1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2003-2015 Broadcom Corporation
4 * All Rights Reserved
5 */
6 #include <linux/acpi.h>
7 #include <linux/clk.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/platform_device.h>
11 #include <linux/spi/spi.h>
12 #include <linux/interrupt.h>
13
14 /* SPI Configuration Register */
15 #define XLP_SPI_CONFIG 0x00
16 #define XLP_SPI_CPHA BIT(0)
17 #define XLP_SPI_CPOL BIT(1)
18 #define XLP_SPI_CS_POL BIT(2)
19 #define XLP_SPI_TXMISO_EN BIT(3)
20 #define XLP_SPI_TXMOSI_EN BIT(4)
21 #define XLP_SPI_RXMISO_EN BIT(5)
22 #define XLP_SPI_CS_LSBFE BIT(10)
23 #define XLP_SPI_RXCAP_EN BIT(11)
24
25 /* SPI Frequency Divider Register */
26 #define XLP_SPI_FDIV 0x04
27
28 /* SPI Command Register */
29 #define XLP_SPI_CMD 0x08
30 #define XLP_SPI_CMD_IDLE_MASK 0x0
31 #define XLP_SPI_CMD_TX_MASK 0x1
32 #define XLP_SPI_CMD_RX_MASK 0x2
33 #define XLP_SPI_CMD_TXRX_MASK 0x3
34 #define XLP_SPI_CMD_CONT BIT(4)
35 #define XLP_SPI_XFR_BITCNT_SHIFT 16
36
37 /* SPI Status Register */
38 #define XLP_SPI_STATUS 0x0c
39 #define XLP_SPI_XFR_PENDING BIT(0)
40 #define XLP_SPI_XFR_DONE BIT(1)
41 #define XLP_SPI_TX_INT BIT(2)
42 #define XLP_SPI_RX_INT BIT(3)
43 #define XLP_SPI_TX_UF BIT(4)
44 #define XLP_SPI_RX_OF BIT(5)
45 #define XLP_SPI_STAT_MASK 0x3f
46
47 /* SPI Interrupt Enable Register */
48 #define XLP_SPI_INTR_EN 0x10
49 #define XLP_SPI_INTR_DONE BIT(0)
50 #define XLP_SPI_INTR_TXTH BIT(1)
51 #define XLP_SPI_INTR_RXTH BIT(2)
52 #define XLP_SPI_INTR_TXUF BIT(3)
53 #define XLP_SPI_INTR_RXOF BIT(4)
54
55 /* SPI FIFO Threshold Register */
56 #define XLP_SPI_FIFO_THRESH 0x14
57
58 /* SPI FIFO Word Count Register */
59 #define XLP_SPI_FIFO_WCNT 0x18
60 #define XLP_SPI_RXFIFO_WCNT_MASK 0xf
61 #define XLP_SPI_TXFIFO_WCNT_MASK 0xf0
62 #define XLP_SPI_TXFIFO_WCNT_SHIFT 4
63
64 /* SPI Transmit Data FIFO Register */
65 #define XLP_SPI_TXDATA_FIFO 0x1c
66
67 /* SPI Receive Data FIFO Register */
68 #define XLP_SPI_RXDATA_FIFO 0x20
69
70 /* SPI System Control Register */
71 #define XLP_SPI_SYSCTRL 0x100
72 #define XLP_SPI_SYS_RESET BIT(0)
73 #define XLP_SPI_SYS_CLKDIS BIT(1)
74 #define XLP_SPI_SYS_PMEN BIT(8)
75
76 #define SPI_CS_OFFSET 0x40
77 #define XLP_SPI_TXRXTH 0x80
78 #define XLP_SPI_FIFO_SIZE 8
79 #define XLP_SPI_MAX_CS 4
80 #define XLP_SPI_DEFAULT_FREQ 133333333
81 #define XLP_SPI_FDIV_MIN 4
82 #define XLP_SPI_FDIV_MAX 65535
83 /*
84 * SPI can transfer only 28 bytes properly at a time. So split the
85 * transfer into 28 bytes size.
86 */
87 #define XLP_SPI_XFER_SIZE 28
88
89 struct xlp_spi_priv {
90 struct device dev; /* device structure */
91 void __iomem *base; /* spi registers base address */
92 const u8 *tx_buf; /* tx data buffer */
93 u8 *rx_buf; /* rx data buffer */
94 int tx_len; /* tx xfer length */
95 int rx_len; /* rx xfer length */
96 int txerrors; /* TXFIFO underflow count */
97 int rxerrors; /* RXFIFO overflow count */
98 int cs; /* slave device chip select */
99 u32 spi_clk; /* spi clock frequency */
100 bool cmd_cont; /* cs active */
101 struct completion done; /* completion notification */
102 };
103
xlp_spi_reg_read(struct xlp_spi_priv * priv,int cs,int regoff)104 static inline u32 xlp_spi_reg_read(struct xlp_spi_priv *priv,
105 int cs, int regoff)
106 {
107 return readl(priv->base + regoff + cs * SPI_CS_OFFSET);
108 }
109
xlp_spi_reg_write(struct xlp_spi_priv * priv,int cs,int regoff,u32 val)110 static inline void xlp_spi_reg_write(struct xlp_spi_priv *priv, int cs,
111 int regoff, u32 val)
112 {
113 writel(val, priv->base + regoff + cs * SPI_CS_OFFSET);
114 }
115
xlp_spi_sysctl_write(struct xlp_spi_priv * priv,int regoff,u32 val)116 static inline void xlp_spi_sysctl_write(struct xlp_spi_priv *priv,
117 int regoff, u32 val)
118 {
119 writel(val, priv->base + regoff);
120 }
121
122 /*
123 * Setup global SPI_SYSCTRL register for all SPI channels.
124 */
xlp_spi_sysctl_setup(struct xlp_spi_priv * xspi)125 static void xlp_spi_sysctl_setup(struct xlp_spi_priv *xspi)
126 {
127 int cs;
128
129 for (cs = 0; cs < XLP_SPI_MAX_CS; cs++)
130 xlp_spi_sysctl_write(xspi, XLP_SPI_SYSCTRL,
131 XLP_SPI_SYS_RESET << cs);
132 xlp_spi_sysctl_write(xspi, XLP_SPI_SYSCTRL, XLP_SPI_SYS_PMEN);
133 }
134
xlp_spi_setup(struct spi_device * spi)135 static int xlp_spi_setup(struct spi_device *spi)
136 {
137 struct xlp_spi_priv *xspi;
138 u32 fdiv, cfg;
139 int cs;
140
141 xspi = spi_master_get_devdata(spi->master);
142 cs = spi_get_chipselect(spi, 0);
143 /*
144 * The value of fdiv must be between 4 and 65535.
145 */
146 fdiv = DIV_ROUND_UP(xspi->spi_clk, spi->max_speed_hz);
147 if (fdiv > XLP_SPI_FDIV_MAX)
148 fdiv = XLP_SPI_FDIV_MAX;
149 else if (fdiv < XLP_SPI_FDIV_MIN)
150 fdiv = XLP_SPI_FDIV_MIN;
151
152 xlp_spi_reg_write(xspi, cs, XLP_SPI_FDIV, fdiv);
153 xlp_spi_reg_write(xspi, cs, XLP_SPI_FIFO_THRESH, XLP_SPI_TXRXTH);
154 cfg = xlp_spi_reg_read(xspi, cs, XLP_SPI_CONFIG);
155 if (spi->mode & SPI_CPHA)
156 cfg |= XLP_SPI_CPHA;
157 else
158 cfg &= ~XLP_SPI_CPHA;
159 if (spi->mode & SPI_CPOL)
160 cfg |= XLP_SPI_CPOL;
161 else
162 cfg &= ~XLP_SPI_CPOL;
163 if (!(spi->mode & SPI_CS_HIGH))
164 cfg |= XLP_SPI_CS_POL;
165 else
166 cfg &= ~XLP_SPI_CS_POL;
167 if (spi->mode & SPI_LSB_FIRST)
168 cfg |= XLP_SPI_CS_LSBFE;
169 else
170 cfg &= ~XLP_SPI_CS_LSBFE;
171
172 cfg |= XLP_SPI_TXMOSI_EN | XLP_SPI_RXMISO_EN;
173 if (fdiv == 4)
174 cfg |= XLP_SPI_RXCAP_EN;
175 xlp_spi_reg_write(xspi, cs, XLP_SPI_CONFIG, cfg);
176
177 return 0;
178 }
179
xlp_spi_read_rxfifo(struct xlp_spi_priv * xspi)180 static void xlp_spi_read_rxfifo(struct xlp_spi_priv *xspi)
181 {
182 u32 rx_data, rxfifo_cnt;
183 int i, j, nbytes;
184
185 rxfifo_cnt = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_FIFO_WCNT);
186 rxfifo_cnt &= XLP_SPI_RXFIFO_WCNT_MASK;
187 while (rxfifo_cnt) {
188 rx_data = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_RXDATA_FIFO);
189 j = 0;
190 nbytes = min(xspi->rx_len, 4);
191 for (i = nbytes - 1; i >= 0; i--, j++)
192 xspi->rx_buf[i] = (rx_data >> (j * 8)) & 0xff;
193
194 xspi->rx_len -= nbytes;
195 xspi->rx_buf += nbytes;
196 rxfifo_cnt--;
197 }
198 }
199
xlp_spi_fill_txfifo(struct xlp_spi_priv * xspi)200 static void xlp_spi_fill_txfifo(struct xlp_spi_priv *xspi)
201 {
202 u32 tx_data, txfifo_cnt;
203 int i, j, nbytes;
204
205 txfifo_cnt = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_FIFO_WCNT);
206 txfifo_cnt &= XLP_SPI_TXFIFO_WCNT_MASK;
207 txfifo_cnt >>= XLP_SPI_TXFIFO_WCNT_SHIFT;
208 while (xspi->tx_len && (txfifo_cnt < XLP_SPI_FIFO_SIZE)) {
209 j = 0;
210 tx_data = 0;
211 nbytes = min(xspi->tx_len, 4);
212 for (i = nbytes - 1; i >= 0; i--, j++)
213 tx_data |= xspi->tx_buf[i] << (j * 8);
214
215 xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_TXDATA_FIFO, tx_data);
216 xspi->tx_len -= nbytes;
217 xspi->tx_buf += nbytes;
218 txfifo_cnt++;
219 }
220 }
221
xlp_spi_interrupt(int irq,void * dev_id)222 static irqreturn_t xlp_spi_interrupt(int irq, void *dev_id)
223 {
224 struct xlp_spi_priv *xspi = dev_id;
225 u32 stat;
226
227 stat = xlp_spi_reg_read(xspi, xspi->cs, XLP_SPI_STATUS) &
228 XLP_SPI_STAT_MASK;
229 if (!stat)
230 return IRQ_NONE;
231
232 if (stat & XLP_SPI_TX_INT) {
233 if (xspi->tx_len)
234 xlp_spi_fill_txfifo(xspi);
235 if (stat & XLP_SPI_TX_UF)
236 xspi->txerrors++;
237 }
238
239 if (stat & XLP_SPI_RX_INT) {
240 if (xspi->rx_len)
241 xlp_spi_read_rxfifo(xspi);
242 if (stat & XLP_SPI_RX_OF)
243 xspi->rxerrors++;
244 }
245
246 /* write status back to clear interrupts */
247 xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_STATUS, stat);
248 if (stat & XLP_SPI_XFR_DONE)
249 complete(&xspi->done);
250
251 return IRQ_HANDLED;
252 }
253
xlp_spi_send_cmd(struct xlp_spi_priv * xspi,int xfer_len,int cmd_cont)254 static void xlp_spi_send_cmd(struct xlp_spi_priv *xspi, int xfer_len,
255 int cmd_cont)
256 {
257 u32 cmd = 0;
258
259 if (xspi->tx_buf)
260 cmd |= XLP_SPI_CMD_TX_MASK;
261 if (xspi->rx_buf)
262 cmd |= XLP_SPI_CMD_RX_MASK;
263 if (cmd_cont)
264 cmd |= XLP_SPI_CMD_CONT;
265 cmd |= ((xfer_len * 8 - 1) << XLP_SPI_XFR_BITCNT_SHIFT);
266 xlp_spi_reg_write(xspi, xspi->cs, XLP_SPI_CMD, cmd);
267 }
268
xlp_spi_xfer_block(struct xlp_spi_priv * xs,const unsigned char * tx_buf,unsigned char * rx_buf,int xfer_len,int cmd_cont)269 static int xlp_spi_xfer_block(struct xlp_spi_priv *xs,
270 const unsigned char *tx_buf,
271 unsigned char *rx_buf, int xfer_len, int cmd_cont)
272 {
273 int timeout;
274 u32 intr_mask = 0;
275
276 xs->tx_buf = tx_buf;
277 xs->rx_buf = rx_buf;
278 xs->tx_len = (xs->tx_buf == NULL) ? 0 : xfer_len;
279 xs->rx_len = (xs->rx_buf == NULL) ? 0 : xfer_len;
280 xs->txerrors = xs->rxerrors = 0;
281
282 /* fill TXDATA_FIFO, then send the CMD */
283 if (xs->tx_len)
284 xlp_spi_fill_txfifo(xs);
285
286 xlp_spi_send_cmd(xs, xfer_len, cmd_cont);
287
288 /*
289 * We are getting some spurious tx interrupts, so avoid enabling
290 * tx interrupts when only rx is in process.
291 * Enable all the interrupts in tx case.
292 */
293 if (xs->tx_len)
294 intr_mask |= XLP_SPI_INTR_TXTH | XLP_SPI_INTR_TXUF |
295 XLP_SPI_INTR_RXTH | XLP_SPI_INTR_RXOF;
296 else
297 intr_mask |= XLP_SPI_INTR_RXTH | XLP_SPI_INTR_RXOF;
298
299 intr_mask |= XLP_SPI_INTR_DONE;
300 xlp_spi_reg_write(xs, xs->cs, XLP_SPI_INTR_EN, intr_mask);
301
302 timeout = wait_for_completion_timeout(&xs->done,
303 msecs_to_jiffies(1000));
304 /* Disable interrupts */
305 xlp_spi_reg_write(xs, xs->cs, XLP_SPI_INTR_EN, 0x0);
306 if (!timeout) {
307 dev_err(&xs->dev, "xfer timedout!\n");
308 goto out;
309 }
310 if (xs->txerrors || xs->rxerrors)
311 dev_err(&xs->dev, "Over/Underflow rx %d tx %d xfer %d!\n",
312 xs->rxerrors, xs->txerrors, xfer_len);
313
314 return xfer_len;
315 out:
316 return -ETIMEDOUT;
317 }
318
xlp_spi_txrx_bufs(struct xlp_spi_priv * xs,struct spi_transfer * t)319 static int xlp_spi_txrx_bufs(struct xlp_spi_priv *xs, struct spi_transfer *t)
320 {
321 int bytesleft, sz;
322 unsigned char *rx_buf;
323 const unsigned char *tx_buf;
324
325 tx_buf = t->tx_buf;
326 rx_buf = t->rx_buf;
327 bytesleft = t->len;
328 while (bytesleft) {
329 if (bytesleft > XLP_SPI_XFER_SIZE)
330 sz = xlp_spi_xfer_block(xs, tx_buf, rx_buf,
331 XLP_SPI_XFER_SIZE, 1);
332 else
333 sz = xlp_spi_xfer_block(xs, tx_buf, rx_buf,
334 bytesleft, xs->cmd_cont);
335 if (sz < 0)
336 return sz;
337 bytesleft -= sz;
338 if (tx_buf)
339 tx_buf += sz;
340 if (rx_buf)
341 rx_buf += sz;
342 }
343 return bytesleft;
344 }
345
xlp_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * t)346 static int xlp_spi_transfer_one(struct spi_master *master,
347 struct spi_device *spi,
348 struct spi_transfer *t)
349 {
350 struct xlp_spi_priv *xspi = spi_master_get_devdata(master);
351 int ret = 0;
352
353 xspi->cs = spi_get_chipselect(spi, 0);
354 xspi->dev = spi->dev;
355
356 if (spi_transfer_is_last(master, t))
357 xspi->cmd_cont = 0;
358 else
359 xspi->cmd_cont = 1;
360
361 if (xlp_spi_txrx_bufs(xspi, t))
362 ret = -EIO;
363
364 spi_finalize_current_transfer(master);
365 return ret;
366 }
367
xlp_spi_probe(struct platform_device * pdev)368 static int xlp_spi_probe(struct platform_device *pdev)
369 {
370 struct spi_master *master;
371 struct xlp_spi_priv *xspi;
372 struct clk *clk;
373 int irq, err;
374
375 xspi = devm_kzalloc(&pdev->dev, sizeof(*xspi), GFP_KERNEL);
376 if (!xspi)
377 return -ENOMEM;
378
379 xspi->base = devm_platform_ioremap_resource(pdev, 0);
380 if (IS_ERR(xspi->base))
381 return PTR_ERR(xspi->base);
382
383 irq = platform_get_irq(pdev, 0);
384 if (irq < 0)
385 return irq;
386 err = devm_request_irq(&pdev->dev, irq, xlp_spi_interrupt, 0,
387 pdev->name, xspi);
388 if (err) {
389 dev_err(&pdev->dev, "unable to request irq %d\n", irq);
390 return err;
391 }
392
393 clk = devm_clk_get(&pdev->dev, NULL);
394 if (IS_ERR(clk)) {
395 dev_err(&pdev->dev, "could not get spi clock\n");
396 return PTR_ERR(clk);
397 }
398
399 xspi->spi_clk = clk_get_rate(clk);
400
401 master = spi_alloc_master(&pdev->dev, 0);
402 if (!master) {
403 dev_err(&pdev->dev, "could not alloc master\n");
404 return -ENOMEM;
405 }
406
407 master->bus_num = 0;
408 master->num_chipselect = XLP_SPI_MAX_CS;
409 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
410 master->setup = xlp_spi_setup;
411 master->transfer_one = xlp_spi_transfer_one;
412 master->dev.of_node = pdev->dev.of_node;
413
414 init_completion(&xspi->done);
415 spi_master_set_devdata(master, xspi);
416 xlp_spi_sysctl_setup(xspi);
417
418 /* register spi controller */
419 err = devm_spi_register_master(&pdev->dev, master);
420 if (err) {
421 dev_err(&pdev->dev, "spi register master failed!\n");
422 spi_master_put(master);
423 return err;
424 }
425
426 return 0;
427 }
428
429 #ifdef CONFIG_ACPI
430 static const struct acpi_device_id xlp_spi_acpi_match[] = {
431 { "BRCM900D", 0 },
432 { "CAV900D", 0 },
433 { },
434 };
435 MODULE_DEVICE_TABLE(acpi, xlp_spi_acpi_match);
436 #endif
437
438 static struct platform_driver xlp_spi_driver = {
439 .probe = xlp_spi_probe,
440 .driver = {
441 .name = "xlp-spi",
442 .acpi_match_table = ACPI_PTR(xlp_spi_acpi_match),
443 },
444 };
445 module_platform_driver(xlp_spi_driver);
446
447 MODULE_AUTHOR("Kamlakant Patel <kamlakant.patel@broadcom.com>");
448 MODULE_DESCRIPTION("Netlogic XLP SPI controller driver");
449 MODULE_LICENSE("GPL v2");
450