xref: /openbmc/linux/drivers/spi/spi.c (revision 0b26ca68)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Empty string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 static int spi_probe(struct device *dev)
378 {
379 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
380 	struct spi_device		*spi = to_spi_device(dev);
381 	int ret;
382 
383 	ret = of_clk_set_defaults(dev->of_node, false);
384 	if (ret)
385 		return ret;
386 
387 	if (dev->of_node) {
388 		spi->irq = of_irq_get(dev->of_node, 0);
389 		if (spi->irq == -EPROBE_DEFER)
390 			return -EPROBE_DEFER;
391 		if (spi->irq < 0)
392 			spi->irq = 0;
393 	}
394 
395 	ret = dev_pm_domain_attach(dev, true);
396 	if (ret)
397 		return ret;
398 
399 	if (sdrv->probe) {
400 		ret = sdrv->probe(spi);
401 		if (ret)
402 			dev_pm_domain_detach(dev, true);
403 	}
404 
405 	return ret;
406 }
407 
408 static int spi_remove(struct device *dev)
409 {
410 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
411 
412 	if (sdrv->remove) {
413 		int ret;
414 
415 		ret = sdrv->remove(to_spi_device(dev));
416 		if (ret)
417 			dev_warn(dev,
418 				 "Failed to unbind driver (%pe), ignoring\n",
419 				 ERR_PTR(ret));
420 	}
421 
422 	dev_pm_domain_detach(dev, true);
423 
424 	return 0;
425 }
426 
427 static void spi_shutdown(struct device *dev)
428 {
429 	if (dev->driver) {
430 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
431 
432 		if (sdrv->shutdown)
433 			sdrv->shutdown(to_spi_device(dev));
434 	}
435 }
436 
437 struct bus_type spi_bus_type = {
438 	.name		= "spi",
439 	.dev_groups	= spi_dev_groups,
440 	.match		= spi_match_device,
441 	.uevent		= spi_uevent,
442 	.probe		= spi_probe,
443 	.remove		= spi_remove,
444 	.shutdown	= spi_shutdown,
445 };
446 EXPORT_SYMBOL_GPL(spi_bus_type);
447 
448 /**
449  * __spi_register_driver - register a SPI driver
450  * @owner: owner module of the driver to register
451  * @sdrv: the driver to register
452  * Context: can sleep
453  *
454  * Return: zero on success, else a negative error code.
455  */
456 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
457 {
458 	sdrv->driver.owner = owner;
459 	sdrv->driver.bus = &spi_bus_type;
460 	return driver_register(&sdrv->driver);
461 }
462 EXPORT_SYMBOL_GPL(__spi_register_driver);
463 
464 /*-------------------------------------------------------------------------*/
465 
466 /* SPI devices should normally not be created by SPI device drivers; that
467  * would make them board-specific.  Similarly with SPI controller drivers.
468  * Device registration normally goes into like arch/.../mach.../board-YYY.c
469  * with other readonly (flashable) information about mainboard devices.
470  */
471 
472 struct boardinfo {
473 	struct list_head	list;
474 	struct spi_board_info	board_info;
475 };
476 
477 static LIST_HEAD(board_list);
478 static LIST_HEAD(spi_controller_list);
479 
480 /*
481  * Used to protect add/del operation for board_info list and
482  * spi_controller list, and their matching process
483  * also used to protect object of type struct idr
484  */
485 static DEFINE_MUTEX(board_lock);
486 
487 /*
488  * Prevents addition of devices with same chip select and
489  * addition of devices below an unregistering controller.
490  */
491 static DEFINE_MUTEX(spi_add_lock);
492 
493 /**
494  * spi_alloc_device - Allocate a new SPI device
495  * @ctlr: Controller to which device is connected
496  * Context: can sleep
497  *
498  * Allows a driver to allocate and initialize a spi_device without
499  * registering it immediately.  This allows a driver to directly
500  * fill the spi_device with device parameters before calling
501  * spi_add_device() on it.
502  *
503  * Caller is responsible to call spi_add_device() on the returned
504  * spi_device structure to add it to the SPI controller.  If the caller
505  * needs to discard the spi_device without adding it, then it should
506  * call spi_dev_put() on it.
507  *
508  * Return: a pointer to the new device, or NULL.
509  */
510 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
511 {
512 	struct spi_device	*spi;
513 
514 	if (!spi_controller_get(ctlr))
515 		return NULL;
516 
517 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
518 	if (!spi) {
519 		spi_controller_put(ctlr);
520 		return NULL;
521 	}
522 
523 	spi->master = spi->controller = ctlr;
524 	spi->dev.parent = &ctlr->dev;
525 	spi->dev.bus = &spi_bus_type;
526 	spi->dev.release = spidev_release;
527 	spi->cs_gpio = -ENOENT;
528 	spi->mode = ctlr->buswidth_override_bits;
529 
530 	spin_lock_init(&spi->statistics.lock);
531 
532 	device_initialize(&spi->dev);
533 	return spi;
534 }
535 EXPORT_SYMBOL_GPL(spi_alloc_device);
536 
537 static void spi_dev_set_name(struct spi_device *spi)
538 {
539 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
540 
541 	if (adev) {
542 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
543 		return;
544 	}
545 
546 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
547 		     spi->chip_select);
548 }
549 
550 static int spi_dev_check(struct device *dev, void *data)
551 {
552 	struct spi_device *spi = to_spi_device(dev);
553 	struct spi_device *new_spi = data;
554 
555 	if (spi->controller == new_spi->controller &&
556 	    spi->chip_select == new_spi->chip_select)
557 		return -EBUSY;
558 	return 0;
559 }
560 
561 /**
562  * spi_add_device - Add spi_device allocated with spi_alloc_device
563  * @spi: spi_device to register
564  *
565  * Companion function to spi_alloc_device.  Devices allocated with
566  * spi_alloc_device can be added onto the spi bus with this function.
567  *
568  * Return: 0 on success; negative errno on failure
569  */
570 int spi_add_device(struct spi_device *spi)
571 {
572 	struct spi_controller *ctlr = spi->controller;
573 	struct device *dev = ctlr->dev.parent;
574 	int status;
575 
576 	/* Chipselects are numbered 0..max; validate. */
577 	if (spi->chip_select >= ctlr->num_chipselect) {
578 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
579 			ctlr->num_chipselect);
580 		return -EINVAL;
581 	}
582 
583 	/* Set the bus ID string */
584 	spi_dev_set_name(spi);
585 
586 	/* We need to make sure there's no other device with this
587 	 * chipselect **BEFORE** we call setup(), else we'll trash
588 	 * its configuration.  Lock against concurrent add() calls.
589 	 */
590 	mutex_lock(&spi_add_lock);
591 
592 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
593 	if (status) {
594 		dev_err(dev, "chipselect %d already in use\n",
595 				spi->chip_select);
596 		goto done;
597 	}
598 
599 	/* Controller may unregister concurrently */
600 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
601 	    !device_is_registered(&ctlr->dev)) {
602 		status = -ENODEV;
603 		goto done;
604 	}
605 
606 	/* Descriptors take precedence */
607 	if (ctlr->cs_gpiods)
608 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
609 	else if (ctlr->cs_gpios)
610 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
611 
612 	/* Drivers may modify this initial i/o setup, but will
613 	 * normally rely on the device being setup.  Devices
614 	 * using SPI_CS_HIGH can't coexist well otherwise...
615 	 */
616 	status = spi_setup(spi);
617 	if (status < 0) {
618 		dev_err(dev, "can't setup %s, status %d\n",
619 				dev_name(&spi->dev), status);
620 		goto done;
621 	}
622 
623 	/* Device may be bound to an active driver when this returns */
624 	status = device_add(&spi->dev);
625 	if (status < 0)
626 		dev_err(dev, "can't add %s, status %d\n",
627 				dev_name(&spi->dev), status);
628 	else
629 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
630 
631 done:
632 	mutex_unlock(&spi_add_lock);
633 	return status;
634 }
635 EXPORT_SYMBOL_GPL(spi_add_device);
636 
637 /**
638  * spi_new_device - instantiate one new SPI device
639  * @ctlr: Controller to which device is connected
640  * @chip: Describes the SPI device
641  * Context: can sleep
642  *
643  * On typical mainboards, this is purely internal; and it's not needed
644  * after board init creates the hard-wired devices.  Some development
645  * platforms may not be able to use spi_register_board_info though, and
646  * this is exported so that for example a USB or parport based adapter
647  * driver could add devices (which it would learn about out-of-band).
648  *
649  * Return: the new device, or NULL.
650  */
651 struct spi_device *spi_new_device(struct spi_controller *ctlr,
652 				  struct spi_board_info *chip)
653 {
654 	struct spi_device	*proxy;
655 	int			status;
656 
657 	/* NOTE:  caller did any chip->bus_num checks necessary.
658 	 *
659 	 * Also, unless we change the return value convention to use
660 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
661 	 * suggests syslogged diagnostics are best here (ugh).
662 	 */
663 
664 	proxy = spi_alloc_device(ctlr);
665 	if (!proxy)
666 		return NULL;
667 
668 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
669 
670 	proxy->chip_select = chip->chip_select;
671 	proxy->max_speed_hz = chip->max_speed_hz;
672 	proxy->mode = chip->mode;
673 	proxy->irq = chip->irq;
674 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
675 	proxy->dev.platform_data = (void *) chip->platform_data;
676 	proxy->controller_data = chip->controller_data;
677 	proxy->controller_state = NULL;
678 
679 	if (chip->properties) {
680 		status = device_add_properties(&proxy->dev, chip->properties);
681 		if (status) {
682 			dev_err(&ctlr->dev,
683 				"failed to add properties to '%s': %d\n",
684 				chip->modalias, status);
685 			goto err_dev_put;
686 		}
687 	}
688 
689 	status = spi_add_device(proxy);
690 	if (status < 0)
691 		goto err_remove_props;
692 
693 	return proxy;
694 
695 err_remove_props:
696 	if (chip->properties)
697 		device_remove_properties(&proxy->dev);
698 err_dev_put:
699 	spi_dev_put(proxy);
700 	return NULL;
701 }
702 EXPORT_SYMBOL_GPL(spi_new_device);
703 
704 /**
705  * spi_unregister_device - unregister a single SPI device
706  * @spi: spi_device to unregister
707  *
708  * Start making the passed SPI device vanish. Normally this would be handled
709  * by spi_unregister_controller().
710  */
711 void spi_unregister_device(struct spi_device *spi)
712 {
713 	if (!spi)
714 		return;
715 
716 	if (spi->dev.of_node) {
717 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
718 		of_node_put(spi->dev.of_node);
719 	}
720 	if (ACPI_COMPANION(&spi->dev))
721 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
722 	device_unregister(&spi->dev);
723 }
724 EXPORT_SYMBOL_GPL(spi_unregister_device);
725 
726 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
727 					      struct spi_board_info *bi)
728 {
729 	struct spi_device *dev;
730 
731 	if (ctlr->bus_num != bi->bus_num)
732 		return;
733 
734 	dev = spi_new_device(ctlr, bi);
735 	if (!dev)
736 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
737 			bi->modalias);
738 }
739 
740 /**
741  * spi_register_board_info - register SPI devices for a given board
742  * @info: array of chip descriptors
743  * @n: how many descriptors are provided
744  * Context: can sleep
745  *
746  * Board-specific early init code calls this (probably during arch_initcall)
747  * with segments of the SPI device table.  Any device nodes are created later,
748  * after the relevant parent SPI controller (bus_num) is defined.  We keep
749  * this table of devices forever, so that reloading a controller driver will
750  * not make Linux forget about these hard-wired devices.
751  *
752  * Other code can also call this, e.g. a particular add-on board might provide
753  * SPI devices through its expansion connector, so code initializing that board
754  * would naturally declare its SPI devices.
755  *
756  * The board info passed can safely be __initdata ... but be careful of
757  * any embedded pointers (platform_data, etc), they're copied as-is.
758  * Device properties are deep-copied though.
759  *
760  * Return: zero on success, else a negative error code.
761  */
762 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
763 {
764 	struct boardinfo *bi;
765 	int i;
766 
767 	if (!n)
768 		return 0;
769 
770 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
771 	if (!bi)
772 		return -ENOMEM;
773 
774 	for (i = 0; i < n; i++, bi++, info++) {
775 		struct spi_controller *ctlr;
776 
777 		memcpy(&bi->board_info, info, sizeof(*info));
778 		if (info->properties) {
779 			bi->board_info.properties =
780 					property_entries_dup(info->properties);
781 			if (IS_ERR(bi->board_info.properties))
782 				return PTR_ERR(bi->board_info.properties);
783 		}
784 
785 		mutex_lock(&board_lock);
786 		list_add_tail(&bi->list, &board_list);
787 		list_for_each_entry(ctlr, &spi_controller_list, list)
788 			spi_match_controller_to_boardinfo(ctlr,
789 							  &bi->board_info);
790 		mutex_unlock(&board_lock);
791 	}
792 
793 	return 0;
794 }
795 
796 /*-------------------------------------------------------------------------*/
797 
798 static void spi_set_cs(struct spi_device *spi, bool enable)
799 {
800 	bool enable1 = enable;
801 
802 	/*
803 	 * Avoid calling into the driver (or doing delays) if the chip select
804 	 * isn't actually changing from the last time this was called.
805 	 */
806 	if ((spi->controller->last_cs_enable == enable) &&
807 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
808 		return;
809 
810 	spi->controller->last_cs_enable = enable;
811 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
812 
813 	if (!spi->controller->set_cs_timing) {
814 		if (enable1)
815 			spi_delay_exec(&spi->controller->cs_setup, NULL);
816 		else
817 			spi_delay_exec(&spi->controller->cs_hold, NULL);
818 	}
819 
820 	if (spi->mode & SPI_CS_HIGH)
821 		enable = !enable;
822 
823 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
824 		if (!(spi->mode & SPI_NO_CS)) {
825 			if (spi->cs_gpiod)
826 				/* polarity handled by gpiolib */
827 				gpiod_set_value_cansleep(spi->cs_gpiod,
828 							 enable1);
829 			else
830 				/*
831 				 * invert the enable line, as active low is
832 				 * default for SPI.
833 				 */
834 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
835 		}
836 		/* Some SPI masters need both GPIO CS & slave_select */
837 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
838 		    spi->controller->set_cs)
839 			spi->controller->set_cs(spi, !enable);
840 	} else if (spi->controller->set_cs) {
841 		spi->controller->set_cs(spi, !enable);
842 	}
843 
844 	if (!spi->controller->set_cs_timing) {
845 		if (!enable1)
846 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
847 	}
848 }
849 
850 #ifdef CONFIG_HAS_DMA
851 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
852 		struct sg_table *sgt, void *buf, size_t len,
853 		enum dma_data_direction dir)
854 {
855 	const bool vmalloced_buf = is_vmalloc_addr(buf);
856 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
857 #ifdef CONFIG_HIGHMEM
858 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
859 				(unsigned long)buf < (PKMAP_BASE +
860 					(LAST_PKMAP * PAGE_SIZE)));
861 #else
862 	const bool kmap_buf = false;
863 #endif
864 	int desc_len;
865 	int sgs;
866 	struct page *vm_page;
867 	struct scatterlist *sg;
868 	void *sg_buf;
869 	size_t min;
870 	int i, ret;
871 
872 	if (vmalloced_buf || kmap_buf) {
873 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
874 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
875 	} else if (virt_addr_valid(buf)) {
876 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
877 		sgs = DIV_ROUND_UP(len, desc_len);
878 	} else {
879 		return -EINVAL;
880 	}
881 
882 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
883 	if (ret != 0)
884 		return ret;
885 
886 	sg = &sgt->sgl[0];
887 	for (i = 0; i < sgs; i++) {
888 
889 		if (vmalloced_buf || kmap_buf) {
890 			/*
891 			 * Next scatterlist entry size is the minimum between
892 			 * the desc_len and the remaining buffer length that
893 			 * fits in a page.
894 			 */
895 			min = min_t(size_t, desc_len,
896 				    min_t(size_t, len,
897 					  PAGE_SIZE - offset_in_page(buf)));
898 			if (vmalloced_buf)
899 				vm_page = vmalloc_to_page(buf);
900 			else
901 				vm_page = kmap_to_page(buf);
902 			if (!vm_page) {
903 				sg_free_table(sgt);
904 				return -ENOMEM;
905 			}
906 			sg_set_page(sg, vm_page,
907 				    min, offset_in_page(buf));
908 		} else {
909 			min = min_t(size_t, len, desc_len);
910 			sg_buf = buf;
911 			sg_set_buf(sg, sg_buf, min);
912 		}
913 
914 		buf += min;
915 		len -= min;
916 		sg = sg_next(sg);
917 	}
918 
919 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
920 	if (!ret)
921 		ret = -ENOMEM;
922 	if (ret < 0) {
923 		sg_free_table(sgt);
924 		return ret;
925 	}
926 
927 	sgt->nents = ret;
928 
929 	return 0;
930 }
931 
932 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
933 		   struct sg_table *sgt, enum dma_data_direction dir)
934 {
935 	if (sgt->orig_nents) {
936 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
937 		sg_free_table(sgt);
938 	}
939 }
940 
941 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
942 {
943 	struct device *tx_dev, *rx_dev;
944 	struct spi_transfer *xfer;
945 	int ret;
946 
947 	if (!ctlr->can_dma)
948 		return 0;
949 
950 	if (ctlr->dma_tx)
951 		tx_dev = ctlr->dma_tx->device->dev;
952 	else
953 		tx_dev = ctlr->dev.parent;
954 
955 	if (ctlr->dma_rx)
956 		rx_dev = ctlr->dma_rx->device->dev;
957 	else
958 		rx_dev = ctlr->dev.parent;
959 
960 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
961 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
962 			continue;
963 
964 		if (xfer->tx_buf != NULL) {
965 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
966 					  (void *)xfer->tx_buf, xfer->len,
967 					  DMA_TO_DEVICE);
968 			if (ret != 0)
969 				return ret;
970 		}
971 
972 		if (xfer->rx_buf != NULL) {
973 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
974 					  xfer->rx_buf, xfer->len,
975 					  DMA_FROM_DEVICE);
976 			if (ret != 0) {
977 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
978 					      DMA_TO_DEVICE);
979 				return ret;
980 			}
981 		}
982 	}
983 
984 	ctlr->cur_msg_mapped = true;
985 
986 	return 0;
987 }
988 
989 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
990 {
991 	struct spi_transfer *xfer;
992 	struct device *tx_dev, *rx_dev;
993 
994 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
995 		return 0;
996 
997 	if (ctlr->dma_tx)
998 		tx_dev = ctlr->dma_tx->device->dev;
999 	else
1000 		tx_dev = ctlr->dev.parent;
1001 
1002 	if (ctlr->dma_rx)
1003 		rx_dev = ctlr->dma_rx->device->dev;
1004 	else
1005 		rx_dev = ctlr->dev.parent;
1006 
1007 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1008 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1009 			continue;
1010 
1011 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1012 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1013 	}
1014 
1015 	ctlr->cur_msg_mapped = false;
1016 
1017 	return 0;
1018 }
1019 #else /* !CONFIG_HAS_DMA */
1020 static inline int __spi_map_msg(struct spi_controller *ctlr,
1021 				struct spi_message *msg)
1022 {
1023 	return 0;
1024 }
1025 
1026 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1027 				  struct spi_message *msg)
1028 {
1029 	return 0;
1030 }
1031 #endif /* !CONFIG_HAS_DMA */
1032 
1033 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1034 				struct spi_message *msg)
1035 {
1036 	struct spi_transfer *xfer;
1037 
1038 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1039 		/*
1040 		 * Restore the original value of tx_buf or rx_buf if they are
1041 		 * NULL.
1042 		 */
1043 		if (xfer->tx_buf == ctlr->dummy_tx)
1044 			xfer->tx_buf = NULL;
1045 		if (xfer->rx_buf == ctlr->dummy_rx)
1046 			xfer->rx_buf = NULL;
1047 	}
1048 
1049 	return __spi_unmap_msg(ctlr, msg);
1050 }
1051 
1052 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1053 {
1054 	struct spi_transfer *xfer;
1055 	void *tmp;
1056 	unsigned int max_tx, max_rx;
1057 
1058 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1059 		&& !(msg->spi->mode & SPI_3WIRE)) {
1060 		max_tx = 0;
1061 		max_rx = 0;
1062 
1063 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1064 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1065 			    !xfer->tx_buf)
1066 				max_tx = max(xfer->len, max_tx);
1067 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1068 			    !xfer->rx_buf)
1069 				max_rx = max(xfer->len, max_rx);
1070 		}
1071 
1072 		if (max_tx) {
1073 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1074 				       GFP_KERNEL | GFP_DMA);
1075 			if (!tmp)
1076 				return -ENOMEM;
1077 			ctlr->dummy_tx = tmp;
1078 			memset(tmp, 0, max_tx);
1079 		}
1080 
1081 		if (max_rx) {
1082 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1083 				       GFP_KERNEL | GFP_DMA);
1084 			if (!tmp)
1085 				return -ENOMEM;
1086 			ctlr->dummy_rx = tmp;
1087 		}
1088 
1089 		if (max_tx || max_rx) {
1090 			list_for_each_entry(xfer, &msg->transfers,
1091 					    transfer_list) {
1092 				if (!xfer->len)
1093 					continue;
1094 				if (!xfer->tx_buf)
1095 					xfer->tx_buf = ctlr->dummy_tx;
1096 				if (!xfer->rx_buf)
1097 					xfer->rx_buf = ctlr->dummy_rx;
1098 			}
1099 		}
1100 	}
1101 
1102 	return __spi_map_msg(ctlr, msg);
1103 }
1104 
1105 static int spi_transfer_wait(struct spi_controller *ctlr,
1106 			     struct spi_message *msg,
1107 			     struct spi_transfer *xfer)
1108 {
1109 	struct spi_statistics *statm = &ctlr->statistics;
1110 	struct spi_statistics *stats = &msg->spi->statistics;
1111 	u32 speed_hz = xfer->speed_hz;
1112 	unsigned long long ms;
1113 
1114 	if (spi_controller_is_slave(ctlr)) {
1115 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1116 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1117 			return -EINTR;
1118 		}
1119 	} else {
1120 		if (!speed_hz)
1121 			speed_hz = 100000;
1122 
1123 		ms = 8LL * 1000LL * xfer->len;
1124 		do_div(ms, speed_hz);
1125 		ms += ms + 200; /* some tolerance */
1126 
1127 		if (ms > UINT_MAX)
1128 			ms = UINT_MAX;
1129 
1130 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1131 						 msecs_to_jiffies(ms));
1132 
1133 		if (ms == 0) {
1134 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1135 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1136 			dev_err(&msg->spi->dev,
1137 				"SPI transfer timed out\n");
1138 			return -ETIMEDOUT;
1139 		}
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 static void _spi_transfer_delay_ns(u32 ns)
1146 {
1147 	if (!ns)
1148 		return;
1149 	if (ns <= 1000) {
1150 		ndelay(ns);
1151 	} else {
1152 		u32 us = DIV_ROUND_UP(ns, 1000);
1153 
1154 		if (us <= 10)
1155 			udelay(us);
1156 		else
1157 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1158 	}
1159 }
1160 
1161 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1162 {
1163 	u32 delay = _delay->value;
1164 	u32 unit = _delay->unit;
1165 	u32 hz;
1166 
1167 	if (!delay)
1168 		return 0;
1169 
1170 	switch (unit) {
1171 	case SPI_DELAY_UNIT_USECS:
1172 		delay *= 1000;
1173 		break;
1174 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1175 		break;
1176 	case SPI_DELAY_UNIT_SCK:
1177 		/* clock cycles need to be obtained from spi_transfer */
1178 		if (!xfer)
1179 			return -EINVAL;
1180 		/* if there is no effective speed know, then approximate
1181 		 * by underestimating with half the requested hz
1182 		 */
1183 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1184 		if (!hz)
1185 			return -EINVAL;
1186 		delay *= DIV_ROUND_UP(1000000000, hz);
1187 		break;
1188 	default:
1189 		return -EINVAL;
1190 	}
1191 
1192 	return delay;
1193 }
1194 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1195 
1196 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1197 {
1198 	int delay;
1199 
1200 	might_sleep();
1201 
1202 	if (!_delay)
1203 		return -EINVAL;
1204 
1205 	delay = spi_delay_to_ns(_delay, xfer);
1206 	if (delay < 0)
1207 		return delay;
1208 
1209 	_spi_transfer_delay_ns(delay);
1210 
1211 	return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(spi_delay_exec);
1214 
1215 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1216 					  struct spi_transfer *xfer)
1217 {
1218 	u32 delay = xfer->cs_change_delay.value;
1219 	u32 unit = xfer->cs_change_delay.unit;
1220 	int ret;
1221 
1222 	/* return early on "fast" mode - for everything but USECS */
1223 	if (!delay) {
1224 		if (unit == SPI_DELAY_UNIT_USECS)
1225 			_spi_transfer_delay_ns(10000);
1226 		return;
1227 	}
1228 
1229 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1230 	if (ret) {
1231 		dev_err_once(&msg->spi->dev,
1232 			     "Use of unsupported delay unit %i, using default of 10us\n",
1233 			     unit);
1234 		_spi_transfer_delay_ns(10000);
1235 	}
1236 }
1237 
1238 /*
1239  * spi_transfer_one_message - Default implementation of transfer_one_message()
1240  *
1241  * This is a standard implementation of transfer_one_message() for
1242  * drivers which implement a transfer_one() operation.  It provides
1243  * standard handling of delays and chip select management.
1244  */
1245 static int spi_transfer_one_message(struct spi_controller *ctlr,
1246 				    struct spi_message *msg)
1247 {
1248 	struct spi_transfer *xfer;
1249 	bool keep_cs = false;
1250 	int ret = 0;
1251 	struct spi_statistics *statm = &ctlr->statistics;
1252 	struct spi_statistics *stats = &msg->spi->statistics;
1253 
1254 	spi_set_cs(msg->spi, true);
1255 
1256 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1257 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1258 
1259 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1260 		trace_spi_transfer_start(msg, xfer);
1261 
1262 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1263 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1264 
1265 		if (!ctlr->ptp_sts_supported) {
1266 			xfer->ptp_sts_word_pre = 0;
1267 			ptp_read_system_prets(xfer->ptp_sts);
1268 		}
1269 
1270 		if (xfer->tx_buf || xfer->rx_buf) {
1271 			reinit_completion(&ctlr->xfer_completion);
1272 
1273 fallback_pio:
1274 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1275 			if (ret < 0) {
1276 				if (ctlr->cur_msg_mapped &&
1277 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1278 					__spi_unmap_msg(ctlr, msg);
1279 					ctlr->fallback = true;
1280 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1281 					goto fallback_pio;
1282 				}
1283 
1284 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1285 							       errors);
1286 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1287 							       errors);
1288 				dev_err(&msg->spi->dev,
1289 					"SPI transfer failed: %d\n", ret);
1290 				goto out;
1291 			}
1292 
1293 			if (ret > 0) {
1294 				ret = spi_transfer_wait(ctlr, msg, xfer);
1295 				if (ret < 0)
1296 					msg->status = ret;
1297 			}
1298 		} else {
1299 			if (xfer->len)
1300 				dev_err(&msg->spi->dev,
1301 					"Bufferless transfer has length %u\n",
1302 					xfer->len);
1303 		}
1304 
1305 		if (!ctlr->ptp_sts_supported) {
1306 			ptp_read_system_postts(xfer->ptp_sts);
1307 			xfer->ptp_sts_word_post = xfer->len;
1308 		}
1309 
1310 		trace_spi_transfer_stop(msg, xfer);
1311 
1312 		if (msg->status != -EINPROGRESS)
1313 			goto out;
1314 
1315 		spi_transfer_delay_exec(xfer);
1316 
1317 		if (xfer->cs_change) {
1318 			if (list_is_last(&xfer->transfer_list,
1319 					 &msg->transfers)) {
1320 				keep_cs = true;
1321 			} else {
1322 				spi_set_cs(msg->spi, false);
1323 				_spi_transfer_cs_change_delay(msg, xfer);
1324 				spi_set_cs(msg->spi, true);
1325 			}
1326 		}
1327 
1328 		msg->actual_length += xfer->len;
1329 	}
1330 
1331 out:
1332 	if (ret != 0 || !keep_cs)
1333 		spi_set_cs(msg->spi, false);
1334 
1335 	if (msg->status == -EINPROGRESS)
1336 		msg->status = ret;
1337 
1338 	if (msg->status && ctlr->handle_err)
1339 		ctlr->handle_err(ctlr, msg);
1340 
1341 	spi_finalize_current_message(ctlr);
1342 
1343 	return ret;
1344 }
1345 
1346 /**
1347  * spi_finalize_current_transfer - report completion of a transfer
1348  * @ctlr: the controller reporting completion
1349  *
1350  * Called by SPI drivers using the core transfer_one_message()
1351  * implementation to notify it that the current interrupt driven
1352  * transfer has finished and the next one may be scheduled.
1353  */
1354 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1355 {
1356 	complete(&ctlr->xfer_completion);
1357 }
1358 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1359 
1360 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1361 {
1362 	if (ctlr->auto_runtime_pm) {
1363 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1364 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1365 	}
1366 }
1367 
1368 /**
1369  * __spi_pump_messages - function which processes spi message queue
1370  * @ctlr: controller to process queue for
1371  * @in_kthread: true if we are in the context of the message pump thread
1372  *
1373  * This function checks if there is any spi message in the queue that
1374  * needs processing and if so call out to the driver to initialize hardware
1375  * and transfer each message.
1376  *
1377  * Note that it is called both from the kthread itself and also from
1378  * inside spi_sync(); the queue extraction handling at the top of the
1379  * function should deal with this safely.
1380  */
1381 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1382 {
1383 	struct spi_transfer *xfer;
1384 	struct spi_message *msg;
1385 	bool was_busy = false;
1386 	unsigned long flags;
1387 	int ret;
1388 
1389 	/* Lock queue */
1390 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1391 
1392 	/* Make sure we are not already running a message */
1393 	if (ctlr->cur_msg) {
1394 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1395 		return;
1396 	}
1397 
1398 	/* If another context is idling the device then defer */
1399 	if (ctlr->idling) {
1400 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1401 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402 		return;
1403 	}
1404 
1405 	/* Check if the queue is idle */
1406 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1407 		if (!ctlr->busy) {
1408 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1409 			return;
1410 		}
1411 
1412 		/* Defer any non-atomic teardown to the thread */
1413 		if (!in_kthread) {
1414 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1415 			    !ctlr->unprepare_transfer_hardware) {
1416 				spi_idle_runtime_pm(ctlr);
1417 				ctlr->busy = false;
1418 				trace_spi_controller_idle(ctlr);
1419 			} else {
1420 				kthread_queue_work(ctlr->kworker,
1421 						   &ctlr->pump_messages);
1422 			}
1423 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424 			return;
1425 		}
1426 
1427 		ctlr->busy = false;
1428 		ctlr->idling = true;
1429 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1430 
1431 		kfree(ctlr->dummy_rx);
1432 		ctlr->dummy_rx = NULL;
1433 		kfree(ctlr->dummy_tx);
1434 		ctlr->dummy_tx = NULL;
1435 		if (ctlr->unprepare_transfer_hardware &&
1436 		    ctlr->unprepare_transfer_hardware(ctlr))
1437 			dev_err(&ctlr->dev,
1438 				"failed to unprepare transfer hardware\n");
1439 		spi_idle_runtime_pm(ctlr);
1440 		trace_spi_controller_idle(ctlr);
1441 
1442 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1443 		ctlr->idling = false;
1444 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1445 		return;
1446 	}
1447 
1448 	/* Extract head of queue */
1449 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1450 	ctlr->cur_msg = msg;
1451 
1452 	list_del_init(&msg->queue);
1453 	if (ctlr->busy)
1454 		was_busy = true;
1455 	else
1456 		ctlr->busy = true;
1457 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1458 
1459 	mutex_lock(&ctlr->io_mutex);
1460 
1461 	if (!was_busy && ctlr->auto_runtime_pm) {
1462 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1463 		if (ret < 0) {
1464 			pm_runtime_put_noidle(ctlr->dev.parent);
1465 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1466 				ret);
1467 			mutex_unlock(&ctlr->io_mutex);
1468 			return;
1469 		}
1470 	}
1471 
1472 	if (!was_busy)
1473 		trace_spi_controller_busy(ctlr);
1474 
1475 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1476 		ret = ctlr->prepare_transfer_hardware(ctlr);
1477 		if (ret) {
1478 			dev_err(&ctlr->dev,
1479 				"failed to prepare transfer hardware: %d\n",
1480 				ret);
1481 
1482 			if (ctlr->auto_runtime_pm)
1483 				pm_runtime_put(ctlr->dev.parent);
1484 
1485 			msg->status = ret;
1486 			spi_finalize_current_message(ctlr);
1487 
1488 			mutex_unlock(&ctlr->io_mutex);
1489 			return;
1490 		}
1491 	}
1492 
1493 	trace_spi_message_start(msg);
1494 
1495 	if (ctlr->prepare_message) {
1496 		ret = ctlr->prepare_message(ctlr, msg);
1497 		if (ret) {
1498 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1499 				ret);
1500 			msg->status = ret;
1501 			spi_finalize_current_message(ctlr);
1502 			goto out;
1503 		}
1504 		ctlr->cur_msg_prepared = true;
1505 	}
1506 
1507 	ret = spi_map_msg(ctlr, msg);
1508 	if (ret) {
1509 		msg->status = ret;
1510 		spi_finalize_current_message(ctlr);
1511 		goto out;
1512 	}
1513 
1514 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1515 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1516 			xfer->ptp_sts_word_pre = 0;
1517 			ptp_read_system_prets(xfer->ptp_sts);
1518 		}
1519 	}
1520 
1521 	ret = ctlr->transfer_one_message(ctlr, msg);
1522 	if (ret) {
1523 		dev_err(&ctlr->dev,
1524 			"failed to transfer one message from queue\n");
1525 		goto out;
1526 	}
1527 
1528 out:
1529 	mutex_unlock(&ctlr->io_mutex);
1530 
1531 	/* Prod the scheduler in case transfer_one() was busy waiting */
1532 	if (!ret)
1533 		cond_resched();
1534 }
1535 
1536 /**
1537  * spi_pump_messages - kthread work function which processes spi message queue
1538  * @work: pointer to kthread work struct contained in the controller struct
1539  */
1540 static void spi_pump_messages(struct kthread_work *work)
1541 {
1542 	struct spi_controller *ctlr =
1543 		container_of(work, struct spi_controller, pump_messages);
1544 
1545 	__spi_pump_messages(ctlr, true);
1546 }
1547 
1548 /**
1549  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1550  *			    TX timestamp for the requested byte from the SPI
1551  *			    transfer. The frequency with which this function
1552  *			    must be called (once per word, once for the whole
1553  *			    transfer, once per batch of words etc) is arbitrary
1554  *			    as long as the @tx buffer offset is greater than or
1555  *			    equal to the requested byte at the time of the
1556  *			    call. The timestamp is only taken once, at the
1557  *			    first such call. It is assumed that the driver
1558  *			    advances its @tx buffer pointer monotonically.
1559  * @ctlr: Pointer to the spi_controller structure of the driver
1560  * @xfer: Pointer to the transfer being timestamped
1561  * @progress: How many words (not bytes) have been transferred so far
1562  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1563  *	      transfer, for less jitter in time measurement. Only compatible
1564  *	      with PIO drivers. If true, must follow up with
1565  *	      spi_take_timestamp_post or otherwise system will crash.
1566  *	      WARNING: for fully predictable results, the CPU frequency must
1567  *	      also be under control (governor).
1568  */
1569 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1570 			    struct spi_transfer *xfer,
1571 			    size_t progress, bool irqs_off)
1572 {
1573 	if (!xfer->ptp_sts)
1574 		return;
1575 
1576 	if (xfer->timestamped)
1577 		return;
1578 
1579 	if (progress > xfer->ptp_sts_word_pre)
1580 		return;
1581 
1582 	/* Capture the resolution of the timestamp */
1583 	xfer->ptp_sts_word_pre = progress;
1584 
1585 	if (irqs_off) {
1586 		local_irq_save(ctlr->irq_flags);
1587 		preempt_disable();
1588 	}
1589 
1590 	ptp_read_system_prets(xfer->ptp_sts);
1591 }
1592 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1593 
1594 /**
1595  * spi_take_timestamp_post - helper for drivers to collect the end of the
1596  *			     TX timestamp for the requested byte from the SPI
1597  *			     transfer. Can be called with an arbitrary
1598  *			     frequency: only the first call where @tx exceeds
1599  *			     or is equal to the requested word will be
1600  *			     timestamped.
1601  * @ctlr: Pointer to the spi_controller structure of the driver
1602  * @xfer: Pointer to the transfer being timestamped
1603  * @progress: How many words (not bytes) have been transferred so far
1604  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1605  */
1606 void spi_take_timestamp_post(struct spi_controller *ctlr,
1607 			     struct spi_transfer *xfer,
1608 			     size_t progress, bool irqs_off)
1609 {
1610 	if (!xfer->ptp_sts)
1611 		return;
1612 
1613 	if (xfer->timestamped)
1614 		return;
1615 
1616 	if (progress < xfer->ptp_sts_word_post)
1617 		return;
1618 
1619 	ptp_read_system_postts(xfer->ptp_sts);
1620 
1621 	if (irqs_off) {
1622 		local_irq_restore(ctlr->irq_flags);
1623 		preempt_enable();
1624 	}
1625 
1626 	/* Capture the resolution of the timestamp */
1627 	xfer->ptp_sts_word_post = progress;
1628 
1629 	xfer->timestamped = true;
1630 }
1631 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1632 
1633 /**
1634  * spi_set_thread_rt - set the controller to pump at realtime priority
1635  * @ctlr: controller to boost priority of
1636  *
1637  * This can be called because the controller requested realtime priority
1638  * (by setting the ->rt value before calling spi_register_controller()) or
1639  * because a device on the bus said that its transfers needed realtime
1640  * priority.
1641  *
1642  * NOTE: at the moment if any device on a bus says it needs realtime then
1643  * the thread will be at realtime priority for all transfers on that
1644  * controller.  If this eventually becomes a problem we may see if we can
1645  * find a way to boost the priority only temporarily during relevant
1646  * transfers.
1647  */
1648 static void spi_set_thread_rt(struct spi_controller *ctlr)
1649 {
1650 	dev_info(&ctlr->dev,
1651 		"will run message pump with realtime priority\n");
1652 	sched_set_fifo(ctlr->kworker->task);
1653 }
1654 
1655 static int spi_init_queue(struct spi_controller *ctlr)
1656 {
1657 	ctlr->running = false;
1658 	ctlr->busy = false;
1659 
1660 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1661 	if (IS_ERR(ctlr->kworker)) {
1662 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1663 		return PTR_ERR(ctlr->kworker);
1664 	}
1665 
1666 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1667 
1668 	/*
1669 	 * Controller config will indicate if this controller should run the
1670 	 * message pump with high (realtime) priority to reduce the transfer
1671 	 * latency on the bus by minimising the delay between a transfer
1672 	 * request and the scheduling of the message pump thread. Without this
1673 	 * setting the message pump thread will remain at default priority.
1674 	 */
1675 	if (ctlr->rt)
1676 		spi_set_thread_rt(ctlr);
1677 
1678 	return 0;
1679 }
1680 
1681 /**
1682  * spi_get_next_queued_message() - called by driver to check for queued
1683  * messages
1684  * @ctlr: the controller to check for queued messages
1685  *
1686  * If there are more messages in the queue, the next message is returned from
1687  * this call.
1688  *
1689  * Return: the next message in the queue, else NULL if the queue is empty.
1690  */
1691 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1692 {
1693 	struct spi_message *next;
1694 	unsigned long flags;
1695 
1696 	/* get a pointer to the next message, if any */
1697 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1698 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1699 					queue);
1700 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1701 
1702 	return next;
1703 }
1704 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1705 
1706 /**
1707  * spi_finalize_current_message() - the current message is complete
1708  * @ctlr: the controller to return the message to
1709  *
1710  * Called by the driver to notify the core that the message in the front of the
1711  * queue is complete and can be removed from the queue.
1712  */
1713 void spi_finalize_current_message(struct spi_controller *ctlr)
1714 {
1715 	struct spi_transfer *xfer;
1716 	struct spi_message *mesg;
1717 	unsigned long flags;
1718 	int ret;
1719 
1720 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1721 	mesg = ctlr->cur_msg;
1722 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1723 
1724 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1725 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1726 			ptp_read_system_postts(xfer->ptp_sts);
1727 			xfer->ptp_sts_word_post = xfer->len;
1728 		}
1729 	}
1730 
1731 	if (unlikely(ctlr->ptp_sts_supported))
1732 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1733 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1734 
1735 	spi_unmap_msg(ctlr, mesg);
1736 
1737 	/* In the prepare_messages callback the spi bus has the opportunity to
1738 	 * split a transfer to smaller chunks.
1739 	 * Release splited transfers here since spi_map_msg is done on the
1740 	 * splited transfers.
1741 	 */
1742 	spi_res_release(ctlr, mesg);
1743 
1744 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1745 		ret = ctlr->unprepare_message(ctlr, mesg);
1746 		if (ret) {
1747 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1748 				ret);
1749 		}
1750 	}
1751 
1752 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1753 	ctlr->cur_msg = NULL;
1754 	ctlr->cur_msg_prepared = false;
1755 	ctlr->fallback = false;
1756 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1757 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1758 
1759 	trace_spi_message_done(mesg);
1760 
1761 	mesg->state = NULL;
1762 	if (mesg->complete)
1763 		mesg->complete(mesg->context);
1764 }
1765 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1766 
1767 static int spi_start_queue(struct spi_controller *ctlr)
1768 {
1769 	unsigned long flags;
1770 
1771 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1772 
1773 	if (ctlr->running || ctlr->busy) {
1774 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1775 		return -EBUSY;
1776 	}
1777 
1778 	ctlr->running = true;
1779 	ctlr->cur_msg = NULL;
1780 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1781 
1782 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1783 
1784 	return 0;
1785 }
1786 
1787 static int spi_stop_queue(struct spi_controller *ctlr)
1788 {
1789 	unsigned long flags;
1790 	unsigned limit = 500;
1791 	int ret = 0;
1792 
1793 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1794 
1795 	/*
1796 	 * This is a bit lame, but is optimized for the common execution path.
1797 	 * A wait_queue on the ctlr->busy could be used, but then the common
1798 	 * execution path (pump_messages) would be required to call wake_up or
1799 	 * friends on every SPI message. Do this instead.
1800 	 */
1801 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1802 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1803 		usleep_range(10000, 11000);
1804 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1805 	}
1806 
1807 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1808 		ret = -EBUSY;
1809 	else
1810 		ctlr->running = false;
1811 
1812 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1813 
1814 	if (ret) {
1815 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1816 		return ret;
1817 	}
1818 	return ret;
1819 }
1820 
1821 static int spi_destroy_queue(struct spi_controller *ctlr)
1822 {
1823 	int ret;
1824 
1825 	ret = spi_stop_queue(ctlr);
1826 
1827 	/*
1828 	 * kthread_flush_worker will block until all work is done.
1829 	 * If the reason that stop_queue timed out is that the work will never
1830 	 * finish, then it does no good to call flush/stop thread, so
1831 	 * return anyway.
1832 	 */
1833 	if (ret) {
1834 		dev_err(&ctlr->dev, "problem destroying queue\n");
1835 		return ret;
1836 	}
1837 
1838 	kthread_destroy_worker(ctlr->kworker);
1839 
1840 	return 0;
1841 }
1842 
1843 static int __spi_queued_transfer(struct spi_device *spi,
1844 				 struct spi_message *msg,
1845 				 bool need_pump)
1846 {
1847 	struct spi_controller *ctlr = spi->controller;
1848 	unsigned long flags;
1849 
1850 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1851 
1852 	if (!ctlr->running) {
1853 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1854 		return -ESHUTDOWN;
1855 	}
1856 	msg->actual_length = 0;
1857 	msg->status = -EINPROGRESS;
1858 
1859 	list_add_tail(&msg->queue, &ctlr->queue);
1860 	if (!ctlr->busy && need_pump)
1861 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1862 
1863 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1864 	return 0;
1865 }
1866 
1867 /**
1868  * spi_queued_transfer - transfer function for queued transfers
1869  * @spi: spi device which is requesting transfer
1870  * @msg: spi message which is to handled is queued to driver queue
1871  *
1872  * Return: zero on success, else a negative error code.
1873  */
1874 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1875 {
1876 	return __spi_queued_transfer(spi, msg, true);
1877 }
1878 
1879 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1880 {
1881 	int ret;
1882 
1883 	ctlr->transfer = spi_queued_transfer;
1884 	if (!ctlr->transfer_one_message)
1885 		ctlr->transfer_one_message = spi_transfer_one_message;
1886 
1887 	/* Initialize and start queue */
1888 	ret = spi_init_queue(ctlr);
1889 	if (ret) {
1890 		dev_err(&ctlr->dev, "problem initializing queue\n");
1891 		goto err_init_queue;
1892 	}
1893 	ctlr->queued = true;
1894 	ret = spi_start_queue(ctlr);
1895 	if (ret) {
1896 		dev_err(&ctlr->dev, "problem starting queue\n");
1897 		goto err_start_queue;
1898 	}
1899 
1900 	return 0;
1901 
1902 err_start_queue:
1903 	spi_destroy_queue(ctlr);
1904 err_init_queue:
1905 	return ret;
1906 }
1907 
1908 /**
1909  * spi_flush_queue - Send all pending messages in the queue from the callers'
1910  *		     context
1911  * @ctlr: controller to process queue for
1912  *
1913  * This should be used when one wants to ensure all pending messages have been
1914  * sent before doing something. Is used by the spi-mem code to make sure SPI
1915  * memory operations do not preempt regular SPI transfers that have been queued
1916  * before the spi-mem operation.
1917  */
1918 void spi_flush_queue(struct spi_controller *ctlr)
1919 {
1920 	if (ctlr->transfer == spi_queued_transfer)
1921 		__spi_pump_messages(ctlr, false);
1922 }
1923 
1924 /*-------------------------------------------------------------------------*/
1925 
1926 #if defined(CONFIG_OF)
1927 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1928 			   struct device_node *nc)
1929 {
1930 	u32 value;
1931 	int rc;
1932 
1933 	/* Mode (clock phase/polarity/etc.) */
1934 	if (of_property_read_bool(nc, "spi-cpha"))
1935 		spi->mode |= SPI_CPHA;
1936 	if (of_property_read_bool(nc, "spi-cpol"))
1937 		spi->mode |= SPI_CPOL;
1938 	if (of_property_read_bool(nc, "spi-3wire"))
1939 		spi->mode |= SPI_3WIRE;
1940 	if (of_property_read_bool(nc, "spi-lsb-first"))
1941 		spi->mode |= SPI_LSB_FIRST;
1942 	if (of_property_read_bool(nc, "spi-cs-high"))
1943 		spi->mode |= SPI_CS_HIGH;
1944 
1945 	/* Device DUAL/QUAD mode */
1946 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1947 		switch (value) {
1948 		case 1:
1949 			break;
1950 		case 2:
1951 			spi->mode |= SPI_TX_DUAL;
1952 			break;
1953 		case 4:
1954 			spi->mode |= SPI_TX_QUAD;
1955 			break;
1956 		case 8:
1957 			spi->mode |= SPI_TX_OCTAL;
1958 			break;
1959 		default:
1960 			dev_warn(&ctlr->dev,
1961 				"spi-tx-bus-width %d not supported\n",
1962 				value);
1963 			break;
1964 		}
1965 	}
1966 
1967 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1968 		switch (value) {
1969 		case 1:
1970 			break;
1971 		case 2:
1972 			spi->mode |= SPI_RX_DUAL;
1973 			break;
1974 		case 4:
1975 			spi->mode |= SPI_RX_QUAD;
1976 			break;
1977 		case 8:
1978 			spi->mode |= SPI_RX_OCTAL;
1979 			break;
1980 		default:
1981 			dev_warn(&ctlr->dev,
1982 				"spi-rx-bus-width %d not supported\n",
1983 				value);
1984 			break;
1985 		}
1986 	}
1987 
1988 	if (spi_controller_is_slave(ctlr)) {
1989 		if (!of_node_name_eq(nc, "slave")) {
1990 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1991 				nc);
1992 			return -EINVAL;
1993 		}
1994 		return 0;
1995 	}
1996 
1997 	/* Device address */
1998 	rc = of_property_read_u32(nc, "reg", &value);
1999 	if (rc) {
2000 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2001 			nc, rc);
2002 		return rc;
2003 	}
2004 	spi->chip_select = value;
2005 
2006 	/* Device speed */
2007 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2008 		spi->max_speed_hz = value;
2009 
2010 	return 0;
2011 }
2012 
2013 static struct spi_device *
2014 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2015 {
2016 	struct spi_device *spi;
2017 	int rc;
2018 
2019 	/* Alloc an spi_device */
2020 	spi = spi_alloc_device(ctlr);
2021 	if (!spi) {
2022 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2023 		rc = -ENOMEM;
2024 		goto err_out;
2025 	}
2026 
2027 	/* Select device driver */
2028 	rc = of_modalias_node(nc, spi->modalias,
2029 				sizeof(spi->modalias));
2030 	if (rc < 0) {
2031 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2032 		goto err_out;
2033 	}
2034 
2035 	rc = of_spi_parse_dt(ctlr, spi, nc);
2036 	if (rc)
2037 		goto err_out;
2038 
2039 	/* Store a pointer to the node in the device structure */
2040 	of_node_get(nc);
2041 	spi->dev.of_node = nc;
2042 
2043 	/* Register the new device */
2044 	rc = spi_add_device(spi);
2045 	if (rc) {
2046 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2047 		goto err_of_node_put;
2048 	}
2049 
2050 	return spi;
2051 
2052 err_of_node_put:
2053 	of_node_put(nc);
2054 err_out:
2055 	spi_dev_put(spi);
2056 	return ERR_PTR(rc);
2057 }
2058 
2059 /**
2060  * of_register_spi_devices() - Register child devices onto the SPI bus
2061  * @ctlr:	Pointer to spi_controller device
2062  *
2063  * Registers an spi_device for each child node of controller node which
2064  * represents a valid SPI slave.
2065  */
2066 static void of_register_spi_devices(struct spi_controller *ctlr)
2067 {
2068 	struct spi_device *spi;
2069 	struct device_node *nc;
2070 
2071 	if (!ctlr->dev.of_node)
2072 		return;
2073 
2074 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2075 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2076 			continue;
2077 		spi = of_register_spi_device(ctlr, nc);
2078 		if (IS_ERR(spi)) {
2079 			dev_warn(&ctlr->dev,
2080 				 "Failed to create SPI device for %pOF\n", nc);
2081 			of_node_clear_flag(nc, OF_POPULATED);
2082 		}
2083 	}
2084 }
2085 #else
2086 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2087 #endif
2088 
2089 #ifdef CONFIG_ACPI
2090 struct acpi_spi_lookup {
2091 	struct spi_controller 	*ctlr;
2092 	u32			max_speed_hz;
2093 	u32			mode;
2094 	int			irq;
2095 	u8			bits_per_word;
2096 	u8			chip_select;
2097 };
2098 
2099 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2100 					    struct acpi_spi_lookup *lookup)
2101 {
2102 	const union acpi_object *obj;
2103 
2104 	if (!x86_apple_machine)
2105 		return;
2106 
2107 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2108 	    && obj->buffer.length >= 4)
2109 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2110 
2111 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2112 	    && obj->buffer.length == 8)
2113 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2114 
2115 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2116 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2117 		lookup->mode |= SPI_LSB_FIRST;
2118 
2119 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2120 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2121 		lookup->mode |= SPI_CPOL;
2122 
2123 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2124 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2125 		lookup->mode |= SPI_CPHA;
2126 }
2127 
2128 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2129 {
2130 	struct acpi_spi_lookup *lookup = data;
2131 	struct spi_controller *ctlr = lookup->ctlr;
2132 
2133 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2134 		struct acpi_resource_spi_serialbus *sb;
2135 		acpi_handle parent_handle;
2136 		acpi_status status;
2137 
2138 		sb = &ares->data.spi_serial_bus;
2139 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2140 
2141 			status = acpi_get_handle(NULL,
2142 						 sb->resource_source.string_ptr,
2143 						 &parent_handle);
2144 
2145 			if (ACPI_FAILURE(status) ||
2146 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2147 				return -ENODEV;
2148 
2149 			/*
2150 			 * ACPI DeviceSelection numbering is handled by the
2151 			 * host controller driver in Windows and can vary
2152 			 * from driver to driver. In Linux we always expect
2153 			 * 0 .. max - 1 so we need to ask the driver to
2154 			 * translate between the two schemes.
2155 			 */
2156 			if (ctlr->fw_translate_cs) {
2157 				int cs = ctlr->fw_translate_cs(ctlr,
2158 						sb->device_selection);
2159 				if (cs < 0)
2160 					return cs;
2161 				lookup->chip_select = cs;
2162 			} else {
2163 				lookup->chip_select = sb->device_selection;
2164 			}
2165 
2166 			lookup->max_speed_hz = sb->connection_speed;
2167 			lookup->bits_per_word = sb->data_bit_length;
2168 
2169 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2170 				lookup->mode |= SPI_CPHA;
2171 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2172 				lookup->mode |= SPI_CPOL;
2173 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2174 				lookup->mode |= SPI_CS_HIGH;
2175 		}
2176 	} else if (lookup->irq < 0) {
2177 		struct resource r;
2178 
2179 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2180 			lookup->irq = r.start;
2181 	}
2182 
2183 	/* Always tell the ACPI core to skip this resource */
2184 	return 1;
2185 }
2186 
2187 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2188 					    struct acpi_device *adev)
2189 {
2190 	acpi_handle parent_handle = NULL;
2191 	struct list_head resource_list;
2192 	struct acpi_spi_lookup lookup = {};
2193 	struct spi_device *spi;
2194 	int ret;
2195 
2196 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2197 	    acpi_device_enumerated(adev))
2198 		return AE_OK;
2199 
2200 	lookup.ctlr		= ctlr;
2201 	lookup.irq		= -1;
2202 
2203 	INIT_LIST_HEAD(&resource_list);
2204 	ret = acpi_dev_get_resources(adev, &resource_list,
2205 				     acpi_spi_add_resource, &lookup);
2206 	acpi_dev_free_resource_list(&resource_list);
2207 
2208 	if (ret < 0)
2209 		/* found SPI in _CRS but it points to another controller */
2210 		return AE_OK;
2211 
2212 	if (!lookup.max_speed_hz &&
2213 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2214 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2215 		/* Apple does not use _CRS but nested devices for SPI slaves */
2216 		acpi_spi_parse_apple_properties(adev, &lookup);
2217 	}
2218 
2219 	if (!lookup.max_speed_hz)
2220 		return AE_OK;
2221 
2222 	spi = spi_alloc_device(ctlr);
2223 	if (!spi) {
2224 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2225 			dev_name(&adev->dev));
2226 		return AE_NO_MEMORY;
2227 	}
2228 
2229 
2230 	ACPI_COMPANION_SET(&spi->dev, adev);
2231 	spi->max_speed_hz	= lookup.max_speed_hz;
2232 	spi->mode		|= lookup.mode;
2233 	spi->irq		= lookup.irq;
2234 	spi->bits_per_word	= lookup.bits_per_word;
2235 	spi->chip_select	= lookup.chip_select;
2236 
2237 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2238 			  sizeof(spi->modalias));
2239 
2240 	if (spi->irq < 0)
2241 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2242 
2243 	acpi_device_set_enumerated(adev);
2244 
2245 	adev->power.flags.ignore_parent = true;
2246 	if (spi_add_device(spi)) {
2247 		adev->power.flags.ignore_parent = false;
2248 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2249 			dev_name(&adev->dev));
2250 		spi_dev_put(spi);
2251 	}
2252 
2253 	return AE_OK;
2254 }
2255 
2256 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2257 				       void *data, void **return_value)
2258 {
2259 	struct spi_controller *ctlr = data;
2260 	struct acpi_device *adev;
2261 
2262 	if (acpi_bus_get_device(handle, &adev))
2263 		return AE_OK;
2264 
2265 	return acpi_register_spi_device(ctlr, adev);
2266 }
2267 
2268 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2269 
2270 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2271 {
2272 	acpi_status status;
2273 	acpi_handle handle;
2274 
2275 	handle = ACPI_HANDLE(ctlr->dev.parent);
2276 	if (!handle)
2277 		return;
2278 
2279 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2280 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2281 				     acpi_spi_add_device, NULL, ctlr, NULL);
2282 	if (ACPI_FAILURE(status))
2283 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2284 }
2285 #else
2286 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2287 #endif /* CONFIG_ACPI */
2288 
2289 static void spi_controller_release(struct device *dev)
2290 {
2291 	struct spi_controller *ctlr;
2292 
2293 	ctlr = container_of(dev, struct spi_controller, dev);
2294 	kfree(ctlr);
2295 }
2296 
2297 static struct class spi_master_class = {
2298 	.name		= "spi_master",
2299 	.owner		= THIS_MODULE,
2300 	.dev_release	= spi_controller_release,
2301 	.dev_groups	= spi_master_groups,
2302 };
2303 
2304 #ifdef CONFIG_SPI_SLAVE
2305 /**
2306  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2307  *		     controller
2308  * @spi: device used for the current transfer
2309  */
2310 int spi_slave_abort(struct spi_device *spi)
2311 {
2312 	struct spi_controller *ctlr = spi->controller;
2313 
2314 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2315 		return ctlr->slave_abort(ctlr);
2316 
2317 	return -ENOTSUPP;
2318 }
2319 EXPORT_SYMBOL_GPL(spi_slave_abort);
2320 
2321 static int match_true(struct device *dev, void *data)
2322 {
2323 	return 1;
2324 }
2325 
2326 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2327 			  char *buf)
2328 {
2329 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2330 						   dev);
2331 	struct device *child;
2332 
2333 	child = device_find_child(&ctlr->dev, NULL, match_true);
2334 	return sprintf(buf, "%s\n",
2335 		       child ? to_spi_device(child)->modalias : NULL);
2336 }
2337 
2338 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2339 			   const char *buf, size_t count)
2340 {
2341 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2342 						   dev);
2343 	struct spi_device *spi;
2344 	struct device *child;
2345 	char name[32];
2346 	int rc;
2347 
2348 	rc = sscanf(buf, "%31s", name);
2349 	if (rc != 1 || !name[0])
2350 		return -EINVAL;
2351 
2352 	child = device_find_child(&ctlr->dev, NULL, match_true);
2353 	if (child) {
2354 		/* Remove registered slave */
2355 		device_unregister(child);
2356 		put_device(child);
2357 	}
2358 
2359 	if (strcmp(name, "(null)")) {
2360 		/* Register new slave */
2361 		spi = spi_alloc_device(ctlr);
2362 		if (!spi)
2363 			return -ENOMEM;
2364 
2365 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2366 
2367 		rc = spi_add_device(spi);
2368 		if (rc) {
2369 			spi_dev_put(spi);
2370 			return rc;
2371 		}
2372 	}
2373 
2374 	return count;
2375 }
2376 
2377 static DEVICE_ATTR_RW(slave);
2378 
2379 static struct attribute *spi_slave_attrs[] = {
2380 	&dev_attr_slave.attr,
2381 	NULL,
2382 };
2383 
2384 static const struct attribute_group spi_slave_group = {
2385 	.attrs = spi_slave_attrs,
2386 };
2387 
2388 static const struct attribute_group *spi_slave_groups[] = {
2389 	&spi_controller_statistics_group,
2390 	&spi_slave_group,
2391 	NULL,
2392 };
2393 
2394 static struct class spi_slave_class = {
2395 	.name		= "spi_slave",
2396 	.owner		= THIS_MODULE,
2397 	.dev_release	= spi_controller_release,
2398 	.dev_groups	= spi_slave_groups,
2399 };
2400 #else
2401 extern struct class spi_slave_class;	/* dummy */
2402 #endif
2403 
2404 /**
2405  * __spi_alloc_controller - allocate an SPI master or slave controller
2406  * @dev: the controller, possibly using the platform_bus
2407  * @size: how much zeroed driver-private data to allocate; the pointer to this
2408  *	memory is in the driver_data field of the returned device, accessible
2409  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2410  *	drivers granting DMA access to portions of their private data need to
2411  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2412  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2413  *	slave (true) controller
2414  * Context: can sleep
2415  *
2416  * This call is used only by SPI controller drivers, which are the
2417  * only ones directly touching chip registers.  It's how they allocate
2418  * an spi_controller structure, prior to calling spi_register_controller().
2419  *
2420  * This must be called from context that can sleep.
2421  *
2422  * The caller is responsible for assigning the bus number and initializing the
2423  * controller's methods before calling spi_register_controller(); and (after
2424  * errors adding the device) calling spi_controller_put() to prevent a memory
2425  * leak.
2426  *
2427  * Return: the SPI controller structure on success, else NULL.
2428  */
2429 struct spi_controller *__spi_alloc_controller(struct device *dev,
2430 					      unsigned int size, bool slave)
2431 {
2432 	struct spi_controller	*ctlr;
2433 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2434 
2435 	if (!dev)
2436 		return NULL;
2437 
2438 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2439 	if (!ctlr)
2440 		return NULL;
2441 
2442 	device_initialize(&ctlr->dev);
2443 	ctlr->bus_num = -1;
2444 	ctlr->num_chipselect = 1;
2445 	ctlr->slave = slave;
2446 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2447 		ctlr->dev.class = &spi_slave_class;
2448 	else
2449 		ctlr->dev.class = &spi_master_class;
2450 	ctlr->dev.parent = dev;
2451 	pm_suspend_ignore_children(&ctlr->dev, true);
2452 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2453 
2454 	return ctlr;
2455 }
2456 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2457 
2458 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2459 {
2460 	spi_controller_put(*(struct spi_controller **)ctlr);
2461 }
2462 
2463 /**
2464  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2465  * @dev: physical device of SPI controller
2466  * @size: how much zeroed driver-private data to allocate
2467  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2468  * Context: can sleep
2469  *
2470  * Allocate an SPI controller and automatically release a reference on it
2471  * when @dev is unbound from its driver.  Drivers are thus relieved from
2472  * having to call spi_controller_put().
2473  *
2474  * The arguments to this function are identical to __spi_alloc_controller().
2475  *
2476  * Return: the SPI controller structure on success, else NULL.
2477  */
2478 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2479 						   unsigned int size,
2480 						   bool slave)
2481 {
2482 	struct spi_controller **ptr, *ctlr;
2483 
2484 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2485 			   GFP_KERNEL);
2486 	if (!ptr)
2487 		return NULL;
2488 
2489 	ctlr = __spi_alloc_controller(dev, size, slave);
2490 	if (ctlr) {
2491 		*ptr = ctlr;
2492 		devres_add(dev, ptr);
2493 	} else {
2494 		devres_free(ptr);
2495 	}
2496 
2497 	return ctlr;
2498 }
2499 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2500 
2501 #ifdef CONFIG_OF
2502 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2503 {
2504 	int nb, i, *cs;
2505 	struct device_node *np = ctlr->dev.of_node;
2506 
2507 	if (!np)
2508 		return 0;
2509 
2510 	nb = of_gpio_named_count(np, "cs-gpios");
2511 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2512 
2513 	/* Return error only for an incorrectly formed cs-gpios property */
2514 	if (nb == 0 || nb == -ENOENT)
2515 		return 0;
2516 	else if (nb < 0)
2517 		return nb;
2518 
2519 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2520 			  GFP_KERNEL);
2521 	ctlr->cs_gpios = cs;
2522 
2523 	if (!ctlr->cs_gpios)
2524 		return -ENOMEM;
2525 
2526 	for (i = 0; i < ctlr->num_chipselect; i++)
2527 		cs[i] = -ENOENT;
2528 
2529 	for (i = 0; i < nb; i++)
2530 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2531 
2532 	return 0;
2533 }
2534 #else
2535 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2536 {
2537 	return 0;
2538 }
2539 #endif
2540 
2541 /**
2542  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2543  * @ctlr: The SPI master to grab GPIO descriptors for
2544  */
2545 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2546 {
2547 	int nb, i;
2548 	struct gpio_desc **cs;
2549 	struct device *dev = &ctlr->dev;
2550 	unsigned long native_cs_mask = 0;
2551 	unsigned int num_cs_gpios = 0;
2552 
2553 	nb = gpiod_count(dev, "cs");
2554 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2555 
2556 	/* No GPIOs at all is fine, else return the error */
2557 	if (nb == 0 || nb == -ENOENT)
2558 		return 0;
2559 	else if (nb < 0)
2560 		return nb;
2561 
2562 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2563 			  GFP_KERNEL);
2564 	if (!cs)
2565 		return -ENOMEM;
2566 	ctlr->cs_gpiods = cs;
2567 
2568 	for (i = 0; i < nb; i++) {
2569 		/*
2570 		 * Most chipselects are active low, the inverted
2571 		 * semantics are handled by special quirks in gpiolib,
2572 		 * so initializing them GPIOD_OUT_LOW here means
2573 		 * "unasserted", in most cases this will drive the physical
2574 		 * line high.
2575 		 */
2576 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2577 						      GPIOD_OUT_LOW);
2578 		if (IS_ERR(cs[i]))
2579 			return PTR_ERR(cs[i]);
2580 
2581 		if (cs[i]) {
2582 			/*
2583 			 * If we find a CS GPIO, name it after the device and
2584 			 * chip select line.
2585 			 */
2586 			char *gpioname;
2587 
2588 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2589 						  dev_name(dev), i);
2590 			if (!gpioname)
2591 				return -ENOMEM;
2592 			gpiod_set_consumer_name(cs[i], gpioname);
2593 			num_cs_gpios++;
2594 			continue;
2595 		}
2596 
2597 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2598 			dev_err(dev, "Invalid native chip select %d\n", i);
2599 			return -EINVAL;
2600 		}
2601 		native_cs_mask |= BIT(i);
2602 	}
2603 
2604 	ctlr->unused_native_cs = ffz(native_cs_mask);
2605 	if (num_cs_gpios && ctlr->max_native_cs &&
2606 	    ctlr->unused_native_cs >= ctlr->max_native_cs) {
2607 		dev_err(dev, "No unused native chip select available\n");
2608 		return -EINVAL;
2609 	}
2610 
2611 	return 0;
2612 }
2613 
2614 static int spi_controller_check_ops(struct spi_controller *ctlr)
2615 {
2616 	/*
2617 	 * The controller may implement only the high-level SPI-memory like
2618 	 * operations if it does not support regular SPI transfers, and this is
2619 	 * valid use case.
2620 	 * If ->mem_ops is NULL, we request that at least one of the
2621 	 * ->transfer_xxx() method be implemented.
2622 	 */
2623 	if (ctlr->mem_ops) {
2624 		if (!ctlr->mem_ops->exec_op)
2625 			return -EINVAL;
2626 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2627 		   !ctlr->transfer_one_message) {
2628 		return -EINVAL;
2629 	}
2630 
2631 	return 0;
2632 }
2633 
2634 /**
2635  * spi_register_controller - register SPI master or slave controller
2636  * @ctlr: initialized master, originally from spi_alloc_master() or
2637  *	spi_alloc_slave()
2638  * Context: can sleep
2639  *
2640  * SPI controllers connect to their drivers using some non-SPI bus,
2641  * such as the platform bus.  The final stage of probe() in that code
2642  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2643  *
2644  * SPI controllers use board specific (often SOC specific) bus numbers,
2645  * and board-specific addressing for SPI devices combines those numbers
2646  * with chip select numbers.  Since SPI does not directly support dynamic
2647  * device identification, boards need configuration tables telling which
2648  * chip is at which address.
2649  *
2650  * This must be called from context that can sleep.  It returns zero on
2651  * success, else a negative error code (dropping the controller's refcount).
2652  * After a successful return, the caller is responsible for calling
2653  * spi_unregister_controller().
2654  *
2655  * Return: zero on success, else a negative error code.
2656  */
2657 int spi_register_controller(struct spi_controller *ctlr)
2658 {
2659 	struct device		*dev = ctlr->dev.parent;
2660 	struct boardinfo	*bi;
2661 	int			status;
2662 	int			id, first_dynamic;
2663 
2664 	if (!dev)
2665 		return -ENODEV;
2666 
2667 	/*
2668 	 * Make sure all necessary hooks are implemented before registering
2669 	 * the SPI controller.
2670 	 */
2671 	status = spi_controller_check_ops(ctlr);
2672 	if (status)
2673 		return status;
2674 
2675 	if (ctlr->bus_num >= 0) {
2676 		/* devices with a fixed bus num must check-in with the num */
2677 		mutex_lock(&board_lock);
2678 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2679 			ctlr->bus_num + 1, GFP_KERNEL);
2680 		mutex_unlock(&board_lock);
2681 		if (WARN(id < 0, "couldn't get idr"))
2682 			return id == -ENOSPC ? -EBUSY : id;
2683 		ctlr->bus_num = id;
2684 	} else if (ctlr->dev.of_node) {
2685 		/* allocate dynamic bus number using Linux idr */
2686 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2687 		if (id >= 0) {
2688 			ctlr->bus_num = id;
2689 			mutex_lock(&board_lock);
2690 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2691 				       ctlr->bus_num + 1, GFP_KERNEL);
2692 			mutex_unlock(&board_lock);
2693 			if (WARN(id < 0, "couldn't get idr"))
2694 				return id == -ENOSPC ? -EBUSY : id;
2695 		}
2696 	}
2697 	if (ctlr->bus_num < 0) {
2698 		first_dynamic = of_alias_get_highest_id("spi");
2699 		if (first_dynamic < 0)
2700 			first_dynamic = 0;
2701 		else
2702 			first_dynamic++;
2703 
2704 		mutex_lock(&board_lock);
2705 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2706 			       0, GFP_KERNEL);
2707 		mutex_unlock(&board_lock);
2708 		if (WARN(id < 0, "couldn't get idr"))
2709 			return id;
2710 		ctlr->bus_num = id;
2711 	}
2712 	INIT_LIST_HEAD(&ctlr->queue);
2713 	spin_lock_init(&ctlr->queue_lock);
2714 	spin_lock_init(&ctlr->bus_lock_spinlock);
2715 	mutex_init(&ctlr->bus_lock_mutex);
2716 	mutex_init(&ctlr->io_mutex);
2717 	ctlr->bus_lock_flag = 0;
2718 	init_completion(&ctlr->xfer_completion);
2719 	if (!ctlr->max_dma_len)
2720 		ctlr->max_dma_len = INT_MAX;
2721 
2722 	/* register the device, then userspace will see it.
2723 	 * registration fails if the bus ID is in use.
2724 	 */
2725 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2726 
2727 	if (!spi_controller_is_slave(ctlr)) {
2728 		if (ctlr->use_gpio_descriptors) {
2729 			status = spi_get_gpio_descs(ctlr);
2730 			if (status)
2731 				goto free_bus_id;
2732 			/*
2733 			 * A controller using GPIO descriptors always
2734 			 * supports SPI_CS_HIGH if need be.
2735 			 */
2736 			ctlr->mode_bits |= SPI_CS_HIGH;
2737 		} else {
2738 			/* Legacy code path for GPIOs from DT */
2739 			status = of_spi_get_gpio_numbers(ctlr);
2740 			if (status)
2741 				goto free_bus_id;
2742 		}
2743 	}
2744 
2745 	/*
2746 	 * Even if it's just one always-selected device, there must
2747 	 * be at least one chipselect.
2748 	 */
2749 	if (!ctlr->num_chipselect) {
2750 		status = -EINVAL;
2751 		goto free_bus_id;
2752 	}
2753 
2754 	status = device_add(&ctlr->dev);
2755 	if (status < 0)
2756 		goto free_bus_id;
2757 	dev_dbg(dev, "registered %s %s\n",
2758 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2759 			dev_name(&ctlr->dev));
2760 
2761 	/*
2762 	 * If we're using a queued driver, start the queue. Note that we don't
2763 	 * need the queueing logic if the driver is only supporting high-level
2764 	 * memory operations.
2765 	 */
2766 	if (ctlr->transfer) {
2767 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2768 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2769 		status = spi_controller_initialize_queue(ctlr);
2770 		if (status) {
2771 			device_del(&ctlr->dev);
2772 			goto free_bus_id;
2773 		}
2774 	}
2775 	/* add statistics */
2776 	spin_lock_init(&ctlr->statistics.lock);
2777 
2778 	mutex_lock(&board_lock);
2779 	list_add_tail(&ctlr->list, &spi_controller_list);
2780 	list_for_each_entry(bi, &board_list, list)
2781 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2782 	mutex_unlock(&board_lock);
2783 
2784 	/* Register devices from the device tree and ACPI */
2785 	of_register_spi_devices(ctlr);
2786 	acpi_register_spi_devices(ctlr);
2787 	return status;
2788 
2789 free_bus_id:
2790 	mutex_lock(&board_lock);
2791 	idr_remove(&spi_master_idr, ctlr->bus_num);
2792 	mutex_unlock(&board_lock);
2793 	return status;
2794 }
2795 EXPORT_SYMBOL_GPL(spi_register_controller);
2796 
2797 static void devm_spi_unregister(struct device *dev, void *res)
2798 {
2799 	spi_unregister_controller(*(struct spi_controller **)res);
2800 }
2801 
2802 /**
2803  * devm_spi_register_controller - register managed SPI master or slave
2804  *	controller
2805  * @dev:    device managing SPI controller
2806  * @ctlr: initialized controller, originally from spi_alloc_master() or
2807  *	spi_alloc_slave()
2808  * Context: can sleep
2809  *
2810  * Register a SPI device as with spi_register_controller() which will
2811  * automatically be unregistered and freed.
2812  *
2813  * Return: zero on success, else a negative error code.
2814  */
2815 int devm_spi_register_controller(struct device *dev,
2816 				 struct spi_controller *ctlr)
2817 {
2818 	struct spi_controller **ptr;
2819 	int ret;
2820 
2821 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2822 	if (!ptr)
2823 		return -ENOMEM;
2824 
2825 	ret = spi_register_controller(ctlr);
2826 	if (!ret) {
2827 		*ptr = ctlr;
2828 		devres_add(dev, ptr);
2829 	} else {
2830 		devres_free(ptr);
2831 	}
2832 
2833 	return ret;
2834 }
2835 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2836 
2837 static int devm_spi_match_controller(struct device *dev, void *res, void *ctlr)
2838 {
2839 	return *(struct spi_controller **)res == ctlr;
2840 }
2841 
2842 static int __unregister(struct device *dev, void *null)
2843 {
2844 	spi_unregister_device(to_spi_device(dev));
2845 	return 0;
2846 }
2847 
2848 /**
2849  * spi_unregister_controller - unregister SPI master or slave controller
2850  * @ctlr: the controller being unregistered
2851  * Context: can sleep
2852  *
2853  * This call is used only by SPI controller drivers, which are the
2854  * only ones directly touching chip registers.
2855  *
2856  * This must be called from context that can sleep.
2857  *
2858  * Note that this function also drops a reference to the controller.
2859  */
2860 void spi_unregister_controller(struct spi_controller *ctlr)
2861 {
2862 	struct spi_controller *found;
2863 	int id = ctlr->bus_num;
2864 
2865 	/* Prevent addition of new devices, unregister existing ones */
2866 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2867 		mutex_lock(&spi_add_lock);
2868 
2869 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2870 
2871 	/* First make sure that this controller was ever added */
2872 	mutex_lock(&board_lock);
2873 	found = idr_find(&spi_master_idr, id);
2874 	mutex_unlock(&board_lock);
2875 	if (ctlr->queued) {
2876 		if (spi_destroy_queue(ctlr))
2877 			dev_err(&ctlr->dev, "queue remove failed\n");
2878 	}
2879 	mutex_lock(&board_lock);
2880 	list_del(&ctlr->list);
2881 	mutex_unlock(&board_lock);
2882 
2883 	device_del(&ctlr->dev);
2884 
2885 	/* Release the last reference on the controller if its driver
2886 	 * has not yet been converted to devm_spi_alloc_master/slave().
2887 	 */
2888 	if (!devres_find(ctlr->dev.parent, devm_spi_release_controller,
2889 			 devm_spi_match_controller, ctlr))
2890 		put_device(&ctlr->dev);
2891 
2892 	/* free bus id */
2893 	mutex_lock(&board_lock);
2894 	if (found == ctlr)
2895 		idr_remove(&spi_master_idr, id);
2896 	mutex_unlock(&board_lock);
2897 
2898 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2899 		mutex_unlock(&spi_add_lock);
2900 }
2901 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2902 
2903 int spi_controller_suspend(struct spi_controller *ctlr)
2904 {
2905 	int ret;
2906 
2907 	/* Basically no-ops for non-queued controllers */
2908 	if (!ctlr->queued)
2909 		return 0;
2910 
2911 	ret = spi_stop_queue(ctlr);
2912 	if (ret)
2913 		dev_err(&ctlr->dev, "queue stop failed\n");
2914 
2915 	return ret;
2916 }
2917 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2918 
2919 int spi_controller_resume(struct spi_controller *ctlr)
2920 {
2921 	int ret;
2922 
2923 	if (!ctlr->queued)
2924 		return 0;
2925 
2926 	ret = spi_start_queue(ctlr);
2927 	if (ret)
2928 		dev_err(&ctlr->dev, "queue restart failed\n");
2929 
2930 	return ret;
2931 }
2932 EXPORT_SYMBOL_GPL(spi_controller_resume);
2933 
2934 static int __spi_controller_match(struct device *dev, const void *data)
2935 {
2936 	struct spi_controller *ctlr;
2937 	const u16 *bus_num = data;
2938 
2939 	ctlr = container_of(dev, struct spi_controller, dev);
2940 	return ctlr->bus_num == *bus_num;
2941 }
2942 
2943 /**
2944  * spi_busnum_to_master - look up master associated with bus_num
2945  * @bus_num: the master's bus number
2946  * Context: can sleep
2947  *
2948  * This call may be used with devices that are registered after
2949  * arch init time.  It returns a refcounted pointer to the relevant
2950  * spi_controller (which the caller must release), or NULL if there is
2951  * no such master registered.
2952  *
2953  * Return: the SPI master structure on success, else NULL.
2954  */
2955 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2956 {
2957 	struct device		*dev;
2958 	struct spi_controller	*ctlr = NULL;
2959 
2960 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2961 				__spi_controller_match);
2962 	if (dev)
2963 		ctlr = container_of(dev, struct spi_controller, dev);
2964 	/* reference got in class_find_device */
2965 	return ctlr;
2966 }
2967 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2968 
2969 /*-------------------------------------------------------------------------*/
2970 
2971 /* Core methods for SPI resource management */
2972 
2973 /**
2974  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2975  *                 during the processing of a spi_message while using
2976  *                 spi_transfer_one
2977  * @spi:     the spi device for which we allocate memory
2978  * @release: the release code to execute for this resource
2979  * @size:    size to alloc and return
2980  * @gfp:     GFP allocation flags
2981  *
2982  * Return: the pointer to the allocated data
2983  *
2984  * This may get enhanced in the future to allocate from a memory pool
2985  * of the @spi_device or @spi_controller to avoid repeated allocations.
2986  */
2987 void *spi_res_alloc(struct spi_device *spi,
2988 		    spi_res_release_t release,
2989 		    size_t size, gfp_t gfp)
2990 {
2991 	struct spi_res *sres;
2992 
2993 	sres = kzalloc(sizeof(*sres) + size, gfp);
2994 	if (!sres)
2995 		return NULL;
2996 
2997 	INIT_LIST_HEAD(&sres->entry);
2998 	sres->release = release;
2999 
3000 	return sres->data;
3001 }
3002 EXPORT_SYMBOL_GPL(spi_res_alloc);
3003 
3004 /**
3005  * spi_res_free - free an spi resource
3006  * @res: pointer to the custom data of a resource
3007  *
3008  */
3009 void spi_res_free(void *res)
3010 {
3011 	struct spi_res *sres = container_of(res, struct spi_res, data);
3012 
3013 	if (!res)
3014 		return;
3015 
3016 	WARN_ON(!list_empty(&sres->entry));
3017 	kfree(sres);
3018 }
3019 EXPORT_SYMBOL_GPL(spi_res_free);
3020 
3021 /**
3022  * spi_res_add - add a spi_res to the spi_message
3023  * @message: the spi message
3024  * @res:     the spi_resource
3025  */
3026 void spi_res_add(struct spi_message *message, void *res)
3027 {
3028 	struct spi_res *sres = container_of(res, struct spi_res, data);
3029 
3030 	WARN_ON(!list_empty(&sres->entry));
3031 	list_add_tail(&sres->entry, &message->resources);
3032 }
3033 EXPORT_SYMBOL_GPL(spi_res_add);
3034 
3035 /**
3036  * spi_res_release - release all spi resources for this message
3037  * @ctlr:  the @spi_controller
3038  * @message: the @spi_message
3039  */
3040 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3041 {
3042 	struct spi_res *res, *tmp;
3043 
3044 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3045 		if (res->release)
3046 			res->release(ctlr, message, res->data);
3047 
3048 		list_del(&res->entry);
3049 
3050 		kfree(res);
3051 	}
3052 }
3053 EXPORT_SYMBOL_GPL(spi_res_release);
3054 
3055 /*-------------------------------------------------------------------------*/
3056 
3057 /* Core methods for spi_message alterations */
3058 
3059 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3060 					    struct spi_message *msg,
3061 					    void *res)
3062 {
3063 	struct spi_replaced_transfers *rxfer = res;
3064 	size_t i;
3065 
3066 	/* call extra callback if requested */
3067 	if (rxfer->release)
3068 		rxfer->release(ctlr, msg, res);
3069 
3070 	/* insert replaced transfers back into the message */
3071 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3072 
3073 	/* remove the formerly inserted entries */
3074 	for (i = 0; i < rxfer->inserted; i++)
3075 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3076 }
3077 
3078 /**
3079  * spi_replace_transfers - replace transfers with several transfers
3080  *                         and register change with spi_message.resources
3081  * @msg:           the spi_message we work upon
3082  * @xfer_first:    the first spi_transfer we want to replace
3083  * @remove:        number of transfers to remove
3084  * @insert:        the number of transfers we want to insert instead
3085  * @release:       extra release code necessary in some circumstances
3086  * @extradatasize: extra data to allocate (with alignment guarantees
3087  *                 of struct @spi_transfer)
3088  * @gfp:           gfp flags
3089  *
3090  * Returns: pointer to @spi_replaced_transfers,
3091  *          PTR_ERR(...) in case of errors.
3092  */
3093 struct spi_replaced_transfers *spi_replace_transfers(
3094 	struct spi_message *msg,
3095 	struct spi_transfer *xfer_first,
3096 	size_t remove,
3097 	size_t insert,
3098 	spi_replaced_release_t release,
3099 	size_t extradatasize,
3100 	gfp_t gfp)
3101 {
3102 	struct spi_replaced_transfers *rxfer;
3103 	struct spi_transfer *xfer;
3104 	size_t i;
3105 
3106 	/* allocate the structure using spi_res */
3107 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3108 			      struct_size(rxfer, inserted_transfers, insert)
3109 			      + extradatasize,
3110 			      gfp);
3111 	if (!rxfer)
3112 		return ERR_PTR(-ENOMEM);
3113 
3114 	/* the release code to invoke before running the generic release */
3115 	rxfer->release = release;
3116 
3117 	/* assign extradata */
3118 	if (extradatasize)
3119 		rxfer->extradata =
3120 			&rxfer->inserted_transfers[insert];
3121 
3122 	/* init the replaced_transfers list */
3123 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3124 
3125 	/* assign the list_entry after which we should reinsert
3126 	 * the @replaced_transfers - it may be spi_message.messages!
3127 	 */
3128 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3129 
3130 	/* remove the requested number of transfers */
3131 	for (i = 0; i < remove; i++) {
3132 		/* if the entry after replaced_after it is msg->transfers
3133 		 * then we have been requested to remove more transfers
3134 		 * than are in the list
3135 		 */
3136 		if (rxfer->replaced_after->next == &msg->transfers) {
3137 			dev_err(&msg->spi->dev,
3138 				"requested to remove more spi_transfers than are available\n");
3139 			/* insert replaced transfers back into the message */
3140 			list_splice(&rxfer->replaced_transfers,
3141 				    rxfer->replaced_after);
3142 
3143 			/* free the spi_replace_transfer structure */
3144 			spi_res_free(rxfer);
3145 
3146 			/* and return with an error */
3147 			return ERR_PTR(-EINVAL);
3148 		}
3149 
3150 		/* remove the entry after replaced_after from list of
3151 		 * transfers and add it to list of replaced_transfers
3152 		 */
3153 		list_move_tail(rxfer->replaced_after->next,
3154 			       &rxfer->replaced_transfers);
3155 	}
3156 
3157 	/* create copy of the given xfer with identical settings
3158 	 * based on the first transfer to get removed
3159 	 */
3160 	for (i = 0; i < insert; i++) {
3161 		/* we need to run in reverse order */
3162 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3163 
3164 		/* copy all spi_transfer data */
3165 		memcpy(xfer, xfer_first, sizeof(*xfer));
3166 
3167 		/* add to list */
3168 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3169 
3170 		/* clear cs_change and delay for all but the last */
3171 		if (i) {
3172 			xfer->cs_change = false;
3173 			xfer->delay_usecs = 0;
3174 			xfer->delay.value = 0;
3175 		}
3176 	}
3177 
3178 	/* set up inserted */
3179 	rxfer->inserted = insert;
3180 
3181 	/* and register it with spi_res/spi_message */
3182 	spi_res_add(msg, rxfer);
3183 
3184 	return rxfer;
3185 }
3186 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3187 
3188 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3189 					struct spi_message *msg,
3190 					struct spi_transfer **xferp,
3191 					size_t maxsize,
3192 					gfp_t gfp)
3193 {
3194 	struct spi_transfer *xfer = *xferp, *xfers;
3195 	struct spi_replaced_transfers *srt;
3196 	size_t offset;
3197 	size_t count, i;
3198 
3199 	/* calculate how many we have to replace */
3200 	count = DIV_ROUND_UP(xfer->len, maxsize);
3201 
3202 	/* create replacement */
3203 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3204 	if (IS_ERR(srt))
3205 		return PTR_ERR(srt);
3206 	xfers = srt->inserted_transfers;
3207 
3208 	/* now handle each of those newly inserted spi_transfers
3209 	 * note that the replacements spi_transfers all are preset
3210 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3211 	 * are all identical (as well as most others)
3212 	 * so we just have to fix up len and the pointers.
3213 	 *
3214 	 * this also includes support for the depreciated
3215 	 * spi_message.is_dma_mapped interface
3216 	 */
3217 
3218 	/* the first transfer just needs the length modified, so we
3219 	 * run it outside the loop
3220 	 */
3221 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3222 
3223 	/* all the others need rx_buf/tx_buf also set */
3224 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3225 		/* update rx_buf, tx_buf and dma */
3226 		if (xfers[i].rx_buf)
3227 			xfers[i].rx_buf += offset;
3228 		if (xfers[i].rx_dma)
3229 			xfers[i].rx_dma += offset;
3230 		if (xfers[i].tx_buf)
3231 			xfers[i].tx_buf += offset;
3232 		if (xfers[i].tx_dma)
3233 			xfers[i].tx_dma += offset;
3234 
3235 		/* update length */
3236 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3237 	}
3238 
3239 	/* we set up xferp to the last entry we have inserted,
3240 	 * so that we skip those already split transfers
3241 	 */
3242 	*xferp = &xfers[count - 1];
3243 
3244 	/* increment statistics counters */
3245 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3246 				       transfers_split_maxsize);
3247 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3248 				       transfers_split_maxsize);
3249 
3250 	return 0;
3251 }
3252 
3253 /**
3254  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3255  *                               when an individual transfer exceeds a
3256  *                               certain size
3257  * @ctlr:    the @spi_controller for this transfer
3258  * @msg:   the @spi_message to transform
3259  * @maxsize:  the maximum when to apply this
3260  * @gfp: GFP allocation flags
3261  *
3262  * Return: status of transformation
3263  */
3264 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3265 				struct spi_message *msg,
3266 				size_t maxsize,
3267 				gfp_t gfp)
3268 {
3269 	struct spi_transfer *xfer;
3270 	int ret;
3271 
3272 	/* iterate over the transfer_list,
3273 	 * but note that xfer is advanced to the last transfer inserted
3274 	 * to avoid checking sizes again unnecessarily (also xfer does
3275 	 * potentiall belong to a different list by the time the
3276 	 * replacement has happened
3277 	 */
3278 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3279 		if (xfer->len > maxsize) {
3280 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3281 							   maxsize, gfp);
3282 			if (ret)
3283 				return ret;
3284 		}
3285 	}
3286 
3287 	return 0;
3288 }
3289 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3290 
3291 /*-------------------------------------------------------------------------*/
3292 
3293 /* Core methods for SPI controller protocol drivers.  Some of the
3294  * other core methods are currently defined as inline functions.
3295  */
3296 
3297 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3298 					u8 bits_per_word)
3299 {
3300 	if (ctlr->bits_per_word_mask) {
3301 		/* Only 32 bits fit in the mask */
3302 		if (bits_per_word > 32)
3303 			return -EINVAL;
3304 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3305 			return -EINVAL;
3306 	}
3307 
3308 	return 0;
3309 }
3310 
3311 /**
3312  * spi_setup - setup SPI mode and clock rate
3313  * @spi: the device whose settings are being modified
3314  * Context: can sleep, and no requests are queued to the device
3315  *
3316  * SPI protocol drivers may need to update the transfer mode if the
3317  * device doesn't work with its default.  They may likewise need
3318  * to update clock rates or word sizes from initial values.  This function
3319  * changes those settings, and must be called from a context that can sleep.
3320  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3321  * effect the next time the device is selected and data is transferred to
3322  * or from it.  When this function returns, the spi device is deselected.
3323  *
3324  * Note that this call will fail if the protocol driver specifies an option
3325  * that the underlying controller or its driver does not support.  For
3326  * example, not all hardware supports wire transfers using nine bit words,
3327  * LSB-first wire encoding, or active-high chipselects.
3328  *
3329  * Return: zero on success, else a negative error code.
3330  */
3331 int spi_setup(struct spi_device *spi)
3332 {
3333 	unsigned	bad_bits, ugly_bits;
3334 	int		status;
3335 
3336 	/* check mode to prevent that DUAL and QUAD set at the same time
3337 	 */
3338 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3339 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3340 		dev_err(&spi->dev,
3341 		"setup: can not select dual and quad at the same time\n");
3342 		return -EINVAL;
3343 	}
3344 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3345 	 */
3346 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3347 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3348 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3349 		return -EINVAL;
3350 	/* help drivers fail *cleanly* when they need options
3351 	 * that aren't supported with their current controller
3352 	 * SPI_CS_WORD has a fallback software implementation,
3353 	 * so it is ignored here.
3354 	 */
3355 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3356 	/* nothing prevents from working with active-high CS in case if it
3357 	 * is driven by GPIO.
3358 	 */
3359 	if (gpio_is_valid(spi->cs_gpio))
3360 		bad_bits &= ~SPI_CS_HIGH;
3361 	ugly_bits = bad_bits &
3362 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3363 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3364 	if (ugly_bits) {
3365 		dev_warn(&spi->dev,
3366 			 "setup: ignoring unsupported mode bits %x\n",
3367 			 ugly_bits);
3368 		spi->mode &= ~ugly_bits;
3369 		bad_bits &= ~ugly_bits;
3370 	}
3371 	if (bad_bits) {
3372 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3373 			bad_bits);
3374 		return -EINVAL;
3375 	}
3376 
3377 	if (!spi->bits_per_word)
3378 		spi->bits_per_word = 8;
3379 
3380 	status = __spi_validate_bits_per_word(spi->controller,
3381 					      spi->bits_per_word);
3382 	if (status)
3383 		return status;
3384 
3385 	if (spi->controller->max_speed_hz &&
3386 	    (!spi->max_speed_hz ||
3387 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3388 		spi->max_speed_hz = spi->controller->max_speed_hz;
3389 
3390 	mutex_lock(&spi->controller->io_mutex);
3391 
3392 	if (spi->controller->setup)
3393 		status = spi->controller->setup(spi);
3394 
3395 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3396 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3397 		if (status < 0) {
3398 			mutex_unlock(&spi->controller->io_mutex);
3399 			pm_runtime_put_noidle(spi->controller->dev.parent);
3400 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3401 				status);
3402 			return status;
3403 		}
3404 
3405 		/*
3406 		 * We do not want to return positive value from pm_runtime_get,
3407 		 * there are many instances of devices calling spi_setup() and
3408 		 * checking for a non-zero return value instead of a negative
3409 		 * return value.
3410 		 */
3411 		status = 0;
3412 
3413 		spi_set_cs(spi, false);
3414 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3415 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3416 	} else {
3417 		spi_set_cs(spi, false);
3418 	}
3419 
3420 	mutex_unlock(&spi->controller->io_mutex);
3421 
3422 	if (spi->rt && !spi->controller->rt) {
3423 		spi->controller->rt = true;
3424 		spi_set_thread_rt(spi->controller);
3425 	}
3426 
3427 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3428 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3429 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3430 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3431 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3432 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3433 			spi->bits_per_word, spi->max_speed_hz,
3434 			status);
3435 
3436 	return status;
3437 }
3438 EXPORT_SYMBOL_GPL(spi_setup);
3439 
3440 /**
3441  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3442  * @spi: the device that requires specific CS timing configuration
3443  * @setup: CS setup time specified via @spi_delay
3444  * @hold: CS hold time specified via @spi_delay
3445  * @inactive: CS inactive delay between transfers specified via @spi_delay
3446  *
3447  * Return: zero on success, else a negative error code.
3448  */
3449 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3450 		      struct spi_delay *hold, struct spi_delay *inactive)
3451 {
3452 	size_t len;
3453 
3454 	if (spi->controller->set_cs_timing)
3455 		return spi->controller->set_cs_timing(spi, setup, hold,
3456 						      inactive);
3457 
3458 	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3459 	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3460 	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3461 		dev_err(&spi->dev,
3462 			"Clock-cycle delays for CS not supported in SW mode\n");
3463 		return -ENOTSUPP;
3464 	}
3465 
3466 	len = sizeof(struct spi_delay);
3467 
3468 	/* copy delays to controller */
3469 	if (setup)
3470 		memcpy(&spi->controller->cs_setup, setup, len);
3471 	else
3472 		memset(&spi->controller->cs_setup, 0, len);
3473 
3474 	if (hold)
3475 		memcpy(&spi->controller->cs_hold, hold, len);
3476 	else
3477 		memset(&spi->controller->cs_hold, 0, len);
3478 
3479 	if (inactive)
3480 		memcpy(&spi->controller->cs_inactive, inactive, len);
3481 	else
3482 		memset(&spi->controller->cs_inactive, 0, len);
3483 
3484 	return 0;
3485 }
3486 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3487 
3488 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3489 				       struct spi_device *spi)
3490 {
3491 	int delay1, delay2;
3492 
3493 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3494 	if (delay1 < 0)
3495 		return delay1;
3496 
3497 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3498 	if (delay2 < 0)
3499 		return delay2;
3500 
3501 	if (delay1 < delay2)
3502 		memcpy(&xfer->word_delay, &spi->word_delay,
3503 		       sizeof(xfer->word_delay));
3504 
3505 	return 0;
3506 }
3507 
3508 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3509 {
3510 	struct spi_controller *ctlr = spi->controller;
3511 	struct spi_transfer *xfer;
3512 	int w_size;
3513 
3514 	if (list_empty(&message->transfers))
3515 		return -EINVAL;
3516 
3517 	/* If an SPI controller does not support toggling the CS line on each
3518 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3519 	 * for the CS line, we can emulate the CS-per-word hardware function by
3520 	 * splitting transfers into one-word transfers and ensuring that
3521 	 * cs_change is set for each transfer.
3522 	 */
3523 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3524 					  spi->cs_gpiod ||
3525 					  gpio_is_valid(spi->cs_gpio))) {
3526 		size_t maxsize;
3527 		int ret;
3528 
3529 		maxsize = (spi->bits_per_word + 7) / 8;
3530 
3531 		/* spi_split_transfers_maxsize() requires message->spi */
3532 		message->spi = spi;
3533 
3534 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3535 						  GFP_KERNEL);
3536 		if (ret)
3537 			return ret;
3538 
3539 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3540 			/* don't change cs_change on the last entry in the list */
3541 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3542 				break;
3543 			xfer->cs_change = 1;
3544 		}
3545 	}
3546 
3547 	/* Half-duplex links include original MicroWire, and ones with
3548 	 * only one data pin like SPI_3WIRE (switches direction) or where
3549 	 * either MOSI or MISO is missing.  They can also be caused by
3550 	 * software limitations.
3551 	 */
3552 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3553 	    (spi->mode & SPI_3WIRE)) {
3554 		unsigned flags = ctlr->flags;
3555 
3556 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3557 			if (xfer->rx_buf && xfer->tx_buf)
3558 				return -EINVAL;
3559 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3560 				return -EINVAL;
3561 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3562 				return -EINVAL;
3563 		}
3564 	}
3565 
3566 	/**
3567 	 * Set transfer bits_per_word and max speed as spi device default if
3568 	 * it is not set for this transfer.
3569 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3570 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3571 	 * Ensure transfer word_delay is at least as long as that required by
3572 	 * device itself.
3573 	 */
3574 	message->frame_length = 0;
3575 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3576 		xfer->effective_speed_hz = 0;
3577 		message->frame_length += xfer->len;
3578 		if (!xfer->bits_per_word)
3579 			xfer->bits_per_word = spi->bits_per_word;
3580 
3581 		if (!xfer->speed_hz)
3582 			xfer->speed_hz = spi->max_speed_hz;
3583 
3584 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3585 			xfer->speed_hz = ctlr->max_speed_hz;
3586 
3587 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3588 			return -EINVAL;
3589 
3590 		/*
3591 		 * SPI transfer length should be multiple of SPI word size
3592 		 * where SPI word size should be power-of-two multiple
3593 		 */
3594 		if (xfer->bits_per_word <= 8)
3595 			w_size = 1;
3596 		else if (xfer->bits_per_word <= 16)
3597 			w_size = 2;
3598 		else
3599 			w_size = 4;
3600 
3601 		/* No partial transfers accepted */
3602 		if (xfer->len % w_size)
3603 			return -EINVAL;
3604 
3605 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3606 		    xfer->speed_hz < ctlr->min_speed_hz)
3607 			return -EINVAL;
3608 
3609 		if (xfer->tx_buf && !xfer->tx_nbits)
3610 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3611 		if (xfer->rx_buf && !xfer->rx_nbits)
3612 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3613 		/* check transfer tx/rx_nbits:
3614 		 * 1. check the value matches one of single, dual and quad
3615 		 * 2. check tx/rx_nbits match the mode in spi_device
3616 		 */
3617 		if (xfer->tx_buf) {
3618 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3619 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3620 				xfer->tx_nbits != SPI_NBITS_QUAD)
3621 				return -EINVAL;
3622 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3623 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3624 				return -EINVAL;
3625 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3626 				!(spi->mode & SPI_TX_QUAD))
3627 				return -EINVAL;
3628 		}
3629 		/* check transfer rx_nbits */
3630 		if (xfer->rx_buf) {
3631 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3632 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3633 				xfer->rx_nbits != SPI_NBITS_QUAD)
3634 				return -EINVAL;
3635 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3636 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3637 				return -EINVAL;
3638 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3639 				!(spi->mode & SPI_RX_QUAD))
3640 				return -EINVAL;
3641 		}
3642 
3643 		if (_spi_xfer_word_delay_update(xfer, spi))
3644 			return -EINVAL;
3645 	}
3646 
3647 	message->status = -EINPROGRESS;
3648 
3649 	return 0;
3650 }
3651 
3652 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3653 {
3654 	struct spi_controller *ctlr = spi->controller;
3655 	struct spi_transfer *xfer;
3656 
3657 	/*
3658 	 * Some controllers do not support doing regular SPI transfers. Return
3659 	 * ENOTSUPP when this is the case.
3660 	 */
3661 	if (!ctlr->transfer)
3662 		return -ENOTSUPP;
3663 
3664 	message->spi = spi;
3665 
3666 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3667 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3668 
3669 	trace_spi_message_submit(message);
3670 
3671 	if (!ctlr->ptp_sts_supported) {
3672 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3673 			xfer->ptp_sts_word_pre = 0;
3674 			ptp_read_system_prets(xfer->ptp_sts);
3675 		}
3676 	}
3677 
3678 	return ctlr->transfer(spi, message);
3679 }
3680 
3681 /**
3682  * spi_async - asynchronous SPI transfer
3683  * @spi: device with which data will be exchanged
3684  * @message: describes the data transfers, including completion callback
3685  * Context: any (irqs may be blocked, etc)
3686  *
3687  * This call may be used in_irq and other contexts which can't sleep,
3688  * as well as from task contexts which can sleep.
3689  *
3690  * The completion callback is invoked in a context which can't sleep.
3691  * Before that invocation, the value of message->status is undefined.
3692  * When the callback is issued, message->status holds either zero (to
3693  * indicate complete success) or a negative error code.  After that
3694  * callback returns, the driver which issued the transfer request may
3695  * deallocate the associated memory; it's no longer in use by any SPI
3696  * core or controller driver code.
3697  *
3698  * Note that although all messages to a spi_device are handled in
3699  * FIFO order, messages may go to different devices in other orders.
3700  * Some device might be higher priority, or have various "hard" access
3701  * time requirements, for example.
3702  *
3703  * On detection of any fault during the transfer, processing of
3704  * the entire message is aborted, and the device is deselected.
3705  * Until returning from the associated message completion callback,
3706  * no other spi_message queued to that device will be processed.
3707  * (This rule applies equally to all the synchronous transfer calls,
3708  * which are wrappers around this core asynchronous primitive.)
3709  *
3710  * Return: zero on success, else a negative error code.
3711  */
3712 int spi_async(struct spi_device *spi, struct spi_message *message)
3713 {
3714 	struct spi_controller *ctlr = spi->controller;
3715 	int ret;
3716 	unsigned long flags;
3717 
3718 	ret = __spi_validate(spi, message);
3719 	if (ret != 0)
3720 		return ret;
3721 
3722 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3723 
3724 	if (ctlr->bus_lock_flag)
3725 		ret = -EBUSY;
3726 	else
3727 		ret = __spi_async(spi, message);
3728 
3729 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3730 
3731 	return ret;
3732 }
3733 EXPORT_SYMBOL_GPL(spi_async);
3734 
3735 /**
3736  * spi_async_locked - version of spi_async with exclusive bus usage
3737  * @spi: device with which data will be exchanged
3738  * @message: describes the data transfers, including completion callback
3739  * Context: any (irqs may be blocked, etc)
3740  *
3741  * This call may be used in_irq and other contexts which can't sleep,
3742  * as well as from task contexts which can sleep.
3743  *
3744  * The completion callback is invoked in a context which can't sleep.
3745  * Before that invocation, the value of message->status is undefined.
3746  * When the callback is issued, message->status holds either zero (to
3747  * indicate complete success) or a negative error code.  After that
3748  * callback returns, the driver which issued the transfer request may
3749  * deallocate the associated memory; it's no longer in use by any SPI
3750  * core or controller driver code.
3751  *
3752  * Note that although all messages to a spi_device are handled in
3753  * FIFO order, messages may go to different devices in other orders.
3754  * Some device might be higher priority, or have various "hard" access
3755  * time requirements, for example.
3756  *
3757  * On detection of any fault during the transfer, processing of
3758  * the entire message is aborted, and the device is deselected.
3759  * Until returning from the associated message completion callback,
3760  * no other spi_message queued to that device will be processed.
3761  * (This rule applies equally to all the synchronous transfer calls,
3762  * which are wrappers around this core asynchronous primitive.)
3763  *
3764  * Return: zero on success, else a negative error code.
3765  */
3766 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3767 {
3768 	struct spi_controller *ctlr = spi->controller;
3769 	int ret;
3770 	unsigned long flags;
3771 
3772 	ret = __spi_validate(spi, message);
3773 	if (ret != 0)
3774 		return ret;
3775 
3776 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3777 
3778 	ret = __spi_async(spi, message);
3779 
3780 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3781 
3782 	return ret;
3783 
3784 }
3785 EXPORT_SYMBOL_GPL(spi_async_locked);
3786 
3787 /*-------------------------------------------------------------------------*/
3788 
3789 /* Utility methods for SPI protocol drivers, layered on
3790  * top of the core.  Some other utility methods are defined as
3791  * inline functions.
3792  */
3793 
3794 static void spi_complete(void *arg)
3795 {
3796 	complete(arg);
3797 }
3798 
3799 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3800 {
3801 	DECLARE_COMPLETION_ONSTACK(done);
3802 	int status;
3803 	struct spi_controller *ctlr = spi->controller;
3804 	unsigned long flags;
3805 
3806 	status = __spi_validate(spi, message);
3807 	if (status != 0)
3808 		return status;
3809 
3810 	message->complete = spi_complete;
3811 	message->context = &done;
3812 	message->spi = spi;
3813 
3814 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3815 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3816 
3817 	/* If we're not using the legacy transfer method then we will
3818 	 * try to transfer in the calling context so special case.
3819 	 * This code would be less tricky if we could remove the
3820 	 * support for driver implemented message queues.
3821 	 */
3822 	if (ctlr->transfer == spi_queued_transfer) {
3823 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3824 
3825 		trace_spi_message_submit(message);
3826 
3827 		status = __spi_queued_transfer(spi, message, false);
3828 
3829 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3830 	} else {
3831 		status = spi_async_locked(spi, message);
3832 	}
3833 
3834 	if (status == 0) {
3835 		/* Push out the messages in the calling context if we
3836 		 * can.
3837 		 */
3838 		if (ctlr->transfer == spi_queued_transfer) {
3839 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3840 						       spi_sync_immediate);
3841 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3842 						       spi_sync_immediate);
3843 			__spi_pump_messages(ctlr, false);
3844 		}
3845 
3846 		wait_for_completion(&done);
3847 		status = message->status;
3848 	}
3849 	message->context = NULL;
3850 	return status;
3851 }
3852 
3853 /**
3854  * spi_sync - blocking/synchronous SPI data transfers
3855  * @spi: device with which data will be exchanged
3856  * @message: describes the data transfers
3857  * Context: can sleep
3858  *
3859  * This call may only be used from a context that may sleep.  The sleep
3860  * is non-interruptible, and has no timeout.  Low-overhead controller
3861  * drivers may DMA directly into and out of the message buffers.
3862  *
3863  * Note that the SPI device's chip select is active during the message,
3864  * and then is normally disabled between messages.  Drivers for some
3865  * frequently-used devices may want to minimize costs of selecting a chip,
3866  * by leaving it selected in anticipation that the next message will go
3867  * to the same chip.  (That may increase power usage.)
3868  *
3869  * Also, the caller is guaranteeing that the memory associated with the
3870  * message will not be freed before this call returns.
3871  *
3872  * Return: zero on success, else a negative error code.
3873  */
3874 int spi_sync(struct spi_device *spi, struct spi_message *message)
3875 {
3876 	int ret;
3877 
3878 	mutex_lock(&spi->controller->bus_lock_mutex);
3879 	ret = __spi_sync(spi, message);
3880 	mutex_unlock(&spi->controller->bus_lock_mutex);
3881 
3882 	return ret;
3883 }
3884 EXPORT_SYMBOL_GPL(spi_sync);
3885 
3886 /**
3887  * spi_sync_locked - version of spi_sync with exclusive bus usage
3888  * @spi: device with which data will be exchanged
3889  * @message: describes the data transfers
3890  * Context: can sleep
3891  *
3892  * This call may only be used from a context that may sleep.  The sleep
3893  * is non-interruptible, and has no timeout.  Low-overhead controller
3894  * drivers may DMA directly into and out of the message buffers.
3895  *
3896  * This call should be used by drivers that require exclusive access to the
3897  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3898  * be released by a spi_bus_unlock call when the exclusive access is over.
3899  *
3900  * Return: zero on success, else a negative error code.
3901  */
3902 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3903 {
3904 	return __spi_sync(spi, message);
3905 }
3906 EXPORT_SYMBOL_GPL(spi_sync_locked);
3907 
3908 /**
3909  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3910  * @ctlr: SPI bus master that should be locked for exclusive bus access
3911  * Context: can sleep
3912  *
3913  * This call may only be used from a context that may sleep.  The sleep
3914  * is non-interruptible, and has no timeout.
3915  *
3916  * This call should be used by drivers that require exclusive access to the
3917  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3918  * exclusive access is over. Data transfer must be done by spi_sync_locked
3919  * and spi_async_locked calls when the SPI bus lock is held.
3920  *
3921  * Return: always zero.
3922  */
3923 int spi_bus_lock(struct spi_controller *ctlr)
3924 {
3925 	unsigned long flags;
3926 
3927 	mutex_lock(&ctlr->bus_lock_mutex);
3928 
3929 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3930 	ctlr->bus_lock_flag = 1;
3931 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3932 
3933 	/* mutex remains locked until spi_bus_unlock is called */
3934 
3935 	return 0;
3936 }
3937 EXPORT_SYMBOL_GPL(spi_bus_lock);
3938 
3939 /**
3940  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3941  * @ctlr: SPI bus master that was locked for exclusive bus access
3942  * Context: can sleep
3943  *
3944  * This call may only be used from a context that may sleep.  The sleep
3945  * is non-interruptible, and has no timeout.
3946  *
3947  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3948  * call.
3949  *
3950  * Return: always zero.
3951  */
3952 int spi_bus_unlock(struct spi_controller *ctlr)
3953 {
3954 	ctlr->bus_lock_flag = 0;
3955 
3956 	mutex_unlock(&ctlr->bus_lock_mutex);
3957 
3958 	return 0;
3959 }
3960 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3961 
3962 /* portable code must never pass more than 32 bytes */
3963 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3964 
3965 static u8	*buf;
3966 
3967 /**
3968  * spi_write_then_read - SPI synchronous write followed by read
3969  * @spi: device with which data will be exchanged
3970  * @txbuf: data to be written (need not be dma-safe)
3971  * @n_tx: size of txbuf, in bytes
3972  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3973  * @n_rx: size of rxbuf, in bytes
3974  * Context: can sleep
3975  *
3976  * This performs a half duplex MicroWire style transaction with the
3977  * device, sending txbuf and then reading rxbuf.  The return value
3978  * is zero for success, else a negative errno status code.
3979  * This call may only be used from a context that may sleep.
3980  *
3981  * Parameters to this routine are always copied using a small buffer.
3982  * Performance-sensitive or bulk transfer code should instead use
3983  * spi_{async,sync}() calls with dma-safe buffers.
3984  *
3985  * Return: zero on success, else a negative error code.
3986  */
3987 int spi_write_then_read(struct spi_device *spi,
3988 		const void *txbuf, unsigned n_tx,
3989 		void *rxbuf, unsigned n_rx)
3990 {
3991 	static DEFINE_MUTEX(lock);
3992 
3993 	int			status;
3994 	struct spi_message	message;
3995 	struct spi_transfer	x[2];
3996 	u8			*local_buf;
3997 
3998 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3999 	 * copying here, (as a pure convenience thing), but we can
4000 	 * keep heap costs out of the hot path unless someone else is
4001 	 * using the pre-allocated buffer or the transfer is too large.
4002 	 */
4003 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4004 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4005 				    GFP_KERNEL | GFP_DMA);
4006 		if (!local_buf)
4007 			return -ENOMEM;
4008 	} else {
4009 		local_buf = buf;
4010 	}
4011 
4012 	spi_message_init(&message);
4013 	memset(x, 0, sizeof(x));
4014 	if (n_tx) {
4015 		x[0].len = n_tx;
4016 		spi_message_add_tail(&x[0], &message);
4017 	}
4018 	if (n_rx) {
4019 		x[1].len = n_rx;
4020 		spi_message_add_tail(&x[1], &message);
4021 	}
4022 
4023 	memcpy(local_buf, txbuf, n_tx);
4024 	x[0].tx_buf = local_buf;
4025 	x[1].rx_buf = local_buf + n_tx;
4026 
4027 	/* do the i/o */
4028 	status = spi_sync(spi, &message);
4029 	if (status == 0)
4030 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4031 
4032 	if (x[0].tx_buf == buf)
4033 		mutex_unlock(&lock);
4034 	else
4035 		kfree(local_buf);
4036 
4037 	return status;
4038 }
4039 EXPORT_SYMBOL_GPL(spi_write_then_read);
4040 
4041 /*-------------------------------------------------------------------------*/
4042 
4043 #if IS_ENABLED(CONFIG_OF)
4044 /* must call put_device() when done with returned spi_device device */
4045 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4046 {
4047 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4048 
4049 	return dev ? to_spi_device(dev) : NULL;
4050 }
4051 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4052 #endif /* IS_ENABLED(CONFIG_OF) */
4053 
4054 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4055 /* the spi controllers are not using spi_bus, so we find it with another way */
4056 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4057 {
4058 	struct device *dev;
4059 
4060 	dev = class_find_device_by_of_node(&spi_master_class, node);
4061 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4062 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4063 	if (!dev)
4064 		return NULL;
4065 
4066 	/* reference got in class_find_device */
4067 	return container_of(dev, struct spi_controller, dev);
4068 }
4069 
4070 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4071 			 void *arg)
4072 {
4073 	struct of_reconfig_data *rd = arg;
4074 	struct spi_controller *ctlr;
4075 	struct spi_device *spi;
4076 
4077 	switch (of_reconfig_get_state_change(action, arg)) {
4078 	case OF_RECONFIG_CHANGE_ADD:
4079 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4080 		if (ctlr == NULL)
4081 			return NOTIFY_OK;	/* not for us */
4082 
4083 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4084 			put_device(&ctlr->dev);
4085 			return NOTIFY_OK;
4086 		}
4087 
4088 		spi = of_register_spi_device(ctlr, rd->dn);
4089 		put_device(&ctlr->dev);
4090 
4091 		if (IS_ERR(spi)) {
4092 			pr_err("%s: failed to create for '%pOF'\n",
4093 					__func__, rd->dn);
4094 			of_node_clear_flag(rd->dn, OF_POPULATED);
4095 			return notifier_from_errno(PTR_ERR(spi));
4096 		}
4097 		break;
4098 
4099 	case OF_RECONFIG_CHANGE_REMOVE:
4100 		/* already depopulated? */
4101 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4102 			return NOTIFY_OK;
4103 
4104 		/* find our device by node */
4105 		spi = of_find_spi_device_by_node(rd->dn);
4106 		if (spi == NULL)
4107 			return NOTIFY_OK;	/* no? not meant for us */
4108 
4109 		/* unregister takes one ref away */
4110 		spi_unregister_device(spi);
4111 
4112 		/* and put the reference of the find */
4113 		put_device(&spi->dev);
4114 		break;
4115 	}
4116 
4117 	return NOTIFY_OK;
4118 }
4119 
4120 static struct notifier_block spi_of_notifier = {
4121 	.notifier_call = of_spi_notify,
4122 };
4123 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4124 extern struct notifier_block spi_of_notifier;
4125 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4126 
4127 #if IS_ENABLED(CONFIG_ACPI)
4128 static int spi_acpi_controller_match(struct device *dev, const void *data)
4129 {
4130 	return ACPI_COMPANION(dev->parent) == data;
4131 }
4132 
4133 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4134 {
4135 	struct device *dev;
4136 
4137 	dev = class_find_device(&spi_master_class, NULL, adev,
4138 				spi_acpi_controller_match);
4139 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4140 		dev = class_find_device(&spi_slave_class, NULL, adev,
4141 					spi_acpi_controller_match);
4142 	if (!dev)
4143 		return NULL;
4144 
4145 	return container_of(dev, struct spi_controller, dev);
4146 }
4147 
4148 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4149 {
4150 	struct device *dev;
4151 
4152 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4153 	return to_spi_device(dev);
4154 }
4155 
4156 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4157 			   void *arg)
4158 {
4159 	struct acpi_device *adev = arg;
4160 	struct spi_controller *ctlr;
4161 	struct spi_device *spi;
4162 
4163 	switch (value) {
4164 	case ACPI_RECONFIG_DEVICE_ADD:
4165 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4166 		if (!ctlr)
4167 			break;
4168 
4169 		acpi_register_spi_device(ctlr, adev);
4170 		put_device(&ctlr->dev);
4171 		break;
4172 	case ACPI_RECONFIG_DEVICE_REMOVE:
4173 		if (!acpi_device_enumerated(adev))
4174 			break;
4175 
4176 		spi = acpi_spi_find_device_by_adev(adev);
4177 		if (!spi)
4178 			break;
4179 
4180 		spi_unregister_device(spi);
4181 		put_device(&spi->dev);
4182 		break;
4183 	}
4184 
4185 	return NOTIFY_OK;
4186 }
4187 
4188 static struct notifier_block spi_acpi_notifier = {
4189 	.notifier_call = acpi_spi_notify,
4190 };
4191 #else
4192 extern struct notifier_block spi_acpi_notifier;
4193 #endif
4194 
4195 static int __init spi_init(void)
4196 {
4197 	int	status;
4198 
4199 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4200 	if (!buf) {
4201 		status = -ENOMEM;
4202 		goto err0;
4203 	}
4204 
4205 	status = bus_register(&spi_bus_type);
4206 	if (status < 0)
4207 		goto err1;
4208 
4209 	status = class_register(&spi_master_class);
4210 	if (status < 0)
4211 		goto err2;
4212 
4213 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4214 		status = class_register(&spi_slave_class);
4215 		if (status < 0)
4216 			goto err3;
4217 	}
4218 
4219 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4220 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4221 	if (IS_ENABLED(CONFIG_ACPI))
4222 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4223 
4224 	return 0;
4225 
4226 err3:
4227 	class_unregister(&spi_master_class);
4228 err2:
4229 	bus_unregister(&spi_bus_type);
4230 err1:
4231 	kfree(buf);
4232 	buf = NULL;
4233 err0:
4234 	return status;
4235 }
4236 
4237 /* board_info is normally registered in arch_initcall(),
4238  * but even essential drivers wait till later
4239  *
4240  * REVISIT only boardinfo really needs static linking. the rest (device and
4241  * driver registration) _could_ be dynamically linked (modular) ... costs
4242  * include needing to have boardinfo data structures be much more public.
4243  */
4244 postcore_initcall(spi_init);
4245