1 /* 2 * SPI bus driver for the Topcliff PCH used by Intel SoCs 3 * 4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 of the License. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/delay.h> 17 #include <linux/pci.h> 18 #include <linux/wait.h> 19 #include <linux/spi/spi.h> 20 #include <linux/interrupt.h> 21 #include <linux/sched.h> 22 #include <linux/spi/spidev.h> 23 #include <linux/module.h> 24 #include <linux/device.h> 25 #include <linux/platform_device.h> 26 27 #include <linux/dmaengine.h> 28 #include <linux/pch_dma.h> 29 30 /* Register offsets */ 31 #define PCH_SPCR 0x00 /* SPI control register */ 32 #define PCH_SPBRR 0x04 /* SPI baud rate register */ 33 #define PCH_SPSR 0x08 /* SPI status register */ 34 #define PCH_SPDWR 0x0C /* SPI write data register */ 35 #define PCH_SPDRR 0x10 /* SPI read data register */ 36 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */ 37 #define PCH_SRST 0x1C /* SPI reset register */ 38 #define PCH_ADDRESS_SIZE 0x20 39 40 #define PCH_SPSR_TFD 0x000007C0 41 #define PCH_SPSR_RFD 0x0000F800 42 43 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11) 44 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6) 45 46 #define PCH_RX_THOLD 7 47 #define PCH_RX_THOLD_MAX 15 48 49 #define PCH_TX_THOLD 2 50 51 #define PCH_MAX_BAUDRATE 5000000 52 #define PCH_MAX_FIFO_DEPTH 16 53 54 #define STATUS_RUNNING 1 55 #define STATUS_EXITING 2 56 #define PCH_SLEEP_TIME 10 57 58 #define SSN_LOW 0x02U 59 #define SSN_HIGH 0x03U 60 #define SSN_NO_CONTROL 0x00U 61 #define PCH_MAX_CS 0xFF 62 #define PCI_DEVICE_ID_GE_SPI 0x8816 63 64 #define SPCR_SPE_BIT (1 << 0) 65 #define SPCR_MSTR_BIT (1 << 1) 66 #define SPCR_LSBF_BIT (1 << 4) 67 #define SPCR_CPHA_BIT (1 << 5) 68 #define SPCR_CPOL_BIT (1 << 6) 69 #define SPCR_TFIE_BIT (1 << 8) 70 #define SPCR_RFIE_BIT (1 << 9) 71 #define SPCR_FIE_BIT (1 << 10) 72 #define SPCR_ORIE_BIT (1 << 11) 73 #define SPCR_MDFIE_BIT (1 << 12) 74 #define SPCR_FICLR_BIT (1 << 24) 75 #define SPSR_TFI_BIT (1 << 0) 76 #define SPSR_RFI_BIT (1 << 1) 77 #define SPSR_FI_BIT (1 << 2) 78 #define SPSR_ORF_BIT (1 << 3) 79 #define SPBRR_SIZE_BIT (1 << 10) 80 81 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\ 82 SPCR_ORIE_BIT|SPCR_MDFIE_BIT) 83 84 #define SPCR_RFIC_FIELD 20 85 #define SPCR_TFIC_FIELD 16 86 87 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1) 88 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD) 89 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD) 90 91 #define PCH_CLOCK_HZ 50000000 92 #define PCH_MAX_SPBR 1023 93 94 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */ 95 #define PCI_VENDOR_ID_ROHM 0x10DB 96 #define PCI_DEVICE_ID_ML7213_SPI 0x802c 97 #define PCI_DEVICE_ID_ML7223_SPI 0x800F 98 #define PCI_DEVICE_ID_ML7831_SPI 0x8816 99 100 /* 101 * Set the number of SPI instance max 102 * Intel EG20T PCH : 1ch 103 * LAPIS Semiconductor ML7213 IOH : 2ch 104 * LAPIS Semiconductor ML7223 IOH : 1ch 105 * LAPIS Semiconductor ML7831 IOH : 1ch 106 */ 107 #define PCH_SPI_MAX_DEV 2 108 109 #define PCH_BUF_SIZE 4096 110 #define PCH_DMA_TRANS_SIZE 12 111 112 static int use_dma = 1; 113 114 struct pch_spi_dma_ctrl { 115 struct dma_async_tx_descriptor *desc_tx; 116 struct dma_async_tx_descriptor *desc_rx; 117 struct pch_dma_slave param_tx; 118 struct pch_dma_slave param_rx; 119 struct dma_chan *chan_tx; 120 struct dma_chan *chan_rx; 121 struct scatterlist *sg_tx_p; 122 struct scatterlist *sg_rx_p; 123 struct scatterlist sg_tx; 124 struct scatterlist sg_rx; 125 int nent; 126 void *tx_buf_virt; 127 void *rx_buf_virt; 128 dma_addr_t tx_buf_dma; 129 dma_addr_t rx_buf_dma; 130 }; 131 /** 132 * struct pch_spi_data - Holds the SPI channel specific details 133 * @io_remap_addr: The remapped PCI base address 134 * @master: Pointer to the SPI master structure 135 * @work: Reference to work queue handler 136 * @wait: Wait queue for waking up upon receiving an 137 * interrupt. 138 * @transfer_complete: Status of SPI Transfer 139 * @bcurrent_msg_processing: Status flag for message processing 140 * @lock: Lock for protecting this structure 141 * @queue: SPI Message queue 142 * @status: Status of the SPI driver 143 * @bpw_len: Length of data to be transferred in bits per 144 * word 145 * @transfer_active: Flag showing active transfer 146 * @tx_index: Transmit data count; for bookkeeping during 147 * transfer 148 * @rx_index: Receive data count; for bookkeeping during 149 * transfer 150 * @tx_buff: Buffer for data to be transmitted 151 * @rx_index: Buffer for Received data 152 * @n_curnt_chip: The chip number that this SPI driver currently 153 * operates on 154 * @current_chip: Reference to the current chip that this SPI 155 * driver currently operates on 156 * @current_msg: The current message that this SPI driver is 157 * handling 158 * @cur_trans: The current transfer that this SPI driver is 159 * handling 160 * @board_dat: Reference to the SPI device data structure 161 * @plat_dev: platform_device structure 162 * @ch: SPI channel number 163 * @irq_reg_sts: Status of IRQ registration 164 */ 165 struct pch_spi_data { 166 void __iomem *io_remap_addr; 167 unsigned long io_base_addr; 168 struct spi_master *master; 169 struct work_struct work; 170 wait_queue_head_t wait; 171 u8 transfer_complete; 172 u8 bcurrent_msg_processing; 173 spinlock_t lock; 174 struct list_head queue; 175 u8 status; 176 u32 bpw_len; 177 u8 transfer_active; 178 u32 tx_index; 179 u32 rx_index; 180 u16 *pkt_tx_buff; 181 u16 *pkt_rx_buff; 182 u8 n_curnt_chip; 183 struct spi_device *current_chip; 184 struct spi_message *current_msg; 185 struct spi_transfer *cur_trans; 186 struct pch_spi_board_data *board_dat; 187 struct platform_device *plat_dev; 188 int ch; 189 struct pch_spi_dma_ctrl dma; 190 int use_dma; 191 u8 irq_reg_sts; 192 int save_total_len; 193 }; 194 195 /** 196 * struct pch_spi_board_data - Holds the SPI device specific details 197 * @pdev: Pointer to the PCI device 198 * @suspend_sts: Status of suspend 199 * @num: The number of SPI device instance 200 */ 201 struct pch_spi_board_data { 202 struct pci_dev *pdev; 203 u8 suspend_sts; 204 int num; 205 }; 206 207 struct pch_pd_dev_save { 208 int num; 209 struct platform_device *pd_save[PCH_SPI_MAX_DEV]; 210 struct pch_spi_board_data *board_dat; 211 }; 212 213 static const struct pci_device_id pch_spi_pcidev_id[] = { 214 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, }, 215 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, }, 216 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, }, 217 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, }, 218 { } 219 }; 220 221 /** 222 * pch_spi_writereg() - Performs register writes 223 * @master: Pointer to struct spi_master. 224 * @idx: Register offset. 225 * @val: Value to be written to register. 226 */ 227 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val) 228 { 229 struct pch_spi_data *data = spi_master_get_devdata(master); 230 iowrite32(val, (data->io_remap_addr + idx)); 231 } 232 233 /** 234 * pch_spi_readreg() - Performs register reads 235 * @master: Pointer to struct spi_master. 236 * @idx: Register offset. 237 */ 238 static inline u32 pch_spi_readreg(struct spi_master *master, int idx) 239 { 240 struct pch_spi_data *data = spi_master_get_devdata(master); 241 return ioread32(data->io_remap_addr + idx); 242 } 243 244 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx, 245 u32 set, u32 clr) 246 { 247 u32 tmp = pch_spi_readreg(master, idx); 248 tmp = (tmp & ~clr) | set; 249 pch_spi_writereg(master, idx, tmp); 250 } 251 252 static void pch_spi_set_master_mode(struct spi_master *master) 253 { 254 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0); 255 } 256 257 /** 258 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs 259 * @master: Pointer to struct spi_master. 260 */ 261 static void pch_spi_clear_fifo(struct spi_master *master) 262 { 263 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0); 264 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT); 265 } 266 267 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val, 268 void __iomem *io_remap_addr) 269 { 270 u32 n_read, tx_index, rx_index, bpw_len; 271 u16 *pkt_rx_buffer, *pkt_tx_buff; 272 int read_cnt; 273 u32 reg_spcr_val; 274 void __iomem *spsr; 275 void __iomem *spdrr; 276 void __iomem *spdwr; 277 278 spsr = io_remap_addr + PCH_SPSR; 279 iowrite32(reg_spsr_val, spsr); 280 281 if (data->transfer_active) { 282 rx_index = data->rx_index; 283 tx_index = data->tx_index; 284 bpw_len = data->bpw_len; 285 pkt_rx_buffer = data->pkt_rx_buff; 286 pkt_tx_buff = data->pkt_tx_buff; 287 288 spdrr = io_remap_addr + PCH_SPDRR; 289 spdwr = io_remap_addr + PCH_SPDWR; 290 291 n_read = PCH_READABLE(reg_spsr_val); 292 293 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) { 294 pkt_rx_buffer[rx_index++] = ioread32(spdrr); 295 if (tx_index < bpw_len) 296 iowrite32(pkt_tx_buff[tx_index++], spdwr); 297 } 298 299 /* disable RFI if not needed */ 300 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) { 301 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR); 302 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */ 303 304 /* reset rx threshold */ 305 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS; 306 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD); 307 308 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR)); 309 } 310 311 /* update counts */ 312 data->tx_index = tx_index; 313 data->rx_index = rx_index; 314 315 /* if transfer complete interrupt */ 316 if (reg_spsr_val & SPSR_FI_BIT) { 317 if ((tx_index == bpw_len) && (rx_index == tx_index)) { 318 /* disable interrupts */ 319 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 320 PCH_ALL); 321 322 /* transfer is completed; 323 inform pch_spi_process_messages */ 324 data->transfer_complete = true; 325 data->transfer_active = false; 326 wake_up(&data->wait); 327 } else { 328 dev_vdbg(&data->master->dev, 329 "%s : Transfer is not completed", 330 __func__); 331 } 332 } 333 } 334 } 335 336 /** 337 * pch_spi_handler() - Interrupt handler 338 * @irq: The interrupt number. 339 * @dev_id: Pointer to struct pch_spi_board_data. 340 */ 341 static irqreturn_t pch_spi_handler(int irq, void *dev_id) 342 { 343 u32 reg_spsr_val; 344 void __iomem *spsr; 345 void __iomem *io_remap_addr; 346 irqreturn_t ret = IRQ_NONE; 347 struct pch_spi_data *data = dev_id; 348 struct pch_spi_board_data *board_dat = data->board_dat; 349 350 if (board_dat->suspend_sts) { 351 dev_dbg(&board_dat->pdev->dev, 352 "%s returning due to suspend\n", __func__); 353 return IRQ_NONE; 354 } 355 356 io_remap_addr = data->io_remap_addr; 357 spsr = io_remap_addr + PCH_SPSR; 358 359 reg_spsr_val = ioread32(spsr); 360 361 if (reg_spsr_val & SPSR_ORF_BIT) { 362 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__); 363 if (data->current_msg->complete) { 364 data->transfer_complete = true; 365 data->current_msg->status = -EIO; 366 data->current_msg->complete(data->current_msg->context); 367 data->bcurrent_msg_processing = false; 368 data->current_msg = NULL; 369 data->cur_trans = NULL; 370 } 371 } 372 373 if (data->use_dma) 374 return IRQ_NONE; 375 376 /* Check if the interrupt is for SPI device */ 377 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) { 378 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr); 379 ret = IRQ_HANDLED; 380 } 381 382 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n", 383 __func__, ret); 384 385 return ret; 386 } 387 388 /** 389 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR 390 * @master: Pointer to struct spi_master. 391 * @speed_hz: Baud rate. 392 */ 393 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz) 394 { 395 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2); 396 397 /* if baud rate is less than we can support limit it */ 398 if (n_spbr > PCH_MAX_SPBR) 399 n_spbr = PCH_MAX_SPBR; 400 401 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS); 402 } 403 404 /** 405 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR 406 * @master: Pointer to struct spi_master. 407 * @bits_per_word: Bits per word for SPI transfer. 408 */ 409 static void pch_spi_set_bits_per_word(struct spi_master *master, 410 u8 bits_per_word) 411 { 412 if (bits_per_word == 8) 413 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT); 414 else 415 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0); 416 } 417 418 /** 419 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer 420 * @spi: Pointer to struct spi_device. 421 */ 422 static void pch_spi_setup_transfer(struct spi_device *spi) 423 { 424 u32 flags = 0; 425 426 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n", 427 __func__, pch_spi_readreg(spi->master, PCH_SPBRR), 428 spi->max_speed_hz); 429 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz); 430 431 /* set bits per word */ 432 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word); 433 434 if (!(spi->mode & SPI_LSB_FIRST)) 435 flags |= SPCR_LSBF_BIT; 436 if (spi->mode & SPI_CPOL) 437 flags |= SPCR_CPOL_BIT; 438 if (spi->mode & SPI_CPHA) 439 flags |= SPCR_CPHA_BIT; 440 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags, 441 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT)); 442 443 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */ 444 pch_spi_clear_fifo(spi->master); 445 } 446 447 /** 448 * pch_spi_reset() - Clears SPI registers 449 * @master: Pointer to struct spi_master. 450 */ 451 static void pch_spi_reset(struct spi_master *master) 452 { 453 /* write 1 to reset SPI */ 454 pch_spi_writereg(master, PCH_SRST, 0x1); 455 456 /* clear reset */ 457 pch_spi_writereg(master, PCH_SRST, 0x0); 458 } 459 460 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg) 461 { 462 463 struct spi_transfer *transfer; 464 struct pch_spi_data *data = spi_master_get_devdata(pspi->master); 465 int retval; 466 unsigned long flags; 467 468 spin_lock_irqsave(&data->lock, flags); 469 /* validate Tx/Rx buffers and Transfer length */ 470 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) { 471 if (!transfer->tx_buf && !transfer->rx_buf) { 472 dev_err(&pspi->dev, 473 "%s Tx and Rx buffer NULL\n", __func__); 474 retval = -EINVAL; 475 goto err_return_spinlock; 476 } 477 478 if (!transfer->len) { 479 dev_err(&pspi->dev, "%s Transfer length invalid\n", 480 __func__); 481 retval = -EINVAL; 482 goto err_return_spinlock; 483 } 484 485 dev_dbg(&pspi->dev, 486 "%s Tx/Rx buffer valid. Transfer length valid\n", 487 __func__); 488 } 489 spin_unlock_irqrestore(&data->lock, flags); 490 491 /* We won't process any messages if we have been asked to terminate */ 492 if (data->status == STATUS_EXITING) { 493 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__); 494 retval = -ESHUTDOWN; 495 goto err_out; 496 } 497 498 /* If suspended ,return -EINVAL */ 499 if (data->board_dat->suspend_sts) { 500 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__); 501 retval = -EINVAL; 502 goto err_out; 503 } 504 505 /* set status of message */ 506 pmsg->actual_length = 0; 507 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status); 508 509 pmsg->status = -EINPROGRESS; 510 spin_lock_irqsave(&data->lock, flags); 511 /* add message to queue */ 512 list_add_tail(&pmsg->queue, &data->queue); 513 spin_unlock_irqrestore(&data->lock, flags); 514 515 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__); 516 517 schedule_work(&data->work); 518 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__); 519 520 retval = 0; 521 522 err_out: 523 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); 524 return retval; 525 err_return_spinlock: 526 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval); 527 spin_unlock_irqrestore(&data->lock, flags); 528 return retval; 529 } 530 531 static inline void pch_spi_select_chip(struct pch_spi_data *data, 532 struct spi_device *pspi) 533 { 534 if (data->current_chip != NULL) { 535 if (pspi->chip_select != data->n_curnt_chip) { 536 dev_dbg(&pspi->dev, "%s : different slave\n", __func__); 537 data->current_chip = NULL; 538 } 539 } 540 541 data->current_chip = pspi; 542 543 data->n_curnt_chip = data->current_chip->chip_select; 544 545 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__); 546 pch_spi_setup_transfer(pspi); 547 } 548 549 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw) 550 { 551 int size; 552 u32 n_writes; 553 int j; 554 struct spi_message *pmsg, *tmp; 555 const u8 *tx_buf; 556 const u16 *tx_sbuf; 557 558 /* set baud rate if needed */ 559 if (data->cur_trans->speed_hz) { 560 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 561 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 562 } 563 564 /* set bits per word if needed */ 565 if (data->cur_trans->bits_per_word && 566 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) { 567 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 568 pch_spi_set_bits_per_word(data->master, 569 data->cur_trans->bits_per_word); 570 *bpw = data->cur_trans->bits_per_word; 571 } else { 572 *bpw = data->current_msg->spi->bits_per_word; 573 } 574 575 /* reset Tx/Rx index */ 576 data->tx_index = 0; 577 data->rx_index = 0; 578 579 data->bpw_len = data->cur_trans->len / (*bpw / 8); 580 581 /* find alloc size */ 582 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff); 583 584 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */ 585 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL); 586 if (data->pkt_tx_buff != NULL) { 587 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL); 588 if (!data->pkt_rx_buff) 589 kfree(data->pkt_tx_buff); 590 } 591 592 if (!data->pkt_rx_buff) { 593 /* flush queue and set status of all transfers to -ENOMEM */ 594 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 595 pmsg->status = -ENOMEM; 596 597 if (pmsg->complete) 598 pmsg->complete(pmsg->context); 599 600 /* delete from queue */ 601 list_del_init(&pmsg->queue); 602 } 603 return; 604 } 605 606 /* copy Tx Data */ 607 if (data->cur_trans->tx_buf != NULL) { 608 if (*bpw == 8) { 609 tx_buf = data->cur_trans->tx_buf; 610 for (j = 0; j < data->bpw_len; j++) 611 data->pkt_tx_buff[j] = *tx_buf++; 612 } else { 613 tx_sbuf = data->cur_trans->tx_buf; 614 for (j = 0; j < data->bpw_len; j++) 615 data->pkt_tx_buff[j] = *tx_sbuf++; 616 } 617 } 618 619 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */ 620 n_writes = data->bpw_len; 621 if (n_writes > PCH_MAX_FIFO_DEPTH) 622 n_writes = PCH_MAX_FIFO_DEPTH; 623 624 dev_dbg(&data->master->dev, 625 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", 626 __func__); 627 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 628 629 for (j = 0; j < n_writes; j++) 630 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]); 631 632 /* update tx_index */ 633 data->tx_index = j; 634 635 /* reset transfer complete flag */ 636 data->transfer_complete = false; 637 data->transfer_active = true; 638 } 639 640 static void pch_spi_nomore_transfer(struct pch_spi_data *data) 641 { 642 struct spi_message *pmsg, *tmp; 643 dev_dbg(&data->master->dev, "%s called\n", __func__); 644 /* Invoke complete callback 645 * [To the spi core..indicating end of transfer] */ 646 data->current_msg->status = 0; 647 648 if (data->current_msg->complete) { 649 dev_dbg(&data->master->dev, 650 "%s:Invoking callback of SPI core\n", __func__); 651 data->current_msg->complete(data->current_msg->context); 652 } 653 654 /* update status in global variable */ 655 data->bcurrent_msg_processing = false; 656 657 dev_dbg(&data->master->dev, 658 "%s:data->bcurrent_msg_processing = false\n", __func__); 659 660 data->current_msg = NULL; 661 data->cur_trans = NULL; 662 663 /* check if we have items in list and not suspending 664 * return 1 if list empty */ 665 if ((list_empty(&data->queue) == 0) && 666 (!data->board_dat->suspend_sts) && 667 (data->status != STATUS_EXITING)) { 668 /* We have some more work to do (either there is more tranint 669 * bpw;sfer requests in the current message or there are 670 *more messages) 671 */ 672 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__); 673 schedule_work(&data->work); 674 } else if (data->board_dat->suspend_sts || 675 data->status == STATUS_EXITING) { 676 dev_dbg(&data->master->dev, 677 "%s suspend/remove initiated, flushing queue\n", 678 __func__); 679 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 680 pmsg->status = -EIO; 681 682 if (pmsg->complete) 683 pmsg->complete(pmsg->context); 684 685 /* delete from queue */ 686 list_del_init(&pmsg->queue); 687 } 688 } 689 } 690 691 static void pch_spi_set_ir(struct pch_spi_data *data) 692 { 693 /* enable interrupts, set threshold, enable SPI */ 694 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH) 695 /* set receive threshold to PCH_RX_THOLD */ 696 pch_spi_setclr_reg(data->master, PCH_SPCR, 697 PCH_RX_THOLD << SPCR_RFIC_FIELD | 698 SPCR_FIE_BIT | SPCR_RFIE_BIT | 699 SPCR_ORIE_BIT | SPCR_SPE_BIT, 700 MASK_RFIC_SPCR_BITS | PCH_ALL); 701 else 702 /* set receive threshold to maximum */ 703 pch_spi_setclr_reg(data->master, PCH_SPCR, 704 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD | 705 SPCR_FIE_BIT | SPCR_ORIE_BIT | 706 SPCR_SPE_BIT, 707 MASK_RFIC_SPCR_BITS | PCH_ALL); 708 709 /* Wait until the transfer completes; go to sleep after 710 initiating the transfer. */ 711 dev_dbg(&data->master->dev, 712 "%s:waiting for transfer to get over\n", __func__); 713 714 wait_event_interruptible(data->wait, data->transfer_complete); 715 716 /* clear all interrupts */ 717 pch_spi_writereg(data->master, PCH_SPSR, 718 pch_spi_readreg(data->master, PCH_SPSR)); 719 /* Disable interrupts and SPI transfer */ 720 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT); 721 /* clear FIFO */ 722 pch_spi_clear_fifo(data->master); 723 } 724 725 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw) 726 { 727 int j; 728 u8 *rx_buf; 729 u16 *rx_sbuf; 730 731 /* copy Rx Data */ 732 if (!data->cur_trans->rx_buf) 733 return; 734 735 if (bpw == 8) { 736 rx_buf = data->cur_trans->rx_buf; 737 for (j = 0; j < data->bpw_len; j++) 738 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF; 739 } else { 740 rx_sbuf = data->cur_trans->rx_buf; 741 for (j = 0; j < data->bpw_len; j++) 742 *rx_sbuf++ = data->pkt_rx_buff[j]; 743 } 744 } 745 746 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw) 747 { 748 int j; 749 u8 *rx_buf; 750 u16 *rx_sbuf; 751 const u8 *rx_dma_buf; 752 const u16 *rx_dma_sbuf; 753 754 /* copy Rx Data */ 755 if (!data->cur_trans->rx_buf) 756 return; 757 758 if (bpw == 8) { 759 rx_buf = data->cur_trans->rx_buf; 760 rx_dma_buf = data->dma.rx_buf_virt; 761 for (j = 0; j < data->bpw_len; j++) 762 *rx_buf++ = *rx_dma_buf++ & 0xFF; 763 data->cur_trans->rx_buf = rx_buf; 764 } else { 765 rx_sbuf = data->cur_trans->rx_buf; 766 rx_dma_sbuf = data->dma.rx_buf_virt; 767 for (j = 0; j < data->bpw_len; j++) 768 *rx_sbuf++ = *rx_dma_sbuf++; 769 data->cur_trans->rx_buf = rx_sbuf; 770 } 771 } 772 773 static int pch_spi_start_transfer(struct pch_spi_data *data) 774 { 775 struct pch_spi_dma_ctrl *dma; 776 unsigned long flags; 777 int rtn; 778 779 dma = &data->dma; 780 781 spin_lock_irqsave(&data->lock, flags); 782 783 /* disable interrupts, SPI set enable */ 784 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL); 785 786 spin_unlock_irqrestore(&data->lock, flags); 787 788 /* Wait until the transfer completes; go to sleep after 789 initiating the transfer. */ 790 dev_dbg(&data->master->dev, 791 "%s:waiting for transfer to get over\n", __func__); 792 rtn = wait_event_interruptible_timeout(data->wait, 793 data->transfer_complete, 794 msecs_to_jiffies(2 * HZ)); 795 if (!rtn) 796 dev_err(&data->master->dev, 797 "%s wait-event timeout\n", __func__); 798 799 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent, 800 DMA_FROM_DEVICE); 801 802 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent, 803 DMA_FROM_DEVICE); 804 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE); 805 806 async_tx_ack(dma->desc_rx); 807 async_tx_ack(dma->desc_tx); 808 kfree(dma->sg_tx_p); 809 kfree(dma->sg_rx_p); 810 811 spin_lock_irqsave(&data->lock, flags); 812 813 /* clear fifo threshold, disable interrupts, disable SPI transfer */ 814 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, 815 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL | 816 SPCR_SPE_BIT); 817 /* clear all interrupts */ 818 pch_spi_writereg(data->master, PCH_SPSR, 819 pch_spi_readreg(data->master, PCH_SPSR)); 820 /* clear FIFO */ 821 pch_spi_clear_fifo(data->master); 822 823 spin_unlock_irqrestore(&data->lock, flags); 824 825 return rtn; 826 } 827 828 static void pch_dma_rx_complete(void *arg) 829 { 830 struct pch_spi_data *data = arg; 831 832 /* transfer is completed;inform pch_spi_process_messages_dma */ 833 data->transfer_complete = true; 834 wake_up_interruptible(&data->wait); 835 } 836 837 static bool pch_spi_filter(struct dma_chan *chan, void *slave) 838 { 839 struct pch_dma_slave *param = slave; 840 841 if ((chan->chan_id == param->chan_id) && 842 (param->dma_dev == chan->device->dev)) { 843 chan->private = param; 844 return true; 845 } else { 846 return false; 847 } 848 } 849 850 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw) 851 { 852 dma_cap_mask_t mask; 853 struct dma_chan *chan; 854 struct pci_dev *dma_dev; 855 struct pch_dma_slave *param; 856 struct pch_spi_dma_ctrl *dma; 857 unsigned int width; 858 859 if (bpw == 8) 860 width = PCH_DMA_WIDTH_1_BYTE; 861 else 862 width = PCH_DMA_WIDTH_2_BYTES; 863 864 dma = &data->dma; 865 dma_cap_zero(mask); 866 dma_cap_set(DMA_SLAVE, mask); 867 868 /* Get DMA's dev information */ 869 dma_dev = pci_get_slot(data->board_dat->pdev->bus, 870 PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0)); 871 872 /* Set Tx DMA */ 873 param = &dma->param_tx; 874 param->dma_dev = &dma_dev->dev; 875 param->chan_id = data->ch * 2; /* Tx = 0, 2 */; 876 param->tx_reg = data->io_base_addr + PCH_SPDWR; 877 param->width = width; 878 chan = dma_request_channel(mask, pch_spi_filter, param); 879 if (!chan) { 880 dev_err(&data->master->dev, 881 "ERROR: dma_request_channel FAILS(Tx)\n"); 882 data->use_dma = 0; 883 return; 884 } 885 dma->chan_tx = chan; 886 887 /* Set Rx DMA */ 888 param = &dma->param_rx; 889 param->dma_dev = &dma_dev->dev; 890 param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */; 891 param->rx_reg = data->io_base_addr + PCH_SPDRR; 892 param->width = width; 893 chan = dma_request_channel(mask, pch_spi_filter, param); 894 if (!chan) { 895 dev_err(&data->master->dev, 896 "ERROR: dma_request_channel FAILS(Rx)\n"); 897 dma_release_channel(dma->chan_tx); 898 dma->chan_tx = NULL; 899 data->use_dma = 0; 900 return; 901 } 902 dma->chan_rx = chan; 903 } 904 905 static void pch_spi_release_dma(struct pch_spi_data *data) 906 { 907 struct pch_spi_dma_ctrl *dma; 908 909 dma = &data->dma; 910 if (dma->chan_tx) { 911 dma_release_channel(dma->chan_tx); 912 dma->chan_tx = NULL; 913 } 914 if (dma->chan_rx) { 915 dma_release_channel(dma->chan_rx); 916 dma->chan_rx = NULL; 917 } 918 } 919 920 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw) 921 { 922 const u8 *tx_buf; 923 const u16 *tx_sbuf; 924 u8 *tx_dma_buf; 925 u16 *tx_dma_sbuf; 926 struct scatterlist *sg; 927 struct dma_async_tx_descriptor *desc_tx; 928 struct dma_async_tx_descriptor *desc_rx; 929 int num; 930 int i; 931 int size; 932 int rem; 933 int head; 934 unsigned long flags; 935 struct pch_spi_dma_ctrl *dma; 936 937 dma = &data->dma; 938 939 /* set baud rate if needed */ 940 if (data->cur_trans->speed_hz) { 941 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__); 942 spin_lock_irqsave(&data->lock, flags); 943 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz); 944 spin_unlock_irqrestore(&data->lock, flags); 945 } 946 947 /* set bits per word if needed */ 948 if (data->cur_trans->bits_per_word && 949 (data->current_msg->spi->bits_per_word != 950 data->cur_trans->bits_per_word)) { 951 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__); 952 spin_lock_irqsave(&data->lock, flags); 953 pch_spi_set_bits_per_word(data->master, 954 data->cur_trans->bits_per_word); 955 spin_unlock_irqrestore(&data->lock, flags); 956 *bpw = data->cur_trans->bits_per_word; 957 } else { 958 *bpw = data->current_msg->spi->bits_per_word; 959 } 960 data->bpw_len = data->cur_trans->len / (*bpw / 8); 961 962 if (data->bpw_len > PCH_BUF_SIZE) { 963 data->bpw_len = PCH_BUF_SIZE; 964 data->cur_trans->len -= PCH_BUF_SIZE; 965 } 966 967 /* copy Tx Data */ 968 if (data->cur_trans->tx_buf != NULL) { 969 if (*bpw == 8) { 970 tx_buf = data->cur_trans->tx_buf; 971 tx_dma_buf = dma->tx_buf_virt; 972 for (i = 0; i < data->bpw_len; i++) 973 *tx_dma_buf++ = *tx_buf++; 974 } else { 975 tx_sbuf = data->cur_trans->tx_buf; 976 tx_dma_sbuf = dma->tx_buf_virt; 977 for (i = 0; i < data->bpw_len; i++) 978 *tx_dma_sbuf++ = *tx_sbuf++; 979 } 980 } 981 982 /* Calculate Rx parameter for DMA transmitting */ 983 if (data->bpw_len > PCH_DMA_TRANS_SIZE) { 984 if (data->bpw_len % PCH_DMA_TRANS_SIZE) { 985 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 986 rem = data->bpw_len % PCH_DMA_TRANS_SIZE; 987 } else { 988 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 989 rem = PCH_DMA_TRANS_SIZE; 990 } 991 size = PCH_DMA_TRANS_SIZE; 992 } else { 993 num = 1; 994 size = data->bpw_len; 995 rem = data->bpw_len; 996 } 997 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n", 998 __func__, num, size, rem); 999 spin_lock_irqsave(&data->lock, flags); 1000 1001 /* set receive fifo threshold and transmit fifo threshold */ 1002 pch_spi_setclr_reg(data->master, PCH_SPCR, 1003 ((size - 1) << SPCR_RFIC_FIELD) | 1004 (PCH_TX_THOLD << SPCR_TFIC_FIELD), 1005 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS); 1006 1007 spin_unlock_irqrestore(&data->lock, flags); 1008 1009 /* RX */ 1010 dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC); 1011 if (!dma->sg_rx_p) 1012 return; 1013 1014 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */ 1015 /* offset, length setting */ 1016 sg = dma->sg_rx_p; 1017 for (i = 0; i < num; i++, sg++) { 1018 if (i == (num - 2)) { 1019 sg->offset = size * i; 1020 sg->offset = sg->offset * (*bpw / 8); 1021 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem, 1022 sg->offset); 1023 sg_dma_len(sg) = rem; 1024 } else if (i == (num - 1)) { 1025 sg->offset = size * (i - 1) + rem; 1026 sg->offset = sg->offset * (*bpw / 8); 1027 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1028 sg->offset); 1029 sg_dma_len(sg) = size; 1030 } else { 1031 sg->offset = size * i; 1032 sg->offset = sg->offset * (*bpw / 8); 1033 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size, 1034 sg->offset); 1035 sg_dma_len(sg) = size; 1036 } 1037 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset; 1038 } 1039 sg = dma->sg_rx_p; 1040 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg, 1041 num, DMA_DEV_TO_MEM, 1042 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1043 if (!desc_rx) { 1044 dev_err(&data->master->dev, 1045 "%s:dmaengine_prep_slave_sg Failed\n", __func__); 1046 return; 1047 } 1048 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE); 1049 desc_rx->callback = pch_dma_rx_complete; 1050 desc_rx->callback_param = data; 1051 dma->nent = num; 1052 dma->desc_rx = desc_rx; 1053 1054 /* Calculate Tx parameter for DMA transmitting */ 1055 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) { 1056 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE; 1057 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) { 1058 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1; 1059 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head; 1060 } else { 1061 num = data->bpw_len / PCH_DMA_TRANS_SIZE; 1062 rem = data->bpw_len % PCH_DMA_TRANS_SIZE + 1063 PCH_DMA_TRANS_SIZE - head; 1064 } 1065 size = PCH_DMA_TRANS_SIZE; 1066 } else { 1067 num = 1; 1068 size = data->bpw_len; 1069 rem = data->bpw_len; 1070 head = 0; 1071 } 1072 1073 dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC); 1074 if (!dma->sg_tx_p) 1075 return; 1076 1077 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */ 1078 /* offset, length setting */ 1079 sg = dma->sg_tx_p; 1080 for (i = 0; i < num; i++, sg++) { 1081 if (i == 0) { 1082 sg->offset = 0; 1083 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head, 1084 sg->offset); 1085 sg_dma_len(sg) = size + head; 1086 } else if (i == (num - 1)) { 1087 sg->offset = head + size * i; 1088 sg->offset = sg->offset * (*bpw / 8); 1089 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem, 1090 sg->offset); 1091 sg_dma_len(sg) = rem; 1092 } else { 1093 sg->offset = head + size * i; 1094 sg->offset = sg->offset * (*bpw / 8); 1095 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size, 1096 sg->offset); 1097 sg_dma_len(sg) = size; 1098 } 1099 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset; 1100 } 1101 sg = dma->sg_tx_p; 1102 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx, 1103 sg, num, DMA_MEM_TO_DEV, 1104 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1105 if (!desc_tx) { 1106 dev_err(&data->master->dev, 1107 "%s:dmaengine_prep_slave_sg Failed\n", __func__); 1108 return; 1109 } 1110 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE); 1111 desc_tx->callback = NULL; 1112 desc_tx->callback_param = data; 1113 dma->nent = num; 1114 dma->desc_tx = desc_tx; 1115 1116 dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__); 1117 1118 spin_lock_irqsave(&data->lock, flags); 1119 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW); 1120 desc_rx->tx_submit(desc_rx); 1121 desc_tx->tx_submit(desc_tx); 1122 spin_unlock_irqrestore(&data->lock, flags); 1123 1124 /* reset transfer complete flag */ 1125 data->transfer_complete = false; 1126 } 1127 1128 static void pch_spi_process_messages(struct work_struct *pwork) 1129 { 1130 struct spi_message *pmsg, *tmp; 1131 struct pch_spi_data *data; 1132 int bpw; 1133 1134 data = container_of(pwork, struct pch_spi_data, work); 1135 dev_dbg(&data->master->dev, "%s data initialized\n", __func__); 1136 1137 spin_lock(&data->lock); 1138 /* check if suspend has been initiated;if yes flush queue */ 1139 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) { 1140 dev_dbg(&data->master->dev, 1141 "%s suspend/remove initiated, flushing queue\n", __func__); 1142 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) { 1143 pmsg->status = -EIO; 1144 1145 if (pmsg->complete) { 1146 spin_unlock(&data->lock); 1147 pmsg->complete(pmsg->context); 1148 spin_lock(&data->lock); 1149 } 1150 1151 /* delete from queue */ 1152 list_del_init(&pmsg->queue); 1153 } 1154 1155 spin_unlock(&data->lock); 1156 return; 1157 } 1158 1159 data->bcurrent_msg_processing = true; 1160 dev_dbg(&data->master->dev, 1161 "%s Set data->bcurrent_msg_processing= true\n", __func__); 1162 1163 /* Get the message from the queue and delete it from there. */ 1164 data->current_msg = list_entry(data->queue.next, struct spi_message, 1165 queue); 1166 1167 list_del_init(&data->current_msg->queue); 1168 1169 data->current_msg->status = 0; 1170 1171 pch_spi_select_chip(data, data->current_msg->spi); 1172 1173 spin_unlock(&data->lock); 1174 1175 if (data->use_dma) 1176 pch_spi_request_dma(data, 1177 data->current_msg->spi->bits_per_word); 1178 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL); 1179 do { 1180 int cnt; 1181 /* If we are already processing a message get the next 1182 transfer structure from the message otherwise retrieve 1183 the 1st transfer request from the message. */ 1184 spin_lock(&data->lock); 1185 if (data->cur_trans == NULL) { 1186 data->cur_trans = 1187 list_entry(data->current_msg->transfers.next, 1188 struct spi_transfer, transfer_list); 1189 dev_dbg(&data->master->dev, 1190 "%s :Getting 1st transfer message\n", 1191 __func__); 1192 } else { 1193 data->cur_trans = 1194 list_entry(data->cur_trans->transfer_list.next, 1195 struct spi_transfer, transfer_list); 1196 dev_dbg(&data->master->dev, 1197 "%s :Getting next transfer message\n", 1198 __func__); 1199 } 1200 spin_unlock(&data->lock); 1201 1202 if (!data->cur_trans->len) 1203 goto out; 1204 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1; 1205 data->save_total_len = data->cur_trans->len; 1206 if (data->use_dma) { 1207 int i; 1208 char *save_rx_buf = data->cur_trans->rx_buf; 1209 for (i = 0; i < cnt; i ++) { 1210 pch_spi_handle_dma(data, &bpw); 1211 if (!pch_spi_start_transfer(data)) { 1212 data->transfer_complete = true; 1213 data->current_msg->status = -EIO; 1214 data->current_msg->complete 1215 (data->current_msg->context); 1216 data->bcurrent_msg_processing = false; 1217 data->current_msg = NULL; 1218 data->cur_trans = NULL; 1219 goto out; 1220 } 1221 pch_spi_copy_rx_data_for_dma(data, bpw); 1222 } 1223 data->cur_trans->rx_buf = save_rx_buf; 1224 } else { 1225 pch_spi_set_tx(data, &bpw); 1226 pch_spi_set_ir(data); 1227 pch_spi_copy_rx_data(data, bpw); 1228 kfree(data->pkt_rx_buff); 1229 data->pkt_rx_buff = NULL; 1230 kfree(data->pkt_tx_buff); 1231 data->pkt_tx_buff = NULL; 1232 } 1233 /* increment message count */ 1234 data->cur_trans->len = data->save_total_len; 1235 data->current_msg->actual_length += data->cur_trans->len; 1236 1237 dev_dbg(&data->master->dev, 1238 "%s:data->current_msg->actual_length=%d\n", 1239 __func__, data->current_msg->actual_length); 1240 1241 /* check for delay */ 1242 if (data->cur_trans->delay_usecs) { 1243 dev_dbg(&data->master->dev, "%s:delay in usec=%d\n", 1244 __func__, data->cur_trans->delay_usecs); 1245 udelay(data->cur_trans->delay_usecs); 1246 } 1247 1248 spin_lock(&data->lock); 1249 1250 /* No more transfer in this message. */ 1251 if ((data->cur_trans->transfer_list.next) == 1252 &(data->current_msg->transfers)) { 1253 pch_spi_nomore_transfer(data); 1254 } 1255 1256 spin_unlock(&data->lock); 1257 1258 } while (data->cur_trans != NULL); 1259 1260 out: 1261 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH); 1262 if (data->use_dma) 1263 pch_spi_release_dma(data); 1264 } 1265 1266 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat, 1267 struct pch_spi_data *data) 1268 { 1269 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1270 1271 flush_work(&data->work); 1272 } 1273 1274 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat, 1275 struct pch_spi_data *data) 1276 { 1277 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__); 1278 1279 /* reset PCH SPI h/w */ 1280 pch_spi_reset(data->master); 1281 dev_dbg(&board_dat->pdev->dev, 1282 "%s pch_spi_reset invoked successfully\n", __func__); 1283 1284 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__); 1285 1286 return 0; 1287 } 1288 1289 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat, 1290 struct pch_spi_data *data) 1291 { 1292 struct pch_spi_dma_ctrl *dma; 1293 1294 dma = &data->dma; 1295 if (dma->tx_buf_dma) 1296 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1297 dma->tx_buf_virt, dma->tx_buf_dma); 1298 if (dma->rx_buf_dma) 1299 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE, 1300 dma->rx_buf_virt, dma->rx_buf_dma); 1301 } 1302 1303 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat, 1304 struct pch_spi_data *data) 1305 { 1306 struct pch_spi_dma_ctrl *dma; 1307 1308 dma = &data->dma; 1309 /* Get Consistent memory for Tx DMA */ 1310 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1311 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL); 1312 /* Get Consistent memory for Rx DMA */ 1313 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev, 1314 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL); 1315 } 1316 1317 static int pch_spi_pd_probe(struct platform_device *plat_dev) 1318 { 1319 int ret; 1320 struct spi_master *master; 1321 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1322 struct pch_spi_data *data; 1323 1324 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__); 1325 1326 master = spi_alloc_master(&board_dat->pdev->dev, 1327 sizeof(struct pch_spi_data)); 1328 if (!master) { 1329 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n", 1330 plat_dev->id); 1331 return -ENOMEM; 1332 } 1333 1334 data = spi_master_get_devdata(master); 1335 data->master = master; 1336 1337 platform_set_drvdata(plat_dev, data); 1338 1339 /* baseaddress + address offset) */ 1340 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) + 1341 PCH_ADDRESS_SIZE * plat_dev->id; 1342 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0); 1343 if (!data->io_remap_addr) { 1344 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__); 1345 ret = -ENOMEM; 1346 goto err_pci_iomap; 1347 } 1348 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id; 1349 1350 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n", 1351 plat_dev->id, data->io_remap_addr); 1352 1353 /* initialize members of SPI master */ 1354 master->num_chipselect = PCH_MAX_CS; 1355 master->transfer = pch_spi_transfer; 1356 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; 1357 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 1358 master->max_speed_hz = PCH_MAX_BAUDRATE; 1359 1360 data->board_dat = board_dat; 1361 data->plat_dev = plat_dev; 1362 data->n_curnt_chip = 255; 1363 data->status = STATUS_RUNNING; 1364 data->ch = plat_dev->id; 1365 data->use_dma = use_dma; 1366 1367 INIT_LIST_HEAD(&data->queue); 1368 spin_lock_init(&data->lock); 1369 INIT_WORK(&data->work, pch_spi_process_messages); 1370 init_waitqueue_head(&data->wait); 1371 1372 ret = pch_spi_get_resources(board_dat, data); 1373 if (ret) { 1374 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret); 1375 goto err_spi_get_resources; 1376 } 1377 1378 ret = request_irq(board_dat->pdev->irq, pch_spi_handler, 1379 IRQF_SHARED, KBUILD_MODNAME, data); 1380 if (ret) { 1381 dev_err(&plat_dev->dev, 1382 "%s request_irq failed\n", __func__); 1383 goto err_request_irq; 1384 } 1385 data->irq_reg_sts = true; 1386 1387 pch_spi_set_master_mode(master); 1388 1389 if (use_dma) { 1390 dev_info(&plat_dev->dev, "Use DMA for data transfers\n"); 1391 pch_alloc_dma_buf(board_dat, data); 1392 } 1393 1394 ret = spi_register_master(master); 1395 if (ret != 0) { 1396 dev_err(&plat_dev->dev, 1397 "%s spi_register_master FAILED\n", __func__); 1398 goto err_spi_register_master; 1399 } 1400 1401 return 0; 1402 1403 err_spi_register_master: 1404 pch_free_dma_buf(board_dat, data); 1405 free_irq(board_dat->pdev->irq, data); 1406 err_request_irq: 1407 pch_spi_free_resources(board_dat, data); 1408 err_spi_get_resources: 1409 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1410 err_pci_iomap: 1411 spi_master_put(master); 1412 1413 return ret; 1414 } 1415 1416 static int pch_spi_pd_remove(struct platform_device *plat_dev) 1417 { 1418 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev); 1419 struct pch_spi_data *data = platform_get_drvdata(plat_dev); 1420 int count; 1421 unsigned long flags; 1422 1423 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n", 1424 __func__, plat_dev->id, board_dat->pdev->irq); 1425 1426 if (use_dma) 1427 pch_free_dma_buf(board_dat, data); 1428 1429 /* check for any pending messages; no action is taken if the queue 1430 * is still full; but at least we tried. Unload anyway */ 1431 count = 500; 1432 spin_lock_irqsave(&data->lock, flags); 1433 data->status = STATUS_EXITING; 1434 while ((list_empty(&data->queue) == 0) && --count) { 1435 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n", 1436 __func__); 1437 spin_unlock_irqrestore(&data->lock, flags); 1438 msleep(PCH_SLEEP_TIME); 1439 spin_lock_irqsave(&data->lock, flags); 1440 } 1441 spin_unlock_irqrestore(&data->lock, flags); 1442 1443 pch_spi_free_resources(board_dat, data); 1444 /* disable interrupts & free IRQ */ 1445 if (data->irq_reg_sts) { 1446 /* disable interrupts */ 1447 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1448 data->irq_reg_sts = false; 1449 free_irq(board_dat->pdev->irq, data); 1450 } 1451 1452 pci_iounmap(board_dat->pdev, data->io_remap_addr); 1453 spi_unregister_master(data->master); 1454 1455 return 0; 1456 } 1457 #ifdef CONFIG_PM 1458 static int pch_spi_pd_suspend(struct platform_device *pd_dev, 1459 pm_message_t state) 1460 { 1461 u8 count; 1462 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1463 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1464 1465 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__); 1466 1467 if (!board_dat) { 1468 dev_err(&pd_dev->dev, 1469 "%s pci_get_drvdata returned NULL\n", __func__); 1470 return -EFAULT; 1471 } 1472 1473 /* check if the current message is processed: 1474 Only after thats done the transfer will be suspended */ 1475 count = 255; 1476 while ((--count) > 0) { 1477 if (!(data->bcurrent_msg_processing)) 1478 break; 1479 msleep(PCH_SLEEP_TIME); 1480 } 1481 1482 /* Free IRQ */ 1483 if (data->irq_reg_sts) { 1484 /* disable all interrupts */ 1485 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL); 1486 pch_spi_reset(data->master); 1487 free_irq(board_dat->pdev->irq, data); 1488 1489 data->irq_reg_sts = false; 1490 dev_dbg(&pd_dev->dev, 1491 "%s free_irq invoked successfully.\n", __func__); 1492 } 1493 1494 return 0; 1495 } 1496 1497 static int pch_spi_pd_resume(struct platform_device *pd_dev) 1498 { 1499 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev); 1500 struct pch_spi_data *data = platform_get_drvdata(pd_dev); 1501 int retval; 1502 1503 if (!board_dat) { 1504 dev_err(&pd_dev->dev, 1505 "%s pci_get_drvdata returned NULL\n", __func__); 1506 return -EFAULT; 1507 } 1508 1509 if (!data->irq_reg_sts) { 1510 /* register IRQ */ 1511 retval = request_irq(board_dat->pdev->irq, pch_spi_handler, 1512 IRQF_SHARED, KBUILD_MODNAME, data); 1513 if (retval < 0) { 1514 dev_err(&pd_dev->dev, 1515 "%s request_irq failed\n", __func__); 1516 return retval; 1517 } 1518 1519 /* reset PCH SPI h/w */ 1520 pch_spi_reset(data->master); 1521 pch_spi_set_master_mode(data->master); 1522 data->irq_reg_sts = true; 1523 } 1524 return 0; 1525 } 1526 #else 1527 #define pch_spi_pd_suspend NULL 1528 #define pch_spi_pd_resume NULL 1529 #endif 1530 1531 static struct platform_driver pch_spi_pd_driver = { 1532 .driver = { 1533 .name = "pch-spi", 1534 }, 1535 .probe = pch_spi_pd_probe, 1536 .remove = pch_spi_pd_remove, 1537 .suspend = pch_spi_pd_suspend, 1538 .resume = pch_spi_pd_resume 1539 }; 1540 1541 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1542 { 1543 struct pch_spi_board_data *board_dat; 1544 struct platform_device *pd_dev = NULL; 1545 int retval; 1546 int i; 1547 struct pch_pd_dev_save *pd_dev_save; 1548 1549 pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL); 1550 if (!pd_dev_save) 1551 return -ENOMEM; 1552 1553 board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL); 1554 if (!board_dat) { 1555 retval = -ENOMEM; 1556 goto err_no_mem; 1557 } 1558 1559 retval = pci_request_regions(pdev, KBUILD_MODNAME); 1560 if (retval) { 1561 dev_err(&pdev->dev, "%s request_region failed\n", __func__); 1562 goto pci_request_regions; 1563 } 1564 1565 board_dat->pdev = pdev; 1566 board_dat->num = id->driver_data; 1567 pd_dev_save->num = id->driver_data; 1568 pd_dev_save->board_dat = board_dat; 1569 1570 retval = pci_enable_device(pdev); 1571 if (retval) { 1572 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__); 1573 goto pci_enable_device; 1574 } 1575 1576 for (i = 0; i < board_dat->num; i++) { 1577 pd_dev = platform_device_alloc("pch-spi", i); 1578 if (!pd_dev) { 1579 dev_err(&pdev->dev, "platform_device_alloc failed\n"); 1580 retval = -ENOMEM; 1581 goto err_platform_device; 1582 } 1583 pd_dev_save->pd_save[i] = pd_dev; 1584 pd_dev->dev.parent = &pdev->dev; 1585 1586 retval = platform_device_add_data(pd_dev, board_dat, 1587 sizeof(*board_dat)); 1588 if (retval) { 1589 dev_err(&pdev->dev, 1590 "platform_device_add_data failed\n"); 1591 platform_device_put(pd_dev); 1592 goto err_platform_device; 1593 } 1594 1595 retval = platform_device_add(pd_dev); 1596 if (retval) { 1597 dev_err(&pdev->dev, "platform_device_add failed\n"); 1598 platform_device_put(pd_dev); 1599 goto err_platform_device; 1600 } 1601 } 1602 1603 pci_set_drvdata(pdev, pd_dev_save); 1604 1605 return 0; 1606 1607 err_platform_device: 1608 while (--i >= 0) 1609 platform_device_unregister(pd_dev_save->pd_save[i]); 1610 pci_disable_device(pdev); 1611 pci_enable_device: 1612 pci_release_regions(pdev); 1613 pci_request_regions: 1614 kfree(board_dat); 1615 err_no_mem: 1616 kfree(pd_dev_save); 1617 1618 return retval; 1619 } 1620 1621 static void pch_spi_remove(struct pci_dev *pdev) 1622 { 1623 int i; 1624 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1625 1626 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev); 1627 1628 for (i = 0; i < pd_dev_save->num; i++) 1629 platform_device_unregister(pd_dev_save->pd_save[i]); 1630 1631 pci_disable_device(pdev); 1632 pci_release_regions(pdev); 1633 kfree(pd_dev_save->board_dat); 1634 kfree(pd_dev_save); 1635 } 1636 1637 #ifdef CONFIG_PM 1638 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state) 1639 { 1640 int retval; 1641 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1642 1643 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__); 1644 1645 pd_dev_save->board_dat->suspend_sts = true; 1646 1647 /* save config space */ 1648 retval = pci_save_state(pdev); 1649 if (retval == 0) { 1650 pci_enable_wake(pdev, PCI_D3hot, 0); 1651 pci_disable_device(pdev); 1652 pci_set_power_state(pdev, PCI_D3hot); 1653 } else { 1654 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__); 1655 } 1656 1657 return retval; 1658 } 1659 1660 static int pch_spi_resume(struct pci_dev *pdev) 1661 { 1662 int retval; 1663 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev); 1664 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__); 1665 1666 pci_set_power_state(pdev, PCI_D0); 1667 pci_restore_state(pdev); 1668 1669 retval = pci_enable_device(pdev); 1670 if (retval < 0) { 1671 dev_err(&pdev->dev, 1672 "%s pci_enable_device failed\n", __func__); 1673 } else { 1674 pci_enable_wake(pdev, PCI_D3hot, 0); 1675 1676 /* set suspend status to false */ 1677 pd_dev_save->board_dat->suspend_sts = false; 1678 } 1679 1680 return retval; 1681 } 1682 #else 1683 #define pch_spi_suspend NULL 1684 #define pch_spi_resume NULL 1685 1686 #endif 1687 1688 static struct pci_driver pch_spi_pcidev_driver = { 1689 .name = "pch_spi", 1690 .id_table = pch_spi_pcidev_id, 1691 .probe = pch_spi_probe, 1692 .remove = pch_spi_remove, 1693 .suspend = pch_spi_suspend, 1694 .resume = pch_spi_resume, 1695 }; 1696 1697 static int __init pch_spi_init(void) 1698 { 1699 int ret; 1700 ret = platform_driver_register(&pch_spi_pd_driver); 1701 if (ret) 1702 return ret; 1703 1704 ret = pci_register_driver(&pch_spi_pcidev_driver); 1705 if (ret) { 1706 platform_driver_unregister(&pch_spi_pd_driver); 1707 return ret; 1708 } 1709 1710 return 0; 1711 } 1712 module_init(pch_spi_init); 1713 1714 static void __exit pch_spi_exit(void) 1715 { 1716 pci_unregister_driver(&pch_spi_pcidev_driver); 1717 platform_driver_unregister(&pch_spi_pd_driver); 1718 } 1719 module_exit(pch_spi_exit); 1720 1721 module_param(use_dma, int, 0644); 1722 MODULE_PARM_DESC(use_dma, 1723 "to use DMA for data transfers pass 1 else 0; default 1"); 1724 1725 MODULE_LICENSE("GPL"); 1726 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver"); 1727 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id); 1728 1729