1 /* 2 * SPI bus driver for the Topcliff PCH used by Intel SoCs 3 * 4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 of the License. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/delay.h> 17 #include <linux/pci.h> 18 #include <linux/wait.h> 19 #include <linux/spi/spi.h> 20 #include <linux/interrupt.h> 21 #include <linux/sched.h> 22 #include <linux/spi/spidev.h> 23 #include <linux/module.h> 24 #include <linux/device.h> 25 #include <linux/platform_device.h> 26 27 #include <linux/dmaengine.h> 28 #include <linux/pch_dma.h> 29 30 /* Register offsets */ 31 #define PCH_SPCR 0x00 /* SPI control register */ 32 #define PCH_SPBRR 0x04 /* SPI baud rate register */ 33 #define PCH_SPSR 0x08 /* SPI status register */ 34 #define PCH_SPDWR 0x0C /* SPI write data register */ 35 #define PCH_SPDRR 0x10 /* SPI read data register */ 36 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */ 37 #define PCH_SRST 0x1C /* SPI reset register */ 38 #define PCH_ADDRESS_SIZE 0x20 39 40 #define PCH_SPSR_TFD 0x000007C0 41 #define PCH_SPSR_RFD 0x0000F800 42 43 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11) 44 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6) 45 46 #define PCH_RX_THOLD 7 47 #define PCH_RX_THOLD_MAX 15 48 49 #define PCH_TX_THOLD 2 50 51 #define PCH_MAX_BAUDRATE 5000000 52 #define PCH_MAX_FIFO_DEPTH 16 53 54 #define STATUS_RUNNING 1 55 #define STATUS_EXITING 2 56 #define PCH_SLEEP_TIME 10 57 58 #define SSN_LOW 0x02U 59 #define SSN_HIGH 0x03U 60 #define SSN_NO_CONTROL 0x00U 61 #define PCH_MAX_CS 0xFF 62 #define PCI_DEVICE_ID_GE_SPI 0x8816 63 64 #define SPCR_SPE_BIT (1 << 0) 65 #define SPCR_MSTR_BIT (1 << 1) 66 #define SPCR_LSBF_BIT (1 << 4) 67 #define SPCR_CPHA_BIT (1 << 5) 68 #define SPCR_CPOL_BIT (1 << 6) 69 #define SPCR_TFIE_BIT (1 << 8) 70 #define SPCR_RFIE_BIT (1 << 9) 71 #define SPCR_FIE_BIT (1 << 10) 72 #define SPCR_ORIE_BIT (1 << 11) 73 #define SPCR_MDFIE_BIT (1 << 12) 74 #define SPCR_FICLR_BIT (1 << 24) 75 #define SPSR_TFI_BIT (1 << 0) 76 #define SPSR_RFI_BIT (1 << 1) 77 #define SPSR_FI_BIT (1 << 2) 78 #define SPSR_ORF_BIT (1 << 3) 79 #define SPBRR_SIZE_BIT (1 << 10) 80 81 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\ 82 SPCR_ORIE_BIT|SPCR_MDFIE_BIT) 83 84 #define SPCR_RFIC_FIELD 20 85 #define SPCR_TFIC_FIELD 16 86 87 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1) 88 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD) 89 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD) 90 91 #define PCH_CLOCK_HZ 50000000 92 #define PCH_MAX_SPBR 1023 93 94 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */ 95 #define PCI_DEVICE_ID_ML7213_SPI 0x802c 96 #define PCI_DEVICE_ID_ML7223_SPI 0x800F 97 #define PCI_DEVICE_ID_ML7831_SPI 0x8816 98 99 /* 100 * Set the number of SPI instance max 101 * Intel EG20T PCH : 1ch 102 * LAPIS Semiconductor ML7213 IOH : 2ch 103 * LAPIS Semiconductor ML7223 IOH : 1ch 104 * LAPIS Semiconductor ML7831 IOH : 1ch 105 */ 106 #define PCH_SPI_MAX_DEV 2 107 108 #define PCH_BUF_SIZE 4096 109 #define PCH_DMA_TRANS_SIZE 12 110 111 static int use_dma = 1; 112 113 struct pch_spi_dma_ctrl { 114 struct dma_async_tx_descriptor *desc_tx; 115 struct dma_async_tx_descriptor *desc_rx; 116 struct pch_dma_slave param_tx; 117 struct pch_dma_slave param_rx; 118 struct dma_chan *chan_tx; 119 struct dma_chan *chan_rx; 120 struct scatterlist *sg_tx_p; 121 struct scatterlist *sg_rx_p; 122 struct scatterlist sg_tx; 123 struct scatterlist sg_rx; 124 int nent; 125 void *tx_buf_virt; 126 void *rx_buf_virt; 127 dma_addr_t tx_buf_dma; 128 dma_addr_t rx_buf_dma; 129 }; 130 /** 131 * struct pch_spi_data - Holds the SPI channel specific details 132 * @io_remap_addr: The remapped PCI base address 133 * @master: Pointer to the SPI master structure 134 * @work: Reference to work queue handler 135 * @wait: Wait queue for waking up upon receiving an 136 * interrupt. 137 * @transfer_complete: Status of SPI Transfer 138 * @bcurrent_msg_processing: Status flag for message processing 139 * @lock: Lock for protecting this structure 140 * @queue: SPI Message queue 141 * @status: Status of the SPI driver 142 * @bpw_len: Length of data to be transferred in bits per 143 * word 144 * @transfer_active: Flag showing active transfer 145 * @tx_index: Transmit data count; for bookkeeping during 146 * transfer 147 * @rx_index: Receive data count; for bookkeeping during 148 * transfer 149 * @tx_buff: Buffer for data to be transmitted 150 * @rx_index: Buffer for Received data 151 * @n_curnt_chip: The chip number that this SPI driver currently 152 * operates on 153 * @current_chip: Reference to the current chip that this SPI 154 * driver currently operates on 155 * @current_msg: The current message that this SPI driver is 156 * handling 157 * @cur_trans: The current transfer that this SPI driver is 158 * handling 159 * @board_dat: Reference to the SPI device data structure 160 * @plat_dev: platform_device structure 161 * @ch: SPI channel number 162 * @irq_reg_sts: Status of IRQ registration 163 */ 164 struct pch_spi_data { 165 void __iomem *io_remap_addr; 166 unsigned long io_base_addr; 167 struct spi_master *master; 168 struct work_struct work; 169 wait_queue_head_t wait; 170 u8 transfer_complete; 171 u8 bcurrent_msg_processing; 172 spinlock_t lock; 173 struct list_head queue; 174 u8 status; 175 u32 bpw_len; 176 u8 transfer_active; 177 u32 tx_index; 178 u32 rx_index; 179 u16 *pkt_tx_buff; 180 u16 *pkt_rx_buff; 181 u8 n_curnt_chip; 182 struct spi_device *current_chip; 183 struct spi_message *current_msg; 184 struct spi_transfer *cur_trans; 185 struct pch_spi_board_data *board_dat; 186 struct platform_device *plat_dev; 187 int ch; 188 struct pch_spi_dma_ctrl dma; 189 int use_dma; 190 u8 irq_reg_sts; 191 int save_total_len; 192 }; 193 194 /** 195 * struct pch_spi_board_data - Holds the SPI device specific details 196 * @pdev: Pointer to the PCI device 197 * @suspend_sts: Status of suspend 198 * @num: The number of SPI device instance 199 */ 200 struct pch_spi_board_data { 201 struct pci_dev *pdev; 202 u8 suspend_sts; 203 int num; 204 }; 205 206 struct pch_pd_dev_save { 207 int num; 208 struct platform_device *pd_save[PCH_SPI_MAX_DEV]; 209 struct pch_spi_board_data *board_dat; 210 }; 211 212 static const struct pci_device_id pch_spi_pcidev_id[] = { 213 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, }, 214 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, }, 215 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, }, 216 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, }, 217 { } 218 }; 219 220 /** 221 * pch_spi_writereg() - Performs register writes 222 * @master: Pointer to struct spi_master. 223 * @idx: Register offset. 224 * @val: Value to be written to register. 225 */ 226 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val) 227 { 228 struct pch_spi_data *data = spi_master_get_devdata(master); 229 iowrite32(val, (data->io_remap_addr + idx)); 230 } 231 232 /** 233 * pch_spi_readreg() - Performs register reads 234 * @master: Pointer to struct spi_master. 235 * @idx: Register offset. 236 */ 237 static inline u32 pch_spi_readreg(struct spi_master *master, int idx) 238 { 239 struct pch_spi_data *data = spi_master_get_devdata(master); 240 return ioread32(data->io_remap_addr + idx); 241 } 242 243 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx, 244 u32 set, u32 clr) 245 { 246 u32 tmp = pch_spi_readreg(master, idx); 247 tmp = (tmp & ~clr) | set; 248 pch_spi_writereg(master, idx, tmp); 249 } 250 251 static void pch_spi_set_master_mode(struct spi_master *master) 252 { 253 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0); 254 } 255 256 /** 257 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs 258 * @master: Pointer to struct spi_master. 259 */ 260 static void pch_spi_clear_fifo(struct spi_master *master) 261 { 262 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0); 263 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT); 264 } 265 266 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val, 267 void __iomem *io_remap_addr) 268 { 269 u32 n_read, tx_index, rx_index, bpw_len; 270 u16 *pkt_rx_buffer, *pkt_tx_buff; 271 int read_cnt; 272 u32 reg_spcr_val; 273 void __iomem *spsr; 274 void __iomem *spdrr; 275 void __iomem *spdwr; 276 277 spsr = io_remap_addr + PCH_SPSR; 278 iowrite32(reg_spsr_val, spsr); 279 280 if (data->transfer_active) { 281 rx_index = data->rx_index; 282 tx_index = data->tx_index; 283 bpw_len = data->bpw_len; 284 pkt_rx_buffer = data->pkt_rx_buff; 285 pkt_tx_buff = data->pkt_tx_buff; 286 287 spdrr = io_remap_addr + PCH_SPDRR; 288 spdwr = io_remap_addr + PCH_SPDWR; 289 290 n_read = PCH_READABLE(reg_spsr_val); 291 292 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) { 293 pkt_rx_buffer[rx_index++] = ioread32(spdrr); 294 if (tx_index < bpw_len) 295 iowrite32(pkt_tx_buff[tx_index++], spdwr); 296 } 297 298 /* disable RFI if not needed */ 299 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) { 300 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR); 301 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */ 302 303 /* reset rx threshold */ 304 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS; 305 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD); 306 307 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR)); 308 } 309 310 /* update counts */ 311 data->tx_index = tx_index; 312 data->rx_index = rx_index; 313 314 /* if transfer complete interrupt */ 315 if (reg_spsr_val & SPSR_FI_BIT) { 316 if ((tx_index == bpw_len) && (rx_index == tx_index)) { 317 /* disable interrupts */ 318 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 319 PCH_ALL); 320 321 /* transfer is completed; 322 inform pch_spi_process_messages */ 323 data->transfer_complete = true; 324 data->transfer_active = false; 325 wake_up(&data->wait); 326 } else { 327 dev_vdbg(&data->master->dev, 328 "%s : Transfer is not completed", 329 __func__); 330 } 331 } 332 } 333 } 334 335 /** 336 * pch_spi_handler() - Interrupt handler 337 * @irq: The interrupt number. 338 * @dev_id: Pointer to struct pch_spi_board_data. 339 */ 340 static irqreturn_t pch_spi_handler(int irq, void *dev_id) 341 { 342 u32 reg_spsr_val; 343 void __iomem *spsr; 344 void __iomem *io_remap_addr; 345 irqreturn_t ret = IRQ_NONE; 346 struct pch_spi_data *data = dev_id; 347 struct pch_spi_board_data *board_dat = data->board_dat; 348 349 if (board_dat->suspend_sts) { 350 dev_dbg(&board_dat->pdev->dev, 351 "%s returning due to suspend\n", __func__); 352 return IRQ_NONE; 353 } 354 355 io_remap_addr = data->io_remap_addr; 356 spsr = io_remap_addr + PCH_SPSR; 357 358 reg_spsr_val = ioread32(spsr); 359 360 if (reg_spsr_val & SPSR_ORF_BIT) { 361 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__); 362 if (data->current_msg->complete) { 363 data->transfer_complete = true; 364 data->current_msg->status = -EIO; 365 data->current_msg->complete(data->current_msg->context); 366 data->bcurrent_msg_processing = false; 367 data->current_msg = NULL; 368 data->cur_trans = NULL; 369 } 370 } 371 372 if (data->use_dma) 373 return IRQ_NONE; 374 375 /* Check if the interrupt is for SPI device */ 376 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) { 377 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr); 378 ret = IRQ_HANDLED; 379 } 380 381 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n", 382 __func__, ret); 383 384 return ret; 385 } 386 387 /** 388 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR 389 * @master: Pointer to struct spi_master. 390 * @speed_hz: Baud rate. 391 */ 392 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz) 393 { 394 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2); 395 396 /* if baud rate is less than we can support limit it */ 397 if (n_spbr > PCH_MAX_SPBR) 398 n_spbr = PCH_MAX_SPBR; 399 400 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS); 401 } 402 403 /** 404 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR 405 * @master: Pointer to struct spi_master. 406 * @bits_per_word: Bits per word for SPI transfer. 407 */ 408 static void pch_spi_set_bits_per_word(struct spi_master *master, 409 u8 bits_per_word) 410 { 411 if (bits_per_word == 8) 412 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT); 413 else 414 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0); 415 } 416 417 /** 418 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer 419 * @spi: Pointer to struct spi_device. 420 */ 421 static void pch_spi_setup_transfer(struct spi_device *spi) 422 { 423 u32 flags = 0; 424 425 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n", 426 __func__, pch_spi_readreg(spi->master, PCH_SPBRR), 427 spi->max_speed_hz); 428 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz); 429 430 /* set bits per word */ 431 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word); 432 433 if (!(spi->mode & SPI_LSB_FIRST)) 434 flags |= SPCR_LSBF_BIT; 435 if (spi->mode & SPI_CPOL) 436 flags |= SPCR_CPOL_BIT; 437 if (spi->mode & SPI_CPHA) 438 flags |= SPCR_CPHA_BIT; 439 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags, 440 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT)); 441 442 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */ 443 pch_spi_clear_fifo(spi->master); 444 } 445 446 /** 447 * pch_spi_reset() - Clears SPI registers 448 * @master: Pointer to struct spi_master. 449 */ 450 static void pch_spi_reset(struct spi_master *master) 451 { 452 /* write 1 to reset SPI */ 453 pch_spi_writereg(master, PCH_SRST, 0x1); 454 455 /* clear reset */ 456 pch_spi_writereg(master, PCH_SRST, 0x0); 457 } 458 459 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg) 460 { 461 462 struct spi_transfer *transfer; 463 struct pch_spi_data *data = spi_master_get_devdata(pspi->master); 464 int retval; 465 unsigned long flags; 466 467 spin_lock_irqsave(&data->lock, flags); 468 /* validate Tx/Rx buffers and Transfer length */ 469 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) { 470 if (!transfer->tx_buf && !transfer->rx_buf) { 471 dev_err(&pspi->dev, 472 "%s Tx and Rx buffer NULL\n", __func__); 473 retval = -EINVAL; 474 goto err_return_spinlock; 475 } 476 477 if (!transfer->len) { 478 dev_err(&pspi->dev, "%s Transfer length invalid\n", 479 __func__); 480 retval = -EINVAL; 481 goto err_return_spinlock; 482 } 483 484 dev_dbg(&pspi->dev, 485 "%s Tx/Rx buffer valid. Transfer length valid\n", 486 __func__); 487 } 488 spin_unlock_irqrestore(&data->lock, flags); 489 490 /* We won't process any messages if we have been asked to terminate */ 491 if (data->status == STATUS_EXITING) { 492 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__); 493 retval = -ESHUTDOWN; 494 goto err_out; 495 } 496 497 /* If suspended ,return -EINVAL */ 498 if (data->board_dat->suspend_sts) { 499 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__); 500 retval = -EINVAL; 501 goto err_out; 502 } 503 504 /* set status of message */ 505 pmsg->actual_length = 0; 506 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status); 507 508 pmsg->status = -EINPROGRESS; 509 spin_lock_irqsave(&data->lock, flags); 510 /* add message to queue */ 511 list_add_tail(&pmsg->queue, &data->queue); 512 spin_unlock_irqrestore(&data->lock, flags); 513 514 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__); 515 516 schedule_work(&data->work); 517 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__); 518 519 retval = 0; 520 521 err_out: 522 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); 523 return retval; 524 err_return_spinlock: 525 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); 526 spin_unlock_irqrestore(&data->lock, flags); 527 return retval; 528 } 529 530 static inline void pch_spi_select_chip(struct pch_spi_data *data, 531 struct spi_device *pspi) 532 { 533 if (data->current_chip != NULL) { 534 if (pspi->chip_select != data->n_curnt_chip) { 535 dev_dbg(&pspi->dev, "%s : different slave\n", __func__); 536 data->current_chip = NULL; 537 } 538 } 539 540 data->current_chip = pspi; 541 542 data->n_curnt_chip = data->current_chip->chip_select; 543 544 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__); 545 pch_spi_setup_transfer(pspi); 546 } 547 548 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw) 549 { 550 int size; 551 u32 n_writes; 552 int j; 553 struct spi_message *pmsg, *tmp; 554 const u8 *tx_buf; 555 const u16 *tx_sbuf; 556 557 /* set baud rate if needed */ 558 if (data->cur_trans->speed_hz) { 559 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 560 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 561 } 562 563 /* set bits per word if needed */ 564 if (data->cur_trans->bits_per_word && 565 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) { 566 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 567 pch_spi_set_bits_per_word(data->master, 568 data->cur_trans->bits_per_word); 569 *bpw = data->cur_trans->bits_per_word; 570 } else { 571 *bpw = data->current_msg->spi->bits_per_word; 572 } 573 574 /* reset Tx/Rx index */ 575 data->tx_index = 0; 576 data->rx_index = 0; 577 578 data->bpw_len = data->cur_trans->len / (*bpw / 8); 579 580 /* find alloc size */ 581 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff); 582 583 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */ 584 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL); 585 if (data->pkt_tx_buff != NULL) { 586 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL); 587 if (!data->pkt_rx_buff) 588 kfree(data->pkt_tx_buff); 589 } 590 591 if (!data->pkt_rx_buff) { 592 /* flush queue and set status of all transfers to -ENOMEM */ 593 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 594 pmsg->status = -ENOMEM; 595 596 if (pmsg->complete) 597 pmsg->complete(pmsg->context); 598 599 /* delete from queue */ 600 list_del_init(&pmsg->queue); 601 } 602 return; 603 } 604 605 /* copy Tx Data */ 606 if (data->cur_trans->tx_buf != NULL) { 607 if (*bpw == 8) { 608 tx_buf = data->cur_trans->tx_buf; 609 for (j = 0; j < data->bpw_len; j++) 610 data->pkt_tx_buff[j] = *tx_buf++; 611 } else { 612 tx_sbuf = data->cur_trans->tx_buf; 613 for (j = 0; j < data->bpw_len; j++) 614 data->pkt_tx_buff[j] = *tx_sbuf++; 615 } 616 } 617 618 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */ 619 n_writes = data->bpw_len; 620 if (n_writes > PCH_MAX_FIFO_DEPTH) 621 n_writes = PCH_MAX_FIFO_DEPTH; 622 623 dev_dbg(&data->master->dev, 624 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", 625 __func__); 626 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 627 628 for (j = 0; j < n_writes; j++) 629 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]); 630 631 /* update tx_index */ 632 data->tx_index = j; 633 634 /* reset transfer complete flag */ 635 data->transfer_complete = false; 636 data->transfer_active = true; 637 } 638 639 static void pch_spi_nomore_transfer(struct pch_spi_data *data) 640 { 641 struct spi_message *pmsg, *tmp; 642 dev_dbg(&data->master->dev, "%s called\n", __func__); 643 /* Invoke complete callback 644 * [To the spi core..indicating end of transfer] */ 645 data->current_msg->status = 0; 646 647 if (data->current_msg->complete) { 648 dev_dbg(&data->master->dev, 649 "%s:Invoking callback of SPI core\n", __func__); 650 data->current_msg->complete(data->current_msg->context); 651 } 652 653 /* update status in global variable */ 654 data->bcurrent_msg_processing = false; 655 656 dev_dbg(&data->master->dev, 657 "%s:data->bcurrent_msg_processing = false\n", __func__); 658 659 data->current_msg = NULL; 660 data->cur_trans = NULL; 661 662 /* check if we have items in list and not suspending 663 * return 1 if list empty */ 664 if ((list_empty(&data->queue) == 0) && 665 (!data->board_dat->suspend_sts) && 666 (data->status != STATUS_EXITING)) { 667 /* We have some more work to do (either there is more tranint 668 * bpw;sfer requests in the current message or there are 669 *more messages) 670 */ 671 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__); 672 schedule_work(&data->work); 673 } else if (data->board_dat->suspend_sts || 674 data->status == STATUS_EXITING) { 675 dev_dbg(&data->master->dev, 676 "%s suspend/remove initiated, flushing queue\n", 677 __func__); 678 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 679 pmsg->status = -EIO; 680 681 if (pmsg->complete) 682 pmsg->complete(pmsg->context); 683 684 /* delete from queue */ 685 list_del_init(&pmsg->queue); 686 } 687 } 688 } 689 690 static void pch_spi_set_ir(struct pch_spi_data *data) 691 { 692 /* enable interrupts, set threshold, enable SPI */ 693 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH) 694 /* set receive threshold to PCH_RX_THOLD */ 695 pch_spi_setclr_reg(data->master, PCH_SPCR, 696 PCH_RX_THOLD << SPCR_RFIC_FIELD | 697 SPCR_FIE_BIT | SPCR_RFIE_BIT | 698 SPCR_ORIE_BIT | SPCR_SPE_BIT, 699 MASK_RFIC_SPCR_BITS | PCH_ALL); 700 else 701 /* set receive threshold to maximum */ 702 pch_spi_setclr_reg(data->master, PCH_SPCR, 703 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD | 704 SPCR_FIE_BIT | SPCR_ORIE_BIT | 705 SPCR_SPE_BIT, 706 MASK_RFIC_SPCR_BITS | PCH_ALL); 707 708 /* Wait until the transfer completes; go to sleep after 709 initiating the transfer. */ 710 dev_dbg(&data->master->dev, 711 "%s:waiting for transfer to get over\n", __func__); 712 713 wait_event_interruptible(data->wait, data->transfer_complete); 714 715 /* clear all interrupts */ 716 pch_spi_writereg(data->master, PCH_SPSR, 717 pch_spi_readreg(data->master, PCH_SPSR)); 718 /* Disable interrupts and SPI transfer */ 719 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT); 720 /* clear FIFO */ 721 pch_spi_clear_fifo(data->master); 722 } 723 724 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw) 725 { 726 int j; 727 u8 *rx_buf; 728 u16 *rx_sbuf; 729 730 /* copy Rx Data */ 731 if (!data->cur_trans->rx_buf) 732 return; 733 734 if (bpw == 8) { 735 rx_buf = data->cur_trans->rx_buf; 736 for (j = 0; j < data->bpw_len; j++) 737 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF; 738 } else { 739 rx_sbuf = data->cur_trans->rx_buf; 740 for (j = 0; j < data->bpw_len; j++) 741 *rx_sbuf++ = data->pkt_rx_buff[j]; 742 } 743 } 744 745 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw) 746 { 747 int j; 748 u8 *rx_buf; 749 u16 *rx_sbuf; 750 const u8 *rx_dma_buf; 751 const u16 *rx_dma_sbuf; 752 753 /* copy Rx Data */ 754 if (!data->cur_trans->rx_buf) 755 return; 756 757 if (bpw == 8) { 758 rx_buf = data->cur_trans->rx_buf; 759 rx_dma_buf = data->dma.rx_buf_virt; 760 for (j = 0; j < data->bpw_len; j++) 761 *rx_buf++ = *rx_dma_buf++ & 0xFF; 762 data->cur_trans->rx_buf = rx_buf; 763 } else { 764 rx_sbuf = data->cur_trans->rx_buf; 765 rx_dma_sbuf = data->dma.rx_buf_virt; 766 for (j = 0; j < data->bpw_len; j++) 767 *rx_sbuf++ = *rx_dma_sbuf++; 768 data->cur_trans->rx_buf = rx_sbuf; 769 } 770 } 771 772 static int pch_spi_start_transfer(struct pch_spi_data *data) 773 { 774 struct pch_spi_dma_ctrl *dma; 775 unsigned long flags; 776 int rtn; 777 778 dma = &data->dma; 779 780 spin_lock_irqsave(&data->lock, flags); 781 782 /* disable interrupts, SPI set enable */ 783 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL); 784 785 spin_unlock_irqrestore(&data->lock, flags); 786 787 /* Wait until the transfer completes; go to sleep after 788 initiating the transfer. */ 789 dev_dbg(&data->master->dev, 790 "%s:waiting for transfer to get over\n", __func__); 791 rtn = wait_event_interruptible_timeout(data->wait, 792 data->transfer_complete, 793 msecs_to_jiffies(2 * HZ)); 794 if (!rtn) 795 dev_err(&data->master->dev, 796 "%s wait-event timeout\n", __func__); 797 798 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent, 799 DMA_FROM_DEVICE); 800 801 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent, 802 DMA_FROM_DEVICE); 803 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE); 804 805 async_tx_ack(dma->desc_rx); 806 async_tx_ack(dma->desc_tx); 807 kfree(dma->sg_tx_p); 808 kfree(dma->sg_rx_p); 809 810 spin_lock_irqsave(&data->lock, flags); 811 812 /* clear fifo threshold, disable interrupts, disable SPI transfer */ 813 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 814 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL | 815 SPCR_SPE_BIT); 816 /* clear all interrupts */ 817 pch_spi_writereg(data->master, PCH_SPSR, 818 pch_spi_readreg(data->master, PCH_SPSR)); 819 /* clear FIFO */ 820 pch_spi_clear_fifo(data->master); 821 822 spin_unlock_irqrestore(&data->lock, flags); 823 824 return rtn; 825 } 826 827 static void pch_dma_rx_complete(void *arg) 828 { 829 struct pch_spi_data *data = arg; 830 831 /* transfer is completed;inform pch_spi_process_messages_dma */ 832 data->transfer_complete = true; 833 wake_up_interruptible(&data->wait); 834 } 835 836 static bool pch_spi_filter(struct dma_chan *chan, void *slave) 837 { 838 struct pch_dma_slave *param = slave; 839 840 if ((chan->chan_id == param->chan_id) && 841 (param->dma_dev == chan->device->dev)) { 842 chan->private = param; 843 return true; 844 } else { 845 return false; 846 } 847 } 848 849 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw) 850 { 851 dma_cap_mask_t mask; 852 struct dma_chan *chan; 853 struct pci_dev *dma_dev; 854 struct pch_dma_slave *param; 855 struct pch_spi_dma_ctrl *dma; 856 unsigned int width; 857 858 if (bpw == 8) 859 width = PCH_DMA_WIDTH_1_BYTE; 860 else 861 width = PCH_DMA_WIDTH_2_BYTES; 862 863 dma = &data->dma; 864 dma_cap_zero(mask); 865 dma_cap_set(DMA_SLAVE, mask); 866 867 /* Get DMA's dev information */ 868 dma_dev = pci_get_slot(data->board_dat->pdev->bus, 869 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0)); 870 871 /* Set Tx DMA */ 872 param = &dma->param_tx; 873 param->dma_dev = &dma_dev->dev; 874 param->chan_id = data->ch * 2; /* Tx = 0, 2 */; 875 param->tx_reg = data->io_base_addr + PCH_SPDWR; 876 param->width = width; 877 chan = dma_request_channel(mask, pch_spi_filter, param); 878 if (!chan) { 879 dev_err(&data->master->dev, 880 "ERROR: dma_request_channel FAILS(Tx)\n"); 881 data->use_dma = 0; 882 return; 883 } 884 dma->chan_tx = chan; 885 886 /* Set Rx DMA */ 887 param = &dma->param_rx; 888 param->dma_dev = &dma_dev->dev; 889 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */; 890 param->rx_reg = data->io_base_addr + PCH_SPDRR; 891 param->width = width; 892 chan = dma_request_channel(mask, pch_spi_filter, param); 893 if (!chan) { 894 dev_err(&data->master->dev, 895 "ERROR: dma_request_channel FAILS(Rx)\n"); 896 dma_release_channel(dma->chan_tx); 897 dma->chan_tx = NULL; 898 data->use_dma = 0; 899 return; 900 } 901 dma->chan_rx = chan; 902 } 903 904 static void pch_spi_release_dma(struct pch_spi_data *data) 905 { 906 struct pch_spi_dma_ctrl *dma; 907 908 dma = &data->dma; 909 if (dma->chan_tx) { 910 dma_release_channel(dma->chan_tx); 911 dma->chan_tx = NULL; 912 } 913 if (dma->chan_rx) { 914 dma_release_channel(dma->chan_rx); 915 dma->chan_rx = NULL; 916 } 917 } 918 919 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw) 920 { 921 const u8 *tx_buf; 922 const u16 *tx_sbuf; 923 u8 *tx_dma_buf; 924 u16 *tx_dma_sbuf; 925 struct scatterlist *sg; 926 struct dma_async_tx_descriptor *desc_tx; 927 struct dma_async_tx_descriptor *desc_rx; 928 int num; 929 int i; 930 int size; 931 int rem; 932 int head; 933 unsigned long flags; 934 struct pch_spi_dma_ctrl *dma; 935 936 dma = &data->dma; 937 938 /* set baud rate if needed */ 939 if (data->cur_trans->speed_hz) { 940 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 941 spin_lock_irqsave(&data->lock, flags); 942 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 943 spin_unlock_irqrestore(&data->lock, flags); 944 } 945 946 /* set bits per word if needed */ 947 if (data->cur_trans->bits_per_word && 948 (data->current_msg->spi->bits_per_word != 949 data->cur_trans->bits_per_word)) { 950 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 951 spin_lock_irqsave(&data->lock, flags); 952 pch_spi_set_bits_per_word(data->master, 953 data->cur_trans->bits_per_word); 954 spin_unlock_irqrestore(&data->lock, flags); 955 *bpw = data->cur_trans->bits_per_word; 956 } else { 957 *bpw = data->current_msg->spi->bits_per_word; 958 } 959 data->bpw_len = data->cur_trans->len / (*bpw / 8); 960 961 if (data->bpw_len > PCH_BUF_SIZE) { 962 data->bpw_len = PCH_BUF_SIZE; 963 data->cur_trans->len -= PCH_BUF_SIZE; 964 } 965 966 /* copy Tx Data */ 967 if (data->cur_trans->tx_buf != NULL) { 968 if (*bpw == 8) { 969 tx_buf = data->cur_trans->tx_buf; 970 tx_dma_buf = dma->tx_buf_virt; 971 for (i = 0; i < data->bpw_len; i++) 972 *tx_dma_buf++ = *tx_buf++; 973 } else { 974 tx_sbuf = data->cur_trans->tx_buf; 975 tx_dma_sbuf = dma->tx_buf_virt; 976 for (i = 0; i < data->bpw_len; i++) 977 *tx_dma_sbuf++ = *tx_sbuf++; 978 } 979 } 980 981 /* Calculate Rx parameter for DMA transmitting */ 982 if (data->bpw_len > PCH_DMA_TRANS_SIZE) { 983 if (data->bpw_len % PCH_DMA_TRANS_SIZE) { 984 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 985 rem = data->bpw_len % PCH_DMA_TRANS_SIZE; 986 } else { 987 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 988 rem = PCH_DMA_TRANS_SIZE; 989 } 990 size = PCH_DMA_TRANS_SIZE; 991 } else { 992 num = 1; 993 size = data->bpw_len; 994 rem = data->bpw_len; 995 } 996 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n", 997 __func__, num, size, rem); 998 spin_lock_irqsave(&data->lock, flags); 999 1000 /* set receive fifo threshold and transmit fifo threshold */ 1001 pch_spi_setclr_reg(data->master, PCH_SPCR, 1002 ((size - 1) << SPCR_RFIC_FIELD) | 1003 (PCH_TX_THOLD << SPCR_TFIC_FIELD), 1004 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS); 1005 1006 spin_unlock_irqrestore(&data->lock, flags); 1007 1008 /* RX */ 1009 dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC); 1010 if (!dma->sg_rx_p) 1011 return; 1012 1013 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */ 1014 /* offset, length setting */ 1015 sg = dma->sg_rx_p; 1016 for (i = 0; i < num; i++, sg++) { 1017 if (i == (num - 2)) { 1018 sg->offset = size * i; 1019 sg->offset = sg->offset * (*bpw / 8); 1020 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem, 1021 sg->offset); 1022 sg_dma_len(sg) = rem; 1023 } else if (i == (num - 1)) { 1024 sg->offset = size * (i - 1) + rem; 1025 sg->offset = sg->offset * (*bpw / 8); 1026 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1027 sg->offset); 1028 sg_dma_len(sg) = size; 1029 } else { 1030 sg->offset = size * i; 1031 sg->offset = sg->offset * (*bpw / 8); 1032 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1033 sg->offset); 1034 sg_dma_len(sg) = size; 1035 } 1036 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset; 1037 } 1038 sg = dma->sg_rx_p; 1039 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg, 1040 num, DMA_DEV_TO_MEM, 1041 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1042 if (!desc_rx) { 1043 dev_err(&data->master->dev, 1044 "%s:dmaengine_prep_slave_sg Failed\n", __func__); 1045 return; 1046 } 1047 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE); 1048 desc_rx->callback = pch_dma_rx_complete; 1049 desc_rx->callback_param = data; 1050 dma->nent = num; 1051 dma->desc_rx = desc_rx; 1052 1053 /* Calculate Tx parameter for DMA transmitting */ 1054 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) { 1055 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE; 1056 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) { 1057 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 1058 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head; 1059 } else { 1060 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 1061 rem = data->bpw_len % PCH_DMA_TRANS_SIZE + 1062 PCH_DMA_TRANS_SIZE - head; 1063 } 1064 size = PCH_DMA_TRANS_SIZE; 1065 } else { 1066 num = 1; 1067 size = data->bpw_len; 1068 rem = data->bpw_len; 1069 head = 0; 1070 } 1071 1072 dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC); 1073 if (!dma->sg_tx_p) 1074 return; 1075 1076 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */ 1077 /* offset, length setting */ 1078 sg = dma->sg_tx_p; 1079 for (i = 0; i < num; i++, sg++) { 1080 if (i == 0) { 1081 sg->offset = 0; 1082 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head, 1083 sg->offset); 1084 sg_dma_len(sg) = size + head; 1085 } else if (i == (num - 1)) { 1086 sg->offset = head + size * i; 1087 sg->offset = sg->offset * (*bpw / 8); 1088 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem, 1089 sg->offset); 1090 sg_dma_len(sg) = rem; 1091 } else { 1092 sg->offset = head + size * i; 1093 sg->offset = sg->offset * (*bpw / 8); 1094 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size, 1095 sg->offset); 1096 sg_dma_len(sg) = size; 1097 } 1098 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset; 1099 } 1100 sg = dma->sg_tx_p; 1101 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx, 1102 sg, num, DMA_MEM_TO_DEV, 1103 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1104 if (!desc_tx) { 1105 dev_err(&data->master->dev, 1106 "%s:dmaengine_prep_slave_sg Failed\n", __func__); 1107 return; 1108 } 1109 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE); 1110 desc_tx->callback = NULL; 1111 desc_tx->callback_param = data; 1112 dma->nent = num; 1113 dma->desc_tx = desc_tx; 1114 1115 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__); 1116 1117 spin_lock_irqsave(&data->lock, flags); 1118 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 1119 desc_rx->tx_submit(desc_rx); 1120 desc_tx->tx_submit(desc_tx); 1121 spin_unlock_irqrestore(&data->lock, flags); 1122 1123 /* reset transfer complete flag */ 1124 data->transfer_complete = false; 1125 } 1126 1127 static void pch_spi_process_messages(struct work_struct *pwork) 1128 { 1129 struct spi_message *pmsg, *tmp; 1130 struct pch_spi_data *data; 1131 int bpw; 1132 1133 data = container_of(pwork, struct pch_spi_data, work); 1134 dev_dbg(&data->master->dev, "%s data initialized\n", __func__); 1135 1136 spin_lock(&data->lock); 1137 /* check if suspend has been initiated;if yes flush queue */ 1138 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) { 1139 dev_dbg(&data->master->dev, 1140 "%s suspend/remove initiated, flushing queue\n", __func__); 1141 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 1142 pmsg->status = -EIO; 1143 1144 if (pmsg->complete) { 1145 spin_unlock(&data->lock); 1146 pmsg->complete(pmsg->context); 1147 spin_lock(&data->lock); 1148 } 1149 1150 /* delete from queue */ 1151 list_del_init(&pmsg->queue); 1152 } 1153 1154 spin_unlock(&data->lock); 1155 return; 1156 } 1157 1158 data->bcurrent_msg_processing = true; 1159 dev_dbg(&data->master->dev, 1160 "%s Set data->bcurrent_msg_processing= true\n", __func__); 1161 1162 /* Get the message from the queue and delete it from there. */ 1163 data->current_msg = list_entry(data->queue.next, struct spi_message, 1164 queue); 1165 1166 list_del_init(&data->current_msg->queue); 1167 1168 data->current_msg->status = 0; 1169 1170 pch_spi_select_chip(data, data->current_msg->spi); 1171 1172 spin_unlock(&data->lock); 1173 1174 if (data->use_dma) 1175 pch_spi_request_dma(data, 1176 data->current_msg->spi->bits_per_word); 1177 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL); 1178 do { 1179 int cnt; 1180 /* If we are already processing a message get the next 1181 transfer structure from the message otherwise retrieve 1182 the 1st transfer request from the message. */ 1183 spin_lock(&data->lock); 1184 if (data->cur_trans == NULL) { 1185 data->cur_trans = 1186 list_entry(data->current_msg->transfers.next, 1187 struct spi_transfer, transfer_list); 1188 dev_dbg(&data->master->dev, 1189 "%s :Getting 1st transfer message\n", 1190 __func__); 1191 } else { 1192 data->cur_trans = 1193 list_entry(data->cur_trans->transfer_list.next, 1194 struct spi_transfer, transfer_list); 1195 dev_dbg(&data->master->dev, 1196 "%s :Getting next transfer message\n", 1197 __func__); 1198 } 1199 spin_unlock(&data->lock); 1200 1201 if (!data->cur_trans->len) 1202 goto out; 1203 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1; 1204 data->save_total_len = data->cur_trans->len; 1205 if (data->use_dma) { 1206 int i; 1207 char *save_rx_buf = data->cur_trans->rx_buf; 1208 for (i = 0; i < cnt; i ++) { 1209 pch_spi_handle_dma(data, &bpw); 1210 if (!pch_spi_start_transfer(data)) { 1211 data->transfer_complete = true; 1212 data->current_msg->status = -EIO; 1213 data->current_msg->complete 1214 (data->current_msg->context); 1215 data->bcurrent_msg_processing = false; 1216 data->current_msg = NULL; 1217 data->cur_trans = NULL; 1218 goto out; 1219 } 1220 pch_spi_copy_rx_data_for_dma(data, bpw); 1221 } 1222 data->cur_trans->rx_buf = save_rx_buf; 1223 } else { 1224 pch_spi_set_tx(data, &bpw); 1225 pch_spi_set_ir(data); 1226 pch_spi_copy_rx_data(data, bpw); 1227 kfree(data->pkt_rx_buff); 1228 data->pkt_rx_buff = NULL; 1229 kfree(data->pkt_tx_buff); 1230 data->pkt_tx_buff = NULL; 1231 } 1232 /* increment message count */ 1233 data->cur_trans->len = data->save_total_len; 1234 data->current_msg->actual_length += data->cur_trans->len; 1235 1236 dev_dbg(&data->master->dev, 1237 "%s:data->current_msg->actual_length=%d\n", 1238 __func__, data->current_msg->actual_length); 1239 1240 /* check for delay */ 1241 if (data->cur_trans->delay_usecs) { 1242 dev_dbg(&data->master->dev, "%s:delay in usec=%d\n", 1243 __func__, data->cur_trans->delay_usecs); 1244 udelay(data->cur_trans->delay_usecs); 1245 } 1246 1247 spin_lock(&data->lock); 1248 1249 /* No more transfer in this message. */ 1250 if ((data->cur_trans->transfer_list.next) == 1251 &(data->current_msg->transfers)) { 1252 pch_spi_nomore_transfer(data); 1253 } 1254 1255 spin_unlock(&data->lock); 1256 1257 } while (data->cur_trans != NULL); 1258 1259 out: 1260 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH); 1261 if (data->use_dma) 1262 pch_spi_release_dma(data); 1263 } 1264 1265 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat, 1266 struct pch_spi_data *data) 1267 { 1268 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1269 1270 flush_work(&data->work); 1271 } 1272 1273 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat, 1274 struct pch_spi_data *data) 1275 { 1276 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1277 1278 /* reset PCH SPI h/w */ 1279 pch_spi_reset(data->master); 1280 dev_dbg(&board_dat->pdev->dev, 1281 "%s pch_spi_reset invoked successfully\n", __func__); 1282 1283 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__); 1284 1285 return 0; 1286 } 1287 1288 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat, 1289 struct pch_spi_data *data) 1290 { 1291 struct pch_spi_dma_ctrl *dma; 1292 1293 dma = &data->dma; 1294 if (dma->tx_buf_dma) 1295 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1296 dma->tx_buf_virt, dma->tx_buf_dma); 1297 if (dma->rx_buf_dma) 1298 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1299 dma->rx_buf_virt, dma->rx_buf_dma); 1300 } 1301 1302 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat, 1303 struct pch_spi_data *data) 1304 { 1305 struct pch_spi_dma_ctrl *dma; 1306 1307 dma = &data->dma; 1308 /* Get Consistent memory for Tx DMA */ 1309 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1310 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL); 1311 /* Get Consistent memory for Rx DMA */ 1312 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1313 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL); 1314 } 1315 1316 static int pch_spi_pd_probe(struct platform_device *plat_dev) 1317 { 1318 int ret; 1319 struct spi_master *master; 1320 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1321 struct pch_spi_data *data; 1322 1323 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__); 1324 1325 master = spi_alloc_master(&board_dat->pdev->dev, 1326 sizeof(struct pch_spi_data)); 1327 if (!master) { 1328 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n", 1329 plat_dev->id); 1330 return -ENOMEM; 1331 } 1332 1333 data = spi_master_get_devdata(master); 1334 data->master = master; 1335 1336 platform_set_drvdata(plat_dev, data); 1337 1338 /* baseaddress + address offset) */ 1339 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) + 1340 PCH_ADDRESS_SIZE * plat_dev->id; 1341 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0); 1342 if (!data->io_remap_addr) { 1343 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__); 1344 ret = -ENOMEM; 1345 goto err_pci_iomap; 1346 } 1347 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id; 1348 1349 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n", 1350 plat_dev->id, data->io_remap_addr); 1351 1352 /* initialize members of SPI master */ 1353 master->num_chipselect = PCH_MAX_CS; 1354 master->transfer = pch_spi_transfer; 1355 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; 1356 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 1357 master->max_speed_hz = PCH_MAX_BAUDRATE; 1358 1359 data->board_dat = board_dat; 1360 data->plat_dev = plat_dev; 1361 data->n_curnt_chip = 255; 1362 data->status = STATUS_RUNNING; 1363 data->ch = plat_dev->id; 1364 data->use_dma = use_dma; 1365 1366 INIT_LIST_HEAD(&data->queue); 1367 spin_lock_init(&data->lock); 1368 INIT_WORK(&data->work, pch_spi_process_messages); 1369 init_waitqueue_head(&data->wait); 1370 1371 ret = pch_spi_get_resources(board_dat, data); 1372 if (ret) { 1373 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret); 1374 goto err_spi_get_resources; 1375 } 1376 1377 ret = request_irq(board_dat->pdev->irq, pch_spi_handler, 1378 IRQF_SHARED, KBUILD_MODNAME, data); 1379 if (ret) { 1380 dev_err(&plat_dev->dev, 1381 "%s request_irq failed\n", __func__); 1382 goto err_request_irq; 1383 } 1384 data->irq_reg_sts = true; 1385 1386 pch_spi_set_master_mode(master); 1387 1388 if (use_dma) { 1389 dev_info(&plat_dev->dev, "Use DMA for data transfers\n"); 1390 pch_alloc_dma_buf(board_dat, data); 1391 } 1392 1393 ret = spi_register_master(master); 1394 if (ret != 0) { 1395 dev_err(&plat_dev->dev, 1396 "%s spi_register_master FAILED\n", __func__); 1397 goto err_spi_register_master; 1398 } 1399 1400 return 0; 1401 1402 err_spi_register_master: 1403 pch_free_dma_buf(board_dat, data); 1404 free_irq(board_dat->pdev->irq, data); 1405 err_request_irq: 1406 pch_spi_free_resources(board_dat, data); 1407 err_spi_get_resources: 1408 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1409 err_pci_iomap: 1410 spi_master_put(master); 1411 1412 return ret; 1413 } 1414 1415 static int pch_spi_pd_remove(struct platform_device *plat_dev) 1416 { 1417 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1418 struct pch_spi_data *data = platform_get_drvdata(plat_dev); 1419 int count; 1420 unsigned long flags; 1421 1422 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n", 1423 __func__, plat_dev->id, board_dat->pdev->irq); 1424 1425 if (use_dma) 1426 pch_free_dma_buf(board_dat, data); 1427 1428 /* check for any pending messages; no action is taken if the queue 1429 * is still full; but at least we tried. Unload anyway */ 1430 count = 500; 1431 spin_lock_irqsave(&data->lock, flags); 1432 data->status = STATUS_EXITING; 1433 while ((list_empty(&data->queue) == 0) && --count) { 1434 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n", 1435 __func__); 1436 spin_unlock_irqrestore(&data->lock, flags); 1437 msleep(PCH_SLEEP_TIME); 1438 spin_lock_irqsave(&data->lock, flags); 1439 } 1440 spin_unlock_irqrestore(&data->lock, flags); 1441 1442 pch_spi_free_resources(board_dat, data); 1443 /* disable interrupts & free IRQ */ 1444 if (data->irq_reg_sts) { 1445 /* disable interrupts */ 1446 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1447 data->irq_reg_sts = false; 1448 free_irq(board_dat->pdev->irq, data); 1449 } 1450 1451 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1452 spi_unregister_master(data->master); 1453 1454 return 0; 1455 } 1456 #ifdef CONFIG_PM 1457 static int pch_spi_pd_suspend(struct platform_device *pd_dev, 1458 pm_message_t state) 1459 { 1460 u8 count; 1461 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1462 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1463 1464 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__); 1465 1466 if (!board_dat) { 1467 dev_err(&pd_dev->dev, 1468 "%s pci_get_drvdata returned NULL\n", __func__); 1469 return -EFAULT; 1470 } 1471 1472 /* check if the current message is processed: 1473 Only after thats done the transfer will be suspended */ 1474 count = 255; 1475 while ((--count) > 0) { 1476 if (!(data->bcurrent_msg_processing)) 1477 break; 1478 msleep(PCH_SLEEP_TIME); 1479 } 1480 1481 /* Free IRQ */ 1482 if (data->irq_reg_sts) { 1483 /* disable all interrupts */ 1484 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1485 pch_spi_reset(data->master); 1486 free_irq(board_dat->pdev->irq, data); 1487 1488 data->irq_reg_sts = false; 1489 dev_dbg(&pd_dev->dev, 1490 "%s free_irq invoked successfully.\n", __func__); 1491 } 1492 1493 return 0; 1494 } 1495 1496 static int pch_spi_pd_resume(struct platform_device *pd_dev) 1497 { 1498 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1499 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1500 int retval; 1501 1502 if (!board_dat) { 1503 dev_err(&pd_dev->dev, 1504 "%s pci_get_drvdata returned NULL\n", __func__); 1505 return -EFAULT; 1506 } 1507 1508 if (!data->irq_reg_sts) { 1509 /* register IRQ */ 1510 retval = request_irq(board_dat->pdev->irq, pch_spi_handler, 1511 IRQF_SHARED, KBUILD_MODNAME, data); 1512 if (retval < 0) { 1513 dev_err(&pd_dev->dev, 1514 "%s request_irq failed\n", __func__); 1515 return retval; 1516 } 1517 1518 /* reset PCH SPI h/w */ 1519 pch_spi_reset(data->master); 1520 pch_spi_set_master_mode(data->master); 1521 data->irq_reg_sts = true; 1522 } 1523 return 0; 1524 } 1525 #else 1526 #define pch_spi_pd_suspend NULL 1527 #define pch_spi_pd_resume NULL 1528 #endif 1529 1530 static struct platform_driver pch_spi_pd_driver = { 1531 .driver = { 1532 .name = "pch-spi", 1533 }, 1534 .probe = pch_spi_pd_probe, 1535 .remove = pch_spi_pd_remove, 1536 .suspend = pch_spi_pd_suspend, 1537 .resume = pch_spi_pd_resume 1538 }; 1539 1540 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1541 { 1542 struct pch_spi_board_data *board_dat; 1543 struct platform_device *pd_dev = NULL; 1544 int retval; 1545 int i; 1546 struct pch_pd_dev_save *pd_dev_save; 1547 1548 pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL); 1549 if (!pd_dev_save) 1550 return -ENOMEM; 1551 1552 board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL); 1553 if (!board_dat) { 1554 retval = -ENOMEM; 1555 goto err_no_mem; 1556 } 1557 1558 retval = pci_request_regions(pdev, KBUILD_MODNAME); 1559 if (retval) { 1560 dev_err(&pdev->dev, "%s request_region failed\n", __func__); 1561 goto pci_request_regions; 1562 } 1563 1564 board_dat->pdev = pdev; 1565 board_dat->num = id->driver_data; 1566 pd_dev_save->num = id->driver_data; 1567 pd_dev_save->board_dat = board_dat; 1568 1569 retval = pci_enable_device(pdev); 1570 if (retval) { 1571 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__); 1572 goto pci_enable_device; 1573 } 1574 1575 for (i = 0; i < board_dat->num; i++) { 1576 pd_dev = platform_device_alloc("pch-spi", i); 1577 if (!pd_dev) { 1578 dev_err(&pdev->dev, "platform_device_alloc failed\n"); 1579 retval = -ENOMEM; 1580 goto err_platform_device; 1581 } 1582 pd_dev_save->pd_save[i] = pd_dev; 1583 pd_dev->dev.parent = &pdev->dev; 1584 1585 retval = platform_device_add_data(pd_dev, board_dat, 1586 sizeof(*board_dat)); 1587 if (retval) { 1588 dev_err(&pdev->dev, 1589 "platform_device_add_data failed\n"); 1590 platform_device_put(pd_dev); 1591 goto err_platform_device; 1592 } 1593 1594 retval = platform_device_add(pd_dev); 1595 if (retval) { 1596 dev_err(&pdev->dev, "platform_device_add failed\n"); 1597 platform_device_put(pd_dev); 1598 goto err_platform_device; 1599 } 1600 } 1601 1602 pci_set_drvdata(pdev, pd_dev_save); 1603 1604 return 0; 1605 1606 err_platform_device: 1607 while (--i >= 0) 1608 platform_device_unregister(pd_dev_save->pd_save[i]); 1609 pci_disable_device(pdev); 1610 pci_enable_device: 1611 pci_release_regions(pdev); 1612 pci_request_regions: 1613 kfree(board_dat); 1614 err_no_mem: 1615 kfree(pd_dev_save); 1616 1617 return retval; 1618 } 1619 1620 static void pch_spi_remove(struct pci_dev *pdev) 1621 { 1622 int i; 1623 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1624 1625 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev); 1626 1627 for (i = 0; i < pd_dev_save->num; i++) 1628 platform_device_unregister(pd_dev_save->pd_save[i]); 1629 1630 pci_disable_device(pdev); 1631 pci_release_regions(pdev); 1632 kfree(pd_dev_save->board_dat); 1633 kfree(pd_dev_save); 1634 } 1635 1636 #ifdef CONFIG_PM 1637 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state) 1638 { 1639 int retval; 1640 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1641 1642 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__); 1643 1644 pd_dev_save->board_dat->suspend_sts = true; 1645 1646 /* save config space */ 1647 retval = pci_save_state(pdev); 1648 if (retval == 0) { 1649 pci_enable_wake(pdev, PCI_D3hot, 0); 1650 pci_disable_device(pdev); 1651 pci_set_power_state(pdev, PCI_D3hot); 1652 } else { 1653 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__); 1654 } 1655 1656 return retval; 1657 } 1658 1659 static int pch_spi_resume(struct pci_dev *pdev) 1660 { 1661 int retval; 1662 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1663 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__); 1664 1665 pci_set_power_state(pdev, PCI_D0); 1666 pci_restore_state(pdev); 1667 1668 retval = pci_enable_device(pdev); 1669 if (retval < 0) { 1670 dev_err(&pdev->dev, 1671 "%s pci_enable_device failed\n", __func__); 1672 } else { 1673 pci_enable_wake(pdev, PCI_D3hot, 0); 1674 1675 /* set suspend status to false */ 1676 pd_dev_save->board_dat->suspend_sts = false; 1677 } 1678 1679 return retval; 1680 } 1681 #else 1682 #define pch_spi_suspend NULL 1683 #define pch_spi_resume NULL 1684 1685 #endif 1686 1687 static struct pci_driver pch_spi_pcidev_driver = { 1688 .name = "pch_spi", 1689 .id_table = pch_spi_pcidev_id, 1690 .probe = pch_spi_probe, 1691 .remove = pch_spi_remove, 1692 .suspend = pch_spi_suspend, 1693 .resume = pch_spi_resume, 1694 }; 1695 1696 static int __init pch_spi_init(void) 1697 { 1698 int ret; 1699 ret = platform_driver_register(&pch_spi_pd_driver); 1700 if (ret) 1701 return ret; 1702 1703 ret = pci_register_driver(&pch_spi_pcidev_driver); 1704 if (ret) { 1705 platform_driver_unregister(&pch_spi_pd_driver); 1706 return ret; 1707 } 1708 1709 return 0; 1710 } 1711 module_init(pch_spi_init); 1712 1713 static void __exit pch_spi_exit(void) 1714 { 1715 pci_unregister_driver(&pch_spi_pcidev_driver); 1716 platform_driver_unregister(&pch_spi_pd_driver); 1717 } 1718 module_exit(pch_spi_exit); 1719 1720 module_param(use_dma, int, 0644); 1721 MODULE_PARM_DESC(use_dma, 1722 "to use DMA for data transfers pass 1 else 0; default 1"); 1723 1724 MODULE_LICENSE("GPL"); 1725 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver"); 1726 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id); 1727 1728