xref: /openbmc/linux/drivers/spi/spi-uniphier.c (revision 78beef62)
1 // SPDX-License-Identifier: GPL-2.0
2 // spi-uniphier.c - Socionext UniPhier SPI controller driver
3 // Copyright 2012      Panasonic Corporation
4 // Copyright 2016-2018 Socionext Inc.
5 
6 #include <linux/kernel.h>
7 #include <linux/bitfield.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/spi/spi.h>
16 
17 #include <asm/unaligned.h>
18 
19 #define SSI_TIMEOUT_MS		2000
20 #define SSI_POLL_TIMEOUT_US	200
21 #define SSI_MAX_CLK_DIVIDER	254
22 #define SSI_MIN_CLK_DIVIDER	4
23 
24 struct uniphier_spi_priv {
25 	void __iomem *base;
26 	struct clk *clk;
27 	struct spi_master *master;
28 	struct completion xfer_done;
29 
30 	int error;
31 	unsigned int tx_bytes;
32 	unsigned int rx_bytes;
33 	const u8 *tx_buf;
34 	u8 *rx_buf;
35 
36 	bool is_save_param;
37 	u8 bits_per_word;
38 	u16 mode;
39 	u32 speed_hz;
40 };
41 
42 #define SSI_CTL			0x00
43 #define   SSI_CTL_EN		BIT(0)
44 
45 #define SSI_CKS			0x04
46 #define   SSI_CKS_CKRAT_MASK	GENMASK(7, 0)
47 #define   SSI_CKS_CKPHS		BIT(14)
48 #define   SSI_CKS_CKINIT	BIT(13)
49 #define   SSI_CKS_CKDLY		BIT(12)
50 
51 #define SSI_TXWDS		0x08
52 #define   SSI_TXWDS_WDLEN_MASK	GENMASK(13, 8)
53 #define   SSI_TXWDS_TDTF_MASK	GENMASK(7, 6)
54 #define   SSI_TXWDS_DTLEN_MASK	GENMASK(5, 0)
55 
56 #define SSI_RXWDS		0x0c
57 #define   SSI_RXWDS_DTLEN_MASK	GENMASK(5, 0)
58 
59 #define SSI_FPS			0x10
60 #define   SSI_FPS_FSPOL		BIT(15)
61 #define   SSI_FPS_FSTRT		BIT(14)
62 
63 #define SSI_SR			0x14
64 #define   SSI_SR_RNE		BIT(0)
65 
66 #define SSI_IE			0x18
67 #define   SSI_IE_RCIE		BIT(3)
68 #define   SSI_IE_RORIE		BIT(0)
69 
70 #define SSI_IS			0x1c
71 #define   SSI_IS_RXRS		BIT(9)
72 #define   SSI_IS_RCID		BIT(3)
73 #define   SSI_IS_RORID		BIT(0)
74 
75 #define SSI_IC			0x1c
76 #define   SSI_IC_TCIC		BIT(4)
77 #define   SSI_IC_RCIC		BIT(3)
78 #define   SSI_IC_RORIC		BIT(0)
79 
80 #define SSI_FC			0x20
81 #define   SSI_FC_TXFFL		BIT(12)
82 #define   SSI_FC_TXFTH_MASK	GENMASK(11, 8)
83 #define   SSI_FC_RXFFL		BIT(4)
84 #define   SSI_FC_RXFTH_MASK	GENMASK(3, 0)
85 
86 #define SSI_TXDR		0x24
87 #define SSI_RXDR		0x24
88 
89 #define SSI_FIFO_DEPTH		8U
90 
91 static inline unsigned int bytes_per_word(unsigned int bits)
92 {
93 	return bits <= 8 ? 1 : (bits <= 16 ? 2 : 4);
94 }
95 
96 static inline void uniphier_spi_irq_enable(struct spi_device *spi, u32 mask)
97 {
98 	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
99 	u32 val;
100 
101 	val = readl(priv->base + SSI_IE);
102 	val |= mask;
103 	writel(val, priv->base + SSI_IE);
104 }
105 
106 static inline void uniphier_spi_irq_disable(struct spi_device *spi, u32 mask)
107 {
108 	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
109 	u32 val;
110 
111 	val = readl(priv->base + SSI_IE);
112 	val &= ~mask;
113 	writel(val, priv->base + SSI_IE);
114 }
115 
116 static void uniphier_spi_set_mode(struct spi_device *spi)
117 {
118 	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
119 	u32 val1, val2;
120 
121 	/*
122 	 * clock setting
123 	 * CKPHS    capture timing. 0:rising edge, 1:falling edge
124 	 * CKINIT   clock initial level. 0:low, 1:high
125 	 * CKDLY    clock delay. 0:no delay, 1:delay depending on FSTRT
126 	 *          (FSTRT=0: 1 clock, FSTRT=1: 0.5 clock)
127 	 *
128 	 * frame setting
129 	 * FSPOL    frame signal porarity. 0: low, 1: high
130 	 * FSTRT    start frame timing
131 	 *          0: rising edge of clock, 1: falling edge of clock
132 	 */
133 	switch (spi->mode & (SPI_CPOL | SPI_CPHA)) {
134 	case SPI_MODE_0:
135 		/* CKPHS=1, CKINIT=0, CKDLY=1, FSTRT=0 */
136 		val1 = SSI_CKS_CKPHS | SSI_CKS_CKDLY;
137 		val2 = 0;
138 		break;
139 	case SPI_MODE_1:
140 		/* CKPHS=0, CKINIT=0, CKDLY=0, FSTRT=1 */
141 		val1 = 0;
142 		val2 = SSI_FPS_FSTRT;
143 		break;
144 	case SPI_MODE_2:
145 		/* CKPHS=0, CKINIT=1, CKDLY=1, FSTRT=1 */
146 		val1 = SSI_CKS_CKINIT | SSI_CKS_CKDLY;
147 		val2 = SSI_FPS_FSTRT;
148 		break;
149 	case SPI_MODE_3:
150 		/* CKPHS=1, CKINIT=1, CKDLY=0, FSTRT=0 */
151 		val1 = SSI_CKS_CKPHS | SSI_CKS_CKINIT;
152 		val2 = 0;
153 		break;
154 	}
155 
156 	if (!(spi->mode & SPI_CS_HIGH))
157 		val2 |= SSI_FPS_FSPOL;
158 
159 	writel(val1, priv->base + SSI_CKS);
160 	writel(val2, priv->base + SSI_FPS);
161 
162 	val1 = 0;
163 	if (spi->mode & SPI_LSB_FIRST)
164 		val1 |= FIELD_PREP(SSI_TXWDS_TDTF_MASK, 1);
165 	writel(val1, priv->base + SSI_TXWDS);
166 	writel(val1, priv->base + SSI_RXWDS);
167 }
168 
169 static void uniphier_spi_set_transfer_size(struct spi_device *spi, int size)
170 {
171 	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
172 	u32 val;
173 
174 	val = readl(priv->base + SSI_TXWDS);
175 	val &= ~(SSI_TXWDS_WDLEN_MASK | SSI_TXWDS_DTLEN_MASK);
176 	val |= FIELD_PREP(SSI_TXWDS_WDLEN_MASK, size);
177 	val |= FIELD_PREP(SSI_TXWDS_DTLEN_MASK, size);
178 	writel(val, priv->base + SSI_TXWDS);
179 
180 	val = readl(priv->base + SSI_RXWDS);
181 	val &= ~SSI_RXWDS_DTLEN_MASK;
182 	val |= FIELD_PREP(SSI_RXWDS_DTLEN_MASK, size);
183 	writel(val, priv->base + SSI_RXWDS);
184 }
185 
186 static void uniphier_spi_set_baudrate(struct spi_device *spi,
187 				      unsigned int speed)
188 {
189 	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
190 	u32 val, ckdiv;
191 
192 	/*
193 	 * the supported rates are even numbers from 4 to 254. (4,6,8...254)
194 	 * round up as we look for equal or less speed
195 	 */
196 	ckdiv = DIV_ROUND_UP(clk_get_rate(priv->clk), speed);
197 	ckdiv = round_up(ckdiv, 2);
198 
199 	val = readl(priv->base + SSI_CKS);
200 	val &= ~SSI_CKS_CKRAT_MASK;
201 	val |= ckdiv & SSI_CKS_CKRAT_MASK;
202 	writel(val, priv->base + SSI_CKS);
203 }
204 
205 static void uniphier_spi_setup_transfer(struct spi_device *spi,
206 				       struct spi_transfer *t)
207 {
208 	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
209 	u32 val;
210 
211 	priv->error = 0;
212 	priv->tx_buf = t->tx_buf;
213 	priv->rx_buf = t->rx_buf;
214 	priv->tx_bytes = priv->rx_bytes = t->len;
215 
216 	if (!priv->is_save_param || priv->mode != spi->mode) {
217 		uniphier_spi_set_mode(spi);
218 		priv->mode = spi->mode;
219 		priv->is_save_param = false;
220 	}
221 
222 	if (!priv->is_save_param || priv->bits_per_word != t->bits_per_word) {
223 		uniphier_spi_set_transfer_size(spi, t->bits_per_word);
224 		priv->bits_per_word = t->bits_per_word;
225 	}
226 
227 	if (!priv->is_save_param || priv->speed_hz != t->speed_hz) {
228 		uniphier_spi_set_baudrate(spi, t->speed_hz);
229 		priv->speed_hz = t->speed_hz;
230 	}
231 
232 	priv->is_save_param = true;
233 
234 	/* reset FIFOs */
235 	val = SSI_FC_TXFFL | SSI_FC_RXFFL;
236 	writel(val, priv->base + SSI_FC);
237 }
238 
239 static void uniphier_spi_send(struct uniphier_spi_priv *priv)
240 {
241 	int wsize;
242 	u32 val = 0;
243 
244 	wsize = min(bytes_per_word(priv->bits_per_word), priv->tx_bytes);
245 	priv->tx_bytes -= wsize;
246 
247 	if (priv->tx_buf) {
248 		switch (wsize) {
249 		case 1:
250 			val = *priv->tx_buf;
251 			break;
252 		case 2:
253 			val = get_unaligned_le16(priv->tx_buf);
254 			break;
255 		case 4:
256 			val = get_unaligned_le32(priv->tx_buf);
257 			break;
258 		}
259 
260 		priv->tx_buf += wsize;
261 	}
262 
263 	writel(val, priv->base + SSI_TXDR);
264 }
265 
266 static void uniphier_spi_recv(struct uniphier_spi_priv *priv)
267 {
268 	int rsize;
269 	u32 val;
270 
271 	rsize = min(bytes_per_word(priv->bits_per_word), priv->rx_bytes);
272 	priv->rx_bytes -= rsize;
273 
274 	val = readl(priv->base + SSI_RXDR);
275 
276 	if (priv->rx_buf) {
277 		switch (rsize) {
278 		case 1:
279 			*priv->rx_buf = val;
280 			break;
281 		case 2:
282 			put_unaligned_le16(val, priv->rx_buf);
283 			break;
284 		case 4:
285 			put_unaligned_le32(val, priv->rx_buf);
286 			break;
287 		}
288 
289 		priv->rx_buf += rsize;
290 	}
291 }
292 
293 static void uniphier_spi_fill_tx_fifo(struct uniphier_spi_priv *priv)
294 {
295 	unsigned int fifo_threshold, fill_bytes;
296 	u32 val;
297 
298 	fifo_threshold = DIV_ROUND_UP(priv->rx_bytes,
299 				bytes_per_word(priv->bits_per_word));
300 	fifo_threshold = min(fifo_threshold, SSI_FIFO_DEPTH);
301 
302 	fill_bytes = fifo_threshold - (priv->rx_bytes - priv->tx_bytes);
303 
304 	/* set fifo threshold */
305 	val = readl(priv->base + SSI_FC);
306 	val &= ~(SSI_FC_TXFTH_MASK | SSI_FC_RXFTH_MASK);
307 	val |= FIELD_PREP(SSI_FC_TXFTH_MASK, fifo_threshold);
308 	val |= FIELD_PREP(SSI_FC_RXFTH_MASK, fifo_threshold);
309 	writel(val, priv->base + SSI_FC);
310 
311 	while (fill_bytes--)
312 		uniphier_spi_send(priv);
313 }
314 
315 static void uniphier_spi_set_cs(struct spi_device *spi, bool enable)
316 {
317 	struct uniphier_spi_priv *priv = spi_master_get_devdata(spi->master);
318 	u32 val;
319 
320 	val = readl(priv->base + SSI_FPS);
321 
322 	if (enable)
323 		val |= SSI_FPS_FSPOL;
324 	else
325 		val &= ~SSI_FPS_FSPOL;
326 
327 	writel(val, priv->base + SSI_FPS);
328 }
329 
330 static int uniphier_spi_transfer_one_irq(struct spi_master *master,
331 					 struct spi_device *spi,
332 					 struct spi_transfer *t)
333 {
334 	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
335 	struct device *dev = master->dev.parent;
336 	unsigned long time_left;
337 
338 	reinit_completion(&priv->xfer_done);
339 
340 	uniphier_spi_fill_tx_fifo(priv);
341 
342 	uniphier_spi_irq_enable(spi, SSI_IE_RCIE | SSI_IE_RORIE);
343 
344 	time_left = wait_for_completion_timeout(&priv->xfer_done,
345 					msecs_to_jiffies(SSI_TIMEOUT_MS));
346 
347 	uniphier_spi_irq_disable(spi, SSI_IE_RCIE | SSI_IE_RORIE);
348 
349 	if (!time_left) {
350 		dev_err(dev, "transfer timeout.\n");
351 		return -ETIMEDOUT;
352 	}
353 
354 	return priv->error;
355 }
356 
357 static int uniphier_spi_transfer_one_poll(struct spi_master *master,
358 					  struct spi_device *spi,
359 					  struct spi_transfer *t)
360 {
361 	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
362 	int loop = SSI_POLL_TIMEOUT_US * 10;
363 
364 	while (priv->tx_bytes) {
365 		uniphier_spi_fill_tx_fifo(priv);
366 
367 		while ((priv->rx_bytes - priv->tx_bytes) > 0) {
368 			while (!(readl(priv->base + SSI_SR) & SSI_SR_RNE)
369 								&& loop--)
370 				ndelay(100);
371 
372 			if (loop == -1)
373 				goto irq_transfer;
374 
375 			uniphier_spi_recv(priv);
376 		}
377 	}
378 
379 	return 0;
380 
381 irq_transfer:
382 	return uniphier_spi_transfer_one_irq(master, spi, t);
383 }
384 
385 static int uniphier_spi_transfer_one(struct spi_master *master,
386 				     struct spi_device *spi,
387 				     struct spi_transfer *t)
388 {
389 	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
390 	unsigned long threshold;
391 
392 	/* Terminate and return success for 0 byte length transfer */
393 	if (!t->len)
394 		return 0;
395 
396 	uniphier_spi_setup_transfer(spi, t);
397 
398 	/*
399 	 * If the transfer operation will take longer than
400 	 * SSI_POLL_TIMEOUT_US, it should use irq.
401 	 */
402 	threshold = DIV_ROUND_UP(SSI_POLL_TIMEOUT_US * priv->speed_hz,
403 					USEC_PER_SEC * BITS_PER_BYTE);
404 	if (t->len > threshold)
405 		return uniphier_spi_transfer_one_irq(master, spi, t);
406 	else
407 		return uniphier_spi_transfer_one_poll(master, spi, t);
408 }
409 
410 static int uniphier_spi_prepare_transfer_hardware(struct spi_master *master)
411 {
412 	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
413 
414 	writel(SSI_CTL_EN, priv->base + SSI_CTL);
415 
416 	return 0;
417 }
418 
419 static int uniphier_spi_unprepare_transfer_hardware(struct spi_master *master)
420 {
421 	struct uniphier_spi_priv *priv = spi_master_get_devdata(master);
422 
423 	writel(0, priv->base + SSI_CTL);
424 
425 	return 0;
426 }
427 
428 static irqreturn_t uniphier_spi_handler(int irq, void *dev_id)
429 {
430 	struct uniphier_spi_priv *priv = dev_id;
431 	u32 val, stat;
432 
433 	stat = readl(priv->base + SSI_IS);
434 	val = SSI_IC_TCIC | SSI_IC_RCIC | SSI_IC_RORIC;
435 	writel(val, priv->base + SSI_IC);
436 
437 	/* rx fifo overrun */
438 	if (stat & SSI_IS_RORID) {
439 		priv->error = -EIO;
440 		goto done;
441 	}
442 
443 	/* rx complete */
444 	if ((stat & SSI_IS_RCID) && (stat & SSI_IS_RXRS)) {
445 		while ((readl(priv->base + SSI_SR) & SSI_SR_RNE) &&
446 				(priv->rx_bytes - priv->tx_bytes) > 0)
447 			uniphier_spi_recv(priv);
448 
449 		if ((readl(priv->base + SSI_SR) & SSI_SR_RNE) ||
450 				(priv->rx_bytes != priv->tx_bytes)) {
451 			priv->error = -EIO;
452 			goto done;
453 		} else if (priv->rx_bytes == 0)
454 			goto done;
455 
456 		/* next tx transfer */
457 		uniphier_spi_fill_tx_fifo(priv);
458 
459 		return IRQ_HANDLED;
460 	}
461 
462 	return IRQ_NONE;
463 
464 done:
465 	complete(&priv->xfer_done);
466 	return IRQ_HANDLED;
467 }
468 
469 static int uniphier_spi_probe(struct platform_device *pdev)
470 {
471 	struct uniphier_spi_priv *priv;
472 	struct spi_master *master;
473 	unsigned long clk_rate;
474 	int irq;
475 	int ret;
476 
477 	master = spi_alloc_master(&pdev->dev, sizeof(*priv));
478 	if (!master)
479 		return -ENOMEM;
480 
481 	platform_set_drvdata(pdev, master);
482 
483 	priv = spi_master_get_devdata(master);
484 	priv->master = master;
485 	priv->is_save_param = false;
486 
487 	priv->base = devm_platform_ioremap_resource(pdev, 0);
488 	if (IS_ERR(priv->base)) {
489 		ret = PTR_ERR(priv->base);
490 		goto out_master_put;
491 	}
492 
493 	priv->clk = devm_clk_get(&pdev->dev, NULL);
494 	if (IS_ERR(priv->clk)) {
495 		dev_err(&pdev->dev, "failed to get clock\n");
496 		ret = PTR_ERR(priv->clk);
497 		goto out_master_put;
498 	}
499 
500 	ret = clk_prepare_enable(priv->clk);
501 	if (ret)
502 		goto out_master_put;
503 
504 	irq = platform_get_irq(pdev, 0);
505 	if (irq < 0) {
506 		ret = irq;
507 		goto out_disable_clk;
508 	}
509 
510 	ret = devm_request_irq(&pdev->dev, irq, uniphier_spi_handler,
511 			       0, "uniphier-spi", priv);
512 	if (ret) {
513 		dev_err(&pdev->dev, "failed to request IRQ\n");
514 		goto out_disable_clk;
515 	}
516 
517 	init_completion(&priv->xfer_done);
518 
519 	clk_rate = clk_get_rate(priv->clk);
520 
521 	master->max_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MIN_CLK_DIVIDER);
522 	master->min_speed_hz = DIV_ROUND_UP(clk_rate, SSI_MAX_CLK_DIVIDER);
523 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
524 	master->dev.of_node = pdev->dev.of_node;
525 	master->bus_num = pdev->id;
526 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
527 
528 	master->set_cs = uniphier_spi_set_cs;
529 	master->transfer_one = uniphier_spi_transfer_one;
530 	master->prepare_transfer_hardware
531 				= uniphier_spi_prepare_transfer_hardware;
532 	master->unprepare_transfer_hardware
533 				= uniphier_spi_unprepare_transfer_hardware;
534 	master->num_chipselect = 1;
535 
536 	ret = devm_spi_register_master(&pdev->dev, master);
537 	if (ret)
538 		goto out_disable_clk;
539 
540 	return 0;
541 
542 out_disable_clk:
543 	clk_disable_unprepare(priv->clk);
544 
545 out_master_put:
546 	spi_master_put(master);
547 	return ret;
548 }
549 
550 static int uniphier_spi_remove(struct platform_device *pdev)
551 {
552 	struct uniphier_spi_priv *priv = platform_get_drvdata(pdev);
553 
554 	clk_disable_unprepare(priv->clk);
555 
556 	return 0;
557 }
558 
559 static const struct of_device_id uniphier_spi_match[] = {
560 	{ .compatible = "socionext,uniphier-scssi" },
561 	{ /* sentinel */ }
562 };
563 MODULE_DEVICE_TABLE(of, uniphier_spi_match);
564 
565 static struct platform_driver uniphier_spi_driver = {
566 	.probe = uniphier_spi_probe,
567 	.remove = uniphier_spi_remove,
568 	.driver = {
569 		.name = "uniphier-spi",
570 		.of_match_table = uniphier_spi_match,
571 	},
572 };
573 module_platform_driver(uniphier_spi_driver);
574 
575 MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
576 MODULE_AUTHOR("Keiji Hayashibara <hayashibara.keiji@socionext.com>");
577 MODULE_DESCRIPTION("Socionext UniPhier SPI controller driver");
578 MODULE_LICENSE("GPL v2");
579