xref: /openbmc/linux/drivers/spi/spi.c (revision 0edbfea5)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43 
44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi masters may cleanup for released devices */
49 	if (spi->master->cleanup)
50 		spi->master->cleanup(spi);
51 
52 	spi_master_put(spi->master);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 #define SPI_STATISTICS_ATTRS(field, file)				\
71 static ssize_t spi_master_##field##_show(struct device *dev,		\
72 					 struct device_attribute *attr,	\
73 					 char *buf)			\
74 {									\
75 	struct spi_master *master = container_of(dev,			\
76 						 struct spi_master, dev); \
77 	return spi_statistics_##field##_show(&master->statistics, buf);	\
78 }									\
79 static struct device_attribute dev_attr_spi_master_##field = {		\
80 	.attr = { .name = file, .mode = S_IRUGO },			\
81 	.show = spi_master_##field##_show,				\
82 };									\
83 static ssize_t spi_device_##field##_show(struct device *dev,		\
84 					 struct device_attribute *attr,	\
85 					char *buf)			\
86 {									\
87 	struct spi_device *spi = to_spi_device(dev);			\
88 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
89 }									\
90 static struct device_attribute dev_attr_spi_device_##field = {		\
91 	.attr = { .name = file, .mode = S_IRUGO },			\
92 	.show = spi_device_##field##_show,				\
93 }
94 
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97 					    char *buf)			\
98 {									\
99 	unsigned long flags;						\
100 	ssize_t len;							\
101 	spin_lock_irqsave(&stat->lock, flags);				\
102 	len = sprintf(buf, format_string, stat->field);			\
103 	spin_unlock_irqrestore(&stat->lock, flags);			\
104 	return len;							\
105 }									\
106 SPI_STATISTICS_ATTRS(name, file)
107 
108 #define SPI_STATISTICS_SHOW(field, format_string)			\
109 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
110 				 field, format_string)
111 
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116 
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120 
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124 
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
126 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
127 				 "transfer_bytes_histo_" number,	\
128 				 transfer_bytes_histo[index],  "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146 
147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
148 
149 static struct attribute *spi_dev_attrs[] = {
150 	&dev_attr_modalias.attr,
151 	NULL,
152 };
153 
154 static const struct attribute_group spi_dev_group = {
155 	.attrs  = spi_dev_attrs,
156 };
157 
158 static struct attribute *spi_device_statistics_attrs[] = {
159 	&dev_attr_spi_device_messages.attr,
160 	&dev_attr_spi_device_transfers.attr,
161 	&dev_attr_spi_device_errors.attr,
162 	&dev_attr_spi_device_timedout.attr,
163 	&dev_attr_spi_device_spi_sync.attr,
164 	&dev_attr_spi_device_spi_sync_immediate.attr,
165 	&dev_attr_spi_device_spi_async.attr,
166 	&dev_attr_spi_device_bytes.attr,
167 	&dev_attr_spi_device_bytes_rx.attr,
168 	&dev_attr_spi_device_bytes_tx.attr,
169 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
186 	&dev_attr_spi_device_transfers_split_maxsize.attr,
187 	NULL,
188 };
189 
190 static const struct attribute_group spi_device_statistics_group = {
191 	.name  = "statistics",
192 	.attrs  = spi_device_statistics_attrs,
193 };
194 
195 static const struct attribute_group *spi_dev_groups[] = {
196 	&spi_dev_group,
197 	&spi_device_statistics_group,
198 	NULL,
199 };
200 
201 static struct attribute *spi_master_statistics_attrs[] = {
202 	&dev_attr_spi_master_messages.attr,
203 	&dev_attr_spi_master_transfers.attr,
204 	&dev_attr_spi_master_errors.attr,
205 	&dev_attr_spi_master_timedout.attr,
206 	&dev_attr_spi_master_spi_sync.attr,
207 	&dev_attr_spi_master_spi_sync_immediate.attr,
208 	&dev_attr_spi_master_spi_async.attr,
209 	&dev_attr_spi_master_bytes.attr,
210 	&dev_attr_spi_master_bytes_rx.attr,
211 	&dev_attr_spi_master_bytes_tx.attr,
212 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
226 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
227 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
228 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
229 	&dev_attr_spi_master_transfers_split_maxsize.attr,
230 	NULL,
231 };
232 
233 static const struct attribute_group spi_master_statistics_group = {
234 	.name  = "statistics",
235 	.attrs  = spi_master_statistics_attrs,
236 };
237 
238 static const struct attribute_group *spi_master_groups[] = {
239 	&spi_master_statistics_group,
240 	NULL,
241 };
242 
243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
244 				       struct spi_transfer *xfer,
245 				       struct spi_master *master)
246 {
247 	unsigned long flags;
248 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
249 
250 	if (l2len < 0)
251 		l2len = 0;
252 
253 	spin_lock_irqsave(&stats->lock, flags);
254 
255 	stats->transfers++;
256 	stats->transfer_bytes_histo[l2len]++;
257 
258 	stats->bytes += xfer->len;
259 	if ((xfer->tx_buf) &&
260 	    (xfer->tx_buf != master->dummy_tx))
261 		stats->bytes_tx += xfer->len;
262 	if ((xfer->rx_buf) &&
263 	    (xfer->rx_buf != master->dummy_rx))
264 		stats->bytes_rx += xfer->len;
265 
266 	spin_unlock_irqrestore(&stats->lock, flags);
267 }
268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
269 
270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
271  * and the sysfs version makes coldplug work too.
272  */
273 
274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
275 						const struct spi_device *sdev)
276 {
277 	while (id->name[0]) {
278 		if (!strcmp(sdev->modalias, id->name))
279 			return id;
280 		id++;
281 	}
282 	return NULL;
283 }
284 
285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
286 {
287 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
288 
289 	return spi_match_id(sdrv->id_table, sdev);
290 }
291 EXPORT_SYMBOL_GPL(spi_get_device_id);
292 
293 static int spi_match_device(struct device *dev, struct device_driver *drv)
294 {
295 	const struct spi_device	*spi = to_spi_device(dev);
296 	const struct spi_driver	*sdrv = to_spi_driver(drv);
297 
298 	/* Attempt an OF style match */
299 	if (of_driver_match_device(dev, drv))
300 		return 1;
301 
302 	/* Then try ACPI */
303 	if (acpi_driver_match_device(dev, drv))
304 		return 1;
305 
306 	if (sdrv->id_table)
307 		return !!spi_match_id(sdrv->id_table, spi);
308 
309 	return strcmp(spi->modalias, drv->name) == 0;
310 }
311 
312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
313 {
314 	const struct spi_device		*spi = to_spi_device(dev);
315 	int rc;
316 
317 	rc = acpi_device_uevent_modalias(dev, env);
318 	if (rc != -ENODEV)
319 		return rc;
320 
321 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322 	return 0;
323 }
324 
325 struct bus_type spi_bus_type = {
326 	.name		= "spi",
327 	.dev_groups	= spi_dev_groups,
328 	.match		= spi_match_device,
329 	.uevent		= spi_uevent,
330 };
331 EXPORT_SYMBOL_GPL(spi_bus_type);
332 
333 
334 static int spi_drv_probe(struct device *dev)
335 {
336 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
337 	struct spi_device		*spi = to_spi_device(dev);
338 	int ret;
339 
340 	ret = of_clk_set_defaults(dev->of_node, false);
341 	if (ret)
342 		return ret;
343 
344 	if (dev->of_node) {
345 		spi->irq = of_irq_get(dev->of_node, 0);
346 		if (spi->irq == -EPROBE_DEFER)
347 			return -EPROBE_DEFER;
348 		if (spi->irq < 0)
349 			spi->irq = 0;
350 	}
351 
352 	ret = dev_pm_domain_attach(dev, true);
353 	if (ret != -EPROBE_DEFER) {
354 		ret = sdrv->probe(spi);
355 		if (ret)
356 			dev_pm_domain_detach(dev, true);
357 	}
358 
359 	return ret;
360 }
361 
362 static int spi_drv_remove(struct device *dev)
363 {
364 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
365 	int ret;
366 
367 	ret = sdrv->remove(to_spi_device(dev));
368 	dev_pm_domain_detach(dev, true);
369 
370 	return ret;
371 }
372 
373 static void spi_drv_shutdown(struct device *dev)
374 {
375 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
376 
377 	sdrv->shutdown(to_spi_device(dev));
378 }
379 
380 /**
381  * __spi_register_driver - register a SPI driver
382  * @owner: owner module of the driver to register
383  * @sdrv: the driver to register
384  * Context: can sleep
385  *
386  * Return: zero on success, else a negative error code.
387  */
388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
389 {
390 	sdrv->driver.owner = owner;
391 	sdrv->driver.bus = &spi_bus_type;
392 	if (sdrv->probe)
393 		sdrv->driver.probe = spi_drv_probe;
394 	if (sdrv->remove)
395 		sdrv->driver.remove = spi_drv_remove;
396 	if (sdrv->shutdown)
397 		sdrv->driver.shutdown = spi_drv_shutdown;
398 	return driver_register(&sdrv->driver);
399 }
400 EXPORT_SYMBOL_GPL(__spi_register_driver);
401 
402 /*-------------------------------------------------------------------------*/
403 
404 /* SPI devices should normally not be created by SPI device drivers; that
405  * would make them board-specific.  Similarly with SPI master drivers.
406  * Device registration normally goes into like arch/.../mach.../board-YYY.c
407  * with other readonly (flashable) information about mainboard devices.
408  */
409 
410 struct boardinfo {
411 	struct list_head	list;
412 	struct spi_board_info	board_info;
413 };
414 
415 static LIST_HEAD(board_list);
416 static LIST_HEAD(spi_master_list);
417 
418 /*
419  * Used to protect add/del opertion for board_info list and
420  * spi_master list, and their matching process
421  */
422 static DEFINE_MUTEX(board_lock);
423 
424 /**
425  * spi_alloc_device - Allocate a new SPI device
426  * @master: Controller to which device is connected
427  * Context: can sleep
428  *
429  * Allows a driver to allocate and initialize a spi_device without
430  * registering it immediately.  This allows a driver to directly
431  * fill the spi_device with device parameters before calling
432  * spi_add_device() on it.
433  *
434  * Caller is responsible to call spi_add_device() on the returned
435  * spi_device structure to add it to the SPI master.  If the caller
436  * needs to discard the spi_device without adding it, then it should
437  * call spi_dev_put() on it.
438  *
439  * Return: a pointer to the new device, or NULL.
440  */
441 struct spi_device *spi_alloc_device(struct spi_master *master)
442 {
443 	struct spi_device	*spi;
444 
445 	if (!spi_master_get(master))
446 		return NULL;
447 
448 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
449 	if (!spi) {
450 		spi_master_put(master);
451 		return NULL;
452 	}
453 
454 	spi->master = master;
455 	spi->dev.parent = &master->dev;
456 	spi->dev.bus = &spi_bus_type;
457 	spi->dev.release = spidev_release;
458 	spi->cs_gpio = -ENOENT;
459 
460 	spin_lock_init(&spi->statistics.lock);
461 
462 	device_initialize(&spi->dev);
463 	return spi;
464 }
465 EXPORT_SYMBOL_GPL(spi_alloc_device);
466 
467 static void spi_dev_set_name(struct spi_device *spi)
468 {
469 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
470 
471 	if (adev) {
472 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
473 		return;
474 	}
475 
476 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
477 		     spi->chip_select);
478 }
479 
480 static int spi_dev_check(struct device *dev, void *data)
481 {
482 	struct spi_device *spi = to_spi_device(dev);
483 	struct spi_device *new_spi = data;
484 
485 	if (spi->master == new_spi->master &&
486 	    spi->chip_select == new_spi->chip_select)
487 		return -EBUSY;
488 	return 0;
489 }
490 
491 /**
492  * spi_add_device - Add spi_device allocated with spi_alloc_device
493  * @spi: spi_device to register
494  *
495  * Companion function to spi_alloc_device.  Devices allocated with
496  * spi_alloc_device can be added onto the spi bus with this function.
497  *
498  * Return: 0 on success; negative errno on failure
499  */
500 int spi_add_device(struct spi_device *spi)
501 {
502 	static DEFINE_MUTEX(spi_add_lock);
503 	struct spi_master *master = spi->master;
504 	struct device *dev = master->dev.parent;
505 	int status;
506 
507 	/* Chipselects are numbered 0..max; validate. */
508 	if (spi->chip_select >= master->num_chipselect) {
509 		dev_err(dev, "cs%d >= max %d\n",
510 			spi->chip_select,
511 			master->num_chipselect);
512 		return -EINVAL;
513 	}
514 
515 	/* Set the bus ID string */
516 	spi_dev_set_name(spi);
517 
518 	/* We need to make sure there's no other device with this
519 	 * chipselect **BEFORE** we call setup(), else we'll trash
520 	 * its configuration.  Lock against concurrent add() calls.
521 	 */
522 	mutex_lock(&spi_add_lock);
523 
524 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
525 	if (status) {
526 		dev_err(dev, "chipselect %d already in use\n",
527 				spi->chip_select);
528 		goto done;
529 	}
530 
531 	if (master->cs_gpios)
532 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
533 
534 	/* Drivers may modify this initial i/o setup, but will
535 	 * normally rely on the device being setup.  Devices
536 	 * using SPI_CS_HIGH can't coexist well otherwise...
537 	 */
538 	status = spi_setup(spi);
539 	if (status < 0) {
540 		dev_err(dev, "can't setup %s, status %d\n",
541 				dev_name(&spi->dev), status);
542 		goto done;
543 	}
544 
545 	/* Device may be bound to an active driver when this returns */
546 	status = device_add(&spi->dev);
547 	if (status < 0)
548 		dev_err(dev, "can't add %s, status %d\n",
549 				dev_name(&spi->dev), status);
550 	else
551 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
552 
553 done:
554 	mutex_unlock(&spi_add_lock);
555 	return status;
556 }
557 EXPORT_SYMBOL_GPL(spi_add_device);
558 
559 /**
560  * spi_new_device - instantiate one new SPI device
561  * @master: Controller to which device is connected
562  * @chip: Describes the SPI device
563  * Context: can sleep
564  *
565  * On typical mainboards, this is purely internal; and it's not needed
566  * after board init creates the hard-wired devices.  Some development
567  * platforms may not be able to use spi_register_board_info though, and
568  * this is exported so that for example a USB or parport based adapter
569  * driver could add devices (which it would learn about out-of-band).
570  *
571  * Return: the new device, or NULL.
572  */
573 struct spi_device *spi_new_device(struct spi_master *master,
574 				  struct spi_board_info *chip)
575 {
576 	struct spi_device	*proxy;
577 	int			status;
578 
579 	/* NOTE:  caller did any chip->bus_num checks necessary.
580 	 *
581 	 * Also, unless we change the return value convention to use
582 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
583 	 * suggests syslogged diagnostics are best here (ugh).
584 	 */
585 
586 	proxy = spi_alloc_device(master);
587 	if (!proxy)
588 		return NULL;
589 
590 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
591 
592 	proxy->chip_select = chip->chip_select;
593 	proxy->max_speed_hz = chip->max_speed_hz;
594 	proxy->mode = chip->mode;
595 	proxy->irq = chip->irq;
596 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
597 	proxy->dev.platform_data = (void *) chip->platform_data;
598 	proxy->controller_data = chip->controller_data;
599 	proxy->controller_state = NULL;
600 
601 	status = spi_add_device(proxy);
602 	if (status < 0) {
603 		spi_dev_put(proxy);
604 		return NULL;
605 	}
606 
607 	return proxy;
608 }
609 EXPORT_SYMBOL_GPL(spi_new_device);
610 
611 /**
612  * spi_unregister_device - unregister a single SPI device
613  * @spi: spi_device to unregister
614  *
615  * Start making the passed SPI device vanish. Normally this would be handled
616  * by spi_unregister_master().
617  */
618 void spi_unregister_device(struct spi_device *spi)
619 {
620 	if (!spi)
621 		return;
622 
623 	if (spi->dev.of_node)
624 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
625 	device_unregister(&spi->dev);
626 }
627 EXPORT_SYMBOL_GPL(spi_unregister_device);
628 
629 static void spi_match_master_to_boardinfo(struct spi_master *master,
630 				struct spi_board_info *bi)
631 {
632 	struct spi_device *dev;
633 
634 	if (master->bus_num != bi->bus_num)
635 		return;
636 
637 	dev = spi_new_device(master, bi);
638 	if (!dev)
639 		dev_err(master->dev.parent, "can't create new device for %s\n",
640 			bi->modalias);
641 }
642 
643 /**
644  * spi_register_board_info - register SPI devices for a given board
645  * @info: array of chip descriptors
646  * @n: how many descriptors are provided
647  * Context: can sleep
648  *
649  * Board-specific early init code calls this (probably during arch_initcall)
650  * with segments of the SPI device table.  Any device nodes are created later,
651  * after the relevant parent SPI controller (bus_num) is defined.  We keep
652  * this table of devices forever, so that reloading a controller driver will
653  * not make Linux forget about these hard-wired devices.
654  *
655  * Other code can also call this, e.g. a particular add-on board might provide
656  * SPI devices through its expansion connector, so code initializing that board
657  * would naturally declare its SPI devices.
658  *
659  * The board info passed can safely be __initdata ... but be careful of
660  * any embedded pointers (platform_data, etc), they're copied as-is.
661  *
662  * Return: zero on success, else a negative error code.
663  */
664 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
665 {
666 	struct boardinfo *bi;
667 	int i;
668 
669 	if (!n)
670 		return -EINVAL;
671 
672 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
673 	if (!bi)
674 		return -ENOMEM;
675 
676 	for (i = 0; i < n; i++, bi++, info++) {
677 		struct spi_master *master;
678 
679 		memcpy(&bi->board_info, info, sizeof(*info));
680 		mutex_lock(&board_lock);
681 		list_add_tail(&bi->list, &board_list);
682 		list_for_each_entry(master, &spi_master_list, list)
683 			spi_match_master_to_boardinfo(master, &bi->board_info);
684 		mutex_unlock(&board_lock);
685 	}
686 
687 	return 0;
688 }
689 
690 /*-------------------------------------------------------------------------*/
691 
692 static void spi_set_cs(struct spi_device *spi, bool enable)
693 {
694 	if (spi->mode & SPI_CS_HIGH)
695 		enable = !enable;
696 
697 	if (gpio_is_valid(spi->cs_gpio))
698 		gpio_set_value(spi->cs_gpio, !enable);
699 	else if (spi->master->set_cs)
700 		spi->master->set_cs(spi, !enable);
701 }
702 
703 #ifdef CONFIG_HAS_DMA
704 static int spi_map_buf(struct spi_master *master, struct device *dev,
705 		       struct sg_table *sgt, void *buf, size_t len,
706 		       enum dma_data_direction dir)
707 {
708 	const bool vmalloced_buf = is_vmalloc_addr(buf);
709 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
710 	int desc_len;
711 	int sgs;
712 	struct page *vm_page;
713 	void *sg_buf;
714 	size_t min;
715 	int i, ret;
716 
717 	if (vmalloced_buf) {
718 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
719 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
720 	} else if (virt_addr_valid(buf)) {
721 		desc_len = min_t(int, max_seg_size, master->max_dma_len);
722 		sgs = DIV_ROUND_UP(len, desc_len);
723 	} else {
724 		return -EINVAL;
725 	}
726 
727 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
728 	if (ret != 0)
729 		return ret;
730 
731 	for (i = 0; i < sgs; i++) {
732 
733 		if (vmalloced_buf) {
734 			min = min_t(size_t,
735 				    len, desc_len - offset_in_page(buf));
736 			vm_page = vmalloc_to_page(buf);
737 			if (!vm_page) {
738 				sg_free_table(sgt);
739 				return -ENOMEM;
740 			}
741 			sg_set_page(&sgt->sgl[i], vm_page,
742 				    min, offset_in_page(buf));
743 		} else {
744 			min = min_t(size_t, len, desc_len);
745 			sg_buf = buf;
746 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
747 		}
748 
749 		buf += min;
750 		len -= min;
751 	}
752 
753 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
754 	if (!ret)
755 		ret = -ENOMEM;
756 	if (ret < 0) {
757 		sg_free_table(sgt);
758 		return ret;
759 	}
760 
761 	sgt->nents = ret;
762 
763 	return 0;
764 }
765 
766 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
767 			  struct sg_table *sgt, enum dma_data_direction dir)
768 {
769 	if (sgt->orig_nents) {
770 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
771 		sg_free_table(sgt);
772 	}
773 }
774 
775 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
776 {
777 	struct device *tx_dev, *rx_dev;
778 	struct spi_transfer *xfer;
779 	int ret;
780 
781 	if (!master->can_dma)
782 		return 0;
783 
784 	if (master->dma_tx)
785 		tx_dev = master->dma_tx->device->dev;
786 	else
787 		tx_dev = &master->dev;
788 
789 	if (master->dma_rx)
790 		rx_dev = master->dma_rx->device->dev;
791 	else
792 		rx_dev = &master->dev;
793 
794 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
795 		if (!master->can_dma(master, msg->spi, xfer))
796 			continue;
797 
798 		if (xfer->tx_buf != NULL) {
799 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
800 					  (void *)xfer->tx_buf, xfer->len,
801 					  DMA_TO_DEVICE);
802 			if (ret != 0)
803 				return ret;
804 		}
805 
806 		if (xfer->rx_buf != NULL) {
807 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
808 					  xfer->rx_buf, xfer->len,
809 					  DMA_FROM_DEVICE);
810 			if (ret != 0) {
811 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
812 					      DMA_TO_DEVICE);
813 				return ret;
814 			}
815 		}
816 	}
817 
818 	master->cur_msg_mapped = true;
819 
820 	return 0;
821 }
822 
823 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
824 {
825 	struct spi_transfer *xfer;
826 	struct device *tx_dev, *rx_dev;
827 
828 	if (!master->cur_msg_mapped || !master->can_dma)
829 		return 0;
830 
831 	if (master->dma_tx)
832 		tx_dev = master->dma_tx->device->dev;
833 	else
834 		tx_dev = &master->dev;
835 
836 	if (master->dma_rx)
837 		rx_dev = master->dma_rx->device->dev;
838 	else
839 		rx_dev = &master->dev;
840 
841 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
842 		if (!master->can_dma(master, msg->spi, xfer))
843 			continue;
844 
845 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
846 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
847 	}
848 
849 	return 0;
850 }
851 #else /* !CONFIG_HAS_DMA */
852 static inline int __spi_map_msg(struct spi_master *master,
853 				struct spi_message *msg)
854 {
855 	return 0;
856 }
857 
858 static inline int __spi_unmap_msg(struct spi_master *master,
859 				  struct spi_message *msg)
860 {
861 	return 0;
862 }
863 #endif /* !CONFIG_HAS_DMA */
864 
865 static inline int spi_unmap_msg(struct spi_master *master,
866 				struct spi_message *msg)
867 {
868 	struct spi_transfer *xfer;
869 
870 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
871 		/*
872 		 * Restore the original value of tx_buf or rx_buf if they are
873 		 * NULL.
874 		 */
875 		if (xfer->tx_buf == master->dummy_tx)
876 			xfer->tx_buf = NULL;
877 		if (xfer->rx_buf == master->dummy_rx)
878 			xfer->rx_buf = NULL;
879 	}
880 
881 	return __spi_unmap_msg(master, msg);
882 }
883 
884 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
885 {
886 	struct spi_transfer *xfer;
887 	void *tmp;
888 	unsigned int max_tx, max_rx;
889 
890 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
891 		max_tx = 0;
892 		max_rx = 0;
893 
894 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
895 			if ((master->flags & SPI_MASTER_MUST_TX) &&
896 			    !xfer->tx_buf)
897 				max_tx = max(xfer->len, max_tx);
898 			if ((master->flags & SPI_MASTER_MUST_RX) &&
899 			    !xfer->rx_buf)
900 				max_rx = max(xfer->len, max_rx);
901 		}
902 
903 		if (max_tx) {
904 			tmp = krealloc(master->dummy_tx, max_tx,
905 				       GFP_KERNEL | GFP_DMA);
906 			if (!tmp)
907 				return -ENOMEM;
908 			master->dummy_tx = tmp;
909 			memset(tmp, 0, max_tx);
910 		}
911 
912 		if (max_rx) {
913 			tmp = krealloc(master->dummy_rx, max_rx,
914 				       GFP_KERNEL | GFP_DMA);
915 			if (!tmp)
916 				return -ENOMEM;
917 			master->dummy_rx = tmp;
918 		}
919 
920 		if (max_tx || max_rx) {
921 			list_for_each_entry(xfer, &msg->transfers,
922 					    transfer_list) {
923 				if (!xfer->tx_buf)
924 					xfer->tx_buf = master->dummy_tx;
925 				if (!xfer->rx_buf)
926 					xfer->rx_buf = master->dummy_rx;
927 			}
928 		}
929 	}
930 
931 	return __spi_map_msg(master, msg);
932 }
933 
934 /*
935  * spi_transfer_one_message - Default implementation of transfer_one_message()
936  *
937  * This is a standard implementation of transfer_one_message() for
938  * drivers which implement a transfer_one() operation.  It provides
939  * standard handling of delays and chip select management.
940  */
941 static int spi_transfer_one_message(struct spi_master *master,
942 				    struct spi_message *msg)
943 {
944 	struct spi_transfer *xfer;
945 	bool keep_cs = false;
946 	int ret = 0;
947 	unsigned long ms = 1;
948 	struct spi_statistics *statm = &master->statistics;
949 	struct spi_statistics *stats = &msg->spi->statistics;
950 
951 	spi_set_cs(msg->spi, true);
952 
953 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
954 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
955 
956 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
957 		trace_spi_transfer_start(msg, xfer);
958 
959 		spi_statistics_add_transfer_stats(statm, xfer, master);
960 		spi_statistics_add_transfer_stats(stats, xfer, master);
961 
962 		if (xfer->tx_buf || xfer->rx_buf) {
963 			reinit_completion(&master->xfer_completion);
964 
965 			ret = master->transfer_one(master, msg->spi, xfer);
966 			if (ret < 0) {
967 				SPI_STATISTICS_INCREMENT_FIELD(statm,
968 							       errors);
969 				SPI_STATISTICS_INCREMENT_FIELD(stats,
970 							       errors);
971 				dev_err(&msg->spi->dev,
972 					"SPI transfer failed: %d\n", ret);
973 				goto out;
974 			}
975 
976 			if (ret > 0) {
977 				ret = 0;
978 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
979 				ms += ms + 100; /* some tolerance */
980 
981 				ms = wait_for_completion_timeout(&master->xfer_completion,
982 								 msecs_to_jiffies(ms));
983 			}
984 
985 			if (ms == 0) {
986 				SPI_STATISTICS_INCREMENT_FIELD(statm,
987 							       timedout);
988 				SPI_STATISTICS_INCREMENT_FIELD(stats,
989 							       timedout);
990 				dev_err(&msg->spi->dev,
991 					"SPI transfer timed out\n");
992 				msg->status = -ETIMEDOUT;
993 			}
994 		} else {
995 			if (xfer->len)
996 				dev_err(&msg->spi->dev,
997 					"Bufferless transfer has length %u\n",
998 					xfer->len);
999 		}
1000 
1001 		trace_spi_transfer_stop(msg, xfer);
1002 
1003 		if (msg->status != -EINPROGRESS)
1004 			goto out;
1005 
1006 		if (xfer->delay_usecs)
1007 			udelay(xfer->delay_usecs);
1008 
1009 		if (xfer->cs_change) {
1010 			if (list_is_last(&xfer->transfer_list,
1011 					 &msg->transfers)) {
1012 				keep_cs = true;
1013 			} else {
1014 				spi_set_cs(msg->spi, false);
1015 				udelay(10);
1016 				spi_set_cs(msg->spi, true);
1017 			}
1018 		}
1019 
1020 		msg->actual_length += xfer->len;
1021 	}
1022 
1023 out:
1024 	if (ret != 0 || !keep_cs)
1025 		spi_set_cs(msg->spi, false);
1026 
1027 	if (msg->status == -EINPROGRESS)
1028 		msg->status = ret;
1029 
1030 	if (msg->status && master->handle_err)
1031 		master->handle_err(master, msg);
1032 
1033 	spi_res_release(master, msg);
1034 
1035 	spi_finalize_current_message(master);
1036 
1037 	return ret;
1038 }
1039 
1040 /**
1041  * spi_finalize_current_transfer - report completion of a transfer
1042  * @master: the master reporting completion
1043  *
1044  * Called by SPI drivers using the core transfer_one_message()
1045  * implementation to notify it that the current interrupt driven
1046  * transfer has finished and the next one may be scheduled.
1047  */
1048 void spi_finalize_current_transfer(struct spi_master *master)
1049 {
1050 	complete(&master->xfer_completion);
1051 }
1052 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1053 
1054 /**
1055  * __spi_pump_messages - function which processes spi message queue
1056  * @master: master to process queue for
1057  * @in_kthread: true if we are in the context of the message pump thread
1058  * @bus_locked: true if the bus mutex is held when calling this function
1059  *
1060  * This function checks if there is any spi message in the queue that
1061  * needs processing and if so call out to the driver to initialize hardware
1062  * and transfer each message.
1063  *
1064  * Note that it is called both from the kthread itself and also from
1065  * inside spi_sync(); the queue extraction handling at the top of the
1066  * function should deal with this safely.
1067  */
1068 static void __spi_pump_messages(struct spi_master *master, bool in_kthread,
1069 				bool bus_locked)
1070 {
1071 	unsigned long flags;
1072 	bool was_busy = false;
1073 	int ret;
1074 
1075 	/* Lock queue */
1076 	spin_lock_irqsave(&master->queue_lock, flags);
1077 
1078 	/* Make sure we are not already running a message */
1079 	if (master->cur_msg) {
1080 		spin_unlock_irqrestore(&master->queue_lock, flags);
1081 		return;
1082 	}
1083 
1084 	/* If another context is idling the device then defer */
1085 	if (master->idling) {
1086 		queue_kthread_work(&master->kworker, &master->pump_messages);
1087 		spin_unlock_irqrestore(&master->queue_lock, flags);
1088 		return;
1089 	}
1090 
1091 	/* Check if the queue is idle */
1092 	if (list_empty(&master->queue) || !master->running) {
1093 		if (!master->busy) {
1094 			spin_unlock_irqrestore(&master->queue_lock, flags);
1095 			return;
1096 		}
1097 
1098 		/* Only do teardown in the thread */
1099 		if (!in_kthread) {
1100 			queue_kthread_work(&master->kworker,
1101 					   &master->pump_messages);
1102 			spin_unlock_irqrestore(&master->queue_lock, flags);
1103 			return;
1104 		}
1105 
1106 		master->busy = false;
1107 		master->idling = true;
1108 		spin_unlock_irqrestore(&master->queue_lock, flags);
1109 
1110 		kfree(master->dummy_rx);
1111 		master->dummy_rx = NULL;
1112 		kfree(master->dummy_tx);
1113 		master->dummy_tx = NULL;
1114 		if (master->unprepare_transfer_hardware &&
1115 		    master->unprepare_transfer_hardware(master))
1116 			dev_err(&master->dev,
1117 				"failed to unprepare transfer hardware\n");
1118 		if (master->auto_runtime_pm) {
1119 			pm_runtime_mark_last_busy(master->dev.parent);
1120 			pm_runtime_put_autosuspend(master->dev.parent);
1121 		}
1122 		trace_spi_master_idle(master);
1123 
1124 		spin_lock_irqsave(&master->queue_lock, flags);
1125 		master->idling = false;
1126 		spin_unlock_irqrestore(&master->queue_lock, flags);
1127 		return;
1128 	}
1129 
1130 	/* Extract head of queue */
1131 	master->cur_msg =
1132 		list_first_entry(&master->queue, struct spi_message, queue);
1133 
1134 	list_del_init(&master->cur_msg->queue);
1135 	if (master->busy)
1136 		was_busy = true;
1137 	else
1138 		master->busy = true;
1139 	spin_unlock_irqrestore(&master->queue_lock, flags);
1140 
1141 	if (!was_busy && master->auto_runtime_pm) {
1142 		ret = pm_runtime_get_sync(master->dev.parent);
1143 		if (ret < 0) {
1144 			dev_err(&master->dev, "Failed to power device: %d\n",
1145 				ret);
1146 			return;
1147 		}
1148 	}
1149 
1150 	if (!was_busy)
1151 		trace_spi_master_busy(master);
1152 
1153 	if (!was_busy && master->prepare_transfer_hardware) {
1154 		ret = master->prepare_transfer_hardware(master);
1155 		if (ret) {
1156 			dev_err(&master->dev,
1157 				"failed to prepare transfer hardware\n");
1158 
1159 			if (master->auto_runtime_pm)
1160 				pm_runtime_put(master->dev.parent);
1161 			return;
1162 		}
1163 	}
1164 
1165 	if (!bus_locked)
1166 		mutex_lock(&master->bus_lock_mutex);
1167 
1168 	trace_spi_message_start(master->cur_msg);
1169 
1170 	if (master->prepare_message) {
1171 		ret = master->prepare_message(master, master->cur_msg);
1172 		if (ret) {
1173 			dev_err(&master->dev,
1174 				"failed to prepare message: %d\n", ret);
1175 			master->cur_msg->status = ret;
1176 			spi_finalize_current_message(master);
1177 			goto out;
1178 		}
1179 		master->cur_msg_prepared = true;
1180 	}
1181 
1182 	ret = spi_map_msg(master, master->cur_msg);
1183 	if (ret) {
1184 		master->cur_msg->status = ret;
1185 		spi_finalize_current_message(master);
1186 		goto out;
1187 	}
1188 
1189 	ret = master->transfer_one_message(master, master->cur_msg);
1190 	if (ret) {
1191 		dev_err(&master->dev,
1192 			"failed to transfer one message from queue\n");
1193 		goto out;
1194 	}
1195 
1196 out:
1197 	if (!bus_locked)
1198 		mutex_unlock(&master->bus_lock_mutex);
1199 
1200 	/* Prod the scheduler in case transfer_one() was busy waiting */
1201 	if (!ret)
1202 		cond_resched();
1203 }
1204 
1205 /**
1206  * spi_pump_messages - kthread work function which processes spi message queue
1207  * @work: pointer to kthread work struct contained in the master struct
1208  */
1209 static void spi_pump_messages(struct kthread_work *work)
1210 {
1211 	struct spi_master *master =
1212 		container_of(work, struct spi_master, pump_messages);
1213 
1214 	__spi_pump_messages(master, true, master->bus_lock_flag);
1215 }
1216 
1217 static int spi_init_queue(struct spi_master *master)
1218 {
1219 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1220 
1221 	master->running = false;
1222 	master->busy = false;
1223 
1224 	init_kthread_worker(&master->kworker);
1225 	master->kworker_task = kthread_run(kthread_worker_fn,
1226 					   &master->kworker, "%s",
1227 					   dev_name(&master->dev));
1228 	if (IS_ERR(master->kworker_task)) {
1229 		dev_err(&master->dev, "failed to create message pump task\n");
1230 		return PTR_ERR(master->kworker_task);
1231 	}
1232 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1233 
1234 	/*
1235 	 * Master config will indicate if this controller should run the
1236 	 * message pump with high (realtime) priority to reduce the transfer
1237 	 * latency on the bus by minimising the delay between a transfer
1238 	 * request and the scheduling of the message pump thread. Without this
1239 	 * setting the message pump thread will remain at default priority.
1240 	 */
1241 	if (master->rt) {
1242 		dev_info(&master->dev,
1243 			"will run message pump with realtime priority\n");
1244 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 /**
1251  * spi_get_next_queued_message() - called by driver to check for queued
1252  * messages
1253  * @master: the master to check for queued messages
1254  *
1255  * If there are more messages in the queue, the next message is returned from
1256  * this call.
1257  *
1258  * Return: the next message in the queue, else NULL if the queue is empty.
1259  */
1260 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1261 {
1262 	struct spi_message *next;
1263 	unsigned long flags;
1264 
1265 	/* get a pointer to the next message, if any */
1266 	spin_lock_irqsave(&master->queue_lock, flags);
1267 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1268 					queue);
1269 	spin_unlock_irqrestore(&master->queue_lock, flags);
1270 
1271 	return next;
1272 }
1273 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1274 
1275 /**
1276  * spi_finalize_current_message() - the current message is complete
1277  * @master: the master to return the message to
1278  *
1279  * Called by the driver to notify the core that the message in the front of the
1280  * queue is complete and can be removed from the queue.
1281  */
1282 void spi_finalize_current_message(struct spi_master *master)
1283 {
1284 	struct spi_message *mesg;
1285 	unsigned long flags;
1286 	int ret;
1287 
1288 	spin_lock_irqsave(&master->queue_lock, flags);
1289 	mesg = master->cur_msg;
1290 	spin_unlock_irqrestore(&master->queue_lock, flags);
1291 
1292 	spi_unmap_msg(master, mesg);
1293 
1294 	if (master->cur_msg_prepared && master->unprepare_message) {
1295 		ret = master->unprepare_message(master, mesg);
1296 		if (ret) {
1297 			dev_err(&master->dev,
1298 				"failed to unprepare message: %d\n", ret);
1299 		}
1300 	}
1301 
1302 	spin_lock_irqsave(&master->queue_lock, flags);
1303 	master->cur_msg = NULL;
1304 	master->cur_msg_prepared = false;
1305 	queue_kthread_work(&master->kworker, &master->pump_messages);
1306 	spin_unlock_irqrestore(&master->queue_lock, flags);
1307 
1308 	trace_spi_message_done(mesg);
1309 
1310 	mesg->state = NULL;
1311 	if (mesg->complete)
1312 		mesg->complete(mesg->context);
1313 }
1314 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1315 
1316 static int spi_start_queue(struct spi_master *master)
1317 {
1318 	unsigned long flags;
1319 
1320 	spin_lock_irqsave(&master->queue_lock, flags);
1321 
1322 	if (master->running || master->busy) {
1323 		spin_unlock_irqrestore(&master->queue_lock, flags);
1324 		return -EBUSY;
1325 	}
1326 
1327 	master->running = true;
1328 	master->cur_msg = NULL;
1329 	spin_unlock_irqrestore(&master->queue_lock, flags);
1330 
1331 	queue_kthread_work(&master->kworker, &master->pump_messages);
1332 
1333 	return 0;
1334 }
1335 
1336 static int spi_stop_queue(struct spi_master *master)
1337 {
1338 	unsigned long flags;
1339 	unsigned limit = 500;
1340 	int ret = 0;
1341 
1342 	spin_lock_irqsave(&master->queue_lock, flags);
1343 
1344 	/*
1345 	 * This is a bit lame, but is optimized for the common execution path.
1346 	 * A wait_queue on the master->busy could be used, but then the common
1347 	 * execution path (pump_messages) would be required to call wake_up or
1348 	 * friends on every SPI message. Do this instead.
1349 	 */
1350 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1351 		spin_unlock_irqrestore(&master->queue_lock, flags);
1352 		usleep_range(10000, 11000);
1353 		spin_lock_irqsave(&master->queue_lock, flags);
1354 	}
1355 
1356 	if (!list_empty(&master->queue) || master->busy)
1357 		ret = -EBUSY;
1358 	else
1359 		master->running = false;
1360 
1361 	spin_unlock_irqrestore(&master->queue_lock, flags);
1362 
1363 	if (ret) {
1364 		dev_warn(&master->dev,
1365 			 "could not stop message queue\n");
1366 		return ret;
1367 	}
1368 	return ret;
1369 }
1370 
1371 static int spi_destroy_queue(struct spi_master *master)
1372 {
1373 	int ret;
1374 
1375 	ret = spi_stop_queue(master);
1376 
1377 	/*
1378 	 * flush_kthread_worker will block until all work is done.
1379 	 * If the reason that stop_queue timed out is that the work will never
1380 	 * finish, then it does no good to call flush/stop thread, so
1381 	 * return anyway.
1382 	 */
1383 	if (ret) {
1384 		dev_err(&master->dev, "problem destroying queue\n");
1385 		return ret;
1386 	}
1387 
1388 	flush_kthread_worker(&master->kworker);
1389 	kthread_stop(master->kworker_task);
1390 
1391 	return 0;
1392 }
1393 
1394 static int __spi_queued_transfer(struct spi_device *spi,
1395 				 struct spi_message *msg,
1396 				 bool need_pump)
1397 {
1398 	struct spi_master *master = spi->master;
1399 	unsigned long flags;
1400 
1401 	spin_lock_irqsave(&master->queue_lock, flags);
1402 
1403 	if (!master->running) {
1404 		spin_unlock_irqrestore(&master->queue_lock, flags);
1405 		return -ESHUTDOWN;
1406 	}
1407 	msg->actual_length = 0;
1408 	msg->status = -EINPROGRESS;
1409 
1410 	list_add_tail(&msg->queue, &master->queue);
1411 	if (!master->busy && need_pump)
1412 		queue_kthread_work(&master->kworker, &master->pump_messages);
1413 
1414 	spin_unlock_irqrestore(&master->queue_lock, flags);
1415 	return 0;
1416 }
1417 
1418 /**
1419  * spi_queued_transfer - transfer function for queued transfers
1420  * @spi: spi device which is requesting transfer
1421  * @msg: spi message which is to handled is queued to driver queue
1422  *
1423  * Return: zero on success, else a negative error code.
1424  */
1425 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1426 {
1427 	return __spi_queued_transfer(spi, msg, true);
1428 }
1429 
1430 static int spi_master_initialize_queue(struct spi_master *master)
1431 {
1432 	int ret;
1433 
1434 	master->transfer = spi_queued_transfer;
1435 	if (!master->transfer_one_message)
1436 		master->transfer_one_message = spi_transfer_one_message;
1437 
1438 	/* Initialize and start queue */
1439 	ret = spi_init_queue(master);
1440 	if (ret) {
1441 		dev_err(&master->dev, "problem initializing queue\n");
1442 		goto err_init_queue;
1443 	}
1444 	master->queued = true;
1445 	ret = spi_start_queue(master);
1446 	if (ret) {
1447 		dev_err(&master->dev, "problem starting queue\n");
1448 		goto err_start_queue;
1449 	}
1450 
1451 	return 0;
1452 
1453 err_start_queue:
1454 	spi_destroy_queue(master);
1455 err_init_queue:
1456 	return ret;
1457 }
1458 
1459 /*-------------------------------------------------------------------------*/
1460 
1461 #if defined(CONFIG_OF)
1462 static struct spi_device *
1463 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1464 {
1465 	struct spi_device *spi;
1466 	int rc;
1467 	u32 value;
1468 
1469 	/* Alloc an spi_device */
1470 	spi = spi_alloc_device(master);
1471 	if (!spi) {
1472 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1473 			nc->full_name);
1474 		rc = -ENOMEM;
1475 		goto err_out;
1476 	}
1477 
1478 	/* Select device driver */
1479 	rc = of_modalias_node(nc, spi->modalias,
1480 				sizeof(spi->modalias));
1481 	if (rc < 0) {
1482 		dev_err(&master->dev, "cannot find modalias for %s\n",
1483 			nc->full_name);
1484 		goto err_out;
1485 	}
1486 
1487 	/* Device address */
1488 	rc = of_property_read_u32(nc, "reg", &value);
1489 	if (rc) {
1490 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1491 			nc->full_name, rc);
1492 		goto err_out;
1493 	}
1494 	spi->chip_select = value;
1495 
1496 	/* Mode (clock phase/polarity/etc.) */
1497 	if (of_find_property(nc, "spi-cpha", NULL))
1498 		spi->mode |= SPI_CPHA;
1499 	if (of_find_property(nc, "spi-cpol", NULL))
1500 		spi->mode |= SPI_CPOL;
1501 	if (of_find_property(nc, "spi-cs-high", NULL))
1502 		spi->mode |= SPI_CS_HIGH;
1503 	if (of_find_property(nc, "spi-3wire", NULL))
1504 		spi->mode |= SPI_3WIRE;
1505 	if (of_find_property(nc, "spi-lsb-first", NULL))
1506 		spi->mode |= SPI_LSB_FIRST;
1507 
1508 	/* Device DUAL/QUAD mode */
1509 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1510 		switch (value) {
1511 		case 1:
1512 			break;
1513 		case 2:
1514 			spi->mode |= SPI_TX_DUAL;
1515 			break;
1516 		case 4:
1517 			spi->mode |= SPI_TX_QUAD;
1518 			break;
1519 		default:
1520 			dev_warn(&master->dev,
1521 				"spi-tx-bus-width %d not supported\n",
1522 				value);
1523 			break;
1524 		}
1525 	}
1526 
1527 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1528 		switch (value) {
1529 		case 1:
1530 			break;
1531 		case 2:
1532 			spi->mode |= SPI_RX_DUAL;
1533 			break;
1534 		case 4:
1535 			spi->mode |= SPI_RX_QUAD;
1536 			break;
1537 		default:
1538 			dev_warn(&master->dev,
1539 				"spi-rx-bus-width %d not supported\n",
1540 				value);
1541 			break;
1542 		}
1543 	}
1544 
1545 	/* Device speed */
1546 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1547 	if (rc) {
1548 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1549 			nc->full_name, rc);
1550 		goto err_out;
1551 	}
1552 	spi->max_speed_hz = value;
1553 
1554 	/* Store a pointer to the node in the device structure */
1555 	of_node_get(nc);
1556 	spi->dev.of_node = nc;
1557 
1558 	/* Register the new device */
1559 	rc = spi_add_device(spi);
1560 	if (rc) {
1561 		dev_err(&master->dev, "spi_device register error %s\n",
1562 			nc->full_name);
1563 		goto err_out;
1564 	}
1565 
1566 	return spi;
1567 
1568 err_out:
1569 	spi_dev_put(spi);
1570 	return ERR_PTR(rc);
1571 }
1572 
1573 /**
1574  * of_register_spi_devices() - Register child devices onto the SPI bus
1575  * @master:	Pointer to spi_master device
1576  *
1577  * Registers an spi_device for each child node of master node which has a 'reg'
1578  * property.
1579  */
1580 static void of_register_spi_devices(struct spi_master *master)
1581 {
1582 	struct spi_device *spi;
1583 	struct device_node *nc;
1584 
1585 	if (!master->dev.of_node)
1586 		return;
1587 
1588 	for_each_available_child_of_node(master->dev.of_node, nc) {
1589 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1590 			continue;
1591 		spi = of_register_spi_device(master, nc);
1592 		if (IS_ERR(spi))
1593 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1594 				nc->full_name);
1595 	}
1596 }
1597 #else
1598 static void of_register_spi_devices(struct spi_master *master) { }
1599 #endif
1600 
1601 #ifdef CONFIG_ACPI
1602 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1603 {
1604 	struct spi_device *spi = data;
1605 	struct spi_master *master = spi->master;
1606 
1607 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1608 		struct acpi_resource_spi_serialbus *sb;
1609 
1610 		sb = &ares->data.spi_serial_bus;
1611 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1612 			/*
1613 			 * ACPI DeviceSelection numbering is handled by the
1614 			 * host controller driver in Windows and can vary
1615 			 * from driver to driver. In Linux we always expect
1616 			 * 0 .. max - 1 so we need to ask the driver to
1617 			 * translate between the two schemes.
1618 			 */
1619 			if (master->fw_translate_cs) {
1620 				int cs = master->fw_translate_cs(master,
1621 						sb->device_selection);
1622 				if (cs < 0)
1623 					return cs;
1624 				spi->chip_select = cs;
1625 			} else {
1626 				spi->chip_select = sb->device_selection;
1627 			}
1628 
1629 			spi->max_speed_hz = sb->connection_speed;
1630 
1631 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1632 				spi->mode |= SPI_CPHA;
1633 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1634 				spi->mode |= SPI_CPOL;
1635 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1636 				spi->mode |= SPI_CS_HIGH;
1637 		}
1638 	} else if (spi->irq < 0) {
1639 		struct resource r;
1640 
1641 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1642 			spi->irq = r.start;
1643 	}
1644 
1645 	/* Always tell the ACPI core to skip this resource */
1646 	return 1;
1647 }
1648 
1649 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1650 				       void *data, void **return_value)
1651 {
1652 	struct spi_master *master = data;
1653 	struct list_head resource_list;
1654 	struct acpi_device *adev;
1655 	struct spi_device *spi;
1656 	int ret;
1657 
1658 	if (acpi_bus_get_device(handle, &adev))
1659 		return AE_OK;
1660 	if (acpi_bus_get_status(adev) || !adev->status.present)
1661 		return AE_OK;
1662 
1663 	spi = spi_alloc_device(master);
1664 	if (!spi) {
1665 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1666 			dev_name(&adev->dev));
1667 		return AE_NO_MEMORY;
1668 	}
1669 
1670 	ACPI_COMPANION_SET(&spi->dev, adev);
1671 	spi->irq = -1;
1672 
1673 	INIT_LIST_HEAD(&resource_list);
1674 	ret = acpi_dev_get_resources(adev, &resource_list,
1675 				     acpi_spi_add_resource, spi);
1676 	acpi_dev_free_resource_list(&resource_list);
1677 
1678 	if (ret < 0 || !spi->max_speed_hz) {
1679 		spi_dev_put(spi);
1680 		return AE_OK;
1681 	}
1682 
1683 	if (spi->irq < 0)
1684 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1685 
1686 	adev->power.flags.ignore_parent = true;
1687 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1688 	if (spi_add_device(spi)) {
1689 		adev->power.flags.ignore_parent = false;
1690 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1691 			dev_name(&adev->dev));
1692 		spi_dev_put(spi);
1693 	}
1694 
1695 	return AE_OK;
1696 }
1697 
1698 static void acpi_register_spi_devices(struct spi_master *master)
1699 {
1700 	acpi_status status;
1701 	acpi_handle handle;
1702 
1703 	handle = ACPI_HANDLE(master->dev.parent);
1704 	if (!handle)
1705 		return;
1706 
1707 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1708 				     acpi_spi_add_device, NULL,
1709 				     master, NULL);
1710 	if (ACPI_FAILURE(status))
1711 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1712 }
1713 #else
1714 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1715 #endif /* CONFIG_ACPI */
1716 
1717 static void spi_master_release(struct device *dev)
1718 {
1719 	struct spi_master *master;
1720 
1721 	master = container_of(dev, struct spi_master, dev);
1722 	kfree(master);
1723 }
1724 
1725 static struct class spi_master_class = {
1726 	.name		= "spi_master",
1727 	.owner		= THIS_MODULE,
1728 	.dev_release	= spi_master_release,
1729 	.dev_groups	= spi_master_groups,
1730 };
1731 
1732 
1733 /**
1734  * spi_alloc_master - allocate SPI master controller
1735  * @dev: the controller, possibly using the platform_bus
1736  * @size: how much zeroed driver-private data to allocate; the pointer to this
1737  *	memory is in the driver_data field of the returned device,
1738  *	accessible with spi_master_get_devdata().
1739  * Context: can sleep
1740  *
1741  * This call is used only by SPI master controller drivers, which are the
1742  * only ones directly touching chip registers.  It's how they allocate
1743  * an spi_master structure, prior to calling spi_register_master().
1744  *
1745  * This must be called from context that can sleep.
1746  *
1747  * The caller is responsible for assigning the bus number and initializing
1748  * the master's methods before calling spi_register_master(); and (after errors
1749  * adding the device) calling spi_master_put() to prevent a memory leak.
1750  *
1751  * Return: the SPI master structure on success, else NULL.
1752  */
1753 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1754 {
1755 	struct spi_master	*master;
1756 
1757 	if (!dev)
1758 		return NULL;
1759 
1760 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1761 	if (!master)
1762 		return NULL;
1763 
1764 	device_initialize(&master->dev);
1765 	master->bus_num = -1;
1766 	master->num_chipselect = 1;
1767 	master->dev.class = &spi_master_class;
1768 	master->dev.parent = dev;
1769 	pm_suspend_ignore_children(&master->dev, true);
1770 	spi_master_set_devdata(master, &master[1]);
1771 
1772 	return master;
1773 }
1774 EXPORT_SYMBOL_GPL(spi_alloc_master);
1775 
1776 #ifdef CONFIG_OF
1777 static int of_spi_register_master(struct spi_master *master)
1778 {
1779 	int nb, i, *cs;
1780 	struct device_node *np = master->dev.of_node;
1781 
1782 	if (!np)
1783 		return 0;
1784 
1785 	nb = of_gpio_named_count(np, "cs-gpios");
1786 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1787 
1788 	/* Return error only for an incorrectly formed cs-gpios property */
1789 	if (nb == 0 || nb == -ENOENT)
1790 		return 0;
1791 	else if (nb < 0)
1792 		return nb;
1793 
1794 	cs = devm_kzalloc(&master->dev,
1795 			  sizeof(int) * master->num_chipselect,
1796 			  GFP_KERNEL);
1797 	master->cs_gpios = cs;
1798 
1799 	if (!master->cs_gpios)
1800 		return -ENOMEM;
1801 
1802 	for (i = 0; i < master->num_chipselect; i++)
1803 		cs[i] = -ENOENT;
1804 
1805 	for (i = 0; i < nb; i++)
1806 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1807 
1808 	return 0;
1809 }
1810 #else
1811 static int of_spi_register_master(struct spi_master *master)
1812 {
1813 	return 0;
1814 }
1815 #endif
1816 
1817 /**
1818  * spi_register_master - register SPI master controller
1819  * @master: initialized master, originally from spi_alloc_master()
1820  * Context: can sleep
1821  *
1822  * SPI master controllers connect to their drivers using some non-SPI bus,
1823  * such as the platform bus.  The final stage of probe() in that code
1824  * includes calling spi_register_master() to hook up to this SPI bus glue.
1825  *
1826  * SPI controllers use board specific (often SOC specific) bus numbers,
1827  * and board-specific addressing for SPI devices combines those numbers
1828  * with chip select numbers.  Since SPI does not directly support dynamic
1829  * device identification, boards need configuration tables telling which
1830  * chip is at which address.
1831  *
1832  * This must be called from context that can sleep.  It returns zero on
1833  * success, else a negative error code (dropping the master's refcount).
1834  * After a successful return, the caller is responsible for calling
1835  * spi_unregister_master().
1836  *
1837  * Return: zero on success, else a negative error code.
1838  */
1839 int spi_register_master(struct spi_master *master)
1840 {
1841 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1842 	struct device		*dev = master->dev.parent;
1843 	struct boardinfo	*bi;
1844 	int			status = -ENODEV;
1845 	int			dynamic = 0;
1846 
1847 	if (!dev)
1848 		return -ENODEV;
1849 
1850 	status = of_spi_register_master(master);
1851 	if (status)
1852 		return status;
1853 
1854 	/* even if it's just one always-selected device, there must
1855 	 * be at least one chipselect
1856 	 */
1857 	if (master->num_chipselect == 0)
1858 		return -EINVAL;
1859 
1860 	if ((master->bus_num < 0) && master->dev.of_node)
1861 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1862 
1863 	/* convention:  dynamically assigned bus IDs count down from the max */
1864 	if (master->bus_num < 0) {
1865 		/* FIXME switch to an IDR based scheme, something like
1866 		 * I2C now uses, so we can't run out of "dynamic" IDs
1867 		 */
1868 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1869 		dynamic = 1;
1870 	}
1871 
1872 	INIT_LIST_HEAD(&master->queue);
1873 	spin_lock_init(&master->queue_lock);
1874 	spin_lock_init(&master->bus_lock_spinlock);
1875 	mutex_init(&master->bus_lock_mutex);
1876 	master->bus_lock_flag = 0;
1877 	init_completion(&master->xfer_completion);
1878 	if (!master->max_dma_len)
1879 		master->max_dma_len = INT_MAX;
1880 
1881 	/* register the device, then userspace will see it.
1882 	 * registration fails if the bus ID is in use.
1883 	 */
1884 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1885 	status = device_add(&master->dev);
1886 	if (status < 0)
1887 		goto done;
1888 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1889 			dynamic ? " (dynamic)" : "");
1890 
1891 	/* If we're using a queued driver, start the queue */
1892 	if (master->transfer)
1893 		dev_info(dev, "master is unqueued, this is deprecated\n");
1894 	else {
1895 		status = spi_master_initialize_queue(master);
1896 		if (status) {
1897 			device_del(&master->dev);
1898 			goto done;
1899 		}
1900 	}
1901 	/* add statistics */
1902 	spin_lock_init(&master->statistics.lock);
1903 
1904 	mutex_lock(&board_lock);
1905 	list_add_tail(&master->list, &spi_master_list);
1906 	list_for_each_entry(bi, &board_list, list)
1907 		spi_match_master_to_boardinfo(master, &bi->board_info);
1908 	mutex_unlock(&board_lock);
1909 
1910 	/* Register devices from the device tree and ACPI */
1911 	of_register_spi_devices(master);
1912 	acpi_register_spi_devices(master);
1913 done:
1914 	return status;
1915 }
1916 EXPORT_SYMBOL_GPL(spi_register_master);
1917 
1918 static void devm_spi_unregister(struct device *dev, void *res)
1919 {
1920 	spi_unregister_master(*(struct spi_master **)res);
1921 }
1922 
1923 /**
1924  * dev_spi_register_master - register managed SPI master controller
1925  * @dev:    device managing SPI master
1926  * @master: initialized master, originally from spi_alloc_master()
1927  * Context: can sleep
1928  *
1929  * Register a SPI device as with spi_register_master() which will
1930  * automatically be unregister
1931  *
1932  * Return: zero on success, else a negative error code.
1933  */
1934 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1935 {
1936 	struct spi_master **ptr;
1937 	int ret;
1938 
1939 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1940 	if (!ptr)
1941 		return -ENOMEM;
1942 
1943 	ret = spi_register_master(master);
1944 	if (!ret) {
1945 		*ptr = master;
1946 		devres_add(dev, ptr);
1947 	} else {
1948 		devres_free(ptr);
1949 	}
1950 
1951 	return ret;
1952 }
1953 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1954 
1955 static int __unregister(struct device *dev, void *null)
1956 {
1957 	spi_unregister_device(to_spi_device(dev));
1958 	return 0;
1959 }
1960 
1961 /**
1962  * spi_unregister_master - unregister SPI master controller
1963  * @master: the master being unregistered
1964  * Context: can sleep
1965  *
1966  * This call is used only by SPI master controller drivers, which are the
1967  * only ones directly touching chip registers.
1968  *
1969  * This must be called from context that can sleep.
1970  */
1971 void spi_unregister_master(struct spi_master *master)
1972 {
1973 	int dummy;
1974 
1975 	if (master->queued) {
1976 		if (spi_destroy_queue(master))
1977 			dev_err(&master->dev, "queue remove failed\n");
1978 	}
1979 
1980 	mutex_lock(&board_lock);
1981 	list_del(&master->list);
1982 	mutex_unlock(&board_lock);
1983 
1984 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1985 	device_unregister(&master->dev);
1986 }
1987 EXPORT_SYMBOL_GPL(spi_unregister_master);
1988 
1989 int spi_master_suspend(struct spi_master *master)
1990 {
1991 	int ret;
1992 
1993 	/* Basically no-ops for non-queued masters */
1994 	if (!master->queued)
1995 		return 0;
1996 
1997 	ret = spi_stop_queue(master);
1998 	if (ret)
1999 		dev_err(&master->dev, "queue stop failed\n");
2000 
2001 	return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(spi_master_suspend);
2004 
2005 int spi_master_resume(struct spi_master *master)
2006 {
2007 	int ret;
2008 
2009 	if (!master->queued)
2010 		return 0;
2011 
2012 	ret = spi_start_queue(master);
2013 	if (ret)
2014 		dev_err(&master->dev, "queue restart failed\n");
2015 
2016 	return ret;
2017 }
2018 EXPORT_SYMBOL_GPL(spi_master_resume);
2019 
2020 static int __spi_master_match(struct device *dev, const void *data)
2021 {
2022 	struct spi_master *m;
2023 	const u16 *bus_num = data;
2024 
2025 	m = container_of(dev, struct spi_master, dev);
2026 	return m->bus_num == *bus_num;
2027 }
2028 
2029 /**
2030  * spi_busnum_to_master - look up master associated with bus_num
2031  * @bus_num: the master's bus number
2032  * Context: can sleep
2033  *
2034  * This call may be used with devices that are registered after
2035  * arch init time.  It returns a refcounted pointer to the relevant
2036  * spi_master (which the caller must release), or NULL if there is
2037  * no such master registered.
2038  *
2039  * Return: the SPI master structure on success, else NULL.
2040  */
2041 struct spi_master *spi_busnum_to_master(u16 bus_num)
2042 {
2043 	struct device		*dev;
2044 	struct spi_master	*master = NULL;
2045 
2046 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2047 				__spi_master_match);
2048 	if (dev)
2049 		master = container_of(dev, struct spi_master, dev);
2050 	/* reference got in class_find_device */
2051 	return master;
2052 }
2053 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2054 
2055 /*-------------------------------------------------------------------------*/
2056 
2057 /* Core methods for SPI resource management */
2058 
2059 /**
2060  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2061  *                 during the processing of a spi_message while using
2062  *                 spi_transfer_one
2063  * @spi:     the spi device for which we allocate memory
2064  * @release: the release code to execute for this resource
2065  * @size:    size to alloc and return
2066  * @gfp:     GFP allocation flags
2067  *
2068  * Return: the pointer to the allocated data
2069  *
2070  * This may get enhanced in the future to allocate from a memory pool
2071  * of the @spi_device or @spi_master to avoid repeated allocations.
2072  */
2073 void *spi_res_alloc(struct spi_device *spi,
2074 		    spi_res_release_t release,
2075 		    size_t size, gfp_t gfp)
2076 {
2077 	struct spi_res *sres;
2078 
2079 	sres = kzalloc(sizeof(*sres) + size, gfp);
2080 	if (!sres)
2081 		return NULL;
2082 
2083 	INIT_LIST_HEAD(&sres->entry);
2084 	sres->release = release;
2085 
2086 	return sres->data;
2087 }
2088 EXPORT_SYMBOL_GPL(spi_res_alloc);
2089 
2090 /**
2091  * spi_res_free - free an spi resource
2092  * @res: pointer to the custom data of a resource
2093  *
2094  */
2095 void spi_res_free(void *res)
2096 {
2097 	struct spi_res *sres = container_of(res, struct spi_res, data);
2098 
2099 	if (!res)
2100 		return;
2101 
2102 	WARN_ON(!list_empty(&sres->entry));
2103 	kfree(sres);
2104 }
2105 EXPORT_SYMBOL_GPL(spi_res_free);
2106 
2107 /**
2108  * spi_res_add - add a spi_res to the spi_message
2109  * @message: the spi message
2110  * @res:     the spi_resource
2111  */
2112 void spi_res_add(struct spi_message *message, void *res)
2113 {
2114 	struct spi_res *sres = container_of(res, struct spi_res, data);
2115 
2116 	WARN_ON(!list_empty(&sres->entry));
2117 	list_add_tail(&sres->entry, &message->resources);
2118 }
2119 EXPORT_SYMBOL_GPL(spi_res_add);
2120 
2121 /**
2122  * spi_res_release - release all spi resources for this message
2123  * @master:  the @spi_master
2124  * @message: the @spi_message
2125  */
2126 void spi_res_release(struct spi_master *master,
2127 		     struct spi_message *message)
2128 {
2129 	struct spi_res *res;
2130 
2131 	while (!list_empty(&message->resources)) {
2132 		res = list_last_entry(&message->resources,
2133 				      struct spi_res, entry);
2134 
2135 		if (res->release)
2136 			res->release(master, message, res->data);
2137 
2138 		list_del(&res->entry);
2139 
2140 		kfree(res);
2141 	}
2142 }
2143 EXPORT_SYMBOL_GPL(spi_res_release);
2144 
2145 /*-------------------------------------------------------------------------*/
2146 
2147 /* Core methods for spi_message alterations */
2148 
2149 static void __spi_replace_transfers_release(struct spi_master *master,
2150 					    struct spi_message *msg,
2151 					    void *res)
2152 {
2153 	struct spi_replaced_transfers *rxfer = res;
2154 	size_t i;
2155 
2156 	/* call extra callback if requested */
2157 	if (rxfer->release)
2158 		rxfer->release(master, msg, res);
2159 
2160 	/* insert replaced transfers back into the message */
2161 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2162 
2163 	/* remove the formerly inserted entries */
2164 	for (i = 0; i < rxfer->inserted; i++)
2165 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2166 }
2167 
2168 /**
2169  * spi_replace_transfers - replace transfers with several transfers
2170  *                         and register change with spi_message.resources
2171  * @msg:           the spi_message we work upon
2172  * @xfer_first:    the first spi_transfer we want to replace
2173  * @remove:        number of transfers to remove
2174  * @insert:        the number of transfers we want to insert instead
2175  * @release:       extra release code necessary in some circumstances
2176  * @extradatasize: extra data to allocate (with alignment guarantees
2177  *                 of struct @spi_transfer)
2178  * @gfp:           gfp flags
2179  *
2180  * Returns: pointer to @spi_replaced_transfers,
2181  *          PTR_ERR(...) in case of errors.
2182  */
2183 struct spi_replaced_transfers *spi_replace_transfers(
2184 	struct spi_message *msg,
2185 	struct spi_transfer *xfer_first,
2186 	size_t remove,
2187 	size_t insert,
2188 	spi_replaced_release_t release,
2189 	size_t extradatasize,
2190 	gfp_t gfp)
2191 {
2192 	struct spi_replaced_transfers *rxfer;
2193 	struct spi_transfer *xfer;
2194 	size_t i;
2195 
2196 	/* allocate the structure using spi_res */
2197 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2198 			      insert * sizeof(struct spi_transfer)
2199 			      + sizeof(struct spi_replaced_transfers)
2200 			      + extradatasize,
2201 			      gfp);
2202 	if (!rxfer)
2203 		return ERR_PTR(-ENOMEM);
2204 
2205 	/* the release code to invoke before running the generic release */
2206 	rxfer->release = release;
2207 
2208 	/* assign extradata */
2209 	if (extradatasize)
2210 		rxfer->extradata =
2211 			&rxfer->inserted_transfers[insert];
2212 
2213 	/* init the replaced_transfers list */
2214 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2215 
2216 	/* assign the list_entry after which we should reinsert
2217 	 * the @replaced_transfers - it may be spi_message.messages!
2218 	 */
2219 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2220 
2221 	/* remove the requested number of transfers */
2222 	for (i = 0; i < remove; i++) {
2223 		/* if the entry after replaced_after it is msg->transfers
2224 		 * then we have been requested to remove more transfers
2225 		 * than are in the list
2226 		 */
2227 		if (rxfer->replaced_after->next == &msg->transfers) {
2228 			dev_err(&msg->spi->dev,
2229 				"requested to remove more spi_transfers than are available\n");
2230 			/* insert replaced transfers back into the message */
2231 			list_splice(&rxfer->replaced_transfers,
2232 				    rxfer->replaced_after);
2233 
2234 			/* free the spi_replace_transfer structure */
2235 			spi_res_free(rxfer);
2236 
2237 			/* and return with an error */
2238 			return ERR_PTR(-EINVAL);
2239 		}
2240 
2241 		/* remove the entry after replaced_after from list of
2242 		 * transfers and add it to list of replaced_transfers
2243 		 */
2244 		list_move_tail(rxfer->replaced_after->next,
2245 			       &rxfer->replaced_transfers);
2246 	}
2247 
2248 	/* create copy of the given xfer with identical settings
2249 	 * based on the first transfer to get removed
2250 	 */
2251 	for (i = 0; i < insert; i++) {
2252 		/* we need to run in reverse order */
2253 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2254 
2255 		/* copy all spi_transfer data */
2256 		memcpy(xfer, xfer_first, sizeof(*xfer));
2257 
2258 		/* add to list */
2259 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2260 
2261 		/* clear cs_change and delay_usecs for all but the last */
2262 		if (i) {
2263 			xfer->cs_change = false;
2264 			xfer->delay_usecs = 0;
2265 		}
2266 	}
2267 
2268 	/* set up inserted */
2269 	rxfer->inserted = insert;
2270 
2271 	/* and register it with spi_res/spi_message */
2272 	spi_res_add(msg, rxfer);
2273 
2274 	return rxfer;
2275 }
2276 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2277 
2278 static int __spi_split_transfer_maxsize(struct spi_master *master,
2279 					struct spi_message *msg,
2280 					struct spi_transfer **xferp,
2281 					size_t maxsize,
2282 					gfp_t gfp)
2283 {
2284 	struct spi_transfer *xfer = *xferp, *xfers;
2285 	struct spi_replaced_transfers *srt;
2286 	size_t offset;
2287 	size_t count, i;
2288 
2289 	/* warn once about this fact that we are splitting a transfer */
2290 	dev_warn_once(&msg->spi->dev,
2291 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2292 		      xfer->len, maxsize);
2293 
2294 	/* calculate how many we have to replace */
2295 	count = DIV_ROUND_UP(xfer->len, maxsize);
2296 
2297 	/* create replacement */
2298 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2299 	if (IS_ERR(srt))
2300 		return PTR_ERR(srt);
2301 	xfers = srt->inserted_transfers;
2302 
2303 	/* now handle each of those newly inserted spi_transfers
2304 	 * note that the replacements spi_transfers all are preset
2305 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2306 	 * are all identical (as well as most others)
2307 	 * so we just have to fix up len and the pointers.
2308 	 *
2309 	 * this also includes support for the depreciated
2310 	 * spi_message.is_dma_mapped interface
2311 	 */
2312 
2313 	/* the first transfer just needs the length modified, so we
2314 	 * run it outside the loop
2315 	 */
2316 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2317 
2318 	/* all the others need rx_buf/tx_buf also set */
2319 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2320 		/* update rx_buf, tx_buf and dma */
2321 		if (xfers[i].rx_buf)
2322 			xfers[i].rx_buf += offset;
2323 		if (xfers[i].rx_dma)
2324 			xfers[i].rx_dma += offset;
2325 		if (xfers[i].tx_buf)
2326 			xfers[i].tx_buf += offset;
2327 		if (xfers[i].tx_dma)
2328 			xfers[i].tx_dma += offset;
2329 
2330 		/* update length */
2331 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2332 	}
2333 
2334 	/* we set up xferp to the last entry we have inserted,
2335 	 * so that we skip those already split transfers
2336 	 */
2337 	*xferp = &xfers[count - 1];
2338 
2339 	/* increment statistics counters */
2340 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2341 				       transfers_split_maxsize);
2342 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2343 				       transfers_split_maxsize);
2344 
2345 	return 0;
2346 }
2347 
2348 /**
2349  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2350  *                              when an individual transfer exceeds a
2351  *                              certain size
2352  * @master:    the @spi_master for this transfer
2353  * @msg:   the @spi_message to transform
2354  * @maxsize:  the maximum when to apply this
2355  * @gfp: GFP allocation flags
2356  *
2357  * Return: status of transformation
2358  */
2359 int spi_split_transfers_maxsize(struct spi_master *master,
2360 				struct spi_message *msg,
2361 				size_t maxsize,
2362 				gfp_t gfp)
2363 {
2364 	struct spi_transfer *xfer;
2365 	int ret;
2366 
2367 	/* iterate over the transfer_list,
2368 	 * but note that xfer is advanced to the last transfer inserted
2369 	 * to avoid checking sizes again unnecessarily (also xfer does
2370 	 * potentiall belong to a different list by the time the
2371 	 * replacement has happened
2372 	 */
2373 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2374 		if (xfer->len > maxsize) {
2375 			ret = __spi_split_transfer_maxsize(
2376 				master, msg, &xfer, maxsize, gfp);
2377 			if (ret)
2378 				return ret;
2379 		}
2380 	}
2381 
2382 	return 0;
2383 }
2384 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2385 
2386 /*-------------------------------------------------------------------------*/
2387 
2388 /* Core methods for SPI master protocol drivers.  Some of the
2389  * other core methods are currently defined as inline functions.
2390  */
2391 
2392 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2393 {
2394 	if (master->bits_per_word_mask) {
2395 		/* Only 32 bits fit in the mask */
2396 		if (bits_per_word > 32)
2397 			return -EINVAL;
2398 		if (!(master->bits_per_word_mask &
2399 				SPI_BPW_MASK(bits_per_word)))
2400 			return -EINVAL;
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 /**
2407  * spi_setup - setup SPI mode and clock rate
2408  * @spi: the device whose settings are being modified
2409  * Context: can sleep, and no requests are queued to the device
2410  *
2411  * SPI protocol drivers may need to update the transfer mode if the
2412  * device doesn't work with its default.  They may likewise need
2413  * to update clock rates or word sizes from initial values.  This function
2414  * changes those settings, and must be called from a context that can sleep.
2415  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2416  * effect the next time the device is selected and data is transferred to
2417  * or from it.  When this function returns, the spi device is deselected.
2418  *
2419  * Note that this call will fail if the protocol driver specifies an option
2420  * that the underlying controller or its driver does not support.  For
2421  * example, not all hardware supports wire transfers using nine bit words,
2422  * LSB-first wire encoding, or active-high chipselects.
2423  *
2424  * Return: zero on success, else a negative error code.
2425  */
2426 int spi_setup(struct spi_device *spi)
2427 {
2428 	unsigned	bad_bits, ugly_bits;
2429 	int		status;
2430 
2431 	/* check mode to prevent that DUAL and QUAD set at the same time
2432 	 */
2433 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2434 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2435 		dev_err(&spi->dev,
2436 		"setup: can not select dual and quad at the same time\n");
2437 		return -EINVAL;
2438 	}
2439 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2440 	 */
2441 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2442 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2443 		return -EINVAL;
2444 	/* help drivers fail *cleanly* when they need options
2445 	 * that aren't supported with their current master
2446 	 */
2447 	bad_bits = spi->mode & ~spi->master->mode_bits;
2448 	ugly_bits = bad_bits &
2449 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2450 	if (ugly_bits) {
2451 		dev_warn(&spi->dev,
2452 			 "setup: ignoring unsupported mode bits %x\n",
2453 			 ugly_bits);
2454 		spi->mode &= ~ugly_bits;
2455 		bad_bits &= ~ugly_bits;
2456 	}
2457 	if (bad_bits) {
2458 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2459 			bad_bits);
2460 		return -EINVAL;
2461 	}
2462 
2463 	if (!spi->bits_per_word)
2464 		spi->bits_per_word = 8;
2465 
2466 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2467 	if (status)
2468 		return status;
2469 
2470 	if (!spi->max_speed_hz)
2471 		spi->max_speed_hz = spi->master->max_speed_hz;
2472 
2473 	if (spi->master->setup)
2474 		status = spi->master->setup(spi);
2475 
2476 	spi_set_cs(spi, false);
2477 
2478 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2479 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2480 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2481 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2482 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2483 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2484 			spi->bits_per_word, spi->max_speed_hz,
2485 			status);
2486 
2487 	return status;
2488 }
2489 EXPORT_SYMBOL_GPL(spi_setup);
2490 
2491 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2492 {
2493 	struct spi_master *master = spi->master;
2494 	struct spi_transfer *xfer;
2495 	int w_size;
2496 
2497 	if (list_empty(&message->transfers))
2498 		return -EINVAL;
2499 
2500 	/* Half-duplex links include original MicroWire, and ones with
2501 	 * only one data pin like SPI_3WIRE (switches direction) or where
2502 	 * either MOSI or MISO is missing.  They can also be caused by
2503 	 * software limitations.
2504 	 */
2505 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2506 			|| (spi->mode & SPI_3WIRE)) {
2507 		unsigned flags = master->flags;
2508 
2509 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2510 			if (xfer->rx_buf && xfer->tx_buf)
2511 				return -EINVAL;
2512 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2513 				return -EINVAL;
2514 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2515 				return -EINVAL;
2516 		}
2517 	}
2518 
2519 	/**
2520 	 * Set transfer bits_per_word and max speed as spi device default if
2521 	 * it is not set for this transfer.
2522 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2523 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2524 	 */
2525 	message->frame_length = 0;
2526 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2527 		message->frame_length += xfer->len;
2528 		if (!xfer->bits_per_word)
2529 			xfer->bits_per_word = spi->bits_per_word;
2530 
2531 		if (!xfer->speed_hz)
2532 			xfer->speed_hz = spi->max_speed_hz;
2533 		if (!xfer->speed_hz)
2534 			xfer->speed_hz = master->max_speed_hz;
2535 
2536 		if (master->max_speed_hz &&
2537 		    xfer->speed_hz > master->max_speed_hz)
2538 			xfer->speed_hz = master->max_speed_hz;
2539 
2540 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2541 			return -EINVAL;
2542 
2543 		/*
2544 		 * SPI transfer length should be multiple of SPI word size
2545 		 * where SPI word size should be power-of-two multiple
2546 		 */
2547 		if (xfer->bits_per_word <= 8)
2548 			w_size = 1;
2549 		else if (xfer->bits_per_word <= 16)
2550 			w_size = 2;
2551 		else
2552 			w_size = 4;
2553 
2554 		/* No partial transfers accepted */
2555 		if (xfer->len % w_size)
2556 			return -EINVAL;
2557 
2558 		if (xfer->speed_hz && master->min_speed_hz &&
2559 		    xfer->speed_hz < master->min_speed_hz)
2560 			return -EINVAL;
2561 
2562 		if (xfer->tx_buf && !xfer->tx_nbits)
2563 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2564 		if (xfer->rx_buf && !xfer->rx_nbits)
2565 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2566 		/* check transfer tx/rx_nbits:
2567 		 * 1. check the value matches one of single, dual and quad
2568 		 * 2. check tx/rx_nbits match the mode in spi_device
2569 		 */
2570 		if (xfer->tx_buf) {
2571 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2572 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2573 				xfer->tx_nbits != SPI_NBITS_QUAD)
2574 				return -EINVAL;
2575 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2576 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2577 				return -EINVAL;
2578 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2579 				!(spi->mode & SPI_TX_QUAD))
2580 				return -EINVAL;
2581 		}
2582 		/* check transfer rx_nbits */
2583 		if (xfer->rx_buf) {
2584 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2585 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2586 				xfer->rx_nbits != SPI_NBITS_QUAD)
2587 				return -EINVAL;
2588 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2589 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2590 				return -EINVAL;
2591 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2592 				!(spi->mode & SPI_RX_QUAD))
2593 				return -EINVAL;
2594 		}
2595 	}
2596 
2597 	message->status = -EINPROGRESS;
2598 
2599 	return 0;
2600 }
2601 
2602 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2603 {
2604 	struct spi_master *master = spi->master;
2605 
2606 	message->spi = spi;
2607 
2608 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2609 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2610 
2611 	trace_spi_message_submit(message);
2612 
2613 	return master->transfer(spi, message);
2614 }
2615 
2616 /**
2617  * spi_async - asynchronous SPI transfer
2618  * @spi: device with which data will be exchanged
2619  * @message: describes the data transfers, including completion callback
2620  * Context: any (irqs may be blocked, etc)
2621  *
2622  * This call may be used in_irq and other contexts which can't sleep,
2623  * as well as from task contexts which can sleep.
2624  *
2625  * The completion callback is invoked in a context which can't sleep.
2626  * Before that invocation, the value of message->status is undefined.
2627  * When the callback is issued, message->status holds either zero (to
2628  * indicate complete success) or a negative error code.  After that
2629  * callback returns, the driver which issued the transfer request may
2630  * deallocate the associated memory; it's no longer in use by any SPI
2631  * core or controller driver code.
2632  *
2633  * Note that although all messages to a spi_device are handled in
2634  * FIFO order, messages may go to different devices in other orders.
2635  * Some device might be higher priority, or have various "hard" access
2636  * time requirements, for example.
2637  *
2638  * On detection of any fault during the transfer, processing of
2639  * the entire message is aborted, and the device is deselected.
2640  * Until returning from the associated message completion callback,
2641  * no other spi_message queued to that device will be processed.
2642  * (This rule applies equally to all the synchronous transfer calls,
2643  * which are wrappers around this core asynchronous primitive.)
2644  *
2645  * Return: zero on success, else a negative error code.
2646  */
2647 int spi_async(struct spi_device *spi, struct spi_message *message)
2648 {
2649 	struct spi_master *master = spi->master;
2650 	int ret;
2651 	unsigned long flags;
2652 
2653 	ret = __spi_validate(spi, message);
2654 	if (ret != 0)
2655 		return ret;
2656 
2657 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2658 
2659 	if (master->bus_lock_flag)
2660 		ret = -EBUSY;
2661 	else
2662 		ret = __spi_async(spi, message);
2663 
2664 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2665 
2666 	return ret;
2667 }
2668 EXPORT_SYMBOL_GPL(spi_async);
2669 
2670 /**
2671  * spi_async_locked - version of spi_async with exclusive bus usage
2672  * @spi: device with which data will be exchanged
2673  * @message: describes the data transfers, including completion callback
2674  * Context: any (irqs may be blocked, etc)
2675  *
2676  * This call may be used in_irq and other contexts which can't sleep,
2677  * as well as from task contexts which can sleep.
2678  *
2679  * The completion callback is invoked in a context which can't sleep.
2680  * Before that invocation, the value of message->status is undefined.
2681  * When the callback is issued, message->status holds either zero (to
2682  * indicate complete success) or a negative error code.  After that
2683  * callback returns, the driver which issued the transfer request may
2684  * deallocate the associated memory; it's no longer in use by any SPI
2685  * core or controller driver code.
2686  *
2687  * Note that although all messages to a spi_device are handled in
2688  * FIFO order, messages may go to different devices in other orders.
2689  * Some device might be higher priority, or have various "hard" access
2690  * time requirements, for example.
2691  *
2692  * On detection of any fault during the transfer, processing of
2693  * the entire message is aborted, and the device is deselected.
2694  * Until returning from the associated message completion callback,
2695  * no other spi_message queued to that device will be processed.
2696  * (This rule applies equally to all the synchronous transfer calls,
2697  * which are wrappers around this core asynchronous primitive.)
2698  *
2699  * Return: zero on success, else a negative error code.
2700  */
2701 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2702 {
2703 	struct spi_master *master = spi->master;
2704 	int ret;
2705 	unsigned long flags;
2706 
2707 	ret = __spi_validate(spi, message);
2708 	if (ret != 0)
2709 		return ret;
2710 
2711 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2712 
2713 	ret = __spi_async(spi, message);
2714 
2715 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2716 
2717 	return ret;
2718 
2719 }
2720 EXPORT_SYMBOL_GPL(spi_async_locked);
2721 
2722 
2723 int spi_flash_read(struct spi_device *spi,
2724 		   struct spi_flash_read_message *msg)
2725 
2726 {
2727 	struct spi_master *master = spi->master;
2728 	int ret;
2729 
2730 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2731 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2732 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2733 		return -EINVAL;
2734 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2735 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2736 	    !(spi->mode & SPI_TX_QUAD))
2737 		return -EINVAL;
2738 	if (msg->data_nbits == SPI_NBITS_DUAL &&
2739 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2740 		return -EINVAL;
2741 	if (msg->data_nbits == SPI_NBITS_QUAD &&
2742 	    !(spi->mode &  SPI_RX_QUAD))
2743 		return -EINVAL;
2744 
2745 	if (master->auto_runtime_pm) {
2746 		ret = pm_runtime_get_sync(master->dev.parent);
2747 		if (ret < 0) {
2748 			dev_err(&master->dev, "Failed to power device: %d\n",
2749 				ret);
2750 			return ret;
2751 		}
2752 	}
2753 	mutex_lock(&master->bus_lock_mutex);
2754 	ret = master->spi_flash_read(spi, msg);
2755 	mutex_unlock(&master->bus_lock_mutex);
2756 	if (master->auto_runtime_pm)
2757 		pm_runtime_put(master->dev.parent);
2758 
2759 	return ret;
2760 }
2761 EXPORT_SYMBOL_GPL(spi_flash_read);
2762 
2763 /*-------------------------------------------------------------------------*/
2764 
2765 /* Utility methods for SPI master protocol drivers, layered on
2766  * top of the core.  Some other utility methods are defined as
2767  * inline functions.
2768  */
2769 
2770 static void spi_complete(void *arg)
2771 {
2772 	complete(arg);
2773 }
2774 
2775 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2776 		      int bus_locked)
2777 {
2778 	DECLARE_COMPLETION_ONSTACK(done);
2779 	int status;
2780 	struct spi_master *master = spi->master;
2781 	unsigned long flags;
2782 
2783 	status = __spi_validate(spi, message);
2784 	if (status != 0)
2785 		return status;
2786 
2787 	message->complete = spi_complete;
2788 	message->context = &done;
2789 	message->spi = spi;
2790 
2791 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2792 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2793 
2794 	if (!bus_locked)
2795 		mutex_lock(&master->bus_lock_mutex);
2796 
2797 	/* If we're not using the legacy transfer method then we will
2798 	 * try to transfer in the calling context so special case.
2799 	 * This code would be less tricky if we could remove the
2800 	 * support for driver implemented message queues.
2801 	 */
2802 	if (master->transfer == spi_queued_transfer) {
2803 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2804 
2805 		trace_spi_message_submit(message);
2806 
2807 		status = __spi_queued_transfer(spi, message, false);
2808 
2809 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2810 	} else {
2811 		status = spi_async_locked(spi, message);
2812 	}
2813 
2814 	if (!bus_locked)
2815 		mutex_unlock(&master->bus_lock_mutex);
2816 
2817 	if (status == 0) {
2818 		/* Push out the messages in the calling context if we
2819 		 * can.
2820 		 */
2821 		if (master->transfer == spi_queued_transfer) {
2822 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2823 						       spi_sync_immediate);
2824 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2825 						       spi_sync_immediate);
2826 			__spi_pump_messages(master, false, bus_locked);
2827 		}
2828 
2829 		wait_for_completion(&done);
2830 		status = message->status;
2831 	}
2832 	message->context = NULL;
2833 	return status;
2834 }
2835 
2836 /**
2837  * spi_sync - blocking/synchronous SPI data transfers
2838  * @spi: device with which data will be exchanged
2839  * @message: describes the data transfers
2840  * Context: can sleep
2841  *
2842  * This call may only be used from a context that may sleep.  The sleep
2843  * is non-interruptible, and has no timeout.  Low-overhead controller
2844  * drivers may DMA directly into and out of the message buffers.
2845  *
2846  * Note that the SPI device's chip select is active during the message,
2847  * and then is normally disabled between messages.  Drivers for some
2848  * frequently-used devices may want to minimize costs of selecting a chip,
2849  * by leaving it selected in anticipation that the next message will go
2850  * to the same chip.  (That may increase power usage.)
2851  *
2852  * Also, the caller is guaranteeing that the memory associated with the
2853  * message will not be freed before this call returns.
2854  *
2855  * Return: zero on success, else a negative error code.
2856  */
2857 int spi_sync(struct spi_device *spi, struct spi_message *message)
2858 {
2859 	return __spi_sync(spi, message, spi->master->bus_lock_flag);
2860 }
2861 EXPORT_SYMBOL_GPL(spi_sync);
2862 
2863 /**
2864  * spi_sync_locked - version of spi_sync with exclusive bus usage
2865  * @spi: device with which data will be exchanged
2866  * @message: describes the data transfers
2867  * Context: can sleep
2868  *
2869  * This call may only be used from a context that may sleep.  The sleep
2870  * is non-interruptible, and has no timeout.  Low-overhead controller
2871  * drivers may DMA directly into and out of the message buffers.
2872  *
2873  * This call should be used by drivers that require exclusive access to the
2874  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2875  * be released by a spi_bus_unlock call when the exclusive access is over.
2876  *
2877  * Return: zero on success, else a negative error code.
2878  */
2879 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2880 {
2881 	return __spi_sync(spi, message, 1);
2882 }
2883 EXPORT_SYMBOL_GPL(spi_sync_locked);
2884 
2885 /**
2886  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2887  * @master: SPI bus master that should be locked for exclusive bus access
2888  * Context: can sleep
2889  *
2890  * This call may only be used from a context that may sleep.  The sleep
2891  * is non-interruptible, and has no timeout.
2892  *
2893  * This call should be used by drivers that require exclusive access to the
2894  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2895  * exclusive access is over. Data transfer must be done by spi_sync_locked
2896  * and spi_async_locked calls when the SPI bus lock is held.
2897  *
2898  * Return: always zero.
2899  */
2900 int spi_bus_lock(struct spi_master *master)
2901 {
2902 	unsigned long flags;
2903 
2904 	mutex_lock(&master->bus_lock_mutex);
2905 
2906 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2907 	master->bus_lock_flag = 1;
2908 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2909 
2910 	/* mutex remains locked until spi_bus_unlock is called */
2911 
2912 	return 0;
2913 }
2914 EXPORT_SYMBOL_GPL(spi_bus_lock);
2915 
2916 /**
2917  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2918  * @master: SPI bus master that was locked for exclusive bus access
2919  * Context: can sleep
2920  *
2921  * This call may only be used from a context that may sleep.  The sleep
2922  * is non-interruptible, and has no timeout.
2923  *
2924  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2925  * call.
2926  *
2927  * Return: always zero.
2928  */
2929 int spi_bus_unlock(struct spi_master *master)
2930 {
2931 	master->bus_lock_flag = 0;
2932 
2933 	mutex_unlock(&master->bus_lock_mutex);
2934 
2935 	return 0;
2936 }
2937 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2938 
2939 /* portable code must never pass more than 32 bytes */
2940 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2941 
2942 static u8	*buf;
2943 
2944 /**
2945  * spi_write_then_read - SPI synchronous write followed by read
2946  * @spi: device with which data will be exchanged
2947  * @txbuf: data to be written (need not be dma-safe)
2948  * @n_tx: size of txbuf, in bytes
2949  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2950  * @n_rx: size of rxbuf, in bytes
2951  * Context: can sleep
2952  *
2953  * This performs a half duplex MicroWire style transaction with the
2954  * device, sending txbuf and then reading rxbuf.  The return value
2955  * is zero for success, else a negative errno status code.
2956  * This call may only be used from a context that may sleep.
2957  *
2958  * Parameters to this routine are always copied using a small buffer;
2959  * portable code should never use this for more than 32 bytes.
2960  * Performance-sensitive or bulk transfer code should instead use
2961  * spi_{async,sync}() calls with dma-safe buffers.
2962  *
2963  * Return: zero on success, else a negative error code.
2964  */
2965 int spi_write_then_read(struct spi_device *spi,
2966 		const void *txbuf, unsigned n_tx,
2967 		void *rxbuf, unsigned n_rx)
2968 {
2969 	static DEFINE_MUTEX(lock);
2970 
2971 	int			status;
2972 	struct spi_message	message;
2973 	struct spi_transfer	x[2];
2974 	u8			*local_buf;
2975 
2976 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2977 	 * copying here, (as a pure convenience thing), but we can
2978 	 * keep heap costs out of the hot path unless someone else is
2979 	 * using the pre-allocated buffer or the transfer is too large.
2980 	 */
2981 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2982 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2983 				    GFP_KERNEL | GFP_DMA);
2984 		if (!local_buf)
2985 			return -ENOMEM;
2986 	} else {
2987 		local_buf = buf;
2988 	}
2989 
2990 	spi_message_init(&message);
2991 	memset(x, 0, sizeof(x));
2992 	if (n_tx) {
2993 		x[0].len = n_tx;
2994 		spi_message_add_tail(&x[0], &message);
2995 	}
2996 	if (n_rx) {
2997 		x[1].len = n_rx;
2998 		spi_message_add_tail(&x[1], &message);
2999 	}
3000 
3001 	memcpy(local_buf, txbuf, n_tx);
3002 	x[0].tx_buf = local_buf;
3003 	x[1].rx_buf = local_buf + n_tx;
3004 
3005 	/* do the i/o */
3006 	status = spi_sync(spi, &message);
3007 	if (status == 0)
3008 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3009 
3010 	if (x[0].tx_buf == buf)
3011 		mutex_unlock(&lock);
3012 	else
3013 		kfree(local_buf);
3014 
3015 	return status;
3016 }
3017 EXPORT_SYMBOL_GPL(spi_write_then_read);
3018 
3019 /*-------------------------------------------------------------------------*/
3020 
3021 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3022 static int __spi_of_device_match(struct device *dev, void *data)
3023 {
3024 	return dev->of_node == data;
3025 }
3026 
3027 /* must call put_device() when done with returned spi_device device */
3028 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3029 {
3030 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3031 						__spi_of_device_match);
3032 	return dev ? to_spi_device(dev) : NULL;
3033 }
3034 
3035 static int __spi_of_master_match(struct device *dev, const void *data)
3036 {
3037 	return dev->of_node == data;
3038 }
3039 
3040 /* the spi masters are not using spi_bus, so we find it with another way */
3041 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3042 {
3043 	struct device *dev;
3044 
3045 	dev = class_find_device(&spi_master_class, NULL, node,
3046 				__spi_of_master_match);
3047 	if (!dev)
3048 		return NULL;
3049 
3050 	/* reference got in class_find_device */
3051 	return container_of(dev, struct spi_master, dev);
3052 }
3053 
3054 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3055 			 void *arg)
3056 {
3057 	struct of_reconfig_data *rd = arg;
3058 	struct spi_master *master;
3059 	struct spi_device *spi;
3060 
3061 	switch (of_reconfig_get_state_change(action, arg)) {
3062 	case OF_RECONFIG_CHANGE_ADD:
3063 		master = of_find_spi_master_by_node(rd->dn->parent);
3064 		if (master == NULL)
3065 			return NOTIFY_OK;	/* not for us */
3066 
3067 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3068 			put_device(&master->dev);
3069 			return NOTIFY_OK;
3070 		}
3071 
3072 		spi = of_register_spi_device(master, rd->dn);
3073 		put_device(&master->dev);
3074 
3075 		if (IS_ERR(spi)) {
3076 			pr_err("%s: failed to create for '%s'\n",
3077 					__func__, rd->dn->full_name);
3078 			return notifier_from_errno(PTR_ERR(spi));
3079 		}
3080 		break;
3081 
3082 	case OF_RECONFIG_CHANGE_REMOVE:
3083 		/* already depopulated? */
3084 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3085 			return NOTIFY_OK;
3086 
3087 		/* find our device by node */
3088 		spi = of_find_spi_device_by_node(rd->dn);
3089 		if (spi == NULL)
3090 			return NOTIFY_OK;	/* no? not meant for us */
3091 
3092 		/* unregister takes one ref away */
3093 		spi_unregister_device(spi);
3094 
3095 		/* and put the reference of the find */
3096 		put_device(&spi->dev);
3097 		break;
3098 	}
3099 
3100 	return NOTIFY_OK;
3101 }
3102 
3103 static struct notifier_block spi_of_notifier = {
3104 	.notifier_call = of_spi_notify,
3105 };
3106 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3107 extern struct notifier_block spi_of_notifier;
3108 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3109 
3110 static int __init spi_init(void)
3111 {
3112 	int	status;
3113 
3114 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3115 	if (!buf) {
3116 		status = -ENOMEM;
3117 		goto err0;
3118 	}
3119 
3120 	status = bus_register(&spi_bus_type);
3121 	if (status < 0)
3122 		goto err1;
3123 
3124 	status = class_register(&spi_master_class);
3125 	if (status < 0)
3126 		goto err2;
3127 
3128 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3129 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3130 
3131 	return 0;
3132 
3133 err2:
3134 	bus_unregister(&spi_bus_type);
3135 err1:
3136 	kfree(buf);
3137 	buf = NULL;
3138 err0:
3139 	return status;
3140 }
3141 
3142 /* board_info is normally registered in arch_initcall(),
3143  * but even essential drivers wait till later
3144  *
3145  * REVISIT only boardinfo really needs static linking. the rest (device and
3146  * driver registration) _could_ be dynamically linked (modular) ... costs
3147  * include needing to have boardinfo data structures be much more public.
3148  */
3149 postcore_initcall(spi_init);
3150 
3151