845 }
1846 
1847 /**
1848  * spi_get_next_queued_message() - called by driver to check for queued
1849  * messages
1850  * @ctlr: the controller to check for queued messages
1851  *
1852  * If there are more messages in the queue, the next message is returned from
1853  * this call.
1854  *
1855  * Return: the next message in the queue, else NULL if the queue is empty.
1856  */
1857 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1858 {
1859 	struct spi_message *next;
1860 	unsigned long flags;
1861 
1862 	/* get a pointer to the next message, if any */
1863 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1864 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1865 					queue);
1866 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1867 
1868 	return next;
1869 }
1870 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1871 
1872 /**
1873  * spi_finalize_current_message() - the current message is complete
1874  * @ctlr: the controller to return the message to
1875  *
1876  * Called by the driver to notify the core that the message in the front of the
1877  * queue is complete and can be removed from the queue.
1878  */
1879 void spi_finalize_current_message(struct spi_controller *ctlr)
1880 {
1881 	struct spi_transfer *xfer;
1882 	struct spi_message *mesg;
1883 	unsigned long flags;
1884 	int ret;
1885 
1886 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1887 	mesg = ctlr->cur_msg;
1888 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1889 
1890 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1891 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1892 			ptp_read_system_postts(xfer->ptp_sts);
1893 			xfer->ptp_sts_word_post = xfer->len;
1894 		}
1895 	}
1896 
1897 	if (unlikely(ctlr->ptp_sts_supported))
1898 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1899 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1900 
1901 	spi_unmap_msg(ctlr, mesg);
1902 
1903 	/*
1904 	 * In the prepare_messages callback the SPI bus has the opportunity
1905 	 * to split a transfer to smaller chunks.
1906 	 *
1907 	 * Release the split transfers here since spi_map_msg() is done on
1908 	 * the split transfers.
1909 	 */
1910 	spi_res_release(ctlr, mesg);
1911 
1912 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1913 		ret = ctlr->unprepare_message(ctlr, mesg);
1914 		if (ret) {
1915 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1916 				ret);
1917 		}
1918 	}
1919 
1920 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1921 	ctlr->cur_msg = NULL;
1922 	ctlr->cur_msg_prepared = false;
1923 	ctlr->fallback = false;
1924 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1925 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1926 
1927 	trace_spi_message_done(mesg);
1928 
1929 	mesg->state = NULL;
1930 	if (mesg->complete)
1931 		mesg->complete(mesg->context);
1932 }
1933 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1934 
1935 static int spi_start_queue(struct spi_controller *ctlr)
1936 {
1937 	unsigned long flags;
1938 
1939 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1940 
1941 	if (ctlr->running || ctlr->busy) {
1942 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1943 		return -EBUSY;
1944 	}
1945 
1946 	ctlr->running = true;
1947 	ctlr->cur_msg = NULL;
1948 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1949 
1950 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1951 
1952 	return 0;
1953 }
1954 
1955 static int spi_stop_queue(struct spi_controller *ctlr)
1956 {
1957 	unsigned long flags;
1958 	unsigned limit = 500;
1959 	int ret = 0;
1960 
1961 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1962 
1963 	/*
1964 	 * This is a bit lame, but is optimized for the common execution path.
1965 	 * A wait_queue on the ctlr->busy could be used, but then the common
1966 	 * execution path (pump_messages) would be required to call wake_up or
1967 	 * friends on every SPI message. Do this instead.
1968 	 */
1969 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1970 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1971 		usleep_range(10000, 11000);
1972 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1973 	}
1974 
1975 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1976 		ret = -EBUSY;
1977 	else
1978 		ctlr->running = false;
1979 
1980 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1981 
1982 	if (ret) {
1983 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1984 		return ret;
1985 	}
1986 	return ret;
1987 }
1988 
1989 static int spi_destroy_queue(struct spi_controller *ctlr)
1990 {
1991 	int ret;
1992 
1993 	ret = spi_stop_queue(ctlr);
1994 
1995 	/*
1996 	 * kthread_flush_worker will block until all work is done.
1997 	 * If the reason that stop_queue timed out is that the work will never
1998 	 * finish, then it does no good to call flush/stop thread, so
1999 	 * return anyway.
2000 	 */
2001 	if (ret) {
2002 		dev_err(&ctlr->dev, "problem destroying queue\n");
2003 		return ret;
2004 	}
2005 
2006 	kthread_destroy_worker(ctlr->kworker);
2007 
2008 	return 0;
2009 }
2010 
2011 static int __spi_queued_transfer(struct spi_device *spi,
2012 				 struct spi_message *msg,
2013 				 bool need_pump)
2014 {
2015 	struct spi_controller *ctlr = spi->controller;
2016 	unsigned long flags;
2017 
2018 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2019 
2020 	if (!ctlr->running) {
2021 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2022 		return -ESHUTDOWN;
2023 	}
2024 	msg->actual_length = 0;
2025 	msg->status = -EINPROGRESS;
2026 
2027 	list_add_tail(&msg->queue, &ctlr->queue);
2028 	if (!ctlr->busy && need_pump)
2029 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2030 
2031 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2032 	return 0;
2033 }
2034 
2035 /**
2036  * spi_queued_transfer - transfer function for queued transfers
2037  * @spi: spi device which is requesting transfer
2038  * @msg: spi message which is to handled is queued to driver queue
2039  *
2040  * Return: zero on success, else a negative error code.
2041  */
2042 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2043 {
2044 	return __spi_queued_transfer(spi, msg, true);
2045 }
2046 
2047 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2048 {
2049 	int ret;
2050 
2051 	ctlr->transfer = spi_queued_transfer;
2052 	if (!ctlr->transfer_one_message)
2053 		ctlr->transfer_one_message = spi_transfer_one_message;
2054 
2055 	/* Initialize and start queue */
2056 	ret = spi_init_queue(ctlr);
2057 	if (ret) {
2058 		dev_err(&ctlr->dev, "problem initializing queue\n");
2059 		goto err_init_queue;
2060 	}
2061 	ctlr->queued = true;
2062 	ret = spi_start_queue(ctlr);
2063 	if (ret) {
2064 		dev_err(&ctlr->dev, "problem starting queue\n");
2065 		goto err_start_queue;
2066 	}
2067 
2068 	return 0;
2069 
2070 err_start_queue:
2071 	spi_destroy_queue(ctlr);
2072 err_init_queue:
2073 	return ret;
2074 }
2075 
2076 /**
2077  * spi_flush_queue - Send all pending messages in the queue from the callers'
2078  *		     context
2079  * @ctlr: controller to process queue for
2080  *
2081  * This should be used when one wants to ensure all pending messages have been
2082  * sent before doing something. Is used by the spi-mem code to make sure SPI
2083  * memory operations do not preempt regular SPI transfers that have been queued
2084  * before the spi-mem operation.
2085  */
2086 void spi_flush_queue(struct spi_controller *ctlr)
2087 {
2088 	if (ctlr->transfer == spi_queued_transfer)
2089 		__spi_pump_messages(ctlr, false);
2090 }
2091 
2092 /*-------------------------------------------------------------------------*/
2093 
2094 #if defined(CONFIG_OF)
2095 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2096 			   struct device_node *nc)
2097 {
2098 	u32 value;
2099 	int rc;
2100 
2101 	/* Mode (clock phase/polarity/etc.) */
2102 	if (of_property_read_bool(nc, "spi-cpha"))
2103 		spi->mode |= SPI_CPHA;
2104 	if (of_property_read_bool(nc, "spi-cpol"))
2105 		spi->mode |= SPI_CPOL;
2106 	if (of_property_read_bool(nc, "spi-3wire"))
2107 		spi->mode |= SPI_3WIRE;
2108 	if (of_property_read_bool(nc, "spi-lsb-first"))
2109 		spi->mode |= SPI_LSB_FIRST;
2110 	if (of_property_read_bool(nc, "spi-cs-high"))
2111 		spi->mode |= SPI_CS_HIGH;
2112 
2113 	/* Device DUAL/QUAD mode */
2114 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2115 		switch (value) {
2116 		case 0:
2117 			spi->mode |= SPI_NO_TX;
2118 			break;
2119 		case 1:
2120 			break;
2121 		case 2:
2122 			spi->mode |= SPI_TX_DUAL;
2123 			break;
2124 		case 4:
2125 			spi->mode |= SPI_TX_QUAD;
2126 			break;
2127 		case 8:
2128 			spi->mode |= SPI_TX_OCTAL;
2129 			break;
2130 		default:
2131 			dev_warn(&ctlr->dev,
2132 				"spi-tx-bus-width %d not supported\n",
2133 				value);
2134 			break;
2135 		}
2136 	}
2137 
2138 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2139 		switch (value) {
2140 		case 0:
2141 			spi->mode |= SPI_NO_RX;
2142 			break;
2143 		case 1:
2144 			break;
2145 		case 2:
2146 			spi->mode |= SPI_RX_DUAL;
2147 			break;
2148 		case 4:
2149 			spi->mode |= SPI_RX_QUAD;
2150 			break;
2151 		case 8:
2152 			spi->mode |= SPI_RX_OCTAL;
2153 			break;
2154 		default:
2155 			dev_warn(&ctlr->dev,
2156 				"spi-rx-bus-width %d not supported\n",
2157 				value);
2158 			break;
2159 		}
2160 	}
2161 
2162 	if (spi_controller_is_slave(ctlr)) {
2163 		if (!of_node_name_eq(nc, "slave")) {
2164 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2165 				nc);
2166 			return -EINVAL;
2167 		}
2168 		return 0;
2169 	}
2170 
2171 	/* Device address */
2172 	rc = of_property_read_u32(nc, "reg", &value);
2173 	if (rc) {
2174 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2175 			nc, rc);
2176 		return rc;
2177 	}
2178 	spi->chip_select = value;
2179 
2180 	/* Device speed */
2181 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2182 		spi->max_speed_hz = value;
2183 
2184 	return 0;
2185 }
2186 
2187 static struct spi_device *
2188 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2189 {
2190 	struct spi_device *spi;
2191 	int rc;
2192 
2193 	/* Alloc an spi_device */
2194 	spi = spi_alloc_device(ctlr);
2195 	if (!spi) {
2196 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2197 		rc = -ENOMEM;
2198 		goto err_out;
2199 	}
2200 
2201 	/* Select device driver */
2202 	rc = of_modalias_node(nc, spi->modalias,
2203 				sizeof(spi->modalias));
2204 	if (rc < 0) {
2205 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2206 		goto err_out;
2207 	}
2208 
2209 	rc = of_spi_parse_dt(ctlr, spi, nc);
2210 	if (rc)
2211 		goto err_out;
2212 
2213 	/* Store a pointer to the node in the device structure */
2214 	of_node_get(nc);
2215 	spi->dev.of_node = nc;
2216 	spi->dev.fwnode = of_fwnode_handle(nc);
2217 
2218 	/* Register the new device */
2219 	rc = spi_add_device(spi);
2220 	if (rc) {
2221 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2222 		goto err_of_node_put;
2223 	}
2224 
2225 	return spi;
2226 
2227 err_of_node_put:
2228 	of_node_put(nc);
2229 err_out:
2230 	spi_dev_put(spi);
2231 	return ERR_PTR(rc);
2232 }
2233 
2234 /**
2235  * of_register_spi_devices() - Register child devices onto the SPI bus
2236  * @ctlr:	Pointer to spi_controller device
2237  *
2238  * Registers an spi_device for each child node of controller node which
2239  * represents a valid SPI slave.
2240  */
2241 static void of_register_spi_devices(struct spi_controller *ctlr)
2242 {
2243 	struct spi_device *spi;
2244 	struct device_node *nc;
2245 
2246 	if (!ctlr->dev.of_node)
2247 		return;
2248 
2249 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2250 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2251 			continue;
2252 		spi = of_register_spi_device(ctlr, nc);
2253 		if (IS_ERR(spi)) {
2254 			dev_warn(&ctlr->dev,
2255 				 "Failed to create SPI device for %pOF\n", nc);
2256 			of_node_clear_flag(nc, OF_POPULATED);
2257 		}
2258 	}
2259 }
2260 #else
2261 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2262 #endif
2263 
2264 /**
2265  * spi_new_ancillary_device() - Register ancillary SPI device
2266  * @spi:         Pointer to the main SPI device registering the ancillary device
2267  * @chip_select: Chip Select of the ancillary device
2268  *
2269  * Register an ancillary SPI device; for example some chips have a chip-select
2270  * for normal device usage and another one for setup/firmware upload.
2271  *
2272  * This may only be called from main SPI device's probe routine.
2273  *
2274  * Return: 0 on success; negative errno on failure
2275  */
2276 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2277 					     u8 chip_select)
2278 {
2279 	struct spi_device *ancillary;
2280 	int rc = 0;
2281 
2282 	/* Alloc an spi_device */
2283 	ancillary = spi_alloc_device(spi->controller);
2284 	if (!ancillary) {
2285 		rc = -ENOMEM;
2286 		goto err_out;
2287 	}
2288 
2289 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2290 
2291 	/* Use provided chip-select for ancillary device */
2292 	ancillary->chip_select = chip_select;
2293 
2294 	/* Take over SPI mode/speed from SPI main device */
2295 	ancillary->max_speed_hz = spi->max_speed_hz;
2296 	ancillary->mode = spi->mode;
2297 
2298 	/* Register the new device */
2299 	rc = spi_add_device_locked(ancillary);
2300 	if (rc) {
2301 		dev_err(&spi->dev, "failed to register ancillary device\n");
2302 		goto err_out;
2303 	}
2304 
2305 	return ancillary;
2306 
2307 err_out:
2308 	spi_dev_put(ancillary);
2309 	return ERR_PTR(rc);
2310 }
2311 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2312 
2313 #ifdef CONFIG_ACPI
2314 struct acpi_spi_lookup {
2315 	struct spi_controller 	*ctlr;
2316 	u32			max_speed_hz;
2317 	u32			mode;
2318 	int			irq;
2319 	u8			bits_per_word;
2320 	u8			chip_select;
2321 };
2322 
2323 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2324 					    struct acpi_spi_lookup *lookup)
2325 {
2326 	const union acpi_object *obj;
2327 
2328 	if (!x86_apple_machine)
2329 		return;
2330 
2331 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2332 	    && obj->buffer.length >= 4)
2333 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2334 
2335 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2336 	    && obj->buffer.length == 8)
2337 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2338 
2339 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2340 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2341 		lookup->mode |= SPI_LSB_FIRST;
2342 
2343 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2344 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2345 		lookup->mode |= SPI_CPOL;
2346 
2347 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2348 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2349 		lookup->mode |= SPI_CPHA;
2350 }
2351 
2352 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2353 {
2354 	struct acpi_spi_lookup *lookup = data;
2355 	struct spi_controller *ctlr = lookup->ctlr;
2356 
2357 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2358 		struct acpi_resource_spi_serialbus *sb;
2359 		acpi_handle parent_handle;
2360 		acpi_status status;
2361 
2362 		sb = &ares->data.spi_serial_bus;
2363 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2364 
2365 			status = acpi_get_handle(NULL,
2366 						 sb->resource_source.string_ptr,
2367 						 &parent_handle);
2368 
2369 			if (ACPI_FAILURE(status) ||
2370 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2371 				return -ENODEV;
2372 
2373 			/*
2374 			 * ACPI DeviceSelection numbering is handled by the
2375 			 * host controller driver in Windows and can vary
2376 			 * from driver to driver. In Linux we always expect
2377 			 * 0 .. max - 1 so we need to ask the driver to
2378 			 * translate between the two schemes.
2379 			 */
2380 			if (ctlr->fw_translate_cs) {
2381 				int cs = ctlr->fw_translate_cs(ctlr,
2382 						sb->device_selection);
2383 				if (cs < 0)
2384 					return cs;
2385 				lookup->chip_select = cs;
2386 			} else {
2387 				lookup->chip_select = sb->device_selection;
2388 			}
2389 
2390 			lookup->max_speed_hz = sb->connection_speed;
2391 			lookup->bits_per_word = sb->data_bit_length;
2392 
2393 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2394 				lookup->mode |= SPI_CPHA;
2395 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2396 				lookup->mode |= SPI_CPOL;
2397 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2398 				lookup->mode |= SPI_CS_HIGH;
2399 		}
2400 	} else if (lookup->irq < 0) {
2401 		struct resource r;
2402 
2403 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2404 			lookup->irq = r.start;
2405 	}
2406 
2407 	/* Always tell the ACPI core to skip this resource */
2408 	return 1;
2409 }
2410 
2411 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2412 					    struct acpi_device *adev)
2413 {
2414 	acpi_handle parent_handle = NULL;
2415 	struct list_head resource_list;
2416 	struct acpi_spi_lookup lookup = {};
2417 	struct spi_device *spi;
2418 	int ret;
2419 
2420 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2421 	    acpi_device_enumerated(adev))
2422 		return AE_OK;
2423 
2424 	lookup.ctlr		= ctlr;
2425 	lookup.irq		= -1;
2426 
2427 	INIT_LIST_HEAD(&resource_list);
2428 	ret = acpi_dev_get_resources(adev, &resource_list,
2429 				     acpi_spi_add_resource, &lookup);
2430 	acpi_dev_free_resource_list(&resource_list);
2431 
2432 	if (ret < 0)
2433 		/* found SPI in _CRS but it points to another controller */
2434 		return AE_OK;
2435 
2436 	if (!lookup.max_speed_hz &&
2437 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2438 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2439 		/* Apple does not use _CRS but nested devices for SPI slaves */
2440 		acpi_spi_parse_apple_properties(adev, &lookup);
2441 	}
2442 
2443 	if (!lookup.max_speed_hz)
2444 		return AE_OK;
2445 
2446 	spi = spi_alloc_device(ctlr);
2447 	if (!spi) {
2448 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2449 			dev_name(&adev->dev));
2450 		return AE_NO_MEMORY;
2451 	}
2452 
2453 
2454 	ACPI_COMPANION_SET(&spi->dev, adev);
2455 	spi->max_speed_hz	= lookup.max_speed_hz;
2456 	spi->mode		|= lookup.mode;
2457 	spi->irq		= lookup.irq;
2458 	spi->bits_per_word	= lookup.bits_per_word;
2459 	spi->chip_select	= lookup.chip_select;
2460 
2461 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2462 			  sizeof(spi->modalias));
2463 
2464 	if (spi->irq < 0)
2465 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2466 
2467 	acpi_device_set_enumerated(adev);
2468 
2469 	adev->power.flags.ignore_parent = true;
2470 	if (spi_add_device(spi)) {
2471 		adev->power.flags.ignore_parent = false;
2472 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2473 			dev_name(&adev->dev));
2474 		spi_dev_put(spi);
2475 	}
2476 
2477 	return AE_OK;
2478 }
2479 
2480 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2481 				       void *data, void **return_value)
2482 {
2483 	struct spi_controller *ctlr = data;
2484 	struct acpi_device *adev;
2485 
2486 	if (acpi_bus_get_device(handle, &adev))
2487 		return AE_OK;
2488 
2489 	return acpi_register_spi_device(ctlr, adev);
2490 }
2491 
2492 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2493 
2494 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2495 {
2496 	acpi_status status;
2497 	acpi_handle handle;
2498 
2499 	handle = ACPI_HANDLE(ctlr->dev.parent);
2500 	if (!handle)
2501 		return;
2502 
2503 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2504 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2505 				     acpi_spi_add_device, NULL, ctlr, NULL);
2506 	if (ACPI_FAILURE(status))
2507 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2508 }
2509 #else
2510 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2511 #endif /* CONFIG_ACPI */
2512 
2513 static void spi_controller_release(struct device *dev)
2514 {
2515 	struct spi_controller *ctlr;
2516 
2517 	ctlr = container_of(dev, struct spi_controller, dev);
2518 	kfree(ctlr);
2519 }
2520 
2521 static struct class spi_master_class = {
2522 	.name		= "spi_master",
2523 	.owner		= THIS_MODULE,
2524 	.dev_release	= spi_controller_release,
2525 	.dev_groups	= spi_master_groups,
2526 };
2527 
2528 #ifdef CONFIG_SPI_SLAVE
2529 /**
2530  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2531  *		     controller
2532  * @spi: device used for the current transfer
2533  */
2534 int spi_slave_abort(struct spi_device *spi)
2535 {
2536 	struct spi_controller *ctlr = spi->controller;
2537 
2538 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2539 		return ctlr->slave_abort(ctlr);
2540 
2541 	return -ENOTSUPP;
2542 }
2543 EXPORT_SYMBOL_GPL(spi_slave_abort);
2544 
2545 static int match_true(struct device *dev, void *data)
2546 {
2547 	return 1;
2548 }
2549 
2550 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2551 			  char *buf)
2552 {
2553 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2554 						   dev);
2555 	struct device *child;
2556 
2557 	child = device_find_child(&ctlr->dev, NULL, match_true);
2558 	return sprintf(buf, "%s\n",
2559 		       child ? to_spi_device(child)->modalias : NULL);
2560 }
2561 
2562 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2563 			   const char *buf, size_t count)
2564 {
2565 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2566 						   dev);
2567 	struct spi_device *spi;
2568 	struct device *child;
2569 	char name[32];
2570 	int rc;
2571 
2572 	rc = sscanf(buf, "%31s", name);
2573 	if (rc != 1 || !name[0])
2574 		return -EINVAL;
2575 
2576 	child = device_find_child(&ctlr->dev, NULL, match_true);
2577 	if (child) {
2578 		/* Remove registered slave */
2579 		device_unregister(child);
2580 		put_device(child);
2581 	}
2582 
2583 	if (strcmp(name, "(null)")) {
2584 		/* Register new slave */
2585 		spi = spi_alloc_device(ctlr);
2586 		if (!spi)
2587 			return -ENOMEM;
2588 
2589 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2590 
2591 		rc = spi_add_device(spi);
2592 		if (rc) {
2593 			spi_dev_put(spi);
2594 			return rc;
2595 		}
2596 	}
2597 
2598 	return count;
2599 }
2600 
2601 static DEVICE_ATTR_RW(slave);
2602 
2603 static struct attribute *spi_slave_attrs[] = {
2604 	&dev_attr_slave.attr,
2605 	NULL,
2606 };
2607 
2608 static const struct attribute_group spi_slave_group = {
2609 	.attrs = spi_slave_attrs,
2610 };
2611 
2612 static const struct attribute_group *spi_slave_groups[] = {
2613 	&spi_controller_statistics_group,
2614 	&spi_slave_group,
2615 	NULL,
2616 };
2617 
2618 static struct class spi_slave_class = {
2619 	.name		= "spi_slave",
2620 	.owner		= THIS_MODULE,
2621 	.dev_release	= spi_controller_release,
2622 	.dev_groups	= spi_slave_groups,
2623 };
2624 #else
2625 extern struct class spi_slave_class;	/* dummy */
2626 #endif
2627 
2628 /**
2629  * __spi_alloc_controller - allocate an SPI master or slave controller
2630  * @dev: the controller, possibly using the platform_bus
2631  * @size: how much zeroed driver-private data to allocate; the pointer to this
2632  *	memory is in the driver_data field of the returned device, accessible
2633  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2634  *	drivers granting DMA access to portions of their private data need to
2635  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2636  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2637  *	slave (true) controller
2638  * Context: can sleep
2639  *
2640  * This call is used only by SPI controller drivers, which are the
2641  * only ones directly touching chip registers.  It's how they allocate
2642  * an spi_controller structure, prior to calling spi_register_controller().
2643  *
2644  * This must be called from context that can sleep.
2645  *
2646  * The caller is responsible for assigning the bus number and initializing the
2647  * controller's methods before calling spi_register_controller(); and (after
2648  * errors adding the device) calling spi_controller_put() to prevent a memory
2649  * leak.
2650  *
2651  * Return: the SPI controller structure on success, else NULL.
2652  */
2653 struct spi_controller *__spi_alloc_controller(struct device *dev,
2654 					      unsigned int size, bool slave)
2655 {
2656 	struct spi_controller	*ctlr;
2657 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2658 
2659 	if (!dev)
2660 		return NULL;
2661 
2662 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2663 	if (!ctlr)
2664 		return NULL;
2665 
2666 	device_initialize(&ctlr->dev);
2667 	INIT_LIST_HEAD(&ctlr->queue);
2668 	spin_lock_init(&ctlr->queue_lock);
2669 	spin_lock_init(&ctlr->bus_lock_spinlock);
2670 	mutex_init(&ctlr->bus_lock_mutex);
2671 	mutex_init(&ctlr->io_mutex);
2672 	mutex_init(&ctlr->add_lock);
2673 	ctlr->bus_num = -1;
2674 	ctlr->num_chipselect = 1;
2675 	ctlr->slave = slave;
2676 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2677 		ctlr->dev.class = &spi_slave_class;
2678 	else
2679 		ctlr->dev.class = &spi_master_class;
2680 	ctlr->dev.parent = dev;
2681 	pm_suspend_ignore_children(&ctlr->dev, true);
2682 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2683 
2684 	return ctlr;
2685 }
2686 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2687 
2688 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2689 {
2690 	spi_controller_put(*(struct spi_controller **)ctlr);
2691 }
2692 
2693 /**
2694  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2695  * @dev: physical device of SPI controller
2696  * @size: how much zeroed driver-private data to allocate
2697  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2698  * Context: can sleep
2699  *
2700  * Allocate an SPI controller and automatically release a reference on it
2701  * when @dev is unbound from its driver.  Drivers are thus relieved from
2702  * having to call spi_controller_put().
2703  *
2704  * The arguments to this function are identical to __spi_alloc_controller().
2705  *
2706  * Return: the SPI controller structure on success, else NULL.
2707  */
2708 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2709 						   unsigned int size,
2710 						   bool slave)
2711 {
2712 	struct spi_controller **ptr, *ctlr;
2713 
2714 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2715 			   GFP_KERNEL);
2716 	if (!ptr)
2717 		return NULL;
2718 
2719 	ctlr = __spi_alloc_controller(dev, size, slave);
2720 	if (ctlr) {
2721 		ctlr->devm_allocated = true;
2722 		*ptr = ctlr;
2723 		devres_add(dev, ptr);
2724 	} else {
2725 		devres_free(ptr);
2726 	}
2727 
2728 	return ctlr;
2729 }
2730 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2731 
2732 #ifdef CONFIG_OF
2733 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2734 {
2735 	int nb, i, *cs;
2736 	struct device_node *np = ctlr->dev.of_node;
2737 
2738 	if (!np)
2739 		return 0;
2740 
2741 	nb = of_gpio_named_count(np, "cs-gpios");
2742 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2743 
2744 	/* Return error only for an incorrectly formed cs-gpios property */
2745 	if (nb == 0 || nb == -ENOENT)
2746 		return 0;
2747 	else if (nb < 0)
2748 		return nb;
2749 
2750 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2751 			  GFP_KERNEL);
2752 	ctlr->cs_gpios = cs;
2753 
2754 	if (!ctlr->cs_gpios)
2755 		return -ENOMEM;
2756 
2757 	for (i = 0; i < ctlr->num_chipselect; i++)
2758 		cs[i] = -ENOENT;
2759 
2760 	for (i = 0; i < nb; i++)
2761 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2762 
2763 	return 0;
2764 }
2765 #else
2766 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2767 {
2768 	return 0;
2769 }
2770 #endif
2771 
2772 /**
2773  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2774  * @ctlr: The SPI master to grab GPIO descriptors for
2775  */
2776 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2777 {
2778 	int nb, i;
2779 	struct gpio_desc **cs;
2780 	struct device *dev = &ctlr->dev;
2781 	unsigned long native_cs_mask = 0;
2782 	unsigned int num_cs_gpios = 0;
2783 
2784 	nb = gpiod_count(dev, "cs");
2785 	if (nb < 0) {
2786 		/* No GPIOs at all is fine, else return the error */
2787 		if (nb == -ENOENT)
2788 			return 0;
2789 		return nb;
2790 	}
2791 
2792 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2793 
2794 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2795 			  GFP_KERNEL);
2796 	if (!cs)
2797 		return -ENOMEM;
2798 	ctlr->cs_gpiods = cs;
2799 
2800 	for (i = 0; i < nb; i++) {
2801 		/*
2802 		 * Most chipselects are active low, the inverted
2803 		 * semantics are handled by special quirks in gpiolib,
2804 		 * so initializing them GPIOD_OUT_LOW here means
2805 		 * "unasserted", in most cases this will drive the physical
2806 		 * line high.
2807 		 */
2808 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2809 						      GPIOD_OUT_LOW);
2810 		if (IS_ERR(cs[i]))
2811 			return PTR_ERR(cs[i]);
2812 
2813 		if (cs[i]) {
2814 			/*
2815 			 * If we find a CS GPIO, name it after the device and
2816 			 * chip select line.
2817 			 */
2818 			char *gpioname;
2819 
2820 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2821 						  dev_name(dev), i);
2822 			if (!gpioname)
2823 				return -ENOMEM;
2824 			gpiod_set_consumer_name(cs[i], gpioname);
2825 			num_cs_gpios++;
2826 			continue;
2827 		}
2828 
2829 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2830 			dev_err(dev, "Invalid native chip select %d\n", i);
2831 			return -EINVAL;
2832 		}
2833 		native_cs_mask |= BIT(i);
2834 	}
2835 
2836 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2837 
2838 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2839 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2840 		dev_err(dev, "No unused native chip select available\n");
2841 		return -EINVAL;
2842 	}
2843 
2844 	return 0;
2845 }
2846 
2847 static int spi_controller_check_ops(struct spi_controller *ctlr)
2848 {
2849 	/*
2850 	 * The controller may implement only the high-level SPI-memory like
2851 	 * operations if it does not support regular SPI transfers, and this is
2852 	 * valid use case.
2853 	 * If ->mem_ops is NULL, we request that at least one of the
2854 	 * ->transfer_xxx() method be implemented.
2855 	 */
2856 	if (ctlr->mem_ops) {
2857 		if (!ctlr->mem_ops->exec_op)
2858 			return -EINVAL;
2859 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2860 		   !ctlr->transfer_one_message) {
2861 		return -EINVAL;
2862 	}
2863 
2864 	return 0;
2865 }
2866 
2867 /**
2868  * spi_register_controller - register SPI master or slave controller
2869  * @ctlr: initialized master, originally from spi_alloc_master() or
2870  *	spi_alloc_slave()
2871  * Context: can sleep
2872  *
2873  * SPI controllers connect to their drivers using some non-SPI bus,
2874  * such as the platform bus.  The final stage of probe() in that code
2875  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2876  *
2877  * SPI controllers use board specific (often SOC specific) bus numbers,
2878  * and board-specific addressing for SPI devices combines those numbers
2879  * with chip select numbers.  Since SPI does not directly support dynamic
2880  * device identification, boards need configuration tables telling which
2881  * chip is at which address.
2882  *
2883  * This must be called from context that can sleep.  It returns zero on
2884  * success, else a negative error code (dropping the controller's refcount).
2885  * After a successful return, the caller is responsible for calling
2886  * spi_unregister_controller().
2887  *
2888  * Return: zero on success, else a negative error code.
2889  */
2890 int spi_register_controller(struct spi_controller *ctlr)
2891 {
2892 	struct device		*dev = ctlr->dev.parent;
2893 	struct boardinfo	*bi;
2894 	int			status;
2895 	int			id, first_dynamic;
2896 
2897 	if (!dev)
2898 		return -ENODEV;
2899 
2900 	/*
2901 	 * Make sure all necessary hooks are implemented before registering
2902 	 * the SPI controller.
2903 	 */
2904 	status = spi_controller_check_ops(ctlr);
2905 	if (status)
2906 		return status;
2907 
2908 	if (ctlr->bus_num >= 0) {
2909 		/* devices with a fixed bus num must check-in with the num */
2910 		mutex_lock(&board_lock);
2911 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2912 			ctlr->bus_num + 1, GFP_KERNEL);
2913 		mutex_unlock(&board_lock);
2914 		if (WARN(id < 0, "couldn't get idr"))
2915 			return id == -ENOSPC ? -EBUSY : id;
2916 		ctlr->bus_num = id;
2917 	} else if (ctlr->dev.of_node) {
2918 		/* allocate dynamic bus number using Linux idr */
2919 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2920 		if (id >= 0) {
2921 			ctlr->bus_num = id;
2922 			mutex_lock(&board_lock);
2923 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2924 				       ctlr->bus_num + 1, GFP_KERNEL);
2925 			mutex_unlock(&board_lock);
2926 			if (WARN(id < 0, "couldn't get idr"))
2927 				return id == -ENOSPC ? -EBUSY : id;
2928 		}
2929 	}
2930 	if (ctlr->bus_num < 0) {
2931 		first_dynamic = of_alias_get_highest_id("spi");
2932 		if (first_dynamic < 0)
2933 			first_dynamic = 0;
2934 		else
2935 			first_dynamic++;
2936 
2937 		mutex_lock(&board_lock);
2938 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2939 			       0, GFP_KERNEL);
2940 		mutex_unlock(&board_lock);
2941 		if (WARN(id < 0, "couldn't get idr"))
2942 			return id;
2943 		ctlr->bus_num = id;
2944 	}
2945 	ctlr->bus_lock_flag = 0;
2946 	init_completion(&ctlr->xfer_completion);
2947 	if (!ctlr->max_dma_len)
2948 		ctlr->max_dma_len = INT_MAX;
2949 
2950 	/*
2951 	 * Register the device, then userspace will see it.
2952 	 * Registration fails if the bus ID is in use.
2953 	 */
2954 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2955 
2956 	if (!spi_controller_is_slave(ctlr)) {
2957 		if (ctlr->use_gpio_descriptors) {
2958 			status = spi_get_gpio_descs(ctlr);
2959 			if (status)
2960 				goto free_bus_id;
2961 			/*
2962 			 * A controller using GPIO descriptors always
2963 			 * supports SPI_CS_HIGH if need be.
2964 			 */
2965 			ctlr->mode_bits |= SPI_CS_HIGH;
2966 		} else {
2967 			/* Legacy code path for GPIOs from DT */
2968 			status = of_spi_get_gpio_numbers(ctlr);
2969 			if (status)
2970 				goto free_bus_id;
2971 		}
2972 	}
2973 
2974 	/*
2975 	 * Even if it's just one always-selected device, there must
2976 	 * be at least one chipselect.
2977 	 */
2978 	if (!ctlr->num_chipselect) {
2979 		status = -EINVAL;
2980 		goto free_bus_id;
2981 	}
2982 
2983 	status = device_add(&ctlr->dev);
2984 	if (status < 0)
2985 		goto free_bus_id;
2986 	dev_dbg(dev, "registered %s %s\n",
2987 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2988 			dev_name(&ctlr->dev));
2989 
2990 	/*
2991 	 * If we're using a queued driver, start the queue. Note that we don't
2992 	 * need the queueing logic if the driver is only supporting high-level
2993 	 * memory operations.
2994 	 */
2995 	if (ctlr->transfer) {
2996 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2997 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2998 		status = spi_controller_initialize_queue(ctlr);
2999 		if (status) {
3000 			device_del(&ctlr->dev);
3001 			goto free_bus_id;
3002 		}
3003 	}
3004 	/* add statistics */
3005 	spin_lock_init(&ctlr->statistics.lock);
3006 
3007 	mutex_lock(&board_lock);
3008 	list_add_tail(&ctlr->list, &spi_controller_list);
3009 	list_for_each_entry(bi, &board_list, list)
3010 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3011 	mutex_unlock(&board_lock);
3012 
3013 	/* Register devices from the device tree and ACPI */
3014 	of_register_spi_devices(ctlr);
3015 	acpi_register_spi_devices(ctlr);
3016 	return status;
3017 
3018 free_bus_id:
3019 	mutex_lock(&board_lock);
3020 	idr_remove(&spi_master_idr, ctlr->bus_num);
3021 	mutex_unlock(&board_lock);
3022 	return status;
3023 }
3024 EXPORT_SYMBOL_GPL(spi_register_controller);
3025 
3026 static void devm_spi_unregister(void *ctlr)
3027 {
3028 	spi_unregister_controller(ctlr);
3029 }
3030 
3031 /**
3032  * devm_spi_register_controller - register managed SPI master or slave
3033  *	controller
3034  * @dev:    device managing SPI controller
3035  * @ctlr: initialized controller, originally from spi_alloc_master() or
3036  *	spi_alloc_slave()
3037  * Context: can sleep
3038  *
3039  * Register a SPI device as with spi_register_controller() which will
3040  * automatically be unregistered and freed.
3041  *
3042  * Return: zero on success, else a negative error code.
3043  */
3044 int devm_spi_register_controller(struct device *dev,
3045 				 struct spi_controller *ctlr)
3046 {
3047 	int ret;
3048 
3049 	ret = spi_register_controller(ctlr);
3050 	if (ret)
3051 		return ret;
3052 
3053 	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
3054 }
3055 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3056 
3057 static int __unregister(struct device *dev, void *null)
3058 {
3059 	spi_unregister_device(to_spi_device(dev));
3060 	return 0;
3061 }
3062 
3063 /**
3064  * spi_unregister_controller - unregister SPI master or slave controller
3065  * @ctlr: the controller being unregistered
3066  * Context: can sleep
3067  *
3068  * This call is used only by SPI controller drivers, which are the
3069  * only ones directly touching chip registers.
3070  *
3071  * This must be called from context that can sleep.
3072  *
3073  * Note that this function also drops a reference to the controller.
3074  */
3075 void spi_unregister_controller(struct spi_controller *ctlr)
3076 {
3077 	struct spi_controller *found;
3078 	int id = ctlr->bus_num;
3079 
3080 	/* Prevent addition of new devices, unregister existing ones */
3081 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3082 		mutex_lock(&ctlr->add_lock);
3083 
3084 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3085 
3086 	/* First make sure that this controller was ever added */
3087 	mutex_lock(&board_lock);
3088 	found = idr_find(&spi_master_idr, id);
3089 	mutex_unlock(&board_lock);
3090 	if (ctlr->queued) {
3091 		if (spi_destroy_queue(ctlr))
3092 			dev_err(&ctlr->dev, "queue remove failed\n");
3093 	}
3094 	mutex_lock(&board_lock);
3095 	list_del(&ctlr->list);
3096 	mutex_unlock(&board_lock);
3097 
3098 	device_del(&ctlr->dev);
3099 
3100 	/* free bus id */
3101 	mutex_lock(&board_lock);
3102 	if (found == ctlr)
3103 		idr_remove(&spi_master_idr, id);
3104 	mutex_unlock(&board_lock);
3105 
3106 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3107 		mutex_unlock(&ctlr->add_lock);
3108 
3109 	/* Release the last reference on the controller if its driver
3110 	 * has not yet been converted to devm_spi_alloc_master/slave().
3111 	 */
3112 	if (!ctlr->devm_allocated)
3113 		put_device(&ctlr->dev);
3114 }
3115 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3116 
3117 int spi_controller_suspend(struct spi_controller *ctlr)
3118 {
3119 	int ret;
3120 
3121 	/* Basically no-ops for non-queued controllers */
3122 	if (!ctlr->queued)
3123 		return 0;
3124 
3125 	ret = spi_stop_queue(ctlr);
3126 	if (ret)
3127 		dev_err(&ctlr->dev, "queue stop failed\n");
3128 
3129 	return ret;
3130 }
3131 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3132 
3133 int spi_controller_resume(struct spi_controller *ctlr)
3134 {
3135 	int ret;
3136 
3137 	if (!ctlr->queued)
3138 		return 0;
3139 
3140 	ret = spi_start_queue(ctlr);
3141 	if (ret)
3142 		dev_err(&ctlr->dev, "queue restart failed\n");
3143 
3144 	return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(spi_controller_resume);
3147 
3148 /*-------------------------------------------------------------------------*/
3149 
3150 /* Core methods for spi_message alterations */
3151 
3152 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3153 					    struct spi_message *msg,
3154 					    void *res)
3155 {
3156 	struct spi_replaced_transfers *rxfer = res;
3157 	size_t i;
3158 
3159 	/* call extra callback if requested */
3160 	if (rxfer->release)
3161 		rxfer->release(ctlr, msg, res);
3162 
3163 	/* insert replaced transfers back into the message */
3164 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3165 
3166 	/* remove the formerly inserted entries */
3167 	for (i = 0; i < rxfer->inserted; i++)
3168 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3169 }
3170 
3171 /**
3172  * spi_replace_transfers - replace transfers with several transfers
3173  *                         and register change with spi_message.resources
3174  * @msg:           the spi_message we work upon
3175  * @xfer_first:    the first spi_transfer we want to replace
3176  * @remove:        number of transfers to remove
3177  * @insert:        the number of transfers we want to insert instead
3178  * @release:       extra release code necessary in some circumstances
3179  * @extradatasize: extra data to allocate (with alignment guarantees
3180  *                 of struct @spi_transfer)
3181  * @gfp:           gfp flags
3182  *
3183  * Returns: pointer to @spi_replaced_transfers,
3184  *          PTR_ERR(...) in case of errors.
3185  */
3186 static struct spi_replaced_transfers *spi_replace_transfers(
3187 	struct spi_message *msg,
3188 	struct spi_transfer *xfer_first,
3189 	size_t remove,
3190 	size_t insert,
3191 	spi_replaced_release_t release,
3192 	size_t extradatasize,
3193 	gfp_t gfp)
3194 {
3195 	struct spi_replaced_transfers *rxfer;
3196 	struct spi_transfer *xfer;
3197 	size_t i;
3198 
3199 	/* allocate the structure using spi_res */
3200 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3201 			      struct_size(rxfer, inserted_transfers, insert)
3202 			      + extradatasize,
3203 			      gfp);
3204 	if (!rxfer)
3205 		return ERR_PTR(-ENOMEM);
3206 
3207 	/* the release code to invoke before running the generic release */
3208 	rxfer->release = release;
3209 
3210 	/* assign extradata */
3211 	if (extradatasize)
3212 		rxfer->extradata =
3213 			&rxfer->inserted_transfers[insert];
3214 
3215 	/* init the replaced_transfers list */
3216 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3217 
3218 	/*
3219 	 * Assign the list_entry after which we should reinsert
3220 	 * the @replaced_transfers - it may be spi_message.messages!
3221 	 */
3222 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3223 
3224 	/* remove the requested number of transfers */
3225 	for (i = 0; i < remove; i++) {
3226 		/*
3227 		 * If the entry after replaced_after it is msg->transfers
3228 		 * then we have been requested to remove more transfers
3229 		 * than are in the list.
3230 		 */
3231 		if (rxfer->replaced_after->next == &msg->transfers) {
3232 			dev_err(&msg->spi->dev,
3233 				"requested to remove more spi_transfers than are available\n");
3234 			/* insert replaced transfers back into the message */
3235 			list_splice(&rxfer->replaced_transfers,
3236 				    rxfer->replaced_after);
3237 
3238 			/* free the spi_replace_transfer structure */
3239 			spi_res_free(rxfer);
3240 
3241 			/* and return with an error */
3242 			return ERR_PTR(-EINVAL);
3243 		}
3244 
3245 		/*
3246 		 * Remove the entry after replaced_after from list of
3247 		 * transfers and add it to list of replaced_transfers.
3248 		 */
3249 		list_move_tail(rxfer->replaced_after->next,
3250 			       &rxfer->replaced_transfers);
3251 	}
3252 
3253 	/*
3254 	 * Create copy of the given xfer with identical settings
3255 	 * based on the first transfer to get removed.
3256 	 */
3257 	for (i = 0; i < insert; i++) {
3258 		/* we need to run in reverse order */
3259 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3260 
3261 		/* copy all spi_transfer data */
3262 		memcpy(xfer, xfer_first, sizeof(*xfer));
3263 
3264 		/* add to list */
3265 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3266 
3267 		/* clear cs_change and delay for all but the last */
3268 		if (i) {
3269 			xfer->cs_change = false;
3270 			xfer->delay.value = 0;
3271 		}
3272 	}
3273 
3274 	/* set up inserted */
3275 	rxfer->inserted = insert;
3276 
3277 	/* and register it with spi_res/spi_message */
3278 	spi_res_add(msg, rxfer);
3279 
3280 	return rxfer;
3281 }
3282 
3283 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3284 					struct spi_message *msg,
3285 					struct spi_transfer **xferp,
3286 					size_t maxsize,
3287 					gfp_t gfp)
3288 {
3289 	struct spi_transfer *xfer = *xferp, *xfers;
3290 	struct spi_replaced_transfers *srt;
3291 	size_t offset;
3292 	size_t count, i;
3293 
3294 	/* calculate how many we have to replace */
3295 	count = DIV_ROUND_UP(xfer->len, maxsize);
3296 
3297 	/* create replacement */
3298 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3299 	if (IS_ERR(srt))
3300 		return PTR_ERR(srt);
3301 	xfers = srt->inserted_transfers;
3302 
3303 	/*
3304 	 * Now handle each of those newly inserted spi_transfers.
3305 	 * Note that the replacements spi_transfers all are preset
3306 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3307 	 * are all identical (as well as most others)
3308 	 * so we just have to fix up len and the pointers.
3309 	 *
3310 	 * This also includes support for the depreciated
3311 	 * spi_message.is_dma_mapped interface.
3312 	 */
3313 
3314 	/*
3315 	 * The first transfer just needs the length modified, so we
3316 	 * run it outside the loop.
3317 	 */
3318 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3319 
3320 	/* all the others need rx_buf/tx_buf also set */
3321 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3322 		/* update rx_buf, tx_buf and dma */
3323 		if (xfers[i].rx_buf)
3324 			xfers[i].rx_buf += offset;
3325 		if (xfers[i].rx_dma)
3326 			xfers[i].rx_dma += offset;
3327 		if (xfers[i].tx_buf)
3328 			xfers[i].tx_buf += offset;
3329 		if (xfers[i].tx_dma)
3330 			xfers[i].tx_dma += offset;
3331 
3332 		/* update length */
3333 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3334 	}
3335 
3336 	/*
3337 	 * We set up xferp to the last entry we have inserted,
3338 	 * so that we skip those already split transfers.
3339 	 */
3340 	*xferp = &xfers[count - 1];
3341 
3342 	/* increment statistics counters */
3343 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3344 				       transfers_split_maxsize);
3345 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3346 				       transfers_split_maxsize);
3347 
3348 	return 0;
3349 }
3350 
3351 /**
3352  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3353  *                               when an individual transfer exceeds a
3354  *                               certain size
3355  * @ctlr:    the @spi_controller for this transfer
3356  * @msg:   the @spi_message to transform
3357  * @maxsize:  the maximum when to apply this
3358  * @gfp: GFP allocation flags
3359  *
3360  * Return: status of transformation
3361  */
3362 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3363 				struct spi_message *msg,
3364 				size_t maxsize,
3365 				gfp_t gfp)
3366 {
3367 	struct spi_transfer *xfer;
3368 	int ret;
3369 
3370 	/*
3371 	 * Iterate over the transfer_list,
3372 	 * but note that xfer is advanced to the last transfer inserted
3373 	 * to avoid checking sizes again unnecessarily (also xfer does
3374 	 * potentially belong to a different list by the time the
3375 	 * replacement has happened).
3376 	 */
3377 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3378 		if (xfer->len > maxsize) {
3379 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3380 							   maxsize, gfp);
3381 			if (ret)
3382 				return ret;
3383 		}
3384 	}
3385 
3386 	return 0;
3387 }
3388 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3389 
3390 /*-------------------------------------------------------------------------*/
3391 
3392 /* Core methods for SPI controller protocol drivers.  Some of the
3393  * other core methods are currently defined as inline functions.
3394  */
3395 
3396 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3397 					u8 bits_per_word)
3398 {
3399 	if (ctlr->bits_per_word_mask) {
3400 		/* Only 32 bits fit in the mask */
3401 		if (bits_per_word > 32)
3402 			return -EINVAL;
3403 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3404 			return -EINVAL;
3405 	}
3406 
3407 	return 0;
3408 }
3409 
3410 /**
3411  * spi_setup - setup SPI mode and clock rate
3412  * @spi: the device whose settings are being modified
3413  * Context: can sleep, and no requests are queued to the device
3414  *
3415  * SPI protocol drivers may need to update the transfer mode if the
3416  * device doesn't work with its default.  They may likewise need
3417  * to update clock rates or word sizes from initial values.  This function
3418  * changes those settings, and must be called from a context that can sleep.
3419  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3420  * effect the next time the device is selected and data is transferred to
3421  * or from it.  When this function returns, the spi device is deselected.
3422  *
3423  * Note that this call will fail if the protocol driver specifies an option
3424  * that the underlying controller or its driver does not support.  For
3425  * example, not all hardware supports wire transfers using nine bit words,
3426  * LSB-first wire encoding, or active-high chipselects.
3427  *
3428  * Return: zero on success, else a negative error code.
3429  */
3430 int spi_setup(struct spi_device *spi)
3431 {
3432 	unsigned	bad_bits, ugly_bits;
3433 	int		status;
3434 
3435 	/*
3436 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3437 	 * are set at the same time.
3438 	 */
3439 	if ((hweight_long(spi->mode &
3440 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3441 	    (hweight_long(spi->mode &
3442 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3443 		dev_err(&spi->dev,
3444 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3445 		return -EINVAL;
3446 	}
3447 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3448 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3449 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3450 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3451 		return -EINVAL;
3452 	/*
3453 	 * Help drivers fail *cleanly* when they need options
3454 	 * that aren't supported with their current controller.
3455 	 * SPI_CS_WORD has a fallback software implementation,
3456 	 * so it is ignored here.
3457 	 */
3458 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3459 				 SPI_NO_TX | SPI_NO_RX);
3460 	/*
3461 	 * Nothing prevents from working with active-high CS in case if it
3462 	 * is driven by GPIO.
3463 	 */
3464 	if (gpio_is_valid(spi->cs_gpio))
3465 		bad_bits &= ~SPI_CS_HIGH;
3466 	ugly_bits = bad_bits &
3467 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3468 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3469 	if (ugly_bits) {
3470 		dev_warn(&spi->dev,
3471 			 "setup: ignoring unsupported mode bits %x\n",
3472 			 ugly_bits);
3473 		spi->mode &= ~ugly_bits;
3474 		bad_bits &= ~ugly_bits;
3475 	}
3476 	if (bad_bits) {
3477 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3478 			bad_bits);
3479 		return -EINVAL;
3480 	}
3481 
3482 	if (!spi->bits_per_word)
3483 		spi->bits_per_word = 8;
3484 
3485 	status = __spi_validate_bits_per_word(spi->controller,
3486 					      spi->bits_per_word);
3487 	if (status)
3488 		return status;
3489 
3490 	if (spi->controller->max_speed_hz &&
3491 	    (!spi->max_speed_hz ||
3492 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3493 		spi->max_speed_hz = spi->controller->max_speed_hz;
3494 
3495 	mutex_lock(&spi->controller->io_mutex);
3496 
3497 	if (spi->controller->setup) {
3498 		status = spi->controller->setup(spi);
3499 		if (status) {
3500 			mutex_unlock(&spi->controller->io_mutex);
3501 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3502 				status);
3503 			return status;
3504 		}
3505 	}
3506 
3507 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3508 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3509 		if (status < 0) {
3510 			mutex_unlock(&spi->controller->io_mutex);
3511 			pm_runtime_put_noidle(spi->controller->dev.parent);
3512 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3513 				status);
3514 			return status;
3515 		}
3516 
3517 		/*
3518 		 * We do not want to return positive value from pm_runtime_get,
3519 		 * there are many instances of devices calling spi_setup() and
3520 		 * checking for a non-zero return value instead of a negative
3521 		 * return value.
3522 		 */
3523 		status = 0;
3524 
3525 		spi_set_cs(spi, false, true);
3526 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3527 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3528 	} else {
3529 		spi_set_cs(spi, false, true);
3530 	}
3531 
3532 	mutex_unlock(&spi->controller->io_mutex);
3533 
3534 	if (spi->rt && !spi->controller->rt) {
3535 		spi->controller->rt = true;
3536 		spi_set_thread_rt(spi->controller);
3537 	}
3538 
3539 	trace_spi_setup(spi, status);
3540 
3541 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3542 			spi->mode & SPI_MODE_X_MASK,
3543 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3544 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3545 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3546 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3547 			spi->bits_per_word, spi->max_speed_hz,
3548 			status);
3549 
3550 	return status;
3551 }
3552 EXPORT_SYMBOL_GPL(spi_setup);
3553 
3554 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3555 				       struct spi_device *spi)
3556 {
3557 	int delay1, delay2;
3558 
3559 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3560 	if (delay1 < 0)
3561 		return delay1;
3562 
3563 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3564 	if (delay2 < 0)
3565 		return delay2;
3566 
3567 	if (delay1 < delay2)
3568 		memcpy(&xfer->word_delay, &spi->word_delay,
3569 		       sizeof(xfer->word_delay));
3570 
3571 	return 0;
3572 }
3573 
3574 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3575 {
3576 	struct spi_controller *ctlr = spi->controller;
3577 	struct spi_transfer *xfer;
3578 	int w_size;
3579 
3580 	if (list_empty(&message->transfers))
3581 		return -EINVAL;
3582 
3583 	/*
3584 	 * If an SPI controller does not support toggling the CS line on each
3585 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3586 	 * for the CS line, we can emulate the CS-per-word hardware function by
3587 	 * splitting transfers into one-word transfers and ensuring that
3588 	 * cs_change is set for each transfer.
3589 	 */
3590 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3591 					  spi->cs_gpiod ||
3592 					  gpio_is_valid(spi->cs_gpio))) {
3593 		size_t maxsize;
3594 		int ret;
3595 
3596 		maxsize = (spi->bits_per_word + 7) / 8;
3597 
3598 		/* spi_split_transfers_maxsize() requires message->spi */
3599 		message->spi = spi;
3600 
3601 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3602 						  GFP_KERNEL);
3603 		if (ret)
3604 			return ret;
3605 
3606 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3607 			/* don't change cs_change on the last entry in the list */
3608 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3609 				break;
3610 			xfer->cs_change = 1;
3611 		}
3612 	}
3613 
3614 	/*
3615 	 * Half-duplex links include original MicroWire, and ones with
3616 	 * only one data pin like SPI_3WIRE (switches direction) or where
3617 	 * either MOSI or MISO is missing.  They can also be caused by
3618 	 * software limitations.
3619 	 */
3620 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3621 	    (spi->mode & SPI_3WIRE)) {
3622 		unsigned flags = ctlr->flags;
3623 
3624 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3625 			if (xfer->rx_buf && xfer->tx_buf)
3626 				return -EINVAL;
3627 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3628 				return -EINVAL;
3629 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3630 				return -EINVAL;
3631 		}
3632 	}
3633 
3634 	/*
3635 	 * Set transfer bits_per_word and max speed as spi device default if
3636 	 * it is not set for this transfer.
3637 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3638 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3639 	 * Ensure transfer word_delay is at least as long as that required by
3640 	 * device itself.
3641 	 */
3642 	message->frame_length = 0;
3643 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3644 		xfer->effective_speed_hz = 0;
3645 		message->frame_length += xfer->len;
3646 		if (!xfer->bits_per_word)
3647 			xfer->bits_per_word = spi->bits_per_word;
3648 
3649 		if (!xfer->speed_hz)
3650 			xfer->speed_hz = spi->max_speed_hz;
3651 
3652 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3653 			xfer->speed_hz = ctlr->max_speed_hz;
3654 
3655 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3656 			return -EINVAL;
3657 
3658 		/*
3659 		 * SPI transfer length should be multiple of SPI word size
3660 		 * where SPI word size should be power-of-two multiple.
3661 		 */
3662 		if (xfer->bits_per_word <= 8)
3663 			w_size = 1;
3664 		else if (xfer->bits_per_word <= 16)
3665 			w_size = 2;
3666 		else
3667 			w_size = 4;
3668 
3669 		/* No partial transfers accepted */
3670 		if (xfer->len % w_size)
3671 			return -EINVAL;
3672 
3673 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3674 		    xfer->speed_hz < ctlr->min_speed_hz)
3675 			return -EINVAL;
3676 
3677 		if (xfer->tx_buf && !xfer->tx_nbits)
3678 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3679 		if (xfer->rx_buf && !xfer->rx_nbits)
3680 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3681 		/*
3682 		 * Check transfer tx/rx_nbits:
3683 		 * 1. check the value matches one of single, dual and quad
3684 		 * 2. check tx/rx_nbits match the mode in spi_device
3685 		 */
3686 		if (xfer->tx_buf) {
3687 			if (spi->mode & SPI_NO_TX)
3688 				return -EINVAL;
3689 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3690 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3691 				xfer->tx_nbits != SPI_NBITS_QUAD)
3692 				return -EINVAL;
3693 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3694 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3695 				return -EINVAL;
3696 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3697 				!(spi->mode & SPI_TX_QUAD))
3698 				return -EINVAL;
3699 		}
3700 		/* check transfer rx_nbits */
3701 		if (xfer->rx_buf) {
3702 			if (spi->mode & SPI_NO_RX)
3703 				return -EINVAL;
3704 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3705 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3706 				xfer->rx_nbits != SPI_NBITS_QUAD)
3707 				return -EINVAL;
3708 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3709 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3710 				return -EINVAL;
3711 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3712 				!(spi->mode & SPI_RX_QUAD))
3713 				return -EINVAL;
3714 		}
3715 
3716 		if (_spi_xfer_word_delay_update(xfer, spi))
3717 			return -EINVAL;
3718 	}
3719 
3720 	message->status = -EINPROGRESS;
3721 
3722 	return 0;
3723 }
3724 
3725 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3726 {
3727 	struct spi_controller *ctlr = spi->controller;
3728 	struct spi_transfer *xfer;
3729 
3730 	/*
3731 	 * Some controllers do not support doing regular SPI transfers. Return
3732 	 * ENOTSUPP when this is the case.
3733 	 */
3734 	if (!ctlr->transfer)
3735 		return -ENOTSUPP;
3736 
3737 	message->spi = spi;
3738 
3739 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3740 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3741 
3742 	trace_spi_message_submit(message);
3743 
3744 	if (!ctlr->ptp_sts_supported) {
3745 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3746 			xfer->ptp_sts_word_pre = 0;
3747 			ptp_read_system_prets(xfer->ptp_sts);
3748 		}
3749 	}
3750 
3751 	return ctlr->transfer(spi, message);
3752 }
3753 
3754 /**
3755  * spi_async - asynchronous SPI transfer
3756  * @spi: device with which data will be exchanged
3757  * @message: describes the data transfers, including completion callback
3758  * Context: any (irqs may be blocked, etc)
3759  *
3760  * This call may be used in_irq and other contexts which can't sleep,
3761  * as well as from task contexts which can sleep.
3762  *
3763  * The completion callback is invoked in a context which can't sleep.
3764  * Before that invocation, the value of message->status is undefined.
3765  * When the callback is issued, message->status holds either zero (to
3766  * indicate complete success) or a negative error code.  After that
3767  * callback returns, the driver which issued the transfer request may
3768  * deallocate the associated memory; it's no longer in use by any SPI
3769  * core or controller driver code.
3770  *
3771  * Note that although all messages to a spi_device are handled in
3772  * FIFO order, messages may go to different devices in other orders.
3773  * Some device might be higher priority, or have various "hard" access
3774  * time requirements, for example.
3775  *
3776  * On detection of any fault during the transfer, processing of
3777  * the entire message is aborted, and the device is deselected.
3778  * Until returning from the associated message completion callback,
3779  * no other spi_message queued to that device will be processed.
3780  * (This rule applies equally to all the synchronous transfer calls,
3781  * which are wrappers around this core asynchronous primitive.)
3782  *
3783  * Return: zero on success, else a negative error code.
3784  */
3785 int spi_async(struct spi_device *spi, struct spi_message *message)
3786 {
3787 	struct spi_controller *ctlr = spi->controller;
3788 	int ret;
3789 	unsigned long flags;
3790 
3791 	ret = __spi_validate(spi, message);
3792 	if (ret != 0)
3793 		return ret;
3794 
3795 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3796 
3797 	if (ctlr->bus_lock_flag)
3798 		ret = -EBUSY;
3799 	else
3800 		ret = __spi_async(spi, message);
3801 
3802 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3803 
3804 	return ret;
3805 }
3806 EXPORT_SYMBOL_GPL(spi_async);
3807 
3808 /**
3809  * spi_async_locked - version of spi_async with exclusive bus usage
3810  * @spi: device with which data will be exchanged
3811  * @message: describes the data transfers, including completion callback
3812  * Context: any (irqs may be blocked, etc)
3813  *
3814  * This call may be used in_irq and other contexts which can't sleep,
3815  * as well as from task contexts which can sleep.
3816  *
3817  * The completion callback is invoked in a context which can't sleep.
3818  * Before that invocation, the value of message->status is undefined.
3819  * When the callback is issued, message->status holds either zero (to
3820  * indicate complete success) or a negative error code.  After that
3821  * callback returns, the driver which issued the transfer request may
3822  * deallocate the associated memory; it's no longer in use by any SPI
3823  * core or controller driver code.
3824  *
3825  * Note that although all messages to a spi_device are handled in
3826  * FIFO order, messages may go to different devices in other orders.
3827  * Some device might be higher priority, or have various "hard" access
3828  * time requirements, for example.
3829  *
3830  * On detection of any fault during the transfer, processing of
3831  * the entire message is aborted, and the device is deselected.
3832  * Until returning from the associated message completion callback,
3833  * no other spi_message queued to that device will be processed.
3834  * (This rule applies equally to all the synchronous transfer calls,
3835  * which are wrappers around this core asynchronous primitive.)
3836  *
3837  * Return: zero on success, else a negative error code.
3838  */
3839 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3840 {
3841 	struct spi_controller *ctlr = spi->controller;
3842 	int ret;
3843 	unsigned long flags;
3844 
3845 	ret = __spi_validate(spi, message);
3846 	if (ret != 0)
3847 		return ret;
3848 
3849 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3850 
3851 	ret = __spi_async(spi, message);
3852 
3853 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3854 
3855 	return ret;
3856 
3857 }
3858 
3859 /*-------------------------------------------------------------------------*/
3860 
3861 /*
3862  * Utility methods for SPI protocol drivers, layered on
3863  * top of the core.  Some other utility methods are defined as
3864  * inline functions.
3865  */
3866 
3867 static void spi_complete(void *arg)
3868 {
3869 	complete(arg);
3870 }
3871 
3872 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3873 {
3874 	DECLARE_COMPLETION_ONSTACK(done);
3875 	int status;
3876 	struct spi_controller *ctlr = spi->controller;
3877 	unsigned long flags;
3878 
3879 	status = __spi_validate(spi, message);
3880 	if (status != 0)
3881 		return status;
3882 
3883 	message->complete = spi_complete;
3884 	message->context = &done;
3885 	message->spi = spi;
3886 
3887 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3888 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3889 
3890 	/*
3891 	 * If we're not using the legacy transfer method then we will
3892 	 * try to transfer in the calling context so special case.
3893 	 * This code would be less tricky if we could remove the
3894 	 * support for driver implemented message queues.
3895 	 */
3896 	if (ctlr->transfer == spi_queued_transfer) {
3897 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3898 
3899 		trace_spi_message_submit(message);
3900 
3901 		status = __spi_queued_transfer(spi, message, false);
3902 
3903 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3904 	} else {
3905 		status = spi_async_locked(spi, message);
3906 	}
3907 
3908 	if (status == 0) {
3909 		/* Push out the messages in the calling context if we can */
3910 		if (ctlr->transfer == spi_queued_transfer) {
3911 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3912 						       spi_sync_immediate);
3913 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3914 						       spi_sync_immediate);
3915 			__spi_pump_messages(ctlr, false);
3916 		}
3917 
3918 		wait_for_completion(&done);
3919 		status = message->status;
3920 	}
3921 	message->context = NULL;
3922 	return status;
3923 }
3924 
3925 /**
3926  * spi_sync - blocking/synchronous SPI data transfers
3927  * @spi: device with which data will be exchanged
3928  * @message: describes the data transfers
3929  * Context: can sleep
3930  *
3931  * This call may only be used from a context that may sleep.  The sleep
3932  * is non-interruptible, and has no timeout.  Low-overhead controller
3933  * drivers may DMA directly into and out of the message buffers.
3934  *
3935  * Note that the SPI device's chip select is active during the message,
3936  * and then is normally disabled between messages.  Drivers for some
3937  * frequently-used devices may want to minimize costs of selecting a chip,
3938  * by leaving it selected in anticipation that the next message will go
3939  * to the same chip.  (That may increase power usage.)
3940  *
3941  * Also, the caller is guaranteeing that the memory associated with the
3942  * message will not be freed before this call returns.
3943  *
3944  * Return: zero on success, else a negative error code.
3945  */
3946 int spi_sync(struct spi_device *spi, struct spi_message *message)
3947 {
3948 	int ret;
3949 
3950 	mutex_lock(&spi->controller->bus_lock_mutex);
3951 	ret = __spi_sync(spi, message);
3952 	mutex_unlock(&spi->controller->bus_lock_mutex);
3953 
3954 	return ret;
3955 }
3956 EXPORT_SYMBOL_GPL(spi_sync);
3957 
3958 /**
3959  * spi_sync_locked - version of spi_sync with exclusive bus usage
3960  * @spi: device with which data will be exchanged
3961  * @message: describes the data transfers
3962  * Context: can sleep
3963  *
3964  * This call may only be used from a context that may sleep.  The sleep
3965  * is non-interruptible, and has no timeout.  Low-overhead controller
3966  * drivers may DMA directly into and out of the message buffers.
3967  *
3968  * This call should be used by drivers that require exclusive access to the
3969  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3970  * be released by a spi_bus_unlock call when the exclusive access is over.
3971  *
3972  * Return: zero on success, else a negative error code.
3973  */
3974 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3975 {
3976 	return __spi_sync(spi, message);
3977 }
3978 EXPORT_SYMBOL_GPL(spi_sync_locked);
3979 
3980 /**
3981  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3982  * @ctlr: SPI bus master that should be locked for exclusive bus access
3983  * Context: can sleep
3984  *
3985  * This call may only be used from a context that may sleep.  The sleep
3986  * is non-interruptible, and has no timeout.
3987  *
3988  * This call should be used by drivers that require exclusive access to the
3989  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3990  * exclusive access is over. Data transfer must be done by spi_sync_locked
3991  * and spi_async_locked calls when the SPI bus lock is held.
3992  *
3993  * Return: always zero.
3994  */
3995 int spi_bus_lock(struct spi_controller *ctlr)
3996 {
3997 	unsigned long flags;
3998 
3999 	mutex_lock(&ctlr->bus_lock_mutex);
4000 
4001 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4002 	ctlr->bus_lock_flag = 1;
4003 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4004 
4005 	/* mutex remains locked until spi_bus_unlock is called */
4006 
4007 	return 0;
4008 }
4009 EXPORT_SYMBOL_GPL(spi_bus_lock);
4010 
4011 /**
4012  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4013  * @ctlr: SPI bus master that was locked for exclusive bus access
4014  * Context: can sleep
4015  *
4016  * This call may only be used from a context that may sleep.  The sleep
4017  * is non-interruptible, and has no timeout.
4018  *
4019  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4020  * call.
4021  *
4022  * Return: always zero.
4023  */
4024 int spi_bus_unlock(struct spi_controller *ctlr)
4025 {
4026 	ctlr->bus_lock_flag = 0;
4027 
4028 	mutex_unlock(&ctlr->bus_lock_mutex);
4029 
4030 	return 0;
4031 }
4032 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4033 
4034 /* portable code must never pass more than 32 bytes */
4035 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4036 
4037 static u8	*buf;
4038 
4039 /**
4040  * spi_write_then_read - SPI synchronous write followed by read
4041  * @spi: device with which data will be exchanged
4042  * @txbuf: data to be written (need not be dma-safe)
4043  * @n_tx: size of txbuf, in bytes
4044  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4045  * @n_rx: size of rxbuf, in bytes
4046  * Context: can sleep
4047  *
4048  * This performs a half duplex MicroWire style transaction with the
4049  * device, sending txbuf and then reading rxbuf.  The return value
4050  * is zero for success, else a negative errno status code.
4051  * This call may only be used from a context that may sleep.
4052  *
4053  * Parameters to this routine are always copied using a small buffer.
4054  * Performance-sensitive or bulk transfer code should instead use
4055  * spi_{async,sync}() calls with dma-safe buffers.
4056  *
4057  * Return: zero on success, else a negative error code.
4058  */
4059 int spi_write_then_read(struct spi_device *spi,
4060 		const void *txbuf, unsigned n_tx,
4061 		void *rxbuf, unsigned n_rx)
4062 {
4063 	static DEFINE_MUTEX(lock);
4064 
4065 	int			status;
4066 	struct spi_message	message;
4067 	struct spi_transfer	x[2];
4068 	u8			*local_buf;
4069 
4070 	/*
4071 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4072 	 * copying here, (as a pure convenience thing), but we can
4073 	 * keep heap costs out of the hot path unless someone else is
4074 	 * using the pre-allocated buffer or the transfer is too large.
4075 	 */
4076 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4077 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4078 				    GFP_KERNEL | GFP_DMA);
4079 		if (!local_buf)
4080 			return -ENOMEM;
4081 	} else {
4082 		local_buf = buf;
4083 	}
4084 
4085 	spi_message_init(&message);
4086 	memset(x, 0, sizeof(x));
4087 	if (n_tx) {
4088 		x[0].len = n_tx;
4089 		spi_message_add_tail(&x[0], &message);
4090 	}
4091 	if (n_rx) {
4092 		x[1].len = n_rx;
4093 		spi_message_add_tail(&x[1], &message);
4094 	}
4095 
4096 	memcpy(local_buf, txbuf, n_tx);
4097 	x[0].tx_buf = local_buf;
4098 	x[1].rx_buf = local_buf + n_tx;
4099 
4100 	/* do the i/o */
4101 	status = spi_sync(spi, &message);
4102 	if (status == 0)
4103 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4104 
4105 	if (x[0].tx_buf == buf)
4106 		mutex_unlock(&lock);
4107 	else
4108 		kfree(local_buf);
4109 
4110 	return status;
4111 }
4112 EXPORT_SYMBOL_GPL(spi_write_then_read);
4113 
4114 /*-------------------------------------------------------------------------*/
4115 
4116 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4117 /* must call put_device() when done with returned spi_device device */
4118 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4119 {
4120 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4121 
4122 	return dev ? to_spi_device(dev) : NULL;
4123 }
4124 
4125 /* the spi controllers are not using spi_bus, so we find it with another way */
4126 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4127 {
4128 	struct device *dev;
4129 
4130 	dev = class_find_device_by_of_node(&spi_master_class, node);
4131 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4132 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4133 	if (!dev)
4134 		return NULL;
4135 
4136 	/* reference got in class_find_device */
4137 	return container_of(dev, struct spi_controller, dev);
4138 }
4139 
4140 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4141 			 void *arg)
4142 {
4143 	struct of_reconfig_data *rd = arg;
4144 	struct spi_controller *ctlr;
4145 	struct spi_device *spi;
4146 
4147 	switch (of_reconfig_get_state_change(action, arg)) {
4148 	case OF_RECONFIG_CHANGE_ADD:
4149 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4150 		if (ctlr == NULL)
4151 			return NOTIFY_OK;	/* not for us */
4152 
4153 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4154 			put_device(&ctlr->dev);
4155 			return NOTIFY_OK;
4156 		}
4157 
4158 		spi = of_register_spi_device(ctlr, rd->dn);
4159 		put_device(&ctlr->dev);
4160 
4161 		if (IS_ERR(spi)) {
4162 			pr_err("%s: failed to create for '%pOF'\n",
4163 					__func__, rd->dn);
4164 			of_node_clear_flag(rd->dn, OF_POPULATED);
4165 			return notifier_from_errno(PTR_ERR(spi));
4166 		}
4167 		break;
4168 
4169 	case OF_RECONFIG_CHANGE_REMOVE:
4170 		/* already depopulated? */
4171 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4172 			return NOTIFY_OK;
4173 
4174 		/* find our device by node */
4175 		spi = of_find_spi_device_by_node(rd->dn);
4176 		if (spi == NULL)
4177 			return NOTIFY_OK;	/* no? not meant for us */
4178 
4179 		/* unregister takes one ref away */
4180 		spi_unregister_device(spi);
4181 
4182 		/* and put the reference of the find */
4183 		put_device(&spi->dev);
4184 		break;
4185 	}
4186 
4187 	return NOTIFY_OK;
4188 }
4189 
4190 static struct notifier_block spi_of_notifier = {
4191 	.notifier_call = of_spi_notify,
4192 };
4193 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4194 extern struct notifier_block spi_of_notifier;
4195 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4196 
4197 #if IS_ENABLED(CONFIG_ACPI)
4198 static int spi_acpi_controller_match(struct device *dev, const void *data)
4199 {
4200 	return ACPI_COMPANION(dev->parent) == data;
4201 }
4202 
4203 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4204 {
4205 	struct device *dev;
4206 
4207 	dev = class_find_device(&spi_master_class, NULL, adev,
4208 				spi_acpi_controller_match);
4209 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4210 		dev = class_find_device(&spi_slave_class, NULL, adev,
4211 					spi_acpi_controller_match);
4212 	if (!dev)
4213 		return NULL;
4214 
4215 	return container_of(dev, struct spi_controller, dev);
4216 }
4217 
4218 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4219 {
4220 	struct device *dev;
4221 
4222 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4223 	return to_spi_device(dev);
4224 }
4225 
4226 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4227 			   void *arg)
4228 {
4229 	struct acpi_device *adev = arg;
4230 	struct spi_controller *ctlr;
4231 	struct spi_device *spi;
4232 
4233 	switch (value) {
4234 	case ACPI_RECONFIG_DEVICE_ADD:
4235 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4236 		if (!ctlr)
4237 			break;
4238 
4239 		acpi_register_spi_device(ctlr, adev);
4240 		put_device(&ctlr->dev);
4241 		break;
4242 	case ACPI_RECONFIG_DEVICE_REMOVE:
4243 		if (!acpi_device_enumerated(adev))
4244 			break;
4245 
4246 		spi = acpi_spi_find_device_by_adev(adev);
4247 		if (!spi)
4248 			break;
4249 
4250 		spi_unregister_device(spi);
4251 		put_device(&spi->dev);
4252 		break;
4253 	}
4254 
4255 	return NOTIFY_OK;
4256 }
4257 
4258 static struct notifier_block spi_acpi_notifier = {
4259 	.notifier_call = acpi_spi_notify,
4260 };
4261 #else
4262 extern struct notifier_block spi_acpi_notifier;
4263 #endif
4264 
4265 static int __init spi_init(void)
4266 {
4267 	int	status;
4268 
4269 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4270 	if (!buf) {
4271 		status = -ENOMEM;
4272 		goto err0;
4273 	}
4274 
4275 	status = bus_register(&spi_bus_type);
4276 	if (status < 0)
4277 		goto err1;
4278 
4279 	status = class_register(&spi_master_class);
4280 	if (status < 0)
4281 		goto err2;
4282 
4283 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4284 		status = class_register(&spi_slave_class);
4285 		if (status < 0)
4286 			goto err3;
4287 	}
4288 
4289 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4290 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4291 	if (IS_ENABLED(CONFIG_ACPI))
4292 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4293 
4294 	return 0;
4295 
4296 err3:
4297 	class_unregister(&spi_master_class);
4298 err2:
4299 	bus_unregister(&spi_bus_type);
4300 err1:
4301 	kfree(buf);
4302 	buf = NULL;
4303 err0:
4304 	return status;
4305 }
4306 
4307 /*
4308  * A board_info is normally registered in arch_initcall(),
4309  * but even essential drivers wait till later.
4310  *
4311  * REVISIT only boardinfo really needs static linking. The rest (device and
4312  * driver registration) _could_ be dynamically linked (modular) ... Costs
4313  * include needing to have boardinfo data structures be much more public.
4314  */
4315 postcore_initcall(spi_init);
4316